最新五年级奥数——一般应用题
小学五年级数学必考应用题+奥数题带答案
必考应用题1.火车从甲城到乙城;现已行了200千米;是剩下路程的4倍。
甲乙两城相距多少千米?2.甲港到乙港的航程有210千米;一艘轮船运货从甲港到乙港;用了6小时;返回时每小时比去时多行7千米;返回时用了几小时?3.小方从家到学校;每分钟走60米;要14分钟;如果她每分钟多走10米;需要多少分钟?4.一辆汽车3小时行了135千米;一架飞机飞行的速度是汽车的28倍还少60千米;这架飞机每小时行多少千米?5.某工地需水泥240吨;用5辆汽车来运;每辆汽车每次运3吨;需运多少次才能运完?6.甲乙两地相距750千米;一辆汽车以每小时50千米的速度行驶;多少小时可以到达乙地?7.甲乙两地相距560千米;一辆汽车从甲地开往乙地;每小时行48千米;另一辆汽车从乙地开往甲地;每小时行32千米. 两车从两地相对开出5小时后;两车相距多少千米?8.一段公路原计划20天修完. 实际每天比原计划多修45米;提前5天完成任务. 原计划每天修路多少米?9.这辆汽车每秒行18米,车的长度是18米,隧道长324米,这辆汽车全部通过隧道要用多长时间?10.石家庄到承德的公路长是546千米.红红一家从石家庄开车到承德游览避暑山庄,如果平均每小时行驶78千米,上午8时出发,那么几时可以到达?11.一个平行四边形四条边长度相等都是5厘米高是3厘米求这个平行四边形面积是多少?12.一个长方.长是18厘.宽是长的一半多2厘米.求这个长方形面积和周长分别是多少?13.一个正方形边长9厘米把它分成四个相等大小的小正方形请问小正方形的面积是多少?14.一个长方形是由两个大小相等的正方形拼成的正方形的边长是4厘米求这个长方形的面积是多少?15.一个正方形纸条周长是64厘米把这个正方形对折变成两个大小相同的长方形求这两个大小相同的长方形的面积是多少?16.印刷厂4小时印书8540本;照这样计算;再印3小时共可印书多少本?17、某校办工厂去年原计划平均每月生产文具盒3190个;实际生产11个月就完成了全年的计划任务。
小学五年级奥数应用题及答案
小学五年级奥数应用题及答案【篇一】1、甲乙两车从相距600千米的两地同时相向而行已知甲车每小时行42千米,乙车每小时行58千米两车相遇时乙车行了多少千米?解:速度和=42+58=100千米/小时相遇时间=600/100=6小时相遇时乙车行了58×6=148千米或者甲乙两车的速度比=42:58=21:29所以相遇时乙车行了600×29/(21+29)=348千米2、两车相向,6小时相遇,后经4小时,客车到达,货车还有188千米,问两地相距?解:将两车看作一个整体两车每小时行全程的1/64小时行1/6×4=2/3那么全程=188/(1-2/3)=188×3=564千米3、甲乙两地相距600千米,客车和货车从两地相向而行,6小时相遇,已知货车的速度是客车的3分之2,求二车的速度?解:二车的速度和=600/6=100千米/小时客车的速度=100/(1+2/3)=100×3/5=60千米/小时货车速度=100-60=40千米/小时4、小兔和小猫分别从相距40千米的A、B两地同时相向而行,经过4小时候相聚4千米,再经过多长时间相遇?解:速度和=(40-4)/4=9千米/小时那么还需要4/9小时相遇5、甲、乙两车分别从ab两地开出甲车每小时行50千米乙车每小时行40千米甲车比乙车早1小时到两地相距多少?解:甲车到达终点时,乙车距离终点40×1=40千米甲车比乙车多行40千米那么甲车到达终点用的时间=40/(50-40)=4小时两地距离=40×5=200千米6、两辆车从甲乙两地同时相对开出,4时相遇。
慢车是快车速度的五分之三,相遇时快车比慢车多行80千米,两地相距多少?解:快车和慢车的速度比=1:3/5=5:3相遇时快车行了全程的5/8慢车行了全程的3/8那么全程=80/(5/8-3/8)=320千米7、甲乙两人分别从A、B两地同时出发,相向而行,甲每分钟行100米,乙每分钟行120米,2小时后两人相距150米。
小学五年级应用题奥数应用题100道(含答案)
小学五年级应用题奥数应用题100道(含答案)1. 商店有苹果300 千克,梨200 千克,梨的重量是苹果的几分之几?答案:200÷300 = 2/32. 一条公路长500 米,已经修了200 米,剩下的占全长的几分之几?答案:(500 - 200)÷500 = 3/53. 五年级一班有学生40 人,其中男生25 人,女生占全班人数的几分之几?答案:(40 - 25)÷40 = 3/84. 一本故事书240 页,小明第一天看了全书的1/6,第二天看了全书的3/8,两天一共看了多少页?答案:240×(1/6 + 3/8)= 130(页)5. 学校运来一堆沙子,砌墙用去2/5 吨,修运动场用去3/8 吨,还剩1/10 吨。
这堆沙子原有多少吨?答案:2/5 + 3/8 + 1/10 = 7/8(吨)6. 服装厂计划一个月生产衣服3600 件,上半月完成了4/9,下半月完成的与上半月同样多,这个月实际生产多少件?答案:3600×4/9×2 = 3200(件)7. 一辆汽车从甲地开往乙地,已经行了全程的3/8,离中点还有25 千米,甲乙两地相距多少千米?答案:25÷(1/2 - 3/8)= 200(千米)8. 水果店运来一批水果,其中苹果120 千克,梨比苹果多1/4,梨有多少千克?答案:120×(1 + 1/4)= 150(千克)9. 五年级同学收集树种56 千克,六年级收集的比五年级多4/7,六年级收集树种多少千克?答案:56×(1 + 4/7)= 88(千克)10. 某工厂十月份用水480 吨,比原计划节约了1/9,十月份原计划用水多少吨?答案:480÷(1 - 1/9)= 540(吨)11. 