4.1正弦和余弦3

合集下载

《正弦和余弦》 说课稿

《正弦和余弦》 说课稿

《正弦和余弦》说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是《正弦和余弦》。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。

一、教材分析“正弦和余弦”是初中数学中三角函数这一板块的重要内容,它是在学生已经学习了直角三角形的边与角的关系,以及相似三角形的基础上进行的。

本节课的学习,不仅为后续学习正切函数以及解直角三角形等知识奠定基础,而且在实际生活中也有着广泛的应用,比如测量物体的高度、距离等。

教材通过引导学生观察直角三角形中锐角的对边与斜边、邻边与斜边的比值,引出正弦和余弦的概念,注重培养学生的观察能力、分析能力和归纳能力。

二、学情分析在学习本节课之前,学生已经掌握了直角三角形的基本性质和相似三角形的相关知识,具备了一定的逻辑推理能力和数学思维。

但是,对于正弦和余弦这两个抽象的概念,学生可能会感到理解困难。

因此,在教学过程中,需要通过具体的实例和直观的图形,帮助学生理解和掌握。

同时,学生在学习过程中可能会出现对概念的混淆和应用的错误,需要通过大量的练习和及时的反馈加以纠正。

三、教学目标1、知识与技能目标(1)理解正弦和余弦的概念,能够正确地表示出直角三角形中一个锐角的正弦和余弦值。

(2)掌握正弦和余弦的基本性质,会根据直角三角形的边长求锐角的正弦和余弦值。

2、过程与方法目标(1)通过观察、比较、分析、归纳等数学活动,培养学生的观察能力、分析能力和归纳能力。

(2)经历探索正弦和余弦概念的过程,体会从特殊到一般、从具体到抽象的数学思想方法。

3、情感态度与价值观目标(1)通过对正弦和余弦的学习,感受数学与实际生活的紧密联系,激发学生学习数学的兴趣。

(2)在探索和交流的过程中,培养学生的合作精神和创新意识。

四、教学重难点1、教学重点(1)正弦和余弦的概念及其表示方法。

(2)根据直角三角形的边长求锐角的正弦和余弦值。

2、教学难点(1)理解正弦和余弦的概念。

湘教版数学九年级上册4.1《正弦和余弦》说课稿4

湘教版数学九年级上册4.1《正弦和余弦》说课稿4

湘教版数学九年级上册4.1《正弦和余弦》说课稿4一. 教材分析《正弦和余弦》是湘教版数学九年级上册4.1的内容,这部分内容是在学生已经掌握了锐角三角函数的基础上进行学习的。

