2020高考数学冲刺专题训练(3)

合集下载

2020年高考数学(理)重难点专练03 空间向量与立体几何(解析版)

2020年高考数学(理)重难点专练03  空间向量与立体几何(解析版)

2020年高考数学(理)重难点03 空间向量与立体几何【高考考试趋势】立体几何在高考数学是一个必考知识点,一直在高中数学中占有很大的分值,未来的高考中立体几何也会持续成为高考的一个热点,理科高考中立体几何主要考查三视图的相关性质利用,简单几何体的体积,表面积以及外接圆问题.另外选择部分主要考查在点线面位置关系,简单几何体三视图.选择题主要还是以几何体的基本性质为主,解答题部分主要考查平行,垂直关系以及二面角问题.前面的重点专题已经对立体几何进行了一系列详细的说明,本专题继续加强对高考中立体几何出现的习题以及对应的题目类型进行必要的加强.本专题包含了高考中几乎所有题型,学完本专题以后,对以后所有的立体几何你将有一个更加清晰的认识.【知识点分析以及满分技巧】基础知识点考查:一般来说遵循三短一长选最长.要学会抽象问题具体会,将题目中的直线转化成显示中的具体事务,例如立体坐标系可以看做是一个教室的墙角有关外接圆问题:一般图形可以采用补形法,将几何体补成正方体或者是长方体,再利用不在同一个平面的四点确定一个立体平面原理,从而去求.内切圆问题:转化成正方体的内切圆去求.求点到平面的距离问题:采用等体积法.求几何体的表面积体积问题:应注意巧妙选取底面积与高.对于二面角问题应采用建立立体坐标系去求.但是坐标系要注意采用左手系务必要标记准确对应点以及法向量对应的坐标.【常见题型限时检测】(建议用时:35分钟)一、单选题1.(2019·遵义航天高级中学高考模拟(理))一个几何体的三视图如图所示,则该几何体的体积为()A.83B.163C.203D.8【答案】B 【解析】由图可知该几何体底面积为8,高为2的四棱锥,如图所示:∴该几何体的体积1168233V =⨯⨯= 故选B【点睛】:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽. 2.(2019·天津高考模拟(理))已知四面体ABCD 的四个面都为直角三角形,且AB ⊥平面BCD ,2AB BD CD ===,若该四面体的四个顶点都在球O 的表面上,则球O 的表面积为( )A .3πB .C .D .12π【答案】D 【解析】 【分析】由已知中的垂直关系可将四面体放入正方体中,求解正方体的外接球表面积即为所求的四面体外接球的表面积;利用正方体外接球半径为其体对角线的一半,求得半径,代入面积公式求得结果. 【详解】2BD CD ==Q 且BCD ∆为直角三角形 BD CD ∴⊥又AB ⊥平面BCD ,CD ⊂平面BCD CD AB ∴⊥CD \^平面ABD由此可将四面体ABCD 放入边长为2的正方体中,如下图所示:∴正方体的外接球即为该四面体的外接球O正方体外接球半径为体对角线的一半,即12R == ∴球O 的表面积:2412S R ππ==本题正确选项:D 【点睛】本题考查多面体的外接球表面积的求解问题,关键是能够通过线面之间的位置关系,将所求四面体放入正方体中,通过求解正方体外接球来求得结果.3.(2019·河南高考模拟(理))如图,点P 在正方体1111ABCD A B C D -的面对角线1BC 上运动,则下列四个结论:①三棱锥1A D PC -的体积不变;1//A P ②平面1ACD ; 1DP BC ⊥③;④平面1PDB ⊥平面1ACD .其中正确的结论的个数是( )A .1个B .2个C .3个D .4个【答案】C 【解析】【分析】利用空间中线线、线面、面面间的位置关系求解. 【详解】对于①,由题意知11//AD BC ,从而1//BC 平面1AD C ,故BC 1上任意一点到平面1AD C 的距离均相等,所以以P 为顶点,平面1AD C 为底面,则三棱锥1A D PC -的体积不变,故①正确; 对于②,连接1A B ,11A C ,111//AC AD 且相等,由于①知:11//AD BC , 所以11//BA C 面1ACD ,从而由线面平行的定义可得,故②正确; 对于③,由于DC ⊥平面11BCB C ,所以1DC BC ⊥, 若1DP BC ⊥,则1BC ⊥平面DCP ,1BC PC ⊥,则P 为中点,与P 为动点矛盾,故③错误;对于④,连接1DB ,由1DB AC ⊥且11DB AD ⊥,可得1DB ⊥面1ACD ,从而由面面垂直的判定知,故④正确. 故选:C . 【点睛】本题考查命题真假的判断,解题时要注意三棱锥体积求法中的等体积法、线面平行、垂直的判定,要注意使用转化的思想.4.(2019·贵州高考模拟(理))设,m n 是两条不同的直线,,αβ是两个不同的平面,有下列四个命题:∴若m α⊂,αβ⊥,则m β⊥; ∴若//a β,m β⊂,则//m α; ∴若m α⊥,//m n ,//αβ,则n β⊥; ∴若//m α,//n β,//m n ,则//αβ其中正确命题的序号是( ) A .∴∴ B .∴∴C .∴∴D .∴∴【答案】C 【解析】∴两个面垂直,推不出面中任意直线和另一个面垂直,错误;故排除A 、B 选项,对于∴,两个平行平面,其中一个平面内的任意直线都和另一个平面平行,故正确,所以选C.5.(2019·福建高考模拟(理))在三棱锥P ABC -中,3PA PB ==,BC =8AC =,AB BC ⊥,平面PAB ⊥平面ABC ,若球O 是三棱锥P ABC -的外接球,则球O 的半径为( ).A B C D .2【答案】A 【解析】 【分析】取AB 中点D ,AC 中点E ,连PD ,ED ,得E 为∴ABC 外接圆的圆心,且OE∴平面PAB ,然后求出∴PAB 的外接圆半径r 和球心O 到平面PAB 的距离等于d ,由勾股定理得R .【详解】解:取AB 中点D ,AC 中点E ,连PD ,ED 因为AB BC ⊥,所以E 为∴ABC 外接圆的圆心因为OE∴PD ,OE 不包含于平面PAB ,所以OE∴平面PAB 因为平面PAB ⊥平面ABC ,3PA PB ==,得PD ⊥AB ,ED ⊥AB 所以PD ⊥平面ABC ,ED ⊥平面PAB且AB ==PD 1=所以球心O 到平面PAB 的距离等于ED d ==在∴PAB 中,3PA PB ==,AB =1sin 3PAB ∠=, 所以∴PAB 得外接圆半径2r 9sin PB PAB ∠==,即9r 2=由勾股定理可得球O 的半径R ==故选:A. 【点睛】本题考查了三棱锥的外接球问题,经常用球中勾股定理R =R 是外接球半径,d 是球心到截面距离,r 是截面外接圆半径.二、解答题6.(2019·山东高考模拟(理))如图,在四棱锥P ABCD -中,PC ⊥底面ABCD ,底面ABCD 是直角梯形,//AB AD AB CD ⊥,224AB AD CD ===,4PC =.(1)证明:当点E 在PB 上运动时,始终有平面EAC ⊥平面PBC ; (2)求锐二而角A PB C --的余弦值.【答案】(1)证明见解析;(2)5. 【解析】 【分析】(1)由PC ⊥底面ABCD ,证得AC PC ⊥,又由勾股定理,得AC CB ⊥,利用线面垂直的判定定理,得到AC ⊥平面PBC ,再由面面垂直的判定定理,可得平面EAC ⊥平面PBC ,即可得到结论;(2)分别以CD ,CF ,CP 所在直线为x ,y ,z 轴建立空间直角坐标系,求得平面PBC 和平面PAB 的法向量,利用向量的夹角公式,即可求解. 【详解】(1)由题意,因为PC ⊥底面ABCD ,AC ⊂平面ABCD ,所以AC PC ⊥,又因为224AB AD CD ===,所以4AB =,2AD CD ==,所以AC BC ==,所以222AC BC AB +=,从而得到AC CB ⊥.又BC ⊂Q 平面PBC ,PC ⊂平面PBC ,BC PC C ⋂=,所以AC ⊥平面PBC , 又AC ⊂Q 平面ACE ,所以平面EAC ⊥平面PBC , 所以当点E 在PB 上运动时,始终有平面EAC ⊥平面PBC. (2)由条件知PC ⊥底面ABCD ,且AB AD ⊥, AB C D ∥所以过点C 作CF CD ⊥交AB 于点F ,分别以CD ,CF ,CP 所在直线为x ,y ,z 轴建立空间直角坐标系(如图所示),所以(0,0,0)C ,(2,2,0)A ,(2,2,0)B -,(0,0,4)P .由(1)知CA u u u r为平面PBC 的一个法向量,因为(2,2,0)CA =u u u r,(2,2,4)PA =-u u u r (2,2,4)PB =--u u u r ,设平面P AB 的一个法向量为(,,)n=x y z r,则(,,)(2,2,4)00(,,)(2,2,4)00x y z n PA x y z n PB ⎧⋅-=⎧⋅=⇒⎨⎨⋅--=⋅=⎩⎩u uu v r u u u v r ,即02x y z=⎧⎨=⎩,令1z =,则2y =,所以(0,2,1)n =r,所以|||cos ,|5||||CA n CA n CA n ⋅〈〉===uu r ruu r r uu r r ,故锐二面角A PB C --的余弦值5.【点睛】本题考查了线面垂直与面面垂直的判定与证明,以及空间角的求解问题,意在考查学生的空间想象能力和逻辑推理能力,解答中熟记线面位置关系的判定定理和性质定理,通过严密推理是线面位置关系判定的关键,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.7(2017·广东高考模拟(理))如图,在四棱锥P ABCD -中,90,60ABC ACD BAC CAD ∠=∠=︒∠=∠=︒, PA ⊥平面ABCD ,2,1PA AB ==.(1)设点E 为PD 的中点,求证: //CE 平面PAB ;(2)线段PD 上是否存在一点N ,使得直线CN 与平面PAC 所成的角θ的正弦值为5?若存在,试确定点N 的位置;若不存在,请说明理由. 8.(2019·天津市新华中学高考模拟(理))如图所示的几何体中,PD 垂直于梯形ABCD所在的平面,,2ADC BAD F π∠=∠=为PA 的中点,112PD AB AD CD ====,四边形PDCE 为矩形,线段PC 交DE 于点N .(1)求证:AC P 平面DEF ; (2)求二面角A PB C --的正弦值;(3)在线段EF 上是否存在一点Q ,使得BQ 与平面BCP 所成角的大小为π6?若存在,求出FQ 的长;若不存在,请说明理由.【答案】(1)见解析(23)在线段EF 上存在一点Q 满足题意,且FQ =【解析】 【分析】(1)由题意结合线面平行的判定定理即可证得题中的结论;(2)建立空间直角坐标系,利用两个半平面的法向量可得二面角的余弦值,然后利用同角三角函数基本关系可得二面角的正弦值;(3)假设点Q 存在,利用直线的方向向量和平面的法向量计算可得点Q 的存在性和位置. 【详解】(1)因为四边形PDCE 为矩形,所以N 为PC 的中点.连接FN ,在PAC V 中,,F N 分别为,PA PC 的中点,所以FN AC ∥, 因为FN ⊂平面DEF ,AC ⊄平面DEF , 所以AC P 平面DEF .(2)易知,,DA DC DP 两两垂直,如图以D 为原点,分别以,,DA DC DP 所在直线为,,x y z 轴,建立空间直角坐标系.则(1,0,0),(1,1,0),(0,2,0)P A B C,所以(1,1,,(1,1,0)PB BC ==-u u u r u u u r.设平面PBC 的法向量为(,,)m x y z =r,则(,,)(1,1,0(,,)(1,1,0)0m PB x y z m BC x y z ⎧⋅=⋅=⎪⎨⋅=⋅-=⎪⎩u u u v r u u u v r即0,0,x y x y ⎧+=⎪⎨-+=⎪⎩解得,,y x z =⎧⎪⎨=⎪⎩令1x =,得1,y z =⎧⎪⎨=⎪⎩所以平面PBC的一个法向量为m =r. 设平面ABP 的法向量为(,,)n x y z =r,(,,)(0,1,0)0(,,)(1,1,0n AB x y z n PB x y z ⎧⋅=⋅=⎪⎨⋅=⋅-=⎪⎩u u uv r u u uv r ,据此可得01x y z ⎧=⎪=⎨⎪=⎩, 则平面ABP的一个法向量为)n =r,cos ,3m n <>==u r r,于是sin ,3m n 〈〉=r r. 故二面角A PB C --(3)设存在点Q 满足条件.由1,0,,(0,22F E ⎛⎫ ⎪ ⎪⎝⎭, 设(01)FQ FE λλ=u u u r u u u r &剟,整理得1),2,22Q λλλ⎛⎫-+ ⎪ ⎪⎝⎭,则1,22BQ λλ⎛+=-- ⎝⎭u u u r . 因为直线BQ 与平面BCP 所成角的大小为6π,所以1sin |cos ,|||62||||BQ m BQ m BQ m π⋅====⋅u u u r u ru u u r u r u u ur u r 解得21λ=,由知1λ=,即点Q 与E 重合.故在线段EF 上存在一点Q,且FQ EF ==. 【点睛】本题的核心在考查空间向量的应用,需要注意以下问题:(1)求解本题要注意两点:一是两平面的法向量的夹角不一定是所求的二面角,二是利用方程思想进行向量运算,要认真细心,准确计算.(2)设,m n u r r 分别为平面α,β的法向量,则二面角θ与,m n <>u r r互补或相等.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.9.(2019·山东高考模拟(理))如图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,ABC ∆为等边三角形,22PA AB ==,AC CD ⊥,PD 与平面PAC 所成角的正切值 为5.(∴)证明://BC 平面PAD ;(∴)若M 是BP 的中点,求二面角P CD M --的余弦值.【答案】(∴)见解析.(∴ 【解析】 【分析】(∴)先证明DPC ∠为PD 与平面PAC 所成的角,于是可得CD =60CAD ∠=︒.又由题意得到60BCA ∠=︒,故得//BC AD ,再根据线面平行的性质可得所证结论. (∴) 取BC 的中点N ,连接AN ,可证得AN AD ⊥.建立空间直角坐标系,分别求出平面PCD 和平面CDM 的法向量,根据两个法向量夹角的余弦值得到二面角的余弦值. 【详解】(∴)证明:因为PA ⊥平面ABCD ,CD ⊂平面ABCD , 所以PA CD ⊥又AC CD ⊥,CA PA A =I , 所以CD ⊥平面PAC ,所以DPC ∠为PD 与平面PAC 所成的角. 在Rt PCD V中,PC ==所以CD =所以在Rt PCD V 中,2AD =,60CAD ∠=︒. 又60BCA ∠=︒,所以在底面ABCD 中,//BC AD , 又AD ⊂平面PAD ,BC ⊄平面PAD , 所以//BC 平面PAD .(∴)解:取BC 的中点N ,连接AN ,则AN BC ⊥,由(∴)知//BC AD , 所以AN AD ⊥,分别以AN ,AD ,AP 为x ,y ,z 轴建立空间直角坐标系Axyz .则(0,0,2)P,1,02C ⎫⎪⎪⎝⎭,(0,2,0)D,1,14M ⎫-⎪⎪⎝⎭所以3,,022CD ⎛⎫=- ⎪ ⎪⎝⎭uu u r ,(0,2,2)PD =-u u ur,9,,144DM ⎛⎫=- ⎪ ⎪⎝⎭uuu u r设平面PCD 的一个法向量为()1111,,n x y z =u r,由1100n CD n PD ⎧⋅=⎪⎨⋅=⎪⎩u u u vu u u v,即111130220y y z ⎧+=⎪⎨-=⎪⎩,得1111x z y ⎧=⎪⎨=⎪⎩,令11y =,则1,1)n =u r.设平面CDM 的一个法向量为()2222,,n x y z =u ur,由2200n CD n MD ⎧⋅=⎪⎨⋅=⎪⎩u u v u u u v u u v u u u u v,即2222230940y y z ⎧+=⎪-+=,得222232x y z ⎧=⎪⎨=⎪⎩, 令21y =,则232n ⎫=⎪⎭u u r .所以121212331cos ,||||n n n n n n ++⋅<>===⋅u r u u ru r u u r u r u u r 由图形可得二面角P CD M --为锐角, 所以二面角P CD M --【点睛】空间向量是求解空间角的有利工具,根据平面的法向量、直线的方向向量的夹角可求得线面角、二面角等,解题时把几何问题转化为向量的运算的问题来求解,体现了转化思想方法的利用,不过解题中要注意向量的夹角和空间角之间的关系,特别是求二面角时,在求得法向量的夹角后,还要通过图形判断出二面角是锐角还是钝角,然后才能得到结论. 10.(2018·吉林高考模拟(理))如图,在棱长为2的正方体1111ABCD A B C D -中,E ,F , M , N 分别是棱AB , AD , 11A B , 11A D 的中点,点P , Q 分别在棱1DD , 1BB 上移动,且(02)DP BQ λλ==<<.(1)当1λ=时,证明:直线1//BC 平面EFPQ ;(2)是否存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.【答案】(1)见解析;(2)12λ=±.【解析】以D 为原点,射线DA , DC , 1DD 分别为x , y , z 轴的正半轴建立如图所示的空间直角坐标系D xyz -.由已知得()2,2,0B , ()10,2,2C ,()2,1,0E ,()1,0,0F , ()0,0,P λ, ()1,0,2N , ()2,1,2M ,则()12,0,2BC =-u u u u r, ()1,0,FP λ=-u u u r , ()1,1,0FE =u u u r , ()1,1,0NM =u u u u r , ()1,0,2NP λ=--u u u r.(1)当1λ=时, ()1,0,1FP =-u u u r ,因为()12,0,2BC =-u u u u r ,所以12BC FP =u u u u r u u u r,即1//BC FP ,又FP ⊂平面EFPQ ,且1BC ⊄平面EFPQ ,故直线1//BC 平面EFPQ . (2)设平面EFPQ 的一个法向量为(),,n x y z =r,则由0{0FE n FP n ⋅=⋅=u u u r ru u u r r,得0{0.x y x z λ+=-+=,于是可取(),,1n λλ=-r . 设平面MNPQ 的一个法向量为()',','m x y z =r,由0{0NM m NP m ⋅=⋅=u u u u r ru u u r r,得()''0{'2'0x y x z λ+=-+-=,于是可取()2,2,1m λλ=--r. 若存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角,则()()2,2,1,,10m n λλλλ⋅=--⋅-=r r,即()()2210λλλλ---+=,解得1λ=±,显然满足02λ<<.故存在1λ=±,使面EFPQ 与面PQMN 所成的二面角为直二面角.点睛:立体几何的有关证明题,首先要熟悉各种证明的判定定理,然后在进行证明,要多总结题型,对于二面角问题一般直接建立空间直角坐标系,求出法向量然后根据向量夹角公式求解二面角,要注意每一个坐标的准确性。

2020高考冲刺数学总复习压轴解答:函数、不等式与导数的综合问题(附答案及解析)

2020高考冲刺数学总复习压轴解答:函数、不等式与导数的综合问题(附答案及解析)