一根绳子长40 米,第一次用去15 米,第二次用去一些后,还剩下这根绳子的1/5,第二次用去多少米?答案:40 - 15 - 40×1/5 = 17(米)12. 一本书有300 页,第一天看了全书的1/5,第二天看了全书的1/6,第三天应从第几页看起?答案:300×(1/5 + 1/6)+ 1 = 111(页)13. 修一条路,第一天修了全长的1/4,第二天修了全长的1/5,第一天比第二天多修20 米,这条路全长多少米?答案:20÷(1/4 - 1/5)= 400(米)14. 食堂运来一批大米,已经吃了600 千克,正好吃了3/4,这批大米一共有多少千克?答案:600÷3/4 = 800(千克)15. 一辆汽车4 小时行了全程的2/5,照这样的速度,行完全程需要几小时?答案:4÷2/5 = 10(小时)16. 有一块长方形的地,长80 米,宽60 米,在这块地的四周每隔5 米种一棵树,一共可以种多少棵树?答案:(80 + 60)×2÷5 = 56(棵)17. 一个圆形花坛的周长是37.68 米,在它的周围铺一条2 米宽的小路,小路的面积是多少平方米?答案:花坛半径:37.68÷3.14÷2 = 6(米),外圆半径:6 + 2 = 8(米),小路面积:3.14×(8²- 6²)= 87.92(平方米)18. 一个正方体的棱长总和是96 厘米,它的表面积是多少平方厘米?答案:棱长:96÷12 = 8(厘米),表面积:8×8×6 = 384(平方厘米)19. 做一个无盖的长方体铁皮水箱,长5 分米,宽4 分米,高3 分米,至少要用多少平方分米的铁皮?答案:5×4 + 5×3×2 + 4×3×2 = 74(平方分米)20. 把一个棱长8 厘米的正方体铁块,锻造成一个长16 厘米,宽4 厘米的长方体铁块,这个长方体铁块的高是多少厘米?答案:8×8×8÷(16×4)= 8(厘米)21. 一个房间的长6 米,宽3.5 米,高3 米,门窗面积是8 平方米。
小学五年级奥数应用题及解答
小学五年级奥数应用题及解答【篇二】1、甲乙两车同时从AB两地相对开出。
甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。
求AB两地相距多少千米?解:AB距离=(4.5×5)/(5/11)=49.5千米2、一辆客车和一辆货车分别从甲乙两地同时相向开出。
货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。
甲乙两地相距多少千米?解:客车和货车的速度之比为5:4那么相遇时的路程比=5:4相遇时货车行全程的4/9此时货车行了全程的1/4距离相遇点还有4/9-1/4=7/36那么全程=28/(7/36)=144千米3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。
现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。
求乙绕城一周所需要的时间?解:甲乙速度比=8:6=4:3相遇时乙行了全程的3/7那么4小时就是行全程的4/7所以乙行一周用的时间=4/(4/7)=7小时4、甲乙两人同时从A地步行走向B地,当甲走了全程的14时,乙离B地还有640米,当甲走余下的56时,乙走完全程的710,求AB两地距离是多少米?解:甲走完1/4后余下1-1/4=3/4那么余下的5/6是3/4×5/6=5/8此时甲一共走了1/4+5/8=7/8那么甲乙的路程比=7/8:7/10=5:4所以甲走全程的1/4时,乙走了全程的1/4×4/5=1/5那么AB距离=640/(1-1/5)=800米5、甲,乙两辆汽车同时从A,B两地相对开出,相向而行。
甲车每小时行75千米,乙车行完全程需7小时。
两车开出3小时后相距15千米,A,B两地相距多少千米?解:一种情况:此时甲乙还没有相遇乙车3小时行全程的3/7甲3小时行75×3=225千米AB距离=(225+15)/(1-3/7)=240/(4/7)=420千米一种情况:甲乙已经相遇(225-15)/(1-3/7)=210/(4/7)=367.5千米6、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟已相遇?解:甲相当于比乙晚出发3+3+3=9分钟将全部路程看作单位1那么甲的速度=1/30乙的速度=1/20甲拿完东西出发时,乙已经走了1/20×9=9/20那么甲乙合走的距离1-9/20=11/20甲乙的速度和=1/20+1/30=1/12那么再有(11/20)/(1/12)=6.6分钟相遇7、甲,乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车?解:路程差=36×2=72千米速度差=48-36=12千米/小时乙车需要72/12=6小时追上甲8、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a地出发至1千米时,发现有物品以往在a地,便立即返回,去了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的终点处相遇,又知甲每小时比乙多走0.5千米,求甲、乙两人的速度?解:甲在相遇时实际走了36×1/2+1×2=20千米乙走了36×1/2=18千米那么甲比乙多走20-18=2千米那么相遇时用的时间=2/0.5=4小时所以甲的速度=20/4=5千米/小时乙的速度=5-0.5=4.5千米/小时9、两列火车同时从相距400千米两地相向而行,客车每小时行60千米,货车小时行40千米,两列火车行驶几小时后,相遇有相距100千米?解:速度和=60+40=100千米/小时分两种情况,没有相遇那么需要时间=(400-100)/100=3小时已经相遇那么需要时间=(400+100)/100=5小时10、甲每小时行驶9千米,乙每小时行驶7千米。