本节课的主要内容是引导学生探究正弦和余弦的定义,理解它们的性质和应用。

通过这部分的学习,学生能够更深入地理解三角函数的概念,为后续的学习打下基础。

二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和探究能力,他们对锐角三角函数已经有了初步的了解。

但是,对于正弦和余弦的定义和性质,他们可能还存在着一些模糊的地方。

因此,在教学过程中,我将会注重引导学生通过观察、实验、推理等方法,深入理解正弦和余弦的概念。

三. 说教学目标1.知识与技能:学生能够理解正弦和余弦的定义,掌握它们的性质,并能运用它们解决一些实际问题。

2.过程与方法:学生通过观察、实验、推理等方法,培养自己的探究能力和解决问题的能力。

3.情感态度与价值观:学生能够积极参与课堂活动,对数学产生兴趣,培养自己的合作意识和创新精神。

四. 说教学重难点1.重点:学生能够理解正弦和余弦的定义,掌握它们的性质。

2.难点:学生能够运用正弦和余弦解决一些实际问题,并深入理解它们的内在联系。

五. 说教学方法与手段在教学过程中,我将采用观察、实验、推理、讨论等教学方法,引导学生主动参与课堂活动。

同时,我会利用多媒体教学手段,如PPT、视频等,为学生提供丰富的学习资源,帮助学生更好地理解正弦和余弦的概念。

六. 说教学过程1.导入:通过复习锐角三角函数的内容,引导学生回顾已学的知识,为新课的学习做好铺垫。

2.探究正弦和余弦的定义:引导学生观察正弦和余弦的图象,通过实验和推理,引导学生探究正弦和余弦的定义。

3.性质探讨与应用:引导学生通过观察、实验、推理等方法,探究正弦和余弦的性质,并运用它们解决一些实际问题。

4.总结与拓展:引导学生总结本节课的学习内容,并进行拓展训练,提高学生的解决问题的能力。

(经典)正弦定理、余弦定理知识点总结及最全证明

(经典)正弦定理、余弦定理知识点总结及最全证明

正弦定理、余弦定理知识点总结及证明方法1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.主要考查有关定理的应用、三角包等变换的能力、运算能力及转化的数学思想.解三角形常常作为解题工具用丁立体几何中的计算或证明,或与三角函数联系在一起求距离、高度以及角度等问题,且多以应用题的形式出现.1.正弦定理(1)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即.其中R是三角形外接圆的半径.(2)正弦定理的其他形式:① a = 2RsinA , b =, csinO;③ a : b : c= _______________________________2.余弦定理(1)余弦定理:三角形中任何一边的平■方等——王彦文宵铜峡一中丁其他两边的平■方的和减去这两边与它们的火角的余弦的积的两倍.即a2=, b2=,c?=.若令C= 90°, WJ c2=,即为勾股定理.(2)余弦定理的变形:cosA =, cosB=, cosC^.若C为锐角,则cosC>0,即a2 + b2 ; 若C为钝角,贝U cosC<0,即a2+ b2.故由a2+ b2与c2值的大小比较,可以判断C为锐角、钝角或直角.(3)正、余弦定理的一个重要作用是实现边角,余弦定理亦可以写成sin2A= sin2B+ sin2C—2sinBsinCcosA,类似地,sin2B= ________________ ; sin2C= _________ _S 意式中隐含条件A+ B+ C= TT .3.解斜三角形的类型(1)已知三角形的任意两个角与一边,用理.只有一解.(2)已知三角形的任意两边与其中一边的对角,用定理,可能有L如在△ ABC中,已知a, b和A时,解的情况如表:②sin A=2R' sinB=A为锐角A为钝角或直角图形关系式a= bsinA bsinA<a< b a为a>b解的个数①②③④(3)已知三边,用理.有解时,只有一解.(4)已知两边及火角,用理, 必有一解.4.三角形中的常用公式或变式⑴三角形面积公式& =:其中R, r分别为三角形外接圆、内切圆半径.(2)A+ B+ C=兀,WJ A=,A5 = , 从而sinA = tanAtanBtanC (3)a+ c sinA+ sinCcosA = , tanA =<(3)互化sin2C+ sin2A—2sinCsinAcosB sin2A+sin2B— 2sinAsinBcosC3. (1)正弦(2)正弦一解、两解或无解①一解②二解③一解④一解⑶余弦⑷余弦1 1 1 abc 14. (1)2absinC 2bcsinA 2acsinB 4R 2 (a+ b+ c)r在△ ABC中,A>B 是sinA>sinB 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:因为在同一三角形中,角大则边大,边大则正弦大,反之也成立,故是充要条件.故选C.兀B+ C (2)代(B+ Q 2— Fsin(B+ C) — cos(B+ C)2 (1)b* 1 2+ c2— 2bccosA c2 + a2— 2cacosB a2 + b2—2abcosC a2 + b2b2+ c2—a2c2+ a2—b2a2+ b2—c2(2)2bc2ca2ab—tan(B+ C) co岩si号«C tan 2在△ ABC中,已知b= 6, c= 10, B= 30°,则解此三角形的结果有()A.无解B. 一解C.两解D. 一解或两解解:由正弦定理知sinC=半=5, 乂由b 6c>b>csinB知,C有两解.也可依已知条件,画出△ ABC,由图知有两解.故选 C.(2012陕西)在^ABC中,角A, B, C所对的边…一…Tt i—一,分力U为a, b, c.右a= 2, B= c= 2寸3,贝U b =.解:由余弦定理知b2= a2 + c2—2accoSB=22 + (2^3)2— 2X 2X^/3X c%= 4, b= 2.故填2.(2013陕西)®AABC的内角A, B, C所对的边分别为a, b, c,若bcosC+ ccosB= asinA,则^ABC 的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定解:由已知和正弦定理可得sinBcosC+ sinCcosB= sinA sinA,即sin(B+ Q= sinAsinA, 亦即sinA= sinAsinA.因为0<A<TT,所以sinA= 1, 所以A=2.所以三角形为直角三角形.故选B.在^ABC中,角A, B, C所对的边分别为a, b, c,若 a =寸2, b=2, sinB+ cosB=寸2,则角 A解:sinB+ cosB= ^2,,•寸2sin B+4 =寸2,即sin B+4 = 1._____ __ _兀兀_兀乂.. B€ (0,冗)... B+; = ;, B=~.4 2 4a b asinBsinA= b根据正弦正理、皿=sinB,可侍12'. a<b, . . Av B... A=g.故填&类型一正弦定理的应用△ ABC的内角A, B, C的对边分别为a, b, c,已知A— C= 90 , a+ c=寸2b,求C.解:由a+ c=寸2b及正弦定理可得sinA+sinO 2sinB乂由丁A— C= 90 , B= 180 — (A+C),故cosC + sinC = sinA + sinC=戒sin(A + Q =戒sin(90 + 2Q =匝sin2(45 + Q.,•哀sin(45 + C) = 2 戒sin(45 + C)cos(45 + C),* 一1即cos(45 + C) = 2.乂 .。

【高中数学】余弦定理、正弦定理(3)课件 高一下学期数学人教A版(2019)必修第二册

【高中数学】余弦定理、正弦定理(3)课件 高一下学期数学人教A版(2019)必修第二册
由正弦定理,得AC=
sin30∘
sin45∘
=20 2.
60° 60°
45°30°
40
在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC×BC×cos ∠BCA=(20 2)2+
(40 2)2-2×40 2 ×20 2 cos 60°=2400,
∴AB=20 6 ,故A,B两点之间的距离为20 6 m.
跟踪训练
4.某海上养殖基地A,接到气象部门预报,位于基地南偏东60°相距
20( 3 +1)海里的海面上有一台风中心,影响半径为20海里,正以每小时
10 2海里的速度沿某一方向匀速直线前进,预计台风中心将从基地东北
方向刮过且 3+1小时后开始持续影响基地2小时.求台风移动的方向.
在△ABC中,由余弦定理得
sin30∘

新知探究
1.基线的概念与选择原则
(1)定义
线段
在测量过程中,我们把根据测量的需要而确定的_______叫做基线.
(2)性质
基线长度
在测量过程中,应根据实际需要选取合适的_________,使测量具有

较高的精确度.一般来说,基线越长,测量的精确度越_______.
2.实际测量中的有关名称、术语
5.一船以每小时15 km的速度向东行驶,船在A处看到一灯塔B在
北偏东60°,行驶4 h后,船到达C处,看到这个灯塔在北偏东
30 2
15°,这时船与灯塔的距离为________km.
如图所示,AC=15×4=60.
∠BAC=30°,∠B=45°,
在△ABC中,
∴BC=30 2.
60
sin45∘
=

方法总结
测量距离的基本类型及方案

1[1].4.1正弦、余弦函数图像

1[1].4.1正弦、余弦函数图像
余弦曲线
y
1
-
− 6π
-
− 4π
-
− 2π
-
-1 -
o

-

-

-
因为终边相同的角的三角函数值相同,所以 的图象在……, 因为终边相同的角的三角函数值相同,所以y=cosx的图象在 的图象在 , [−4π,−2π] ,[− 2π,0], [0,2π ], [2π ,4π ], …与y=cosx,x∈[0,2π]的图象相同 与 ∈ 的图象相同
(π , − 1)
π
2 , 0)
3π ( , 0) 2
轴的交点: 与x轴的交点: ( 轴的交点
正弦、 正弦、余弦函数的图象
画出函数y=1+sinx,x∈[0, 2π]的简图: 的简图: 例1 画出函数 , ∈ π 的简图
x
sinx 1+sinx
y 2 1
0 0 1
π
2
π 0 1
3π 2
2π 0 1 步骤: 步骤: 1.列表 列表 2.描点 描点 3.连线 连线
9π −4π − 7π −3π 2 2
5π−2π 3π − 2 2
x∈R
−π

π 2
y
1


-1
π 2
π
3π 2π 5π 2 2

7π 4π 9π 2 2
5π x
y 余弦曲线: 余弦曲线: = cos x

9π −4π 7π −3π 5π −2π 3π − − − 2 2 2 2
x∈R
−π

π 2
y
1
-1
π 2
π
3π 2π 5π 2 2

湘教版九年级数学 4.1 正弦和余弦(学习、上课课件)

湘教版九年级数学  4.1 正弦和余弦(学习、上课课件)