专题三 压轴解答题第六关 函数、不等式与导数的综合问题【名师综述】1.本专题在高考中的地位导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点, 所以在历届高考中,对导数的应用的考查都非常突出 2.本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用【考点方向标】方向一 用导数研究函数的性质典例1.(2020·山东高三期末)已知函数21()2ln (2)2f x x a x a x =+-+. (1)当1a =时,求函数()f x 的单调区间; (2)是否存在实数a ,使函数34()()9g x f x ax x =++在(0,)+∞上单调递增?若存在,求出a 的取值范围;若不存在,请说明理由.【举一反三】(2020·云南昆明一中高三期末(理))已知函数2()(1)xx f x e ax e =-+⋅,且()0f x …. (1)求a ;(2)证明:()f x 存在唯一极大值点0x ,且()0316f x <.方向二 导数、函数与不等式典例2.(2020·四川省泸县第二中学高三月考)已知函数()sin f x x ax =-.(1)对于(0,1)x ∈,()0f x >恒成立,求实数a 的取值范围; (2)当1a =时,令()()sin ln 1h x f x x x =-++,求()h x 的最大值; (3) 求证:1111ln(1)1231n n n+<+++⋅⋅⋅++-*()n N ∈.【举一反三】(2020·黑龙江哈尔滨三中高三月考)已知111123S n =++⋅⋅⋅+,211121S n =++⋅⋅⋅+-,直线1x =,x n =,0y =与曲线1y x=所围成的曲边梯形的面积为S .其中n N ∈,且2n ≥.(1)当0x >时,()ln 11axx ax x <+<+恒成立,求实数a 的值; (2)请指出1S ,S ,2S 的大小,并且证明;(3)求证:131112lnln 3132313n i n n i i i =+⎛⎫<+-< ⎪+--⎝⎭∑.方向三 恒成立及求参数范围问题典例3.(2020·天津高三期末)已知函数()2ln h x ax x =-+. (1)当1a =时,求()h x 在()()2,2h 处的切线方程; (2)令()()22a f x x h x =+,已知函数()f x 有两个极值点12,x x ,且1212x x >,求实数a 的取值范围;(3)在(2)的条件下,若存在012x ⎡⎤∈⎢⎥⎣⎦,使不等式()()()()20ln 1112ln 2f x a m a a ++>--++对任意a (取值范围内的值)恒成立,求实数m 的取值范围.【举一反三】(2020·江苏高三专题练习)已知函数()(32)xf x e x =-,()(2)g x a x =-,其中,a x R ∈. (1)求过点(2,0)和函数()y f x =的图像相切的直线方程; (2)若对任意x ∈R ,有()()f x g x ≥恒成立,求a 的取值范围; (3)若存在唯一的整数0x ,使得00()()f x g x <,求a 的取值范围.【压轴选编】1.(2020·山西高三开学考试)已知函数()()()222ln ,2ln f x x ax a x a R g x x x x =--+∈=-.(1)讨论()f x 的单调性;(2)求证:当1a =时,对于任意()0,x ∈+∞,都有()()f x g x <.2.(2020·河南鹤壁高中高三月考)已知函数2()ln (0,)a xf x x a a R x a=++≠∈ (1)讨论函数()f x 的单调性; (2)设1()2a x g x x a a=+-+,当0a >时,证明:()()f x g x ≥.3.(2020·四川石室中学高三月考)已知函数()22ln f x x x =-+.(1)求函数()f x 的最大值; (2)若函数()f x 与()ag x x x=+有相同极值点. ①求实数a 的值;①若对于121,,3x x e ⎡⎤∀∈⎢⎥⎣⎦(e 为自然对数的底数),不等式()()1211f xg x k -≤-恒成立,求实数k 的取值范围.4.(2020·江西高三)已知函数()()ln f x x x a b =++,曲线()y f x =在点()()1,1f 处的切线为210x y --=.(1)求a ,b 的值;(2)若对任意的()1,x ∈+∞,()()1f x m x ≥-恒成立,求正整数m 的最大值.5.(2020·江西高三)已知函数()e 2xf x m x m =--.(1)当1m =时,求曲线()y f x =在点(0,(0))f 处的切线方程;(2)若()0f x >在(0,)+∞上恒成立,求m 的取值范围.6.(2020·江西高三)已知函数()()2xf x x e =-.(1)求()f x 的单调区间;(2)证明:对任意的()0,x ∈+∞,不等式()2ln 6xf x x x >-恒成立.7.(2020·四川高三月考)已知函数21()(32)()2xf x m e x m R =--∈. (1)若0x =是函数()f x 的一个极值点,试讨论()ln ()()h x b x f x b R =+∈的单调性; (2)若()f x 在R 上有且仅有一个零点,求m 的取值范围.8.(2020·山西高三)已知函数()2ln 21f x a x x =-+(其中a R ∈). (1)讨论函数()f x 的极值;(2)对任意0x >,2()2f x a ≤-恒成立,求a 的取值范围.9.(2020·北京高三期末)已知函数()2xf x x e =(1)求()f x 的单调区间;(2)过点()1,0P 存在几条直线与曲线()y f x =相切,并说明理由; (3)若()()1f x k x ≥-对任意x ∈R 恒成立,求实数k 的取值范围.10.(2020·全国高三专题练习)已知函数()()33114ln 10f f x ax x x '=--的图象在点()()1,1f 处的切线方程为100++=x y b . (1)求a ,b 的值; (2)若()13f x m >对()0,x ∈+∞恒成立,求m 的取值范围.11.(2020·天津静海一中高三月考)已知函数()ln 1()f x ax x a R =--∈. (1)讨论()f x 的单调性并指出相应单调区间; (2)若21())1(2g x x x x f ---=,设()1212,x x x x <是函数()g x 的两个极值点,若32a ≥,且()()12g x g x k -≥恒成立,求实数k 的取值范围.12.(2020·山东高三期末)已知函数()()2sin ln 12x f x x x =+-+.(1)证明:()0f x ≥; (2)数列{}n a 满足:1102a <<,()1n n a f a +=(n *∈N ). (①)证明:1102a <<(n *∈N ); (①)证明:n *∀∈N ,1n n a a +<.13.(2020·四川三台中学实验学校高三开学考试)已知函数()ln f x x x a =+,()ln ,g x x ax a =-∈R . (1)求函数()f x 的极值; (2)若10a e<<,其中e 为自然对数的底数,求证:函数()g x 有2个不同的零点; (3)若对任意的1x >,()()0f x g x +>恒成立,求实数a 的最大值.14.(2020·河北高三期末)已知函数()f x 满足:①定义为R ;①2()2()9xx f x f x e e+-=+-. (1)求()f x 的解析式;(2)若12,[1,1]x x ∀∈-;均有()()21122(2)61x a x x f x -+-+-…成立,求a 的取值范围;(3)设2(),(0)()21,(0)f x x g x x x x >⎧=⎨--+≤⎩,试求方程[()]10g g x -=的解.15.(2020·湖南高三月考)已知函数2()()af x x ax a R x=+-∈. (1)当1a =且1x >-时,求函数()f x 的单调区间;(2)当21e a e ≥+时,若函数2()()ln g x f x x x =--的两个极值点分别为1x 、2x ,证明12240()()1g x g x e <-<+.16.(2020·江西高三期末)已知函数2()x f x e ax x =--(e 为自然对数的底数)在点(1,(1))f 的切线方程为(3)y e x b =-+. (1)求实数,a b 的值;(2)若关于x 的不等式4()5f x m >+对于任意(0,)x ∈+∞恒成立,求整数m 的最大值.17.(2020·江西高三期末)已知函数()()()2,xf x x m e nxm n R =--∈在1x =处的切线方程为y ex e =-.(1)求,m n 的值;(2)当0x >时,()3f x ax -…恒成立,求整数a 的最大值.18.(2020·河南高三期末)已知函数()()ln 1mxf x x x m=+-+,()1,0x ∈-. (1)若1m =,判断函数()f x 的单调性并说明理由; (2)若2m ≤-,求证:关于x 的不等式()()()21xx m f x e x-+⋅<-在()1,0-上恒成立.19.(2020·江西高三月考)已知函数32()32f x x x x =-+,()g x tx t R =∈,,()xe x xφ=. (1)求函数()()y f x x φ=⋅的单调增区间;(2)令()()()h x f x g x =-,且函数()h x 有三个彼此不相等的零点0m n ,,,其中m n <. ①若12m n =,求函数()h x 在x m =处的切线方程; ①若对[]x m n ∀∈,,()16h x t ≤-恒成立,求实数M 的取值范围.专题三 压轴解答题第六关 函数、不等式与导数的综合问题【名师综述】1.本专题在高考中的地位导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点, 所以在历届高考中,对导数的应用的考查都非常突出 2.本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用【考点方向标】方向一 用导数研究函数的性质典例1.(2020·山东高三期末)已知函数21()2ln (2)2f x x a x a x =+-+. (1)当1a =时,求函数()f x 的单调区间; (2)是否存在实数a ,使函数34()()9g x f x ax x =++在(0,)+∞上单调递增?若存在,求出a 的取值范围;若不存在,请说明理由.【答案】(1)()f x 的单调递增区间为(]0,1和[)2,+∞,单调递减区间为()1,2(2)存在,724a ≥ 【解析】(1)当1a =时,21()2ln 3(0)2f x x x x x =+->. 所以2()3f x x x '=+-=232(2)(1)x x x x x x-+--=令()0f x '≥,则01x <≤或2x ≥,令()0f x '<,则12x <<, 所以()f x 的单调递增区间为(]0,1和[)2,+∞,单调递减区间为()1,2 (2)存在724a ≥,满足题设,因为函数34()()9g x f x ax x =++=23142ln 229x a x x x +-+所以224()23a g x x x x '=+-+,要使函数()g x 在0,∞(+)上单调递增,224()20,(0,)3a g x x x x x '=+-≥+∈+∞,即3243660x x x a +-+≥,(0,)x ∈+∞⇔324366x x xa +-≥-,(0,)x ∈+∞ 令32436()6x x x h x +-=,(0,)x ∈+∞,则2()21(21)(1)h x x x x x '=+-=-+,所以当10,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,()h x 在10,2⎛⎫⎪⎝⎭上单调递减,当1,2x ⎛⎫∈+∞⎪⎝⎭时,()0h x '>,()h x 在1,2⎛⎫+∞ ⎪⎝⎭上单调递增, 所以12x =是()h x 的极小值点,也是最小值点,且17224h ⎛⎫=- ⎪⎝⎭,∴324366x x x+--在(0,)+∞上的最大值为724.所以存在724a ≥,满足题设.【举一反三】(2020·云南昆明一中高三期末(理))已知函数2()(1)xx f x e ax e =-+⋅,且()0f x …. (1)求a ;(2)证明:()f x 存在唯一极大值点0x ,且()0316f x <. 【答案】(1)1a =;(2)证明见解析. 【解析】(1)因为()()ee 10xxf x ax =--≥,且e0x>,所以e 10x ax --≥,构造函数()e 1xu x ax =--,则()'e xu x a =-,又()00u =,若0a ≤,则()'0u x >,则()u x 在R 上单调递增,则当0x <时,()0u x <矛盾,舍去;若01a <<,则ln 0a <,则当ln 0a x <<时,'()0u x >,则()u x 在(ln ,0)a 上单调递增,则()()ln 00u a u <=矛盾,舍去;若1a >,则ln 0a >,则当0ln x a <<时,'()0u x <,则()u x 在(0,ln )a 上单调递减,则()()ln 00u a u <=矛盾,舍去;若1a =,则当0x <时,'()0u x <,当0x >时,'()0u x >, 则()u x 在(,0)-∞上单调递减,在(0,)+∞上单调递增, 故()()00u x u ≥=,则()()e 0xf x u x =⋅≥,满足题意;综上所述,1a =.(2)证明:由(1)可知()()2e 1e xxf x x =-+⋅,则()()'e2e 2xxf x x =--,构造函数()2e 2xg x x =--,则()'2e 1xg x =-,又()'g x 在R 上单调递增,且()'ln20g -=,故当ln2x <-时,)'(0g x <,当ln 2x >-时,'()0g x >, 则()g x 在(,ln 2)-∞-上单调递减,在(ln 2,)-+∞上单调递增,又()00g =,()2220e g -=>,又33233332223214e 16e 022e 2e 8e 2e g --⎛⎫-=-==< ⎪⎝⎭+, 结合零点存在性定理知,在区间3(2,)2--存在唯一实数0x ,使得()00g x =, 当0x x <时,()'0f x >,当00x x <<时,()'0f x <,当0x >时,()'0f x >, 故()f x 在()0,x -∞单调递增,在()0,0x 单调递减,在()0,∞+单调递增,故()f x 存在唯一极大值点0x ,因为()0002e 20xg x x =--=,所以00e 12xx =+, 故()()()()022200000011e1e 11112244x x x x f x x x x ⎛⎫⎛⎫=-+=+-++=-+ ⎪ ⎪⎝⎭⎝⎭,因为0322x -<<-,所以()201133144216f x ⎛⎫<--+<⎪⎝⎭. 方向二 导数、函数与不等式典例2.(2020·四川省泸县第二中学高三月考)已知函数()sin f x x ax =-. (1)对于(0,1)x ∈,()0f x >恒成立,求实数a 的取值范围; (2)当1a =时,令()()sin ln 1h x f x x x =-++,求()h x 的最大值;(3) 求证:1111ln(1)1231n n n+<+++⋅⋅⋅++-*()n N ∈. 【答案】(1)sin1a ≤.(2)max ()(1)0h x h ==.(3)见解析.【解析】(1)由()0f x >,得:sin 0x ax ->,因为01x <<,所以sin xa x<, 令sin ()x g x x=,()2cos sin 'x x xg x x -=, 再令()cos sin m x x x x =-,()'cos sin cos sin 0m x x x x x x x =--=-<, 所以()m x 在()0,1上单调递减, 所以()()0m x m <,所以()'0g x <,则()g x 在()0,1上单调递减, 所以()(1)sin1g x g >=,所以sin1a ≤. (2)当1a =时,()sin f x x x =-, ①()ln 1h x x x =-+,()11'1x h x x x-=-=, 由()'0h x =,得:1x =,当()0,1x ∈时,()'0h x >,()h x 在()0,1上单调递增; 当()1,x ∈+∞时,()'0h x <,()h x 在()1,+∞上单调递减; ①()max (1)0h x h ==.(3)由(2)可知,当()1,x ∈+∞时,()0h x <, 即ln 1x x <-, 令1n x n +=,则11ln1n n n n ++<-,即()1ln 1ln n n n+-<, 分别令1,2,3,,n n =L 得,()11ln 2ln11,ln 3ln 2,,ln 1ln 2n n n-<-<+-<L ,将上述n 个式子相加得:()()*111ln 1121n n N n n+<++++∈-L . 【举一反三】(2020·黑龙江哈尔滨三中高三月考)已知111123S n =++⋅⋅⋅+,211121S n =++⋅⋅⋅+-,直线1x =,x n =,0y =与曲线1y x=所围成的曲边梯形的面积为S .其中n N ∈,且2n ≥.(1)当0x >时,()ln 11axx ax x <+<+恒成立,求实数a 的值; (2)请指出1S ,S ,2S 的大小,并且证明;(3)求证:131112lnln 3132313n i n n i i i =+⎛⎫<+-< ⎪+--⎝⎭∑. 【答案】(1)1;(2)12S S S <<,证明见解析;(3)见解析 【解析】(1)由已知得0a ≤时,不合题意,所以0a >.()ln 11axx x <++恒成立,即()()()1ln 10ax x x x <++>恒成立. 令()()()1ln 1m x x x ax =++-,()()'ln 11m x x a =++-. 当1a ≤时,()m x 在()0,∞+上为增函数,此时()0m x >成立.当1a >时,()m x 在()10,1a e --上为减函数,不合题意,所以1a ≤.令()()ln 1n x ax x x =-+,()1'1n x a x =-+,当1a ≥时,()n x 在()0,∞+上为增函数,此时()0n x >,()ln 1x ax +<恒成立.当01a <<时,()n x 在10,1a ⎛⎫- ⎪⎝⎭上为减函数,不合题意,所以1a ≥.综上得1a =. (2)由(1)知()()ln 101x x x x x <+<>+.令1x i =,得111ln 11i i i⎛⎫<+< ⎪+⎝⎭, 从而11111111ln 112321n i n i n -=⎛⎫+++<+<+++ ⎪-⎝⎭∑L L ,又因为11ln nS dx n x==⎰,则12S S S <<. (3)由已知111232313ni i i i =⎛⎫+- ⎪--⎝⎭∑1111111123323n n ⎛⎫⎛⎫+++⋅⋅⋅+-++++ ⎪ ⎪⎝⎭⎝=⎭L 111123n n n =++⋅⋅⋅+++,因为111ln 11i i i⎛⎫<+< ⎪+⎝⎭,所以 111111ln 1ln 1ln 1123123n n n n n n ⎛⎫⎛⎫⎛⎫+++>++++++ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭L L 31ln1n n +=+, 111123ln ln ln 123131n n n n n n n n n ++⎛⎫⎛⎫⎛⎫+++<+++ ⎪ ⎪ ⎪+++-⎝⎭⎝⎭⎝⎭L L ln 3=.从而131112lnln 3132313n i n n i i i =+⎛⎫<+-< ⎪+--⎝⎭∑. 方向三 恒成立及求参数范围问题典例3.(2020·天津高三期末)已知函数()2ln h x ax x =-+. (1)当1a =时,求()h x 在()()2,2h 处的切线方程; (2)令()()22a f x x h x =+,已知函数()f x 有两个极值点12,x x ,且1212x x >,求实数a 的取值范围;(3)在(2)的条件下,若存在0122x ⎡⎤∈+⎢⎥⎣⎦,使不等式()()()()20ln 1112ln 2f x a m a a ++>--++对任意a (取值范围内的值)恒成立,求实数m 的取值范围. 【答案】(1)322ln 220x y +-+=(2)()1,2(3)1,4⎛⎤-∞- ⎥⎝⎦【解析】()1当1a =时,()()12ln ,'2h x x x h x x=-+=-+2x =时,()()3'2,24ln 22h h =-=-+()h x ∴在()()2,2h 处的切线方程为()34ln 222y x +-=--,化简得:322ln 220x y +-+= ()2对函数求导可得,()()221'0ax ax f x x x-+=>,令()'0f x =,可得2210ax ax -+=20440112a a a a ⎧⎪≠⎪∴->⎨⎪⎪>⎩,解得a 的取值范围为()1,2 ()3由2210ax ax -+=,解得1211x x ==+而()f x 在()10,x 上递增,在()12,x x 上递减,在()2,x +∞上递增12a <<Q211x ∴=+<()f x ∴在122⎡⎤+⎢⎥⎣⎦单调递增 ∴在1,22⎡⎤+⎢⎥⎣⎦上,()()max 22ln 2f x f a ==-+012x ⎡⎤∴∃∈⎢⎥⎣⎦,使不等式()()()()20ln 1112ln 2f x a m a a ++>--++对a M ∀∈恒成立等价于不等式2(2ln 2ln 1112))()n (l 2a a m a a -+++>--++恒成立 即不等式2()ln 1ln 210a ma a m +--+-+>对任意的()12a a <<恒成立令()()2ln 1ln 21g a a ma a m =+--+-+,则()()121210,'1ma a m g g a a ⎛⎫-++ ⎪⎝⎭==+ ①当0m ≥时,()()'0,g a g a <在()1,2上递减()()10g a g <=不合题意①当0m <时,()1212'1ma a m g a a ⎛⎫-++ ⎪⎝⎭=+ 12a <<Q若1112m ⎛⎫-+> ⎪⎝⎭,即104m -<<时,则()g a 在()1,2上先递减 ()10g =Q12a ∴<<时,()0g a >不能恒成立若111,2m ⎛⎫-+≤ ⎪⎝⎭即14m ≤-,则()g a 在()1,2上单调递增 ()()10g a g ∴>=恒成立m ∴的取值范围为1,4⎛⎤-∞- ⎥⎝⎦【举一反三】(2020·江苏高三专题练习)已知函数()(32)xf x e x =-,()(2)g x a x =-,其中,a x R ∈. (1)求过点(2,0)和函数()y f x =的图像相切的直线方程; (2)若对任意x ∈R ,有()()f x g x ≥恒成立,求a 的取值范围; (3)若存在唯一的整数0x ,使得00()()f x g x <,求a 的取值范围. 【答案】(1)2y x =-,8833918y e x e =-.(2)8319a e ≤≤.(3)345[,1)(7,5]3a e e e∈⋃. 【解析】(1)设切点为()00,x y ,()()'31xf x e x =+,则切线斜率为()0031x e x +,所以切线方程为()()000031x y y e x x x -=+-,因为切线过()2,0,所以()()()000032312x x ex e x x --=+-,化简得200380x x -=,解得080,3x =. 当00x =时,切线方程为2y x =-, 当083x =时,切线方程为8833918y e x e =-. (2)由题意,对任意x R ∈有()()322xe x a x -≥-恒成立,①当(),2x ∈-∞时,()()323222x x maxe x e x a a x x ⎡⎤--≥⇒≥⎢⎥--⎣⎦,令()()322x e x F x x -=-,则()()()2238'2x e x xF x x -=-,令()'0F x =得0x =,()()max 01F x F ==,故此时1a ≥.①当2x =时,恒成立,故此时a R ∈. ①当()2,x ∈+∞时,()()min323222x x e x e x a a x x ⎡⎤--≤⇒≤⎢⎥--⎣⎦,令()8'03F x x =⇒=,()83min 893F x F e ⎛⎫== ⎪⎝⎭,故此时839a e ≤.综上:8319a e ≤≤.(3)因为()()f x g x <,即()()322xex a x -<-,由(2)知()83,19,a e ⎛⎫∈-∞⋃+∞ ⎪⎝⎭,令()()322x e x F x x -=-,则当(),2x ∈-∞,存在唯一的整数0x 使得()()00f x g x <, 等价于()322x e x a x -<-存在唯一的整数0x 成立,因为()01F =最大,()513F e -=,()11F e =-,所以当53a e<时,至少有两个整数成立, 所以5,13a e ⎡⎫∈⎪⎢⎣⎭. 当()2,x ∈+∞,存在唯一的整数0x 使得()()00f x g x <, 等价于()322x e x a x ->-存在唯一的整数0x 成立,因为83893F e ⎛⎫= ⎪⎝⎭最小,且()337F e =,()445F e =,所以当45a e >时,至少有两个整数成立,所以当37a e ≤时,没有整数成立,所有(347,5a e e ⎤∈⎦.综上:(345,17,53a e e e ⎡⎫⎤∈⋃⎪⎦⎢⎣⎭. 【压轴选编】1.(2020·山西高三开学考试)已知函数()()()222ln ,2ln f x x ax a x a R g x x x x =--+∈=-.(1)讨论()f x 的单调性;(2)求证:当1a =时,对于任意()0,x ∈+∞,都有()()f x g x <. 【答案】(1)见解析(2)见解析【解析】(1)由题意()f x 的定义域为()0,∞+,且()()()222222x a x a a x ax a f x x a x x x--+--+'=--+==, 当0a =时,()20f x x '=-<; 当0a >时,2a x >时,()0f x '<;02ax <<时,()0f x '>; 当0a <时,x a >-时,()0f x '<;0x a <<-时,()0f x '>;综上所述,当0a =时,()f x 在()0,∞+上为减函数; 当0a >时,()f x 在0,2a ⎛⎫ ⎪⎝⎭上为增函数,在,2a ⎛⎫+∞ ⎪⎝⎭上为减函数; 当0a <时,()f x 在()0,a -上为增函数,在(),a -+∞上为减函数. (2)要证()()f x g x <,即证()21ln 0x x x -+>,当12x =时,不等式显然成立; 当12x >时,即证ln 021x x x +>-;当102x <<时,即证ln 021xx x +<-; 令()ln 21x F x x x =+-,则()()()()()22411112121x x F x x x x x ---'=+=--, 当12x >时,在1,12⎛⎫⎪⎝⎭上()0F x '<,()F x 为减函数;在()1,+∞上()0F x '>,()F x 为增函数,①()()min 110F x F ==>,①ln 021xx x +>-.当102x <<时,在10,4⎛⎫ ⎪⎝⎭上()0F x '>,()F x 为增函数;在11,42⎛⎫⎪⎝⎭上()0F x '<,()F x 为减函数, ①()max 111ln 0442F x F ⎛⎫==-<⎪⎝⎭,①ln 021x x x +<-, 综上所述,当0x >时,()()f x g x <成立.2.(2020·河南鹤壁高中高三月考)已知函数2()ln (0,)a xf x x a a R x a=++≠∈ (1)讨论函数()f x 的单调性; (2)设1()2a x g x x a a=+-+,当0a >时,证明:()()f x g x ≥. 【答案】(1)见解析;(2)证明见解析【解析】(1)22121(2)()()a x a x a f x x x a ax+-'=-+= 当0a >时,()0f x x a '>⇒>,()00f x x a '<⇒<<当0a <时,()002f x x a '>⇒<<-,()02f x x a '<⇒>- ①0a >时,()f x 在(0,)a 上递减,在(,)a +∞递增 0a <时,()f x 在(0,2)a -上递增,在(2,)a -+∞递减(2)设1()()()ln 2a F x f x g x x x a=-=++- 则221()(0)a x aF x x x x x-'=-=> Q 0a >,(0,)x a ∴∈时,()0F x '<,()F x 递减(,)x a ∈+∞,()0,F x '>()F x 递增,1()()ln 1F x F a a a∴≥=+-设1()ln 1h x x x =+-,(0)x >,则22111()(0)x h x x x x x-'=-=>1x >时,()0,h x '>时,()h x 递增, 01x <<时,()0h x '<,∴()h x 递减()(1)0h x h ∴≥=,()()0F a h a ∴=≥()0F x ∴≥,即()()f x g x ≥3.(2020·四川石室中学高三月考)已知函数()22ln f x x x =-+.(1)求函数()f x 的最大值; (2)若函数()f x 与()ag x x x=+有相同极值点. ①求实数a 的值;①若对于121,,3x x e ⎡⎤∀∈⎢⎥⎣⎦(e 为自然对数的底数),不等式()()1211f xg x k -≤-恒成立,求实数k 的取值范围.【答案】(①)()11f =-;(①)(①)1; (①)()34 ,2ln31,3⎛⎤-∞-+⋃+∞ ⎥⎝⎦. 【解析】(1)22(1)(1)()2(0)x x f x x x x x+-'=-+=->, 由()0{0f x x >>'得01x <<,由()0{0f x x <>'得1x >,①()f x 在(0,1)上为增函数,在(1,)+∞上为减函数, ①函数()f x 的最大值为(1)1f =-; (2)①()a g x x x=+,①2()1a g x x =-',(①)由(1)知,1x =是函数()f x 的极值点,又①函数()f x 与()ag x x x=+有相同极值点, ①1x =是函数()g x 的极值点,①(1)10g a =-=',解得1a =, 经检验,当1a =时,函数()g x 取到极小值,符合题意;(①)①211()2f e e =--,(1)1f =-,(3)92ln 3f =-+, ①2192ln 321e -+<--<-, 即1(3)()(1)f f f e <<,①1[,3]x e∀∈,min max ()(3)92ln 3,()(1)1f x f f x f ==-+==-,由(①)知1()g x x x =+,①21()1g x x =-',当1[,1)x e∈时,()0g x '<,当(1,3]x ∈时,()0g x '>,故()g x 在1[,1)e 为减函数,在(1,3]上为增函数,①11110(),(1)2,(3)333g e g g e e =+==+=,而11023e e <+<,①1(1)()(3)g g g e <<,①1[,3]x e ∀∈,min max 10()(1)2,()(3)3g x g g x g ====,①当10k ->,即1k >时,对于121,[,3]x x e ∀∈,不等式12()()11f xg x k -≤-恒成立12max 1[()()]k f x g x ⇔-≥-12max [()()]1k f x g x ⇔≥-+,①12()()(1)(1)123f x g x f g -≤-=--=-,①312k ≥-+=-,又①1k >,①1k >, ①当10k -<,即1k <时,对于121,[,]x x e e ∀∈,不等式12()()11f xg x k -≤-,12min 1[()()]k f x g x ⇔-≤-12min [()()]1k f x g x ⇔≤-+,①121037()()(3)(3)92ln 32ln 333f x g x f g -≥-=-+-=-+,①342ln 33k ≤-+,又①1k <, ①342ln 33k ≤-+.综上,所求的实数k 的取值范围为34(,2ln 3](1,)3-∞-+⋃+∞. 4.(2020·江西高三)已知函数()()ln f x x x a b =++,曲线()y f x =在点()()1,1f 处的切线为210x y --=.(1)求a ,b 的值;(2)若对任意的()1,x ∈+∞,()()1f x m x ≥-恒成立,求正整数m 的最大值. 【答案】(1)1a =,0b =;(2)3【解析】(1)由()()ln f x x x a b =++得:()ln 1f x x a '=++ 由切线方程可知:()1211f =-=()112f a '∴=+=,()11f a b =+=,解得:1a =,0b =(2)由(1)知()()ln 1f x x x =+则()1,x ∈+∞时,()()1f x m x ≥-恒成立等价于()1,x ∈+∞时,()ln 11x x m x +≤-恒成立令()()ln 11x x g x x +=-,1x >,则()()2ln 21x x g x x --'=-. 令()ln 2hx x x =--,则()111x h x x x-'=-=∴当()1,x ∈+∞时,()0h x '>,则()h x 单调递增()31ln30h =-<Q ,()422ln20h =-> ()03,4x ∴∃∈,使得()00h x =当()01,x x ∈时,()0g x '<;()0,x x ∈+∞时,()0g x '>()()()000min0ln 11x x g x g x x +∴==-()000ln 20h x x x =--=Q 00ln 2x x ∴=- ()()()()0000min 0213,41x x g x g x x x -+∴===∈-()03,4m x ∴≤∈,即正整数m 的最大值为35.(2020·江西高三)已知函数()e 2xf x m x m =--.(1)当1m =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (2)若()0f x >在(0,)+∞上恒成立,求m 的取值范围. 【答案】(1)y x =-;(2)[2,)+∞【解析】(1)因为1m =,所以()e 21xf x x =--,所以()e 2xf x '=-,则(0)0,(0)1f f '==-,故曲线()y f x =在点(0,(0))f 处的切线方程为y x =-.(2)因为()e 2x f x m x m =--,所以()e 2xf x m '=-,①当2m ≥时,()0f x '>在(0,)+∞上恒成立,则()f x 在(0,)+∞上单调递增,从而()(0)0f x f >=成立,故2m ≥符合题意; ①当02m <<时,令()0f x '<,解得20lnx m <<,即()f x 在20,ln m ⎛⎫ ⎪⎝⎭上单调递减,则2ln(0)0f f m ⎛⎫<= ⎪⎝⎭,故02m <<不符合题意; ①当0m ≤时,0()e 2x f x m '-<=在(0,)+∞上恒成立,即()f x 在(0,)+∞上单调递减,则()(0)0f x f <=,故0m ≤不符合题意.综上,m 的取值范围为[2,)+∞. 6.(2020·江西高三)已知函数()()2x f x x e =-.(1)求()f x 的单调区间;(2)证明:对任意的()0,x ∈+∞,不等式()2ln 6xf x x x >-恒成立.【答案】(1)单调递增区间为()1,+?,单调递减区间为(),1-∞(2)证明见解析【解析】(1)因为()()2x f x x e =-,所以()()1x f x x e '=-,令()0f x ¢>,解得1x >;令()0f x ¢<,解得1x <.故()f x 的单调递增区间为()1,+?,单调递减区间为(),1-∞.(2)要证()2ln 6xf x x x >-,只需证()ln 32x f x x>-.由(1)可知()()min 1f x f e ==-.令()ln 3(0)2x h x x x =->,则()21ln 2xh x x -'=, 令()21ln 0ln 102xh x x x e x-'=>⇒<⇒<<, 所以当()0,x e ∈时,()0h x '>,()h x 单调递增;当(),x e ∈+∞时,()0h x '<,()h x 单调递减, 则()()max 132h x h e e==-. 因为 2.71828e =⋅⋅⋅,所以 2.75e ->-,所以1133 2.7524e -<-=-, 从而132e e->-,则当0x >时,()()min max f x h x >.故当0x >时,()()f x h x >恒成立,即对任意的()0,x ∈+∞,()2ln 6xf x x x >-.7.(2020·四川高三月考)已知函数21()(32)()2xf x m e x m R =--∈. (1)若0x =是函数()f x 的一个极值点,试讨论()ln ()()h x b x f x b R =+∈的单调性; (2)若()f x 在R 上有且仅有一个零点,求m 的取值范围.【答案】(1)当0b …时,()h x 在(0,)+∞上单调递减;当0b >时,()h x 在上单调递增,在)+∞上单调递减;(2)2222,333e ⎧⎫⎛⎫++∞⋃⎨⎬⎪⎩⎭⎝⎭. 【解析】(1)()(32)xf x m e x '=--,因为0x =是函数()f x 的一个极值点,则(0)320f m '=-=,所以23m =,则21()ln (0)2h x b x x x =->,当2()b b x h x x x x-'=-=,当0b …时,()0h x '…恒成立,()h x 在(0,)+∞上单调递减,当0b >时,2()000h x b x x '>⇒->⇒<<所以()h x 在上单调递增,在)+∞上单调递减. 综上所述:当0b …时,()h x 在(0,)+∞上单调递减;当0b >时,()h x 在上单调递增,在)+∞上单调递减. (2)()f x 在R 上有且仅有一个零点,即方程2322x x m e -=有唯一的解,令2()2xx g x e=, 可得(2)()0,()2xx x g x g x e -'>=, 由(2)()02xx x g x e -'==, 得0x =或2x =,(1)当0x …时,()0g x '…,所以()g x 在(,0]-∞上单调递减,所以()(0)0g x g =…,所以()g x 的取值范围为[0,)+∞. (2)当02x <<时,()0g x '>,所以()g x 在(0,2)上单调递增, 所以0()(2)g x g <<,即220()g x e<<, 故()g x 的取值范围为220,e ⎛⎫ ⎪⎝⎭. (3)当2x …时,()0g x '…,所以()g x 在[2,)+∞上单调递减, 所以(0)()(2)g g x g <…,即220()g x e <…, 即()g x 的取值范围为220,e ⎛⎤ ⎥⎝⎦. 所以,当320m -=或2232m e ->, 即23m =或22233m e >+时,()f x 在R 上有且只有一个零点,故m 的取值范围为2222,333e ⎧⎫⎛⎫++∞⋃⎨⎬⎪⎩⎭⎝⎭. 8.(2020·山西高三)已知函数()2ln 21f x a x x =-+(其中a R ∈). (1)讨论函数()f x 的极值;(2)对任意0x >,2()2f x a ≤-恒成立,求a 的取值范围.【答案】(1)答案不唯一,具体见解析(2)[1,)+∞ 【解析】(1)()f x 的定义域为(0,)+∞,2'()2af x x=-, ①当0a ≤时,'()0f x <,所以()f x 在(0,)+∞上是减函数,()f x 无极值. ①当0a >时,令'()0f x =,得x a =,在(0,)a 上,'()0f x >,()f x 是增函数;在(,)a +∞上,'()0f x <,()f x 是减函数. 所以()f x 有极大值()2ln 21f a a a a =-+,无极小值.(2)由(1)知,①当0a ≤时,()f x 是减函数,令2a x e =,则0(0,1]x ∈,222220()(2)21(2)320a a f x a a e a e --=-+--=->,不符合题意,①当0a >时,()f x 的最大值为()2ln 21f a a a a =-+, 要使得对任意0x >,2()(1)f x a ≤-恒成立, 即要使不等式22ln 212a a a a -+≤-成立, 则22ln 230a a a a --+≤有解.令2()2ln 23(0)g a a a a a a =--+>,所以'()2ln 2g a a a =-令()'()2ln 2h a g a a a ==-,由22'()0ah a a-==,得1a =. 在(0,1)上,'()0h a >,则()'()h a g a =在(0,1)上是增函数; 在(1,)+∞上,'()0h a <,则()'()h a g a =在(1,)+∞上是减函数. 所以max ()(1)20h a h ==-<,即'()0g a <, 故()g a 在(0,)+∞上是减函数,又(1)0g =,要使()0g a ≤成立,则1a ≥,即a 的取值范围为[1,)+∞. 9.(2020·北京高三期末)已知函数()2xf x x e =(1)求()f x 的单调区间;(2)过点()1,0P 存在几条直线与曲线()y f x =相切,并说明理由; (3)若()()1f x k x ≥-对任意x ∈R 恒成立,求实数k 的取值范围.【答案】(1)增区间为(),2-∞-,()0,∞+,单调减区间为()2,0-;(2)三条切线,理由见解析;(3)0,2⎡+⎣ 【解析】(1)()()()222xxf x x x e x x e '==++,()0f x '>得,2x <-或0x >;()0f x '<得,20x -<<;所以()f x 的单调增区间为(),2-∞-,()0,∞+;单调减区间为()2,0-; (2)过()1,0P 点可做()f x 的三条切线;理由如下:设切点坐标为()0200,x x x e,所以切线斜率()()00002xx x k x e f '=+= 所以过切点的切线方程为:()()002200002x x x e x x e x y x -=+-,切线过()1,0P 点,代入得()()0022*******x x x e x x e x -=+-,化简得(0000x x x x e=,方程有三个解,00x =,0x =0x 所以过()1,0P 点可做()f x 的三条切线. (3)设()()21xg x x e k x -=-,①0k =时,因为20x ≥,0x e >,所以显然20x x e ≥对任意x ∈R 恒成立; ①k 0<时,若0x =,则()()0001f k k =>-=-不成立, 所以k 0<不合题意.①0k >时,1x ≤时,()()210xg x x e k x -=->显然成立,只需考虑1x >时情况;转化为21xx e k x ≥-对任意()1,x ∈+∞恒成立令()21xx e h x x =-(1x >),则()min k h x ≤,()()()(()2222(2)111xx xx x x ex x e x x e h x x x +--'==--,当1x <<时,()0h x '<,()h x 单调减;当x >()0h x '>,()h x 单调增;所以()(min 2h x h==+=所以(2k ≤+综上所述,k 的取值范围(0,2+⎡⎣. 10.(2020·全国高三专题练习)已知函数()()33114ln 10f f x ax x x '=--的图象在点()()1,1f 处的切线方程为100++=x y b . (1)求a ,b 的值;(2)若()13f x m >对()0,x ∈+∞恒成立,求m 的取值范围. 【答案】(1)13a =,403=-b ;(2)2642ln 2<-m【解析】(1)()()23114310f f x ax x''=--, 因为()f x 在()()1,1f 处的切线方程为100++=x y b ,即10y x b =--,此时切线斜率10k =-,则()3(1)13141010f f a k ''=--==-,解得13a =,所以()()333101114ln 314ln 3103f x x x x x x x ⨯-=--=+-, 所以()31110113114ln13333f =⨯+⨯-=+=,则10103b =--,解得403=-b(2)由(1)知()31314ln 3f x x x x =+-, ()32143143x x f x x x x+-'=+-=, 设函数()()33140g x xx x =+->,则()2330g x x '=+>,所以()g x 在()0,∞+为增函数,因为()20g =,令()0g x <,得02x <<;令()0g x >,得2x >, 所以当02x <<时,()0f x '<;当2x >时,()0f x '>, 所以()()3min 126223214ln 214ln 233f x f ==⨯+⨯-=-, 从而12614ln 233<-m ,即2642ln 2<-m 11.(2020·天津静海一中高三月考)已知函数()ln 1()f x ax x a R =--∈.(1)讨论()f x 的单调性并指出相应单调区间; (2)若21())1(2g x x x x f ---=,设()1212,x x x x <是函数()g x 的两个极值点,若32a ≥,且()()12g x g x k -≥恒成立,求实数k 的取值范围.【答案】(1)答案见解析(2)15,2ln 28⎛⎤-∞- ⎥⎝⎦【解析】(1)由()ln 1f x ax x =--,(0,)x ∈+∞, 则11()ax f x a x x'-=-=, 当0a ≤时,则()0f x '≤,故()f x 在(0,)+∞上单调递减;当0a >时,令1()0f x x a'=⇒=, 所以()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增.综上所述:当0a ≤时,()f x 在(0,)+∞上单调递减; 当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增. (2)①21()ln (1)2g x x x a x =+-+, 21(1)1()(1)x a x g x x a x x-++'=+-+=, 由()0g x '=得2(1)10x a x -++=,①121x x a +=+,121=x x ,①211x x =①32a ≥①111115210x x x x ⎧+≥⎪⎪⎨⎪<<⎪⎩解得1102x <≤.①()()()()222112121211221111ln(1)2ln 22x g x g x x x a x x x x x x ⎛⎫-=+--+-=-- ⎪⎝⎭. 设22111()2ln 022h x x x x x ⎛⎫⎛⎫=--<≤ ⎪⎪⎝⎭⎝⎭,则()2233121()0x h x x x x x '--=--=<,①()h x 在10,2⎛⎤ ⎥⎝⎦上单调递减;当112x =时,min 115()2ln 228h x h ⎛⎫==- ⎪⎝⎭. ①152ln 28k ≤-,即所求k 的取值范围为15,2ln 28⎛⎤-∞- ⎥⎝⎦.12.(2020·山东高三期末)已知函数()()2sin ln 12x f x x x =+-+.(1)证明:()0f x ≥; (2)数列{}n a 满足:1102a <<,()1n n a f a +=(n *∈N ). (①)证明:1102a <<(n *∈N ); (①)证明:n *∀∈N ,1n n a a +<.【答案】(1)证明见解析(2)(i )证明见解析(ii )证明见解析 【解析】(1)由题意知,()1cos 1f x x x x'=+-+,()1,x ∈-+∞, 当()1,0x ∈-时,()1101f x x x x'<+-<<+,所以()f x 在区间()1,0-上单调递减, 当()0,x ∈+∞时,()()g x f x '=,因为()()()22111sin 011g x x x x '=+->>++所以()g x 在区间()0,∞+上单调递增,因此()()00g x g >=,故当()0,x ∈+∞时,()0f x '>,所以()f x 在区间()0,∞+上单调递增, 因此当()1,x ∈-+∞时,()()00f x f ≥=,所以()0f x ≥ (2)(①)()f x 在区间10,2⎛⎫ ⎪⎝⎭上单调递增,()()00f x f >=,因为881288311111C C 147122224e ⎛⎫⎛⎫=+=+++>++=> ⎪ ⎪⎝⎭⎝⎭L , 故83318ln ln ln 022e ⎛⎫-=-< ⎪⎝⎭,所以()1113131131sin ln sin ln 18ln 22826822822f x f π⎛⎫⎛⎫<=+-<+-=+-<⎪ ⎪⎝⎭⎝⎭因此当10,2x ⎛⎫∈ ⎪⎝⎭时,()01f x <<,又因为110,2a ⎛⎫∈ ⎪⎝⎭,所以()()()()()()12110,2n n n a f a ff a f f f a --⎛⎫====∈ ⎪⎝⎭LL L(①)函数()()h x f x x =-(102x <<),则()()11cos 11h x f x x x x''=-=+--+, 令()()x h x ϕ=',则()()0x g x ϕ''=>,所以()x ϕ在区间10,2⎛⎫ ⎪⎝⎭上单调递增;因此()()111217cos 1cos 0222326h x x ϕϕ⎛⎫'=≤=+--=-<⎪⎝⎭, 所以()h x 在区间10,2⎛⎫ ⎪⎝⎭上单调递减,所以()()00h x h <=, 因此()()10n n n n n a a f a a g a +-=-=<, 所以x *∀∈N ,1n n a a +<13.(2020·四川三台中学实验学校高三开学考试)已知函数()ln f x x x a =+,()ln ,g x x ax a =-∈R . (1)求函数()f x 的极值; (2)若10a e<<,其中e 为自然对数的底数,求证:函数()g x 有2个不同的零点; (3)若对任意的1x >,()()0f x g x +>恒成立,求实数a 的最大值. 【答案】(1)极小值为1a e-+;无极大值(2)证明过程见解析;(3)2. 【解析】(1)函数()f x 的定义域为0x >,因为()ln f x x x a =+,所以()ln 1f x x =+‘,当1x e >时,()0f x >‘,所以函数()f x 单调递增;当10x e<<时,()0f x <‘,所以函数()f x 单调递减,因此1e是函数()f x 的极小值,故函数()f x 的极值为极小值,值为11()f a e e =-+;无极大值(2)函数()g x 的定义域为0x >,因为()ln ,g x x ax =-所以'1()g x a x=-,因为10a e <<,所以当1x a >时,'()0g x <,因此函数()g x 是递减函数,当10x a<<时,'()0g x >,。

专题03最值问题-2020年高考数学三轮冲刺解答题(圆锥曲线篇(文理通用))【原卷版】

专题03最值问题-2020年高考数学三轮冲刺解答题(圆锥曲线篇(文理通用))【原卷版】

2020年高考数学三轮冲刺解答题---圆锥曲线篇(文理通用)最值问题【例1】【2019年高考全国Ⅱ卷理数】已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形;(ii )求PQG △面积的最大值.【例2】【2019年高考浙江卷】如图,已知点(10)F ,为抛物线22(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记,AFG CQG △△的面积分别为12,S S .(1)求p 的值及抛物线的准线方程;(2)求12S S 的最小值及此时点G 的坐标.【例3】(2017山东)在平面直角坐标系xOy 中,椭圆E :22221x y a b +=()0a b >>2,焦距为2.(Ⅰ)求椭圆E 的方程;(Ⅱ)如图,动直线l :13y k x =-E 于,A B 两点,C 是椭圆E 上一点,直线OC 的斜率为2k ,且122k k =M 是线段OC 延长线上一点,且:2:3MC AB =,Me的半径为MC ,,OS OT 是Me的两条切线,切点分别为,S T .求SOT ∠的最大值,并求取得最大值时直线l 的斜率.C TSOMBAlxy【例4】(2017浙江)如图,已知抛物线2x y=.点11(,)24A-,39(,)24B,抛物线上的点(,)P x y13()22x-<<,过点B作直线AP的垂线,垂足为Q.yxQABPO(Ⅰ)求直线AP斜率的取值范围;(Ⅱ)求||||PA PQ⋅的最大值.有关点线距离的最值问题:【例】(2020·安徽高三模拟)已知F是抛物线()2:20C y px p=>的焦点,点P在x轴上,O为坐标原点,且满足14OP OF=u u u r u u u r,经过点P且垂直于x轴的直线与抛物线C交于A、B两点,且8AB=.(1)求抛物线C的方程;(2)直线l与抛物线C交于M、N两点,若64OM ON⋅=-u u u u r u u u r,求点F到直线l的最大距离.【例】在平面直角坐标系xoy中,已知点(0,1)A-,B点在直线3y=-上,M点满足//MB OAu u u r u u u r,MA AB MB BA=u u u r u u u r u u u r u u u rg g,M点的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)P为C上动点,l为C在点P处的切线,求O点到l距离的最小值.有关目标函数的最值问题:【例】(2020·云南省云南师大附中高三)已知抛物线()2:20E y px p=>,过其焦点F 的直线与抛物线相交于()11,A x y 、()22,B x y 两点,满足124y y =-. (1)求抛物线E 的方程;(2)已知点C 的坐标为()2,0-,记直线CA 、CB 的斜率分别为1k ,2k ,求221211k k +的最小值. 【例】(2020广东高三模拟)已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线:20l x y --=的距离为322.设P 为直线l 上的点,过点P 作抛物线C 的两条切线,PA PB ,其中,A B 为切点.(Ⅰ)求抛物线C 的方程;(Ⅱ)当点()00,P x y 为直线l 上的定点时,求直线AB 的方程; (Ⅲ)当点P 在直线l 上移动时,求AF BF ⋅的最小值. 有关三角形面积的最值问题:【例】(2020·吉林省高三月考)已知椭圆()222:122x y C a a +=>的右焦点为F ,P 是椭圆C 上一点,PF x ⊥轴,22PF =. (1)求椭圆C 的标准方程;(2)若直线l 与椭圆C 交于A 、B 两点,线段AB 的中点为M ,O 为坐标原点,且2OM =,求AOB ∆面积的最大值.【例】(2020浙江省宁波高三)已知抛物线2:4C x y =,A 、B 、P 为抛物线C 上不同的三点.(1)当点P 的坐标为()2,1时,若直线AB 过抛物线焦点F 且斜率为1,求直线AP 、BP 斜率之积; (2)若ABP ∆为以P 为顶点的等腰直角三角形,求ABP ∆面积的最小值.【例】(2020·四川省高三二模)已知椭圆C 的中心在坐标原点O ,其短半轴长为1,一个焦点坐标为(1,0),点A 在椭圆C 上,点B 在直线2y =上,且OA OB ⊥. (1)证明:直线AB 与圆221x y +=相切;(2)设AB 与椭圆C 的另一个交点为D ,当AOB V 的面积最小时,求OD 的长.有关四边形面积的最值问题:【例】(2020·全国高三月考)设椭圆C 的方程为22221(0)x y a b a b+=>>,O 为坐标原点,A 为椭团的上顶点,(2,0)B 为其右焦点,D 是线段AB 的中点,且⊥OD AB . (1)求椭圆C 的方程;(2)过坐标原点且斜率为正数的直线交椭圆C 于P ,Q 两点,分别作PE x ⊥轴,QF x ⊥轴,垂足分别为E ,F ,连接QE ,PF 并延长交椭圆C 于点M ,N 两点.(ⅰ)判断PQM ∆的形状;(ⅱ)求四边形PMQN 面积的最大值.【例】(2020·江苏省高三开学考试)如图,F 是抛物线()220y px p =>的焦点,过点F 且与坐标轴不垂直的直线交抛物线于()11,A x y 、()22,B x y 两点,交抛物线的准线于点H ,其中10y >,124y y =-.过点H 作y 轴的垂线交抛物线于点P ,直线PF 交抛物线于点Q .(1)求p 的值;(2)求四边形APBQ 的面积S 的最小值. 【例】(2020·全国高三月考)在平面直角坐标系xOy中,椭圆2222:1x y E a b+=()0a b >>的四个顶点围成的四边形面积为2,圆22:1O x y +=经过椭圆E 的短轴端点.()1求椭圆E 的方程;()2过椭圆E 的右焦点作互相垂直的两条直线分别与椭圆E 相交于A ,C 和B ,D 四点,求四边形ABCD 面积的最小值.有关弦长的最值问题:【例】(2020·重庆高三月考)已知椭圆()2222:10x y C a b a b +=>>的离心率为22,且过点()2,1P .(Ⅰ)求椭圆C 的方程;(Ⅱ)过点P 作两直线1l 与2l 分别交椭圆C 于A 、B 两点,若直线1l 与2l 的斜率互为相反数,求AB 的最大值.【例】(2020·梅河口市第五中学高三)在平面直角坐标系xOy中,已知椭圆22:143x y C +=的左顶点为A ,右焦点为F ,P ,Q 为椭圆C 上两点,圆222:()0O x y r r +=>. (1)若PFx⊥轴,且满足直线AP 与圆O 相切,求圆O 的方程;(2)若圆O 的半径为2,点P ,Q 满足34OP OQ k k ⋅=-,求直线PQ 被圆O 截得弦长的最大值.最值问题与探索问题相结合:【例】已知抛物线24y x =的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D ,且有FA FD =,若直线l l //1,且1l 和C 有且只有一个公共点E 。

2020高考数学最后十天压轴题 专题3.2 以解析几何中与椭圆相关的综合问题为解答题(解析版)

2020高考数学最后十天压轴题 专题3.2 以解析几何中与椭圆相关的综合问题为解答题(解析版)
类型一 中点问题
典例 1
【山东省济南市
2018
届高三上学期期末考试】已知点 P 2,1 在椭圆 C :
x2 a2
y2 2
1a
0 上,
动点 A, B 都在椭圆上,且直线 AB 不经过原点 O ,直线 OP 经过弦 AB 的中点. (1)求椭圆 C 的方程和直线 AB 的斜率; (2)求 PAB 面积的最大值.
【名师指点】直线与直线的垂直关系,首先可以利用垂直关系得斜率之间的关系;其次可以利用向量数量 积为 0 处理,再可以联系圆中的有关知识,利用直径所对的圆周角为直角处理. 【 举 一 反 三 】【 山 东 省 恒 台 第 一 中 学 2019 届 高 三 上 学 期 诊 断 性 考 试 】 已 知 O 为 坐 标 原 点 , 椭 圆
专题三 压轴解答题
第二关 以解析几何中与椭圆相关的综合问题
【名师综述】纵观近三年的高考题,解析几何题目是每年必考题型,主要体现在解析几何知识内的综合及 与其它知识之间的综合,且椭圆考查的最多,,同时可能与平面向量、导数相交汇,每个题一般设置了两个 问,第(1)问一般考查曲线方程的求法,主要利用定义法与待定系数法求解,而第(2)问主要涉及最值 问题、定值问题、对称问题、轨迹问题、探索性问题、参数范围问题等.这类问题综合性大,解题时需根据 具体问题,灵活运用解析几何、平面几何、函数、不等式、三角知识,正确构造不等式,体现了解析几何 与其他数学知识的密切联系.
【名师指点】本题考查直线和椭圆、圆的综合运用,考查数形结合思想、转化与化归等思想的运用,中点
问题往往的处理办法有两种:一是点差法,设端点坐标带入曲线方程,作差结果涉及中点坐标和直线的斜
率;二是利用韦达定理,舍尔不求.
【举一反三】(2019·山东高考模拟(理))已知椭圆 :