小学数学五年级上册奥数应用题100道(含答案)
小学数学五年级上册奥数应用题100道(含答案)1. 学校图书馆有科技书180 本,故事书比科技书的2 倍还多30 本,故事书有多少本?答案:180×2 + 30 = 390(本)2. 一辆汽车每小时行驶80 千米,3.5 小时行驶多少千米?答案:80×3.5 = 280(千米)3. 果园里有苹果树250 棵,比梨树的2 倍少50 棵,梨树有多少棵?答案:(250 + 50)÷2 = 150(棵)4. 一块长方形菜地,长18 米,宽12 米,这块菜地的面积是多少平方米?答案:18×12 = 216(平方米)5. 小明买了5 个笔记本,每个笔记本2.5 元,一共花了多少钱?答案:5×2.5 = 12.5(元)6. 服装厂要做650 套服装,已经做了350 套,剩下的要10 天完成,平均每天要做多少套?答案:(650 - 350)÷10 = 30(套)7. 学校买了8 个篮球,每个60 元,又买了20 个排球,每个45 元,买篮球和排球一共花了多少钱?答案:8×60 + 20×45 = 480 + 900 = 1380(元)8. 一辆客车从甲地到乙地,每小时行驶75 千米,4 小时到达,返回时用了5 小时,返回时平均每小时行驶多少千米?答案:75×4÷5 = 60(千米)9. 食堂运来2 吨大米,计划吃20 天,平均每天吃多少千克?答案:2 吨= 2000 千克,2000÷20 = 100(千克)10. 修一条长500 米的路,已经修了150 米,剩下的要5 天修完,平均每天修多少米?答案:(500 - 150)÷5 = 70(米)11. 商店运来120 千克苹果,是运来梨的2 倍,运来梨多少千克?答案:120÷2 = 60(千克)12. 一个梯形的上底是8 厘米,下底是12 厘米,高是6 厘米,这个梯形的面积是多少平方厘米?答案:(8 + 12)×6÷2 = 60(平方厘米)13. 学校买了5 箱乒乓球,每箱12 个,一共花了300 元,每个乒乓球多少元?答案:300÷(5×12)= 5(元)14. 小明家有一块长方形菜地,长20 米,宽15 米,这块菜地的周长是多少米?答案:(20 + 15)×2 = 70(米)15. 妈妈买了3 千克苹果,用了18 元,每千克苹果多少元?答案:18÷3 = 6(元)16. 一辆汽车2.5 小时行驶150 千米,照这样计算,行驶360 千米需要多少小时?答案:360÷(150÷2.5)= 6(小时)17. 有一块平行四边形的麦田,底是250 米,高是84 米,共收小麦14.7 吨。
五年级奥数应用题
1、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇,求东西两地的距离是多少千米?2、甲乙两辆汽车同时从东站开往西站。
甲车每小时比乙车多行12千米,甲车行驶四个半小时到达西站后,没有停留,立即从原路返回,在距离西站31.5千米的地方和乙车相遇,甲车每小时行多少千米?3、两人骑自行车沿着900米长的环形跑道行驶,他们从同一地点反向而行,那么经过18分钟后就相遇一次,若他们同向而行,那经过180分钟后快车追上慢车一次,求两人骑自行车的速度?4、兄妹两人同时离家去上学。
哥哥每分钟走90米,妹妹每分钟走60米,哥哥到校门时,发现忘带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。
问他们家离学校多远?5、马路上有一辆车身为15米的公共汽车,由东向西行驶,车速为每小时18千米,马路一旁的人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑。
某一时刻,汽车追上了甲,6秒钟之后汽车离开了甲;半分钟之后,汽车遇到了迎面跑来的乙;又过了2秒钟,汽车离开了乙。
问再过多少秒后,甲、乙两人相遇?6、甲、乙两地相距360千米,客车和货车同时从甲地出发驶向乙地。
货车速度每小时60千米,客车每小时40千米,货车到达乙地后停留0.5小时,又以原速返回甲地,问从甲地出发后几小时两车相遇?7、车与慢车同时从甲、乙两地相对开出,经过12小时相遇。
相遇后快车又行了8小时到达乙地。
慢车还要行多少小时到达甲地?8、两地相距380千米。
有两辆汽车从两地同时相向开出。
原计划甲汽车每小时行36千米,乙汽车每小时行40千米,但开车时甲汽车改变了速度,以每小时40千米的速度开出,问在相遇时,乙汽车比原计划少行了多少千米?9、东、西两镇相距240千米,一辆客车在上午8时从东镇开往西镇,一辆货车在上午9时从西镇开往东镇,到正午12时,两车恰好在两镇间的中点相遇。
如果两车都从上午8时由两镇相向开行,速度不变,到上午10时,两车还相距多少千米?10、客车和货车同时从甲乙两站相对开出,客车每小时行54千米,货车每小时行48千米,两车相遇后又以原来的速度继续前进,客车到乙站后立即返回,货车到甲站后也立即返回,两车再次相遇时,客车比货车多行216千米。
五年级奥数一般应用题
一般应用题(一)例1.五年级有六个班,每班人数相等。
从每班选16人参加少先队活动,剩下的同学相当于原来4个班的人数,原来每班多少人?练习1.五个同学有同样多的存款,若每人拿出16元捐给“希望工程”后,五位同学剩下的钱正好等于原来3人的存款数,原来每人存款多少?练习1.老师把一批树苗平均分给四个小队栽,当每队栽了6棵时,发现剩下的树苗正好是原来每队分得的棵数。
这批树苗一共有多少棵?例2.光华机械厂加工2100个零件,计划平均每天加工75个,6天后改进了技术,平均每天加工150个,这样比原计划提前几天完成任务?练习2.一个化肥厂要生产10800吨化肥,原计划25天完成。