知1-练
sin 67°38′24′′; 解:sin 67°38′24′′≈ 0.924 8.
(2)用计算器求锐角α 的度数(精确到0.1 °):
sinα=0.516 8. α ≈ 31.1°.
解题秘方:紧扣使用计算器的操作步骤,正确 按键得出结果.
感悟新知
知1-练
3-1. [ 期末·莱阳 ] 若用我们数学课本上采用的科学计 算器计算 sin42 ° 16′,按键顺序正确的是 ( C )
解:原式=12+
2 2
2-13×
3 2
2=12+ 12-13×32-1. [ 期末·石家庄裕华区 ] 已知 α 为锐角,且sin(α-
10 ° ) =
3 2
,则
α
等于(
A
)
A. 70° B. 60°
C. 40° D. 30°
感悟新知
例3 (1)用计算器求正弦值(精确到0.000 1):
1. sin α是完整的数学符号,是一个整体,不能理解成
sin·α . 2. 正弦符号后面可以跟单个小写希腊字母或单个大写英文
字母或三个大写英文字母或数字表示的角,也可以跟度 数,如sin α,sin A,sin ∠ABC,sin ∠2,sin 70° .
感悟新知
知1-练
例1 在 Rt △ ABC 中,∠ C=90 °,如果AB=2, BC=1, 3
感悟新知
知2-练
例4 [母题 教材 P115 练习 T1 ]在Rt△ABC中,∠C=90°,
∠A,∠B,∠C的对边分别为a,b,c,请根据下列 条件分别求出∠A的正弦、余弦值: (1)a=6,b=8;(2)b=2,c= 10.
感悟新知
知2-练
解题秘方:紧扣正弦、余弦揭示了直角三角形的边 角之间的数量关系,先利用勾股定理求 出未知边的长度,然后根据定义求∠ A的 正弦、余弦值.

正弦、余弦函数的定义

正弦、余弦函数的定义

恒口高级中学数学必修四学案 NO.课题:4.1任意角的正弦、余弦函数的定义主编人:_范明珠 审核人:___ 领导签字:___ ___ 班_____组 姓 名:_____ _ 师 评: 使用说明:1、紧扣学习目标,认真预习课本13—15页,独立完成自主学习部分。

2、整理出自己在自学过程中遇到的问题和困惑,努力尝试做合作探究部分内容,标记好疑点、难点,准备讨论和展示。

3、课堂认真思考,积极讨论,大胆展示,充分发挥小组合作优势,解决疑难问题。

4、小组长在课堂讨论环节起引领作用,做到有效讨论,确保每人都达成目标。

学习目标:1.借助单位圆理解任意角的三角函数的定义。

2.掌握正弦函数、余弦函数的定义域和函数值在各象限的符号。

重 点:正弦函数、余弦函数的定义 难 点:正弦函数、余弦函数值在各象限的符号一、自主学习【预习与思考】1、 在直角坐标系中,以_____ _为圆心,以_____ _为半径的圆,称为单位圆。

2、 在直角坐标系中,给定单位圆,对于任意角α,使角α的顶点与_____重合,始边与_____重合,终边与单位圆交于点),(v u P ,那么点P 的_____ 叫做角α的正弦函数,记作_____ _点P 的_____ 叫做角α的余弦函数,记作_____ _通常,我们用x 表示自变量,即表示角的大小,用y 表示函数值,这样我们就定义了任意角三角函数____ ,和____ _ 。

它们的定义域为____ ,值域为____ 。

3、 正弦函数、余弦函数在各象限的符号思考:若点),(y x P 是角α终边上异于原点的任意一点,又该如何定义角α的正弦函数和余弦函数?【预习自测】:1、(1)417sin π=____ (2) 322cos π=____2、已知角α终边上一点的坐标为)8,6(-P ,则=αsin ____ ;=αcos ____ ;3、判断 375sin 、π427sin、)380cos(π-的符号。

湘教版九年级数学很上册第4章《锐角三角函数》教案

湘教版九年级数学很上册第4章《锐角三角函数》教案

湘教版九年级数学很上册第4章《锐角三角函数》教案 4.1 正弦和余弦第1课时 正 弦1.理解并掌握锐角正弦的定义.2.在直角三角形中求锐角的正弦值.(重点)一、情境导入牛庄打算新建一个水站,在选择水泵时,必须知道水站(点A )与水面(BC )的高度(AB ).斜坡与水面所成的角(∠C )可以用量角器测出来,水管的长度(AC )也能直接量得.你能求出它的高度(AB )吗?二、合作探究探究点一:锐角的正弦的概念在Rt △ABC 中,∠C =90°,则sin B =( ) A.AC AB B.AB BC C.AB AC D.BC AB解析:由正弦的概念可得sin B =ACAB,故选A.方法总结:正确理解锐角的正弦的概念,在实际解题的过程中可以借助简单的图形帮助解题.探究点二:已知直角三角形的边求锐角的正弦值在Rt △ABC 中,∠ABC =90°,AB =3,BC =4,则sin A = W.解析:在Rt △ABC 中,∠ABC =90°,∴斜边AC =AB 2+BC 2=32+42=5,∴sin A=BC AC =45,故填45. 方法总结:在直角三角形中,sin α=角α的对边斜边,在解题时运用勾股定理求出斜边,即可完成解答.探究点三:构造直角三角形求锐角的正弦值如图所示,P 为∠α的边OM 上的一点,且P 点的坐标为(3,4),则sin α的值是( )A.35B.45C.34D.43解析:过P 作P A ⊥x 轴,垂足为A ,则OA =3,P A =4,∴OP =OA 2+P A 2=5,∴sin α=P A OP =45,故选B. 方法总结:解此类题时,首先要根据已知条件构造出合适的直角三角形,然后利用正弦的定义求锐角的正弦.三、板书设计锐角的正弦⎩⎪⎪⎪⎨⎪⎪⎪⎧概念:在直角三角形中,锐角α的对边与斜边的比叫做角α的正弦. 记作sin α,sin α=∠α的对边斜边性质:α确定的情况下,sin α为定值,与△ABC的大小无关基本题型⎩⎪⎨⎪⎧已知各条件在直角三角形中求正弦构造直角三角形求锐角的正弦值教学过程中,通过联系生活实例来引入新的知识,鼓励学生积极参与讨论,尝试发现生活中同类型的问题,在激发学习兴趣的同时快速切入主题.在合作探究环节用基础的练习帮助学生巩固基本概念,为下面的学习打下基础.4.1 正弦和余弦第1课时 正弦教学目标: 1、知识与技能:(1)使学生理解锐角正弦的定义。