2020高考数学冲刺核心考点 专题3 第2讲 立体几何(大题)

2020高考数学冲刺核心考点  专题3 第2讲 立体几何(大题)

例3 (2019·临沂模拟)如图,平面ABCD⊥平面ABE,四边形ABCD是边长为2的正 方形,AE=1,F为CE上的点,且BF⊥平面ACE. (1)求证:AE⊥平面BCE;
证明 ∵BF⊥平面ACE,AE⊂平面ACE, ∴BF⊥AE, ∵四边形ABCD是正方形, ∴BC⊥AB, 又平面ABCD⊥平面ABE,平面ABCD∩平面ABE=AB, ∴CB⊥平面ABE, ∵AE⊂平面ABE, ∴CB⊥AE, ∵BF∩BC=B,BF,BC⊂平面BCE, ∴AE⊥平面BCE.
由-A--1-B→1 =12A→B,得 B1(- 3,1,4).
因为
E
是棱
BB1
的点,所以

E-

23,32,2,
所以E→A1=

23,-32,2,-A--1-C→1 =(-2
3,0,0).
设n=(x,y,z)为平面EA1C1的法向量, n·-A--1-C→1 =-2 3x=0,
证明 连接AB1,AC1, ∵点Q为线段A1B的中点,∴A,Q,B1三点共线,且Q为AB1的中点, ∵点P为B1C1的中点,∴PQ∥AC1. 在直三棱柱ABC-A1B1C1中,AC⊥BC, ∴BC⊥平面ACC1A1, 又AC1⊂平面ACC1A1,∴BC⊥AC1. ∵AC=AA1,∴四边形ACC1A1为正方形,∴AC1⊥A1C, 又A1C,BC⊂平面A1BC,A1C∩BC=C, ∴AC1⊥平面A1BC,而PQ∥AC1, ∴PQ⊥平面A1BC.
得-3y-2
3z=0, 2x=0.
令 y=1,则 n=(0,1, 3). 又P→B=( 2,1,- 3),
设直线PB与平面PCD所成的角为θ.

sin
θ=|cos〈n,P→B〉|=

2020年高考数学(文)二轮专项复习专题03 三角函数与解三角形含答案

2020年高考数学(文)二轮专项复习专题03 三角函数与解三角形含答案

专题03 三角函数与解三角形§3-1 三角函数的概念【知识要点】1.角扩充到任意角:通过旋转和弧度制使得三角函数成为以实数为自变量的函数.2.弧度rad 以及度与弧度的互化:οοο3.57)π180(rad 1,π180;≈===r l α. 3.三角函数的定义:在平面直角坐标系中,任意角α 的顶点在原点,始边在x 轴正半轴上,终边上任意一点P (x ,y ),|OP |=r (r ≠0),则;cos ;sin r x r y ==αα⋅=xy αtan5.三角函数线:正弦线,余弦线OM ,正切线6.同角三角函数基本关系式:⋅==+αααααcos sin tan ,1cos sin 22 7.诱导公式:任意角α 的三角函数与角ααα±±-2π,π,等的三角函数之间的关系,可以统一为“k ·2π±α ”形式,记忆规律为“将α 看作锐角,符号看象限,(函数名)奇变偶不变”.【复习要求】1.会用弧度表示角的大小,能进行弧度制与角度制的互化;会表示终边相同的角;会象限角的表示方法. 2.根据三角函数定义,熟练掌握三角函数在各个象限中的符号,牢记特殊角的三角函数值, 3.会根据三角函数定义,求任意角的三个三角函数值. 4.理解并熟练掌握同角三角函数关系式和诱导公式. 【例题分析】例1 (1)已知角α 的终边经过点A (-1,-2),求sin α ,cos α ,tan α 的值;(2)设角α 的终边上一点),3(y P -,且1312sin =α,求y 的值和tan α . 解:(1)5||==OA r ,所以.2tan ,55cos ,55252sin ==-==-=-==x y r x r y ααα(2),13123sin ,3||22=+=+==y y y OP r α 得⎪⎩⎪⎨⎧=+>13123022y y y ,解得.3236tan ,6-=-===x y y α 【评析】利用三角函数的定义求某一角三角函数值应熟练掌握,同时应关注其中变量的符号.例2 (1)判断下列各式的符号:①sin330°cos(-260°)tan225° ②sin(-3)cos4 (2)已知cos θ <0且tan θ <0,那么角θ 是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 (3)已知α 是第二象限角,求角αα2,2的终边所处的位置.解:如图3-1-1,图3-1-2(1)①330°是第四象限角,sin330°<0;-260°是第二象限角,cos(-260°)<0;225°是第三象限角,tan225°>0;所以sin330°cos(-260°)tan225°>0.②-3是第三象限角,sin(-3)<0;5是第四象限角,cos5>0,所以sin(-3)cos5<0或:-3≈-3×57.3°=-171.9°,为第三象限角;5≈5×57.3°=286.5°,是第四象限角【评析】角的终边所处的象限可以通过在坐标系中逆时针、顺时针两个方向旋转进行判断,图3-1-1,图3-1-2两个坐标系应予以重视.(2)cos θ <0,所以角θ 终边在第二或第三象限或在x 轴负半轴上tan θ <0,所以角θ 终边在第二或第四象限中,所以角θ 终边在第二象限中,选B.【评析】角的终边在各个象限中时角的函数值的符号应熟练掌握,(3)分析:容易误认为2α是第一象限角,其错误原因为认为第二象限角的范围是),π,2π(α 是第二象限角,所以2k π+2π<α <2k π+π,(k ∈Z ),所以,2ππ2π4ππ+<<+k k )(Z ∈k 如下图3-1-3,可得2α是第一象限或第三象限角,又4k π+π<2α <4k π+2π,2α 是第三象限或第四象限角或终边落在y 轴负半轴的角.【评析】处理角的象限问题常用方法(1)利用旋转成角,结合图3-1-1,图3-1-2,从角度制和弧度制两个角度处理; (2)遇到弧度制问题也可以由)π180(rad 1=°≈57.3°化为角度处理; (3)在考虑角的终边位置时,应注意考虑终边在坐标轴上的情况. (4)对于象限角和轴上角的表示方法应很熟练. 如第一象限角:)(,2ππ2π2Z ∈+<<k k k α,注意防止2π0<<α的错误写法.例3 (1)已知tan α =3,且α 为第三象限角,求sin α ,cos α 的值; (2)已知31cos -=α,求sin α +tan α 的值;(3)已知tan α =-2,求值:①ααααcos sin cos sin 2-+;②sin 2α +sin α cos α .解:(1)因为α 为第三象限角,所以sin α <0,cos α <0⎪⎩⎪⎨⎧=+=1cos sin 3cos sin 22αααα,得到.1010cos 10103sin ⎪⎪⎩⎪⎪⎨⎧-=-=αα (2)因为031cos <-=α,且不等于-1,所以α 为第二或第三象限角, 当α 为第二象限角时,sin α >0,,22cos sin tan ,322cos 1sin 2-===-=ααααα 所以⋅-=+324tan sin αα 当α 为第三象限角时,sin α <0,,22cos sin tan ,322cos 1sin 2==-=--=ααααα 所以⋅=+324tan sin αα综上所述:当α 为第二象限角时,324tan sin -=+αα,当α 为第三象限角时,⋅=+324tan sin αα 【评析】已知一个角的某一个三角函数值,求其余的三角函数值的步骤:(1)先定所给角的范围:根据所给角的函数值的符号进行判断(2)利用同角三角函数的基本关系式,求其余的三角函数值(注意所求函数值的符号) (3)当角的范围不确定时,应对角的范围进行分类讨论(3)(法一):因为tan α =-2,所以.cos 2sin ,2cos sin αααα-=-= ①原式1cos 3cos 3cos cos 2cos cos 4=--=--+-=αααααα,②原式=(-2cos α )2+(-2cos α )cos α =2cos 2α , 因为⎩⎨⎧=+-=1cos sin cos 2sin 22αααα,得到51cos 2=α,所以⋅=+52cos sin sin 2ααα (法二):①原式,112141tan 1tan 21cos sin 1cos sin 2=--+-=-+=-+=αααααα②原式⋅=+-=++=++=5214241tan tan tan cos sin cos sin sin 22222αααααααα 【评析】已知一个角的正切值,求含正弦、余弦的齐次式的值:(1)可以利用αααcos sin tan =将切化弦,使得问题得以解决; (2)1的灵活运用,也可以利用sin 2α +cos 2α =1,αααcos sin tan =,将弦化为切.例4 求值:(1)tan2010°=______; (2))6π19sin(-=______; (3)⋅+---+-)2πcos()π3sin()2π3sin()πcos()π2sin(ααααα解:(1)tan2010°=tan(1800°+210°)=tan210°=tan(180°+30°)=3330tan =ο (2)216πsin )6ππsin()6ππ3sin(619πsin )6π19sin(==+-=+-=-=-或:216πsin )6ππsin()6ππ3sin()6π19sin(==--=--=-【评析】“将α 看做锐角,符号看象限,(函数名)奇变偶不变”,6π2π26ππ-⨯-=--,可以看出是2π的-2倍(偶数倍),借助图3-1-2看出6ππ--为第二象限角,正弦值为正.(3)原式)2πcos()πsin()]2π(πsin[)cos (sin ααααα---+--=⋅⋅⋅⋅-=-=--=αααααααααsin 1sin cos cos sin sin )2πsin(cos ·sin【分析】αα-⨯=-2π32π3,将α 看做锐角,借助图3-1-2看出α-2π3为第三象限角,正弦值为负,2π的3倍(奇数倍),改变函数名,变为余弦,所以可得ααcos )2π3sin(-=-,同理可得ααsin )2πcos(=+-,所以原式αααααααcsc sin 1sin sin cos )cos (sin -=-=---=⋅⋅⋅.【评析】诱导公式重在理解它的本质规律,对于“将α 看做锐角,符号看象限,(函数名)奇变偶不变”要灵活运用,否则容易陷入公式的包围,给诱导公式的应用带来麻烦.例5 已知角α 的终边经过点)5πsin ,5πcos (-,则α 的值为( ) A .5π- B .5π4 C )(,π5πZ ∈+-k k D .)(,π25π4Z ∈+k k解:因为05πsin ,05πcos >>,所以点)5πsin ,5πcos (-在第二象限中,由三角函数定义得,5πtan 5πcos 5πsin tan -=-==x y α,因为角α 的终边在第二象限, 所以)π25π4tan(5π4tan )5ππtan(tan k +==-=α,所以,)(,π25π4Z ∈+=k k α,选D .例6 化简下列各式:(1)若θ 为第四象限角,化简θθ2sin 1tan - (2)化简θθ2tan 1cos +(3)化简)4πcos(4sin 21--解:(1)原式=|cos |cos sin |cos |tan cos tan 2θθθθθθθ===, 因为θ 为第四象限角,所以cos θ >0,原式=θθθθsin cos cos sin ==⋅,(2)原式=⋅==+=+=|cos |cos cos 1cos cos sin cos cos cos sin 1cos 222222θθθθθθθθθθθ当θ 为第二、三象限角或终边在x 轴负半轴上时,cos θ <0,所以原式1cos cos -=-=θθ,当θ 为第一、四象限角或终边在x 轴正半轴上时,cos θ >0,所以原式1cos cos ==θθ.(3)原式|4cos 4sin |)4cos 4(sin 4cos 4sin 212+=+=+=.4弧度属于第三象限角,所以sin4<0,cos4<0, 所以原式=-(sin4+cos4)=-sin4-cos4.【评析】利用同角三角函数关系式化简的基本原则和方法:(1)函数名称有弦有切:切化弦;(2)分式化简:分式化整式;(3)根式化简:无理化有理(被开方式凑平方),运用||2x x =,注意对符号的分析讨论;(4)注意公式(sin α ±cos α )2=1±2sin α cos α =1±sin2α 的应用.例7 扇形的周长为定值L ,问它的圆心角θ (0<θ <π)取何值时,扇形的面积S 最大?并求出最大值. 解:设扇形的半径为)20(Lr r <<,则周长L =r ·θ +2r (0<θ <π) 所以44214421)2(2121ππ2,22222222++=++=+==⋅=+=θθθθθθθθθθL L L r r S L r . 因为844244=+⨯≥++θθθθ,当且仅当θθ4=,即θ =2∈(0,π)时等号成立.此时16812122L L S =⨯≤,所以,当θ =2时,S 的最大值为162L .练习3-1一、选择题1.已知32cos -=α,角α 终边上一点P (-2,t ),则t 的值为( ) A .5 B .5± C .55 D .55±2.“tan α =1”是“Z ∈+=k k ,4ππ2α”的( )A .充分而不必要条件B .必要不而充分条件C .充要条件D .既不充分也不必要条件3.已知点P (sin α -cos α ,tan α )在第一象限,则在[0,2π]上角α 的取值范围是( )A .)4π5,π()4π3,2π(Y B .)4π5,π()2π,4π(YC .)2π3,4π5()4π3,2π(YD .)π,4π3()2π,4π(Y4.化简=+οο170cos 10sin 21( ) A .sin10°+cos10° B .sin10°-cos10° C .cos10°-sin10°D .-sin10°-cos10°二、填空题5.已知角α ,β 满足关系2π0;<<<βα,则α -β 的取值范围是______. 6.扇形的周长为16,圆心角为2弧度,则扇形的面积为______.7.若2π3π,sin <<=ααm ,则tan(π-α )=______. 8.已知:2π4π,81cos sin <<=ααα,则cos α -sin α =______.三、解答题9.已知tan α =-2,且cos(π+α )<0,求(1)sin α +cos α 的值 (2)θθ2cos sin 22--的值10.已知21tan =α,求值: (1)ααααcos sin cos 2sin -+; (2)cos 2α -2sin α cos α .11.化简ααααααααtan 1tan cos sin ]π)1cos[(]π)1sin[()πcos()πsin(2+++++++-⋅k k k k§3-2 三角变换【知识要点】1.两角和与差的正弦、余弦、正切公式sin(α +β )=sin α cos β +cos α sin β ;sin(α -β )=sin α cos β -cos α sin β ; cos(α +β )=cos α cos β -sin α sin β ;cos(α -β )=cos α cos β +sin α sin β ;⋅+-=--+=+βαβαβαβαβαβαtan tan 1tan tan )tan(;tan tan 1tan tan )tan(2.正弦、余弦、正切的二倍角公式sin2α =2sin α cos α :cos2α =cos 2α -sin 2α =1-2sin 2α =2cos 2α -1;⋅-=ααα2tan 1tan 22tan 【复习要求】1.牢记两角和、差、倍的正弦、余弦、正切公式,并熟练应用; 2.掌握三角变换的通法和一般规律; 3.熟练掌握三角函数求值问题. 【例题分析】例1 (1)求值sin75°=______;(2)设54sin ),π,2π(=∈αα,则=+)4πcos(α______; (3)已知角2α的终边经过点(-1,-2),则)4πtan(+α的值为______;(4)求值=+-οο15tan 115tan 1______.解:(1)=︒︒+︒︒=︒+︒=︒30sin 45cos 30cos 45sin )3045sin(75sin 222322+⨯21⨯426+=. (2)因为53cos ,54sin ),π,2π(-==∈ααα所以, 1027)5453(22sin 22cos 22)4πcos(-=--=-=+ααα(3)由三角函数定义得,342tan 12tan2tan ,22tan2-=-==αααα, 所以71tan 1tan 1tan 4πtan 14πtantan )4πtan(-=-+=-+=+ααααα. (4)3330tan )1545tan(15tan 45tan 115tan 45tan 15tan 115tan 1=︒=︒-︒=︒︒+︒-︒=︒+︒-⋅==-=+-=+-3330tan )1545tan(15tan 45tan 115tan 45tan 15tan 115tan 1οοοοοοοοo【评析】两角的和、差、二倍等基本三角公式应该熟练掌握,灵活运用,这是处理三角问题尤其是三角变换的基础和核心.注意αααtan 1tan 1)4πtan(-+=+和αααtan 1tan 1)4πtan(+-=-运用. 例2 求值: (1)=-12πsin 12πcos3______; (2)cos43°cos77°+sin43°cos167°=______; (3)=++οοο37tan 23tan 337tan 23tan o______. 解:(1)原式)12πsin 3πcos 12πcos 3π(sin 2)12πsin 2112πcos 23(2-=-= 24πsin 2)12π3πsin(2==-=.【评析】辅助角公式:,cos ),sin(cos sin 2222ba a xb a x b x a +=++=+ϕϕ⋅+=22sin b a b ϕ应熟练掌握,另外本题还可变形为=-)12πsin 2112πcos 23(2 -12πcos 6π(cos 2.24πcos 2)12π6πcos(2)12πsin 6πsin ==+=(2)分析所给的角有如下关系:77°+43°=120°,167°=90°+77°,原式=cos43°cos77°+sin43°cos(90°+77°)=cos43°cos77°-sin43°sin77°=cos(43°+77°)=cos120°=⋅-21 (3)分析所给的角有如下关系:37°+23°=60°,函数名均为正切,而且出现两角正切的和tan a +tan β 与两角正切的积tan α tan β ,所有均指向公式⋅-+=+βαβαβαtan tan 1tan tan )tan(∵,337tan 23tan 137tan 23tan )3723tan(60tan =︒︒-︒+︒=+=οοο∴,37tan 23tan 3337tan 23tan οοοο-=+∴337tan 23tan 337tan 23tan =++οοοo .【评析】三角变换的一般规律:看角的关系、看函数名称、看运算结构.以上题目是给角求值问题,应首看角的关系:先从所给角的关系入手,观察所给角的和、差、倍是否为特殊角,然后看包含的函数名称,以及所给三角式的结构,结合三角公式,找到题目的突破口.公式βαβαβαtan tan 1tan tan )tan(-+=+的变形tan α+tan β =tan(α +β )(1-tan α tan β )应予以灵活运用.例3 41)tan(,52)tan(=-=+βαβα,则tan2α =______; (2)已知1312)4πsin(,53)sin(),π,4π3(,=--=+∈ββαβα,求)4πcos(+α的值.解:(1)分析所给的两个已知角α +β ,α -β 和所求的角2α 之间有关系(α +β )+(α -β )=2α ,=-++=)]()tan[(2tan ββa a a 1813415214152)tan()tan(1)tan()tan(=⨯-+=-+--++βαβαβαβα,(2)∵)π,4π3(,∈βα,∴)43,2π(4π),π2,23π(π∈-∈+ββα,又∵53)sin(-=+βα,∴54)cos(=+βα;∵1312)4πsin(=-β,∴135)4πcos(-=-β.)4πsin()sin()4πcos()cos()]4π()cos[()4πcos(-++-+=--+=+ββαββαββαα65561312)53()135(54-=⨯-+-⨯=. 【评析】此类题目重在考察所给已知角与所求角之间的运算关系,主要是指看两角之间的和、差、倍的关系,如αββαααββα2)(,4π)4π()(,+-=+=--+++=)(βα)(βα-等,找到它们的关系可以简化运算,同时在求三角函数值时应关注函数值的符号.例4 如图,在平面直角坐标系xOy 中,以Ox 轴为始边做两个锐角α ,β ,它们的终边分别与单位圆相交于A ,B 两点,已知A ,B 的横坐标分别为552,102.(Ⅰ)求tan(α +β )的值; (Ⅱ)求α +2β 的值.解:由三角函数定义可得552cos ,102cos ==βα, 又因为α ,β 为锐角,所以55sin ,1027sin ==βα,因此tan α =7,21tan =β (Ⅰ)3tan tan 1tan tan )tan(-=-+=+βαβαβα;(Ⅱ) 34tan 1tan 22tan 2=-=βββ,所以12tan tan 12tan tan )2tan(-=-+=+βαβαβα, ∵α ,β 为锐角,∴4π32,2π320=+∴<+<βαβα 【评析】将三角函数的定义、两角和的正切、二倍角的正切公式结合在一起进行考查,要求基础知识掌握牢固,灵活运用;根据三角函数值求角,注意所求角的取值范围.例5 化简(1)12cos2sin22sin 22cos 2-+αααα;(2).2sin 3)4πcos()4πcos(2x x x +-+解:(1)原式⋅+-=--=--=-=)4πsin(2sin cos cos sin sin cos cos sin 2cos 22αααααααααα (2)法一:原式x x x x x 2sin 3)sin 22cos 22)(sin 22cos 22(2++-= x x x 2sin 3sin cos 22+-=⋅+=+=+=)6π2sin(2)2sin 232cos 21(22sin 32cos x x x x x法二:,2π)4π()4π(=--+x x 原式x x x 2sin 3)4πcos()]4π(2πcos[2+--+=x x x x x 2sin 3)2π2sin(2sin 3)4πcos()4πsin(2+--=+---=⋅+=+=)6π2sin(22sin 32cos x x x【评析】在进行三角变换时,应从三个角度:角的关系、函数的名称、所给运算式的结构全面入手,注意二倍角的变式(降幂升角)和辅助角公式的应用,此类变换是处理三角问题的基础.例6 (1)已知α 为第二象限角,且415sin =α,求12cos 2sin )4πsin(+++ααα的值. (2)已知323cos sin 32cos 62-=-x x x ,求sin2x 的值. 解:(1)因为α 为第二象限角,且415sin =α,所以41cos -=α, 原式.2cos 42)cos (sin cos 2)cos (sin 221)1cos 2(cos sin 2)cos (sin 222-==++=+-++=ααααααααααα 【评析】此类题目为给值求值问题,从分析已知和所求的三角式关系入手,如角的关系,另一个特征是往往先对所求的三角式进行整理化简,可降低运算量.(2)因为32sin 32cos 32sin 322cos 16+-=-+⋅x x x x3233)6π2cos(323)2sin 212cos 23(32-=++=+-=x x x 所以0)6π2sin(,1)6π2cos(=+-=+x x 216πsin )6π2cos(6πcos )6π2sin(]6π)6π2sin[(2sin =+-+=-+=x x x x【评析】在进行三角变换时,应从三个角度:角的关系、函数的名称、所给运算式的结构全面入手,注意二倍角的变式(降幂升角)22cos 1sin ,22cos 1cos 22αααα-=+=和辅助角公式的应用,此类变换是处理三角问题的基础,因为处理三角函数图象性质问题时往往先进行三角变换.练习3-2一、选择题1.已知53sin ),π,2π(=∈αα,则)4πtan(+α等于( ) A .71 B .7 C .71-D .-72.cos24°cos54°-sin24°cos144°=( ) A .23-B .21 C .23 D .21-3.=-o30sin 1( ) A .sin15°-cos15° B .sin15°+cos15° C .-sin15°-cos15° D .cos15°-sin15°4.若22)4πsin(2cos -=-αα,则cos α +sin α 的值为( )A .27-B .21-C .21 D .27 二、填空题 5.若53)2πsin(=+θ,则cos2θ =______. 6.=-οο10cos 310sin 1______.7.若53)cos(,51)cos(=-=+βαβα,则tan α tan β =______. 8.已知31tan -=α,则=+-ααα2cos 1cos 2sin 2______. 三、解答题 9.证明⋅=++2tan cos 1cos .2cos 12sin ααααα10.已知α 为第四象限角,且54sin -=α,求ααcos )4π2sin(21--的值.11.已知α 为第三象限角,且33cos sin =-αα. (1)求sin α +cos α 的值;(2)求αααααcos 82cos 112cos2sin82sin 522-++的值.§3-3 三角函数【知识要点】12.三角函数图象是研究三角函数的有效工具,应熟练掌握三角函数的基本作图方法.会用“五点法”画正弦函数、余弦函数和函数y =A sin(ω x +ϕ)(A >0,ω >0)的简图.3.三角函数是描述周期函数的重要函数模型,通过三角函数体会函数的周期性.函数y =A sin(ω x +ϕ)(ω ≠0)的最小正周期:||π2ω=T ;y =A tan(ω x +ϕ)(ω ≠0)的最小正周期:||πω=T .同时应明确三角函数与周期函数是两个不同的概念,带三角函数符号的函数不一定是周期函数,周期函数不一定带三角函数符号.【复习要求】1.掌握三角函数y =sin x ,y =cos x ,y =tan x 的图象性质:定义域、值域(最值)、单调性、周期性、奇偶性、对称性等.2.会用五点法画出函数y =sin x ,y =cos x ,y =A sin(ω x +ϕ)(A >0,ω >0)的简图,掌握图象的变换方法,并能解决相关图象性质的问题.3.本节内容应与三角恒等变换相结合,通过变换,整理出三角函数的解析式,注意使用换元法,转化为最基本的三个三角函数y =sin x ,y =cos x ,y =tan x ,结合三角函数图象,综合考察三角函数性质 【例题分析】例1 求下列函数的定义域(1)xxy cos 2cos 1+=;(2)x y 2sin =.解:(1)cos x ≠0,定义域为},2ππ|{Z ∈+≠k k x x (2)sin2x ≥0,由正弦函数y =sin x 图象(或利用在各象限中和轴上角的正弦函数值的符号可得终边在第一二象限,x 轴,y 轴正半轴上) 可得2k π≤2x ≤2k π+π, 定义域为},2πππ|{Z ∈+≤≤k k x k x例2 求下列函数的最小正周期 (1))23πsin(x y -=;(2))4π2πtan(+=x y ;x y 2cos )3(2=; (4)y =2sin 2x +2sin x cos x ;(5)y =|sin x |.解:(1)π|2|π2=-=T .(2)22ππ==T .(3)214cos 2124cos 1+=+=x x y ,所以2π=T .(4)1)4π2sin(212cos 2sin 2sin 22cos 12+-=+-=+-⨯=x x x x x y ,所以T =π.(5)y =|sin x |的图象为下图,可得,T =π.【评析】(1)求三角函数的周期时,通常利用二倍角公式(降幂升角)和辅助角公式先将函数解析式进行化简,然后用||π2ω=T (正余弦)或||πω=T (正切)求最小正周期. (2)对于含绝对值的三角函数周期问题,可通过函数图象来解决周期问题.例3 (1)已知函数f (x )=(1+cos2x )sin 2x ,x ∈R ,则f (x )是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为2π的奇函数 D .最小正周期为2π的偶函数 (2)若函数f (x )=2sin(2x +ϕ)为R 上的奇函数,则ϕ=______. (3)函数)2π2π(lncos <<-=x x y 的图象( )解:(1),,44cos 12sin 21)cos sin 2(21sin cos 2)(2222R ∈-====x xx x x x x x f 周期为2π,偶函数,选D (2)f (x )为奇函数,f (-x )=-f (x ),所以2sin(-2x +ϕ)=-2sin(2x +ϕ)对x ∈R 恒成立,即sin ϕcos2x -cos ϕsin2x =-sin2x cos ϕ-cos2x sin ϕ, 所以2sin ϕcos2x =0对x ∈R 恒成立,即sin ϕ=0,所以ϕ=k π,k ∈Z .【评析】三角函数的奇偶性问题可以通过奇偶性定义以及与诱导公式结合加以解决.如在本题(2)中除了使用奇偶性的定义之外,还可以从公式sin(x +π)=-sin x ,sin(x +2π)=sin x 得到当ϕ=2k π+π或ϕ=2k π+π,k ∈Z ,即ϕ=k π,k ∈Z 时,f (x )=2sin(2x +ϕ)可以化为f (x )=sin x 或f (x )=-sin x ,f (x )为奇函数.(3)分析:首先考虑奇偶性,f (-x )=lncos(-x )=lncos x =f (x ),为偶函数,排除掉B ,D 选项 考虑(0,2π)上的函数值,因为0<cos x <1,所以lncos x <0,应选A 【评析】处理函数图象,多从函数的定义域,值域,奇偶性,单调性等方面综合考虑.例4 求下列函数的单调增区间(1))3π21cos(-=x y ;(2) ]0,π[),6π2sin(2-∈+=x x y ; (3) x x y 2sin 32cos -=;(4))23πsin(2x y -=解:(1)y =cos x 的增区间为[2k π+π,2k π+2π],k ∈Z ,由π2π23π21ππ2+≤-≤+k x k 可得3π14π43π8π4+≤≤+k x k )3π21cos(-=x y 的增区间为Z ∈++k k k ],3π14π4,3π8π4[,(2)先求出函数)6π2sin(2+=x y 的增区间Z ∈+-k k k ],6ππ,3ππ[然后与区间[-π,0]取交集得到该函数的增区间为]6π5,π[--和]0,3π[-,(3))3π2cos(2)2sin 232cos 21(2+=-=x x x y ,转化为问题(1),增区间为 Z ∈++k k k ],6π5π,3ππ[(4)原函数变为)3π2sin(2--=x y ,需求函数)3π2sin(-=x y 的减区间, 2π3π23π22ππ2+≤-≤+k x k ,得12π11π12π5π+≤≤+k x k , )23πsin(2x y -=的增区间为.],12π11π,12π5π[Z ∈++k k k【评析】处理形如y =A sin(ω x +ϕ)+k ,(ω <0)的函数单调性时,可以利用诱导公式将x 的分数化正,然后再求相应的单调区间.求三角函数单调区间的一般方法:(1)利用三角变换将解析式化为只含有一个函数的解析式,利用换元法转化到基本三角函数的单调性问题. (2)对于给定区间上的单调性问题,可采用问题(2)中的方法,求出所有的单调增区间,然后与给定的区间取交集即可.例5 求下列函数的值域(1)函数1)6π21cos(2++-=x y 的最大值以及此时x 的取值集合(2))3π2,6π(,sin 2-∈=x x y (3) )3π,2π(),3π2cos(2-∈+=x x y (4)y =cos2x -2sin x解:(1)当Z ∈+=+k k x ,ππ26π21时,1)6π21cos(-=+x ,函数的最大值为3,此时x 的取值集合为},3π5π4|{Z ∈+=k k x x(2)结合正弦函数图象得:当)3π2,6π(-∈x 时,1sin 21≤<-x该函数的值域为(-1,2](3)分析:利用换元法,转化为题(2)的形式.)6π,3π(),3π2cos(2-∈+=x x y ,,3π23π23π),6π,3π(<+<-∴-∈x x Θ设3π2+=x t ,则原函数变为3π23π,cos 2<<-=t t y ,结合余弦函数图象得:1cos 21≤<-t ,所以函数的值域为(-1,2].(4)y =-2sin 2x -2sin x +1,设t =sin x ,则函数变为y =-2t 2-2t +1,t ∈[-1,1], 因为⋅++-=23)21(22t y 结合二次函数图象得,当t =1时,函数最小值为-3,当21-=t 时,函数最大值为23,所以函数的值域为].23,3[-【评析】处理三角函数值域(最值)的常用方法: (1)转化为只含有一个三角函数名的形式,如y =A sin(ω x +ϕ)+k ,y =A cos(ω x +ϕ)+k ,y =A tan(ω x +ϕ)+k 等,利用换元法,结合三角函数图象进行处理. (2)转化为二次型:如A sin 2x +B sin x +C ,A cos 2x +B cos x +C 形式,结合一元二次函数的图象性质求值域. 例6 函数y =sin(ω x +ϕ)的图象(部分)如图所示,则ω 和ϕ的取值是( )A .3π,1==ϕω B .3π,1-==ϕω C .6π,21==ϕω D .6π,21-==ϕω解:π)3π(3π24=--=T ,即ωπ2π4==T ,所以21=ω, 当3π-=x 时,0])3π(21sin[=+-⨯ω,所以Z ∈+=k k ,6ππω,选C例7 (1)将函数x y 21sin =的图象如何变换可得到函数)6π21sin(+=x y 的图象(2)已知函数y =sin x 的图象,将它怎样变换,可得到函数)3π2sin(2-=x y 的图象解:(1)x y 21sin =−−−−−−−−→−个单位图象向左平移3π)6π21sin()3π(21sin +=+=x x y (2)法一:y =sin x −−−−−−−−→−个单位图象向右平移3π)3πsin(-=x y −−−−−−−−−−−−−−−→−倍横坐标变为原来图象上点的纵坐标不变21,)3π2sin(-=x y−−−−−−−−−−−−−−−→−倍纵坐标变为原来图象上点的横坐标不变2,)3π2sin(2-=x y法二:y =sin x −−−−−−−−−−−−−−→−倍横坐标变为原来图象上点的纵坐标不变21,x y 2sin = −−−−−−−−→−个单位图象向右平移6π)6π(2sin -=x y−−−−−−−−−−−−−−−→−倍纵坐标变为原来图象上点的横坐标不变2,)3π2sin(2-=x y【评析】由y =sin x 的图象变换为y =A cos(ω x +ϕ)(ω >0)的图象时,特别要注意伸缩变换和横向平移的先后顺序不同,其横向平移过程中左右平移的距离不同.例8 (1)函数)3π21sin(2-=x y 的一条对称轴方程为( ) A .3π4-=x B .6π5-=x C .3π-=x D .3π2=x (2)函数)3π2cos(-=x y 的对称轴方程和对称中心的坐标解:(1)法一:)3π21sin(2-=x y 的对称轴为Z ∈+=-k k x ,2ππ3π21, 即Z ∈+=k k x ,3π5π2,当k =-1时,3π-=x ,选C法二:将四个选项依次代入)3π21sin(2-=x y 中,寻找使得函数取得最小值或最大值的选项当3π-=x 时,22πsin 2)3π6πsin(2-=-=--=y ,选C (2) )3π2cos(-=x y 的对称轴为Z ∈=-k k x ,π3π2,即Z ∈+=k k x ,6π2π对称中心:,,2ππ3π2Z ∈+=-k k x 此时Z ∈+=k k x ,12π52π所以对称中心的坐标为Z ∈+k k ),0,12π52π(【评析】正余弦函数的对称轴经过它的函数图象的最高点或最低点,对称中心是正余弦函数图象与x 轴的交点,处理选择题时可以灵活运用.例9 已知函数)0(),2πsin(sin 3,sin )(2>++=ωωωωx x x x f 的最小正周期为π. (1)求ω 的值. (2)求f (x )在区间]3π2,0[上的值域. (3)画出函数y =2f (x )-1在一个周期[0,π]上的简图.(4)若直线y =a 与(3)中图象有2个不同的交点,求实数a 的取值范围. 解:(1)x x xx f ωωωcos sin 322cos 1)(+-=21)6π2sin(212cos 21sin 23+-=+-=x x x ωωω 因为函数f (x )的最小正周期为π,且ω >0,所以π2π2=ω,解得ω =1 (2)由(1)得21)6π2sin()(+-=x x f ,因为3π20≤≤x ,所以6π76π26π≤-≤-x ,结合正弦函数图象,得1)6π2sin(21≤-≤-x因此2321)6π2sin(0≤+-≤x ,即f (x )的取值范围为]23,0[(3)由(1)得)6π2sin(21)(2-=-=x x f y(4)由图象可得,-2<a <2且a ≠-1.【评析】本节内容应与三角恒等变换相结合,利用降幂升角公式和辅助角公式等三角公式化简三角函数解析式,整理、变形为只含有一个函数名的解析式,如y =A sin(ω x +ϕ)(ω >0)或y =A cos(ω x +ϕ)(ω >0)的形式,利用换元法,结合y =sin x 、y =cos x 的图象,再研究它的各种性质,如求函数的周期,单调性,值域等问题,这是处理三角函数问题的基本方法.练习3-3一、选择题1.设函数),2π2sin()(-=x x f x ∈R ,则f (x )是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为2π的奇函数 D .最小正周期为2π的偶函数 2.把函数y =sin x (x ∈R )的图象上所有的点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的21倍(纵坐标不变),得到的图象所表示的函数是( ) A .R ∈-=x x y ),3π2sin( B .R ∈+=x x y ),6π2sin(C .R ∈+=x x y ),3π2sin(D .R ∈+=x x y ),32π2sin(3.函数)3π2sin(+=x y 的图象( )A .关于点(3π,0)对称B .关于直线4π=x 对称C .关于点(4π,0)对称D .关于直线3π=x 对称4.函数y =tan x +sin x -|tan x -sin x |在区间)2π3,2π(内的图象大致是( )二、填空题5.函数)2πsin(sin 3)(x x x f ++=的最大值是______. 6.函数)]1(2πcos[)2πcos(-=x x y 的最小正周期为______.7.函数)2π0,0)(sin(<<>+=ϕωϕωx y 的图象的一部分如图所示,则该函数的解析式为y =______.8.函数y =cos2x +cos x 的值域为______. 三、解答题9.已知函数f (x )=2cos x (sin x -cos x )+1,x ∈R . (Ⅰ)求函数f (x )的对称轴的方程; (Ⅱ)求函数f (x )的单调减区间. 10.已知函数.34sin 324cos 4sin2)(2+-=xx x x f (Ⅰ)求函数f (x )的最小正周期及最值; (Ⅱ)令)3π()(+=x f x g ,判断函数g (x )的奇偶性,并说明理由.11.已知R ∈>++=a a x x x x f ,0(,cos sin 32cos 2)(2ωωωω,a 为常数),且满足条件f (x 1)=f (x 2)=0的|x 1-x 2|的最小值为2π. (Ⅰ)求ω 的值; (Ⅱ)若f (x )在]3π,6π[-上的最大值与最小值之和为3,求a 的值.§3-4 解三角形【知识要点】1.三角形内角和为A +B +C =πA CB -=+π,2π222=++C B A ,注意与诱导公式相结合的问题. 2.正弦定理和余弦定理正弦定理:r CcB b A a 2sin sin sin ===,(r 为△ABC 外接圆的半径). 余弦定理:abc b a C ac b c a B bc a c b A 2cos ;2cos ;2cos 222222222-+=-+=-+=&. a 2=b 2+c 2-2bc cos A ;b 2=a 2+c 2-2ac cos B ;c 2=a 2+b 2-2ab cos C .3.在解三角形中注意三角形面积公式的运用:21=∆ABC S ×底×高.21=∆ABC S ab sin .sin 21sin 21B ac A bc C == 4.解三角形中注意进行“边角转化”,往往结合三角变换处理问题.【复习要求】1.会正确运用正余弦定理进行边角的相互转化;2.会熟练运用正弦定理和余弦定理解决三角形中的求角,求边,求面积问题. 【例题分析】例1 (1)在△ABC 中,3=a ,b =1,B =30°,则角A 等于( )A .60°B .30°C .120°D .60°或120° (2)△ABC 中,内角A ,B ,C 所对的边分别为a 、b 、c ,满足等式(a +b )2=ab +c 2,则角C 的大小为______. (3)在△ABC 中,若sin A ∶sin B ∶sin C =5∶7∶8,则∠B 的大小是______. (4)在△ABC 中,若31tan =A ,C =150°,BC =1,则AB =______. 解:(1)∵,23sin ,30sin 1sin 3,sin sin =∴=∴=A A B b A a ο又∵a >b ,∴A >B =30°,∴A =60°或120°,(2)∵(a +b )2=ab +c 2,∴a 2+b 2-c 2=-ab ,∴,120,2122cos 222ο=∴-=-=-+=C ab ab ab c b a C (3)∵CcB b A a sin sin sin ==,sin A ∶sin B ∶sin C =5∶7∶8. ∴a ∶b ∶c =5∶7∶8,∴21852*******cos 222=⨯⨯-+=-+=ac b c a B ,∴B =60°. (4)分析:已知条件为两角和一条对边,求另一条对边,考虑使用正弦定理,借助于31tan =A 求sin A 210,150sin 10101,sin sin ,1010sin ,31tan =∴=∴==∴=AB AB B AC A BC A A οΘΘ. 【评析】对于正弦定理和余弦定理应熟练掌握,应清楚它们各自的使用条件,做到合理地选择定理解决问题.例2 (1)在△ABC 中,a cos A =b cos B ,则△ABC 一定是( ) A .直角三角形 B .等边三角形 C .等腰三角形 D .等腰三角形或直角三角形 (2)在△ABC 中,2sin B ·sin C =1+cos A ,则△ABC 的形状为( ) A .直角三角形 B .等边三角形 C .等腰三角形 D .等腰直角三角形解:(1)法一:BbA a sin sin =Θ,a cos A =b cos B , ∴sin A cos A =sin B cos B ,∴sin2A =sin2B ,∵2A ,2B ∈(0,2π),∴2A =2B 或2A +2B =π,∴A =B 或2π=+B A ,选D . 法二:∵a cos A =b cos B ,∴acb c a b bc a c b a 2)(2)(222222-+=-+,整理得(a 2-b 2)(a 2+b 2-c 2)=0.所以:a =b 或a 2+b 2=c 2,选D .(2)∵2sin B ·sin C =1+cos A ,cos(B +C )=cos(π-A )=-cos A , ∴2sin B ·sin C =1-(cos B cos C -sin B sin C ), ∴cos B cos C +sin B ·sin C =1, ∴cos(B -C )=1,∵B ,C ∈(0,π),∴B -C ∈(-π,π), ∴B -C =0,∴B =C ,选C .【评析】判断三角形形状,可以从两个角度考虑(1)多通过正弦定理将边的关系转化为角的关系,进而判断三角形形状,(2)多通过余弦定理将角的关系转化为边的关系,进而判断三角形形状,通常情况下,以将边的关系转化为角的关系为主要方向,特别需要关注三角形内角和结合诱导公式带给我们的角的之间的转化.例3 已知△ABC 的周长为12+,且sin A +sin B =2sin C (1)求边AB 的长;(2)若△ABC 的面积为C sin 61,求角C 的度数. 解:(1)由题意及正弦定理,得⎪⎩⎪⎨⎧=++=++ABAC BC AC BC AB 212,解得AB =1. (2)由△ABC 的面积C C AC BC S sin 61sin 21=⋅=,得31=⋅AC BC ,因为2=+AC BC ,所以(BC +AC )2=BC 2+AC 2+2AC ·BC =2,可得3422=+AC BC ,由余弦定理,得212cos 222=-+=⋅BC AC AB BC AC C , 所以C =60°.例4 在△ABC 中,∠A 、∠B 、∠C 所对的边长分别为a 、b 、c ,设a 、b 、c 满足条件b 2+c 2-bc =a 2和b c =321+,求∠A 和tan B 的值. 解(1)由已知和余弦定理得212cos 222=-+=bc a c b A ,所以∠A =60°. (2)分析:所给的条件是边的关系,所求的问题为角,可考虑将利用正弦定理将边的关系转化为角的关系.在△ABC 中,sin C =sin(A +B )=sin(60°+B ),因为BBB B B BC b c sin sin 60cos cos 60sin sin )60sin(sin sin οοο+⋅=+==.32121tan 123+=+=B所以⋅=21tan B 【评析】体现了将已知条件(边321+==b c )向所求问题(角tan B →sin a ,cos α )转化,充分利用了正弦定理和三角形内角关系实现转化过程.例5 在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,3π=C . (Ⅰ)若△ABC 的面积等于3,求a ,b ;(Ⅱ)若sin C +sin(B -A )=2sin2A ,求△ABC 的面积.解:(Ⅰ)由余弦定理abc b a C 2cos 222-+=及已知条件得,a 2+b 2-ab =4,又因为△ABC 的面积等于3,所以3sin 21=C ab ,得ab =4.联立方程组⎩⎨⎧==-+,4,422ab ab b a 解得a =2,b =2.(Ⅱ)由题意得sin(B +A )+sin(B -A )=4sin A cos A ,(sin B cos A +cos B sin A )+(sin B cos A -cos B sin A )=4sin A cos A , 即sin B cos A =2sin A cos A , 当cos A =0时,332,334,6π,2π====b a B A ,当cos A ≠0时,得sin B =2sin A ,由正弦定理得b =2a ,联立方程组⎩⎨⎧==-+,2,422a b ab b a 解得334,332==b a . 所以△ABC 的面积332sin 21==C ab S .【评析】以上两例题主要考查利用正弦定理、余弦定理来确定三角形边、角关系等基础知识和基本运算能力.以及三角形面积公式B ac A bc C ab S ABC sin 21sin 21sin 21===∆的运用.同时应注意从题目中提炼未知与已知的关系,合理选择定理公式,综合运用正弦定理和余弦定理实现边角之间的转化.例6 如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D ,现测得∠BCD =α ,∠BDC =β ,CD =s ,并在点C 测得塔顶A 的仰角为θ ,求塔高AB .解:在△BCD 中,∠CBD =π-α -β . 由正弦定理得.sin sin CBDCDBDC BC ∠=∠所以)sin(sin sin sin βαβ+=∠∠=⋅s CBD BDC CD BC .在Rt △ABC 中,⋅+=∠=⋅)sin(sin tan tan βαβθs ACB BC AB例7 已知在△ABC 中,sin A (sin B +cos B )-sin C =0,sin B +cos2C =0,求角A ,B ,C 的大小. 解:sin A sin B +sin A cos B -sin(A +B )=0,sin A sin B +sin A cos B -(sin A cos B +cos A sin B )=0, sin A sin B -cos A sin B =sin B (sin A -cos A )=0, 因为sin B ≠0,所以sin A -cos A =0,所以tan A =1,4π=A ,可得BC +=4π3, 所以02sin sin )22π3cos(sin )4π3(2cos sin =+=++=++B B B B B B ,sin B +2sin B cos B =0,因为sin B ≠0,所以12π,3π2,21cos ==-=C B B .【评析】考查了三角形中角的相互转化关系,同时兼顾了两角和、二倍角、诱导公式等综合应用.练习3-4一、选择题1.在△ABC 中,若A ∶B ∶C =1∶2∶3,则a ∶b ∶c =( ) A .1∶2∶3B .2:3:1C .1∶4∶9D .3:2:12.在△ABC 中,角A 、B 、C 的对边分别为a ,b ,c ,3,3π==a A ,b =1,则c =( ) A .1B .2C .13-D .33.△ABC 中,若a =2b cos C ,则△ABC 的形状一定为( ) A .等边三角形 B .直角三角形 C .等腰三角形 D .等腰直角三角形4.△ABC 的三内角A ,B ,C 的对边边长分别为a ,b ,c ,若b a 25=,A =2B ,则cos B =( ) A .35B .45 C .55 D .65二、填空题5.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =1,3π,3==C c ,则A =______. 6.在△ABC 中,角ABC 的对边分别为a 、b 、c ,若ac B b c a 3tan )(222=-+,则角B 的值为______.7.设△ABC 的内角6π=A ,则2sinB cosC -sin(B -C )的值为______. 8.在三角形ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若b cos C =(2a -c )cos B ,则∠B 的大小为______. 三、解答题9.在△ABC 中,53tan ,41tan ==B A . (Ⅰ)求角C 的大小;(Ⅱ)若AB 的边长为17,求边BC 的边长.10.如图,某住宅小区的平面图呈扇形AOC .小区的两个出入口设置在点A 及点C 处,小区里有两条笔直的小路AD ,DC ,且拐弯处的转角为120°.已知某人从C 沿CD 走到D 用了10分钟,从D 沿DA 走到A 用了6分钟.若此人步行的速度为每分钟50米. 求该扇形的半径OA 的长(精确到1米).11.在三角形ABC 中,5522cos ,4π,2===B C a ,求三角形ABC 的面积S .专题03 三角函数与解三角形参考答案练习3-1一、选择题:1.B 2.B 3.B 4.C 二、填空题 5.)0,2π(-6.16 7.21mm - 8.23- 三、解答题9.解:(1)⋅-=+=-=>55cos sin ,55cos ,552sin ,0cos ααααα (2)原式=222)sin 1(sin sin 21cos 1sin 21θθθθθ-=+-=-+-=⋅+=-=-=5521sin 1|sin 1|θθ 10.解:(1)原式51tan 2tan -=-+=αα(2)原式.0tan 1tan 212=+-=αα11.解:当k 为偶数时,原式.0cos sin cos sin 1cos sin 1cos sin .cos sin )cos (sin cos sin 22=+-=++---=αααααααααααααα 当k 为奇数时,原式01cos sin )cos (sin =+-=αααα,综上所述,原式=0.练习3-2一、选择题1.A 2.C 3.D 4.C 二、填空题 5257-6.4 7.21 8.65- 三、解答题 9.解:左边=====2tan 2cos 22cos2sin22cos2sin 2cos 2cos cos 2cos sin 22222.ααααααααααα右边.10.解:原式)sin (cos 2cos 1cos 2cos sin 21cos )2cos 2(sin 12ααααααααα-=-+-=--=, 因为α 为第四象限角,且54sin -=α,所以53cos =α, 所以原式514=. 11.解:(1)由a a a a cos sin 21)cos (sin 2-=-=31可得32cos sin 2=αα, 所以a a a a cos sin 21)cos (sin 2+=+=35,因为α 为第三象限角,所以sin α <0,cos α <0,sin α +cos α <0,所以315cos sin -=+αα. (2)原式αααααααααcos cos 3sin 4cos )12cos 2(3sin 4cos 82cos 6sin 4522+=-+=-++=3tan 4+=α,因为51tan 1tan cos sin cos sin -=-+=-+αααααα,所以2531515tan -=+-=α, 所以原式.52932534-=+-⨯= 练习3-3一、选择题1.B 2.C 3.A 4.D 二、填空题5.2 6.2 7.)3π2sin(+=x y 8.]2,89[- 三、解答题9.解:x x x x x x f 2cos 2sin 1cos 2cos sin 2)(2-=+-==)4π2sin(2-x . (1)Z ∈+=-k k x ,2ππ4π2,对称轴方程为Z ∈+=k k x ,8π32π, (2)Z ∈+≤-≤+k k x k ,2π3π24π22ππ2,即Z ∈+≤≤+k k x k ,8π7π8π3π,f (x )的单调减区间为Z ∈++k k k ],8π7π,8π3π[.10.解:(I)∵⋅+=+=-+=)3π2sin(22cos 32sin )4sin 21(32sin )(2x x x x x x f∴f (x )的最小正周期.π421π2==T当1)3π2sin(-=+x 时,f (x )取得最小值-2;当1)3π2sin(=+x 时,f (x )取得最大值2.(Ⅱ)由(I)知⋅+=+=)3π()().3π2sin(2)(x f x g x x f 又⋅=+=++=∴2cos 2)2π2sin(2]3π)3π(21sin[2)(xx x x g).(2cos 2)2cos(2)(x g xx x g ==-=-Θ∴函数g (x )是偶函数.11.解:(1)12cos 2sin 32sin 322cos 12)(+++=+++⨯=a x x a x xx f ωωωω,1)6π2sin(2+++=a x ω由满足条件f (x 1)=f (x 2)=0的|x 1-x 2|的最小值为2π,可得的最小正周期为π,所以ω =1.。