实际每天比原计划多生产108吨。
这样可比原计划提前几天完成任务?练习2.小欣读一本书,他每天读12页,8天读了全书的一半。
此后他每天比原来多读4页。
读完这本书一共用了多少天?例3.甲乙二人加工零件。
甲比乙每天多加工6个零件,乙中途停了15天没有加工。
40天后,乙所加工的零件个数正好是甲的一半。
这时两人各加工了多少个零件?练习3.甲乙二人加工一批帽子,甲每天比乙多加工10个。
途中乙因事休息了5天,20天后,甲加工的帽子正好是乙加工的2倍,这时两人各加工帽子多少个?练习3.甲乙两人承包一项工程,共得工资1120元,已知甲工作了10天,乙工作了12天,且甲5天的工资和乙4天的工资同样多。
求甲乙每天各分得工资多少元?例4.服装厂要加工一批上衣,原计划20天完成任务。
实际每天比计划多加工60件,照这样做了15天,就超过原计划件数350件。
原计划加工上衣多少件?练习4.用汽车运一堆煤,原计划8小时运完。
实际每小时比原计划多运1.5吨,这样运了6小时就比原计划多运了3吨,原计划8小时运多少吨煤?练习4.小明看一本书,原计划8天看完。
实际每天比原计划少看了4页,这样,用10天才看完了这本书。
这本书一共有多少页?例5.加工一批零件,原计划每天加工80个,正好如期完成任务。
30道小学五年级上册奥数应用题
30道小学五年级上册奥数应用题【篇三】一、轮船在静水中的速度是每小时21千米,轮船自甲港逆水航行8小时到达相距144千米的乙港,再从乙港返回甲港需要多少小时?二、小华和小明租一艘小船,向上游划去,不慎把水互掉进江中,当他们发现并掉过船头时,水壶与船已经相距10千米。
假定小船的速度是每小时4千米,水流速度是每小时2千米,那么他们追上水壶需要多少小时?三、某河有相距100千米的上下两个码头,每天定时有甲、乙两艘船速相同的客轮分别从两码头同时出发相向而行。
一天甲船从上游码头出发时掉下一物,此物浮于水面顺水飘下,2分后与甲船相距2千米,预计乙船出发后几分钟与此物相遇?四、某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共用了8小时,水速度每小时3千米,问从乙地返回甲地需要多少小时?五、甲、乙两港相距360千米,一只轮船往返两港需要35小时,逆流航行比顺流航行多花了5小时。
现在有一帆船在静水中速度是每小时12千米,这一帆船往返两港要多少小时?六、明明所有的邮票张数是亮亮的6倍,如果两人各再收集2张,那么明明所有的张数是亮亮的4倍,两人原来各有邮票多少张?七、已知一船自上游向下游航行,经9小时后,已行693千米,此船每小时的划速是47千米。
求此河的水速是多少?八、沿河有上、下两个市镇,相距85千米。
有一只船往返两市镇之间,船的速度是每小时18。
5千米,水流速度每小时1。
5千米。
求往、返一次所需的时间。
九、有一船完成360千米的水程运输任务。
顺流而下30小时到达,但逆流而上则需60小时。
求河水流速和静水中划行的速度?十、甲、乙两船在静水中的速度分别是每小时22千米和每小时18千米。
两船先后从同一港口顺水开出,乙船比甲船早出发2小时,如果水速是每小时4千米,问甲船开出后几小时能追上乙船?。
小学五年级奥数应用题200道及答案完整版
小学五年级奥数应用题200道及答案完整版1. 有一堆货物,用甲车单独运需要15 次,用乙车单独运需要10 次,如果两车同时运,几次可以运完?答案:6 次解析:甲车每次运这堆货物的1/15,乙车每次运这堆货物的1/10,两车同时运,每次运(1/15 + 1/10) = 1/6,所以需要1÷(1/6) = 6 次。
2. 一项工程,甲单独做20 天完成,乙单独做30 天完成,甲乙合作几天完成?答案:12 天解析:甲每天完成工程的1/20,乙每天完成工程的1/30,两人合作每天完成(1/20 + 1/30) = 1/12,所以合作需要1÷(1/12) = 12 天。
3. 小明从家到学校,如果每分钟走50 米,就会迟到3 分钟,如果每分钟走70 米,就会提前5 分钟到校,小明家到学校的距离是多少米?答案:1400 米解析:设按时到校需要x 分钟,50(x + 3) = 70(x - 5),解得x = 25,距离为50×(25 + 3) = 1400 米。
4. 一艘轮船从甲港开往乙港,顺水航行每小时行25 千米,逆水航行每小时行15 千米,往返一次共用4 小时,甲、乙两港相距多少千米?答案:37.5 千米解析:设顺水航行用x 小时,25x = 15(4 - x),解得x = 1.5,距离为25×1.5 = 37.5 千米。
5. 果园里苹果树的棵数是梨树的3 倍,又知苹果树比梨树多262 棵,苹果树和梨树各有多少棵?答案:苹果树393 棵,梨树131 棵解析:梨树有262÷(3 - 1) = 131 棵,苹果树有131×3 = 393 棵。
6. 五年级学生参加课外活动,做游戏的人数比打球的人数的3 倍多2 人。
已知做游戏的比打球的多38 人,打球和做游戏的各有多少人?答案:打球18 人,做游戏56 人解析:打球人数为(38 - 2)÷(3 - 1) = 18 人,做游戏人数为18×3 + 2 = 56 人。
五年级奥数平均数、数列-一般应用题练习试题
第一节平均数把几个不相等的数,在总合不变的条件下,通过移多补少,使他们完全相等,得到的数就是平均数。
平均数=总数量/总份数;总数量=平均数*总份数;总份数=总数量/平均数1.甲乙丙丁四人称体重,乙丙丁三人共重120千克,甲丙丁三人共重126千克,丙丁二人的平均体重是40千克.求四人的平均体重是多少千克?2.把甲级糖和乙级糖混在一起,平均每千克卖7元.已知甲级糖有4千克,每千克8元,乙级糖有2千克。
