2020高考数学专题训练16
2020届高考数学(理)二轮复习专题强化训练:(十六)解三角形理+Word版含答案
专题强化训练(十六) 解三角形1.[2019·天津卷]在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知b +c =2a,3c sin B =4a sin C .(1)求cos B 的值;(2)求sin ⎝⎛⎭⎪⎫2B +π6的值. 解:(1)在△ABC 中,由正弦定理bsin B =csin C ,得b sin C =c sin B ,又由3c sin B =4a sin C ,得3b sin C =4a sin C ,即3b =4a .又因为b +c =2a ,得到b =43a ,c =23a .由余弦定理可得cos B =a 2+c 2-b 22ac =a 2+49a 2-169a 22·a ·23a =-14. (2)由(1)可得sin B =1-cos 2B =154, 从而sin2B =2sin B cos B =-158, cos2B =cos 2B -sin 2B =-78, 故sin ⎝⎛⎭⎪⎫2B +π6=sin2B cos π6+cos2B sin π6=-158×32-78×12=-35+716. 2.[2019·石家庄一模]已知△ABC 的面积为33,且内角A ,B ,C 依次成等差数列.(1)若sin C =3sin A ,求边AC 的长;(2)设D 为AC 边的中点,求线段BD 长的最小值.解:(1)∵△ABC 三个内角A 、B 、C 依次成等差数列,∴B =60°.设A 、B 、C 所对的边分别为a 、b 、c ,由△ABC 的面积S =33=12ac sin B 可得ac =12. ∵sin C =3sin A ,由正弦定理知c =3a ,∴a =2,c =6.在△ABC 中,由余弦定理可得b 2=a 2+c 2-2ac cos B =28,∴b =27,即AC 的长为27.(2)∵BD 是AC 边上的中线,∴BD →=12(BC →+BA →), ∴BD →2=14(BC →2+BA →2+2BC →·BA →)=14(a 2+c 2+2ac cos B )=14(a 2+c 2+ac )≥14(2ac +ac )=9,当且仅当a =c 时取“=”,∴|BD →|≥3,即BD 长的最小值为3.3.[2019·合肥质检二]在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,sin 2A +sin 2B +sin A sin B =2c sinC ,△ABC 的面积S =abc .(1)求角C ;(2)求△ABC 周长的取值范围.解:(1)由S =abc =12ab sin C 可得2c =sin C , ∴sin 2A +sin 2B +sin A sin B =sin 2C ,由正弦定理得a 2+b 2+ab =c 2,由余弦定理得cos C =-12,∴C =2π3. (2)由(1)知2c =sin C ,同理可知2a =sin A ,2b =sin B .△ABC 的周长为 a +b +c =12(sin A +sin B +sin C )=12[sin A +sin ⎝ ⎛⎭⎪⎫π3-A ]+34 =12⎝ ⎛⎭⎪⎫sin A +32cos A -12sin A +34=12⎝ ⎛⎭⎪⎫12sin A +32cos A +34=12sin ⎝⎛⎭⎪⎫A +π3+34. ∵A ∈⎝ ⎛⎭⎪⎫0,π3,∴A +π3∈⎝ ⎛⎭⎪⎫π3,2π3, ∴sin ⎝ ⎛⎭⎪⎫A +π3∈⎝ ⎛⎦⎥⎤32,1, ∴△ABC 周长的取值范围为⎝ ⎛⎦⎥⎤32,2+34.4.[2019·武汉4月调研]在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos A =104,B =2A ,b =15. (1)求a ;(2)已知M 在边BC 上,且CM MB =12,求△CMA 的面积. 解:(1)由0<A <π,cos A =104,知sin A =64, ∴sin B =sin2A =2sin A cos A =2×64×104=154, 由正弦定理a sin A =b sin B =csin C 可知, a =b sin A sin B= 6. (2)cos B =cos2A =2cos 2A -1=2×⎝ ⎛⎭⎪⎫1042-1=14, sin C =sin(A +B )=sin A cos B +cos A sin B =64×14+104×154=368, △ABC 的面积S △ABC =12ab ·sin C =12×6×15×368=9158, 又CM MB =12,∴S △CMA =13S △ABC =13×9158=3158. 5.[2019·济南模拟]△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b sin C =a cos C +c cos A ,B =2π3,c = 3. (1)求角C ; (2)若点E 满足AE →=2EC →,求BE 的长.解:(1)解法一:由题设及正弦定理得2sin B sin C =sin A cos C +sin C cos A ,又sin A cos C +sin C cos A =sin(A +C )=sin(π-B )=sin B ,所以2sin B sin C =sin B .由于sin B =32≠0,所以sin C =12. 又0<C <π3,所以C =π6. 解法二:由题设及余弦定理可得2b sin C =a ×a 2+b 2-c 22ab +c ×b 2+c 2-a 22bc, 化简得2b sin C =b .因为b >0,所以sin C =12. 又0<C <π3,所以C =π6. 解法三:由2b sin C =a cos C +c cos A ,结合b =a cos C +c cos A ,可得2b sin C =b .因为b >0,所以sin C =12. 又0<C <π3,所以C =π6. (2)解法一:由正弦定理易知b sin B =csin C =23,解得b =3. 又AE →=2EC →,所以AE =23AC =23b ,即AE =2. 在△ABC 中,因为∠ABC =23π,C =π6, 所以A =π6, 所以在△ABE 中,A =π6,AB =3,AE =2, 由余弦定理得BE =AB 2+AE 2-2AB ·AE cos π6= 3+4-2×3×2×32=1, 所以BE =1.解法二:在△ABC 中,因为∠ABC =23π,C =π6,所以A =π6,a =c = 3. 由余弦定理得b =(3)2+(3)2-2×3×3×co s 23π=3. 因为AE →=2EC →,所以EC =13AC =1. 在△BCE 中,C =π6,BC =3,CE =1,由余弦定理得BE =BC 2+EC 2-2BC ·EC cos π6=3+1-2×3×1×32=1, 所以BE =1. 解法三:在△ABC 中,因为∠ABC =23π,C =π6, 所以A =π6,a =c = 3. 因为AE →=2EC →,所以BE →=13BA →+23BC →. 则|BE →|2=19(BA →+2BC →)2=19(|BA →|2+4BA →·BC →+4|BC →|2)=19(3-4×3×3×12+4×3)=1,所以BE =1.6.[2019·太原一模]如图,已知△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,且a sin A +(c -a )sin C =b sin B ,点D 是AC 的中点,DE ⊥AC ,交AB 于点E ,且BC =2,DE =62.(1)求B ;(2)求△ABC 的面积.解:(1)∵a sin A +(c -a )sin C =b sin B ,∴由a sin A =b sin B =c sin C 得a 2+c 2-ac =b 2, 由余弦定理得cos B =a 2+c 2-b 22ac =12, ∵0°<B <180°,∴B =60°.(2)如图,连接CE ,∵D 是AC 的中点,DE ⊥AC ,∴AE =CE ,∴CE =AE =DEsin A =62sin A . 在△BCE 中,由正弦定理得CEsin B=BC sin ∠BEC =BC sin2A , ∴62sin A sin60°=22sin A cos A ,∴cos A =22, ∵0°<A <180°,∴A =45°,∴∠ACB =75°,∴∠BCE =∠ACB -∠ACE =30°,∠BEC =90°,∴CE =AE =3,AB =AE +BE =3+1,∴S △ABC =12AB ·CE =3+32. 7.[2019·长沙一模]已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .且a sin(A +B )=c sin B +C2.(1)求A ;(2)若△ABC 的面积为3,周长为8,求a .解:(1)由题设得a sin C =c cos A 2, 由正弦定理得sin A sin C =sin C cos A 2,∵sin C ≠0, 所以sin A =cos A 2, 所以2sin A 2cos A 2=cos A 2,又cos A 2≠0, 所以sin A 2=12, 故A =60°.(2)由题设得12bc sin A =3,从而bc =4. 由余弦定理a 2=b 2+c 2-2bc cos A ,得a 2=(b +c )2-12.又a +b +c =8,所以a 2=(8-a )2-12,解得a =134. 8.[2019·福州质检]△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若角A ,B ,C 成等差数列,且b =32.(1)求△ABC 的外接圆直径;(2)求a +c 的取值范围.解:(1)因为角A ,B ,C 成等差数列,所以2B =A +C ,又因为A +B +C =π,所以B =π3. 根据正弦定理得,△ABC 的外接圆直径2R =b sin B =32sin π3=1. (2)解法一:由B =π3,知A +C =2π3, 可得0<A <2π3. 由(1)知△ABC 的外接圆直径为1,根据正弦定理得, a sin A =b sin B =c sin C =1, 所以a +c =sin A +sin C=sin A +sin ⎝⎛⎭⎪⎫2π3-A =3⎝ ⎛⎭⎪⎫32sin A +12cos A =3sin ⎝⎛⎭⎪⎫A +π6. 因为0<A <2π3,所以π6<A +π6<5π6. 所以12<sin ⎝⎛⎭⎪⎫A +π6≤1, 从而32<3sin ⎝⎛⎭⎪⎫A +π6≤3, 所以a +c 的取值范围是⎝ ⎛⎦⎥⎤32,3. 解法二:由(1)知,B =π3, b 2=a 2+c 2-2ac cos B=(a +c )2-3ac≥(a +c )2-3⎝⎛⎭⎪⎫a +c 22=14(a +c )2(当且仅当a =c 时,取等号), 因为b =32,所以(a +c )2≤3,即0<a +c ≤3, 又三角形两边之和大于第三边, 所以32<a +c ≤3, 所以a +c 的取值范围是⎝⎛⎦⎥⎤32,3.。
高考数学总复习考点知识讲解与提升练习16 函数的零点与方程的解
高考数学总复习考点知识讲解与提升练习专题16 函数的零点与方程的解考点知识1.理解函数的零点与方程的解的联系.2.理解函数零点存在定理,并能简单应用.3.了解用二分法求方程的近似解.知识梳理1.函数的零点与方程的解(1)函数零点的概念对于一般函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.(2)函数零点与方程实数解的关系方程f(x)=0有实数解⇔函数y=f(x)有零点⇔函数y=f(x)的图象与x轴有公共点.(3)函数零点存在定理如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内至少有一个零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的解.2.二分法对于在区间[a,b]上图象连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.常用结论1.若连续不断的函数f(x)是定义域上的单调函数,则f(x)至多有一个零点.2.连续不断的函数,其相邻两个零点之间的所有函数值保持同号.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数的零点就是函数的图象与x轴的交点.(×)(2)连续函数y=f(x)在区间(a,b)内有零点,则f(a)·f(b)<0.(×)(3)函数y=f(x)为R上的单调函数,则f(x)有且仅有一个零点.(×)(4)用二分法求函数零点的近似值适合于变号零点.(√)教材改编题1.观察下列函数的图象,判断能用二分法求其零点的是()答案A解析由图象可知,B,D选项中函数无零点,A,C选项中函数有零点,C选项中函数零点两侧函数值符号相同,A选项中函数零点两侧函数值符号相反,故A选项中函数零点可以用二分法求近似值,C选项不能用二分法求零点.2.函数y=3x-ln x的零点所在区间是()A.(3,4) B.(2,3) C.(1,2) D.(0,1) 答案B解析因为函数的定义域为(0,+∞),且函数y=3x在(0,+∞)上单调递减;y=-ln x在(0,+∞)上单调递减,所以函数y=3x-ln x为定义在(0,+∞)上的连续减函数,又当x=2时,y=32-ln2>0;当x=3时,y=1-ln3<0,两函数值异号,所以函数y=3x-ln x的零点所在区间是(2,3).3.函数f(x)=e x+3x的零点个数是() A.0B.1C.2D.3答案B解析由f′(x)=e x+3>0,所以f(x)在R上单调递增,又f(-1)=1e-3<0,f(0)=1>0,因此函数f(x)有且只有一个零点.题型一函数零点所在区间的判定例1(1)函数f(x)=ln x+2x-6的零点所在的区间是()A.(1,2) B.(2,3)C.(3,4) D.(4,5)答案B解析由题意得,f(x)=ln x+2x-6,在定义域内单调递增,f(2)=ln2+4-6=ln2-2<0,f(3)=ln3+6-6=ln3>0,则f(2)f(3)<0,∴零点在区间(2,3)上.延伸探究用二分法求函数f(x)=ln x+2x-6在区间(2,3)内的零点近似值,至少经过________次二分后精确度达到0.1()A.2B.3C.4D.5答案C解析∵开区间(2,3)的长度等于1,每经过一次操作,区间长度变为原来的一半,经过n次操作后,区间长度变为12n ,故有12n≤0.1,解得n≥4,∴至少需要操作4次.(2)(2023·蚌埠模拟)已知x1+12x=0,x2+log2x2=0,33x--log2x3=0,则() A.x1<x2<x3B.x2<x1<x3C.x1<x3<x2D.x2<x3<x1答案A解析设函数f (x )=x +2x ,易知f (x )在R 上单调递增,f (-1)=-12,f (0)=1,即f (-1)f (0)<0, 由函数零点存在定理可知,-1<x 1<0. 设函数g (x )=x +log 2x ,易知g (x )在(0,+∞)上单调递增,g ⎝ ⎛⎭⎪⎫12=-12,g (1)=1,即g ⎝ ⎛⎭⎪⎫12g (1)<0,由函数零点存在定理可知,12<x 2<1,设函数h (x )=⎝ ⎛⎭⎪⎫13x -log 2x ,易知h (x )在(0,+∞)上单调递减,h (1)=13,h (x 3)=0,因为h (1)>h (x 3), 由函数单调性可知,x 3>1, 即-1<x 1<0<x 2<1<x 3.思维升华 确定函数零点所在区间的常用方法(1)利用函数零点存在定理:首先看函数y =f (x )在区间[a ,b ]上的图象是否连续,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )内必有零点.(2)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断. 跟踪训练1(1)(多选)函数f (x )=e x -x -2在下列哪个区间内必有零点() A .(-2,-1) B .(-1,0)C.(0,1) D.(1,2) 答案AD解析f(-2)=1e2>0,f(-1)=1e-1<0,f(0)=-1<0,f(1)=e-3<0,f(2)=e2-4>0,因为f(-2)·f(-1)<0,f(1)·f(2)<0,所以f(x)在(-2,-1)和(1,2)内存在零点.(2)若a<b<c,则函数f(x)=(x-a)·(x-b)+(x-b)(x-c)+(x-c)(x-a)的两个零点分别位于区间()A.(a,b)和(b,c)内B.(-∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(-∞,a)和(c,+∞)内答案A解析函数y=f(x)是开口向上的二次函数,最多有两个零点,由于a<b<c,则a-b<0,a -c<0,b-c<0,因此f(a)=(a-b)(a-c)>0,f(b)=(b-c)(b-a)<0,f(c)=(c-a)(c -b)>0.所以f(a)f(b)<0,f(b)f(c)<0,即f(x)在区间(a,b)和区间(b,c)内各有一个零点.题型二函数零点个数的判定例2(1)若函数f(x)=|x|,则函数y=f(x)-log|x|的零点个数是()12A.5B.4C.3D.2答案D解析在同一平面直角坐标系中作出f(x)=|x|,g(x)=log|x|的图象如图所示,则y=12f(x)-log|x|的零点个数,即f(x)与g(x)图象的交点个数,由图可知选D.12(2)已知在R上的函数f(x)满足对于任意实数x都有f(2+x)=f(2-x),f(7+x)=f(7-x),且在区间[0,7]上只有x=1和x=3两个零点,则f(x)=0在区间[0,2023]上根的个数为()A.404B.405C.406D.203答案C解析因为f(2+x)=f(2-x),f(x)关于直线x=2对称且f(5+x)=f(-x-1);因为f(7+x)=f(7-x),故可得f(5+x)=f(-x+9);故可得f(-x-1)=f(-x+9),则f(x)=f(x+10),故f(x)是以10为周期的函数.