正弦定理与余弦定理的使用

正弦定理与余弦定理的使用

正弦定理与余弦定理的使用数学是一门需要掌握基本概念和公式的学科,而在初中数学中,正弦定理和余弦定理是非常重要的两个定理。

它们可以帮助我们解决各种与三角形相关的问题,比如求边长、角度等。

在本文中,我将详细介绍正弦定理和余弦定理的使用方法,希望能够帮助中学生及其家长更好地理解和应用这两个定理。

一、正弦定理的使用正弦定理是指在任意三角形ABC中,边长a、b、c与其对应的角A、B、C之间的关系。

具体公式如下:\[\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\]利用正弦定理,我们可以解决以下几类问题:1. 已知两边和夹角,求第三边长度例如,已知三角形ABC中,边AB=5cm,边AC=7cm,夹角BAC为60度,求边BC的长度。

根据正弦定理,我们可以得到:\[\frac{BC}{\sin 60^\circ}=\frac{5}{\sin B}\]进一步化简,得到:\[BC=\frac{5\sin 60^\circ}{\sin B}\]由此,我们可以利用三角函数表或计算器求得角B的正弦值,然后代入上式计算得到BC的长度。

2. 已知两边长度和夹角,求第三边夹角例如,已知三角形ABC中,边AB=3cm,边BC=4cm,夹角ABC为45度,求角BAC的度数。

根据正弦定理,我们可以得到:\[\frac{3}{\sin B}=\frac{4}{\sin 45^\circ}\]进一步化简,得到:\[\sin B=\frac{3\sin 45^\circ}{4}\]通过求解这个方程,我们可以得到角B的正弦值,然后利用反正弦函数求得角B的度数。

二、余弦定理的使用余弦定理是指在任意三角形ABC中,边长a、b、c与其对应的角A、B、C之间的关系。

具体公式如下:\[c^2=a^2+b^2-2ab\cos C\]利用余弦定理,我们可以解决以下几类问题:1. 已知三边长度,求夹角的余弦值例如,已知三角形ABC中,边AB=5cm,边BC=7cm,边AC=9cm,求角B 的余弦值。

5.4.1 正弦函数、余弦函数的图象

5.4.1 正弦函数、余弦函数的图象
的打“×”.
(1)正弦函数y=sin x的图象关于x轴对称.( × )
(2)正弦函数y=sin x与函数y=sin(-x)的图象完全相同.( × )
(3)余弦函数y=cos x的图象与x轴有无数个交点.( √ )
(4)余弦函数y=cos x的图象与y=sin x的图象形状和位置都不
一样.( × )

画出两个函数的图象,观察它们交点的个数,即得方程根的个
数.

解:先用“五点法”画出函数y=sin x的图象,再在同一平面直角

,- ,(1,0),(10,1) ,并用光滑曲线连接得到
坐标系内描出

y=lg x的图象,如图.
由图象可知方程lg x=sin x的解的个数为3.
答案:D

反思感悟
1.对于方程解的个数问题,常借助函数的图象用数形结合的方
1+2sin x
0
1


1
3
在平面直角坐标系中描出五点(0,1),
π
0
1




-1
-1
, ,(π,1),

0
1


,- ,(2π,1),
然后用光滑的曲线连接起来,就得到 y=1+2sin x,x∈[0,2π]的
图象,如图所示.

(2)列表:
x
cos x
2+cos x
描点连线,如图.
0
1
3


0
2
π
-1
1


0
2

1
3

反思感悟
1.“五点法”是画与三角函数有关的函数的图象的常用方

湘教版九年级数学上册课件:4.1 正弦和余弦 (共25张PPT)

湘教版九年级数学上册课件:4.1  正弦和余弦 (共25张PPT)
AB DE
α
α
∵ ∠A=∠D= α,∠C=∠F=90°,
∴ ∠B=∠E. 从而 sin B sin E , 因此 AC DF .
AB DE
由此可得,在有一个锐角等于 α的所有直角三
角形中,角 α的邻边与斜边的比值是一个常数,与
直角三角形的大小无关.
如图,在直角三角形中,我们把锐角的邻边与斜
AB
2
=
3 4
AB2.
因此
sin60
=
AC AB
=
3 2
.
至此,我们已经知道了三个特殊角(30°,45°,60°)
的正弦值,而对于一般锐角 α 的正弦值,我们可以利用计算
器来求.
例如求 50°角的正弦值,可以在计算器上依次按

,显示结果为0.7660…
如果已知正弦值,我们也可以利用计算器求出它的对 应锐角.
边的比叫作角 α的余弦,记作 cos ,即
cos 角 的邻边 斜边
α
从上述探究和证明过程看出,对于任意锐角 α,
cos= sin( -).
sin= cos( -).
例3 求cos30°,cos60°,cos45°的值.
解:
cos30 = sin(90 -30)= sin60 =
11
这个猜测是真的吗? 若把65°角换成任意一个锐
角 α ,则这个角的对边与斜边的比值是否也是一个常数
呢?
新知探究
如图,△ABC和△DEF都是直角三角形,其
中∠A=∠D= α, ∠C=∠F=90°,则
BC AB

EF 成
DE
立吗?为什么?
α
α
∵ ∠A=∠D = α, ∠C=∠F= 90°,

正弦定理和余弦定理公式

正弦定理和余弦定理公式

正弦定理和余弦定理公式设任意三角形△ABC,角A、B、C的对边分别记作a、b、c,则可得到正弦定理、余弦定理的公式及其推论如下。

正弦定理:在一个三角形中,各边和它所对的角的正弦的比相等。

一、正弦定理公式a/sinA=b/sinB=c/sinC=2R。

【注1】其中“R”为三角形△ABC外接圆半径。

下同。

【注2】正弦定理适用于所有三角形。

初中数学中,三角形内角的正弦值等于“对比斜”仅适用于直角三角形。

二、正弦定理推论公式1、(1)a=2RsinA;(2)b=2RsinB;(3)c=2RsinC。

2、(1)a:b=sinA:sinB;(2)a:c=sinA:sinC;(3)b:c=sinB:sinC;(4)a:b:c=sinA:sinB:sinC。

【注】多用于“边”、“角”间的互化。

三角板的边角关系也满足正、余弦定理3、由“a/sinA=b/sinB=c/sinC=2R”可得:(1)(a+b)/(sinA+sinB)=2R;(2)(a+c)/(sinA+sinC)=2R;(3)(b+c)/(sinB+sinC)=2R;(4)(a+b+c)/(sinA+sinB+sinC)=2R。