乙级糖每千克多少元?3.两组工人加工零件,第一组有30人,平均每人加工60个零件,第二组25人,平均每人比两组工人加工的平均数多6个,两组工人平均每人加工多少个零件?4.小明前五次数学测验的平均成绩是88分,为了使平均成绩达到92.5分,小明要连续考多少次满分?5.小华的前几次数学测验的平均成绩是80分,这一次得了100分,正好把这几次的平均分提高到85分,这一次是他第几次测验?第二节 等差数列像()() ,50,40,30,20,102,5,4,3,2,11这种从第2项起,每一项与它的前一项的差等于同一个常数的数列,叫等差数列。
这个常数叫等差数列的公差,通常用字母d 表示。
等差数列的通项公式为:d n a a n *-+=)1(11。
超市工作人员在商品上一次编号,分别为4,8,12,16,。
. 请问第34个商品上的标注的是什么数字?第58个呢?2。
幼儿园给小朋友们发玩具,共32个小朋友,每人一个,每个玩具上都有编号,已知最后一个小朋友玩具上的编号是98,前一个玩具的编号比后一个玩具的编号总少3,问第一个小朋友手上的玩具是多少号?3.糖果生产商为机器编号,依次为7,13,19,25,。
.. 问编号为433的机器是第几个?4.一个等差数列的第一项是1.2,第八项是9.6,求它的第十项?5。
一个等差数列的第一项是4。
1,公差是3。
1,另外一项是32,求项数?第三节长方形正方形的周长长方形的周长是长乘宽的2倍,正方形的周长是边长的4倍.长方形正方形的周长只能算标准的长方形正方形的周长.如何应用所学知识巧求表面上看起来不是长方形或正方形的图形的周长,还需要把复杂的图形转化为标准的图形。
小学五年级奥数应用题(三篇)
【导语】解奥数题时,如果能合理的、科学的、巧妙的借助点、线、⾯、图、表将奥数问题直观形象的展⽰出来,将抽象的数量关系形象化,可使同学们容易搞清数量关系,沟通“已知”与“未知”的联系,抓住问题的本质,迅速解题。
以下是⽆忧考整理的《⼩学五年级奥数应⽤题(三篇)》,希望帮助到您。
【篇⼀】 1、甲、⼄、丙三⼈在A、B两块地植树,A地要植900棵,B地要植1250棵。
已知甲、⼄、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,⼄先在A地植树,然后转到B地植树。
两块地同时开始同时结束,⼄应在开始后第⼏天从A地转到B地? 2、有三块草地,⾯积分别是5,15,24亩。
草地上的草⼀样厚,⽽且长得⼀样快。
第⼀块草地可供10头⽜吃30天,第⼆块草地可供28头⽜吃45天,问第三块地可供多少头⽜吃80天? 3、某⼯程,由甲、⼄两队承包,2.4天可以完成,需⽀付1800元;由⼄、丙两队承包,3+3/4天可以完成,需⽀付1500元;由甲、丙两队承包,2+6/7天可以完成,需⽀付1600元。
在保证⼀星期内完成的前提下,选择哪个队单独承包费⽤最少? 4、⼀个圆柱形容器内放有⼀个长⽅形铁块。
现打开⽔龙头往容器中灌⽔。
3分钟时⽔⾯恰好没过长⽅体的顶⾯。
再过18分钟⽔已灌满容器。
已知容器的⾼为50厘⽶,长⽅体的⾼为20厘⽶,求长⽅体的底⾯⾯积和容器底⾯⾯积之⽐。
5、甲、⼄两位⽼板分别以同样的价格购进⼀种时装,⼄购进的套数⽐甲多1/5,然后甲、⼄分别按获得80%和50%的利润定价出售。
两⼈都全部售完后,甲仍⽐⼄多获得⼀部分利润,这部分利润⼜恰好够他再购进这种时装10套,甲原来购进这种时装多少套? 6、有甲、⼄两根⽔管,分别同时给A,B两个⼤⼩相同的⽔池注⽔,在相同的时间⾥甲、⼄两管注⽔量之⽐是7:5。
经过2+1/3⼩时,A,B两池中注⼊的⽔之和恰好是⼀池。
这时,甲管注⽔速度提⾼25%,⼄管的注⽔速度不变,那么,当甲管注满A池时,⼄管再经过多少⼩时注满B池? 7、⼩明早上从家步⾏去学校,⾛完⼀半路程时,爸爸发现⼩明的数学书丢在家⾥,随即骑车去给⼩明送书,追上时,⼩明还有3/10的路程未⾛完,⼩明随即上了爸爸的车,由爸爸送往学校,这样⼩明⽐独⾃步⾏提早5分钟到校。
五年级奥数专题之一般应用题
五年级奥数专题之一般应用题1.有一些糖,每人分5块多10块;如果现有的人数增加到原人数的1.5倍,那么每人4块就少2块.问这些糖共有多少块?2.甲、乙两个小朋友各有一袋糖,每袋糖不到20粒.如果甲给乙一定数量的糖后,甲的糖就是乙的糖粒数的2倍;如果乙给甲同样数量的糖后,甲的糖就是乙的糖粒数的3倍.那么,甲、乙两个小朋友共有糖多少粒?3.甲班有42名学生,乙班有48名学生.已知在某次数学考试中按百分制评卷,评卷结果各班的数学总成绩相同,各班的平均成绩都是整数,并且平均成绩都高于80分.那么甲班的平均成绩比乙班高多少分?4.某乡水电站按户收取电费,具体规定是:如果每月用电不超过24度,就按每度9分钱收费;如果超过24度,超出的部分按每度2角钱收费.已知在某月中,甲家比乙家多交了电费9角6分钱(用电按整度计算),问甲、乙两家各交了多少电费?5.一小、二小两校春游的人数都是10的整数倍,出行时两校人员不合乘一辆车,且每辆车尽量坐满.现在知道,若两校都租用有14个座位的旅游车,则两校共需租用这种车72辆;若两校都租用19个座位的旅游车,则二小要比一小多租用这种车7辆.问两校参加这次春游的人数各是多少?6.某游客在10时15分由码头划出一条小船,他欲在不迟于13时回到码头.河水的流速为每小时1.4千米,小船在静水中的速度为每小时3千米,他每划30分钟就休息15分钟,中途不改变方向,并在某次休息后往回划.那么他最多能划离码头多远?7.机械厂计划生产一批机床,原计划每天生产40台,可在预定的时间内完成任务,实际每天生产48台,结果提前4天完成任务,求这批机床有多少台?8. 某印刷厂计划用24天装订一批书,每天装订12000本,实际提前4天完成了任务,实际比原计划每天多装订多少本?9.