又f(x)在区间[0,7]上只有x=1和x=3两个零点,根据函数对称性可知,f(x)在一个周期[0,10]内也只有两个零点,又区间[0,2023]内包含202个周期,故f(x)在[0,2020]上的零点个数为202×2=404,又f (x )在(2020,2023]上的零点个数与在(0,3]上的零点个数相同,有2个. 故f (x )在[0,2023]上有406个零点, 即f (x )=0在区间[0,2023]上有406个根. 思维升华 求解函数零点个数的基本方法(1)直接法:令f (x )=0,方程有多少个解,则f (x )有多少个零点; (2)定理法:利用定理时往往还要结合函数的单调性、奇偶性等;(3)图象法:一般是把函数拆分为两个简单函数,依据两函数图象的交点个数得出函数的零点个数.跟踪训练2(1)(2022·泉州模拟)设定义域为R 的函数f (x )=⎩⎨⎧|lg x |,x >0,-x 2-2x ,x ≤0,则关于x 的函数y =2f 2(x )-3f (x )+1的零点的个数为() A .3B .7C .5D .6 答案B解析根据题意,令2f 2(x )-3f (x )+1=0, 得f (x )=1或f (x )=12.作出f (x )的简图如图所示,由图象可得当f (x )=1和f (x )=12时,分别有3个和4个交点,故关于x 的函数y =2f 2(x )-3f (x )+1的零点的个数为7. (2)函数f (x )=36-x 2·cos x 的零点个数为______. 答案6解析令36-x 2≥0,解得-6≤x ≤6, ∴f (x )的定义域为[-6,6].令f (x )=0得36-x 2=0或cos x =0, 由36-x 2=0得x =±6, 由cos x =0得x =π2+k π,k ∈Z , 又x ∈[-6,6],∴x 的取值为-3π2,-π2,π2,3π2. 故f (x )共有6个零点. 题型三函数零点的应用 命题点1根据零点个数求参数例3(2023·黄冈模拟)函数f (x )=⎩⎨⎧4-x 2,x ≤2,log 3(x -1),x >2,g (x )=kx -3k ,若函数f (x )与g (x )的图象有三个交点,则实数k 的取值范围为() A .(22-6,0) B .(23-6,0) C .(-2,0) D .(25-6,0) 答案D解析作出函数f (x )=⎩⎨⎧4-x 2,x ≤2,log 3(x -1),x >2的图象,如图所示,设与y =4-x 2相切的直线为l , 且切点为P (x 0,4-x 20),因为y ′=-2x ,所以切线的斜率为k =-2x 0, 则切线方程为y -4+x 20=-2x 0(x -x 0),因为g (x )=kx -3k 过定点(3,0),且在切线l 上, 代入切线方程求得x 0=3-5或x 0=3+5(舍去), 所以切线的斜率为k =25-6,因为函数f (x )与g (x )的图象有三个交点, 由图象知,实数k 的取值范围为(25-6,0). 命题点2根据函数零点的范围求参数 例4(2023·北京模拟)已知函数f (x )=3x -1+axx.若存在x 0∈(-∞,-1),使得f (x 0)=0,则实数a 的取值范围是() A.⎝ ⎛⎭⎪⎫-∞,43 B.⎝ ⎛⎭⎪⎫0,43C .(-∞,0) D.⎝ ⎛⎭⎪⎫43,+∞答案B解析由f (x )=3x -1+axx =0,可得a =3x -1x,令g (x )=3x-1x,其中x ∈(-∞,-1),由于存在x 0∈(-∞,-1),使得f (x 0)=0,则实数a 的取值范围即为函数g (x )在(-∞,-1)上的值域. 由于函数y =3x ,y =-1x在区间(-∞,-1)上均单调递增,所以函数g (x )在(-∞,-1)上单调递增. 当x ∈(-∞,-1)时,g (x )=3x -1x <g (-1)=3-1+1=43,又g (x )=3x -1x>0,所以函数g (x )在(-∞,-1)上的值域为⎝ ⎛⎭⎪⎫0,43.因此实数a 的取值范围是⎝⎛⎭⎪⎫0,43.思维升华 根据函数零点的情况求参数的三种常用方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围. (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中画出函数的图象,然后数形结合求解.跟踪训练3(1)函数f (x )=2x -2x-a 的一个零点在区间(1,2)内,则实数a 的取值范围是()A .0<a <3B .1<a <3C .1<a <2D .a ≥2 答案A解析因为函数y =2x ,y =-2x 在(0,+∞)上单调递增,所以函数f (x )=2x-2x-a 在(0,+∞)上单调递增,由函数f (x )=2x -2x-a 的一个零点在区间(1,2)内得,f (1)×f (2)=(2-2-a )(4-1-a )=(-a )×(3-a )<0,解得0<a <3.(2)(2023·唐山模拟)已知函数f (x )=⎩⎨⎧ln x x ,x >0,x 2+2x ,x ≤0,若g (x )=f (x )-a 有3个零点,则实数a 的取值范围为() A .(-1,0) B.⎝ ⎛⎭⎪⎫-1,1eC.⎣⎢⎡⎭⎪⎫0,1eD.⎝ ⎛⎭⎪⎫0,1e ∪{-1}答案B 解析设h (x )=ln x x(x >0),则h ′(x )=1-ln x x2, 令h ′(x )>0,得0<x <e , 令h ′(x )<0,得x >e ,所以函数h (x )在(0,e)上单调递增,在(e ,+∞)上单调递减. 所以h (x )max =h (e)=1e.因为函数g (x )=f (x )-a 有3个零点, 所以方程f (x )=a 有3个解.作出函数y =f (x )和y =a 的图象如图所示,所以a 的取值范围为⎝⎛⎭⎪⎫-1,1e .课时精练1.(2022·焦作模拟)设函数f (x )=2x +x3的零点为x 0,则x 0所在的区间是()A .(-4,-2)B .(-2,-1)C .(1,2)D .(2,4) 答案B解析易知f (x )在R 上单调递增且连续,f (-2)=14-23<0,f (-1)=12-13>0,所以x 0∈(-2,-1).2.用二分法研究函数f (x )=x 5+8x 3-1的零点时,第一次经过计算得f (0)<0,f (0.5)>0,则其中一个零点所在区间和第二次应计算的函数值分别为() A .(0,0.5),f (0.125) B .(0,0.5),f (0.375) C .(0.5,1),f (0.75) D .(0,0.5),f (0.25) 答案D解析因为f (0)f (0.5)<0,由函数零点存在定理知,零点x 0∈(0,0.5),根据二分法,第二次应计算f ⎝⎛⎭⎪⎫0+0.52,即f (0.25). 3.函数f (x )=⎩⎨⎧x 2-2x -3,x ≤0,log 2x -3x +4,x >0的零点个数为()A .1B .2C .3D .4 答案C解析当x ≤0时,令f (x )=x 2-2x -3=0, 得x =-1(x =3舍去),当x >0时,令f (x )=0,得log 2x =3x -4, 作出y =log 2x 与y =3x -4的图象,如图所示,由图可知,y =log 2x 与y =3x -4有两个交点, 所以当x >0时,f (x )=0有两个零点, 综上,f (x )有3个零点.4.已知函数f (x )=log 2(x +1)-1x+m 在区间(1,3]上有零点,则实数m 的取值范围为()A.⎝ ⎛⎭⎪⎫-53,0B.⎝ ⎛⎭⎪⎫-∞,-53∪(0,+∞)C.⎝⎛⎦⎥⎤-∞,-53∪(0,+∞) D.⎣⎢⎡⎭⎪⎫-53,0 答案D解析由于函数y =log 2(x +1),y =m -1x在区间(1,3]上单调递增,所以函数f (x )在(1,3]上单调递增,由于函数f (x )=log 2(x +1)-1x+m 在区间(1,3]上有零点,则⎩⎨⎧f (1)<0,f (3)≥0,即⎩⎨⎧m <0,m +53≥0,解得-53≤m <0.因此,实数m 的取值范围是⎣⎢⎡⎭⎪⎫-53,0.5.已知函数f (x )=⎩⎨⎧2-x,x <0,1+|x -1|,x ≥0,若函数g (x )=f (x )-m 有三个零点,则实数m 的取值范围是()A .(1,2]B .(1,2)C .(0,1)D .[1,+∞) 答案A解析因为函数g (x )=f (x )-m 有三个零点,所以函数f (x )的图象与直线y =m 有三个不同的交点, 作出函数f (x )的图象,如图所示,由图可知,1<m ≤2,即m 的取值范围是(1,2].6.已知函数f (x )=x -x (x >0),g (x )=x +e x ,h (x )=x +ln x (x >0)的零点分别为x 1,x 2,x 3,则()A .x 1<x 2<x 3B .x 2<x 1<x 3C .x 2<x 3<x 1D .x 3<x 1<x 2 答案C解析函数f (x )=x -x (x >0),g (x )=x +e x ,h (x )=x +ln x (x >0)的零点,即为y =x 与y =x (x >0),y =-e x ,y =-ln x (x >0)的交点的横坐标,作出y =x 与y =x (x >0),y =-e x ,y =-ln x (x >0)的图象,如图所示.可知x 2<x 3<x 1.7.(多选)函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 的交点个数可能是()A .1B .2C .4D .6 答案ABC 解析由题意知,f (x )=sin x +2|sin x |,x ∈[0,2π], f (x )=⎩⎨⎧3sin x ,x ∈[0,π],-sin x ,x ∈(π,2π],在坐标系中画出函数f (x )的图象如图所示.由其图象知,直线y=k与y=f(x)的图象交点个数可能为0,1,2,3,4.8.(多选)(2023·南京模拟)在数学中,布劳威尔不动点定理可应用到有限维空间,是构成一般不动点定理的基石,它得名于荷兰数学家鲁伊兹·布劳威尔(L.E.J.Brouwer),简单地讲,就是对于满足一定条件的连续函数f(x),存在一个点x0,使得f(x0)=x0,那么我们称该函数为“不动点”函数,下列函数是“不动点”函数的是()A.f(x)=2x+x B.f(x)=x2-x-3C.f(x)=12x+1 D.f(x)=|log2x|-1答案BCD解析选项A,若f(x0)=x0,则02x=0,该方程无解,故该函数不是“不动点”函数;选项B,若f(x0)=x0,则x20-2x0-3=0,解得x0=3或x0=-1,故该函数是“不动点”函数;选项C,若f(x0)=x0,则12x+1=x0,可得x20-3x0+1=0,且x0≥1,解得x0=3+52,故该函数是“不动点”函数;选项D,若f(x0)=x0,则|log2x0|-1=x0,即|log2x|=x0+1,作出y =|log 2x |与y =x +1的函数图象,如图,由图可知,方程|log 2x |=x +1有实数根x 0, 即存在x 0,使|log 2x 0|-1=x 0, 故该函数是“不动点”函数.9.已知指数函数为f (x )=4x ,则函数y =f (x )-2x +1的零点为________. 答案1解析由f (x )-2x +1=4x -2x +1=0,得2x (2x -2)=0,x =1.10.(2023·苏州质检)函数f (x )满足以下条件:①f (x )的定义域为R ,其图象是一条连续不断的曲线;②∀x ∈R ,f (x )=f (-x );③当x 1,x 2∈(0,+∞)且x 1≠x 2时,f (x 1)-f (x 2)x 1-x 2>0;④f (x )恰有两个零点,请写出函数f (x )的一个解析式________. 答案f (x )=x 2-1 (答案不唯一)解析因为∀x ∈R ,f (x )=f (-x ),所以f (x )是偶函数,因为当x 1,x 2∈(0,+∞)且x 1≠x 2时,f (x 1)-f (x 2)x 1-x 2>0,所以f (x )在(0,+∞)上单调递增, 因为f (x )恰有两个零点,所以f (x )图象与x 轴只有2个交点,所以函数f (x )的一个解析式可以为f (x )=x 2-1(答案不唯一). 11.已知函数f (x )=⎩⎨⎧log 2x ,x >0,3x,x ≤0,且关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是________. 答案(1,+∞)解析方程f (x )+x -a =0有且只有一个实根,即f (x )=-x +a 有且只有一个实根, 即函数y =f (x )的图象与直线y =-x +a 有且只有一个交点.如图,在同一直角坐标系中分别作出y =f (x )与y =-x +a 的图象,其中a 表示直线y =-x +a 在y 轴上的截距.由图可知,当a ≤1时,直线y =-x +a 与y =f (x )有两个交点, 当a >1时,直线y =-x +a 与y =f (x )只有一个交点. 故实数a 的取值范围是(1,+∞).12.已知函数f (x )=⎩⎨⎧|2x-1|,x ≤1,(x -2)2,x >1,函数y =f (x )-a 有四个不同的零点x 1,x 2,x 3,x 4,且x 1<x 2<x 3<x 4,则123422x x x x ++=________.答案12解析y =f (x )-a 有四个不同的零点x 1,x 2,x 3,x 4, 即方程f (x )=a 有四个不同的解,即y =f (x )的图象与直线y =a 有四个交点.在同一平面直角坐标系中分别作出y =f (x )与y =a 的图象,如图所示,由二次函数的对称性可得,x 3+x 4=4.因为1-12x =22x -1,所以12x +22x =2,故123422x x x x ++=12.13.已知函数f (x )=|e x -1|+1,若函数g (x )=[f (x )]2+(a -2)f (x )-2a 有三个零点,则实数a 的取值范围是()A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2) 答案A解析令t =f (x ),则函数g (t )=t 2+(a -2)t -2a ,由t 2+(a -2)t -2a =0得,t =2或t =-a .f (x )=|e x-1|+1=⎩⎨⎧e x,x ≥0,2-e x,x <0,作出函数f (x )的图象,如图所示,由图可知,当t =2时,方程f (x )=|e x -1|+1=2有且仅有一个根,则方程f (x )=|e x -1|+1=-a 必有两个不同的实数根,此时由图可知,1<-a <2,即-2<a <-1.14.已知函数f (x )=x +1x-sin x -1,x ∈[-4π,0)∪(0,4π],则函数f (x )的所有零点之和为________.答案0解析因为函数f (x )=x +1x -sin x -1=1x-sin x , 所以f (x )的对称中心是(0,0),令f (x )=0,得1x=sin x , 在同一平面直角坐标系中作出函数y =1x,y =sin x 的图象,如图所示,由图象知,两个函数图象有8个交点,即函数f (x )有8个零点,由对称性可知,零点之和为0.15.(2023·南昌模拟)定义在R 上的偶函数f (x )满足f (x )=f (2-x ),且当x ∈[0,1]时,f (x )=e x -1,若关于x 的方程f (x )=m (x +1)(m >0)恰有5个实数解,则实数m 的取值范围为()A.⎝ ⎛⎭⎪⎫e -16,e -15B.⎝ ⎛⎭⎪⎫e -16,e -14 C.⎝ ⎛⎭⎪⎫e -18,e -16 D .(0,e -1) 答案B解析∵f (x )=f (2-x ),∴函数f (x )关于直线x =1对称,又f (x )为定义在R 上的偶函数,∴函数f (x )关于直线x =0对称,作出函数y =f (x )与直线y =m (x +1)的图象,如图所示,要使关于x 的方程f (x )=m (x +1)(m >0)恰有5个实数解,则函数y =f (x )的图象与直线y =m (x +1)有5个交点,∴⎩⎨⎧ 6m >e -1,4m <e -1,即e -16<m <e -14. 16.已知M ={α|f (α)=0},N ={β|g (β)=0},若存在α∈M ,β∈N ,使得|α-β|<n ,则称函数f (x )与g (x )互为“n 度零点函数”.若f (x )=32-x -1与g (x )=x 2-a e x 互为“1度零点函数”,则实数a 的取值范围为________.答案⎝ ⎛⎦⎥⎤1e ,4e 2 解析由题意可知f (2)=0,且f (x )在R 上单调递减,所以函数f (x )只有一个零点2,由|2-β|<1,得1<β<3,所以函数g (x )=x 2-a e x 在区间(1,3)上存在零点.由g (x )=x 2-a e x =0,得a =x 2e x . 令h (x )=x 2e x , 则h ′(x )=2x -x 2e x =x (2-x )e x ,所以h (x )在区间(1,2)上单调递增,在区间(2,3)上单调递减,且h (1)=1e ,h (2)=4e 2, h (3)=9e 3>1e,要使函数g (x )在区间(1,3)上存在零点, 只需a ∈⎝ ⎛⎦⎥⎤1e ,4e 2.。
2020年江苏高考数学第二轮复习专题训练含解析
高考冲刺训练专题 (一 )
4 1. 中心在原点,一个顶点为 A( -3,0),离心率为 3的双曲线的
x2 y2 方程是 9 - 7 =1 .