4、三角形ABC中,常用到的几个等价不等式。

(1)“a>b”、“A>B”、“sinA>sinB”,三者间两两等价。

(2)“a+b>c”等价于“sinA+sinB>sinC”。

(3)“a+c>b”等价于“sinA+sinC>sinB”。

(4)“b+c>a”等价于“sinB+sinC>sinA”。

5、三角形△ABC的面积S=(abc)/4R。

其中“R”为三角形△ABC的外接圆半径。

部分三角函数公式余弦定理公式及其推论余弦定理:三角形中任何一边的平方,等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。

一、余弦定理公式(1)a^2=b^2+c^2-2bccosA;(2)b^2=a^2+c^2-2accosB;(3)c^2=a^2+b^2-2abcosC。

第一节 正弦定理和余弦定理(知识梳理)

第一节 正弦定理和余弦定理(知识梳理)

第一节 正弦定理和余弦定理复习目标学法指导1.会证明正弦定理、余弦定理.2.理解正弦定理、余弦定理在讨论三角形边角关系时的作用.3.能用正弦定理、余弦定理解斜三角形.4.会用正弦定理、余弦定理讨论三角形解的情形.5.了解正弦定理与三角形外接圆半径的关系.1.正弦定理和余弦定理是解三角形的基础,熟记定理内容及变形公式,在解决问题时注重数形结合.2.在给定方程的化简和变形上要注重“统一”“消元”思想的运用.统一:统一角度或边长.消元:多个角度利用A+B+C=π进行消元.一、正弦定理正弦定理内容:sin a A =sin b B =sin c C=2R(R 为△ABC 外接圆半径). 变形形式:①a=2Rsin A,b=2Rsin B,c=2Rsin C. ②sin A=2a R ,sin B=2b R ,sin C=2c R . ③a ∶b ∶c=sin A ∶sin B ∶sin C.④sin a A =sin sin a b A B ++=sin sin sin a b c A B C++++.1.概念理解(1)正弦定理主要解决两类三角形问题:①知两角和一边;②知两边和其中一边所对应的角.在第②类中要注意会出现两组解的特殊情况. (2)正弦定理中边角互化公式:a=2Rsin A 和sin A=2a R 是表达式变形中常用公式,在统一角度或统一长度上发挥作用. 2.与正弦定理有关的结论(1)三角形中:A+B+C=π,sin(A+B)=sin C, cos(A+B)=-cos C.(2)在△ABC 中,已知a,b 和A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式 a=bsin Absin A<a<ba ≥ba>b解的个数 一解两解一解一解二、余弦定理余弦定理内容:a 2=b 2+c 2-2bc ·cos A, b 2=a 2+c 2-2ac ·cos B, c 2=a 2+b 2-2ab ·cos C.变形形式:cos A=2222bc a bc+-,cos B=2222ac b ac+-,cos C=2222a b c ab+-.1.概念理解(1)余弦定理解决两类三角形问题:一是知两边及其夹角的三角形,二是知三边的三角形.(2)利用余弦定理来解决三角形问题时,要注意角的取值范围.通常求解三角形的内角度数时,不是解该角的正弦,而是解该角的余弦. 2.与余弦定理有关的结论 由cos A=2222b c a bc+-(设A 为最大内角)若b 2+c 2>a 2,则该三角形为锐角三角形. b 2+c 2=a 2,则该三角形为直角三角形. b 2+c 2<a 2,则该三角形为钝角三角形.1.在△ABC 中,内角A,B,C 的对边分别为a,b,c.若asin Bcos C+csin Bcos A=12b,且a>b,则∠B 等于( A ) (A)π6 (B)π3(C)2π3 (D)5π6 解析:由正弦定理得sin Asin Bcos C+sin Csin Bcos A=12sin B, 所以sin Bsin(A+C)=12sin B. 因为sin B ≠0, 所以sin(A+C)=12,即sin B=12,所以B=π6或5π6.又因为a>b, 所以A>B, 所以B=π6.故选A.2.在△ABC 中,已知b=40,c=20,C=60°,则此三角形的解的情况是( C ) (A)有一解 (B)有两解 (C)无解(D)有解但解的个数不确定解析:由正弦定理得sin b B =sin cC,所以sin B=sin b Cc=40220>1.所以角B 不存在,即满足条件的三角形不存在.故选C. 3.在△ABC 中,A=60°则△ABC 的面积等于 .解析:=4sin B, 所以sin B=1, 所以B=90°, 所以AB=2,所以S △ABC =12×2×23=23.答案:234.(2019·临海高三检测)设△ABC 的内角A,B,C 所对边的长分别为a,b,c.若b+c=2a,3sin A=5sin B,则角C= . 解析:由3sin A=5sin B,得3a=5b.又因为b+c=2a, 所以a=53b,c=73b,所以cos C=2222a b c ab +-=22257()()33523b b b b b +-⨯⨯=-12. 因为C ∈(0,π), 所以C=2π3. 答案:2π3考点一 利用正弦定理解三角形 [例1] (1)在△ABC 中32°,求角A,C 和边c;(2)已知a,b,c 分别是△ABC 的三个内角A,B,C 所对的边,若3求角A 的大小.解:(1)由正弦定理sin a A =sin bB , 得sin A=sin a B b3,所以A=60°或120°. ①当A=60°时,C=75°,由sin a A =sin c C ,得c=sin sin a C A⋅=2·sin 75°62+②当A=120°时,C=15°,c=2·sin 15°62-解:(2)由A+C=2B,A+C+B=180°得B=60°.所以由正弦定理得3=1sin A, 所以sin A=12.所以A=30°或150°. 又因为b>a, 所以B>A. 所以A=30°.利用正弦定理解三角形(1)注重条件和图形的结合;(2)知两边及一边对应的角时,要区分三角形解的情况,通常情况下先利用正弦定理求角,再利用“大边对大角”的条件排除; (3)正弦定理的变形公式.1.(2019·浙江卷)在△ABC 中,∠ABC=90°,AB=4,BC=3,点D 在线段AC 上.若∠BDC=45°,则BD= ,cos ∠ABD= .解析:如图,易知sin C=45, cos C=35.