甲、乙两砖厂,甲厂原存砖87500块,乙厂比甲厂多存砖4500块,某日甲厂卖出25000块,乙厂比甲厂少卖出3000块,这时哪厂存砖多?多多少块?10. 一筐苹果连筐共重45千克,卖出一半后,剩下的苹果连筐共重24千克,求原来有苹果多少千克?【分析与解】人数增加1.5倍后,每人分4块,相当于原来的人数,每人分1.5×4=6块.有这些糖,每人分5块多10块,每人分6块少2块,所以开始总人数为(10+2)÷(6-5)=12人,那么共有糖12×5+10=70块.【分析与解】由题意知糖的总数应该是3的倍数,还是4的倍数.即为12的倍数,因为两袋糖每袋都不超过20粒,所以总数不超过40粒.于是糖的总数只可能为12、24或36粒.如果糖的总数为12的奇数倍,那么“乙给甲同样数量的糖后”,甲的糖为12÷(3+1)×3=9的奇数倍.那么在甲给乙两倍“同样的数量糖”后,甲的糖为12÷(2+1)×2=8的奇数倍.也就是说一个奇数加上一个偶数等于偶数,显然不可能.所以糖的总数不能为12的奇数倍.那么甲、乙两个小朋友共有的糖只能为12的偶数倍,即为24粒.【分析与解】如果甲、乙两家用电均超过24度,那么他们两家的电费差应是2角钱的整数倍;如果甲、乙两家用电均不超过24度,那么他们两家的电费差应是9分钱的整数倍.现在9角6分既不是2角钱的整数倍,又不是9分钱的整数倍,所以甲家的用电超过了24度,乙家的用电不超过24度.设甲家用了24+x度电,乙家用了24-y度电,有20x+9y=96,得x=3,y=4.即甲家用了27度电,乙家用了20度电,那么乙家应交电费20×9=180分=1元8角,则甲家交了180+96=276分=2元7角6分.即甲、乙两家各交电费2元7角6分,1元8角.【分析与解】方法一:因为每班的平均成绩都是整数,且两班的总成绩相等,所以总成绩既是42的倍数,又是48的倍数,所以为[42,48]=336的倍数.因为乙班的平均成绩高于80分,所以总成绩应高于48×80=3840分.又因为是按百分制评卷,所以甲班的平均成绩不会超过100分,那么总成绩应不高于42×100=4200分.在3840~4200之间且是336的倍数的数只有4032.所以两个班的总分均为4032分.那么甲班的平均分为4032÷42=96分,乙班的平均分为4032÷48=84分.所以甲班的平均分比乙班的平均分高96-84=12分.方法二:甲班平均分×42=乙班平均分×48,即甲班平均分×7=乙班平均分×8,因为7、8互质,所以甲班的平均分为某数的8倍,乙班的平均分为某数的7倍,又因为两个班的平均分均超过80分,不高于100分,所以这个数只能为12.所以甲班的平均分比乙班的平均分高12×(8-7)=12分.【分析与解】设二小春游人数为m,一小春游人数为n.由已知乘19座面包车二小比一小多租用7辆.所以19×6+1≤m-n≤19×8-1,即115≤m-n≤151.又已知两校共需租用14座面包车72辆,所以70×14+2≤m+n≤72×14,即982≤m+n≤1008.同时已知m与n都是10的倍数,于是有, 解得, 另外四组因为解得m、n不是10的倍数.经检验只有满足.所以,一小参加春游430人,二小参加春游570人.【分析与解】从10时15分出发,不迟于13时必须返回,所以最多可划行2小时45分,即165分钟.165=4×30+3×15,最多可划4个30分钟,休息3个15分钟.顺流速度为3+1.4=4.4千米/4,时;所以顺流半小时划行路程为4.4×0.5=2.2千米;逆流速度为3-1.4=1.6千米/4,时;所以逆流半小时划行路程为1.6×0.5=0.8千米.休息15分钟,则船顺流漂行的路程为1.4×0.25=0.35千米.第一种情况:当开始顺流时,至少划行半小时,行驶2.2千米,而在休息的3个时问内船又顺流漂行0.35×3=1.05千米的路程,所以逆流返回时需划行2.2+1.05=3.25千米.3.25÷1.6=2.03125小时=121.875分钟.即最少需30+15×3+121.875=196.875分钟>165分钟,来不及按时还船.不满足.第二种情况:当开始逆流时,每逆流半小时,则行驶0.8千米,则3次逆流后,行驶了0.8×3=2.4千米,船在游客休息时顺流漂行了1.05千米,所以回划时只用划行2.4-1.05=1.35千米的路程,需1.35÷4.4≈0.3068小时≈18.41分钟.共需3×30+3×15+18.41=153.41分钟<165分钟,满足.于是,只有第二种情况满足,此时最远的路程为休息了2次后第3次逆流所至的地点,为0.8×3-0.35×2=1.7千米.所以,他最多能划离码头1.7千米.48×[40×4÷(48-40)]=960(台)12000×24÷(24-4)-12000=2400(本)甲厂存砖:87500-25000=62500(块)乙厂存砖:(87500+4500)-(25000-3000)=70000(块)∴乙厂存砖多,多70000-62500=7500(块) (45-24)×2=42(千克)。
五年级数学上册奥数应用题
五年级数学上册奥数应用题示例:
1. 一列火车通过一座长456米的桥需要40秒,用同样的速度通过一条长399米的隧道要37秒,求这列火车的车速和车长。
2. 甲乙两人做游戏,在一个口袋中放有8根小木棒,任意选出三根木棒,一根接一根连在一起,如果三根木棒能组成三角形,则甲得3分;如果不能组成三角形,则乙得2分。
最后得多少分者获胜?
3. 有三条彩带分别长120厘米、100厘米和80厘米,现在要把它们剪成相等的小段,每小段最长是多少厘米?一共可以剪成几段?
4. 一条长800米的环形跑道,甲乙两人练习骑自行车,甲每分钟行560米,乙每分钟行140米,两人同时从同地同向出发,经过多少分钟两人可以相遇?