解析 :因为双曲线的顶点为 A( -3,0),所以双曲线的焦点在 x
x2 y2
4
轴上,所以设双曲线的方程为 a2-b2=1,则 a=3.又因为 e=3,所以
4. 已知双曲线 xa22-y2=1(a>0)的一条渐近线为 3x+y=0,则 a
3 =3.
解析 :因为双曲线的一条渐近线方程为
y=-
3x,且
a>0,则
b a
= 1a=
3,解得
a=
3 3.
x2 y2 5. 设双曲线 a2-b2=1(a>0,b>0)的右焦点为 F,右准线 l 与两
条渐近线交于 P,Q 两点,如果△ PQF 是直角三角形,那么双曲线的
- y0),M→F2=( 3- x0,-y0),所以 M→F1·M→F 2= x02- 3+ y20.因为点 M 在 双曲线上,所以 x220- y20= 1,代入不等式 M→F 1·M→F 2<0,得 3y02<1,解得
3
3
- 3 <y0< 3 .
9.
设 F1, F2 是双曲线
x2-
y2 24=
1
的两个焦点,
P
是双曲线上的
一点,且 3PF1= 4PF2,则△ PF1F2 的面积为 24 .
解析 :由题意知,双曲线的实轴长为 2,焦距为 F1F2=2×5= 10,
4
1
PF1-PF2= 3PF2- PF2= 3PF2=2,所以
(统考版)高考数学二轮专题复习 课时作业16 函数的图象与性质 文(含解析)-人教版高三全册数学试题
课时作业16 函数的图象与性质[A·基础达标]1.已知集合M 是函数y =11-2x的定义域,集合N 是函数y =x 2-4的值域,则M ∩N =( )A .{x |x ≤12}B .{x |-4≤x <12}C .{(x ,y )|x <12且y ≥-4}D .∅2.下列函数中,是偶函数且在区间(0,+∞)上单调递减的函数是( ) A .y =2x B .y =xC .y =|x |D .y =-x 2+13.[2020·某某市第一次模拟考试]已知定义在[m -5,1-2m ]上的奇函数f (x ),满足x >0时,f (x )=2x -1,则f (m )的值为( )A .-15B .-7C .3D .154.[2020·某某市质量检测]函数y =x 2e x 的大致图象为( )5.若函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <-1,ln (x +a ),x ≥-1的图象如图所示,则f (-3)等于( )A .-12B .-54C .-1D .-26.已知函数f (x )满足:f (-x )+f (x )=0,且当x ≥0时,f (x )=2+m2x-1,则f (-1)=( ) A.32 B .-32 C.12 D .-127.将函数f (x )的图象向右平移一个单位长度后,所得图象与曲线y =ln x 关于直线y =x 对称,则f (x )=( )A .ln(x +1)B .ln(x -1)C .e x +1D .e x -18.已知偶函数f (x )在[0,+∞)上单调递减,f (1)=-1,若f (2x -1)≥-1,则x 的取值X 围为( )A .(-∞,-1]B .[1,+∞)C .[0,1]D .(-∞,0]∪[1,+∞)9.如图,把圆周长为1的圆的圆心C 放在y 轴上,顶点A (0,1),一动点M 从点A 开始逆时针绕圆运动一周,记AM =x ,直线AM 与x 轴交于点N (t,0),则函数t =f (x )的图象大致为( )10.[2020·某某西工大附中3月质检]已知符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,偶函数f (x )满足f (x +2)=f (x ),当x ∈[0,1]时,f (x )=x ,则( )A .sgn f (x )>0B .f (4 0412)=1C .sgn f (2k )=0(k ∈Z )D .sgn f (k )=|sgn k |(k ∈Z ) 11.已知定义在R 上的函数y =f (x )在(-∞,a )上是增函数,且函数y =f (x +a )是偶函数,则当x 1<a ,x 2>a ,且|x 1-a |<|x 2-a |时,有( )A .f (x 1)>f (x 2)B .f (x 1)≥f (x 2)C .f (x 1)<f (x 2)D .f (x 1)≤f (x 2)12.定义在R 上的函数y =f (x )满足以下三个条件: ①对于任意的x ∈R ,都有f (x +1)=f (x -1); ②函数y =f (x +1)的图象关于y 轴对称;③对于任意的x 1,x 2∈[0,1],都有[f (x 1)-f (x 2)]·(x 1-x 2)>0.则f ⎝⎛⎭⎫32,f (2),f (3)的大小关系是( )A .f ⎝⎛⎭⎫32>f (2)>f (3)B .f (3)>f (2)>f ⎝⎛⎭⎫32C .f ⎝⎛⎭⎫32>f (3)>f (2)D .f (3)>f ⎝⎛⎭⎫32>f (2)13.若函数f (x )满足f (1-ln x )=1x,则f (2)=________.14.设函数f (x )=⎩⎪⎨⎪⎧x 2+2(x ≥0),2x +2(x <0),若f (t +1)>f (2t -4),则t 的取值X 围是________.15.[2020·某某某某一中模拟]黎曼函数是一个特殊的函数,由德国著名的数学家黎曼发现并提出,在高等数学中有着广泛的应用,其定义为:定义在区间[0,1]上的函数R (x )=⎩⎪⎨⎪⎧1p ,x =q p (p ,q 都是正整数,q p 是既约真分数),0,x =0,1或无理数.若函数f (x )是定义在R 上的奇函数,且对任意x 都有f (2-x )+f (x )=0,当x ∈[0,1]时,f (x )=R (x ),则f ⎝⎛⎭⎫185+f (lg 30)=________.16.[2020·某某市第一次适应性考试]已知函数f (x )=x e x +x +2e x +1+sin x ,则f (-5)+f (-4)+f (-3)+f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)+f (4)+f (5)的值是________.[B·素养提升]1.已知函数f (x )=⎩⎪⎨⎪⎧e x ,x ≤e ,ln x ,x >e ,则函数y =f (e -x )的大致图象是( )2.已知f (x )=⎩⎪⎨⎪⎧|x -a |+1,x >1,a x +a ,x ≤1(a >0且a ≠1),若f (x )有最小值,则实数a 的取值X 围是( )A.⎝⎛⎭⎫23,1 B .(1,+∞)C.⎝⎛⎦⎤0,23∪(1,+∞)D.⎝⎛⎭⎫23,1∪(1,+∞) 3.[2020·某某某某新都诊断测试]已知定义在R 上的函数f (x )在(0,+∞)上单调递减,且满足对∀x ∈R ,都有f (x )-f (-x )=0,则符合上述条件的函数是( )A .f (x )=x 2+|x |+1B .f (x )=⎝⎛⎭⎫12|x |C .f (x )=ln|x +1|D .f (x )=cos x4.已知定义在R 上的偶函数y =f (x +2),其图象连续不间断,当x >2时,函数y =f (x )是单调函数,则满足f (x )=f ⎝⎛⎭⎫1-1x +4的所有x 之积为( )A .3B .-3C .-39D .395.已知函数f (x )=xx 2+1,关于函数f (x )的性质,有以下四个推断:①f (x )的定义域是(-∞,+∞);②f (x )的值域是⎣⎡⎦⎤-12,12;③f (x )是奇函数;④f (x )是区间(0,2)上的增函数.其中推断正确的个数是( )A .1B .2C .3D .46.若函数f (x )=ax +b ,x ∈[a -4,a ]的图象关于原点对称,则函数g (x )=bx +ax,x ∈[-4,-1]的值域为________.7.已知定义在R 上的偶函数f (x )满足f (x +4)=f (x )+f (2),且在区间[0,2]上是增函数.给出以下结论:①函数f (x )的一个周期为4;②直线x =-4是函数f (x )图象的一条对称轴;③函数f (x )在[-6,-5)上单调递增,在[-5,-4)上单调递减; ④函数f (x )在[0,100]内有25个零点.其中正确的是________.(把你认为正确结论的序号都填上) 8.如果定义在R 上的函数f (x )满足:对任意的x 1≠x 2,都有x 1f (x 1)+x 2f (x 2)≥x 1f (x 2)+x 2f (x 1),则称f (x )为“H 函数”,给出下列函数:①y =-x 3+x +1;②y =3x -2(sin x -cos x );③y =1-e x ;④f (x )=⎩⎪⎨⎪⎧ln x ,x ≥1,0,x <1;⑤y =x x 2+1. 其中是“H 函数”的是________.(写出所有满足条件的函数的序号)在(0,+∞)上单调递减,可知D 正确.故选D.答案:D3.解析:由题意知,(m -5)+(1-2m )=0,解得m =-4.又当x >0时,f (x )=2x -1,则f (m )=f (-4)=-f (4)=-(24-1)=-15.故选A.答案:A4.解析:y =x 2e x ≥0,排除选项C ;函数y =x 2e x 既不是奇函数也不是偶函数,排除选项D ;当x →+∞时,y →+∞,排除选项B.综上,选A.答案:A5.解析:由题中图象可得a (-1)+b =3. ln(-1+a )=0,∴a =2,b =5,∴f (x )=⎩⎪⎨⎪⎧2x +5,x <-1,ln (x +2),x ≥-1.故f (-3)=2×(-3)+5=-1.答案:C6.解析:∵f (-x )+f (x )=0,∴f (x )为奇函数.又当x ≥0时,f (x )=2+m 2x -1,则f (0)=2+m1-1=0,∴m =-1.∴当x ≥0时,f (x )=12x -1.∴f (-1)=-f (1)=-⎝⎛⎭⎫12-1=12.故选C. 答案:C7.解析:因为y =ln x 关于直线y =x 的对称图形是函数y =e x 的图象,且把y =e x 的图象向左平移一个单位长度后,得到函数y =e x +1的图象,所以f (x )=e x +1.故选C.答案:C8.解析:由题意,得f (x )在(-∞,0]上单调递增,且f (1)=-1,所以f (2x -1)≥f (1),则|2x -1|≤1,解得0≤x ≤1.故选C.答案:C9.解析:当x 由0→12时,t 从-∞→0,且单调递增,当x 由12→1时,t 从0→+∞,且单调递增,所以排除A 、B 、C ,故选D.答案:D10.解析:根据题意得函数f (x )是周期为2的函数,作出函数f (x )的大致图象,如图所示,数形结合易知f (x )∈[0,1],则sgn f (x )=0或sgn f (x )=1,可知A 错误; f ⎝⎛⎭⎫4 0412=f ⎝⎛⎭⎫2 02012=f ⎝⎛⎭⎫12=12,可知B 错误; f (2k )=0(k ∈Z ),则sgn f (2k )=0(k ∈Z ),可知C 正确;当k =2时,sgn(f (2))=sgn(0)=0,|sgn 2|=1,可知D 错误.答案:C11.解析:由函数y =f (x +a )是偶函数,可得其图象关于y 轴对称,因此函数y =f (x )的图象关于直线x =a 对称,又f (x )在(-∞,a )上是增函数,所以函数y =f (x )在(a ,+∞)上是减函数.由于x 1<a ,x 2>a 且|x 1-a |<|x 2-a |,所以x 1到对称轴的距离比x 2到对称轴的距离小,故f (x 1)>f (x 2).答案:A12.解析:对任意的x ∈R ,都有f (x +1)=f (x -1),则f (x +2)=f (x ),所以函数f (x )是周期为2的周期函数;因为函数y =f (x +1)的图象关于y 轴对称,所以函数f (x )的图象关于直线x =1对称;因为对任意的x 1,x 2∈[0,1],都有[f (x 1)-f (x 2)](x 1-x 2)>0,所以该函数在[0,1]上单调递增.因为f (3)=f (1),f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫12,f (2)=f (0),1>12>0,所以f (3)>f ⎝⎛⎭⎫32>f (2),故选D. 答案:D13.解析:方法一 令1-ln x =t ,则x =e 1-t ,于是f (t )=1e 1-t ,即f (x )=1e 1-x ,故f (2)=e.方法二 由1-ln x =2,得x =1e ,这时1x =11e=e ,即f (2)=e.答案:e14.解析:如图,画出函数f (x )=⎩⎪⎨⎪⎧x 2+2(x ≥0),2x +2(x <0)的大致图象,可知函数f (x )是增函数,若f (t +1)>f (2t -4),则只需要t +1>2t -4,解得t <5.答案:(-∞,5)15.解析:由于函数f (x )是定义在R 上的奇函数,且f (x )+f (2-x )=0, 所以f (x )=-f (2-x )=f (x -2),所以2是函数f (x )的周期,则f ⎝⎛⎭⎫185=f ⎝⎛⎭⎫185-4=f ⎝⎛⎭⎫-25=-f ⎝⎛⎭⎫25=-R ⎝⎛⎭⎫25=-15, f (lg 30)=f (lg 3+lg 10)=f (lg 3+1)=f (lg3-1)=-f (1-lg 3)=-R (1-lg 3)=0,所以f ⎝⎛⎭⎫185+f (lg 30)=-15.答案:-1516.解析:f (x )=x e x +x +2e x +1+sin x =x (e x +1)+2e x +1+sin x =2e x+1+x +sin x ,所以f (-x )=2e -x +1-x +sin(-x )=2e x e x +1-x -sin x ,所以f (x )+f (-x )=2e x +1+2e xe x +1=2,所以f (0)+f (0)=2⇒f (0)=1,所以 f (-5)+f (-4)+f (-3)+f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)+f (4)+f (5)=5×2+1=11. 答案:11[B·素养提升]+b ,其定义域为[-2,2],所以f (0)=0,所以b =0,所以g (x )=2x,易知g (x )在[-4,-1]上单调递减,故值域为[g (-1),g (-4)],即⎣⎡⎦⎤-2,-12. 答案:⎣⎡⎦⎤-2,-12 7.解析:令x =-2,得f (-2+4)=f (-2)+f (2),得f (-2)=0,由于函数f (x )为偶函数,故f (2)=f (-2)=0,所以f (x +4)=f (x ),所以函数f (x )的一个周期为4,故①正确.由于函数f (x )为偶函数,故f (-4+x )=f (4-x )=f (4-8-x )=f (-4-x ),所以直线x =-4是函数f (x )图象的一条对称轴,故②正确.根据前面的分析,结合函数f (x )在区间[0,2]上是增函数,画出函数图象的大致趋势如图所示.由图可知,函数f (x )在[-6,-4)上单调递减,故③错误.根据图象可知,f (2)=f (6)=f (10)=…=f (98)=0,零点的周期为4,所以f (x )在[0,100]内共有25个零点,故④正确.综上所述,正确的序号有①②④.答案:①②④8.解析:因为x 1f (x 1)+x 2f (x 2)≥x 1f (x 2)+x 2f (x 1),所以f (x 1)(x 1-x 2)-f (x 2)(x 1-x 2)≥0,即[f (x 1)-f (x 2)](x 1-x 2)≥0,分析可得,若函数f (x )为“H 函数”,则函数f (x )为增函数或常函数.对于①,y =-x 3+x +1,则y ′=-3x 2+1,所以y =-x 3+x +1既不是R 上的增函数也不是常函数,故其不是“H 函数”;对于②,y =3x -2(sin x -cos x ),则y ′=3-2(cos x +sin x )=3-22sin ⎝⎛⎭⎫x +π4>0,所以y =3x -2(sin x -cos x )是R 上的增函数,故其是“H 函数”;对于③,y =1-e x是R 上的减函数,故其不是“H 函数”;对于④,f (x )=⎩⎪⎨⎪⎧ln x ,x ≥1,0,x <1,当x <1时,是常函数,当x ≥1时,是增函数,故其是“H 函数”;对于⑤,y =x x 2+1,当x ≠0时,y =1x +1x ,不是R 上的增函数也不是常函数,故其不是“H 函数”.所以满足条件的函数的序号是②④.答案:②④。
专题16 复数(习题)-2021届沪教版高考数学一轮复习(上海专用)