金考卷—百校联盟—领航高考冲刺卷(理数答案)

金考卷—百校联盟—领航高考冲刺卷(理数答案)

平”的原则.
〃答案速查
镶2 静
4


拱″
慧鳞
~ ~
酗ii!10
~|~~~|~
B|[


D|B
B
A~{C~|[〕


■ [考查目标] 本题考查集合的并运算`简单指数不等式和一元二次

11


·


[考查目标]

嚣霹撼嗡慧霉 ″

/I∏+2 | 了

4
2





本题考查三角恒等变换`三角函数的图象和性质’考

14垫[考查目标] 本题主要; α厕ˉl≠0,所以α″ˉα″ˉ|=1,又易知αl=1 ’故数列{α鹏}是首项和公
本题主要考 查双曲线的离心率,考查了分析

差都为l的等差数列,故α,="`s"=÷″(″+l) ’则b"= 2

问题和解决问题的能力。
(—]),警二(—])馏(←击) ,则数列|h鹏|的煎2022项和
考生的逻辑椎理能力以及运算求解能力,考查的核心素养是逻辑椎
面积,再利用几何概型的概率计算公式求解即可。
≤沪 [解析] 如图所示,设AB=α,连接CF,根据
题意可知乙CEF=90°’乙CFE=45°,EF=
\.~
÷』则cF=粤α;正八边形的面积为α2+4×
理`数学运算。 [解题思路] 分公比是否为l进行讨论,再利用等比数列的前门项 和公式及定义求解即可。 [解析] 设等比数列{α′』 }的公比为q’当q=1时,S"_2α| =nαl

∩■

|三

γ 几

2020高考数学核心突破《专题3 三角函数、解三角形与平面向量 第1讲 三角函数的图象与性质》 (2)

2020高考数学核心突破《专题3 三角函数、解三角形与平面向量 第1讲 三角函数的图象与性质》 (2)

专题三 第1讲1.函数f (x )=cos(w x +φ)的部分图象如图所示,则f (x )的单调递减区间为( D )A.⎝⎛⎭⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎫2k π-14,2k π+34,k ∈Z C.⎝⎛⎭⎫k -14,k +34,k ∈Z D.⎝⎛⎭⎫2k -14,2k +34,k ∈Z 解析 由题图可知T 2=54-14=1,所以T =2.结合题图可知,在⎣⎡⎦⎤-34,54(f (x )的一个周期)内,函数f (x )的单调递减区间为⎝⎛⎭⎫-14,34.由f (x )是以2为周期的周期函数可知,f (x )的单调递减区间为⎝⎛⎭⎫2k -14,2k +34,k ∈Z ,故选D. 2.下列函数中,最小正周期为π且图象关于原点对称的函数是( A ) A .y =cos ⎝⎛⎭⎫2x +π2 B .y =sin ⎝⎛⎭⎫2x +π2 C .y =sin 2x +cos 2xD .y =sin x +cos x解析 y =cos ⎝⎛⎭⎫2x +π2=-sin 2x 是奇函数,图象关于原点对称,且最小正周期为π,A 项正确.y =sin ⎝⎛⎭⎫2x +π2=cos 2x ,是偶函数,B 项错误.y =sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π4,非奇非偶,C 项错误.y =sin x +cos x =2sin ⎝⎛⎭⎫x +π4,非奇非偶,D 项错误.故选A. 3.为了得到函数y =sin(2x +1)的图象,只需把函数y =sin 2x 的图象上所有的点( A ) A .向左平行移动12个单位长度B .向右平行移动12个单位长度C .向左平行移动1个单位长度D .向右平行移动1个单位长度 解析 ∵y =sin(2x +1)=sin 2⎝⎛⎭⎫x +12, ∴只需把y =sin 2x 图象上所有的点向左平移12个单位长度即得到y =sin(2x +1)的图象.故选A.4.将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( C )A.3π4 B .π2C.π4D .-π4解析 y =sin(2x +φ)――→左移π8sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π8+φ=sin ⎝⎛⎭⎫2x +π4+φ是偶函数,即π4+φ=k π+π2(k ∈Z )⇒φ=k π+π4(k ∈Z ),当k =0时,φ=π4,故选C.5.如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝⎛⎭⎫π6x +φ+k ,据此函数可知,这段时间水深的最大值为( C )A .5 mB .6 mC .8 mD .10 m解析 由题意可知,当sin ⎝⎛⎭⎫π6x +φ=-1时,函数取得最小值2,即3×(-1)+k =2,∴k =5.因此,函数的最大值是8,故水深的最大值为8 m.6.将函数y =3cos x +sin x (x ∈R )的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( B )A.π12 B .π6C.π3D .5π6解析 y =3cos x +sin x =2sin ⎝⎛⎭⎫x +π3,向左平移m 个单位长度后得到y =2sin ⎝⎛⎭⎫x +π3+m ,由它关于y 轴对称可得sin ⎝⎛⎭⎫π3+m =±1,∴π3+m =k π+π2,k ∈Z ,∴m =k π+π6,k ∈Z ,又m >0,∴m 的最小值为π6.7.已知函数f (x )=A sin(w x +φ)(A ,w ,φ均为正的常数)的最小正周期为π,当x =2π3时,函数f (x )取得最小值,则下列结论正确的是( A )A .f (2)<f (-2)<f (0)B .f (0)<f (2)<f (-2)C .f (-2)<f (0)<f (2)D .f (2)<f (0)<f (-2)解析 ∵ω>0,∴T =2πω=π,∴ω=2.又A >0,∴f ⎝⎛⎭⎫2π3=-A , 即sin ⎝⎛⎭⎫4π3+φ=-1,得φ+4π3=2k π+32π(k ∈Z ), 即φ=2k π+π6(k ∈Z ).又∵φ>0,∴可取f (x )=A sin ⎝⎛⎭⎫2x +π6, ∴f (2)=A sin ⎝⎛⎭⎫4+π6, f (-2)=A sin ⎝⎛⎭⎫-4+π6,f (0)=A sin π6. ∵π<4+π6<3π2,∴f (2)<0.∵-7π6<-4+π6<-π,且y =sin x 在⎝⎛⎭⎫-7π6,-π上为减函数, ∴sin ⎝⎛⎭⎫-4+π6<sin ⎝⎛⎭⎫-7π6=sin π6,且sin ⎝⎛⎭⎫-4+π6>sin(-π)=0,从而有0<f (-2)<f (0).故有f (2)<f (-2)<f (0).故选A.8.将函数f (x )=sin 2x 的图象向右平移φ⎝⎛⎭⎫0<φ<π2个单位后得到函数g (x )的图象.若对满足|f (x 1)-g (x 2)|=2的x 1,x 2,有|x 1-x 2|min =π3,则φ=( D )A.5π12 B .π3C.π4D .π6解析 g (x )=sin[2(x -φ)] =sin(2x -2φ). ∵|f (x )|≤1,|g (x )|≤1, ∴|f (x )-g (x )|≤2,当且仅当f (x 1)=1,g (x 2)=-1或f (x 1)=-1,g (x 2)=1时,满足|f (x 1)-g (x 2)|=2. 不妨设A (x 1,-1)是函数f (x )图象的一个最低点,B (x 2,1)是函数g (x )图象的一个最高点, 于是x 1=k 1π+3π4(k 1∈Z ),x 2=k 2π+π4+φ(k 2 ∈Z ).∴|x 1-x 2|≥⎪⎪⎪⎪3π4-⎝⎛⎭⎫π4+φ=⎪⎪⎪⎪π2-φ. ∵φ ∈⎝⎛⎭⎫0,π2,|x 1-x 2|min =π3, ∴π2-φ=π3,即φ=π6,故选D. 9.已知函数f (x )=2sin x +φ2cos x +φ2⎝⎛⎭⎫|φ|<π2,且对于任意的x ∈R ,f (x )≤f ⎝⎛⎭⎫π6,则( C ) A .f (x )=f (x +π) B .f (x )=f ⎝⎛⎭⎫x +π2 C .f (x )=f ⎝⎛⎭⎫π3-xD .f (x )=f ⎝⎛⎭⎫π6-x解析 f (x )=sin(x +φ).由题意,可知f (x )≤f ⎝⎛⎭⎫π6对于任意的x ∈R 恒成立,即sin(x +φ)≤sin ⎝⎛⎭⎫π6+φ.又因为|φ|<π2,所以π6+φ=π2,所以φ=π3,所以f (x )=sin ⎝⎛⎭⎫x +π3.f ⎝⎛⎭⎫π3-x =sin ⎝⎛⎭⎫π3-x +π3=sin ⎣⎡⎦⎤-⎝⎛⎭⎫π3+x +π=sin ⎝⎛⎭⎫x +π3=f (x ).故选C. 10.已知函数f (x )=3sin w x +cos w x (w >0)的图象与x 轴的交点的横坐标可构成一个公差为π2的等差数列,把函数f (x )的图象沿x 轴向左平移π6个单位,得到函数g (x )的图象.下列说法正确的是( D )A .g (x )在⎣⎡⎦⎤π4,π2上是增函数B .g (x )的图象关于直线x =-π4对称C .函数g (x )是奇函数D .当x ∈⎣⎡⎦⎤π6,2π3时,函数g (x )的值域是[-2,1]解析 f (x )=3sin ωx +cos ωx =2sin ⎝⎛⎭⎫ωx +π6,由题意知T 2=π2,∴T =π,∴ω=2πT =2,∴f (x )=2sin ⎝⎛⎭⎫2x +π6.把函数f (x )的图象沿x 轴向左平移π6个单位,得到g (x )=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6+π6=2sin ⎝⎛⎭⎫2x +π2=2cos 2x 的图象,易知g (x )是偶函数且在⎣⎡⎦⎤π4,π2上是减函数,其图象不关于直线x =-π4对称,所以A 项,B 项,C 项错误.当x ∈⎣⎡⎦⎤π6,2π3时,2x ∈⎣⎡⎦⎤π3,4π3,则g (x )min =2cos π=-2,g (x )max =2cos π3=1,即函数g (x )的值域为[-2,1],故选D.11.函数f (x )=2x -4sin x ,x ∈⎣⎡⎦⎤-π2,π2的图象大致是( D )解析 因为函数f (x )是奇函数,所以排除A ,B 项,f ′(x )=2-4cos x ,令f ′(x )=2-4cos x =0,得x =±π3,故选D.12.函数f (x )=A sin w x (A >0,w >0)的部分图象如图所示,则f (1)+f (2)+f (3)+…+f (2 018)的值为( A )A .2+ 2B .32C .6 2D .- 2解析 由题图可知,A =2,T =8,2πω=8,ω=π4,∴f (x )=2sin π4x ,∴f (1)=2,f (2)=2,f(3)=2,f(4)=0,f(5)=-2,f(6)=-2,f(7)=-2,f(8)=0,而2 018=8×252+2,∴f(1)+f(2)+…+f(2 018)=f(1)+f(2)=2+ 2.故选A.。

2020年江苏高考数学第二轮复习专题训练含解析

2020年江苏高考数学第二轮复习专题训练含解析
2020 年江苏高考数学第二轮复习精典试题
高考冲刺训练专题 (一 )
4 1. 中心在原点,一个顶点为 A( -3,0),离心率为 3的双曲线的
x2 y2 方程是 9 - 7 =1 .
解析 :因为双曲线的顶点为 A( -3,0),所以双曲线的焦点在 x
x2 y2
4
轴上,所以设双曲线的方程为 a2-b2=1,则 a=3.又因为 e=3,所以
4. 已知双曲线 xa22-y2=1(a>0)的一条渐近线为 3x+y=0,则 a
3 =3.
解析 :因为双曲线的一条渐近线方程为
y=-
3x,且
a>0,则
b a
= 1a=
3,解得
a=
3 3.
x2 y2 5. 设双曲线 a2-b2=1(a>0,b>0)的右焦点为 F,右准线 l 与两
条渐近线交于 P,Q 两点,如果△ PQF 是直角三角形,那么双曲线的
- y0),M→F2=( 3- x0,-y0),所以 M→F1·M→F 2= x02- 3+ y20.因为点 M 在 双曲线上,所以 x220- y20= 1,代入不等式 M→F 1·M→F 2<0,得 3y02<1,解得
3
3
- 3 <y0< 3 .
9.
设 F1, F2 是双曲线
x2-
y2 24=
1
的两个焦点,
P
是双曲线上的
一点,且 3PF1= 4PF2,则△ PF1F2 的面积为 24 .
解析 :由题意知,双曲线的实轴长为 2,焦距为 F1F2=2×5= 10,
4
1
PF1-PF2= 3PF2- PF2= 3PF2=2,所以

2020届高考数学(文)二轮复习专题过关检测:专题3 不等式 Word版含答案

2020届高考数学(文)二轮复习专题过关检测:专题3 不等式 Word版含答案

2020届高考数学(文)二轮复习专题过关检测专题3 不等式1.不等式(x +5)(3-2x )≥6的解集是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≤-1或x ≥92 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1≤x ≤92 C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤-92或x ≥1D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-92≤x ≤1 解析:选D 不等式(x +5)(3-2x )≥6可化为2x 2+7x -9≤0,所以(2x +9)(x -1)≤0,解得-92≤x ≤1.所以不等式(x +5)(3-2x )≥6的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-92≤x ≤1.故选D. 2.设a >b ,a ,b ,c ∈R ,则下列式子正确的是( ) A .ac 2>bc 2B.ab>1 C .a -c >b -cD .a 2>b 2解析:选C 若c =0,则ac 2=bc 2,故A 错;若b <0,则a b<1,故B 错;不论c 取何值,都有a -c >b -c ,故C 正确;若a ,b 都小于0,则a 2<b 2,故D 错.于是选C.3.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式x 2+ax +b <0的解集为A ∩B ,则a +b =( )A .1B .0C .-1D .-3解析:选D 由题意得,不等式x 2-2x -3<0的解集A =(-1,3),不等式x 2+x -6<0的解集B =(-3,2).所以A ∩B =(-1,2),即不等式x 2+ax +b <0的解集为(-1,2),所以a =-1,b =-2,所以a +b =-3.4.设不等式组⎩⎪⎨⎪⎧x -2y ≤0,x -y +2≥0,x ≥0表示的可行域为Ω,则( )A .原点O 在Ω内B .Ω的面积是1C .Ω内的点到y 轴的距离有最大值D .若点P (x 0,y 0)∈Ω,则x 0+y 0≠0。