5. 小华参加三次数学竞赛,前两次的平均成绩是94分,三次的平均成绩是96分,小华第三次竞赛得多少分?。
五年级数学奥数应用题
五年级数学奥数应用题一、工程问题1. 题目一项工程,甲队单独做需要10天完成,乙队单独做需要15天完成。
两队合作需要多少天完成?解析把这项工程的工作量看作单位“1”。
根据工作效率 = 工作量÷工作时间,甲队的工作效率为公式,乙队的工作效率为公式。
两队合作的工作效率为公式。
再根据工作时间 = 工作量÷工作效率,两队合作完成需要的时间为公式(天)二、行程问题1. 题目甲、乙两人分别从A、B两地同时出发相向而行,甲的速度是每小时5千米,乙的速度是每小时4千米,经过3小时两人相遇。
A、B两地相距多少千米?解析这是一个相遇问题。
根据路程 = 速度和×相遇时间,甲、乙的速度和为公式(千米/小时)。
经过3小时相遇,那么A、B两地的距离为公式(千米)2. 题目一辆汽车从甲地开往乙地,去时每小时行60千米,返回时每小时行40千米。
求这辆汽车往返的平均速度。
解析设甲地到乙地的距离为s千米。
去时的时间为公式小时,返回的时间为公式小时。
往返的总路程为公式千米,总时间为公式小时。
根据平均速度 = 总路程÷总时间,往返的平均速度为公式(千米/小时)三、倍数问题1. 题目有甲、乙两个仓库,甲仓库存粮是乙仓库的3倍,如果从甲仓库运出90吨,从乙仓库运出10吨,则两仓库剩余粮食相等。
甲、乙两仓库原来各存粮多少吨?解析设乙仓库原来存粮x吨,则甲仓库原来存粮3x吨。
根据运出后两仓库剩余粮食相等可列方程:公式公式公式公式则甲仓库原来存粮公式(吨),乙仓库原来存粮40吨。
小学五年级奥数应用题100道及答案解析
小学五年级奥数应用题100道及答案解析1. 有两根绳子,第一根长56 厘米,第二根长36 厘米。
同时点燃后,平均每分钟都烧掉2 厘米。
多少分钟后,第一根绳子的长度是第二根绳子长度的 3 倍?答案:13 分钟解析:设经过x 分钟。
则第一根绳子剩下56 - 2x 厘米,第二根绳子剩下36 - 2x 厘米。
56 - 2x = 3×(36 - 2x),解得x = 13 。
2. 鸡兔同笼,共有30 个头,88 只脚。
求笼中鸡兔各有多少只?答案:鸡16 只,兔14 只解析:假设全是鸡,应有脚2×30 = 60 只,比实际少88 - 60 = 28 只。
因为每把一只兔当成鸡就少算2 只脚,所以兔有28÷2 = 14 只,鸡有30 - 14 = 16 只。
3. 一列火车通过530 米的桥需40 秒钟,以同样的速度穿过380 米的山洞需30 秒钟。
求这列火车的速度是每秒多少米?车长多少米?答案:车速15 米/秒,车长70 米解析:设火车速度为x 米/秒,车长为y 米。
40x = 530 + y,30x = 380 + y,解得x = 15,y = 70 。
4. 某班有40 名学生,其中有15 人参加数学小组,18 人参加航模小组,有10 人两个小组都参加。
那么有多少人两个小组都不参加?答案:17 人解析:参加了至少一个小组的人数为15 + 18 - 10 = 23 人,两个小组都不参加的人数为40 - 23 = 17 人。
5. 甲、乙、丙三个数的和是105,甲数比乙数多4,乙数比丙数多4,求丙数。
答案:31解析:设丙数为x,则乙数为x + 4,甲数为x + 8 。
x + x + 4 + x + 8 = 105 ,解得x = 31 。
6. 果园里苹果树的棵数是桃树棵数的3 倍,管理人员每天能给25 棵苹果树和15 棵桃树喷撒农药。
几天后,当给桃树喷完农药时,苹果树还有140 棵没有喷药。
五年级奥数——一般应用题
第九讲一般应用题(第1课时)例1、商店运来7袋水果糖,从每袋中取出16千克后,余下的水果糖恰好等于原来3袋水果糖的质量,原来一袋水果糖重多少千克?练习1、两个和尚来到山下的小河旁,他们在绳子上系着一个大瓶子,先把水从河里提上来,然后再倒进空桶里,倒进5瓶水以后,连桶共重35千克,倒进8瓶水后,连桶共重50千克,一瓶水有多重?空桶有多重?练习2、第7周举一反三1第3题。
例2、修一条长7.2千米的水渠,计划15天完工,由于采用先进设备,结果提前3天就完成了全部任务,实际每天比原计划多修渠多少千米?练习3、工程队修一段公路,原计划每天修3.2千米,15天完成,实际每天多修0.8千米,可提前几天修完?练习4、第7周举一反三2第3题。
例3、甲、乙两组加工一批零件,甲组每天比乙组多加工100个,中途乙组因事停工了5天,20天后,甲加工的零件个数正好是乙组加工的2倍。
这时,两组各加工零件多少个?练习5、第7周举一反三3第2题。
练习6、第7周举一反三3第3题。
例4、汽车从甲地开往乙地,原计划10小时到达,实际每小时比原计划多行15千米,行了8小时后,发现已超过乙地20千米,甲、乙两地相距多少千米?练习7、亮亮买了一批纸,订了一本练习册后还剩下30张纸,计划30天用完。
25天后,用完了练习册又10张纸,这本练习册有多少张纸?练习8、第7周举一反三5第1题。
作业:1、每千克菜油5.5元,一桶菜油连桶重23千克,卖出一半油后,连桶还重14千克。
这桶菜油能买多少钱?2、小明看一本书,计划8天看完。
实际每天比原计划少看了4页,这样,用10天才看完了这本书。
这本书一共有多少页?3、有面值分别为拾元、伍元、贰元的人民币27张,共108元。
拾元的张数比伍元的张数少7张。
那么,三种面值的人民币各有多少张?第十讲一般应用题(第2课时)例1、一根绳子三折后绕树余10厘米,如果四折后绕树就差20厘米,求树的周长及绳长。
练习1、第8周举一反三1第3题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九讲一般应用题(第1课时)
例1、商店运来7袋水果糖,从每袋中取出16千克后,余下的水果糖恰好等于原来3袋水果糖的质量,原来一袋水果糖重多少千克?