2021届高考数学一轮复习 专题16复数一、填空题1.(2020·上海松江·期末)已知复数z 满足,则2z i -(其中i 是虚数单位)的最小值为____________. 【答案】1 【解析】复数z 满足||1(z i =为虚数单位), 设cos sin z i θθ=+,[0θ∈,2)π.则|2||cos (sin 2)|1z i i θθθ-=+-,当且仅当时取等号.故答案为:1.2.(2020·上海高三其他)若复数z 满足i 12i01z+=,其中i 是虚数单位,则z 的虚部为________ 【答案】1- 【解析】i 12i 01z +=即12(12)0,2iiz i z i i+-+===-,z 的虚部为1-故答案为1- 【点睛】本题考查了行列式的计算,复数的虚部,意在考查学生的计算能力. 3.(2020·上海普陀·高三一模)设i 是虚数单位,若11z ai i=++是实数,则实数a = 【答案】12【解析】依题意,由于z 为实数,故110,22a a -==.4.(2020·上海市建平中学高三月考)已知x C ∈,且,则_____. 【答案】4或-1【解析】由()()54321110x x x x x x -=-++++=,得1x =,或43210x x x x ++++=,进而得到答案.∵x C ∈,且()()54321110x x x x x x -=-++++=,故1x =,或43210x x x x ++++=, 当1x =时,,当43210x x x x ++++=时, , 故,或-1故答案为:4或-1.5.(2020·上海市建平中学高三月考)设复数z 满足||1z =,使得关于x 的方程有实根,则这样的复数z 的和为________ 【答案】32- 【解析】设z a bi =+,(且),将原方程变为,则2220ax ax ++=①且220bx bx -=②;再对b 分类讨论可得;设z a bi =+,(且) 则原方程变为所以2220ax ax ++=,①且220bx bx -=,②;(1)若0b =,则21a =解得1a =±,当1a =时①无实数解,舍去;从而1a =-,此时1x =-,故1z =-满足条件;(2)若0b ≠,由②知,0x =或2x =,显然0x =不满足,故2x =,代入①得14a =-,b =所以14z =-±综上满足条件的所以复数的和为 故答案为:32-6.(2019·上海市建平中学高三月考)设复数z 满足(4)32i z i -=+(i 是虚数单位),则z 的虚部为_______. 【答案】-3 【解析】试题分析:由题意得:32436iz i i+=+=-+,其虚部为-3 7.(2019·上海市建平中学高三月考)已知复数z 满足(1i)1i z +=-,则Re()z =________ 【答案】0 【解析】因为,所以()Re 0z =. 故答案为0.8.(2020·上海普陀·三模)在复平面内,点()2,1A -对应的复数z ,则1z +=___________【解析】由题意2z i =-+,∴。
专题16 三视图-备战2022年高考数学(理)母题题源解密(全国乙卷)(解析版)
专题16 三视图【母题来源】2021年高考乙卷【母题题文】以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某三棱锥的三视图,则所选侧视图和俯视图的编号依次为_________(写出符合要求的一组答案即可).【答案】③④(答案不唯一)【试题解析】选择侧视图为③,俯视图为④,如图所示,长方体1111ABCD A BC D -中,12,1AB BC BB ===,,E F分别为棱11,BC BC的中点,则正视图①,侧视图③,俯视图④对应的几何体为三棱锥E ADF.故答案为:③④.三视图问题解决的关键之处是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系.【命题意图】1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测法画出它们的直观图.3.会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.4.会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).5.了解球、棱柱、棱锥、台的表面积和体积的计算公式.【命题方向】空间几何体的结构是每年高考的热点之一,主要涉及空间几何体的表面积与体积的计算、三视图等内容.命题形式以选择题或填空题为主,要求考生要有较强的空间想象能力和计算能力,广泛应用转化与化归思想【得分要点】1.三视图问题的常见类型及解题策略(1)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.(2)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线,不能看到的部分用虚线表示.(3)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.2.已知几何体的三视图求其表面积,一般是先根据三视图判断空间几何体的形状,再根据题目所给数据与几何体的表面积公式,求其表面积.3.多面体的表面积是各个面的面积之和,组合体的表面积应注意重合部分的处理,以确保不重复、不遗漏.4.求多面体的侧面积时,应对每一个侧面分别求解后再相加;求旋转体的侧面积时,一般要将旋转体展开为平面图形后再求面积.5.求柱体、锥体、台体体积的一般方法(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.(2)若所给定的几何体的体积不能直接利用公式得出,则常用等体积法、割补法等方法进行求解.①等体积法:一个几何体无论怎样转化,其体积总是不变的.如果一个几何体的底面面积和高较难求解时,我们可以采用等体积法进行求解.等体积法也称等积转化或等积变形,它是通过选择合适的底面来求几何体体积的一种方法,多用来解决有关锥体的体积,特别是三棱锥的体积.②割补法:运用割补法处理不规则的空间几何体或不易求解的空间几何体的体积计算问题,关键是能根据几何体中的线面关系合理选择截面进行切割或者补成规则的几何体.要弄清切割后或补形后的几何体的体积是否与原几何体的体积之间有明显的确定关系,如果是由几个规则的几何体堆积而成的,其体积就等于这几个规则的几何体的体积之和;如果是由一个规则的几何体挖去几个规则的几何体而形成的,其体积就等于这个规则的几何体的体积减去被挖去的几个几何体的体积.因此,从一定意义上说,用割补法求几何体的体积,就是求体积的“加、减”法.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.6.求解空间几何体表面积和体积的最值问题有两个思路(1)根据几何体的结构特征和体积、表面积的计算公式,将体积或表面积的最值转化为平面图形中的有关最值,根据平面图形的有关结论直接进行判断;(2)利用基本不等式或是建立关于表面积和体积的函数关系式,然后利用函数的方法或者利用导数方法解决.7.三视图的概念①光线从几何体的前面向后面正投影,得到的投影图叫做几何体的正视图;②光线从几何体的左面向右面正投影,得到的投影图叫做几何体的侧视图;③光线从几何体的上面向下面正投影,得到的投影图叫做几何体的俯视图.几何体的正视图、侧视图和俯视图统称为几何体的三视图.如图.8.三视图的画法规则(1)正视图与俯视图的长度一致,即“长对正”;(2)侧视图和正视图的高度一致,即“高平齐”;(3)俯视图与侧视图的宽度一致,即“宽相等”.注意:能看见的轮廓线用实线表示;不能看见的轮廓线用虚线表示.9.常见几何体的三视图一、单选题1.(2021·全国高三其他模拟(理))若空间某几何体的三视图如图所示,则该几何体外接球的表面积是()A.16-B.C.24πD.6+【答案】C【分析】根据三视图,可在长方体中利用构造法还原几何体,利用长方体的对角线计算外接球的直径,进而计算表面积.【详解】据三视图分析知,该几何体是由长方体截得如下图所示几何体ABCDE ,=即为外接球的直径,外接球的表面积4624S ππ=⨯=.故选C .2.(2021·全国高三其他模拟(理))某几何体的三视图如图所示,则该几何体的表面积为()A .48+B .24+C .48+D .24+【答案】C【分析】由三视图画出几何体的直观图,然后结合已知的数据求解即可【详解】由三视图可知该几何体为如图所示的四棱锥,所以该几何体的表面积为11142646548222⨯⨯+⨯+⨯⨯⨯=+故选:C.3.(2021·四川成都市·成都七中高一月考)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:3cm)是()A.43B.73C.53D.83【答案】B【分析】由几何体的三视图可知该几何体由一个长方体和一个三棱锥组成,分别求出体积即可.【详解】如图,由几何体的三视图可知该几何体由一个长方体和一个三棱锥组成,1122V =⨯⨯=长方体,111112323V =⨯⨯⨯⨯=三棱锥, 故体积17233V =+=, 故选:B.4.(2021·北京高考真题)某四面体的三视图如图所示,该四面体的表面积为( )A B .4 C .3D .2【答案】A【分析】根据三视图可得如图所示的几何体(三棱锥),根据三视图中的数据可计算该几何体的表面积.【详解】根据三视图可得如图所示的几何体-正三棱锥O ABC -,其侧面为等腰直角三角形,底面等边三角形,由三视图可得该正三棱锥的侧棱长为1,故其表面积为213112⨯⨯⨯= 故选:A.5.(2021·河南高三其他模拟(理))某个由四棱柱和三棱柱组成的组合体的三视图如图所示,则该组合体的表面积为( )A .20+B .22+C .18+D .223【答案】A【分析】 作出几何体的直观图,结合三视图中的数据可求得几何体的表面积.【详解】该组合体的直观图如图所示,其中下底面是边长为2的正方形,所以该组合体的表面积(2421224120S =⨯⨯+⨯++⨯=+故选:A.6.(2021·宜宾市翠屏区天立学校高三其他模拟(文))我国古代《九章算术》将上、下两面为平行矩形的六面体称为刍童.如图是一个刍童的三视图,其中正视图及侧视图均为等腰梯形,两底的长分别为2和4,高为2,则该刍童的表面积为()A.B.40C.16+D.16+【答案】D【分析】根据三视图,还原几何体的直观图可得,该几何体的表面由两个全等的矩形,与四个全等的等腰梯形组成,根据三视图所给数据,求出矩形与梯形的面积,求和即可.【详解】由三视图可知,该刍童的直观图是如图所示的六面体1111A B C D ABCD -,图中正方体棱长为4, 1111,,,,,,,B C D A B C A D 分别是所在正方体棱的四等分点,其表面由两个全等的矩形,与四个全等的等腰梯形组成,矩形面积为248⨯=,梯形的上下底分别为2,4,梯形的高为FG =()1242⨯+=,所以该刍童的表面积为284⨯+⨯=16+ 故选:D.【点睛】观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.7.(2019·吉林高三其他模拟(理))某几何体的三视图如图所示,则该几何体的表面积为( )A .94πB .66π+C .962π+ D .362π+ 【答案】B【分析】【详解】解:根据几何体的三视图转换为直观图为:该几何体为底面半径为1,高为3的圆柱的34. 故:233213212136644S πππ=⨯⋅⋅⋅+⨯⋅⋅+⨯⨯=+表.故选:B .8.(2019·吉林高三其他模拟(文))某几何体的三视图如图所示,则该几何体的体积为()A .94π B .66π+ C .3π D .34π【答案】A【分析】【详解】根据几何体的三视图转换为直观图为:该几何体为底面半径为1,高为3的圆柱体的34. 故239V 1344ππ=⨯⋅⋅=. 故选:A .9.(2021·浙江杭州市·杭州高级中学高三其他模拟)某空间几何体的三视图如图所示,则该几何体的体积为( )A .83B .163C .8D .16【答案】B【分析】根据三视图知该几何体是三棱锥且一个侧面与底面垂直,再根据椎体的体积公式,即可求出该几何体的体积.【详解】由三视图可知,该几何体为如图所示的三棱锥,其高为2,底面三角形的高为该几何体的体积为11162323⨯⨯=. 故选:B【点睛】 方法点睛:由三视图还原几何体,要弄清楚几何体的特征,把三视图中的数据、图形特点准确地转化为对应几何体中的线段长度、图形特点,再进行计算.10.(2019·安徽高三其他模拟(理))一个几何体的三视图及其尺寸如图所示,则该几何体的表面积为()A .16B .8C .8D .8【答案】D【分析】首先把三视图转换为几何体的直观图,进一步求出几何体的表面积.【详解】根据几何体的三视图转换为直观图为:该几何体为底面为边长为2的正方形,高为2的四棱锥体,几何体的直观图如图所示:故:A BCDE BCDE ABE ABC ACD ADE S S S S S S -=++++11222822=⨯⨯+⨯⨯=+故选:D .【点睛】本题考查的知识要点:三视图和几何体的直观图之间的转换,几何体的表面积公式的应用,主要考查运算能力和数学思维能力.11.(2021·浙江高二期末)某几何体的三视图如图,正视图和侧视图是两个全等的半圆,俯视图中圆的半径为1,则该几何体的体积为( )A .43πB .23πC .4πD .2π【分析】由三视图可知,该几何体是半径为1的半球,即可求出体积.【详解】由三视图可知,该几何体是半径为1的半球,如图, 则该几何体的体积为31421233ππ⨯⨯=. 故选:B.12.(2021·浙江金华市·高三三模)若某多面体的三视图(单位∶cm )如图所示,则此多面体的体积是( )A 3B .38cm 3 C 3 D .34cm 3【答案】D【分析】根据三视图可得该几何体为一个四棱锥,如图,即可求出体积.【详解】根据三视图还原几何体,可得该几何体为一个四棱锥,且顶点可都为一个正方体的顶点,如图粗线所示, 此多面体可看作半个正方体去掉一个三棱锥, 则此多面体的体积是334c 11222323m 2⨯-⨯⨯⨯=.13.(2020·安徽高三其他模拟)某三棱锥的三视图如图所示,该三棱锥表面上的点M、N、P、Q在三视图上对应的点分别为A、B、C、D,且A、B、C、D均在网格线上,图中网格上的小正方形的边长为1,则几何体MNPQ 的体积为()A.14B.13C.12D.23【答案】C 【分析】根据三视图可得如图三棱锥MNPQ,确定,P N位置,可得1324N MPQ F MEQV V--=⨯,即可得解.【详解】由三视图得,几何体MNPQ是一个三棱锥,且N是QF的中点,QP=34 EQ,如图,所以13331114248832 N MPQ F MEQ Q MEFV V V---=⨯==⨯⨯⨯=.故选:C.14.(2021·全国高三其他模拟(理))如图所示是某几何体的三视图,图中的四边形都是边长为a的正方形,侧视图和俯视图中的两条虚线都互相垂直,已知几何体的体积为203,则a=()A.3B C.2D【答案】C【分析】首先把三视图转换为几何体的直观图,进一步利用割补法的应用求出几何体的体积.【详解】根据几何体的三视图转换为直观图为:该几何体为一个棱长为a的正方体挖去一个底面为边长为a的长方形,高为2a 的四棱锥构成的几何体P ABCD -; 如图所示:故33215326a a V a a =-⨯-==203, 解得a =2,故选:C.二、填空题15.(2021·四川省绵阳南山中学高三其他模拟(理))一个空间几何体的主视图,侧视图是周长为8,一个内角为60︒的菱形,俯视图是圆及其圆心(如图),那么这个几何体的表面积为__________.【答案】4π【分析】由三视图还原几何体,该几何体由两个有公共底面且全等的圆锥构成,圆锥的底面直径为2,母线长度为2,可得答案.【详解】由三视图可知,该几何体由两个有公共底面且全等的圆锥构成,由主视图,侧视图是周长为8,一个内角为60︒的菱形可得,这两个圆锥的底面半径为2,母线长为2, 所以每个圆锥的底面圆的周长为2π 每个圆锥的侧面积为:12222ππ⨯⨯= 所以该几何体的表面积为224ππ⨯=故答案为:4π16.(2021·河南商丘市·高三月考(理))某三棱锥的三视图如图所示,则该三棱锥的最短棱长为___________.【分析】根据三视图还原几何体,然后计算即可.【详解】BC BD Array由图可知该三棱锥的最短棱为底面三角形的直角边即,。
备战2020年高考数学大一轮复习 热点聚焦与扩展 专题16 恒成立问题——参变分离法