2020高考数学(文)冲刺刷题首先练辑:第三部分 2020高考仿真模拟卷(五) Word版含解析

2020高考数学(文)冲刺刷题首先练辑:第三部分 2020高考仿真模拟卷(五) Word版含解析

2020高考仿真模拟卷(五)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U =R ,集合A ={x |(2x -1)(x -3)<0},B ={x |(x -1)(x -4)≤0},则(∁U A )∩B =( )A .[1,3)B .(-∞,1)∪[3,+∞)C .[3,4]D .(-∞,3)∪(4,+∞) 答案 C 解析 因为集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<x <3,B ={x |1≤x ≤4}, 所以∁U A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤12或x ≥3,所以(∁U A )∩B ={x |3≤x ≤4}. 2.在复平面内,复数z =4-7i2+3i (i 是虚数单位),则z 的共轭复数z -在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 答案 B解析 因为z =4-7i 2+3i =(4-7i )(2-3i )13=-13-26i13=-1-2i ,所以z 的共轭复数z -=-1+2i 在复平面内对应的点(-1,2)位于第二象限.3.在△ABC 中,点D 在边AB 上,且BD→=12DA →,设CB →=a ,CA →=b ,则CD →=( )A.13a +23bB.23a +13bC.35a +45bD.45a +35b 答案 B解析 因为BD→=12DA →,CB →=a ,CA →=b ,故CD →=a +BD →=a +13BA →=a +13(b -a )=23a +13b .4.(2019·济南模拟)在平面直角坐标系xOy 中,与双曲线x 24-y 23=1有相同的渐近线,且位于x 轴上的焦点到渐近线的距离为3的双曲线的标准方程为( )A.x 29-y 24=1B.x 28-y 29=1 C.x 212-y 29=1 D.x 216-y 212=1 答案 C解析 与双曲线x 24-y 23=1有相同的渐近线的双曲线的方程可设为x 24-y 23=λ(λ≠0),因为该双曲线的焦点在x 轴上,故λ>0.又焦点(7λ,0)到渐近线y =32x 的距离为3,所以21λ7=3,解得λ=3.所以所求双曲线的标准方程为x 212-y 29=1.5.若正项等比数列{a n }满足a n a n +1=22n (n ∈N *),则a 6-a 5的值是( ) A. 2 B .-16 2 C .2 D .162 答案 D解析 因为a n a n +1=22n(n ∈N *),所以a n +1a n +2=22n +2(n ∈N *),两式作比可得a n +2an=4(n ∈N *),即q 2=4,又a n >0,所以q =2,因为a 1a 2=22=4,所以2a 21=4,所以a 1=2,a 2=22,所以a 6-a 5=(a 2-a 1)q 4=16 2.6.某几何体的三视图如图所示(单位:cm),其俯视图为等边三角形,则该几何体的体积(单位:cm 3)是( )A .4 3 B.1033 C .2 3 D.833 答案 B解析 由三视图还原几何体如图所示,该几何体为直三棱柱截去一个三棱锥H -EFG ,三角形ABC 的面积S =12×2×22-12= 3.∴该几何体的体积V =3×4-13×3×2=1033.7.执行如图所示的程序框图,若输出的结果是59,则判断框中可填入的条件是( )A .i <10?B .i <9?C .i >8?D .i <8? 答案 B解析 由程序框图的功能可得S =1×⎝ ⎛⎭⎪⎫1-122×⎝ ⎛⎭⎪⎫1-132×…×⎣⎢⎡⎦⎥⎤1-1(i +1)2=⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1+12×⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1+13×…×⎝ ⎛⎭⎪⎫1-1i +1⎝ ⎛⎭⎪⎫1+1i +1=12×32×23×43×…×ii +1×i +2i +1=i +22i +2=59,所以i =8,i +1=9,故判断框中可填入i <9?.8.现有大小形状完全相同的4个小球,其中红球有2个,白球与蓝球各1个,将这4个小球排成一排,则中间2个小球不都是红球的概率为( )A.16B.13C.56D.23 答案 C解析 设白球为A ,蓝球为B ,红球为C ,则不同的排列情况为ABCC ,ACBC ,ACCB ,BACC ,BCAC ,BCCA ,CABC ,CACB ,CBCA ,CBAC ,CCAB ,CCBA 共12种情况,其中红球都在中间的有ACCB ,BCCA 两种情况,所以红球都在中间的概率为212=16,故中间两个小球不都是红球的概率为1-16=56.9.(2019·东北三省三校一模)圆周率是圆的周长与直径的比值,一般用希腊字母π表示.早在公元480年左右,南北朝时期的数学家祖冲之就得出精确到小数点后7位的结果,他是世界上第一个把圆周率的数值计算到小数点后第七位的人,这比欧洲早了约1000年.在生活中,我们也可以通过设计下面的实验来估计π的值:从区间[-1,1]内随机抽取200个数,构成100个数对(x ,y ),其中满足不等式y > 1-x 2的数对(x ,y )共有11个,则用随机模拟的方法得到的π的近似值为( )A.7825B.7225C.257D.227 答案 A解析 在平面直角坐标系中作出边长为1的正方形和单位圆,则符合条件的数对表示的点在x 轴上方、正方形内且在圆外的区域,区域面积为2-π2,由几何概型概率公式可得2-π22×2≈11100,解得π≈7825.故选A.10.(2018·全国卷Ⅱ)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为( )A.15B.55C.56D.22 答案 B解析 解法一:(平行线法)如图1,取DB 1的中点O 和AB 的中点M ,连接OM ,DM ,则MO ∥AD 1,∠DOM 为异面直线AD 1与DB 1所成的角.依题意得DM 2=DA 2+AM 2=1+⎝ ⎛⎭⎪⎫122=54.OD 2=⎝ ⎛⎭⎪⎫12DB 12=14×(1+1+3)=54,OM 2=⎝ ⎛⎭⎪⎫12AD 12=14×(1+3)=1.∴cos ∠DOM =OD 2+OM 2-DM 22·OD ·OM =54+1-542×52×1=15=55.解法二:(割补法)如图2,在原长方体后面补一个全等的长方体CDEF -C 1D 1E 1F 1,连接DE 1,B 1E 1.∵DE 1∥AD 1,∴∠B 1DE 1就是异面直线AD 1与DB 1所成的角.DE 21=AD 21=4,DB 21=12+12+(3)2=5. B 1E 21=A 1B 21+A 1E 21=1+4=5.∴在△B 1DE 1中,由余弦定理得cos ∠B 1DE 1=DE 21+DB 21-B 1E 212·DE 1·DB 1=4+5-52×2×5=445=55,即异面直线AD 1与DB 1所成角的余弦值为55.11.如图所示,椭圆有这样的光学性质:从椭圆的一个焦点发出的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.根据椭圆的光学性质解决下题:已知曲线C 的方程为x 2+4y 2=4,其左、右焦点分别是F 1,F 2,直线l 与椭圆C切于点P ,且|PF 1|=1,过点P 且与直线l 垂直的直线l ′与椭圆长轴交于点M ,则|F 1M |∶|F 2M |=()A.2∶ 3 B .1∶ 2 C .1∶3 D .1∶3 答案 C解析 由椭圆的光学性质可知,直线l ′平分∠F 1PF 2, 因为S △PF 1M S △PF 2M =|F 1M ||F 2M |,又S △PF 1M S △PF 2M =12|PF 1||PM |sin ∠F 1PM 12|PF 2||PM |sin ∠F 2PM =|PF 1||PF 2|,故|F 1M ||F 2M |=|PF 1||PF 2|.由|PF 1|=1,|PF 1|+|PF 2|=4,得|PF 2|=3,故|F 1M |∶|F 2M |=1∶3.12.设x 1,x 2分别是函数f (x )=x -a -x 和g (x )=x log a x -1的零点(其中a >1),则x 1+4x 2的取值范围是( )A .[4,+∞)B .(4,+∞)C .[5,+∞)D .(5,+∞) 答案 D解析 令f (x )=x -a -x =0,则1x =a x ,所以x 1是指数函数y =a x (a >1)的图象与y =1x 的图象的交点A 的横坐标,且0<x 1<1,同理可知x 2是对数函数y =log a x (a >1)的图象与y =1x 的图象的交点B 的横坐标.由于y =a x 与y =log a x 互为反函数,从而有x 1=1x 2,所以x 1+4x 2=x 1+4x 1.由y =x +4x 在(0,1)上单调递减,可知x 1+4x 2>1+41=5,故选D.二、填空题:本题共4小题,每小题5分,共20分.13.设某总体是由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为________.1818 0792 4544 1716 5809 7983 8619...第1行6206 7650 0310 5523 6405 0526 6238 (2)答案 19解析 由题意,从随机数表第1行的第3列数字1开始,从左到右依次选取两个数字的结果为:18,07,17,16,09,19,…,故选出来的第6个个体编号为19.14.(2019·湖南师范大学附中模拟三)若函数f (x )=2sin(ωx +φ)(ω>0,φ>0,0<φ<π)的图象经过点⎝ ⎛⎭⎪⎫π6,2,且相邻两条对称轴间的距离为π2,则f ⎝ ⎛⎭⎪⎫π4的值为________.答案3解析 由题意得2πω=π,∴ω=2,则f (x )=2sin(2x +φ),又函数的图象经过点⎝ ⎛⎭⎪⎫π6,2,则sin ⎝ ⎛⎭⎪⎫π3+φ=1,∵0<φ<π,∴φ=π6,即f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6,则f ⎝ ⎛⎭⎪⎫π4=2sin ⎝ ⎛⎭⎪⎫π2+π6= 3.15.已知抛物线y 2=2px (p >0)的准线方程为x =-2,点P 为抛物线上的一点,则点P 到直线y =x +3的距离的最小值为________.答案 22解析 由题设得抛物线方程为y 2=8x , 设P 点坐标为P (x ,y ), 则点P 到直线y =x +3的距离为 d =|x -y +3|2=|8x -8y +24|82=|y 2-8y +24|82=|(y -4)2+8|82≥22,当且仅当y =4时取最小值22.16.(2019·南宁摸底考试)在数列{a n }中,a 1=-2,a n a n -1=2a n -1-1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1,则数列{a n }的通项公式为a n =________,数列{b n }的前n 项和S n 的最小值为________.答案3n -13n -4-13 解析 由题意知,a n =2-1a n -1(n ≥2,n ∈N *),∴b n =1a n -1=1⎝ ⎛⎭⎪⎫2-1a n -1-1=a n -1a n -1-1=1+1a n -1-1=1+b n -1,即b n -b n -1=1(n ≥2,n ∈N *).又b 1=1a 1-1=-13,∴数列{b n }是以-13为首项,1为公差的等差数列,∴b n =n -43,即1a n -1=n -43,∴a n =3n -13n -4.又b 1=-13<0,b 2=23>0,∴S n 的最小值为S 1=b 1=-13.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知A ≠π2,且3sin A cos B +12b sin2A =3sin C .(1)求a 的值;(2)若A =2π3,求△ABC 周长的最大值.解 (1)由3sin A cos B +12b sin2A =3sin C ,得3sin A cos B +b sin A cos A =3sin C ,由正弦定理,得3a cos B +ab cos A =3c ,由余弦定理,得3a ·a 2+c 2-b 22ac +ab ·b 2+c 2-a 22bc =3c ,整理得(b 2+c 2-a 2)(a -3)=0,因为A ≠π2,所以b 2+c 2-a 2≠0,所以a =3.(另解:由sin C =sin(A +B )=sin A cos B +cos A sin B 代入条件变形即可)6分 (2)在△ABC 中,A =2π3,a =3,由余弦定理得,9=b 2+c 2+bc ,因为b 2+c 2+bc =(b +c )2-bc ≥(b +c )2-⎝⎛⎭⎪⎫b +c 22=34(b +c )2,所以34(b +c )2≤9,即(b +c )2≤12,所以b +c ≤23,当且仅当b =c =3时,等号成立.故当b =c =3时,△ABC 周长的最大值为3+2 3.12分18.(2019·黑龙江齐齐哈尔市二模)(本小题满分12分)某县共有户籍人口60万,经统计,该县60岁及以上、百岁以下的人口占比为13.8%,百岁及以上老人15人.现从该县60岁及以上、百岁以下的老人中随机抽取230人,得到如下频数分布表:解他们的生活状况,则80岁及以上老人应抽多少人?(2)从(1)中所抽取的80岁及以上老人中,再随机抽取2人,求抽到90岁及以上老人的概率;(3)该县按省委办公厅、省人民政府办公厅《关于加强新时期老年人优待服务工作的意见》精神,制定如下老年人生活补贴措施,由省、市、县三级财政分级拨款:①本县户籍60岁及以上居民,按城乡居民养老保险实施办法每月领取55元基本养老金;②本县户籍80岁及以上老年人额外享受高龄老人生活补贴. (a)百岁及以上老年人,每人每月发放345元的生活补贴;(b)90岁及以上、百岁以下老年人,每人每月发放200元的生活补贴; (c)80岁及以上、90岁以下老年人,每人每月发放100元的生活补贴. 试估计政府执行此项补贴措施的年度预算.解 (1)样本中70岁及以上老人共105人,其中80岁及以上老人30人,所以应抽取的21人中,80岁及以上老人应抽30×21105=6人.3分(2)在(1)中所抽取的80岁及以上的6位老人中,90岁及以上老人1人,记为A ,其余5人分别记为B ,C ,D ,E ,F ,从中任取2人,基本事件共15个:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),这15个基本事件发生的可能性相等.6分记“抽到90岁及以上老人”为事件M ,则M 包含5个基本事件, 所以P (M )=515=13.8分(3)样本中230人的月预算为230×55+25×100+5×200=16150(元),10分 用样本估计总体,年预算为⎝ ⎛⎭⎪⎫16150×6×105×13.8%230+400×15×12=6984×104(元).所以政府执行此项补贴措施的年度预算为6984万元.12分19.(2019·湖南长沙长郡中学一模)(本小题满分12分)如图,在多边形ABPCD 中(图1),四边形ABCD 为长方形,△BPC 为正三角形,AB =3,BC =32,现以BC 为折痕将△BPC 折起,使点P 在平面ABCD 内的射影恰好在AD 上(图2).(1)证明:PD ⊥平面P AB ;(2)若点E 在线段PB 上,且PE =13PB ,当点Q 在线段AD 上运动时,求三棱锥Q -EBC 的体积.解 (1)证明:过点P 作PO ⊥AD ,垂足为O . 由于点P 在平面ABCD 内的射影恰好在AD 上,∴PO ⊥平面ABCD ,∴PO ⊥AB ,∵四边形ABCD 为矩形,∴AB ⊥AD ,又AD ∩PO =O ,∴AB ⊥平面P AD ,2分∴AB ⊥PD ,AB ⊥P A ,又由AB =3,PB =32,可得P A =3,同理PD =3,又AD =32,∴P A 2+PD 2=AD 2, ∴P A ⊥PD ,且P A ∩AB =A , ∴PD ⊥平面P AB .5分(2)设点E 到底面QBC 的距离为h ,则V Q -EBC =V E -QBC =13S △QBC ×h ,由PE =13PB ,可知BE BP =23,7分∴h PO =23,∵P A ⊥PD ,且P A =PD =3, ∴PO =P A ·PD AD =322,∴h =23×322=2,9分 又S △QBC =12×BC ×AB =12×32×3=922, ∴V Q -EBC =13S △QBC ×h =13×922×2=3.12分20.(本小题满分12分)抛物线y 2=4x 的焦点为F ,过F 的直线交抛物线于A ,B 两点.(1)若点T (-1,0),且直线AT ,BT 的斜率分别为k 1,k 2,求证:k 1+k 2为定值; (2)设A ,B 两点在抛物线的准线上的射影分别为P ,Q ,线段PQ 的中点为R ,求证:AR ∥FQ .证明 (1)设直线AB :my =x -1,A (x 1,y 1),B (x 2,y 2), ⎩⎨⎧ my =x -1,y 2=4x ,可得y 2-4my -4=0,⎩⎨⎧y 1+y 2=4m ,y 1y 2=-4,3分 k 1+k 2=y 1x 1+1+y 2x 2+1=y 1(x 2+1)+y 2(x 1+1)(x 1+1)(x 2+1)=y 1x 2+y 2x 1+(y 1+y 2)(x 1+1)(x 2+1)=y 1(my 2+1)+y 2(my 1+1)+(y 1+y 2)(my 1+1+1)(my 2+1+1)=2my 1y 2+2(y 1+y 2)(my 1+2)(my 2+2)=2m (-4)+2×4m(my 1+2)(my 2+2)=0.6分(2)A (x 1,y 1),P (-1,y 1),Q (-1,y 2),R ⎝ ⎛⎭⎪⎫-1,y 1+y 22,F (1,0), k AR =y 1+y 22-y 1-1-x 1=y 1-y 221+x 1=y 1-y 22(1+x 1),k QF =y 2-0-1-1=-y 22,8分k AR -k QF =y 1-y 22(1+x 1)+y 22=y 1-y 2+y 2(1+x 1)2(1+x 1)=y 1-y 2+y 2(my 1+2)2(1+x 1)=(y 1+y 2)+my 1y 22(1+x 1)=4m +m ×(-4)2(1+x 1)=0,即k AR =k QF ,所以直线AR 与直线FQ 平行.12分21.(2019·山东潍坊一模)(本小题满分12分)已知函数f (x )=x ln x -(a +1)x ,g (x )=f (x )-a ⎝ ⎛⎭⎪⎫12x 2-x -1,a ∈R .(1)当x >1时,求f (x )的单调区间;(2)设F (x )=e x +x 3+x ,若x 1,x 2为函数g (x )的两个不同极值点,证明:F (x 1x 22)>F (e 2).解 (1)f ′(x )=1+ln x -a -1=ln x -a ,若a ≤0,x ∈(1,+∞),f ′(x )>0,f (x )单调递增, 若a >0,由ln x -a =0,解得x =e a ,2分 且x ∈(1,e a ),f ′(x )<0,f (x )单调递减, x ∈(e a ,+∞),f ′(x )>0,f (x )单调递增.综上,当a ≤0时,f (x )的单调递增区间为(1,+∞);当a >0时,f (x )的单调递增区间为()e a,+∞,单调递减区间为(1,e a ).5分 (2)证明:F ′(x )=e x +3x 2+1>0,故F (x )在R 上单调递增,即证x 1x 22>e 2,也即证ln x 1+2ln x 2>2,又g (x )=x ln x -ax -x -a 2x 2+ax +a =x ln x -a2x 2-x +a ,g ′(x )=1+ln x -ax -1=ln x -ax ,所以x 1,x 2为方程ln x =ax 的两根,即⎩⎨⎧ln x 1=ax 1, ①ln x 2=ax 2, ②即证ax 1+2ax 2>2,即a (x 1+2x 2)>2, 而①-②得a =ln x 1-ln x 2x 1-x 2,8分即证ln x 1-ln x 2x 1-x 2·(x 1+2x 2)>2,则证ln x 1x 2·x 1+2x 2x 1-x 2>2,变形得ln x 1x 2·x 1x 2+2x 1x 2-1>2,不妨设x 1>x 2,t =x 1x 2>1,即证ln t ·t +2t -1>2,整理得ln t -2(t -1)t +2>0,设h (t )=ln t -2(t -1)t +2,则h ′(t )=1t -6(t +2)2=t 2-2t +4t (t +2)2=(t -1)2+3t (t +2)2>0,∴h (t )在(1,+∞)上单调递增,h (t )>h (1)=0,即结论成立.12分(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 1的方程为x 22+y 2=1,曲线C 2的参数方程为⎩⎨⎧x =cos φ,y =1+sin φ(φ为参数),曲线C 3的方程为y =x tan α⎝ ⎛⎭⎪⎫0<α<π2,x >0,曲线C 3与曲线C 1,C 2分别交于P ,Q 两点.(1)求曲线C 1,C 2的极坐标方程; (2)求|OP |2·|OQ |2的取值范围.解 (1)因为x =ρcos θ,y =ρsin θ,所以曲线C 1的极坐标方程为 ρ2cos 2θ2+ρ2sin 2θ=1,即ρ2=21+sin 2θ,2分由⎩⎨⎧x =cos φ,y =1+sin φ(φ为参数),消去φ, 即得曲线C 2的直角坐标方程为x 2+(y -1)2=1, 将x =ρcos θ,y =ρsin θ,代入化简, 可得曲线C 2的极坐标方程为ρ=2sin θ.5分 (2)曲线C 3的极坐标方程为θ=α⎝ ⎛⎭⎪⎫ρ>0,0<α<π2.6分由(1)得|OP |2=21+sin 2α,|OQ |2=4sin 2α, 即|OP |2·|OQ |2=8sin 2α1+sin 2α=81sin 2α+1,8分因为0<α<π2,所以0<sin α<1, 所以|OP |2·|OQ |2∈(0,4).10分23.(本小题满分10分)选修4-5:不等式选讲 已知函数f (x )=|x -5|-|x +3|. (1)解关于x 的不等式f (x )≥x +1;(2)记函数f (x )的最大值为m ,若a >0,b >0,e a ·e 4b =e 2ab -m ,求ab 的最小值. 解 (1)当x ≤-3时,由5-x +x +3≥x +1,得x ≤7,所以x ≤-3;当-3<x <5时,由5-x -x -3≥x +1,得x ≤13,所以-3<x ≤13;当x ≥5时,由x -5-x -3≥x +1,得x ≤-9,无解.4分综上可知,x ≤13,即不等式f (x )≥x +1的解集为⎝ ⎛⎦⎥⎤-∞,13.5分(2)因为|x -5|-|x +3|≤|x -5-x -3|=8,所以函数f (x )的最大值m =8.6分 因为e a ·e 4b =e 2ab -8,所以a +4b =2ab -8.又a >0,b >0,所以a +4b ≥24ab =4ab ,当且仅当a =4b 时,等号成立,7分所以2ab -8-4ab ≥0,即ab -4-2ab ≥0. 所以有(ab -1)2≥5.8分又ab >0,所以ab ≥1+5或ab ≤1-5(舍去),ab≥6+25,即ab的最小值为6+2 5.10分。

2020高考数学(理科)二轮专题复习课标通用版 跟踪检测: 专题3 数列 第1部分 专题3 第2讲

2020高考数学(理科)二轮专题复习课标通用版 跟踪检测: 专题3 数列 第1部分 专题3 第2讲
7.已知数列{an}的前 n 项和 Sn=3+2n,则数列{an}的通项公式为________. 解析 因为 Sn=3+2n,所以 n≥2 时,an=Sn-Sn-1=2n-1,而 n=1 时,a1=S1=5 不适
合上式,所以 an=Error!
答案 an=Error!
1
1
8.(2019·广东深圳适应性考试)在数列{an}中,a1=2 019,an+1=an+nn+1(n∈N*),
2n =n2+1-2n.故选 A
项.
3.1-4+9-16+…+(-1)n+1n2=( )
nn+1 A. 2
nn+1 B.- 2
nn+1 C.(-1)n+1 2
D.以上均不正确
C 解析 当 n 为偶数时,1-4+9-16+…+(-1)n+1n2=-3-7-…-(2n-1)=-
n 3+2n-1 2
nn+1
2 =- 2 ;当 n 为奇数时,1-4+9-16+…+(-1)
n-1 [3+2n-1-1]
2
nn+1
n+1n2=-3-7-…-[2(n-1)-1]+n2=-
2
+n2= 2 .综上可得,原
nn+1 式=(-1)n+1 2 .故选 C 项.
4.已知数列{an}的前 n 项和 Sn=an-1(a≠0),则{an}( )
2×3 3 4
n n+1
则 3Tn= 30 +30+31+…+3n-3+3n-2,②
1 1-
3n-1
( ) 1 1
1 n+1
1 n+1 15
1+ + +…+
1-
②-①得 2Tn=6+ 3 32
3n-2 -3n-1=6+ 3 -3n-1= 2 -
2n+5
2·3n-1.

2020版高考数学二轮复习第2部分专题3概率与统计第1讲概率、随机变量及其分布教案理(最新整理)

2020版高考数学二轮复习第2部分专题3概率与统计第1讲概率、随机变量及其分布教案理(最新整理)

第1讲概率、随机变量及其分布[做小题——激活思维]1.若随机变量X的分布列如表所示,E(X)=1。

6,则a-b=( )X0123P0。

1a b0。

1A.0.2C.0。

8 D.-0。

8B[由0。

1+a+b+0.1=1,得a+b=0。

8,又由E(X)=0×0.1+1×a+2×b+3×0。

1=1。

6,得a+2b=1.3,解得a=0。

3,b=0.5,则a-b=-0。

2.]2.已知甲在上班途中要经过两个路口,在第一个路口遇到红灯的概率为0。

5,两个路口连续遇到红灯的概率为0。

4,则甲在第一个路口遇到红灯的条件下,第二个路口遇到红灯的概率为( )A.0。

6 B.0.7C.0.8 D.0。

9C[记“第一个路口遇到红灯"为事件A,“第二个路口遇到红灯”为事件B,则P(A)=0.5,P(AB)=0。

4,则P(B|A)=错误!=0.8,故选C。

]3.两个实习生每人加工一个零件,加工为一等品的概率分别为错误!和错误!,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( )A。

错误!B。

错误!C。

14D。

错误!B[设事件A:甲实习生加工的零件为一等品;事件B:乙实习生加工的零件为一等品,且A,B相互独立,则P(A)=错误!,P(B)=错误!,所以这两个零件中恰有一个一等品的概率为P(A错误!)+P(错误!B)=P(A)P(错误!)+P(错误!)P(B)=错误!×错误!+错误!×错误!=错误!。

]4.设随机变量X~B(2,p),Y~B(4,p),若P(X≥1)=错误!,则P(Y≥1)=( )A.错误!B。

错误!C。

错误!D.1C[∵X~B(2,p),∴P(X≥1)=1-P(X=0)=1-C错误!(1-p)2=错误!,解得p=错误!,∴P(Y≥1)=1-P(Y=0)=1-C0,4(1-p)4=1-错误!=错误!,故选C.]5.罐中有6个红球和4个白球,从中任取1球,记住颜色后再放回,连续取4次,设X为取得红球的次数,则X的方差D(X)的值为________.错误![因为是有放回地取球,所以每次取球(试验)取得红球(成功)的概率均为错误!,连续取4次(做4次试验),X为取得红球(成功)的次数,则X~B错误!,∴D(X)=4×错误!×错误!=错误!.]6.已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为________.(附:若随机变量X服从正态分布N(μ,σ2),则P(μ-σ<X<μ+σ)=0。

高考数学三轮冲刺微专题(文理通用)最值问题之03数列篇

高考数学三轮冲刺微专题(文理通用)最值问题之03数列篇

2020年高考数学三轮冲刺微专题(文理通用)最值问题之数列篇【例】【2019年高考北京卷理数】设等差数列{a n }的前n 项和为S n ,若a 2=−3,S 5=−10,则a 5=__________,S n 的最小值为__________.【例】【2018全国卷Ⅱ】记n S 为等差数列{}n a 的前n 项和,已知17=-a ,315=-S .(1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.【例】(2018江苏)已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将AB 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 .【例】(2016年全国I )设等比数列{}n a 满足1310a a +=,245a a +=,则12n a a a ⋅⋅⋅的最大值为 .【例】(2015四川)设数列{}n a 的前n 项和12n n S a a =-,且123,1,a a a +成等差数列(1)求数列{}n a 的通项公式; (2)记数列1{}na 的前n 项和n T ,求得1|1|1000n T -<成立的n 的最小值。

有关数列中最大项的问题:【例】(2020·海南中学高三月考)已知等差数列{}n a 的首项及公差均为正数,令=n b()*,2020∈<n n N ,当k b 是数列{}nb 的最大项时,k =( )A .1100B .1001C .1011D .1010有关等差数列前n 和中的最值问题:【例】等差数列{a n }的首项a 1>0,设其前n 项和为S n ,且S 5=S 12,则当n 为何值时,S n 有最大值?数列与不等式恒成立相结合的最值问题:【例】(2020·山西实验中学高三)已知数列{}n a 的前n 项和122n n n S a +=-,若不等式223(5)n n n a λ--<-,对n N +∀∈恒成立,则整数λ的最大值为______.数列与基本不等式相结合的最值问题:【例】(2020·江西高三模拟)已知正项等比数列{}n a 满足76523a a a =+,若存在两项m a ,n a ,使得219m n a a a ⋅=,则19m n+的最小值为( ). A .16 B .283C .5D .4数列与导数相结合的最值问题:【例】等差数列的前项和为,已知,,则的最小值为____.数列与“对勾函数”相结合的最值问题:【例】(2020·河南高三模拟)已知各项都是正数的数列{}n a 满足()*12n n a N a n n +-=∈,若当且仅当4n =时,na n取得最小值,则( ) A .1012a <<B .11220a <<C .112a =D .120a =1、(2020·山西高三开学考试)已知数列{}n a 的通项公式为()370.9nn a n =+⨯,则数列{}n a 的最大项是( ){}n a n n S 100S =1525S =nnSA .5aB .6aC .7aD .8a2.(2020·河南高三)已知数列{}n a 满足12n n a a +-=,且134,,a a a 成等比数列.若{}n a 的前n 项和为n S ,则n S 的最小值为( )A .–10B .14-C .–18D .–203.(2020·山东省青岛第五十八中学高三)等差数列{}n a 中,已知51037a a =,且10a <,则数列{}n a 的前n 项和n S *()n N ∈中最小的是( )A .7S 或8SB .12SC .13SD .14S4.(2020·河北高三期末)已知递增等差数列{}n a 中,122a a =-,则3a 的( )A .最大值为4-B .最小值为4C .最小值为4-D .最大值为4或4-5.(2020江苏无锡高三)设7211a a a ≤≤≤≤ ,其中7531,,,a a a a 成公比为q 的等比数列,642,,a a a 成公差为1的等差数列,则q 的最小值是________.6.(2020北京高三)若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =__时,{}n a 的前n 项和最大.7.(2020江西高三)在等差数列{}n a 中,71=a ,公差为d ,前n 项和为n S ,当且仅当8=n 时n S 取最大值,则d 的取值范围_________.8.(2020·河北邢台一中高三月)已知等差数列{}n a 的前n 项和为n S ,若29a =,540S =,则n S 的最大值为_________.9、已知数列{a n }的通项公式是a n =(n +1)⎝⎛⎭⎫1011n ,试问该数列中有没有最大项?若有,求出最大项和最大项的序号;若没有,请说明理由.10、在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值。

2020年高考数学(理科)全国2卷高考模拟试卷(3)

2020年高考数学(理科)全国2卷高考模拟试卷(3)