在△BDC 中,由正弦定理可得sin BD C=sin BC BDC∠, 所以BD=sin sin BC C BDC⋅∠4352⨯122.由∠ABC=∠ABD+∠CBD=90°,可得cos ∠ABD=cos(90°-∠CBD)=sin ∠CBD=sin[π-(∠C+∠BDC)] =sin(∠C+∠BDC)=sin C ·cos ∠BDC+cos C ·sin ∠BDC=45×2+35×2=72.答案122722.在△ABC 中,B=60°3则AB+2BC 的最大值为 .解析:在△ABC 中,由正弦定理得sin AB C =sin BCA 3所以AB+2BC=2sin C+4sin A =2sin(120°-A)+4sin A 7ϕ),其中,tan ϕ3,又因为A ∈(0°,120°), 所以最大值为7答案7考点二 利用余弦定理解三角形[例2] 若△ABC 的内角A,B,C 所对的边a,b,c 满足(a+b)2-c 2=4,且C=60°,则ab 的值为( ) (A)433(C)1 (D)23解析:由已知得a 2+b 2-c 2+2ab=4, 由于C=60°,所以cos C=2222a b c ab+-=12, 即a 2+b 2-c 2=ab,因此ab+2ab=4,ab=43,故选A.利用余弦定理解三角形:一般地,如果式子中含有角的余弦或边的二次关系时,考虑使用余弦定理.△ABC 中,角A,B,C 的对边分别是a,b,c,已知b=c,a 2=2b 2(1-sin A),则A 等于( C )(A)3π4 (B)π3 (C)π4 (D)π6解析:在△ABC 中,由余弦定理得a 2=b 2+c 2-2bccos A, 因为b=c,所以a 2=2b 2(1-cos A), 又因为a 2=2b 2(1-sin A), 所以cos A=sin A,所以tan A=1, 因为A ∈(0,π),所以A=π4,故选C. 考点三 正、余弦定理的综合应用[例3] 设△ABC 的内角A,B,C 所对应的边分别为a,b,c, 已知()sin a bA B ++=sin sin a c AB --.(1)求角B; (2)若6,求△ABC 的面积.解:(1)因为()sin a bA B ++=sin sin a c AB --,所以a b c+=a ca b --, 所以a 2-b 2=ac-c 2, 所以cos B=2222a c b ac+-=2ac ac =12, 又因为0<B<π,所以B=π3.解:(2)由cos A=63可得sin A=33,由sin a A =sin b B可得a=2, 而sin C=sin(A+B) =sin Acos B+cos Asin B =3326+,所以△ABC 的面积S=12absin C=3322+.(1)利用正、余弦定理解三角形的关键是根据已知条件及所求结论确定三角形及所需应用的定理.(2)对于面积公式S=12absin C=12acsin B=12bcsin A,一般是已知哪一个角就选用哪一个公式.(2017·全国Ⅰ卷)△ABC 的内角A,B,C 的对边分别为a,b,c,已知△ABC的面积为23sin a A .(1)求sin Bsin C;(2)若6cos Bcos C=1,a=3,求△ABC 的周长. 解:(1)由题设得12acsin B=23sin a A ,即12csin B=3sin aA . 由正弦定理得12sin Csin B=sin 3sin A A ,故sin Bsin C=23.解:(2)由题设及(1)得cos Bcos C-sin Bsin C=-12,即cos(B+C)=- 12.所以B+C=2π3,故A=π3.由题设得12bcsin A=23sinaA,即bc=8,由余弦定理得b2+c2-bc=9,即(b+c)2-3bc=9,得b+c=33.故△ABC的周长为3+33.类型一利用正弦定理解三角形1.在△ABC中,角A,B,C所对的边分别是a,b,c.已知8b=5c,C=2B,则cos C等于( A )(A)725 (B)-725(C)±725(D)2425解析:因为8b=5c,所以由正弦定理,得8sin B=5sin C.又因为C=2B,所以8sin B=5sin 2B,所以8sin B=10sin Bcos B.因为sin B≠0,所以cos B=45,所以cos C=cos 2B=2cos2B-1=725.故选A.2.在△ABC中,a,b,c分别是内角A,B,C的对边,向量p=(1,-∥q,且bcos C+ccos B=2asin A,则C等于( A )(A)30°(B)60°(C)120° (D)150°解析:因为p∥q,cos B=sin B,所以即得所以B=120°.又因为bcos C+ccos B=2asin A,所以由正弦定理得sin Bcos C+sin Ccos B=2sin2A,即sin A=sin(B+C)=2sin2A,,又由sin A≠0,得sin A=12所以A=30°,C=180°-A-B=30°.故选A.类型二利用余弦定理解三角形3.已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos2A+ cos 2A=0,a=7,c=6,则b等于( D )(A)10 (B)9 (C)8 (D)5解析:由23cos2A+cos 2A=0,得25cos2A=1,因为A为锐角,所以cos A=1.5b,又由a2=b2+c2-2bccos A,得49=b2+36-125整理得5b2-12b-65=0,解得b=-135(舍)或b=5.即b=5. 故选D.4.若锐角△ABC 的面积为,且AB=5,AC=8,则BC 等于 .解析:设内角A,B,C 所对的边分别为a,b,c.由已知及12得因为A 为锐角,所以A=60°,cos A=12.由余弦定理得a 2=b 2+c 2-2bccos A =64+25-2×40×12 =49,故a=7,即BC=7. 答案:7类型三 正弦定理和余弦定理的综合应用 5.在△ABC 中,∠B=120°∠BAC的平分线则AC 等于( D )(C)2解析:如图,在△ABD 中,由正弦定理,得sin ∠ADB=sin AB BAD .由题意知0°<∠ADB<60°, 所以∠ADB=45°,则∠BAD=180°-∠B-∠ADB=15°, 所以∠BAC=2∠BAD=30°, 所以∠C=180°-∠BAC-∠B=30°, 所以于是由余弦定理,得AC=222cos120AB BC AB BC ︒+-⨯=()()221222222⎛⎫+-⨯⨯- ⎪⎝⎭=6.故选D.。