专题16 恒成立问题——参变分离法【热点聚焦与扩展】无论是不等式的证明、解不等式,还是不等式的恒成立问题、有解问题、无解问题,构造函数,运用函数的思想,利用导数研究函数的性质(单调性和最值),达到解题的目的,是一成不变的思路,合理构思,善于从不同角度分析问题是解题的法宝.利用导数求解含参数的问题时,首先,要具备必要的基础知识(导数的几何意义、导数在单调性上的应用、函数的极值求法、最值求法等);其次,要灵活掌握各种解题方法和运算技巧,比如参变分离法,分类讨论思想和数形结合思想等.1、参变分离:顾名思义,就是在不等式中含有两个字母时(一个视为变量,另一个视为参数),可利用不等式的等价变形让两个字母分居不等号的两侧,即不等号的每一侧都是只含有一个字母的表达式.然后可利用其中一个变量的范围求出另一变量的范围2、如何确定变量与参数:一般情况下,那个字母的范围已知,就将其视为变量,构造关于它的函数,另一个字母(一般为所求)视为参数.3、参变分离法的适用范围:判断恒成立问题是否可以采用参变分离法,可遵循以下两点原则:(1)已知不等式中两个字母是否便于进行分离,如果仅通过几步简单变换即可达到分离目的,则参变分离法可行.但有些不等式中由于两个字母的关系过于“紧密”,会出现无法分离的情形,此时要考虑其他方法.例如:()21log a x x -<,111ax x e x-+>-等 (2)要看参变分离后,已知变量的函数解析式是否便于求出最值(或临界值),若解析式过于复杂而无法求出最值(或临界值),则也无法用参变分离法解决问题.(可参见”恒成立问题——最值分析法“中的相关题目)4、参变分离后会出现的情况及处理方法:(假设x 为自变量,其范围设为D ,()f x 为函数;a 为参数,()g a 为其表达式)(1)若()f x 的值域为[],m M①()(),x D g a f x ∀∈≤,则只需要()()min g a f x m ≤=()(),x D g x f x ∀∈<,则只需要()()min g a f x m <=②()(),x D g a f x ∀∈≥,则只需要()()max =g a f x M ≥()(),x D g a f x ∀∈>,则只需要()()max =g a f x M >③()(),x D g a f x ∃∈≤,则只需要()()max g a f x M ≤=()(),x D g a f x ∃∈<,则只需要()()max g a f x M <=④()(),x D g a f x ∃∈≥,则只需要()()min g a f x m ≥=()(),x D g a f x ∃∈>,则只需要()()min g a f x m >=(2)若()f x 的值域为(),m M① ()(),x D g a f x ∀∈≤,则只需要()g a m ≤()(),x D g a f x ∀∈<,则只需要()g a m ≤(注意与(1)中对应情况进行对比)② ()(),x D g a f x ∀∈≥,则只需要()g a M ≥,则只需要(注意与(1)中对应情况进行对比)③ ,则只需要(注意与(1)中对应情况进行对比),则只需要④ ,则只需要(注意与(1)中对应情况进行对比),则只需要x/k-+w5、多变量恒成立问题:对于含两个以上字母(通常为3个)的恒成立不等式,先观察好哪些字母的范围已知(作为变量),那个是所求的参数,然后通常有两种方式处理(1)选择一个已知变量,与所求参数放在一起与另一变量进行分离.则不含参数的一侧可以解出最值(同时消去一元),进而多变量恒成立问题就转化为传统的恒成立问题了.(2)将参数与变量进行分离,即不等号一侧只含有参数,另一侧是双变量的表达式,然后按所需求得双变量表达式的最值即可.【经典例题】例1.【2019年(衡水金卷调研卷)三】若存在,不等式成立,则实数的最大值为( )A. B. C. 4 D.【答案】A【解析】设,则故选例2.【2019届河北省邯郸市高三1月】已知关于的不等式在上恒成立,则实数的取值范围为()A. B. C. D.【答案】C【解析】最大值,因为当时令因此,由因为为偶函数,所以最大值为, ,选C.例3.【2019届河南省中原名校(即豫南九校)高三第六次考评】已知在上是增函数,则实数的取值范围是()A. B. C. D.【答案】B【解析】在上是增函数,在上恒成立故选例4.【2019届湖南省张家界市高三三模】若函数(且)在上单调递增,则实数的取值范围为()A. B. C. D.【答案】D【解析】由题意,不妨设,则,由时为减函数,即,又在上为单调递增,所以,所以,而此时函数为增函数,一减一增为减,故不合题意;同理由时为增函数,即,又在上为单调递增,所以,所以,而当时,函数为增函数,因此当时,同增为增,满足题意.故选D.例5.已知函数,若在上恒成立,则的取值范围是_________【答案】【解析】恒成立的不等式为,便于参数分离,所以考虑尝试参变分离法解:,其中只需要,令(导函数无法直接确定单调区间,但再求一次导即可将变为,所以二阶导函【名师点睛】求导数的目的是利用导函数的符号得到原函数的单调性,当导函数无法直接判断符号时,可根据导函数解析式的特点以及定义域尝试在求一次导数,进而通过单调性和关键点(边界点,零点)等确定符号.例6【2019届山西省孝义市高三下学期一模】已知函数.(1)讨论函数的单调性;(2)当时,曲线总在曲线的下方,求实数的取值范围.【答案】(1)当时,函数在上单调递增;当时,在上单调递增,在上单调递减;(2).试题解析:(1)由可得的定义域为,且,若,则,函数在上单调递增;若,则当时,,在上单调递增,当时,,在上单调递减.综上,当时,函数在上单调递增;当时,在上单调递增,在上单调递减.(2)原命题等价于不等式在上恒成立,即,不等式恒成立.∵当时,,∴,即证当时,大于的最大值.又∵当时,,∴,综上所述,.【方法点晴】本题主要考查利用导数研究函数的单调性以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数恒成立(即可)或恒成立(即可);② 数形结合( 图象在上方即可);③ 讨论最值或恒成立;④ 讨论参数.本题是利用方法① 求得的范围.例7【2019届广东省肇庆市高三三模】已知函数,,.(Ⅰ)讨论的单调区间;(Ⅱ)若 ,且恒成立. 求的最大值.【答案】(1)见解析;(2)6.【解析】试题分析:(1)第(1)问,先求导,再对m分类讨论,求函数f(x)的单调区间. (2) 先分离参数,再求的最小值,即得k的最大值.(2)由得,令,,,,,,,点睛:分离参数是处理参数问题的一种重要方法.处理参数问题,常用的有分离参数和分类讨论,如果分离参数方便,就选分离参数.本题就是分离参数,大大地提高了解题效率,优化了解题.例8【2019届新疆乌鲁木齐市高三第三次诊断性测验】设函数,,其中为非零实数.(1)当时,求的极值;(2)是否存在使得恒成立?若存在,求的取值范围,若不存在请说明理由.【答案】(1)有极大值,无极小值;(2)见解析.试题解析:(1)∵,∴,当时,,,∴有极大值,无极小值;(2)当时,,,∴,设,则,∴,故恒成立,当时,,由于,,而,∴时,,故取,显然,由上知当时,,,∴,综上可知,当时,恒成立.例9【2019届黑龙江省大庆市高三第二次检测】已知函数.(I) 当时,求函数的单调区间;(II) 当时,恒成立,求的取值范围.【答案】(Ⅰ) 单调递增区间为,单调递减区间为.(Ⅱ).试题解析:(Ⅰ)∵,函数定义域为:∴令,由可知,从而有两个不同解.令,则当时,;当时,,所以函数的单调递增区间为,单调递减区间为.(Ⅱ)由题意得,当时,恒成立. 令,求导得,设,则,∵∴∴,∴在上单调递增,即在上单调递增,∴当时,单调递减;当时,,单调递增.∴有,∴恒成立矛盾∴实数的取值范围为点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立,转化为;(3)若恒成立,可构造新函数,转化为.例10【2019届山东天成高三第二次大联考】已知函数,.(1)讨论函数的单调性;(2)若,对任意恒成立,求实数的取值范围.【答案】(1)答案见解析;(2).解析;(1),定义域所以.讨论:当时,对或,成立,所以函数在区间,上均是单调递增;当时,对或,成立,所以函数在区间,上均是单调递减;当时,函数是常函数,无单调性.(2)若,对任意恒成立,即对任意恒成立. 令,则.讨论:①当,即时,且不恒为0,所以函数在区间单调递增. 又,所以对任意恒成立. 故符合题意综上实数的取值范围是.点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若 就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立;(3)若 恒成立,可转化为(需在同一处取得最值). 【精选精练】1.【2019年【衡水金卷】(三)】已知函数()f x 的导函数为()f x ',且满足()32123f x x ax bx =+++, ()()24f x f x +='-',若函数()6ln 2f x x x ≥+恒成立,则实数b 的取值范围为( )A. [)64ln3,++∞B. [)5ln5,++∞C. [)66ln6,++∞D. [)4ln2,++∞【答案】C设()2136ln 3g x x x x =++, 则()()()()2229182361892333x x x x x x g x x x x ----+-+-=='=, 可知函数()g x 在区间()0,6内单调递增,在区间()6,+∞内单调递减,可知()()max 666ln6g x g ==+,故实数b 的取值范围为[)66ln6,++∞,故选C.点睛:本题主要考查利用导数求解不等式的恒成立问题求得,考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,求解曲线在某点处的切线方程; (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数; (3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题2.已知函数f(x)=x 2+4x +aln x ,若函数f(x)在(1,2)上是单调函数,则实数a 的取值范围是( )A. (-6,+∞)B. (-∞,-16)C. (-∞,-16]∪[-6,+∞)D. (-∞,-16)∪(-6,+∞)【答案】C 【解析】,因为函数在区间上具有单调性,所以或在上恒成立,则有或在上恒成立,所以或在上恒成立,令,当时,,所以或,所以的取值范围是.3.【2019届上海市浦东新区高三下学期(二模)】已知是定义在R上的偶函数,且在上是增函数,如果对于任意,恒成立,则实数的取值范围是________【答案】点睛:解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内.4.若函数f(x)=sin x+ax为R上的减函数,则实数a的取值范围是________.【答案】(-∞,-1]【解析】因为是R上的减函数,所以恒成立,即,即恒成立,因为,所以,故答案为.5.【2019年(衡水金卷信息卷)三】已知函数,其中为实数.(1)若曲线在点处的切线方程为,试求函数的单调区间;(2)当,,且时,若恒有,试求实数的取值范围. 【答案】(1)函数的单调递增区间为,单调递减区间为;(2).【解析】试题分析:由题意点处的切线方程为,求出的值,继而求出函数的单调性利用单调性将问题中的绝对值去掉,构造新函数来证明结论.解析:(1)函数的定义域为,,,可知..当,即时,,单调递增;当时,,单调递减.所以函数的单调递增区间为,单调递减区间为.(2)函数.则变为,即,设函数,由,得在时为单调递减函数,即,即,也即对与恒成立.因为,可知时,取最大值,即 .对时恒成立,由,可知,即取值范围为.6.【2019届宁夏石嘴山市高三4月(一模)】已知函数(且). (1)若函数在处取得极值,求实数的值;并求此时在上的最大值;(2)若函数不存在零点,求实数的取值范围.【答案】(1).(2).【试题解析】解:(1)函数的定义域为,,,∴在上,单调递减,在上,单调递增,所以时取极小值.所以在上单调递增,在上单调递减;又,,.当时,在的最大值为(2)由于所以函数存在零点②时,,.在上,单调递减,在上,单调递增,所以时取最小值.解得综上所述:所求的实数的取值范围是.7.函数的定义域为(为实数).(1)若函数在定义域上是减函数,求的取值范围;(2)若在定义域上恒成立,求的取值范围.【答案】(1);(2)【解析】试题分析:(1)利用单调性的定义,根据函数在定义域上是减函数,可得不等式恒成立,从而可求的取值范围;(2)利用分离参数思想原题意等价于恒成立,求出右边对应的函数在定义域内的最小值,即可求得的取值范围.试题解析:(1)任取,则有,即恒成立,所以(2)恒成立∵,∴函数在上单调减,∴时,函数取得最小值,即.8.【2019届江苏省无锡市高三第一学期期末】已知函数,,其中. (1)求过点和函数的图像相切的直线方程;(2)若对任意,有恒成立,求的取值范围;(3)若存在唯一的整数,使得,求的取值范围.【答案】(1),.(2).(3).,利用导数工具求得,故此时;②当时,恒成立,故此时;③当时,,利用导数工具求得,故此时.综上:.(3)因为,由(2)知,当,原命题等价于存在唯一的整数成立,利用导数工具求得;当,原命题等价于存在唯一的整数成立,利用导数工具求得.综上:.当时,切线方程为,当时,切线方程为.(2)由题意,对任意有恒成立,①当时,,令,则,令得,,故此时.②当时,恒成立,故此时.③当时,,令,当,存在唯一的整数使得,等价于存在唯一的整数成立,因为最大,,,所以当时,至少有两个整数成立,所以.当,存在唯一的整数使得,等价于存在唯一的整数成立,因为最小,且,,所以当时,至少有两个整数成立,所以当时,没有整数成立,所有.综上:.9.【2019届河南省焦作市高三第四次模拟】已知()()22xf x mx e m R =-∈.(Ⅰ)若()()'g x f x =,讨论()g x 的单调性;(Ⅱ)当()f x 在()()1,1f 处的切线与()223y e x =-+平行时,关于x 的不等式()0f x ax +<在()0,1上恒成立,求a 的取值范围.【答案】(Ⅰ)()g x 在()ln ,m +∞上单调递减,在(),ln m -∞上单调递增. (Ⅱ)(],21a e ∈-∞-.立,设()2xe F x x x=-,利用导数求得函数()F x 的单调性与最值,即可得到实数a 的取值范围. 试题解析:(Ⅰ)因为()()'22xg x f x mx e ==-,所以()()'2x g x m e =-,当0m ≤时, ()'0g x <,所以()g x 在R 上单调递减,当0m >时,令()'0g x <,得ln x m >,令()'0g x >,得ln x m <,所以()g x 在()ln ,m +∞上单调递减,在(),ln m -∞上单调递增. (Ⅱ)由(Ⅰ)得()'122f m e =-,由2222m e e -=-,得1m =,不等式()0f x ax +<即220xx e ax -+<,得2xe a x x<-在()0,1上恒成立. 设()2x e F x x x =-,则()2222'x x xe e x F x x --=. 设()222xxh x xe e x =--,则()()'222221x x x x h x xe e e x x e =+--=-,在区间()0,1上, ()'0h x >,则函数()h x 递增,所以()()11h x h <=-, 所以在区间()0,1上, ()'0F x <,函数()F x 递减.当0x →时, ()F x →+∞,而()121F e =-,所以()()21,F x e ∈-+∞, 因为()a F x <在()0,1上恒成立,所以(],21a e ∈-∞-.10.【2019届辽宁省辽南协作校高三下学期一模】函数()xf x xe lnx ax =--.(1)若函数()y f x =在点()()1,1f 处的切线与直线()()211y e x =--平行,求实数a 的值; (2)若函数()f x 在[)1,∞+上单调递增,求实数a 的取值范围; (3)在(1)的条件下,求()f x 的最小值. 【答案】(1) 1a =;(2) 21a e ≤-;(3)1.单调性,即可求出()min g x ,从而可得实数a 的取值范围;(3)根据(1)的条件,利用导数研究函数的单调性,可推出()'0f x '>恒成立,从而()f x '在()0∞+,上递增,结合零点存在性定理,即可求得()f x 的最小值.试题解析:(1)∵函数()xf x xe lnx ax =--∴()()11,(0)x f x x e a x x'=+-->∵函数()y f x =在点()()1,1f 处的切线与直线()()211y e x =--平行 ∴()()12121f e a e =-='-- ∴1a =(2)由题意,需()()110x f x x e a x =--'+≥在[1∞+,)恒成立,即()11x a x e x≤+-在[1∞+,)恒成立. 令()()11x g x x e x =+-,则()()2120x g x x e x+'=+>.