2020年高考数学(理科)全国2卷高考模拟试卷(3)一.选择题(共12小题,满分60分,每小题5分)1.(5分)设集合A ={x |x >0},B ={x |log 2(3x ﹣2)<2},则( ) A .A ∩B =(0,53] B .A ∩B =(0,13] C .A ∪B =(13,+∞)D .A ∪B =(0,+∞) 2.(5分)已知i 是虚数单位,复数z 满足1−2i z=1+i ,则|z |=( ) A .√52B .3√22C .√102D .√33.(5分)在△ABC 中,“AB →•AC →=BA →•BC →”是“|AC →|=|BC →|”( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.(5分)已知a ,b 是两条直线,α,β,γ是三个平面,则下列命题正确的是( ) A .若a ∥α,b ∥β,a ∥b ,则α∥β B .若α⊥β,a ⊥α,则a ∥βC .若α⊥β,α⊥γ,β∩γ=a ,则a ⊥αD .若α∥β,a ∥α,则a ∥β5.(5分)三棱锥P ﹣ABC 内接于半径为2的球中,P A ⊥平面ABC ,∠BAC =π2,BC =2√2,则三棱锥P ﹣ABC 的体积的最大值是( ) A .4√2B .2√2C .43√2 D .34√26.(5分)抛物线y 2=2px (p >0)的焦点为F ,准线为l ,A ,B 是抛物线上的两个动点,且满足∠AFB =2π3.设线段AB 的中点M 在l 上的投影为N ,则|MN||AB|的最大值是( )A .√3B .√32C .√33D .√347.(5分)函数f (x )=sin x +cos x +sin x •cos x 的值域为( ) A .[﹣1,1]B .[﹣1,√2+12]C .[﹣1,√2−12]D .[−1,√2]8.(5分)函数f (x )=ln (x 3+4)﹣e x﹣1的图象大致是( )A .B .C .D .9.(5分)如图是函数y =A sin (ωx +φ)(x ∈R ,A >0,ω>0,0<φ<π2)在区间[−π6,5π6]上的图象,为了得到这个函数的图象,只需将y =sin x (x ∈R )的图象上的所有的点( )A .向左平移π3个长度单位,再把所得各点的横坐标变为原来的12,纵坐标不变B .向左平移π3个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变C .向左平移π6个长度单位,再把所得各点的横坐标变为原来的12,纵坐标不变D .向左平移π6个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变10.(5分)欲测量河宽即河岸之间的距离(河的两岸可视为平行),受地理条件和测量工具的限制,采用如下办法:如图所示,在河的一岸边选取A ,B 两个观测点,观察对岸的点C ,测得∠CAB =75°,∠CBA =45°,AB =120米,由此可得河宽约为(精确到1米,参考数据√6≈2.45,sin75°≈0.97)( )A .170米B .110米C .95米D .80米11.(5分)下列叙述随机事件的频率与概率的关系中,说法正确的是( )A .频率就是概率B .频率是随机的,与试验次数无关C .概率是稳定的,与试验次数无关D .概率是随机的,与试验次数有关 12.(5分)已知双曲线x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 2且斜率为247的直线与双曲线在第一象限的交点为A ,若(F 2F 1→+F 2A →)⋅F 1A →=0,则此双曲线的标准方程可能为( )A .x 2−y 212=1B .x 23−y 24=1C .x 216−y 29=1 D .x 29−y 216=1二.填空题(共4小题,满分20分,每小题5分)13.(5分)设函数f (x )={x 2,0≤x <5f(x −5),x ≥5,那么f (18)的值 .14.(5分)为估计池塘中鱼的数量,负责人将50条带有标记的同品种鱼放入池塘,几天后,随机打捞40条鱼,其中带有标记的共5条.利用统计与概率知识可以估计池塘中原来有鱼 条.15.(5分)某公司租地建仓库,每月土地占用费y 1与仓库到车站的距离成反比,而每月库存货物的运费y 2与到车站的距离成正比,如果在距离车站10km 处建仓库,这两项费用y 1和y 2分别为2万元和8万元,要使这两项费用之和最小,仓库应建立在距离车站 km 处,最少费用为 万元.16.(5分)如图,圆形纸片的圆心为O 半径为4cm ,该纸片上的正方形ABCD 的中心为O ,E ,F ,G ,H 为圆O 上的点,△ABE 、△BCF 、△CDG 、△DAH 分别是以AB ,BC ,CD ,DA 为底边的等腰三角形,沿虚线剪开后,分别以AB ,BC ,CD ,DA 为折痕折起△ABE 、△BCF 、△CDG 、△DAH ,使得E ,F ,G ,H 重合,得到一个四棱锥,当四棱锥体积取得最大值,正方形ABCD 的边长为 cm .三.解答题(共5小题,满分60分,每小题12分)17.(12分)在①a2+a3=a5﹣b1,②a2•a3=2a7,③S3=15这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列{a n}的公差d>0,前n项和为S n,若_______,数列{b n}满足b1=1,b2=1 3,a nb n+1=nb n﹣b n+1.(1)求{a n}的通项公式;(2)求{b n}的前n项和T n.注:如果选择多个条件分别解答,按第一个解答计分.18.(12分)某包子店每天早晨会提前做好若干笼包子,以保证当天及时供应,每卖出一笼包子的利润为40元,当天未卖出的包子作废料处理,每笼亏损20元.该包子店记录了60天包子的日需求量n(单位:笼,n∈N),整理得到如图所示的条形图,以这60天各需求量的频率代替相应的概率.(Ⅰ)设X为一天的包子需求量,求X的数学期望.(Ⅱ)若该包子店想保证80%以上的天数能够足量供应,则每天至少要做多少笼包子?(Ⅲ)为了减少浪费,该包子店一天只做18笼包子,设Y为当天的利润(单位:元),求Y的分布列和数学期望.19.(12分)如图所示,在四棱锥P﹣ABCD中,四边形ABCD为菱形,∠DAB=60°,AB =2,△P AD为等边三角形,平面P AD⊥平面ABCD.(1)求证AD ⊥PB .(2)在棱AB 上是否存在点F ,使DF 与平面PDC 所成角的正弦值为2√55?若存在,确定线段AF 的长度;若不存在,请说明理由.20.(12分)已知椭圆C :x 212+y 24=1,A 、B 分别是椭圆C 长轴的左、右端点,M 为椭圆上的动点.(1)求∠AMB 的最大值,并证明你的结论;(2)设直线AM 的斜率为k ,且k ∈(−12,−13),求直线BM 的斜率的取值范围. 21.(12分)已知函数f (x )=xlnx +λx 2,λ∈R .(Ⅰ)若λ=﹣1,求曲线f (x )在点(1,f (1)处的切线方程;(Ⅱ)若关于x 的不等式f (x )≤λ在[1,+∞)上恒成立,求实数λ的取值范围. 四.解答题(共1小题,满分10分,每小题10分)22.(10分)在直角坐标系xOy 中,参数方程{x =cosθy =sinθ(其中θ为参数)的曲线经过伸缩变换φ:{x′=2xy′=y 得到曲线C ,以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线D 的极坐标方程为ρsin(θ+π4)=3√102. (Ⅰ)求曲线C 的普通方程及曲线D 的直角坐标方程;(Ⅱ)设M 、N 分别为曲线C 和曲线D 上的动点,求|MN |的最小值. 五.解答题(共1小题)23.已知函数f (x )=2|x |+|x ﹣2|. (1)解不等式f (x )≤4;(2)设函数f (x )的最小值为m ,若实数a 、b 满足a 2+b 2=m 2,求4a 2+1b 2+1最小值.2020年高考数学(理科)全国2卷高考模拟试卷(3)参考答案与试题解析一.选择题(共12小题,满分60分,每小题5分)1.(5分)设集合A ={x |x >0},B ={x |log 2(3x ﹣2)<2},则( ) A .A ∩B =(0,53] B .A ∩B =(0,13] C .A ∪B =(13,+∞)D .A ∪B =(0,+∞)【解答】解:∵集合A ={x |x >0},B ={x |log 2(3x ﹣2)<2}, ∴B ={x |23<x <2},则A ∪B =(0,+∞),A ∩B =(23,2),故选:D .2.(5分)已知i 是虚数单位,复数z 满足1−2i z=1+i ,则|z |=( ) A .√52B .3√22C .√102D .√3【解答】解:由1−2i z=1+i ,得z =1−2i1+i =(1−2i)(1−i)(1+i)(1−i)=−12−32i ,∴|z |=|z |=√(−12)2+(−32)2=√102.故选:C .3.(5分)在△ABC 中,“AB →•AC →=BA →•BC →”是“|AC →|=|BC →|”( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解答】解:因为在△ABC 中AB →•AC →=BA →•BC →等价于AB →•AC →−BA →•BC →=0等价于AB →•(AC →+BC →)=0,因为AC →+BC →的方向为AB 边上的中线的方向.即AB 与AB 边上的中线相互垂直,则△ABC 为等腰三角形,故AC =BC , 即|AC|→=|BC →|,所以为充分必要条件. 故选:C .4.(5分)已知a ,b 是两条直线,α,β,γ是三个平面,则下列命题正确的是( )A .若a ∥α,b ∥β,a ∥b ,则α∥βB .若α⊥β,a ⊥α,则a ∥βC .若α⊥β,α⊥γ,β∩γ=a ,则a ⊥αD .若α∥β,a ∥α,则a ∥β【解答】解:A .若a ∥α,b ∥β,a ∥b ,则α∥β,不正确,可能相交; B .若α⊥β,a ⊥α,则a ∥β或a ⊂β,因此不正确; C .若α⊥β,α⊥γ,β∩γ=a ,则a ⊥α,正确;证明:设α∩β=b ,α∩γ=c ,取P ∈α,过点P 分别作m ⊥b ,n ⊥c , 则m ⊥β,n ⊥γ,∴m ⊥a ,n ⊥a ,又m ∩n =P ,∴a ⊥α. D .若α∥β,a ∥α,则a ∥β或a ⊂β. 故选:C .5.(5分)三棱锥P ﹣ABC 内接于半径为2的球中,P A ⊥平面ABC ,∠BAC =π2,BC =2√2,则三棱锥P ﹣ABC 的体积的最大值是( ) A .4√2B .2√2C .43√2D .34√2【解答】解:由题意三棱锥P ﹣ABC 内接于半径为2的球中,P A ⊥平面ABC ,∠BAC =π2,BC =2√2,棱锥的高为P A ,可得16=8+P A 2,所以P A =2√2,所以三棱锥的体积为:13×12×AB ×AC ×PA =√23•AB •AC ≤√23⋅AB 2+AC 22=4√23,当且仅当AB =AC =2时,三棱锥的体积取得最大值. 故选:C .6.(5分)抛物线y 2=2px (p >0)的焦点为F ,准线为l ,A ,B 是抛物线上的两个动点,且满足∠AFB =2π3.设线段AB 的中点M 在l 上的投影为N ,则|MN||AB|的最大值是( )A .√3B .√32C .√33D .√34【解答】解:设|AF |=a ,|BF |=b ,A 、B 在准线上的射影点分别为Q 、P , 连接AQ 、BQ由抛物线定义,得|AF |=|AQ |且|BF |=|BP |,在梯形ABPQ 中根据中位线定理,得2|MN |=|AQ |+|BP |=a +b . 由余弦定理得|AB |2=a 2+b 2﹣2ab cos 2π3=a 2+b 2+ab ,配方得|AB |2=(a +b )2﹣ab , 又∵ab ≤(a+b 2) 2,∴(a +b )2﹣ab ≥(a +b )2﹣( a+b 2) 2=34(a +b )2得到|AB |≥√32(a +b ). 所以|MN||AB|≤a+b2√32(a+b)=√33, 即|MN||AB|的最大值为√33. 故选:C .7.(5分)函数f (x )=sin x +cos x +sin x •cos x 的值域为( ) A .[﹣1,1]B .[﹣1,√2+12]C .[﹣1,√2−12]D .[−1,√2]【解答】解:设sin x +cos x =t (−√2≤t ≤√2)所以:sinxcosx =t 2−12则:f (x )=sin x +cos x +sin x •cos x=t +t 2−12=12(t +1)2−1当t =√2时,函数取最大值:f(x)max =f(√2)=√2+12 当t =﹣1时,函数取最小值:f (x )min =f (﹣1)=﹣1 所以函数的值域为:[−1,√2+12] 故选:B .8.(5分)函数f (x )=ln (x 3+4)﹣e x﹣1的图象大致是( )A .B .C .D .【解答】解:∵x 3+4>0,∴x 3>﹣4,解得x >−√43,∴函数的定义域为{x |x >−√43}, 当x →−√43时,f (x )→﹣∞,∴排除选项A ; ∵f (x )=ln (x 3+4)﹣e x ﹣1,∴f ′(x)=3x 2x 3+4−e x−1, f (0)=ln (0+4)﹣e ﹣1=ln 4﹣e ﹣1>0,∴排除选项C ; ∵f (x )=ln (x 3+4)﹣e x ﹣1,∴f '(0)=﹣e ﹣1<0,即x =0在函数的单调递减区间内,∴排除选项D .故选:B .9.(5分)如图是函数y =A sin (ωx +φ)(x ∈R ,A >0,ω>0,0<φ<π2)在区间[−π6,5π6]上的图象,为了得到这个函数的图象,只需将y =sin x (x ∈R )的图象上的所有的点( )A .向左平移π3个长度单位,再把所得各点的横坐标变为原来的12,纵坐标不变B .向左平移π3个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变C .向左平移π6个长度单位,再把所得各点的横坐标变为原来的12,纵坐标不变D .向左平移π6个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变【解答】解:由图可知A =1,T =π, ∴ω=2,又−π6ω+φ=2k π(k ∈Z ),∴φ=2k π+π3(k ∈Z ),又0<ϕ<π2, ∴φ=π3,∴y =sin (2x +π3).∴为了得到这个函数的图象,只需将y =sin x (x ∈R )的图象上的所有向左平移π3个长度单位,得到y =sin (x +π3)的图象,再将y =sin (x +π3)的图象上各点的横坐标变为原来的12(纵坐标不变)即可.故选:A .10.(5分)欲测量河宽即河岸之间的距离(河的两岸可视为平行),受地理条件和测量工具的限制,采用如下办法:如图所示,在河的一岸边选取A ,B 两个观测点,观察对岸的点C ,测得∠CAB =75°,∠CBA =45°,AB =120米,由此可得河宽约为(精确到1米,参考数据√6≈2.45,sin75°≈0.97)( )A .170米B .110米C .95米D .80米【解答】解:在△ABC 中,∠ACB =180°﹣75°﹣45°=60°, 由正弦定理得:AB sin∠ACB=AC sin∠ABC,∴AC =AB⋅sin∠ABC sin∠ACB=120×√22√32=40√6,∴S △ABC =12AB •AC •sin ∠CAB =12×120×40√6×sin75°≈5703.6, ∴C 到AB 的距离d =2S △ABC AB=2×5703.6120≈95. 故选:C .11.(5分)下列叙述随机事件的频率与概率的关系中,说法正确的是( ) A .频率就是概率B .频率是随机的,与试验次数无关C .概率是稳定的,与试验次数无关D .概率是随机的,与试验次数有关【解答】解:频率是随机的,随实验而变化,但概率是唯一确定的一个值. 故选:C .12.(5分)已知双曲线x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 2且斜率为247的直线与双曲线在第一象限的交点为A ,若(F 2F 1→+F 2A →)⋅F 1A →=0,则此双曲线的标准方程可能为( )A .x 2−y 212=1B .x 23−y 24=1C .x 216−y 29=1D .x 29−y 216=1【解答】解:若(F 2F 1→+F 2A →)•F 1A →=0,即为若(F 2F 1→+F 2A →)•(−F 2F 1→+F 2A →)=0, 可得AF 2→2=F 2F 1→2,即有|AF 2|=|F 2F 1|=2c , 由双曲线的定义可得|AF 1|=2a +2c ,在等腰三角形AF 1F 2中,tan ∠AF 2F 1=−247,cos ∠AF 2F 1=−725=4c 2+4c 2−(2a+2c)22⋅2c⋅2c,化为3c =5a , 即a =35c ,b =45c ,可得a :b =3:4,a 2:b 2=9:16. 故选:D .二.填空题(共4小题,满分20分,每小题5分)13.(5分)设函数f (x )={x 2,0≤x <5f(x −5),x ≥5,那么f (18)的值 9 .【解答】解:∵函数f (x )={x 2,0≤x <5f(x −5),x ≥5,∴f (18)=f (3×5+3)=f (3)=32=9. 故答案为:9.14.(5分)为估计池塘中鱼的数量,负责人将50条带有标记的同品种鱼放入池塘,几天后,随机打捞40条鱼,其中带有标记的共5条.利用统计与概率知识可以估计池塘中原来有鱼 400 条.【解答】解:为估计池塘中鱼的数量,负责人将50条带有标记的同品种鱼放入池塘, 几天后,随机打捞40条鱼,其中带有标记的共5条. 设池塘中原来有鱼n 条,则540=50n,解得n =400. 故答案为:400.15.(5分)某公司租地建仓库,每月土地占用费y 1与仓库到车站的距离成反比,而每月库存货物的运费y 2与到车站的距离成正比,如果在距离车站10km 处建仓库,这两项费用y 1和y 2分别为2万元和8万元,要使这两项费用之和最小,仓库应建立在距离车站 5 km 处,最少费用为 8 万元.【解答】解:设x 为仓库与车站距离,由题意可设y 1=k 1x,y 2=k 2x , 把x =10,y 1=2与x =10,y 2=8分别代入上式得k 1=20,k 2=0.8, ∴y 1=20x ,y 2=0.8x费用之和y =y 1+y 2=0.8x +20x ≥2√20x ×0.8x =2×4=8, 当且仅当0.8x =20x ,即x =5时等号成立.当仓库建在离车站5km 处两项费用之和最小.最少费用为8万元. 故答案为:5,8.16.(5分)如图,圆形纸片的圆心为O 半径为4cm ,该纸片上的正方形ABCD 的中心为O ,E ,F ,G ,H 为圆O 上的点,△ABE 、△BCF 、△CDG 、△DAH 分别是以AB ,BC ,CD ,DA 为底边的等腰三角形,沿虚线剪开后,分别以AB ,BC ,CD ,DA 为折痕折起△ABE 、△BCF 、△CDG 、△DAH ,使得E ,F ,G ,H 重合,得到一个四棱锥,当四棱锥体积取得最大值,正方形ABCD 的边长为165cm .【解答】解:连接OG 交CD 于点M ,则OG ⊥DC ,点M 为CD 的中点,连接OC , △OCM 为直角三角形,设正方形的边长为2x ,则OM =x ,由圆的半径 为4,则MG =4﹣x ,设额E ,F ,G ,H 重合于点P ,则PM =MG =4﹣x >x 则0x <2,高PO =√(4−x)2−x 2=√16−8x , V =13(2x)2√16−8x =8√23√2x 4−x 5, 设y =2x 4﹣x 5,y ′=8x 3﹣5x 4=x 3(8﹣5x ),当0<x <85时,y ′>0,y =2x 4﹣x 5单调递增;当85<x <2时,y ′<0,y =2x 4﹣x 5单调递减,所以当x =85时,V 取得最大值,此时,2x =165. 即正方形ABCD 的边长为165时,四棱锥体积取得最大值.三.解答题(共5小题,满分60分,每小题12分)17.(12分)在①a 2+a 3=a 5﹣b 1,②a 2•a 3=2a 7,③S 3=15这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列{a n }的公差d >0,前n 项和为S n ,若 _______,数列{b n }满足b 1=1,b 2=13,a n b n +1=nb n ﹣b n +1. (1)求{a n }的通项公式; (2)求{b n }的前n 项和T n .注:如果选择多个条件分别解答,按第一个解答计分. 【解答】解:若选①:(1)∵a n b n +1=nb n ﹣b n +1,∴当n =1时,a 1b 2=b 1﹣b 2,∵b 1=1,b 2=13,∴a 1=2. 又∵a 2+a 3=a 5﹣b 1,∴d =3, ∴a n =3n ﹣1;(2)由(1)知:(3n ﹣1)b n +1=nb n ﹣b n +1,即3nb n +1=nb n ,∴b n+1=13b n .又b 1=1,所以数列{b n }是以1为首项,以13为公比的等比数列,∴bn=(13)n−1,T n =1−(13)n1−13=32(1−3−n). 若选②:(1)∵a n b n +1=nb n ﹣b n +1,∴当n =1时,a 1b 2=b 1﹣b 2,∵b 1=1,b 2=13,∴a 1=2. 又∵a 2•a 3=2a 7,∴(2+d )(2+2d )=2(2+6d ),∵d >0,∴d =3, ∴a n =3n ﹣1;(2)由(1)知:(3n ﹣1)b n +1=nb n ﹣b n +1,即3nb n +1=nb n ,∴b n+1=13b n .又b 1=1,所以数列{b n }是以1为首项,以13为公比的等比数列,∴bn=(13)n−1,T n =1−(13)n1−13=32(1−3−n ). 若选③:(1)∵a n b n +1=nb n ﹣b n +1,∴当n =1时,a 1b 2=b 1﹣b 2,∵b 1=1,b 2=13,∴a 1=2. 又∵S 3=15,∴d =3, ∴a n =3n ﹣1;(2)由(1)知:(3n ﹣1)b n +1=nb n ﹣b n +1,即3nb n +1=nb n ,∴b n+1=13b n .又b 1=1,所以数列{b n }是以1为首项,以13为公比的等比数列,∴bn=(13)n−1,T n =1−(13)n1−13=32(1−3−n ). 18.(12分)某包子店每天早晨会提前做好若干笼包子,以保证当天及时供应,每卖出一笼包子的利润为40元,当天未卖出的包子作废料处理,每笼亏损20元.该包子店记录了60天包子的日需求量n (单位:笼,n ∈N ),整理得到如图所示的条形图,以这60天各需求量的频率代替相应的概率.(Ⅰ)设X 为一天的包子需求量,求X 的数学期望.(Ⅱ)若该包子店想保证80%以上的天数能够足量供应,则每天至少要做多少笼包子? (Ⅲ)为了减少浪费,该包子店一天只做18笼包子,设Y 为当天的利润(单位:元),求Y 的分布列和数学期望.【解答】解:(Ⅰ)由题意得,X 的数学期望为E(X)=16×1060+17×1560+18×2060+19×1060+20×560=17.75. (Ⅱ)因为P(n ≤18)=34<0.8,P(n ≤19)=1112>0.8, 所以包子店每天至少要做19笼包子.(Ⅲ)当n =16时,Y =16×40﹣2×20=600; 当n =17时,Y =17×40﹣20=660; 当n ≥18时,Y =18×40=720. 所以Y 的可能取值为600,660,720,P(Y =600)=16,P(Y =660)=14,P(Y =720)=1−16−14=712. 所以Y 的分布列为Y 600660720P1614712所以Y 的数学期望为E(Y)=600×16+660×14+720×712=685.19.(12分)如图所示,在四棱锥P ﹣ABCD 中,四边形ABCD 为菱形,∠DAB =60°,AB =2,△P AD 为等边三角形,平面P AD ⊥平面ABCD . (1)求证AD ⊥PB .(2)在棱AB 上是否存在点F ,使DF 与平面PDC 所成角的正弦值为2√55?若存在,确定线段AF 的长度;若不存在,请说明理由.【解答】(1)证明:取AD 中点O ,连接PO ,OB ,因为平面P AD ⊥平面ABCD ,△P AD 为等边三角形,O 为AD 的中点, 所以PO ⊥平面ABCD ,PO ⊥AD因为四边形ABCD 为菱形,且∠DAB =60°,O 为AD 中点, 所以BO ⊥AD因为PO ∩BO =O ,所以AD ⊥面PBO ,所以AD ⊥PB ;(2)解:在△OCD 中,OC =√1+4−2×1×2×(−12)=√7,∴PC =√10, ∴S △PCD =12×√10×√62=√152设A 到平面PCD 的距离为h ,则13×12×2×2×sin120°×√3=13×√152h ,∴h =2√155, ∵DF 与平面PDC 所成角的正弦值为2√55, ∴2√155DF=2√55,∴DF =√3,∴F 是AB 的中点,AF =1.20.(12分)已知椭圆C :x 212+y 24=1,A 、B 分别是椭圆C 长轴的左、右端点,M 为椭圆上的动点.(1)求∠AMB 的最大值,并证明你的结论;(2)设直线AM 的斜率为k ,且k ∈(−12,−13),求直线BM 的斜率的取值范围. 【解答】解:(1)根据椭圆的对称性,不妨设M (x 0,y 0),(﹣2√3<x 0<2√3,0<y 0≤2),过点M 作MH ⊥x 轴,垂足为H ,则H (x 0,0)(0<y 0≤2), 于是又tan ∠AMH =|AH||MH|=x 0+2√3y 0,tan ∠BMH =|BH||MH|=2√3−x 0y 0, ∴tan ∠AMB =tan (∠AMH +∠BMH )=tan∠AMH+tan∠BMH1−tan∠AMHtan∠BMH =4√3y 0x 02+y 02−12,因为点M (x 0,y 0)在椭圆C 上,所以x 0212+y 024=1,所以x 02=12﹣3y 02, 所以tan ∠AMB =−2√3y 0,而0<y 0≤2, 所以tan ∠AMB =−2√3y 0≤−√3,因为0<∠AMB <π, 所以∠AMB 的最大值为2π3,此时y 0=2,即M 为椭圆的上顶点,由椭圆的对称性,当M 为椭圆的短轴的顶点时,∠AMB 取最大值,且最大值为2π3;(2)设直线BM 的斜率为k '.M (x 0,y 0),则k =0x 0+2√3,k '=0x 0−2√3,所以kk '=y 02x 02−12,又x 0212+y 024=1,所以x 02=12﹣3y 02,所以kk '=−13.因为−12<k <−13,所以k '∈(23,1)所以直线BM 的斜率的取值范围.(23,1).21.(12分)已知函数f (x )=xlnx +λx 2,λ∈R .(Ⅰ)若λ=﹣1,求曲线f (x )在点(1,f (1)处的切线方程;(Ⅱ)若关于x 的不等式f (x )≤λ在[1,+∞)上恒成立,求实数λ的取值范围. 【解答】解:(Ⅰ)当λ=﹣1时,f (x )=xlnx +λx 2,则f ′(x )=lnx +1﹣2x . 故f ′(1)=﹣1,又f (1)=﹣1.故所求期限的方程为y ﹣(﹣1)=﹣1•(x ﹣1),即x +y =0; (Ⅱ)由题意得,xlnx +λx 2≤λ在[1,+∞)上恒成立, 设函数g (x )=xlnx +λ(x 2﹣1). 则g ′(x )=lnx +1+2λx .故对任意x ∈[1,+∞),不等式g (x )≤0=g (1)恒成立, ①当g ′(x )≤0,即lnx+1x≤−2λ恒成立时,函数g (x )在[1,+∞)上单调递减,设r (x )=lnx+1x ,则r ′(x )=−lnxx2≤0, ∴r (x )max =r (1),即1≤﹣2λ,解得λ≤−12,符合题意;②当λ≥0时,g ′(x )≥0恒成立,此时函数g (x )在[1,+∞)上单调递增, 则不等式g (x )≥g (1)=0对任意x ∈[1,+∞)恒成立,不符合题意; ③当−12<λ<0时,设q (x )=g ′(x )=lnx +1+2λx ,则q ′(x )=1x +2λ, 令q (x )=0,解得x =−12λ>1, 故当x ∈(1,−12λ)时,函数g (x )单调递增, ∴当x ∈(1,−12λ)时,g (x )>0成立,不符合题意, 综上所述,实数λ的取值范围为(﹣∞,−12]. 四.解答题(共1小题,满分10分,每小题10分)22.(10分)在直角坐标系xOy 中,参数方程{x =cosθy =sinθ(其中θ为参数)的曲线经过伸缩变换φ:{x′=2xy′=y 得到曲线C ,以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线D 的极坐标方程为ρsin(θ+π4)=3√102. (Ⅰ)求曲线C 的普通方程及曲线D 的直角坐标方程;(Ⅱ)设M 、N 分别为曲线C 和曲线D 上的动点,求|MN |的最小值.【解答】解:(Ⅰ)参数方程{x =cosθy =sinθ(其中θ为参数)的曲线经过伸缩变换φ:{x′=2xy′=y 得到曲线C :x 24+y 2=1;曲线D 的极坐标方程为ρsin(θ+π4)=3√102.转化为直角坐标方程为:x +y −3√5=0; (Ⅱ)设点P (2cos θ,sin θ)到直线x +y ﹣3√5=0的距离d =√5|√2=√5sin(θ+α)−3√5|√2,当sin (θ+α)=1时,d min =√10. 五.解答题(共1小题)23.已知函数f (x )=2|x |+|x ﹣2|. (1)解不等式f (x )≤4;(2)设函数f (x )的最小值为m ,若实数a 、b 满足a 2+b 2=m 2,求4a 2+1b 2+1最小值.【解答】解:(1)当x <0时,则f (x )=﹣3x +2≤4,解得:−23≤x <0, 当0≤x ≤2时,则f (x )=x +2≤4,解得:0≤x ≤2, 当x >2时,则f (x )=3x ﹣2≤4,此时无解, 综上,不等式的解集是{x |−23≤x ≤2};(2)由(1)知,当x <0时,f (x )=﹣3x +2>2, 当0≤x ≤2时,则f (x )=x +2≥2, 当x >2时,则f (x )=3x ﹣2>4, 故函数f (x )的最小值是2, 故m =2,即a 2+b 2=4, 则4a 2+1b 2+1=15(a 2+b 2+1)(4a 2+1b 2+1)第21页(共21页)=15[5+4(b 2+1)a 2+a 2b 2+1] ≥15(5+2√4(b 2+1)a 2⋅a 2b 2+1)≥95, 当且仅当4(b 2+1)a 2=a 2b 2+1且a 2+b 2=4, 即a 2=103,b 2=23取“=”, 故4a 2+1b 2+1的最小值是95.。

2020年江苏省高考数学填空题考前压轴冲刺——专题03 三角函数与解三角形问题(解析版)

2020年江苏省高考数学填空题考前压轴冲刺——专题03 三角函数与解三角形问题(解析版)

2020年江苏省高考数学填空题考前压轴冲刺专题03三角函数与解三角形问题2020年江苏高考填空题考点预测三角函数与解三角形是江苏高考必考的题型,主要考察正余弦定理,三角函数的图像与性质在解三角形中的灵活运用,常考的知识点如下:1.在ABC ∆中,C B A C B A tan tan tan tan tan tan =++,CB C B A tan tan 1tan tan tan -+-=. 2.在ABC ∆中,B c C b a cos cos +=,A c C a b cos cos +=,A b B a c cos cos +=.3.ABC ∆的面积Rabc R c ab C ab S 4221sin 21===. 4.C R c B R b A R a sin 2,sin 2,sin 2===.5.222222222cos 2,cos 2,cos 2b c a B ac c b a C ab a c b A bc -+=-+=-+=. 例1.(高考题)在锐角ABC ∆中,若C B A sin sin 2sin =,则C B A tan tan tan 的最小值为___________. 【答案】22【解析】法一:(基本不等式)因为C B A sin sin 2sin =,所以C B C B C B sin sin 2sin cos cos sin =+,得 C B C B tan tan 2tan tan =+. 所以:C B A C B A C B A C B A tan tan tan 22tan tan 2tan tan tan tan tan tan tan ≥+=++=, 即:22tan tan tan ≥C B A ,即C B A tan tan tan 的最小值为8.当4π=A 时等号成立.法二:(函数法)因为C B A sin sin 2sin =,所以C B C B C B sin sin 2sin cos cos sin =+,得 C B C B tan tan 2tan tan =+.所以1tan tan tan tan 2tan tan 1tan tan tan -=-+-=C B C B C B C B A ,所以:1tan tan tan tan 2tan tan tan 22-=C B C B C B A ,令x C B =-1tan tan ,则0,)1(2tan tan tan 2>+=x xx C B A 则84)1(2)1(2tan tan tan 2≥++=+=xx x x C B A ,当1=x 时等号成立. 即C B A tan tan tan 的最小值为8.当4π=A 时等号成立.例 2.在ABC ∆中,,,A B C 所对的边分别为,,a b c ,若22228a b c ++=,则ABC ∆面积的最大值为 . 【答案】552【解析】法一:由三角形面积公式可得1sin 2S ab C =,()222211cos 4S a b C =-, 22222221142a b c S a b ab ⎡⎤⎛⎫+-=-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦,因为22228a b c ++=,所以22282a b c +=-,()2222222222222228311831114242416c a b c c S a b a b a b ab ab ⎡⎤⎡⎤-⎛⎫⎛⎫+--=-=-=-⎢⎥⎢⎥ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦()()222222835161616a bc c c +-≤-=-+,当且仅当a b =时,等号成立, 当85c =时, 2516c c -+取得最大值45,S. 法二:建立如图平面直角坐标系,设)0,2(c A -,),(),0,2(y x C c B 因为82222=++c b a ,所以82)2()2(22222=+++++-c y cx y cx , 即222454c y x -=+,点C 在半径为2454c -的圆上运动,所以55245422212≤-=≤=c c cr ch S ,当85c =时, 2516c c -+取得最大值45,S的最大值为5.。

【人教版】2020高考数学三轮冲刺 专题 随机事件练习(含解析)

【人教版】2020高考数学三轮冲刺 专题 随机事件练习(含解析)

随机事件一、选择题(本大题共12小题,共60分)1. 若某群体中的成员只用现金支付的概率为,既用现金支付也用非现金支付的概率为,则不用现金支付的概率为A. B. C. D.(正确答案)B解:某群体中的成员只用现金支付,既用现金支付也用非现金支付,不用现金支付,是互斥事件,所以不用现金支付的概率为:.故选:B.直接利用互斥事件的概率的加法公式求解即可.本题考查互斥事件的概率的求法,判断事件是互斥事件是解题的关键,是基本知识的考查.2. 从装有3个红球和3个白球的口袋里任取3个球,那么互斥而不对立的两个事件是A. 至少2个白球,都是红球B. 至少1个白球,至少1个红球C. 至少2个白球,至多1个白球D. 恰好1个白球,恰好2个红球(正确答案)A解:从装有3个红球和3个白球的口袋内任取3个球,取球情况有:3个球都是红球;3个球中1个红球2个白球;3个球中2个红球1个白球;3个球都是白球.选项A中“至少2个白球“,与”都是红球“互斥而不对立,选项B中“至少有一个白球”与“至少有一个红球”的交事件是“有1白球2个红球”或“有2白球1个红球”;选项C中“至少有2个白球”与“至多1个白球”是对立事件;选项D中“恰有一个白球”和“恰有两个红球”既不互斥也不对立.故选:A.分析出从装有3个红球和3个白球的口袋内任取3个球的所有不同情况,然后利用互斥事件和对立事件的概念逐一核对四个选项即可得到答案.本题考查了互斥事件和对立事件的概念,对于两个事件而言,互斥不一定对立,对立必互斥,是基础的概念题.3. 有四个游戏盒,将它们水平放稳后,在上面仍一粒玻璃珠,若玻璃珠落在阴影部分,则可中奖,则中奖机会大的游戏盘是A. B. C. D.(正确答案)D解:在A中,中奖概率为,在B中,中奖概率为,在C中,中奖概率为,在D中,中奖概率为.中奖机会大的游戏盘是D.故选:D.利用几何概型分别求出A,B,C,D四个游戏盘中奖的概率,由此能求出结果.本题考查概率的求法,是基础题,解题时要认真审题,注意几何概型的合理运用.4. 从1,2,3,4,5中任取2个不同的数,事件“取到的2个数之和为偶数”,事件“取到的2个数均为偶数”,则A. B. C. D.(正确答案)B解:,.由条件概率公式得.故选:B.利用互斥事件的概率及古典概型概率计算公式求出事件A的概率,同样利用古典概型概率计算公式求出事件AB的概率,然后直接利用条件概率公式求解.本题考查了条件概率与互斥事件的概率,考查了古典概型及其概率计算公式,解答的关键在于对条件概率的理解与公式的运用,属中档题.5. 从甲口袋内摸出1个白球的概率是,从乙口袋内摸出1个白球的概率是,如果从两个口袋内摸出一个球,那么是A. 2个球不都是白球的概率B. 2个球都不是白球的概率C. 2个球都是白球的概率D. 2个球恰好有一个球是白球的概率(正确答案)A解:两个球不都是白球的对立事件是两个球都是白球,两者是相互独立的,两个球都是白球的概率,两个球不都是白球的概率是,故选A两个球不都是白球的对立事件是两个球都是白球,从甲口袋内摸出1个白球和从乙口袋内摸出1个白球是相互独立事件,根据对立事件和相互独立事件的公式得到结果.这种题目从条件不好考虑,可以借助于本题是选择题的特点从选项入手来做,把选项检验,看是否符合条件选择题的特殊做法也是应该掌握的,要学会做选择题.6. 设随机变量,,若,则的值为A. B. C. D.(正确答案)C解:变量,且,,,,故选:C.先根据变量,且,求出p的值,然后根据求出所求.本题主要考查了二项分布与n次独立重复试验的模型,解题的关键就是求p的值,属于中档题.7. 在区间上任选两个数x和y,则的概率为A. B. C. D.(正确答案)A解:如图,在区间上任选两个数x和y,则,平面区域是边长为2的正方形,的平面区间是圆外侧且正方形内侧的阴影部分,由几何概型概率计算公式得:的概率为:.故选:A.,平面区域是边长为2的正方形,的平面区间是圆外侧且正方形内侧的阴影部分,由几何概型概率计算公式能求出的概率.本题考查概率的求法,考查几何概型等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.8. 市场调查发现,大约的人喜欢在网上购买家用小电器,其余的人则喜欢在实体店购买家用小电器经工商局抽样调查发现网上购买的家用小电器合格率约为,而实体店里的家用小电器的合格率约为现工商局12315电话接到一个关于家用小电器不合格的投诉,则这台被投诉的家用小电器是在网上购买的可能性是A. B. C. D.(正确答案)A解:大约的人喜欢在网上购买家用小电器,网上购买的家用小电器合格率约为,故网上购买的家用小电器被投诉的概率为,又实体店里的家用小电器的合格率约为.实体店里购买的家用小电器被投诉的概率为,故工商局12315电话接到一个关于家用小电器不合格的投诉,则这台被投诉的家用小电器是在网上购买的可能性,故选:A.由已知可得网上购买的家用小电器被投诉的概率为,实体店里购买的家用小电器被投诉的概率为,进而得到答案.本题考查的知识点是相互独立事件的概率乘法公式,几何概型,难度中档.9. 袋中装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是A. 至少有一个白球;都是白球B. 至少有一个白球;至少有一个红球C. 至少有一个白球;红、黑球各一个D. 恰有一个白球;一个白球一个黑球(正确答案)C解:袋中装有红球3个、白球2个、黑球1个,从中任取2个,在B中,至少有一个白球和至少有一个红球两个事件能同时发生,不是互斥事件,故B不成立;在C中,至少有一个白球和红、黑球各一个两个事件不能同时发生但能同时不发生,是互斥而不对立的两个事件,故C成立;在D中,恰有一个白球和一个白球一个黑球两个事件能同时发生,不是互斥事件,故D不成立;在A中,至少有一个白球和都是白球两个事件能同时发生,不是互斥事件,故A不成立.故选:C.利用互斥事件、对立事件的定义直接求解.本题考查互斥而不对立事件的判断,是基础题,解题时要认真审题,注意互斥事件、对立事件的定义的合理运用.10. 某班级为了进行户外拓展游戏,组成红、蓝、黄3个小队甲、乙两位同学各自等可能地选择其中一个小队,则他们选到同一小队的概率为A. B. C. D.(正确答案)A解:甲,乙两位同学各自等可能地选择其中一个小队,情况有种甲,乙两位同学选到同一小队的情况有3种故概率为.故选:A.由古典概型概率公式求解.本题考查等可能事件的概率,考查利用排列组合解决实际问题,考查学生的计算能力,属于基础题.11. 在投篮测试中,每人投3次,其中至少有两次投中才能通过测试已知某同学每次投篮投中的概率为,且各次投篮是否投中相互独立,则该同学能通过测试的概率为A. B. C. D.(正确答案)D解:该同学通过测试的概率为,故选D.利用n次独立重复试验中恰好发生k次的概率公式,计算求得结果.本题考查相互独立事件的概率乘法公式及n次独立重复试验中恰好发生k次的概率公式,解答本题关键是判断出所研究的事件是那一种概率模型,属于基础题.12. 已知函数,集合1,2,3,4,5,6,7,,现从M中任取两个不同元素m,n,则的概率为A. B. C. D.(正确答案)A解:函数,集合1,2,3,4,5,6,7,,现从M中任取两个不同元素m,n,使;当或6时,,满足的个数为:时8个,时8个;时8个,时8个;重复2个,共有30个;又从A中任取两个不同的元素m,n,则的值有个,函数从集合M中任取两个不同的元素m,n,则的概率为.故选:A.对于m值,求出函数的值,然后用排列组合求出满足的个数,再求所有的基本事件数,计算时的概率.本题考查概率的应用以及排列组合的应用问题,解题时应注意不重不漏,是中档题.二、填空题(本大题共4小题,共20分)13. 从分别写有1,2,3,4,5的五张卡片中任取两张,求这两张卡片上的数字和为偶数的概率为______.(正确答案)解:从五张卡片中任取两张的所有基本事件共有:,,,,,,,,,共10种情况,其中两张卡片上的数字和为偶数的基本事件有:,,,共4种情况,故两张卡片上的数字和为偶数的概率故答案为:本题考查的知识点是古典概型的概率公式,我们可以求出从五张卡片中任取两张的所有基本事件个数,再求出两张卡片上的数字和为偶数的基本事件个数,代入古典概型公式,即可求解.古典概型要求所有结果出现的可能性都相等,强调所有结果中每一结果出现的概率都相同弄清一次试验的意义以及每个基本事件的含义是解决问题的前提,正确把握各个事件的相互关系是解决问题的关键解决问题的步骤是:计算满足条件的基本事件个数,及基本事件的总个数,然后代入古典概型计算公式进行求解.14. 甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为______.(正确答案)解:甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,甲不输的概率为.故答案为:.利用互斥事件概率加法公式能求出甲不输的概率.本题考查概率的求法,考查互斥事件概率加法公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.15. 从字母a,b,c,d,e中任取两个不同字母,则取到字母a的概率为______.(正确答案)解:从字母a,b,c,d,e中任取两个不同字母,共有种情况,取到字母a,共有种情况,所求概率为.故答案为:.求得从字母a,b,c,d,e中任取两个不同字母、取到字母a的情况,利用古典概型概率公式求解即可.本题考查古典概型,是一个古典概型与排列组合结合的问题,解题时先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.16. 某厂生产的产品在出厂前都要做质量检测,每件一等品都能通过检测,每件二等品通过检测的概率均为,现有5件产品,其中2件一等品件二等品记该5件产品通过检测的产品个数为,则随机变量的数学期望______.(正确答案)4解:由题意知,3,4,5,,,,,.故答案为:4.由题意知,3,4,5,分别求出相应的概率,由此能求出随机变量的数学期望.本题考查数学期望的求法,是基础题,解题时要认真审题,注意排列组合知识的合理运用.三、解答题(本大题共3小题,共40分)17. 某商区停车场临时停车按时段收费,收费标准为:每辆汽车一次停车不超过1小时收费6元,超过1小时的部分每小时收费8元不足1小时的部分按1小时计算现有甲、乙二人在该商区临时停车,两人停车都不超过4小时.Ⅰ若甲停车1小时以上且不超过2小时的概率为,停车付费多于14元的概率为,求甲停车付费恰为6元的概率;Ⅱ若每人停车的时长在每个时段的可能性相同,求甲、乙二人停车付费之和为36元的概率.(正确答案)解:Ⅰ设“甲临时停车付费恰为6元”为事件A,则.所以甲临时停车付费恰为6元的概率是.Ⅱ设甲停车付费a元,乙停车付费b元,其中a,,14,22,则甲、乙二人的停车费用构成的基本事件空间为:,,,,,,,,,,,,,,,,共16种情形.其中,,,,这4种情形符合题意.故“甲、乙二人停车付费之和为36元”的概率为.Ⅰ根据题意,由全部基本事件的概率之和为1求解即可.Ⅱ先列出甲、乙二人停车付费之和为36元的所有情况,再利用古典概型及其概率计算公式求概率即可.本题考查古典概型及其概率计算公式、独立事件和互斥事件的概率,考查利用所学知识解决问题的能力.18. 现有4个人去参加娱乐活动,该活动有甲、乙两个游戏可供参加者选择为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.求这4个人中恰有2人去参加甲游戏的概率;求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记,求随机变量的分布列与数学期望.(正确答案)解:依题意,这4个人中,每个人去参加甲游戏的概率为,去参加乙游戏的人数的概率为设“这4个人中恰有i人去参加甲游戏”为事件1,2,3,,这4个人中恰有2人去参加甲游戏的概率为;设“这4个人中去参加甲游戏的人数大于去参加乙游戏”为事件B,则,的所有可能取值为0,2,4,由于与互斥,与互斥,故,的分布列是数学期望依题意,这4个人中,每个人去参加甲游戏的概率为,去参加乙游戏的人数的概率为设“这4个人中恰有i人去参加甲游戏”为事件1,2,3,,故这4个人中恰有2人去参加甲游戏的概率为;设“这4个人中去参加甲游戏的人数大于去参加乙游戏”为事件B,则,利用互斥事件的概率公式可求;的所有可能取值为0,2,4,由于与互斥,与互斥,求出相应的概率,可得的分布列与数学期望.本题考查概率知识的求解,考查互斥事件的概率公式,考查离散型随机变量的分布列与期望,属于中档题.19. 盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得分现从盒内任取3个球Ⅰ求取出的3个球中至少有一个红球的概率;Ⅱ求取出的3个球得分之和恰为1分的概率;Ⅲ设为取出的3个球中白色球的个数,求的分布列和数学期望.(正确答案)解:Ⅰ取出的3个球中至少有一个红球的概率:分Ⅱ记“取出1个红色球,2个白色球”为事件B,“取出2个红色球,1个黑色球”为事件C,则分Ⅲ可能的取值为0,1,2,分,,,分的分布列为:的数学期望分;Ⅰ可以求其反面,一个红球都没有,求出其概率,然后求取出的3个球中至少有一个红球的概率,从而求解;Ⅱ可以记“取出1个红色球,2个白色球”为事件B,“取出2个红色球,1个黑色球”为事件C,求出事件B和C的概率,从而求出3个球得分之和恰为1分的概率;Ⅲ可能的取值为0,1,2,3,分别求出其概率,然后再根据期望的公式进行求解;此题主要考查离散型随机变量的期望与方差,互斥事件与对立事件的定义,计算的时候要仔细,是一道基础题;。

2020高考数学核心突破《专题三 三角函数、解三角形与平面向量》(含往年真题分析)

2020高考数学核心突破《专题三 三角函数、解三角形与平面向量》(含往年真题分析)