正弦函数和余弦函数的定义教案

正弦函数和余弦函数的定义教案

1.4 正弦函数和余弦函数的定义与诱导公式1.4.1 任意角的正弦函数、余弦函数的定义(必修4 第一章三角函数)《正弦函数和余弦函数的定义与诱导公式》教案一、教学目标1:知识与技能观察正弦、余弦函数图像得到正弦函数、余弦函数的性质,并灵活应用性质解题。

培养分析、探索、类比和数形结合等数学思想方法在解决问题中的能力。

2:过程与方法理解利用单位圆定义的正弦函数、余弦函数的概念。

通过初中知识的回顾,探索新知,会利用单位圆研究正弦函数、余弦函数的周期性及诱导公式。

通过借助单位圆讨论正弦函数、余弦函数的过程,感悟数形结合思想方法是学习数学的重要思想方法之一。

3:情感态度与价值观由锐角的正,余弦函数推广到任意鱼的正,余弦函数的过程中,体会特殊与一般的关系,形成一种辩证统一的思想;通过单位圆的学习,建立数形结合的思想,激发学习的学习积极性;培养学生分析问题,解决问题的能力。

一二、学情分析初中运算以具体数字为主,运算量小;高中以字母为主,更加抽象(也更接近数学的本质),并且引入对字母的分类讨论,对学生的发散思维能力提出了很高要求,教师讲的太多,会导致学生产生依赖心理,时间一长,会形成恶性循环;教师讲的太多,往往拔苗助长,适得其反;让学生积极动脑思考,过程虽然慢一些,但可以培养学生捕捉问题的敏捷性,对以后的数学学习非常有利,可谓“磨刀不误砍柴工”。

教师要从各方面引导学习数学要深入下去,不能浅尝辄止,半途而废,要适时鼓励学生,给学生以学好数学的勇气和信心。

鼓励学生不要怕出错,大胆尝试,大胆地写,给学生敢写、敢做树立自信心。

在初中学生已经学习过三步作图法(列表,描点、连线)——“描点作图”法,在第一册学生已经掌握了函数的有关对应的知识和概念,同时已经具备了一定的自学能力,这在我们今天学校用“五点法”作图提供了基础,让学生动手作出函数y=sinx和y=cosx的图象,学生不会感到困难。

积极地鼓励学生自主的去完成作业。

遇到有疑问的问题积极的解决。

正弦和余弦课件

正弦和余弦课件

正弦函数的定Leabharlann 和公式正弦函数是以单位圆上的角度为自变量的周期函数。它的定义域是实数集, 值域是介于-1和1之间的实数。正弦函数的公式为:y = A sin(Bx + C) + D
余弦函数的定义和公式
余弦函数也是以单位圆上的角度为自变量的周期函数。它的定义域是实数集,值域是介于-1和1之间的实数。 余弦函数的公式为:y = A cos(Bx + C) + D
应用领域和实际应用
正弦和余弦函数在物理、工程和科学领域中有广泛的应用。它们可以描述机械振动、电磁波传播、声音的变化 等现象。在实际应用中,它们可以用来分析和解决各种振动和波动问题。
总结和要点
通过本课件,我们学习了正弦和余弦函数的定义、公式、性质和实际应用。它们是数学中重要的工具,可以帮 助我们理解和分析周期性的振动和波动现象。
正弦和余弦的性质和关系
正弦和余弦函数具有一些重要的性质和关系。它们是互余函数,即sin(x) = cos(π/2 - x)。它们的图像都是周期性的波动曲线,但是相位不同,可以表示不 同的相位关系和波动形态。
图示和实例说明
通过图示和实例,我们可以更直观地理解正弦和余弦函数。我们将展示它们的图像、周期性、振幅、相位差等 特点,并通过实际案例说明它们的应用。
正弦和余弦ppt课件
正弦和余弦是数学中的重要概念。它们是周期函数,用来描述波动和振动现 象。在这个课件中,我们将深入探讨正弦和余弦函数的定义、性质以及实际 应用。
什么是正弦和余弦?
正弦和余弦是三角函数的两个基本函数,用来描述周期性随时间变化的振动 或波动。它们在数学、物理和工程等领域都有广泛的应用。