又∵()10,10f f e ⎛⎫⎪⎝⎭''∴01,1x e ⎛⎫∃∈ ⎪⎝⎭使得()00f x '=,此时01x ex =∴()00,x x ∈时()()0,f x f x '<递减, ()0,x x ∈+∞时()()0,f x f x '>递增 ∴()()00000000min 011ln ln 1x x f x f x x e x x x x x e==--=--= 点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若()0f x >就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为()min 0f x >,若()0f x <恒成立,转化为()max 0f x <;(3)若()()f x g x >恒成立,可转化为()()min max f x g x >.11.【2019届江西省高三监测】已知函数()ln f x x =.(1)若函数()()212g x f x ax x =-+有两个极值点,求实数a 的取值范围; (2)若关于x 的方程()()1f x m x =+, ()m Z ∈有实数解,求整数m 的最大值.【答案】(1) 2a >;(2)0.【解析】试题分析:(1)函数()()212g x f x ax x =-+有两个极值点等价于()21y x ax g x x -+='=有两个可变零点,即方程210x ax -+=有两个不等的正实数根,(2)方程()ln 1x m x =+,即ln 1x m x =+,记函数()ln 1x h x x =+,(0)x >,问题转化为直线y m =与()ln 1x h x x =+的交点情况.(2)方程()ln 1x m x =+,即ln 1x m x =+,记函数()ln 1x h x x =+,(0)x >, ()()21ln 1x x x h x x +-+'=, 令()1ln x x x x ϕ+=- (0)x >,()2110x x xϕ'=--<, ()x ϕ单调递减, ()()()()222222110,011e h e h e e e e e -=>=<++'',存在()20,x e e ∈,使得()00h x '=,即0001ln x x x +=, 当()00,x x ∈,()0h x '>, ()h x 递增, ()()0,,0x x h x ∈+∞<', ()h x 递减,()02max 00ln 111,1x h x x x e e ⎛⎫∴==∈ ⎪+⎝⎭,即()max m h x ≤,()m Z ∈, 故0m ≤,整数m 的最大值为0.12【2019届山东高三天成大联考第二次】已知函数,.(1)讨论函数的单调性; (2)若,对任意恒成立,求实数的取值范围. 【答案】(1)答案见解析;(2). 【解析】试题分析:(1)对函数求导研究函数的单调性,通过导函数的正负得到原函数的单调区间;(2)对任意恒成立,即对任意恒成立,令,对这个函数求导研究函数的单调性,使得最值大于0即可.解析;(1),定义域 所以.讨论:当时,函数是常函数,无单调性.(2)若,对任意恒成立,即对任意恒成立. 令,则.讨论:①当,即时,且不恒为0,所以函数在区间单调递增.又,所以对任意恒成立.故符合题意综上实数的取值范围是.点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立;(3)若恒成立,可转化为(需在同一处取得最值).。
2020高考数学专项训练《16阿波罗尼斯圆问题梳理及其运用》(有答案)
专题16阿波罗尼斯圆问题梳理及其运用例题:在△ABC中,若AB=2,AC=2BC,求△ABC面积的最大值.变式1在平面直角坐标系xOy中,已知圆O:x2+y2=1,O1:(x-4)2+y2=4,动点P 在直线x+3y-b=0上,过P分别作圆O,O1的切线,切点分别为A,B,若满足PB=2PA 的点P有且只有两个,则实数b的取值范围为________________.变式2已知点A(-2,0),B(4,0),圆C:(x+4)2+(y+b)2=16,点P是圆C上任意一点,若PAPB为定值,则b的值为________________.串讲1已知A(0,1),B(1,0),C(t,0),点D是直线AC上的动点,若AD≤2BD恒成立,则最小正整数t的值为________________.串讲2已知点P 是圆O :x 2+y 2=25上任意一点,平面上有两个定点M(10,0),N(132,3),则PN +12PM 的最小值为________________.(2018·南京、盐城、连云港二模)调查某地居民每年到商场购物次数m 与商场面积S 、到商场距离d 的关系,得到关系式m =k ×Sd 2(k 为常数).如图,某投资者计划在与商场A 相距10km 的新区新建商场B ,且商场B 的面积与商场A 的面积之比为λ(0<λ<1).记“每年居民到商场A 购物的次数”,“每年居民到商场B 购物的次数”分别为m 1,m 2,称满足m 1<m 2的区域叫作商场B 相对于A 的“更强吸引区域”.(1)已知P 与A 相距15km ,且∠PAB =60°.当λ=12时,居住在点P 处的居民是否在商场B 相对于A 的“更强吸引区域”内?请说明理由;(2)若要使与商场B 相距2km 以内的区域(含边界)均为商场B 相对于A 的“更强吸引区域”,求λ的取值范围.在平面直角坐标系xOy 中,已知圆C 经过A(0,2),O(0,0),D(t ,0)(t>0)三点,M是线段AD 上的动点,l 1,l 2是过点B(1,0)且互相垂直的两条直线,其中l 1交y 轴于点E ,l 2交圆C 于P ,Q 两点.(1)若t =PQ =6,求直线l 2的方程;(2)若t 是使AM ≤2BM 恒成立的最小正整数,求三角形EPQ 的面积的最小值.答案:(1)4x -3y -4=0.;(2)152.解析:(1)由题意可知,圆C 的直径为AD ,所以圆C 方程为(x -3)2+(y -1)2=10.1分设l 2方程为y =k(x -1),则(2k -1)21+k 2+32=10,解得k 1=0,k 2=43.3分当k =0时,直线l 1与y 轴无交点,不合题意,舍去.4分所以k =43,此时直线l 2的方程为4x -3y -4=0.6分(2)设M(x ,y),由点M 在线段AD 上,得x t +y2=1,即2x +ty -2t =0.由AM ≤2BM ,得x -43+y +23≥209.8分由AD 位置知,直线AD x -432+y +23=209至多有一个公共点,故|83-83t |4+t 2≥253,解得t ≤16-10311或t ≥16+10311.10分因为t 是使AM ≤2BM 恒成立的最小正整数,所以t =4.11分所以,圆C 方程为(x -2)2+(y -1)2=5.①当直线l 2:x =1时,直线l 1的方程为y =0,此时,S △EPQ =2;12分②当直线l 2的斜率存在时,设l 2的方程为y =k(x -1)(k ≠0),则l 1的方程为y =-1k(x -1),点E 0,1k .所以BE =1+1k2.圆心C 到l 2的距离为|k +1|1+k 2.所以PQ =25-|k +1|1+k2224k 2-2k +41+k2.14分故S △EPQ =12BE·PQ =121+1k 2·24k 2-2k +41+k 2=4k 2-2k +4k 2=4k 2-2k +4≥152.因为152<2,所以(S △EPQ )min =152.16分专题16例题答案:2 2.解法1设BC =x ,则AC =2x ,根据面积公式得S △ABC =12AB·BC sin B =12×2x 1-cos 2B ,根据余弦定理得cos B =AB 2+BC 2-AC 22AB ·BC=4+x 2-(2x )24x =4-x 24x ,代入上式得:S △ABC =x1-(4-x 24x)2=128-(x 2-12)216,+x>2,2>2x22-2<x<22+2,故当x =23时,S △ABC 取得最大值2 2.解法2以AB 的中点为原点,AB 所在直线为x 轴,建立平面直角坐标系xOy ,则A(-1,0),B(1,0),C(x ,y),由AC =2BC 得(x +1)2+y 2=2·(x -1)2+y 2,化简得x 2+y 2-6x +1=0,即(x -3)2+y 2=8,于是点C 的轨迹是以D(3,0)为圆心,22为半径的圆,所以点C 到AB 的距离的最大值为半径22,故S △ABC 的最大值为S =12×2×|y C |≤22.变式联想变式1-203,解析:依题意,PA 2=PO 2-12,PB 2=PO 12-22,因为PB =2PA ,所以PB 2=4PA 2,所以PO 12-4=4(PO 2-12),可得PO 12=4PO 2,设P(x ,y),可得(x -42)+y 2=4(x 2+y 2)化简得(x +43)2+y 2=649.所以满足条件的点P 在以(-43,0)为圆心,83为半径的圆上,又因为点P 在直线x +3y -b =0上,且恰有两个点,所以直线和圆应该相交,所以|-43-b|1+3<83,解得-203<b<4.变式2答案:0.解析:设P(x ,y),PAPB=k ,则(x +2)2+y 2(x -4)2+y 2=k ,整理得(1-k 2)x 2+(1-k 2)y 2+(4+8k 2)x +4-16k 2=0,又P 是圆C 上的任意一点,故k ≠1,圆C 的一般方程为x 2+y 2+8x +2by +b 2=0,因此2b =0,4+8k 21-k 2=8,4-16k 21-k2=b 2,解得b =0.串讲激活串讲1答案:4.解法1由A(0,1),C(t ,0),得l :y =-1t x +1,D(x ,-1t x +1).又AD ≤2BD ,故x 2+x 2t2≤2(x -1)2+(1-x t )2,化简得(3+3t 2)x 2-(8+8t)x +8≥0对任意x 恒成立,则(8+8t )2-4×8×(3+3t 2)≤0,化简得t 2-4t +1≥0,解得t ≥2+3或0<t ≤2-3,因此最小正整数t 的值为4.解法2设D(x ,y),当AD =2BD 时,有x 2+(y -1)2=4[(x -1)2+y 2],化简得(x -43)2+(y +13)2=89直线AC 的方程为y =-1t x +1,即x +ty -t =0.因为AD ≤2BD ,所以直线AC 与圆(x -43)2+(y +13)2=89相切或相离,故|43-13t -t|t 2+1≥89,即t 2-4t +1≥0,解得t ≤2-3或t ≥2+3,所以最小正整数t 的值为4.串讲2答案:5.解析:设x 轴上一定点Q(m ,0),记PM ∶PQ =λ,P(x ,y),由PM ∶PQ =λ得(x -10)2+y 2=λ2[(x -m)2+y 2],化简得(λ2-1)x 2+(λ2-1)y 2+(20-2mλ2)x +(λ2m 2-100)=0,因为x 2+y 2=25,所以0,25,解得m =52,λ=2,所以PM ∶PQ =2,从而PN +12PM =PN +PQ ≥QN =5.新题在线答案:(1)居住在点P 处的居民不在商场B 相对于A 的“更强吸引区域”内.(2)(116,1)解析:设商场A ,B 的面积分别为S 1,S 2,点P 到A ,B 的距离分别为d 1,d 2,则S 2=λS 1,m 1=kS 1d 12,m 2=k S 2d 22,k 为常数,k>0.(1)在△PAB 中,AB =10,PA =15,∠PAB =60°,由余弦定理,得d 22=PB 2=AB 2+PA 2-2AB·PA cos 60°=102+152-2×10×15×12=175.又d 12=PA 2=225,此时,m 1-m 2=k S 1d 12-k S 2d 22=k S 1d 12-k λS 1d 22=kS 1(1d 12-λd 22),将λ=12,d 12=225,d 22=175代入,得m 1-m 2=kS 1(1225-1350).因为kS 1>0,所以m 1>m 2.即居住在点P 处的居民不在商场B 相对于A 的“更强吸引区域”内.(2)解法1以AB 所在直线为x 轴,A 为原点,建立如图所示的平面直角坐标系,则A(0,0),B(10,0),设P(x ,y),由m 1<m 2得,kS 1d 12<k S 2d 22,将S 2=λS 1代入,得d 22<λd 12.代入坐标,得(x -10)2+y 2<λ(x 2+y 2),化简得(1-λ)x 2+(1-λ)y 2-20x +100<0.因为0<λ<1,配方得(x -101-λ)2+y 2<(10λ1-λ)2,所以商场B 相对于A 的“更强吸引区域”是圆心为C(101-λ,0),半径为r 1=10λ1-λ的圆的内部.与商场B 相距2km 以内的区域(含边界)是圆心为B(10,0),半径为r 2=2的圆的内部及圆周.由题设,圆B 内含于圆C ,即BC<|r 1-r 2|.因为0<λ<1,所以101-λ-10<10λ1-λ-2,整理得4λ-5λ+1<0,解得116<λ<1.所以,所求λ的取值范围是(116,1).解法2要使与商场B 相距2km 以内的区域(含边界)均为商场B 相对于A 的“更强吸引区域”,则当d 2≤2时,不等式m 1<m 2恒成立.由m 1<m 2,得k S 1d 12<k S 2d 22=k λS 1d 22,化简得λd 12>d 22.此时,“当d 2≤2时,不等式m 1<m 2恒成立”可转化为“当d 2≤2时,不等式λd 12>d 22恒成立”.所以当d 2≤2时,不等式恒成立,因为点P 在以点B 为圆心,2为半径的圆的内部,且AB =10,所以8=AB -2≤PA ≤AB +2=12.欲使得不等于λPA>2恒成立,则有8λ>2,解得λ>116,又0<λ<1,所以λ的取值范围是(116,1).________________________________________________________________________ ________________________________________________________________________ ______________________________________________________________________。
专题16 数列(选填压轴题)(原卷版)-【挑战压轴题】备战2023年高考数学高分必刷必过题
中
a1
1,数列
anan1
的前
n
项和为 Tn,若Tn≥10
恒成立,则
的最小值为(
)
A.8
B.9
C.10
D.20
10.(2022·全国·高三专题练习)设等差数列an 的前 n 项和为 Sn ,首项 a1 0 ,公差 d 0 ,
若对任意的 n N ,总存在 k N ,使 S2k1 (2k 1)Sn .则 k 9n 的最小值为( )
18.(2022·浙江·高二期末)已知数列an 满足 a1 0 ,对于每一个 n N* ,a4n3 ,a4n2 ,a4n1
构成公差为
2
的等差数列,
a4n1
, a4 n
, a4 n1
构成公比为
1 3
的等比数列,若
n
N*
,不等式
t2 an2 4t 4an 0 恒成立,则正整数 t 的最小值为______.
S n ___________(用含 n 的代数式表示).
21.(2022·全国·高三专题练习)已知有穷数列 an 各项均不相等,将 an 的项从大到小重
新排序后相应的项数构成新数列bn,称数列bn 为数列an 的“序数列”.例如数列 a1 , a2 ,
a3 满足 a1 a3 a2 ,则其序数列bn 为 1,3,2.若有穷数列dn 满足 d1 1 , dn1 dn
T2022 2022 S2022
0
成立.关于上述两个命题,
以上说法正确的是______.(填写序号) 20.(2022·广东深圳·高三阶段练习)设正整数 n a0 70 a1 7 a k1 7 k1 a k 7 k ,其中
ak 0,1, 2,3, 4,5, 6 ,记 n a0 a1 ak , S n 1 2 7n ,当 n 6 时,
专题16 立体几何选填题【2023高考必备】2013-2022十年全国高考数学真题分类汇编
因为 平面 ,所以 ,又 , ,
所以 平面 ,所以 ,
设正方体棱长为2,则 ,
,所以 .
故选:D
【题目栏目】立体几何\空间角\异面直线所成的角
【题目来源】2021年高考全国乙卷理科·第5题
14.(2021年高考全国甲卷理科·第11题)已如A.B.C是半径为1的球O的球面上的三个点,且 ,则三棱锥 的体积为()
A. B. 与平面 所成的角为
C. D. 与平面 所成的角为
【答案】D
解析:
如图所示:
不妨设 ,依题以及长方体的结构特征可知, 与平面 所成角为 , 与平面 所成角为 ,所以 ,即 , ,解得 .
对于A, , , ,A错误;
对于B,过 作 于 ,易知 平面 ,所以 与平面 所成角为 ,因为 ,所以 ,B错误;
A B. C. D.