练习1、两个和尚来到山下的小河旁,他们在绳子上系着一个大瓶子,先把水从河里提上来,然后再倒进空桶里,倒进5瓶水以后,连桶共重35千克,倒进8瓶水后,连桶共重50千克,一瓶水有多重?空桶有多重?
练习2、第7周举一反三1第3题。
例2、修一条长7.2千米的水渠,计划15天完工,由于采用先进设备,结果提前3天就完成了全部任务,实际每天比原计划多修渠多少千米?
练习3、工程队修一段公路,原计划每天修3.2千米,15天完成,实际每天多修0.8千米,可提前几天修完?
练习4、第7周举一反三2第3题。
例3、甲、乙两组加工一批零件,甲组每天比乙组多加工100个,中途乙组因事停工了5天,20天后,甲加工的零件个数正好是乙组加工的2倍。
这时,两组各加工零件多少个?
练习5、第7周举一反三3第2题。
练习6、第7周举一反三3第3题。
例4、汽车从甲地开往乙地,原计划10小时到达,实际每小时比原计划多行15千米,行了8小时后,发现已超过乙地20千米,甲、乙两地相距多少千米?
练习7、亮亮买了一批纸,订了一本练习册后还剩下30张纸,计划30天用完。
25天后,用完了练习册又10张纸,这本练习册有多少张纸?
练习8、第7周举一反三5第1题。
作业:
1、每千克菜油5.5元,一桶菜油连桶重23千克,卖出一半油后,连桶还重14千克。
这桶菜油能买多少钱?
2、小明看一本书,计划8天看完。
实际每天比原计划少看了4页,这样,用10天才看完了这本书。
这本书一共有多少页?
3、有面值分别为拾元、伍元、贰元的人民币27张,共108元。
拾元的张数比伍元的张数少7张。
那么,三种面值的人民币各有多少张?
第十讲一般应用题(第2课时)
例1、一根绳子三折后绕树余10厘米,如果四折后绕树就差20厘米,求树的周长及绳长。
练习1、第8周举一反三1第3题。
练习2、甲、乙、丙三人用同样多的钱合买西瓜,分西瓜时,甲和丙都比乙多拿了7.5千克,结果,甲和丙各给乙1.5
元钱。
每千克西瓜多少元?
例2、26人中,有13人喜欢打篮球,9人喜欢踢足球,12人喜欢打排球,有2人篮球、足球都喜欢,另有2人排球、足球都喜欢,但没有1人三种球都喜欢。
问:有多少人喜欢打排球和篮球?
练习3、某班学生都订了两份报纸,订《数学报》的有32人,订《作文报》的有40人,订《英语报》的有26人。
问:
同时订《数学报》、《英语报》的有多少人?
练习4、第8周举一反三3第2题。
练习5、第8周举一反三4第3题。
例3、蜗牛沿着10米高的树往上爬,每天从清晨到傍晚向上爬5米,夜间向下滑4米,像这样,从某天清晨开始,
第
几天爬到树顶?
练习6、第8周举一反三5第1题。
练习7、第8周举一反三5第3题。
作业:
1、一条大鲨鱼,头长3米,身长等于头长加尾长,尾长等于头长加身长的一半,这条大鲨鱼全长多少米?
2、六一儿童节时同学们做纸花,小华买来7张红纸,小英买来了和红纸价钱一样的5张黄纸,老师把这些纸平均分给了小华、小英和另外两名同学,结果另外两名同学共付给老师9元。
问老师把9元怎样分给小华和小英?
3、加工一批零件,原计划15天完成,实际每天多做30个,结果只用10天就完成了任务,这批零件有多少个?
第十一讲一般应用题(第3课时)
例1、甲买一箱苹果和一箱梨,共付55元;乙买了一箱梨和一箱橘子,共付50元;丙买了一箱苹果和一箱橘子,共付
45元;求三种水果每箱的价钱。
练习1、爸爸买一套西服、一条领带和一双皮鞋共用了1425元,已知西服的价钱比领带贵703元,西服和领带一共比
鞋贵809元,求西服、领带、皮鞋的单价。
练习2、第9周举一反三5第1题。
例2、甲、乙两个车间织同样多的布,原计划每天共织700米,现技术改进,甲车间每天多织布100米,乙车间的日产
量提高一倍,这样,两车间一天共织1020米。
甲、乙两车间原计划每天各织布多少米?
练习3、第9周举一反三1第2题。
练习4、第9周举一反三1第3题。
练习5、两根电线一样长,第一根剪去80米,第二根剪去320米,剩下部分第一根是第二根长度的4倍,这两根电线
原来各长多少米?
例3、甲、乙两人加工某种零件,甲先做了3分钟,而后两人又一起做了2分钟,一共加工零件610个。
已知甲每分钟
比乙每分钟多加工10个,那么,甲比乙多加工多少个零件?
练习6、有160个机器零件,平均分给甲、乙两个车间加工,乙车间比甲车间晚3小时开工,所以比甲车间晚20分钟
完成,已知甲车间加工1个零件和乙车间加工3个零件的时间相同,甲、乙两个车间加工1个零件各需要多
长时间?
练习7、第9周举一反三4第2题。
练习8、第9周举一反三4第3题。
作业:
1、工厂里有2个锅炉,原来每月共烧煤5.6吨,进行技术改造后,1号炉每月节约1吨煤,2号炉每月烧煤量减少了一半,现在每月共烧煤3.5吨。
原来两个锅炉每月各烧煤多少吨?
2、有一根铁丝,截去了一半多10厘米,剩下部分正好做一个长8厘米,宽6厘米的长方形框架,这根铁丝原来长多少厘米?
3、甲、乙二人同时从A地去B地,前3小时内,甲因修车1小时,乙领先甲4千米。
又经过3小时,甲反而领先了乙17千米,求二人的速度。
4、某校五年级有甲、乙、丙、丁四个班,不算甲班,其余三个班共有131人,不算丁班,其余三个班共有134人。
已知乙、丙两个班的总人数比甲、丁两个班的总人数少1人,求四个班共有多少人?。