直角三角形的正弦与余弦

直角三角形的正弦与余弦

直角三角形的正弦与余弦直角三角形的正弦与余弦是三角函数中的重要概念。

在直角三角形中,正弦和余弦可以帮助我们计算角度和边长之间的关系。

本文将详细介绍直角三角形的正弦和余弦的定义、计算方法以及它们的几何和物理应用。

一、正弦和余弦的定义在直角三角形中,正弦和余弦是由角度和边长之间的比例关系定义的。

假设我们有一个直角三角形,其中一个锐角为θ,定义如下:1. 正弦(Sine):正弦表示一个角的对边与斜边之比,用sinθ表示。

可以用如下公式计算正弦:sinθ = 对边 / 斜边2. 余弦(Cosine):余弦表示一个角的邻边与斜边之比,用cosθ表示。

可以用如下公式计算余弦:cosθ = 邻边 / 斜边二、正弦和余弦的计算方法在计算正弦和余弦时,我们需要知道两个重要的长度,即对边和邻边。

斜边的长度可以通过勾股定理(a² + b² = c²)来计算,其中c表示斜边的长度。

根据直角三角形的性质,斜边的长度也等于斜边上的任意一边长度。

计算正弦和余弦的步骤如下:1. 确定角度:在直角三角形中,我们需要知道所关注的角度。

2. 确定对边和邻边:根据所关注的角度,确定对应的对边和邻边。

3. 计算斜边长度:使用勾股定理计算斜边的长度。

4. 计算正弦和余弦:根据上述定义的公式,计算正弦和余弦值。

三、正弦和余弦的几何应用正弦和余弦的几何应用主要涉及角度和边长之间的关系。

1. 计算缺失的边长:如果我们已知一个角的正弦或余弦值,以及另外两边的长度,可以使用三角函数的反函数来计算缺失的边长。

2. 测量高度:在实际测量中,我们可以使用三角函数来测量无法直接测量的高度。

例如,在测量房子的高度时,我们可以利用一个三角形和测得的某个角的正弦或余弦值,以及已知的边长,来计算出房子的高度。

3. 角度的计算:如果已知两边的长度,可以利用正弦和余弦的反函数来计算出角度的值。

四、正弦和余弦的物理应用正弦和余弦函数在物理学中也有广泛的应用。

关于正余弦的所有公式

关于正余弦的所有公式

关于正余弦的所有公式标题:关于正余弦的所有公式引言概述:正余弦是数学中重要的三角函数,广泛应用于各个领域。

掌握正余弦的所有公式对于解决各种数学问题至关重要。

本文将详细阐述正余弦的公式,包括其定义、基本关系、和差角公式、倍角公式以及半角公式等。

正文内容:1. 定义和基本关系1.1 正弦函数的定义:在直角三角形中,对于一个锐角θ,其对边与斜边的比值称为正弦函数,记作sin(θ)。

1.2 余弦函数的定义:在直角三角形中,对于一个锐角θ,其邻边与斜边的比值称为余弦函数,记作cos(θ)。

1.3 正弦和余弦的基本关系:根据勾股定理,sin^2(θ) + cos^2(θ) = 1,这是正弦和余弦函数之间的基本关系。

2. 和差角公式2.1 正弦的和差角公式:sin(α ± β) = sin(α)cos(β) ± cos(α)sin(β)。

2.2 余弦的和差角公式:cos(α ± β) = cos(α)cos(β) ∓ sin(α)sin(β)。

2.3 和差角公式的应用:和差角公式可以用于简化三角函数的计算,尤其在解决三角方程和三角恒等式时非常有用。

3. 倍角公式3.1 正弦的倍角公式:sin(2θ) = 2sin(θ)cos(θ)。

3.2 余弦的倍角公式:cos(2θ) = cos^2(θ) - sin^2(θ)。

3.3 倍角公式的应用:倍角公式可以将一个三角函数的角度加倍,从而简化计算,常用于解决三角方程和求解三角函数的特殊值。

4. 半角公式4.1 正弦的半角公式:sin(θ/2) = ±√[(1 - cos(θ))/2],其中±取决于θ/2所在的象限。

4.2 余弦的半角公式:cos(θ/2) = ±√[(1 + cos(θ))/2],其中±取决于θ/2所在的象限。

4.3 半角公式的应用:半角公式可以将一个角度减半,从而简化计算,常用于求解三角函数的特殊值和简化三角恒等式的证明。

三角函数中的正弦函数与余弦函数

三角函数中的正弦函数与余弦函数

三角函数中的正弦函数与余弦函数在数学中,三角函数是研究角的性质和变化规律的重要工具。

其中,正弦函数(sine function)和余弦函数(cosine function)是最基本和常见的两个三角函数。

它们在数学、物理、工程等领域中都有广泛的应用。

本文将对正弦函数和余弦函数进行详细介绍,探讨它们的定义、性质和应用。

一、正弦函数正弦函数是三角函数中最基本的函数之一,通常用符号sin表示。

它可以通过单位圆上的点的纵坐标来定义。

在单位圆上,以圆心为原点,半径为1的圆为基准,对于圆上的任意一点P,其纵坐标y就是正弦函数的值。

正弦函数的定义域是实数集,值域是闭区间[-1,1]。

正弦函数具有以下几个重要的性质:1. 周期性:正弦函数是周期函数,其最小正周期为2π。

也就是说,对于任意实数x,有sin(x+2π)=sin(x)。

2. 奇偶性:正弦函数是奇函数,即满足sin(-x)=-sin(x)。

这意味着正弦函数关于原点对称。

3. 对称性:正弦函数具有轴对称性,即sin(π-x)=sin(x)。

4. 最值:正弦函数的最大值为1,最小值为-1。

正弦函数在数学和物理中有广泛的应用。

例如,在几何学中,正弦函数可以用来求解三角形的边长和角度。

在物理学中,正弦函数可以用来描述波动、振动等现象。

二、余弦函数余弦函数是另一个常见的三角函数,通常用符号cos表示。

它也可以通过单位圆上的点的横坐标来定义。

在单位圆上,以圆心为原点,半径为1的圆为基准,对于圆上的任意一点P,其横坐标x就是余弦函数的值。

余弦函数的定义域是实数集,值域是闭区间[-1,1]。

余弦函数具有以下几个重要的性质:1. 周期性:余弦函数也是周期函数,其最小正周期为2π。

也就是说,对于任意实数x,有cos(x+2π)=cos(x)。

2. 偶性:余弦函数是偶函数,即满足cos(-x)=cos(x)。

这意味着余弦函数关于y轴对称。

3. 对称性:余弦函数具有轴对称性,即cos(π-x)=-cos(x)。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习 P104
AC CosA= AB
1.在Rt △ABC 中, ∠C= 90º, AC=5, . , , AB=7.求 cos A ,cos B 的值. 的值. . B
5 = 7
C 2.在Rt △ABC 中, ∠C= 90º, AC= 6 , . , AB=3.求 cos A,cos B , . sin A,sin B 的值. A 的值. B
正弦和余弦(3) 正弦和余弦(
探 究
都是直角三角形, △ABC 和 △DEF都是直角三角形,它们都有一个锐 都是直角三角形 角等于α, 角等于 ,即∠D =∠A = α.在Rt △ABC 中, ∠A的 ∠ . 的 相邻的直角边(简称邻边) 相邻的直角边(简称邻边)为AC,斜边为 ;在Rt ,斜边为AB; 的邻边为DF,斜边为DE. △DEF中,∠D的邻边为 ,斜边为 . 中 的邻边为 D 问
即:一个锐角的余弦等于它余角的正弦
例题 4.求
cos30°
的值. , 60° , cos45° 的值. cos
3 解: cos30° = sin ( 90°− 30°) = sin60° = , 2
1 cos60° = sin ( 90° − 60°) = sin 30° = , 2
2 cos 45° = sin ( 90° − 45°) = sin 45° = . 2
5 .求下列各式的值. 求下列各式的值. (1)Sin30°Cos30° ° ° (2)Sin60°Cos60° ° ° (3)Sin45°Cos45° ° °
1 3 ⋅ = 解 (1)Sin30°Cos30°= ° ° 2 2 1 3 ⋅ = (2)Sin60°Cos60°= ° ° 2 2 2 2 (3)Sin45°Cos45°= ° ° ⋅ = 2 2
3 4 3 4 1 2
AC DE = AB DF
是否成立? 是否成立? F
α
分析
如果两个锐角相等, 如果两个锐角相等,那么它们的正 B 弦值相等。显然∠ ∠ 弦值相等。显然∠B =∠F,所以 SinB=SinF,由正弦定义有 由正弦定义有
E
α
AC SinB= AB
所以
DE SinF= DF
C
A
AC DE = AB DF
这说明:一个锐角 的邻边与斜边的比值就是 这说明:一个锐角α的邻边与斜边的比值就是 它的余角( ° 它的余角(90°-α)的对边与斜边的比值. 的对边与斜边的比值
2 2 2 2
解 (1) (2) (3)
考虑
sin 2 α + cos 2 α = 1.
对于任意角α总有 对于任意角 总有 Nhomakorabea作业
在Rt △ABC 中, ∠C= 90º, BC=7,B=8.求 , , . P106 3、 cos A, cos B, sin A,sin B 的值. 的值. 5 B 7 C 8 A
A
3 .对于任意锐角 , 0 < 对于任意锐角α, 都有你能说出道理吗? 都有你能说出道理吗? ∵
cosα
AC<AB <
<1
C
A
∴ 0< <
<1. .
4.求下列各式的值 . (1)sin
30° + cos 30°; (2) sin 45° + cos 45°; (3) sin 2 60° + cos 2 60°.
定义
在直角三角形中,锐角 的邻边与斜边的比叫 在直角三角形中,锐角α的邻边与斜边的比叫 作角α的余弦 的余弦, 作角 的余弦, 记作 cosα,
角 α的邻边 cos α = . 斜边
根据上述过程看出:对于任意锐角 , 根据上述过程看出:对于任意锐角α,有
cosα=sin ( 90°-α ),sin α=cos ( 90°− α ).
相关文档
最新文档