【答案】C
解析:设该四棱锥底面为四边形ABCD,四边形ABCD所在小圆半径为r,
设四边形ABCD对角线夹角为 ,
则
(当且仅当四边形ABCD为正方形时等号成立)
即当四棱锥的顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为
又
则
当且仅当 即 时等号成立,故选:C
【题目栏目】立体几何\球的问题\球的其它问题
由勾股定理可得 ,
从而有: ,
据此可得 ,即 ,
据此可得平面 平面 不成立,选项B错误;
对于选项C,取 的中点 ,则 ,
由于 与平面 相交,故平面 平面 不成立,选项C错误;
对于选项D,取 的中点 ,很明显四边形 为平行四边形,则 ,
由于 与平面 相交,故平面 平面 不成立,选项D错误;
2020年新高考全国2卷数学高考真题变式题11-16题-(学生版)
2020年新高考全国2卷数学高考真题变式题11-16题原题111.下图是函数y = sin(ωx +φ)地部分图像,则sin(ωx +φ)= ( )A .πsin(3x +)B .πsin(2)3x -C .πcos(26x +)D .5πcos(2)6x -变式题1基础2.已知函数f (x )=|A cos(x +φ)+1|0,||2A πϕ⎛⎫>< ⎪⎝⎭地部分图象如图所示,则( )A .φ=6πB .φ=3πC .A =2D .A =3变式题2基础3.如图是函数()sin()0,||2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭地部分图象,下面选项正确地是( )A .()sin 23f x x π⎛⎫=- ⎪⎝⎭B .()sin 43f x x π⎛⎫=- ⎪⎝⎭C .06f π⎛⎫= ⎪⎝⎭D .213f π⎛⎫-= ⎪⎝⎭变式题3巩固4.函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭地部分图象如图所示,则下面结论正确地是( )A .点5,012π⎛⎫⎪⎝⎭是()f x 地对称中心B .直线76x π=是()f x 地对称轴C .()f x 在区间2,23ππ⎡⎤⎢⎥⎣⎦上单调减D .()f x 地图象向右平移712π个单位得cos 2y x =地图象变式题4巩固5.下图是函数()()sin 02y x ωϕϕπ=+<<地部分图像,下面表达正确地是( )A .2ω=,53πϕ=B .2ω=-,3πϕ=C .对称轴方程为12x π=-D .函数在区间7,12ππ⎡⎤--⎢⎣⎦上单调递增变式题5巩固6.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭地部分图象如图所示,则( )A .()f x 地最小正周期为πB .6f x π⎛⎫+ ⎪⎝⎭为偶函数C .()f x 在区间0,4⎡⎤⎢⎥⎣⎦π内地最小值为1D .()f x 地图象有关直线23x π=-对称变式题6提升7.函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭地部分图像如图所示,则下面结论正确地是( )A .()f x 地最小正周期是πB .当11,612x ππ⎛⎫∈ ⎪⎝⎭ 时,()1f x <C .将()f x 地图象向右平移12π个单位长度后得到地函数图象有关6x π=对称D .若()(),,,63m n f m f n ππ⎛⎫∈-= ⎪⎝⎭,且m n ≠,则()f m n +=原题128.已知a >0,b >0,且a +b =1,则( )A .2212a b +≥B .122a b->C .22log log 2a b +≥-D 变式题1基础9.已知0,0a b >>,且22a b +=,则下面表达正确地是( )A .52515a b +…B .24162a b+…C .85b D .()2ln ln 20b a a b +…变式题2基础10.已知正数a ,b 满足21a b +=,则( )A .ab 地最大值为18B .224a b +地最小值为12C .12a b +地最小值为4D .1ab ab+地最小值为2变式题3巩固11.下面选项正确地是( )A .若0a ≠,则1a a+地最小值为4B .若x ∈R ,2C .若0ab <,则b aa b+地最大值为-2D .若正实数,x y 满足21x y +=,则21x y+地最小值为8变式题4巩固12.下面表达中正确地有( )A .已知1x <,则4211y x x =+--地最小值为1+B .若正数x ,y 满足23x y xy +=,则2x y +地最小值为3C .y =D .若0,2πα⎛⎫∈ ⎪⎝⎭,则22114sin cos αα+≥变式题5巩固13.已知0x >,0y >,且2530x xy x y +-+=,则( )A .xy 地最大值为9B .11x y+地最小值为1C .1x y-地最大值为4D .22xy +地最小值为20变式题6提升14.已知0a >,0b >,下面命题中正确地是( )A .若2a b +=,则lg lg 0a b +≤B .若20ab a b --=,则29a b +≥C .若2a b +=,则112a b ab +-≥D .若111123a b +=++,则14ab a b ++≥+原题1315.已知正方体ABCD -A 1B 1C 1D 1地棱长为2,M ,N 分别为BB 1,AB 地中点,则三棱锥A -NMD 1地体积为____________变式题1基础16.直三棱柱ABC -A 1B 1C 1地各款棱长均为2,E 为棱CC 1地中点,则三棱锥A 1-B 1C 1E 地体积为____.变式题2基础17.如图,三棱锥S ABC -中,ABC ∆与SBC ∆均为等边三角形,且平面SBC ⊥平面ABC ,若4AB =,则三棱锥S ABC -地体积为__________________.变式题3巩固18.正方体1111ABCD A B C D -中,过1BD 地平面截正方体所得平面四边形1BMD N 地周长为若M 是棱1CC 地中点,则四棱锥1B ADD N -地体积V =_____________.变式题4巩固19.如图,在正三棱柱ABC -A 1B 1C 1中,已知AB =AA 1=3,点P 在棱CC 1上,则三棱锥P -ABA 1地体积为________.变式题5巩固20.如图所示,E,F分别是边长为1地正方形ABCD地边BC,CD地中点,将其沿AE,AF,EF折起使得B,D,C三点重合.则所围成地三棱锥地体积为___________.变式题6提升21.已知正方体ABCD-A1B1C1D1地棱长为2,M,N分别为AD,CC1地中点,O为上底面A1B1C1D1地中心,则三棱锥O-MNB地体积是____________.原题1422C:y2=4x地焦点,且与C交于A,B两点,则AB=________.变式题1基础23.斜率为43地直线l经过抛物线()220y px p=>地焦点()1,0F且与抛物线交于A,B两点,则线段AB地长为________.变式题2基础24.直线:24=-l y x 过抛物线2:2C y px =地焦点F ,与C 交于,A B 俩点,则AB =________.变式题3巩固25.抛物线26y x =地焦点为F ,过点F 地直线与抛物线地两个交点为A ,B ,若AB 中点横坐标为2,则AB =______.变式题4巩固26.过点()2,2P 且斜率为1-地直线与抛物线2y x =交于A ,B 两点,则PA PB +=___________.变式题5巩固27.已知F 为抛物线2y =地焦点,过点F 地直线交抛物线于A ,B 两点,若3AF FB =u u u r u u r ,则||AB =_________变式题6提升28.过抛物线2:E y x =地焦点F 任作两款互相垂直地直线1l ,2l ,分别与抛物线E 交于A ,B 两点和C ,D 两点,则4AB CD +地最小值为________.原题1529.将数列{2n –1}与{3n –2}地公共项从小到大排列得到数列{an },则{an }地前n 项和为________.变式题1基础30.将数列{}41n -与{}32n +地公共项从小到大排列得到数列{}n a ,则{}n a 地前n 项和为________.变式题2基础31.将数列{}21n -与{}2n地公共项按照从小到大地顺序排列得到一个新数列{}na ,则新数列{}n a 地通项公式为______.变式题3巩固32.将数列{}2n与{}2n 地公共项从小到大排列得到数列{}n a ,则{}n a 地前10项和为________(用数字作答).变式题4巩固33.某人将n 个连续自然数1,2,3,L ,n 相加,由于计算时漏加了一个自然数,而得出错误地和值为2021,则漏加地自然数是___________.变式题5巩固34.将正整数1,2,L ,n ,L 按第k 组含1k +个数分组:(1,2),(3,4,5),(6,7,8,9),L .那么2016在第__________组.变式题6提升35.已知数列{}n b 为首项为2正项等比数列,数列{}n c 为公差为3等差数列,数列{}n a 满足2n n n b a a +=-,12n n n c a a +=+,若11a =,则数列{}n a 前50项地和为________.原题1636.某中学开展劳动实习,学生加工制作零件,零件地截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆地圆心,A 是圆弧AB 与直线AG 地切点,B 是圆弧AB 与直线BC 地切点,四边形DEFG为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,//BH DG ,EF =12 cm,DE=2 cm,A 到直线DE 和EF 地距离均为7 cm,圆孔半径为1 cm,则图中阴影部分地面积为________cm 2.变式题1基础37.为迎接2020年奥运会,某商家计划设计一圆形图标,图标内部有一“杠铃形图案”(如图中阴影部分),圆地半径为1米,AC ,BD 是圆地直径,E ,F 在弦AB 上,H ,G 在弦CD 上,圆心O 是矩形EFGH 地中心.若23EF =米,2AOB θ∠=,π5π412θ≤≤,则“杠铃形图案”面积地最小值为______平方米.变式题2巩固38.如图,已知一块半径为2地残缺地半圆形材料ABC ,O 为半圆地圆心,65OC =,残缺部分位于过点C 地竖直线地右侧,现要在这块材料上裁出一个直角三角形,若该直角三角形一款边在BC 上,则裁出三角形面积地最大值为______.变式题3巩固39.如图,某公园要在一块圆心角为3π,半径为20m 地扇形草坪OAB 中修建一个内接矩形文化景观区域CDEF ,若//EF AB ,则文化景观区域面积地最大值为______2m .变式题4巩固40.某市政府需要规划如图所示地一块公园用地,已知1km AB =,要求BAC CAD ∠=∠,AC BC ⊥,AD DC ⊥,要使得公园(四边形ABCD )地面积得到最大值,则此时cos BAD ∠=________.变式题5提升41.某单位科技活动纪念章地结构如图所示,O 是半径分别为1cm ,2cm 地两个同心圆地圆心,等腰ABC 地顶点A 在外圆上,底边BC 地两个端点都在内圆上,点O ,A 在直线BC 地同侧.若线段BC 与劣弧 BC所围成地弓形面积为1S ,ABC 与OAC 地面积之和为2S ,设2BOC θ∠=.经研究发现当21S S -地值最大时,纪念章最美观,则当纪念章最美观时,cos θ地值为______.变式题6提升42.为了创建全国文明城市,吕梁市政府决定对市属辖区内老旧小区进行美化改造,如图,某小区内有一个近似半圆形人造湖面,O 为圆心,半径为一个单位,现规划在OCD 区域种花,在OBD 区域养殖观赏鱼,若AOC COD ∠=∠,且使四边形OCDB 面积最大,则cos AOC ∠=____________.。
【精品】备战2020年高考理科数学之高频考点专题专题16 空间向量与立体几何(学生版)
专题16 空间向量与立体几何考点1 利用空间向量证明平行与垂直调研1 如图,在正方体1111ABCD A B C D-中,O是AC的中点,E是线段1D O上一点,且1D E EOλ=⋅u u u u r u u u r.(1)求证:11DB CD O⊥平面;(2)若平面CDE ⊥平面1CD O ,求λ的值. 【答案】(1)证明见解析;(2)2λ=.【解析】(1)不妨设正方体的棱长为1,如图建立空间直角坐标系,则1111(0,0,0),(1,1,1),(,,0),(0,1,0),(0,0,1)22D B O C D ,于是1111(1,1,1),(,,0),(0,1,1)22DB OC CD ==-=-u u u u r u u u u r u u u r ,因为1110,0DB CD DB OC ⋅=⋅=u u u r u u u r u u u u u u ru r ,所以111,DB CD DB OC ⊥⊥, 故11DB CD O ⊥平面.(2)由(1)可知1CD O 平面的一个法向量为1(1,1,1)DB ==u u u u rm , 由1D E EO λ=⋅u u u u r u u u r,则1(,,)2(1)2(1)(1)E λλλλλ+++,设平面CDE 的法向量为(,,)x y z =n ,由·0,0CD DE =⋅=u u u r u u u r n n ,得0,02(1)2(1)(1)y x y zλλλλλ=⎧⎪⎨++=⎪+++⎩∴可取(2,0,)λ=-n ,因为1CD O CED ⊥平面平面,所以·0,2λ=∴=m n .☆技巧点拨☆直线与平面、平面与平面的平行与垂直的向量判定方法设直线l 的方向向量为a =(a 1,b 1,c 1),平面α,β的法向量分别为μ=(a 2,b 2,c 2),v =(a 3,b 3,c 3),则 (1)线面平行:l ∥α⇔a ⊥μ⇔a·μ=0⇔a 1a 2+b 1b 2+c 1c 2=0; (2)线面垂直:l ⊥α⇔a ∥μ⇔a =k μ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2; (3)面面平行:α∥β⇔μ∥v ⇔μ=λv ⇔a 2=λa 3,b 2=λb 3,c 2=λc 3; (4)面面垂直:α⊥β⇔μ⊥v ⇔μ·v =0⇔a 2a 3+b 2b 3+c 2c 3=0.注意:用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a ∥b ,只需证明向量a =λb (λ∈R )即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.考点2 求空间角题组一 求异面直线所成的角调研1 如图所示,在三棱锥P –ABC 中,P A ⊥平面ABC ,D 是棱PB 的中点,已知P A =BC =2,AB =4,CB ⊥AB ,则异面直线PC ,AD 所成角的余弦值为A .−3010 B .−305 C .305D .3010【答案】D【解析】因为P A ⊥平面ABC ,所以P A ⊥AB ,P A ⊥BC .过点A 作AE ∥CB ,又CB ⊥AB ,则AP ,AB ,AE 两两垂直.如图,以A 为坐标原点,分别以AB ,AE ,AP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则A (0,0,0),P (0,0,2),B (4,0,0),C (4,−2,0).因为D 为PB 的中点,所以D (2,0,1).故CP uu r =(−4,2,2),AD uuu r =(2,0,1).所以cos 〈AD uuu r ,CP uu r 〉=||||AD CPAD CP ⋅⋅uuu r uu ruuur uu r =-65×26=−3010. 设异面直线PC ,AD 所成的角为θ,则cos θ=|cos 〈AD uuu r ,CP uu r〉|=3010.调研 2 在正方体1111ABCD A B C D -中,点P 在1A C 上运动(包括端点),则BP 与1AD 所成角的取值范围是ABCD 【答案】D【解析】以点D 为原点,DA 、DC 、1DD 所在直线分别为x y z 、、轴建立空间直角坐标系,设正方体棱长为1,点P 坐标为(),1,x x x -,则()()11,,,1,0,1BP x x x BC =--=-u u u r u u u u r ,设1BP BC u u u ru u u u r、的夹角为α,则所以当13x =时,cos α取最大值当1x =时,cos α因为11BC AD ∥,所以BP 与1AD 所成角的取值范围是故选D. 【名师点睛】空间向量的引入为求空间角带来了方便,解题时只需通过代数运算便可达到解题的目的,由于两向量夹角的范围为[0,π],因此向量的夹角不一定等于所求的空间角,因此在解题时求得两向量的夹角(或其余弦值)后还要分析向量的夹角和空间角大小间的关系.解题时要根据所求的角的类型得到空间角的范围,并在此范围下确定出所求角(或其三角函数值).☆技巧点拨☆利用向量求异面直线所成的角一是几何法:作—证—算;二是向量法:把角的求解转化为向量运算,应注意体会两种方法的特点,“转化”是求异面直线所成角的关键,一般地,异面直线AC ,BD 的夹角β的余弦值为cos β=||||AC BD AC BD ⋅⋅uuu r uu u ruuur uu u r . 注意:两条异面直线所成的角α不一定是两直线的方向向量的夹角β,即cos α=|cos β|.题组二 求线面角调研3 如图,四棱锥P –ABCD 中,底面ABCD 是直角梯形,∠DAB =90°,AD ∥BC ,AD ⊥侧面P AB ,△P AB 是等边三角形,DA =AB =2,BC =12AD ,E 是线段AB 的中点.(1)求证:PE ⊥CD ;(2)求PC 与平面PDE 所成角的正弦值. 