专题三三角函数、解三角形与平面向量第1讲三角函数的图象与性质题型一三角函数的图象1.(1)要得到函数f (x )=cos ⎝⎛⎭⎫2x +π3的图象,只需将函数g (x )=sin ⎝⎛⎭⎫2x +π3的图象( C ) A .向左平移π2个单位长度B .向右平移π2个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度(2) (2017·山西朔州模拟)函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则函数f (x )在区间⎣⎡⎦⎤0,π2上的最小值为__-1__.突破点拨(1)先利用诱导公式将两函数化为同名三角函数,再利用平移法则求解. (2)先求函数f (x )的解析式,再利用解析式求最值. 解析 (1)因为f (x )=cos ⎝⎛⎭⎫2x +π2-π6 =sin ⎝⎛⎭⎫π6-2x =sin ⎝⎛⎭⎫2x +5π6=sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π4+π3, 所以要得到函数f (x )=cos ⎝⎛⎭⎫2x +π3的图象,只需将函数g (x )=sin ⎝⎛⎭⎫2x +π3的图象向左平移π4个单位长度.故选C. (2)由函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象,可得A =2,14·2πω=5π6-7π12,解得ω=2.再根据图象经过点⎝⎛⎭⎫7π12,0, 可得2·7π12+φ=π+2k π,k ∈Z .因为|φ|<π2,所以φ=-π6,故函数f (x )=2sin ⎝⎛⎭⎫2x -π6. 因为x ∈⎣⎡⎦⎤0,π2,所以2x -π6∈⎣⎡⎦⎤-π6,5π6, 故函数f (x )的最小值为2×⎝⎛⎭⎫-12=-1. 2. 某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)(2)将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y=g (x )图象的一个对称中心为⎝⎛⎭⎫5π12,0,求θ的最小值.突破点拨(1)由表中数据先写出A ,ω,φ的值,再由ωx +φ=0,π,2π,求出其余值. (2)写出函数y =g (x )的解析式,由y =sin x 图象的对称中心为(k π,0),k ∈Z ,利用整体思想建立关于θ的方程,根据k ∈Z 及θ>0,求出θ的最小值.解析 (1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表.且函数表达式为f (x )=5sin ⎝⎛⎭⎫2x -π6. (2)由(1)知f (x )=5sin ⎝⎛⎭⎫2x -π6, 得g (x )=5sin ⎝⎛⎭⎫2x +2θ-π6. 因为y =sin x 的对称中心为(k π,0),k ∈Z . 令2x +2θ-π6=k π,解得x =k π2+π12-θ,k ∈Z .由于函数y =g (x )的图象关于点⎝⎛⎭⎫5π12,0中心对称, 令k π2+π12-θ=5π12,解得θ=k π2-π3,k ∈Z . 由θ>0可知,当k =1时,θ取得最小值π6.(1)三角函数图象平移问题需注意三点:一是函数名称是否一致;二是弄清由谁平移得到谁;三是左右的平移是自变量本身的变化.(2)对于由三角函数的图象确定函数解析式的问题,一般由函数的最值可确定A ,由函数的周期可确定ω,由对称轴或对称中心和φ的范围确定φ.题型二 三角函数的性质1. 已知函数f (x )=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x . (1)求f (x )的最小正周期和最大值; (2)讨论f (x )在⎣⎡⎦⎤π6,2π3上的单调性. 突破点拨(1)先将已知解析式化简,然后求解.(2)根据y =A sin(ωx +φ)+k (A >0,ω>0)与y =sin x 的关系求解. 解析 (1)f (x )=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x =cos x sin x -32(1+cos 2x ) =12sin 2x -32cos 2x -32=sin ⎝⎛⎭⎫2x -π3-32. 因此f (x )的最小正周期为π,最大值为2-32.(2)当x ∈⎣⎡⎦⎤π6,2π3时,0≤2x -π3≤π,从而当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增; 当π2<2x -π3≤π,即5π12<x ≤2π3时,f (x )单调递减.综上可知,f (x )在⎣⎡⎦⎤π6,5π12上单调递增;在⎝⎛⎦⎤5π12,2π3上单调递减. 2. 设函数f (x )=sin ωx +sin ⎝⎛⎭⎫ωx -π2,x ∈R . (1)若ω=12,求f (x )的最大值及相应x 的集合;(2)若x =π8是f (x )的一个零点,且0<ω<10,求ω的值和f (x )的最小正周期.突破点拨(1)先用公式化简,再利用三角函数的性质求解. (2)将x =π8代入,求ω,则周期可求.解析 由已知得f (x )=sin ωx -cos ωx =2sin ⎝⎛⎭⎫ωx -π4. (1)若ω=12,则f (x )=2sin ⎝⎛⎭⎫12x -π4. 又x ∈R ,则2sin ⎝⎛⎭⎫12x -π4≤2,所以f (x )max =2,此时12x -π4=2k π+π2,k ∈Z ,即f (x )取最大值时,x 的取值集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =4k π+3π2,k ∈Z .(2)∵x =π8是函数f (x )的一个零点,∴2sin ⎝⎛⎭⎫π8ω-π4=0,∴π8ω-π4=k π,k ∈Z . 又0<ω<10,∴ω=2,∴f (x )=2sin ⎝⎛⎭⎫2x -π4,其最小正周期为π.求解函数y =A sin(ωx +φ)的性质的三种意识(1)转化意识:利用三角恒等变换将所求函数转化为f (x )=A sin(ωx +φ)的形式. (2)整体意识:类比y =sin x 的性质,只需将y =A sin(ωx +φ)中的“ωx +φ”看成y =sin x 中的“x ”,采用整体代入的方法求解.(3)讨论意识:当A 为参数时,求最值应分情况讨论.三角函数的综合应用【预测】 已知函数f (x )=sin ⎝⎛⎭⎫2ωx -π6-4sin 2ωx +2(ω>0),其图象与x 轴相邻两个交点的距离为π2.(1)求函数f (x )的解析式;(2)若将f (x )的图象向左平移m (m >0)个单位长度,得到的函数g (x )的图象恰好经过点⎝⎛⎭⎫-π3,0,求当m 取得最小值时,g (x )在⎣⎡⎦⎤-π6,7π12上的单调递增区间. 思维导航(1)解题导引:①先化简函数f (x )的解析式,再利用图象与x 轴相邻两个交点的距离是半个周期求解析式;②先求函数g (x )的解析式,再求在⎣⎡⎦⎤-π6,7π12上的单调递增区间. (2)方法指导:三角函数的综合应用主要是将三角函数的图象和性质与三角变换相结合,通过变换将函数化为y =A sin(ωx +φ)的形式再研究其性质,解题时注意观察角、名、结构等特征,注意整体思想的应用.规范解答(1)函数f (x )=sin ⎝⎛⎭⎫2ωx -π6-4sin 2ωx +2 =32sin 2ωx -12cos 2ωx -4×1-cos 2ωx 2+2 =32sin 2ωx +32cos 2ωx =3sin ⎝⎛⎭⎫2ωx +π3(ω>0). 根据函数f (x )的图象与x 轴相邻两个交点的距离为π2,可得函数f (x )的最小正周期为2×π2=2π2ω,得ω=1. 故函数f (x )=3sin ⎝⎛⎭⎫2x +π3. (2)将f (x )的图象向左平移m (m >0)个单位长度得到函数 g (x )=3sin ⎣⎡⎦⎤2(x +m )+π3=3sin ⎝⎛⎭⎫2x +2m +π3的图象.根据g (x )的图象恰好经过点⎝⎛⎭⎫-π3,0, 可得3sin ⎝⎛⎭⎫-2π3+2m +π3=0, 即sin ⎝⎛⎭⎫2m -π3=0, 所以2m -π3=k π(k ∈Z ),m =k π2+π6(k ∈Z ).因为m >0,所以当k =0时,m 取得最小值,且最小值为π6.此时,g (x )=3sin ⎝⎛⎭⎫2x +2π3. 令2k π-π2≤2x +2π3≤2k π+π2,k ∈Z ,得k π-7π12≤x ≤k π-π12,k ∈Z ,故函数g (x )的单调递增区间为⎣⎡⎦⎤k π-7π12,k π-π12,k ∈Z . 结合x ∈⎣⎡⎦⎤-π6,7π12,可得g (x )在⎣⎡⎦⎤-π6,7π12上的单调递增区间为⎣⎡⎦⎤-π6,-π12和⎣⎡⎦⎤5π12,7π12. 【变式考法】 已知向量a =(m ,cos 2x ),b =(sin 2x ,n ),函数f (x )=a·b ,且y =f (x )的图象过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2. (1)求m ,n 的值;(2)将y =f (x )的图象向左平移φ (0<φ<π)个单位后得到函数y =g (x )的图象,若y =g (x )图象上各最高点到点(0,3)的距离的最小值为1,求y =g (x )的单调递增区间.解析 (1)由题意,知 f (x )=a·b =m sin 2x +n cos 2x .因为y =f (x )的图象经过点⎝⎛⎭⎫π12,3和⎝⎛⎭⎫2π3,-2, 所以⎩⎨⎧3=m sin π6+n cos π6,-2=m sin 4π3+n cos 4π3,即⎩⎨⎧3=12m +32n ,-2=-32m -12n ,解得m =3,n =1.(2)由(1)知f (x )=3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6. 由题意知g (x )=f (x +φ)=2sin ⎝⎛⎭⎫2x +2φ+π6. 设y =g (x )的图象上符合题意的最高点为(x 0,2),由题意知x 20+1=1,所以x 0=0,即y =g (x )的图象上到点(0,3)的距离为1的最高点为(0,2). 将其代入y =g (x )并整理得sin ⎝⎛⎭⎫2φ+π6=1, 因为0<φ<π,所以φ=π6.因此g (x )=2sin ⎝⎛⎭⎫2x +π2=2cos 2x . 由2k π-π≤2x ≤2k π,k ∈Z ,得k π-π2≤x ≤k π,k ∈Z ,所以函数y =g (x )的单调递增区间为⎣⎡⎦⎤k π-π2,k π,k ∈Z .1.(教材回归)下列函数中,最小正周期为π且图象关于原点对称的函数是( A ) A .y =cos ⎝⎛⎭⎫2x +π2 B .y =sin ⎝⎛⎭⎫2x +π2 C .y =sin 2x +cos 2xD .y =sin x +cos x解析 y =cos ⎝⎛⎭⎫2x +π2=-sin 2x ,符合题意,故选A. 2.(2017·广西南宁质检)将函数y =cos ⎝⎛⎭⎫2x +π3的图象向左平移π6个单位长度后,得到f (x )的图象,则( B )A .f (x )=-sin 2xB .f (x )的图象关于直线x =-π3对称C .f ⎝⎛⎭⎫7π3=12D .f (x )的图象关于点⎝⎛⎭⎫π12,0对称 解析 将函数y =cos ⎝⎛⎭⎫2x +π3的图象向左平移π6个单位长度,得到的图象对应的解析式为f (x )=cos ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6+π3=cos ⎝⎛⎭⎫2x +2π3.函数f (x )的图象的对称轴满足2x +2π3=k π(k ∈Z ),即对称轴方程为x =k π2-π3(k ∈Z ),所以f (x )的图象关于直线x =-π3对称;令2x +2π3=k π+π2,得x =k π2-π12(k ∈Z ),即f (x )的图象关于点⎝⎛⎭⎫-π12,0对称;f ⎝⎛⎭⎫7π3=-12.故选B. 3.(2017·湖北襄阳模拟)同时具有性质“①最小正周期是4π;②直线x =π3是图象的一条对称轴;③在区间⎝⎛⎭⎫2π3,5π6上是减函数”的一个函数是( D )A .y =sin ⎝⎛⎭⎫2x -π6B .y =cos ⎝⎛⎭⎫2x -π6 C .y =cos ⎝⎛⎭⎫x 2+π3D .y =sin ⎝⎛⎭⎫x 2+π3解析 对于A 项,B 项,∵T =2π2=π,故A 项,B 项不正确.对于C 项,若直线x =π3为其图象的一条对称轴,则π3×12+π3=k π,k ∈Z ,得π2=k π,k ∈Z ,k 不存在,不满足题意,故C 项不正确.对于D 项,因为T =2π12=4π,且由x 2+π3=k π+π2,k ∈Z ,解得图象的对称轴方程为x =2k π+π3,k ∈Z ;当k =0时,x =π3为图象的一条对称轴.由2k π+π2≤x 2+π3≤2k π+3π2,k ∈Z ,解得单调递减区间为⎣⎡⎦⎤4k π+π3,4k π+7π3,k ∈Z ,所以函数在区间⎝⎛⎭⎫2π3,5π6上是减函数,故D 项正确.故选D.4.(2017·山西晋中考前测试)已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象如图所示,将函数y =f (x )的图象向左平移4π3个单位长度,得到函数y =g (x )的图象,则函数y =g (x )在区间⎣⎡⎦⎤π2,5π2上的最大值为( C )A .3B .332C.322D .22解析 由图象可知函数y =f (x )的周期为2⎝⎛⎭⎫7π3-π3=4π, ∴ω=12.又点⎝⎛⎭⎫π3,0,⎝⎛⎭⎫0,-32在函数y =f (x )的图象上, ∴⎩⎨⎧A sin ⎝⎛⎭⎫π6+φ=0,A sin φ=-32,且|φ|<π2.∴φ=-π6,A =3,则f (x )=3sin ⎝⎛⎭⎫12x -π6, ∴g (x )=3sin ⎣⎡⎦⎤12⎝⎛⎭⎫x +4π3-π6=3cos 12x . 由x ∈⎣⎡⎦⎤π2,5π2,可得12x ∈⎣⎡⎦⎤π4,5π4,则3cos 12x ∈⎣⎡⎦⎤-3,322,即g (x )的最大值为322.5.(书中淘金)某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y =a +A cos ⎣⎡⎦⎤π6(x -6)(x =1,2,3,…,12)来表示,已知6月份的月平均气温最高,为28 ℃,12月份的平均气温最低,为18 ℃,则10月份的平均气温为__20.5__℃.解析 依题意知,a =28+182=23,A =28-182=5,所以y =23+5cos ⎣⎡⎦⎤π6(x -6),当x =10时,y =23+5cos ⎝⎛⎭⎫π6×4=20.5. 答案 20.56.(高考改编)把函数y =sin 2x 的图象沿x 轴向左平移π6个单位,纵坐标伸长到原来的2倍(横坐标不变)后得到函数y =f (x )的图象,对于函数y =f (x )有以下四个判断:①该函数的解析式为y =2sin ⎝⎛⎭⎫2x +π6;②该函数图象关于点⎝⎛⎭⎫π3,0对称;③该函数在⎣⎡⎦⎤0,π6上是增函数;④若函数y =f (x )+a 在⎣⎡⎦⎤0,π2上的最小值为3,则a =2 3. 其中,正确判断的序号是__②④__.解析 将函数y =sin 2x 的图象向左平移π6个单位得到y =sin 2⎝⎛⎭⎫x +π6=sin ⎝⎛⎭⎫2x +π3的图象,然后纵坐标伸长到原来的2倍得到y =2sin ⎝⎛⎭⎫2x +π3的图象,所以①不正确.f ⎝⎛⎭⎫π3=2sin ⎝⎛⎭⎫2×π3+π3=2sin π=0,所以函数图象关于点⎝⎛⎭⎫π3,0对称,所以②正确.由-π2+2k π≤2x +π3≤π2+2k π,k ∈Z ,得-5π12+k π≤x ≤π12+k π,k ∈Z ,∴函数的单调增区间为⎣⎡⎦⎤-5π12+k π,π12+k π,k ∈Z ,而⎣⎡⎦⎤0,π6⃘⎣⎡⎦⎤-512π+k π,π12+k π(k ∈Z ),所以③不正确.y =f (x )+a =2sin ⎝⎛⎭⎫2x +π3+a ,当0≤x ≤π2时,π3≤2x +π3≤4π3,所以当2x +π3=4π3,即x =π2时,函数取得最小值,y min =2sin 4π3+a =-3+a ,令-3+a =3,得a =23,所以④正确.所以正确的判断为②④.7.(考点聚焦)设函数f (x )=32-3sin 2ωx -sin ωx ·cos ωx (ω>0),且y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4.(1)求ω的值;(2)求f (x )在区间⎣⎡⎦⎤π,3π2上的最大值和最小值. 解析 (1)f (x )=32-3sin 2ωx -sin ωx cos ωx =32-3·1-cos 2ωx 2-12sin 2ωx =32cos 2ωx -12sin 2ωx =-sin ⎝⎛⎭⎫2ωx -π3=sin ⎝⎛⎭⎫2ωx +2π3. 因为图象的一个对称中心到最近的对称轴的距离为π4,又ω>0,所以2π2ω=4×π4.因此ω=1.(2)由(1)知f (x )=-sin ⎝⎛⎭⎫2x -π3. 当π≤x ≤3π2时,5π3≤2x -π3≤8π3,所以-32≤sin ⎝⎛⎭⎫2x -π3≤1. 因此-1≤f (x )≤32.故f (x )在区间⎣⎡⎦⎤π,3π2上的最大值和最小值分别为32,-1. 8.(2018·山东青岛调考)已知函数f (x )=2sin x sin ⎝⎛⎭⎫x +π6. (1)求函数f (x )的最小正周期和单调递增区间; (2)当x ∈⎣⎡⎦⎤0,π2时,求函数f (x )的值域. 解析 (1)f (x )=2sin x ⎝⎛⎭⎫32sin x +12cos x=3×1-cos 2x 2+12sin 2x=sin ⎝⎛⎭⎫2x -π3+32. 函数f (x )的最小正周期为T =π. 由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z ,解得-π12+k π≤x ≤5π12+k π,k ∈Z ,所以函数f (x )的单调递增区间是⎣⎡⎦⎤-π12+k π,5π12+k π,k ∈Z . (2)当x ∈⎣⎡⎦⎤0,π2时,2x -π3∈⎣⎡⎦⎤-π3,2π3, sin ⎝⎛⎭⎫2x -π3∈⎣⎡⎦⎤-32,1, 可得函数f (x )的值域为⎣⎡⎦⎤0,1+32. 9.(母题营养)已知函数f (x )=sin x cos x +12cos 2x .(1)若tan θ=2,求f (θ)的值;(2)若函数y =g (x )的图象是由函数y =f (x )的图象上所有的点向右平移π4个单位长度而得到,且g (x )在区间(0,m )内是单调函数,求实数m 的最大值.解析 (1)因为tan θ=2,所以sin θ=2cos θ. 代入sin 2θ+cos 2θ=1,得cos 2θ=15.所以f (θ)=sin θcos θ+12cos 2θ=2cos 2θ+12(2cos 2θ-1)=3cos 2θ-12=110.(2)由已知得f (x )=12sin 2x +12cos 2x =22sin ⎝⎛⎭⎫2x +π4. 依题意,得g (x )=22sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π4+π4, 即g (x )=22sin ⎝⎛⎭⎫2x -π4. 因为x ∈(0,m ),所以2x -π4∈⎝⎛⎭⎫-π4,2m -π4. 又因为g (x )在区间(0,m )内是单调函数,所以-π4<2m -π4≤π2,即0<m ≤3π8,故实数m的最大值为3π8.10.(母题营养)设函数f (x )=sin 2ωx +23sin ωx ·cos ωx -cos 2ωx +λ(x ∈R )的图象关于直线x =π对称,其中ω,λ为常数,且ω∈⎝⎛⎭⎫12,1.(1)求函数f (x )的最小正周期;(2)若y =f (x )的图象经过点⎝⎛⎭⎫π4,0,求函数f (x )在x ∈⎣⎡⎦⎤0,π2上的值域. 解析 (1)因为f (x )=sin 2ωx +23sin ωx ·cos ωx -cos 2ωx +λ=-cos 2ωx +3sin 2ωx +λ=2sin ⎝⎛⎭⎫2ωx -π6+λ,由直线x =π是y =f (x )图象的一条对称轴,可得sin ⎝⎛⎭⎫2ωπ-π6=±1,所以2ωπ-π6=k π+π2(k ∈Z ),即ω=k 2+13(k ∈Z ).又ω∈⎝⎛⎭⎫12,1,k ∈Z ,所以k =1,从而ω=56. 所以f (x )的最小正周期是6π5.(2)由y =f (x )的图象过点⎝⎛⎭⎫π4,0,得f ⎝⎛⎭⎫π4=0, 即λ=-2sin ⎝⎛⎭⎫56×π2-π6=-2sin π4=-2, 即λ=- 2.故f (x )=2sin ⎝⎛⎭⎫53x -π6-2, ∵x ∈⎣⎡⎦⎤0,π2,∴53x -π6∈⎣⎡⎦⎤-π6,2π3, ∴函数f (x )的值域为[-1-2,2-2].1.函数f (x )=cos(w x +φ)的部分图象如图所示,则f (x )的单调递减区间为( D )A.⎝⎛⎭⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎫2k π-14,2k π+34,k ∈Z C.⎝⎛⎭⎫k -14,k +34,k ∈Z D.⎝⎛⎭⎫2k -14,2k +34,k ∈Z 解析 由题图可知T 2=54-14=1,所以T =2.结合题图可知,在⎣⎡⎦⎤-34,54(f (x )的一个周期)内,函数f (x )的单调递减区间为⎝⎛⎭⎫-14,34.由f (x )是以2为周期的周期函数可知,f (x )的单调递减区间为⎝⎛⎭⎫2k -14,2k +34,k ∈Z ,故选D. 2.下列函数中,最小正周期为π且图象关于原点对称的函数是( A ) A .y =cos ⎝⎛⎭⎫2x +π2 B .y =sin ⎝⎛⎭⎫2x +π2 C .y =sin 2x +cos 2xD .y =sin x +cos x解析 y =cos ⎝⎛⎭⎫2x +π2=-sin 2x 是奇函数,图象关于原点对称,且最小正周期为π,A 项正确.y =sin ⎝⎛⎭⎫2x +π2=cos 2x ,是偶函数,B 项错误.y =sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π4,非奇非偶,C 项错误.y =sin x +cos x =2sin ⎝⎛⎭⎫x +π4,非奇非偶,D 项错误.故选A. 3.为了得到函数y =sin(2x +1)的图象,只需把函数y =sin 2x 的图象上所有的点( A ) A .向左平行移动12个单位长度B .向右平行移动12个单位长度C .向左平行移动1个单位长度D .向右平行移动1个单位长度 解析 ∵y =sin(2x +1)=sin 2⎝⎛⎭⎫x +12, ∴只需把y =sin 2x 图象上所有的点向左平移12个单位长度即得到y =sin(2x +1)的图象.故选A.4.将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( C )A.3π4 B .π2C.π4D .-π4解析 y =sin(2x +φ)――→左移π8sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π8+φ=sin ⎝⎛⎭⎫2x +π4+φ是偶函数,即π4+φ=k π+π2(k ∈Z )⇒φ=k π+π4(k ∈Z ),当k =0时,φ=π4,故选C.5.如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝⎛⎭⎫π6x +φ+k ,据此函数可知,这段时间水深的最大值为( C )A .5 mB .6 mC .8 mD .10 m解析 由题意可知,当sin ⎝⎛⎭⎫π6x +φ=-1时,函数取得最小值2,即3×(-1)+k =2,∴k =5.因此,函数的最大值是8,故水深的最大值为8 m.6.将函数y =3cos x +sin x (x ∈R )的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( B )A.π12 B .π6C.π3D .5π6解析 y =3cos x +sin x =2sin ⎝⎛⎭⎫x +π3,向左平移m 个单位长度后得到y =2sin ⎝⎛⎭⎫x +π3+m ,由它关于y 轴对称可得sin ⎝⎛⎭⎫π3+m =±1,∴π3+m =k π+π2,k ∈Z ,∴m =k π+π6,k ∈Z ,又m >0,∴m 的最小值为π6.7.已知函数f (x )=A sin(w x +φ)(A ,w ,φ均为正的常数)的最小正周期为π,当x =2π3时,函数f (x )取得最小值,则下列结论正确的是( A )A .f (2)<f (-2)<f (0)B .f (0)<f (2)<f (-2)C .f (-2)<f (0)<f (2)D .f (2)<f (0)<f (-2)解析 ∵ω>0,∴T =2πω=π,∴ω=2.又A >0,∴f ⎝⎛⎭⎫2π3=-A , 即sin ⎝⎛⎭⎫4π3+φ=-1,得φ+4π3=2k π+32π(k ∈Z ), 即φ=2k π+π6(k ∈Z ).又∵φ>0,∴可取f (x )=A sin ⎝⎛⎭⎫2x +π6, ∴f (2)=A sin ⎝⎛⎭⎫4+π6, f (-2)=A sin ⎝⎛⎭⎫-4+π6,f (0)=A sin π6. ∵π<4+π6<3π2,∴f (2)<0.∵-7π6<-4+π6<-π,且y =sin x 在⎝⎛⎭⎫-7π6,-π上为减函数, ∴sin ⎝⎛⎭⎫-4+π6<sin ⎝⎛⎭⎫-7π6=sin π6,且sin ⎝⎛⎭⎫-4+π6>sin(-π)=0,从而有0<f (-2)<f (0).故有f (2)<f (-2)<f (0).故选A.8.将函数f (x )=sin 2x 的图象向右平移φ⎝⎛⎭⎫0<φ<π2个单位后得到函数g (x )的图象.若对满足|f (x 1)-g (x 2)|=2的x 1,x 2,有|x 1-x 2|min =π3,则φ=( D )A.5π12B .π3C.π4D .π6解析 g (x )=sin[2(x -φ)] =sin(2x -2φ). ∵|f (x )|≤1,|g (x )|≤1, ∴|f (x )-g (x )|≤2,当且仅当f (x 1)=1,g (x 2)=-1或f (x 1)=-1,g (x 2)=1时,满足|f (x 1)-g (x 2)|=2. 不妨设A (x 1,-1)是函数f (x )图象的一个最低点,B (x 2,1)是函数g (x )图象的一个最高点, 于是x 1=k 1π+3π4(k 1∈Z ),x 2=k 2π+π4+φ(k 2 ∈Z ).∴|x 1-x 2|≥⎪⎪⎪⎪3π4-⎝⎛⎭⎫π4+φ=⎪⎪⎪⎪π2-φ. ∵φ ∈⎝⎛⎭⎫0,π2,|x 1-x 2|min =π3, ∴π2-φ=π3,即φ=π6,故选D. 9.已知函数f (x )=2sin x +φ2cos x +φ2⎝⎛⎭⎫|φ|<π2,且对于任意的x ∈R ,f (x )≤f ⎝⎛⎭⎫π6,则( C ) A .f (x )=f (x +π) B .f (x )=f ⎝⎛⎭⎫x +π2 C .f (x )=f ⎝⎛⎭⎫π3-xD .f (x )=f ⎝⎛⎭⎫π6-x解析 f (x )=sin(x +φ).由题意,可知f (x )≤f ⎝⎛⎭⎫π6对于任意的x ∈R 恒成立,即sin(x +φ)≤sin ⎝⎛⎭⎫π6+φ.又因为|φ|<π2,所以π6+φ=π2,所以φ=π3,所以f (x )=sin ⎝⎛⎭⎫x +π3.f ⎝⎛⎭⎫π3-x =sin ⎝⎛⎭⎫π3-x +π3=sin ⎣⎡⎦⎤-⎝⎛⎭⎫π3+x +π=sin ⎝⎛⎭⎫x +π3=f (x ).故选C. 10.已知函数f (x )=3sin w x +cos w x (w >0)的图象与x 轴的交点的横坐标可构成一个公差为π2的等差数列,把函数f (x )的图象沿x 轴向左平移π6个单位,得到函数g (x )的图象.下列说法正确的是( D )A .g (x )在⎣⎡⎦⎤π4,π2上是增函数B .g (x )的图象关于直线x =-π4对称C .函数g (x )是奇函数D .当x ∈⎣⎡⎦⎤π6,2π3时,函数g (x )的值域是[-2,1]解析 f (x )=3sin ωx +cos ωx =2sin ⎝⎛⎭⎫ωx +π6,由题意知T 2=π2,∴T =π,∴ω=2πT=2,∴f (x )=2sin ⎝⎛⎭⎫2x +π6.把函数f (x )的图象沿x 轴向左平移π6个单位,得到g (x )=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6+π6=2sin ⎝⎛⎭⎫2x +π2=2cos 2x 的图象,易知g (x )是偶函数且在⎣⎡⎦⎤π4,π2上是减函数,其图象不关于直线x =-π4对称,所以A 项,B 项,C 项错误.当x ∈⎣⎡⎦⎤π6,2π3时,2x ∈⎣⎡⎦⎤π3,4π3,则g (x )min =2cos π=-2,g (x )max =2cos π3=1,即函数g (x )的值域为[-2,1],故选D.11.函数f (x )=2x -4sin x ,x ∈⎣⎡⎦⎤-π2,π2的图象大致是( D )解析 因为函数f (x )是奇函数,所以排除A ,B 项,f ′(x )=2-4cos x ,令f ′(x )=2-4cos x =0,得x =±π3,故选D.12.函数f (x )=A sin w x (A >0,w >0)的部分图象如图所示,则f (1)+f (2)+f (3)+…+f (2 018)的值为( A )A .2+2B .32C .62D .-2解析 由题图可知,A =2,T =8,2πω=8,ω=π4,∴f (x )=2sin π4x ,∴f (1)=2,f (2)=2,f (3)=2,f (4)=0,f (5)=-2,f (6)=-2,f (7)=-2,f (8)=0,而2 018=8×252+2,∴f (1)+f (2)+…+f (2 018)=f (1)+f (2)=2+ 2.故选A.第2讲 三角变换与解三角形题型一三角恒等变换1.(1)(2018·河南郑州模拟)若tan α=13,tan(α+β)=12,则tan β=( A )A.17 B .16C .57D .56(2) (2017·河北唐山中学模拟)已知α是三角形的内角,sin ⎝⎛⎭⎫α+π3=45,则cos ⎝⎛⎭⎫5π12-α=( D )A.210B .-210C .-7210D .7210突破点拨(1)注意到β=(α+β)-α,再结合已知条件求tan β的值. (2)注意到cos ⎝⎛⎭⎫5π12-α=-cos ⎣⎡⎦⎤⎝⎛⎭⎫α+π3+π4,再实施运算. 解析 (1)tan β=tan[(α+β)-α] =tan (α+β)-tan α1+tan (α+β)·tan α=12-131+12×13=17.故选A.(2)∵α是三角形的内角,sin ⎝⎛⎭⎫α+π3=45<32, ∴α+π3是钝角,∴cos ⎝⎛⎭⎫α+π3=-35,cos ⎝⎛⎭⎫5π12-α=-cos ⎣⎡⎦⎤π-⎝⎛⎭⎫5π12-α=-cos ⎝⎛⎭⎫712π+α=-cos ⎣⎡⎦⎤⎝⎛⎭⎫α+π3+π4=-cos ⎝⎛⎭⎫α+π3·cos π4+sin ⎝⎛⎭⎫α+π3sin π4=7210.故选D. 2. 已知cos ⎝⎛⎭⎫π6+α·cos ⎝⎛⎭⎫π3-α=-14,α∈⎝⎛⎭⎫π3,π2. (1)求sin 2α的值; (2)求tan α-1tan α的值. 突破点拨(1)利用诱导公式转化为二倍角公式,再利用同角三角函数基本关系式求解. (2)切化弦,转化为二倍角公式,再利用(1)的结论求解. 解析 (1)cos ⎝⎛⎭⎫π6+α·cos ⎝⎛⎭⎫π3-α =cos ⎝⎛⎭⎫π6+α·sin ⎝⎛⎭⎫π6+α=12sin ⎝⎛⎭⎫2α+π3=-14, 即sin ⎝⎛⎭⎫2α+π3=-12. ∵α∈⎝⎛⎭⎫π3,π2,∴2α+π3∈⎝⎛⎭⎫π,4π3, ∴cos ⎝⎛⎭⎫2α+π3=-32, ∴sin 2α=sin ⎣⎡⎦⎤⎝⎛⎭⎫2α+π3-π3=sin ⎝⎛⎭⎫2α+π3cos π3-cos ⎝⎛⎭⎫2α+π3sin π3=12. (2)∵α∈⎝⎛⎭⎫π3,π2,∴2α∈⎝⎛⎭⎫2π3,π, 又由(1)知sin 2α=12,∴cos 2α=-32.∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin α cos α=-2cos 2αsin 2α=-2×-3212=2 3.利用三角恒等变换公式解题的常用技巧(1)项的分拆与角的配凑:如sin 2α+2cos 2α=(sin 2α+cos 2α)+cos 2α,α=(α-β)+β等. (2)降幂与升幂:通过二倍角公式得到. (3)弦、切互化:一般是切化弦. 题型二 解三角形1. 已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sin C . (1)若a =b ,求cos B ;(2)设B =90°,且a =2,求△ABC 的面积. 突破点拨(1)根据正弦定理把已知条件转化为边的关系,然后利用余弦定理求解.(2)利用勾股定理得到边的一个方程,结合已知条件解方程组求得边长,然后求面积.解析 (1)由题设及正弦定理可得b 2=2ac . 又a =b ,可得b =2c ,a =2c . 由余弦定理可得cos B =a 2+c 2-b 22ac =14.(2)由(1)知b 2=2ac . 因为B =90°,由勾股定理得a 2+c 2=b 2,故a 2+c 2=2ac ,进而可得c =a = 2. 所以△ABC 的面积为12×2×2=1.【变式考法】 (1)在本例条件下,求角B 的范围. (2)在本例条件下,若B =60°,b =2,求a 的值. 解析 (1)因为b 2=2ac ,所以cos B =a 2+c 2-b 22ac ≥2ac -2ac2ac =0,又因为0<B <π,所以0<B ≤π2.(2)因为b 2=2ac ,b =2,所以ac =1, 又因为b 2=a 2+c 2-2ac cos B ,所以a 2+c 2=3, 所以a +c =5, 所以a =5+12或5-12. 2. △ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍. (1)求sin ∠B sin ∠C; (2)若AD =1,DC =22,求BD 和AC 的长. 突破点拨(1)利用面积关系得边的关系,再利用正弦定理求解. (2)先利用面积比求BD ,再利用余弦定理求解. 解析 (1)S △ABD =12AB ·AD sin ∠BAD ,S △ADC =12AC ·AD sin ∠CAD .因为S △ABD =2S △ADC ,∠BAD =∠CAD ,所以AB =2AC . 由正弦定理可得sin ∠B sin ∠C =AC AB =12.(2)因为S △ABD ∶S △ADC =BD ∶DC ,所以BD = 2. 在△ABD 和△ADC 中,由余弦定理知 AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB , AC 2=AD 2+DC 2-2AD ·DC cos ∠ADC . 故AB 2+2AC 2=3AD 2+BD 2+2DC 2=6. 由(1)知AB =2AC ,所以AC =1.利用正、余弦定理解三角形的技巧解三角形问题一般要利用正、余弦定理和三角形内角和定理,正弦定理可以将角转化为边,也可以将边转化成角,当涉及边的平方关系时,一般利用余弦定理,要根据题目特点和正、余弦定理的结构形式,灵活选用.有关解三角形的综合问题(1)求∠ACP ;(2)若△APB 的面积是332,求sin ∠BAP .思维导航(1)由已知条件选择余弦定理求得AP .(2)由三角形的面积和(1)结论解得PB ,再由余弦定理及正弦定理求得AB 和sin ∠BAP . 规范解答(1)在△APC 中,因为∠P AC =60°,PC =2,AP +AC =4, 由余弦定理得PC 2=AP 2+AC 2-2AP ·AC ·cos ∠P AC ,所以22=AP 2+(4-AP )2-2AP ·(4-AP )·cos 60°,整理得AP 2-4AP +4=0,解得AP =2,所以AC =2.所以△APC 是等边三角形,所以∠ACP =60°.(2)因为∠APB 是△APC 的外角,所以∠APB =120°.因为△APB 的面积是332,所以12AP ·PB ·sin ∠APB =332,所以PB =3.在△APB 中,AB 2=AP 2+PB 2-2AP ·PB ·cos ∠APB =22+32-2×2×3×cos 120°=19,所以AB =19.在△APB 中,由正弦定理得AB sin ∠APB =PBsin ∠BAP,所以sin ∠BAP =3sin 120°19=35738.【变式考法】 (2017·广州模拟)如图,在△ABC 中,∠ABC =30°,AB =3,AC =1,AC <BC ,P 为BC 右上方一点,满足∠BPC =90°.(1)若BP =2,求AP 的长; (2)求△BPC 周长的最大值.解析 由题意知1=AC 2=AB 2+BC 2-2AB ·BC ·cos ∠ABC =3+BC 2-3BC ,解得BC =2(BC =1舍去,则∠CAB =90°.又∠BPC =90°,且BP =2,所以∠PBC =45°,从而∠ABP =75°.连接AP ,由余弦定理得AP =3+2-2×3×2×6-24=6+22. (2)由(1)可知BC =2或BC =1,又因为求△BPC 周长的最大值,所以BC =2,设BP =m ,PC =n ,则m 2+n 2=4.由于BC 长为定值,因此求△BPC 周长的最大值只需求BP +PC =m +n 的最大值即可. 又4=m 2+n 2≥(m +n )22,则m +n ≤22, 当且仅当m =n =2时取等号,此时△BPC 的周长取得最大值,为2+2 2.1.(教材回归)sin 20°cos 10°-cos 160°sin 10°=( D ) A .-32B .32C .-12D .12解析 原式=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=sin 30°=12,故选D.2.(2017·“江南十校”模拟)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若C=2B ,则sin Bsin A=( D )A.c 2a 2+b 2-c 2 B .b 2a 2+b 2-c 2C.a 2a 2+b 2-c2 D .c 2a 2+c 2-b2解析 由已知,得sin C =sin 2B =2sin B cos B , 所以sin C sin B =2cos B .由正弦定理及余弦定理,得c b =2×a 2+c 2-b 22ac ,则b a =c 2a 2+c 2-b2. 再由正弦定理,得sin B sin A =c 2a 2+c 2-b 2,故选D.3.已知tan α=-2,tan(α+β)=17,则tan β的值为__3__.解析 tan β=tan[(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=17-(-2)1+17×(-2)=3.4.(2017·河南郑州调考)已知△ABC 中,角C 为直角,D 是边BC 上一点,M 是AD 上一点,且CD =1,∠DBM =∠DMB =∠CAB ,则MA =__2__.解析 如图,设∠DMB =θ,则∠ADC =2θ,∠DAC =π2-2θ,∠AMB =π-θ,∠ABM =π2-2θ,在Rt △ABC 中,cos θ=cos ∠CAB =ACAB ;在△CDA 中,由正弦定理得CD sin ⎝⎛⎭⎫π2-2θ=ACsin 2θ; 在△AMB 中,由正弦定理得MA sin ⎝⎛⎭⎫π2-2θ=ABsin (π-θ), ∴CD MA =AC ·sin θAB ·sin 2θ=AC ·sin θ2AB ·sin θcos θ=12,从而MA =2. 5.在△ABC 中,a =4,b =5,c =6,则sin 2Asin C=__1__.解析 在△ABC 中,由余弦定理的推论可得cos A =b 2+c 2-a 22bc =52+62-422×5×6=34,由正弦定理可知sin 2A sin C =2sin A cos A sin C =2a ·cos Ac =2×4×346=1.6.(书中淘金)如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD解析 依题意有AB =600,∠CAB =30°,∠CBA =180°-75°=105°,∠DBC =30°,DC ⊥CB . ∴∠ACB =45°,在△ABC 中,由AB sin ∠ACB =CB sin ∠CAB ,得600sin 45°=CBsin 30°, 有CB =3002,在Rt △BCD 中,CD =CB ·tan 30°=1006, 则此山的高度CD =100 6 m.7.(考点聚焦)已知函数f (x )=2sin ωx +m cos ωx (ω>0,m >0)的最小值为-2,且图象上相邻两个最高点的距离为π.(1)求ω和m 的值;(2)若f ⎝⎛⎭⎫θ2=65,θ∈⎝⎛⎭⎫π4,3π4,求f ⎝⎛⎭⎫θ+π8的值. 解析 (1)易知f (x )=2+m 2sin(ωx +φ)(φ为辅助角), ∴f (x )min =-2+m 2=-2,∴m = 2.由题意知函数f (x )的最小正周期为π,∴2πω=π,∴ω=2.(2)由(1)得f (x )=2sin 2x +2cos 2x =2sin ⎝⎛⎭⎫2x +π4, ∴f ⎝⎛⎭⎫θ2=2sin ⎝⎛⎭⎫θ+π4=65, ∴sin ⎝⎛⎭⎫θ+π4=35, ∵θ∈⎝⎛⎭⎫π4,3π4,∴θ+π4∈⎝⎛⎭⎫π2,π,∴cos ⎝⎛⎭⎫θ+π4=-1-sin 2⎝⎛⎭⎫θ+π4=-45, ∴f ⎝⎛⎭⎫θ+π8=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫θ+π8+π4=2sin ⎝⎛⎭⎫2θ+π2 =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫θ+π4=4sin ⎝⎛⎭⎫θ+π4cos ⎝⎛⎭⎫θ+π4 =4×35×⎝⎛⎭⎫-45=-4825. 8.(教材回归)在△ABC 中,已知AB =2,AC =3,A =60°. (1)求BC 的长; (2)求sin 2C 的值.解析 (1)由余弦定理知,BC 2=AB 2+AC 2-2AB ·AC ·cos A =4+9-2×2×3×12=7,所以BC =7.(2)由正弦定理知sin C =AB BC ·sin A =2sin 60°7=217.因为AB <BC ,所以C <A ,所以C 为锐角, 则cos C =1-sin 2C =1-37=277. 因此sin 2C =2sin C ·cos C =2×217×277=437. 9.(2017·河北唐山二模)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a 2+b 2=λab . (1)若λ=6,B =5π6,求sin A ;(2)若λ=4,AB 边上的高为3c6,求C . 解析 (1)已知B =5π6,a 2+b 2=6ab ,结合正弦定理得4sin 2A -26sin A +1=0,解得sin A =6±24. 因为0<A <π6,所以sin A <12,所以sin A =6-24.(2)由题意可知S △ABC =12ab sin C =312c 2,得12ab sin C =312(a 2+b 2-2ab cos C )=312(4ab -2ab cos C ). 从而有3sin C +cos C =2,即sin ⎝⎛⎭⎫C +π6=1. 又π6<C +π6<7π6,所以C =π3.10.(2017·山东淄博模拟)已知a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,且a cos C +3a sin C -b -c =0.(1)求A ;(2)若a =2,求△ABC 面积的最大值.解析 (1)由a cos C +3a sin C -b -c =0及正弦定理, 得sin A cos C +3sin A sin C -sin B -sin C =0. 因为B =π-A -C ,所以3sin A sin C -cos A sin C -sin C =0. 易知sin C ≠0,所以3sin A -cos A =1, 所以sin ⎝⎛⎭⎫A -π6=12.又0<A <π,所以A =π3. (2)方法一 由(1)得B +C =2π3⇒C =2π3-B ⎝⎛⎭⎫0<B <2π3,因为a sin A =2sin π3=43, 所以由正弦定理得b =43sin B ,c =43sin C . 所以S △ABC =12bc sin A =12×43sin B ×43sin C ·sin π3=433sin B ·sin C =433·sin B ·sin ⎝⎛⎭⎫2π3-B =433⎝⎛⎭⎫32sin B cos B +12sin 2B =sin 2B -33cos 2B +33=233sin ⎝⎛⎭⎫2B -π6+33.易知-π6<2B -π6<7π6, 故当2B -π6=π2,即B =π3时,S △ABC 取得最大值,最大值为233+33= 3.方法二 由(1)知A =π3,又a =2,由余弦定理得22=b 2+c 2-2bc cos π3,即b 2+c 2-bc =4⇒bc +4=b 2+c 2≥2bc ⇒bc ≤4,当且仅当b =c=2时,等号成立.所以S △ABC =12bc sin A =12×32bc ≤34×4=3,即当b =c =2时,S △ABC 取得最大值,最大值为 3.1.已知函数f (x )=2cos 2x -sin ⎝⎛⎭⎫2x -7π6. (1)求函数f (x )的最大值,并写出f (x )取最大值时x 的取值集合;(2)已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f (A )=32,b +c =2,求实数a的取值范围.解析 (1)f (x )=(1+cos 2x )-⎝⎛⎭⎫sin 2x cos 7π6-cos 2x sin 7π6 =1+32sin 2x +12cos 2x =1+sin ⎝⎛⎭⎫2x +π6, ∴函数f (x )的最大值为2,当且仅当sin ⎝⎛⎭⎫2x +π6=1, 即2x +π6=2k π+π2,k ∈Z ,即x =k π+π6,k ∈Z 时取到.∴函数f (x )取最大值时x 的取值集合为x ⎪⎪⎭⎬⎫x =k π+π6,k ∈Z . (2)由题意,f (A )=sin ⎝⎛⎭⎫2A +π6+1=32, 化简得sin ⎝⎛⎭⎫2A +π6=12. ∵A ∈(0,π),∴2A +π6∈⎝⎛⎭⎫π6,13π6, ∴2A +π6=5π6,∴A =π3.在△ABC 中,a 2=b 2+c 2-2bc cos π3=(b +c )2-3bc .由b +c =2,知bc ≤⎝⎛⎭⎫b +c 22= 1,即a 2≥1,当b =c =1时取等号. 又由b +c >a ,得a <2, ∴a 的取值范围是[1,2).2.已知a ,b ,c 分别是△ABC 的内角A ,B ,C 所对的边,且c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ; (2)若sin C +sin(B -A )=2sin 2A ,求A 的值. 解析 (1)∵c =2,C =π3,∴由余弦定理得4=a 2+b 2-2ab cos π3=a 2+b 2-ab .∵△ABC 的面积等于3, ∴12ab sin C =3,∴ab =4, 联立⎩⎪⎨⎪⎧ a 2+b 2-ab =4,ab =4,解得⎩⎪⎨⎪⎧a =2,b =2.(2)∵sin C +sin(B -A )=2sin 2A , ∴sin(B +A )+sin(B -A )=4sin A cos A , ∴sin B cos A =2sin A cos A . ①当cos A =0时,A =π2;②当cos A ≠0时,sin B =2sin A ,由正弦定理得b =2a ,联立⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a ,解得⎩⎨⎧a =233,b =433,∴b 2=a 2+c 2,∵C =π3,∴A =π6.综上所述,A =π2或A =π6.3.(2017·浙江重点中学联考)已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c . (1)若C =2B ,求证:cos A =3cos B -4cos 3B ;(2)若b sin B -c sin C =a ,且△ABC 的面积S =b 2+c 2-a 24,求角B .解析 (1)证明:∵C =2B ,∴A =π-3B , ∴cos A =cos(π-3B )=-cos(B +2B ) =-cos B cos 2B +sin B sin 2B =-cos B (2cos 2B -1)+2sin 2B cos B=cos B -2cos 3B +2cos B (1-cos 2B )=3cos B -4cos 3B , ∴cos A =3cos B -4cos 3B .(2)在△ABC 中,∵S =b 2+c 2-a 24,∴S =b 2+c 2-a 24=12bc sin A .由余弦定理知b 2+c 2-a 24=12bc cos A ,∴12bc cos A =12bc sin A ,∴tan A =1, 而A ∈(0,π),∴A =π4.∵b sin B -c sin C =a ,由正弦定理,得 sin 2B -sin 2C =sin A =22, ∴cos 2C -cos 2B = 2.∵2C =2π-2A -2B =3π2-2B ,∴-sin 2B -cos 2B =2,∴sin ⎝⎛⎭⎫2B +π4=-1. ∵B ∈(0,π),∴2B +π4=3π2,∴B =5π8.4.(2017·武汉武昌五月调研)已和函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,0<φ<π2的图象经过点⎝⎛⎭⎫0,12,且相邻两条对称轴的距离为π2.(1)求函数f (x )的解析式及其在[0,π]上的单调递增区间;(2)在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,若f ⎝⎛⎭⎫A 2-cos A =12,bc =1,b +c =3,求a 的值.解析 (1)将⎝⎛⎭⎫0,12代入f (x )的解析式,得sin φ=12. 又因为0<φ<π2,所以φ=π6.又因为最小正周期T =π2×2=π,所以ω=2.所以函数f (x )的解析式为f (x )=sin ⎝⎛⎭⎫2x +π6. 因为x ∈[0,π], 所以π6≤2x +π6≤13π6,所以2x +π6∈⎣⎡⎦⎤π6,π2或2x +π6∈⎣⎡⎦⎤3π2,13π6时,f (x )递增,即x ∈⎣⎡⎦⎤0,π6或x ∈⎣⎡⎦⎤2π3,π时,f (x )递增.所以函数f (x )在[0,π]上的单调递增区间是⎣⎡⎦⎤0,π6,⎣⎡⎦⎤2π3,π. (2)由(1)知f ⎝⎛⎭⎫A 2=sin ⎝⎛⎭⎫A +π6,代入已知等式得 sin ⎝⎛⎭⎫A +π6-cos A =32sin A +12cos A -cos A =32sin A -12cos A =sin ⎝⎛⎭⎫A -π6=12, 所以A -π6=π6或5π6,即A =π3或A =π(舍去).又因为bc =1,b +c =3,由余弦定理,得a 2=b 2+c 2-2bc ·cos A =b 2+c 2-bc =(b +c )2-3bc =6,所以a = 6. 5.(2018·山东青岛模拟)在△ABC 中,边a ,b ,c 的对角分别为A ,B ,C ,且b =4,A =π3,面积S =2 3. (1)求a 的值;(2)设f (x )=2(cos C sin x -cos A cos x ),将f (x )图象上所有点的横坐标变为原来的12(纵坐标不变)得到g (x )的图象,求g (x )的单调增区间.解析 (1)在△ABC 中,∵S =12bc sin A ,∴23=12×4×c ×32,∴c =2.∴a =b 2+c 2-2bc cos A =16+4-2×4×2×12=2 3.(2)∵a sin A =b sin B ,即2332=4sin B,∴sin B =1, 又0<B <π,∴B =π2,∴C =π6,∴f (x )=2(cos C sin x -cos A cos x )=2sin ⎝⎛⎭⎫x -π6, 将f (x )图象上所有点的横坐标变为原来的12(纵坐标不变),得到的图象对应的函数解析式为g (x )=2sin ⎝⎛⎭⎫2x -π6, 令2k π-π2≤2x -π6≤2k π+π2(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ),故g (x )的单调增区间为⎣⎡⎦⎤k π-π6,k π+π3(k ∈Z ). 6.(2018·辽宁协作体一模)设△ABC 是锐角三角形,三个内角A ,B ,C 所对的边分别为a ,b ,c ,且(sin A -sin B )(sin A +sin B )=sin ⎝⎛⎭⎫π3+B sin ⎝⎛⎭⎫π3-B . (1)求角A 的值;(2)若AB →·AC →=12,a =27,求b ,c (其中b <c ).解析 (1)∵(sin A -sin B )(sin A +sin B )=sin ⎝⎛⎭⎫π3+B ·sin ⎝⎛⎭⎫π3-B ,∴sin 2A -sin 2B =⎝⎛⎭⎫32cos B +12sin B⎝⎛⎭⎫32cos B -12sin B , 即sin 2A =34cos 2B -14sin 2B +sin 2B=34(cos 2B +sin 2B )=34, ∵角A 为锐角△ABC 的内角,∴sin A >0, ∴sin A =32,∴A =π3. (2)AB →·AC →=bc cos A =12,∴bc =24,又a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =(27)2, ∴b +c =10,又∵b <c ,∴b =4,c =6.第3讲 平面向量题型一 向量的概念及线性运算高考中常从以下角度命题:1. (1)平面内给定三个向量a=(3,2),b=(-1,2),c=(4,1).若(a+k c)∥(2b-a),则k=-1613.(2)如图,E为平行四边形ABCD的边DC的中点,F为△ABD的重心,且AB→=a,AD→=b,则FE→=23b+16a.突破点拨(1)利用向量的坐标运算和向量共线定理求解.(2)利用向量加、减法的几何意义和重心公式求解.解析(1)因为(a+k c)∥(2b-a),又a+k c=(3+4k,2+k),2b-a=(-5,2),所以2×(3+4k)-(-5)×(2+k)=0,所以k=-1613.(2)由F为△ABD的重心,得AF→=23×12AC→=13(a+b).又AE→=AD→+DE→=b+12a,所以FE→=AE→-AF→=23b+16a.2.(1)在△ABC中,点M,N满足AM→=2MC→,BN→=NC→.若MN→=xAB→+yAC→,则x=12,y=-16.(2)已知向量a=(2,1),b=(1,-2),若m a+n b=(9,-8)(m,n∈R),则m-n的值为__-3__.突破点拨(1)画出图形,利用向量加减法则求解.(2)利用向量的坐标运算求解.。

2020年河南省名校联盟高考数学冲刺试卷(三)(含答案解析)

2020年河南省名校联盟高考数学冲刺试卷(三)(含答案解析)

2020年河南省名校联盟高考数学冲刺试卷(三)一、选择题(本大题共16小题,共80.0分)1. 已知集合A ={x ∈Z|x 2+x −6≤0},B ={x|x ≥1},则A ∩B =( )A. {x|1≤x ≤2}B. {x|1≤x ≤3}C. {1,2}D. {1,2,3}2.1+i 3−4i=( )A. −125+725i B. −125−725i C. 725+125i D. 725−125i 3. 已知等差数列{a n }的前n 项的和为S n ,若a 5+a 6=10,则S 10=( ) A. 40B. 45C. 50D. 554. 已知函数f(x)={3x ,x ≤0,log 2x,x >0,则f (f (12))的值等于( )A. −13B. 13C. √3D. −√35. 若双曲线.y 2−x 23=1,则该双曲线的渐近线方程为( )A. y =±√5xB. y =±√3xC. y =±√1515xD. y =±√33x6. 已知x ,y 的取值如下表,若变量y 与x 线性相关,且回归方程为y =0.95x +2.1,则表中的实数a 的值为 x 013 4y2.54.3a6.7D. 4.95 7. 在正方形内任取一点,则该点在正方形的内切圆内的概率为( )A. π12B. π4C. π3D. π28. 某几何体的三视图如图所示,则该儿何体的体积是( )A. 23 B. 43 C. 4D. 2√539. 若r =m mod n 表示r 等于m 除以n 的余数,例如2=10 mod 4.执行该程序框图,则输出的n 等于( )A. 15B. 16C. 17D. 18 10. 过点(2,3)的直线l 与圆(x +3)2+(y +2)2=1相切,则直线l 的斜率为( )A. 65或56B. 54或45 C. 43或34 D. 32或23 11. 已知底面半径为1,高为√3的圆锥的顶点和底面圆周都在球O 的球面上,则此球的表面积为( )A. 32√3π27B. 12πC. 4πD.16π312. 抛物线y 2=16x 的焦点为F ,点A 在y 轴上,且满足|OA⃗⃗⃗⃗⃗ |=|OF ⃗⃗⃗⃗⃗ |,抛物线的准线与x 轴的交点是B ,则FA ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =( )A. −4B. 4C. 0D. −4或413. 已知函数f (x )=sin (ωx −π6)(ω>0)的最小正周期是π,将函数y =f (x )的图象向左平移π6个单位长度后所得的函数为y =g (x ),则函数的y =g (x )图象( )A. 有一个对称中心(π12,0) B. 有一条对称轴x =π6 C. 有一个对称中心(π3,0) D. 有一条对称轴x =π4 14. 已知圆锥的母线长为5,高为4,则圆锥的表面积为( )A. 30πB. 18πC. 24πD. 27π15. 6名科学家分配到3个农村进行农业技术培训,每村至少1名,则小张不去甲村的不同分配方案有( )A. 360种B. 240种C. 300种D. 420种16. 已知函数f (x )={−x 2+12x,x <0e x −1,x ≥0,若函数y =f (x )−kx 有3个零点,则实数k 的取值范围是( )A. (−1,1)B. (1,+∞)C. [2,+∞)D. [1,2)二、填空题(本大题共4小题,共20.0分)17. 函数f(x)=e x +sinx 在点(0,1)处的切线方程为________.18. 已知向量AB ⃗⃗⃗⃗⃗ =(3,7),BC ⃗⃗⃗⃗⃗ =(−2,3),则−12AC ⃗⃗⃗⃗⃗ = __________. 19. 若实数x ,y 满足约束条件{x +y −1≥0x −3y +3≥0x ≤3,则z =2x −y 的最大值为______.20. 已知数列{a n }的前n 项和S n =2n −1,则a 2⋅a 6=______. 三、解答题(本大题共7小题,共82.0分) 21. 在△ABC 中,cosB =−513,sinC =35(Ⅰ)求sin A 的值;(Ⅱ)若△ABC 的面积S △ABC =332,求BC 的长.22. 如图,在三棱锥P −ABC 中,PA 垂直于平面ABC ,AC ⊥BC.求证:BC ⊥平面PAC .23. 某城市为了满足市民出行的需要和节能环保的要求,在公共场所提供单车共享服务,某部门为了对该城市共享单车进行监管,随机选取了20位市民对共享单车的情况进行问卷调查,并根据其满意度评分值(满分100分)制作的茎叶图如图所示:(1)分别计算男性打分的平均数和女性打分的中位数;(2)从打分在70分以下(不含70分)的市民中抽取3人,求有女性被抽中的概率.24.已知椭圆C:x2a2+y2b2=1(a>b>0)的左右焦点分别为F1,F2,图象经过点A(2,0)和点B(0,√3),过F2与坐标轴不垂直的直线l与椭圆C交于P、Q两点,N为PQ的中点.(1)求椭圆C的方程;(2)设点M(0,18),且MN⊥PQ于N,求直线PQ的方程.25.已知函数f(x)=e x(e x+a)−a2x.(1)讨论f(x)的单调性;(2)若f(x)≥0,求a的取值范围.26.在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系.若曲线C的极坐标方程为ρ=2sinθ,求曲线C的直角坐标方程.27.已知函数f(x)=2|x+1|−|x−m|(m>0).(Ⅰ)当m=2时,求不等式f(x)≤1的解集;(Ⅱ)g(x)=f(x)−2,g(x)的图象与两坐标轴的交点分别为A,B,C,若三角形ABC的面积为12,求m的值.-------- 答案与解析 --------1.答案:C解析:【分析】本题考查一元二次不等式的解法,以及交集的运算,属于简单题.可求出集合A,然后进行交集的运算即可.【解答】解:A={x∈Z|−3≤x≤2}={−3,−2,−1,0,1,2};∴A∩B={1,2}.故选:C.2.答案:A解析:解:1+i3−4i =(1+i)(3+4i)(3−4i)(3+4i)=−125+725i.故选:A.直接利用复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,是基础题.3.答案:C解析:解:∵a5+a6=10,∴a1+a10=10.则S10=10(a1+a10)2=10×102=50.故选:C.a5+a6=10,可得a1+a10=10.再利用等差数列的前n项和公式即可得出.本题考查了等差数列的性质及其前n项和公式,考查了推理能力与计算能力,属于基础题.4.答案:B解析:【分析】本题考查分段函数求值,考查计算能力,属于基础题.直接利用函数的解析式求解函数值即可.【解答】解:函数f(x)={3x ,x ≤0,log 2x,x >0,f (f (12))=f(log 2(12))=f(−1) =3−1=13.故选B .5.答案:D解析: 【分析】本题考查双曲线的标准方程、渐近线方程,属于基础题. 【解答】 解:由双曲线y 2−x 23=1,可得a =1,b =√3,焦点在y 轴,则渐近线方程为y =±√33x ,故选D .6.答案:B解析: 【分析】本题考查线性回归方程及平均数的计算,利用回归直线过样本中心即可求解. 【解答】 解:由已知x =0+1+3+44=2,y =2.5+4.3+a+6.74=13.5+a 4,∵点(x,y)在回归直线上,∴13.5+a4=0.95×2+2.1 ∴a =2.5. 故选B .7.答案:B解析:解:设圆的半径为r ,则正方形的边长为2r ∴圆的面积为πr 2,正方形的面积为4r 2 以面积为测度,可得点P 落在⊙O 内的概率为πr 24r =π4以面积为测度,计算圆的面积,正方形的面积,即可求得点P落在⊙O内的概率.本题考查几何概型,考查面积的计算,属于基础题.8.答案:B解析:解:根据三视图知,该几何体是底面为平行四边形的四棱锥P−ABCD,如图所示;则该四棱锥的高为2,底面积为1×2=2,所以该四棱锥的体积是V=13×2×2=43.故选:B.根据三视图知该几何体是底面为平行四边形的四棱锥,结合图中数据求出该几何体的体积.本题考查了利用三视图求几何体体积的应用问题,是基础题.9.答案:C解析:【分析】本题考查的知识要点:程序框图的应用.属于基础题.直接利用程序框图的循环结构和整除的应用求出结果.【解答】解:根据整除的原理,利用程序框图,执行循环前,n=10,执行第一次循环n=11,余数不等于1,则执行下一次循环当n=17时,余数为2,则输出17.故选:C.解析: 【分析】本题考查了直线与圆相切、点到直线的距离公式、考查了计算能力,属于中档题. 由题意设直线的方程为y −3=k(x −2),利用直线与圆相切的性质即可得出. 【解答】解: 根据题意可设直线l 方程为y −3=k(x −2),即kx −y −2k +3=0. 由直线与圆相切的条件可得2=1,化为12k 2−25k +12=0,解得k =34或43. 故选C .11.答案:D解析: 【分析】本题考查球的体积和表面积,根据已知求出球的半径是解答该题的关键,是基础题.设球的半径为R ,根据圆锥的几何特征,可得R 2=(ℎ−R)2+r 2,解出半径,则球的表面积可求. 【解答】解:设球的半径为R ,∵圆锥的高ℎ=√3,底面圆的半径r =1, ∴R 2=(ℎ−R)2+r 2,即R 2=(√3−R)2+1, 解得:R =2√33, 故该球的表面积S =4πR 2=4π×(2√33)2=16π3,故选:D .12.答案:C解析:解:抛物线y 2=16x 的焦点为F(4,0), |OA ⃗⃗⃗⃗⃗ |=|OF ⃗⃗⃗⃗⃗ |,可得A(0,±4), 又B(−4,0),即有FA ⃗⃗⃗⃗⃗ =(−4,4),AB ⃗⃗⃗⃗⃗ =(−4,−4) 或FA⃗⃗⃗⃗⃗ =(−4,−4),AB ⃗⃗⃗⃗⃗ =(−4,4) 则有FA⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =16−16=0,求得抛物线的焦点坐标,由条件可得A的坐标,再由抛物线的准线可得B的坐标,得到向量FA,AB的坐标,由数量积的坐标表示,计算即可得到所求值.本题考查抛物线的方程和性质,考查向量的坐标运算,属于基础题.13.答案:B解析:【分析】本题给出y=Asin(ωx+φ)的图象左移φ个单位后得到偶函数的图象,求φ的值.着重考查了函数y= Asin(ωx+φ)的图象与性质和正弦的诱导公式等知识,属于基本知识的考查.【解答】解:由题意得,∴ω=2ππ=2,函数表达式为:f(x)=sin(2x−π6),将函数f(x)的图象向左平移π6个单位长度后所得的函数为y=g(x),g(x)=sin(2x+π6),令则则函数y=g(x)的图象有一条对称轴x=π6,故选B.14.答案:C解析:【分析】本题考查的知识点是圆锥的表面积,熟练掌握圆锥的几何特征是解答的关键.由题意得到圆锥的底面半径为3,代入圆锥的表面积公式求解.【解答】解:由题意知圆锥的底面半径为3,则圆锥的表面积为π×3×5+π×32=24π.15.答案:A解析:解:6人分成3组,有(1,1,4),(1,2,3),(2,2,2)分组方法是C 64+C 63⋅C 32+C 62⋅C 42⋅C 22A 33=90种,把每组分配3个村,没有限制条件分配方法有A 33,再排除小张到甲村的有A 22,故小张不去甲村的方法有A 33−A 22=4,故小张不去甲存村的不同分配方案4×90=360种. 故选:A先将6人分成3组,再求出小张不去甲存村的不同分配方法,根据乘法原理,可得结论. 本题考查排列组合知识,考查学生分析解决问题的能力,属于中档题.16.答案:B解析:由f (x )−kx =0得到f (x )=kx ,f(0)=0,当x <0时,得到−x 2+12x =kx ,得到x =12−k <0,所以k >12,当x >0时,f(x)=e x −1,f′(x )=e x >1,所以要使y =f(x)−kx 在x >0时有一个零点,则k >1,所以实数k 的取值范围是(1,+∞),选B .17.答案:2x −y +1=0解析:【分析】本题考查导数的运用:求切线的方程,考查直线方程的运用,以及运算能力,属于基础题. 求得函数的导数,可得切线的斜率,由斜截式方程可得切线的方程. 【解答】解:函数y =e x +sinx 的导数为y′=e x +cosx , 可得在点(0,1)处的切线斜率为e 0+cos0=2,则函数y =e x +sinx 在点(0,1)处的切线方程为y =2x +1, 即为2x −y +1=0, 故答案为:2x −y +1=0.18.答案:解析:因为向量AB ⃗⃗⃗⃗⃗ =(3,7),BC ⃗⃗⃗⃗⃗ =(−2,3),故AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =(1, 10),则−12AC ⃗⃗⃗⃗⃗ =(−12, −5). 19.答案:8解析: 【分析】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法,属于基础题.作出不等式组对应的平面区域,利用目标函数的几何意义,求目标函数z =2x −y 的最大值.【解答】解:由z =2x −y ,得y =2x −z ,作出实数x ,y 满足约束条件{x +y −1≥0x −3y +3≥0x ≤3对应的可行域(阴影部分),平移直线y =2x −z ,由平移可知当直线y =2x −z 经过点A 时, 直线y =2x −z 的截距最小,此时z 取得最大值, 由{x =3x +y −1=0,解得A(3,−2), 将C 的坐标代入z =2x −y ,得z =8, 即目标函数z =2x −y 的最大值为8. 故答案为:8.20.答案:64解析: 【分析】运用数列的递推式:n ≥2时,a n =S n −S n−1,计算即可得到所求值. 本题考查数列的递推式的运用,考查运算能力,属于基础题. 【解答】解:数列{a n }的前n 项和S n =2n −1, 可得a 2=S 2−S 1=4−1−(2−1)=2, a 6=S 6−S 5=64−1−(32−1)=32, 则a 2⋅a 6=64. 故答案为:64.21.答案:(本题满分为12分)解:(Ⅰ)由cosB =−513,B ∈(0,π),得sinB =√1−cos 2B =1213,(1分) 由cosB =−513<0,得B ∈(π2,π),∴C∈(0,π2),(2分)所以,由sinC=35,得cosC=45,(4分)所以sinA=sin(B+C)=sinBcosC+cosBsinC=3365.(6分)(Ⅱ)∵S △ABC=332,可得:12×AB×AC×sinA=332,由(Ⅰ)可得sinA=3365,可得:AB×AC=65,…(8分)又∵AC=AB×sinBsinC =2013AB,…(10分)∴2013AB2=65,AB=132,∴BC=AB×sinAsinC =112…(12分)解析:(Ⅰ)由已知利用同角三角函数基本关系式可求sin B的值,结合范围B∈(π2,π),可求C为锐角,求得cos C,利用三角形内角和定理,两角和的正弦函数公式即可得解sin A的值.(Ⅱ)利用三角形面积公式,及正弦定理,可求AB的值,进而利用正弦定理即可解得BC的值.本题主要考查了同角三角函数基本关系式,三角形内角和定理,两角和的正弦函数公式,三角形面积公式,正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于中档题.22.答案:证明:∵PA垂直于平面ABC,∴PA⊥BC.又∵AC⊥BC,故BC垂直于平面PAC内的两条相交直线PA和AC,∴BC⊥平面PAC.解析:由线面垂直的性质可得PA⊥BC,再由AC⊥BC可得BC⊥平面PAC.本题考查证明线线垂直、线面垂直的方法,线与平面垂直的判定、性质的应用.证明PA⊥BC是解题的关键.23.答案:解:(1)男性的平均数为110(55+53+62+65+71+70+73+74+86+81)=69010=69,女性的中位数为76+782=77(2)打分在70分以下(不含70分)的市民中有6名,女性2名,男性4名,从中抽取3人有C63=20种方法,有女性被抽中有C21C42+C22C41=12+4=16,则对应的概率P=1620=45.解析:(1)根据茎叶图中的数据,利用平均数和中位数的公式进行计算即可.(2)根据古典概型的概率公式分别进行计算即可.本题主要考查茎叶图中的应用,结合平均数,中位数的定义和公式以及古典概型的概率公式是解决本题的关键.24.答案:解:(1)∵图象经过点A(2,0)和点B(0,√3),∴a=2,b=√3,∴椭圆C的方程为 x24+y23=1;(2)因为直线PQ的斜率存在,F2(1,0),设直线方程为y=k(x−1),P(x1,y1),Q(x2,y2),联立{ y=k(x−1)x24+y23=1,整理得(3+4k2)x2−8k2x+4k2−12=0,由韦达定理知x1+x2=8k23+4k2,y1+y2=k(x1+x2)−2k=−6k3+4k2,此时N(4k23+4k2,−3k3+4k2),又M(0,18),则k MN=18+3k3+4k20−4k23+4k2=−24k+3+4k232k,∵MN⊥PQ,∴k MN=−1k ,解得k=12或k=32.∴直线PQ的方程为y=12(x−1)或y=32(x−1).解析:本题考查直线与椭圆的位置关系的应用,椭圆方程的求法,属于较难题.(1)图象经过点A(2,0)和点B(0,√3),可得a=2,b=√3,求解椭圆C的方程.(2)因为直线PQ的斜率存在,设直线方程为y=k(x−1),P(x1,y1),Q(x2,y2),联立,由韦达定理求解N,M的坐标,MN⊥PQ,转化求解即可.25.答案:解:(1)函数f(x)的定义域为R,f′(x)=2e x+ae x−a2=(2e x−a)(e x+a),①若a=0,则f(x)=e2x,在(−∞,+∞)单调递增.②若a>0,则由f′(x)=0得x=ln a2.当x∈(−∞,ln a2)时,f′(x)<0;当x∈(ln a2,+∞)时,f′(x)>0,所以f(x)在(−∞,ln a2)上单调递减,在(ln a2,+∞)上单调递增.③若a<0,则由f′(x)=0,得x=ln(−a).当x∈(−∞,ln(−a))时,f′(x)<0;当x∈(ln(−a),+∞)时,f′(x)>0,故f(x)在(−∞,ln(−a))上单调递减,在(ln(−a),+∞)上单调递增.(2)①若a=0,则f(x)=e2x,所以f(x)≥0.②若a>0,则由(1)得,当x=ln a2时,f(x)取得最小值,最小值为f(ln a2)=a2(34−ln a2).从而当且仅当34−ln a2≥0,即0<a≤2e34时,f(x)≥0.③若a<0,则由(1)得,当x=ln(−a)时,f(x)取得最小值,最小值为f( ln −a)=−a 2(ln(−a)).从而当且仅当−a 2(ln(−a))≥0,即−1<a <0时,f(x)≥0. 综上,a 的取值范围为[−1,2e 34].解析:(1)求出函数的导数,通过讨论a 的范围,判断函数的单调性即可;(2)通过讨论a 的范围,结合函数的单调性求出函数的最值,得到关于a 的不等式,解出即可. 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.26.答案:解:将曲线C 的极坐标方程ρ=2sinθ,两边同乘以一个ρ,得ρ2=2ρsinθ,即x 2+y 2=2y ,故曲线C 的直角坐标方程为x 2+y 2−2y =0.解析:本题考查极坐标与直角坐标的转化,将曲线C 的极坐标方程ρ=2sinθ,两边同乘以一个ρ,得ρ2=2ρsinθ, 利用极坐标与直角坐标的互化,求解即可.27.答案:解:(Ⅰ)当m =2时,不等式f(x)≤1可化为,2|x +1|−|x −2|≤1,当x <−1时,不等式化为x +5≥0,解得−5≤x <−1, 当−1≤x ≤2时,不等式化为3x ≤1,解得−1≤x ≤13, 当x >2时,不等式化为x +3≤0,解得x ∈⌀, 综上,不等式的解集为:{x|−5≤x ≤13};(Ⅱ)g(x)=f(x)−2=2|x +1|−|x −m|−2={−x −4−m,x <−13x −m,−1≤x ≤m x +m,x >m ,∴g(x)的图象与两坐标轴的交点坐标分别为A(−m −4,0),B(0,−m),C(m3,0), ∴三角形ABC 的面积:S △ABC =12⋅[m3−(−m −4)]⋅|−m| =23m(m +3),m(m+3)=12,得m=3或m=−6(舍),由S△ABC=23∴m=3.解析:本题考查了绝对值不等式的解法,考查了分类讨论思想,属中档题.(Ⅰ)将m=2代入不等式中,然后去绝对值即可;(Ⅱ)求出g(x)的图象与坐标轴的交点坐标,然后得到三角形ABC的面积,根据面积为12即可得解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020高考数学冲刺专题训练
选择题 第3题
1、命题23x x N x p <∈∃,:;命题)10(,:∈∀a q ,函数x x f a log )(=在其定义域内单调递减,则真命题是( )
A. q ⌝
B. q p ∧
C. q p ∧⌝
D. q p ⌝∧
2、若b a ,都是不等于1的正数,则“2log 2log b a >”是“b a 22>”的( )
A. 充分非必要条件
B. 必要非充分条件
C. 充要条件
D. 非充分非必要条件
3、已知函数)(x f 的定义域为R ,M 为常数,若R x p ∈∀:对,都有M x f ≥)(,的最小值是函数:)(x f M q ,则q p 是的( )
A. 充分不必要条件
B. 必要不充分条件
C. 充要条件
D. 既不充分也不必要条件
4、“10<<a ”是“3log 2log a a >”的( )
A. 必要非充分条件
B. 充分非必要条件
C. 充分必要条件
D. 非充分非必要条件
5、已知命题x
x N x p ⎪⎭⎫ ⎝⎛≥⎪⎭⎫ ⎝⎛∈∀*3121,:,命题22221=+∈∃-x x R x q ,:,则下列命题中为真命题的是( )
A. q p ∧
B. q p ∧⌝)(
C. )(q p ⌝∧
D. )()(q p ⌝∧⌝
6、已知命题ax x x p >+∈∀5)32(2,,
:是假命题,则实数a 的取值范围是( ) A. )52[∞+, B. )29[∞+, C. )3
14[∞+, D. )52(,-∞
7、“02≥-∈∀x x R x ,”的否定是( )
A. 02<-∈∀x x R x ,
B. 02≤-∈∀x x R x ,
C. 00200≤-∈∃x x R x ,
D. 002
00<-∈∃x x R x ,
8、命题“0322>+-ax ax 恒成立”是假命题,则实数a 的取值范围是( )
A. 30<<a
B. 30≥<a a 或
C. 30><a a 或
D. 30≥≤a a 或
9、“11<<-c ”是“直线0=++c y x 与圆122=+y x 相交”的( )
A. 充分不必要条件
B. 必要不充分条件
C. 充分必要条件
D. 既不充分也不必要条件
10、已知条件2|1|>+x p :,条件265x x q >-:
,则p ⌝是q ⌝的( ) A. 充分不必要条件 B. 必要不充分条件
C. 充要条件
D. 既不充分也不必要条件
答案:
1、C
2、D
3、B
4、C
5、A
6、A
7、D
8、B
9、A 10、A。

相关文档
最新文档