【答案】(1)见解析;(2) 35.【解析】(1)因为AD ⊥侧面P AB ,PE ⊂平面P AB ,所以AD ⊥PE . 又△P AB 是等边三角形,E 是线段AB 的中点,所以PE ⊥AB . 因为AD ∩AB =A ,所以PE ⊥平面ABCD , 而CD ⊂平面ABCD ,所以PE ⊥CD .(2)以E 为坐标原点,建立如图所示的空间直角坐标系E −xyz . 则E (0,0,0),C (1,−1,0),D (2,1,0),P (0,0,3). 所以ED →=(2,1,0),EP →=(0,0,3),PC →=(1,−1,−3). 设n =(x ,y ,z )为平面PDE 的法向量.由,得⎩⎨⎧2x +y =0,3z =0.令x =1,可得n =(1,−2,0).设PC 与平面PDE 所成的角为θ,则sin θ=|cos 〈PC →,n 〉|=|||||PC PC ⋅⋅uu u ruu ur n n |=35. 所以PC 与平面PDE 所成角的正弦值为35.调研4 如图,四棱锥P ABCD -中,PD ABCD ⊥平面,底面ABCD 是梯形,AB ∥CD ,BC CD ⊥,AB=PD=4,CD=2,AD =M 为CD 的中点,N 为PB 上一点,且(01)PN PB λλ=<<u u u r u u u r.(1)若14λ=时,求证:MN ∥平面P AD ; (2)若直线AN 与平面PBCAD 与直线CN 所成角的余弦值. 【答案】(1)见解析;(2. 【解析】(114PN PB =u u u r u u u r .在P A 上取点EEN ,DE ,Q 1444PN PB PE PA AB ===u u u r u u u r u u r ,,,∴EN ∥AB ,且14EN AB ==,Q M 为CD 的中点,CD=2,∴112DM CD ==,又AB ∥CD ,∴EN ∥DM ,EN =DM ,∴四边形DMNE 是平行四边形,∴MN ∥DE ,又DE ⊂平面P AD ,MN ⊄平面P AD ,∴MN ∥平面P AD .(2)如图所示,过点D 作DH ⊥AB 于H ,则DH ⊥CD .以D 为坐标原点建立空间直角坐标系D −xyz . 则D (0,0,0),M (0,1,0),C (0,2,0),B (2,2,0),A (2,−2,0),P (0,0,4),∴()()2,0,0,0,2,4CB CP ==-u u u r u u u r ,()()2,2,42,2,4AN AP PN AP PB λλ=+=+=-+-u u u r u u u r u u u r u u u r u u u r()22,22,44λλλ=-+-.该平面PBC 的法向量为(),,x y z =n ,则由20240CB x CP y z ⎧⋅==⎪⎨⋅=-+=⎪⎩u u u r u u u r n n ,得02x y z =⎧⎨=⎩,令z =1,得()0,2,1=n .该直线AN 与平面PBC 所成的角为θ,则 ,解得1,3λ=∴()228248,,,,2,2,0333333N CN AD ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭u u ur u u u r ,,, 设直线AD 与直线CN 所成的角为α所以直线AD 与直线CN.☆技巧点拨☆利用向量求直线与平面所成的角①分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角); ②通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.注意:直线和平面所成的角的正弦值等于平面法向量与直线方向向量夹角的余弦值的绝对值,即注意函数名称的变化.直线与平面的夹角计算设直线l 的方向向量为a =(a 1,b 1,c 1),平面α的法向量为μ=(a 3,b 3,c 3),直线l 与平面α的夹角为θ⎝⎛⎭⎫0≤θ≤π2,则sin θ=|a·μ||a ||μ|=|cos 〈a ,μ〉|.题组三 求二面角调研5 二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB ,已知2AB =,3AC =,4BD =,CD = A .45︒ B .60︒ C .120︒D .150︒【答案】B【解析】由已知可得:0,0AB AC AB BD ⋅=⋅=u u u r u u u r u u u r u u u r ,CD CA AB BD =++u u u r u u u u r u u r u u u r,,∴cos CA 12,即CA ,∴二面角的大小为60°,故选B.【名师点睛】这个题目考查的是立体几何中空间角的求法;解决立体几何的小题,通常有以下几种方法:一是建系法,二是用传统的方法,利用定义直接在图中找到要求的角;还有就是利用空间向量法来解决问题.注意向量夹角必须是共起点的,还有就是异面直线夹角必须是锐角或直角.调研6 如图,在四棱锥P ABCD -中,AP ,AB ,AD 两两垂直,BC AD ∥,且4AP AB AD ===,2BC =.(1)求二面角P CD A --的余弦值;(2)已知点H 为线段PC 上异于C 的点,且DC DH =,求PHPC的值. 【答案】(1)23;(2【思路分析】(1)先根据条件建立空间直角坐标系,设立各点坐标,根据方程组解得各平面法向量,利用向量数量积求向量夹角,最后根据二面角与向量夹角关系求结果;(2)设PH PC λ=u u u v u u u v,根据向量坐标表示距离,再根据距离相等解得λ,即为PHPC的值. 【解析】以{},,A AB AP D u u u r u u u r u u u r为正交基底,建立如图所示的空间直角坐标系A xyz -.则()0,0,0A ,()4,0,0B ,()4,2,0C ,()0,4,0D ,()0,0,4P .(1)易知()0,4,4DP =-u u u r ,()4,2,0DC =-u u u r.设平面PCD 的法向量为()1,,x y z =n ,则1100DP DC ⎧⋅=⎪⎨⋅=⎪⎩u u u v u u u v n n ,即440420y z x y -+=⎧⎨-=⎩,令1x =,则2y =,2z =.所以()11,2,2=n .易知平面ACD 的法向量为()20,0,1=n ,P CD A --的余弦值为23. (2)由题意可知,()4,2,4PC =-u u u r ,()4,2,0DC =-u u u r ,设()4,2,4PH PC λλλλ==-u u u r u u u r,则DH DP PH =+=u u u u r u u u r u u u r()4,24,44λλλ--, 因为DC DH ==,化简得23410λλ-+=,所以1λ=或13λ=.点H 异于点C ,所以13λ=调研7 如图,在三棱柱111ABC A B C -中,侧棱1CC ⊥底面ABC ,且122,CC AC BC AC BC ==⊥,D 是棱AB 的中点,点M 在侧棱1CC 上运动.(1)当M 是棱1CC 的中点时,求证:CD ∥平面1MAB ; (2)当直线AM 与平面ABC 所成的角的正切值为32时,求二面角11A MB C --的余弦值.【答案】(1)见解析;(2)14-. 【思路分析】(1)取线段1AB 的中点E ,连接,DE EM ,可得四边形CDEM 是平行四边形,CD EM ∥,即可证明CD ∥平面1MAB ;(2)以C 为原点,CA ,CB ,1CC 所在直线分别为x ,y ,z 轴建立空间直角坐标系,利用向量法求二面角11A MB C --的余弦值. 【解析】(1)取线段1AB 的中点E ,连接,DE EM . ∵1,AD DB AE EB ==,∴1DE BB ∥,且112DE BB =. 又M 为1CC 的中点,∴1CM BB ∥,且112CM BB =, ∴CM DE ∥,且CM DE =,∴四边形CDEM 是平行四边形,∴CD EM ∥. 又EM ⊂平面1,AB M CD ⊄平面1AB M ,∴CD ∥平面1MAB .(2)∵1,,CA CB CC 两两垂直,∴以C 为原点,1,,CA CB CC 所在直线分别为x ,y ,z 轴,建立空间直角坐标系C xyz -,如图,∵三棱柱111ABC A B C -中,1CC ⊥平面ABC ,∴MAC ∠即为直线AM 与平面ABC 所成的角. 设1AC =,则由3tanMAC ∠=,得3CM =.设平面1AMB 的一个法向量为(),,x y z =n ,2z =,得3,1x y ==-,即()3,1,2=-n .又平面11BCC B 的一个法向量为()1,0,0CA =u u ur,∴,又二面角11A MB C --的平面角为钝角,∴二面角11A MB C --的余弦值为14-.☆技巧点拨☆利用向量求二面角求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.注意:两平面的法向量的夹角不一定是所求的二面角,有可能为两法向量夹角的补角.运用空间向量坐标运算求空间角的一般步骤(1)建立恰当的空间直角坐标系; (2)求出相关点的坐标; (3)写出向量坐标;(4)结合公式进行论证、计算;(5)转化为几何结论.平面与平面的夹角计算公式设平面α,β的法向量分别为μ=(a 3,b 3,c 3),v =(a 4,b 4,c 4),平面α,β的夹角为θ(0≤θ≤π),则|cos θ|=|μ·v ||μ||v |=|cos 〈μ,v 〉|.题组四 解决探索性问题调研8 如图,在五面体ABCDPE 中,PD ⊥平面ABCD ,∠ADC =∠BAD =90°,F 为棱P A 的中点,PD =BC =2,AB =AD =1,且四边形CDPE 为平行四边形.(1)判断AC 与平面DEF 的位置关系,并给予证明;(2)在线段EF 上是否存在一点Q ,使得BQ 与平面PBC 所成角的正弦值为36?若存在,请求出QE 的长;若不存在,请说明理由.【答案】(1) AC ∥平面DEF ,证明见解析;(2) 在线段EF 上存在一点Q ⎝⎛⎭⎫14,1,324,使得BQ 与平面PBC 所成角的正弦值为36,此时QE =194. 【解析】(1)AC ∥平面DEF .理由如下: 设线段PC 交DE 于点N ,连接FN ,如图所示,因为四边形PDCE 为平行四边形,所以点N 为PC 的中点, 又点F 为P A 的中点,所以FN ∥AC , 因为FN ⊂平面DEF ,AC ⊄平面DEF , 所以AC ∥平面DEF .(2)假设在线段EF 上存在一点Q ,使得BQ 与平面PBC 所成角的正弦值为36,设FQ →=λFE →(0≤λ≤1),如图,以D 为坐标原点,分别以DA ,DC ,DP 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系. 因为PD =BC =2,AB =AD =1,所以CD =2,所以P (0,0,2),B (1,1,0),C (0,2,0),A (1,0,0),所以PB →=(1,1,−2),BC →=(−1,1,0). 设平面PBC 的法向量为m =(x ,y ,z ),则,即⎩⎨⎧ x +y -2z =0,-x +y =0,解得⎩⎨⎧x =y ,z =2x ,令x =1,得平面PBC 的一个法向量为m =(1,1,2). 假设存在点Q 满足条件.由F ⎝⎛⎭⎫12,0,22,E (0,2,2),可得FE →=⎝⎛⎭⎫-12,2,22.由FQ→=λFE →(0≤λ≤1),整理得1)(,2,)22Q λλλ-+,则BQ →=1)(,21,)22λλλ-+--, 因为直线BQ 与平面PBC 所成角的正弦值为36,所以|cos 〈BQ →,m 〉|=|||||BQ BQ ⋅⋅uu u ruu ur m m |=|5λ-1|219λ2-10λ+7=36, 化简可得14λ2-5λ-1=0, 又0≤λ≤1,所以λ=12,故在线段EF 上存在一点Q ⎝⎛⎭⎫14,1,324,使得BQ 与平面PBC 所成角的正弦值为36, 且QE=194.调研9 棱台1111ABCD A B C D -的三视图与直观图如图所示. (1)求证:平面11ACC A ⊥平面11BDD B ;(2)在线段1DD 上是否存在一点Q ,使CQ 与平面11BDDB ?若存在,指出点Q 的位置;若不存在,说明理由.【答案】(1)见解析;(2)存在,点Q 在1DD 的中点位置,理由见解析.【思路分析】(1)首先根据三视图特征可得1AA ⊥平面ABCD ,四边形ABCD 为正方形,所以AC BD ⊥.再由1AA BD ⊥即可得线面垂直,从而得出面面垂直;(2)直接建立空间直角坐标系写出各点坐标求出法向量,再根据向量的夹角公式列等式求出12λ=. 【解析】(1)根据三视图可知1AA ⊥平面ABCD ,四边形ABCD 为正方形,所以AC BD ⊥. 因为BD ⊂平面ABCD ,所以1AA BD ⊥, 又1AA AC A =I ,所以BD ⊥平面11ACC A .因为BD ⊂平面11BDD B ,所以平面11ACC A ⊥平面11BDD B .(2)以A 为坐标原点,1,,AB AD AA 所在直线分别为,,x y z 轴建立空间直角坐标系,如图所示,根据三视图可知四边形ABCD 为边长为2的正方形,四边形1111A B C D 为边长为1的正方形,1AA ⊥平面ABCD ,且11AA =.所以()11,0,1B ,()10,1,1D ,()2,0,0B ,()0,2,0D ,()2,2,0C . 因为Q 在1DD 上,所以可设()101DQ DD λλ=≤≤u u u r u u u u r.因为()10,1,1DD =-u u u u r ,所以1AQ AD DQ AD DD λ=+=+u u u r u u u u u r u u r u u u r u u u r()()()0,2,00,1,10,2,λλλ=+-=-. 所以()0,2,Q λλ-,()2,,CQ λλ=--u u u r.设平面11BDD B 的法向量为(),,x y z =n ,根据()()()()1,,2,2,00,0,,0,1,10,0x y z BD x y z DD ⎧⎧⋅-=⋅=⎪⎪⇒⎨⎨⋅-=⋅=⎪⎪⎩⎩u u u r u u u ur n n令1x =,可得1y z ==,所以()1,1,1=n .设CQ 与平面11BDD B 所成的角为θ,9==. 所以12λ=,即点Q 在1DD 的中点位置. 调研10 如图(1),在边长为4的菱形ABCD 中,∠BAD =60°,DE ⊥AB 于点E ,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1D ⊥DC ,如图(2).(1)求证:A 1E ⊥平面BCDE . (2)求二面角E −A 1B −C 的余弦值.(3)判断在线段EB 上是否存在一点P ,使平面A 1DP ⊥平面A 1BC ?若存在,求出EPPB 的值;若不存在,说明理由.【答案】(1)见解析;(2) −77;(3)在线段EB 上不存在点P ,使得平面A 1DP ⊥平面A 1BC . 【解析】(1)∵DE ⊥BE ,BE ∥DC ,∴DE ⊥DC .又∵A 1D ⊥DC ,A 1D ∩DE =D ,∴DC ⊥平面A 1DE ,∴DC ⊥A 1E . 又∵A 1E ⊥DE ,DC ∩DE =D ,∴A 1E ⊥平面BCDE . (2)∵A 1E ⊥平面BCDE ,DE ⊥BE ,∴以EB ,ED ,EA 1所在直线分别为x 轴,y 轴和z 轴,建立空间直角坐标系(如图).易知DE =23,则A 1(0,0,2),B (2,0,0),C (4,23,0),D (0,23,0),∴1BA uuu r =(−2,0,2),BC uu u r=(2,23,0),易知平面A 1BE 的一个法向量为n =(0,1,0).设平面A1BC的法向量为m =(x ,y ,z ),由1BA uuu r ·m =0,BC uu u r·m =0,得⎩⎨⎧-2x +2z =0,2x +23y =0.令y =1,得m =(−3,1,−3),∴cos 〈m ,n 〉=m·n|m |·|n |=17×1=77.由图得二面角E −A 1B −C 为钝二面角, ∴二面角E −A 1B −C 的余弦值为−77.(3)假设在线段EB 上存在一点P ,使得平面A 1DP ⊥平面A 1BC .设P (t ,0,0)(0≤t ≤2),则1A P uuu r =(t ,0,−2),1A D uuu r=(0,23,−2),设平面A 1DP 的法向量为p =(x 1,y 1,z 1),由得⎩⎨⎧23y 1-2z 1=0,tx 1-2z 1=0.令x 1=2,得p =⎝⎛⎭⎫2,t 3,t .∵平面A 1DP ⊥平面A 1BC ,∴m·p =0,即23−t3+3t =0,解得t =−3. ∵0≤t ≤2,∴在线段EB 上不存在点P ,使得平面A 1DP ⊥平面A 1BC .☆技巧点拨☆用向量解决探索性问题的方法1.确定点在线段上的位置时,通常利用向量共线来求.2.确定点在平面内的位置时,充分利用平面向量基本定理表示出有关向量的坐标而不是直接设出点的坐标. 3.解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法解题.1.(山东省泰安第二中学2019-2020学年高三上学期9月月考数学试题)已知(2,1,3)=-a ,(1,4,2)=--b ,(7,5,)x =c ,若a ,b ,c 三向量共面,则实数x =A .627 B .637C .607D .6572.(四川省成都市树德中学2019-2020学年高三11月阶段性检测数学试题)如图三棱锥S ABC -中,SA ⊥底面ABC ,AB BC ⊥,2AB BC ==,SA =SC 与AB 所成角的大小为A .90︒B .60︒C .45︒D .30°3.(甘肃省天水市第一中学2020年高三上学期12月月考数学试题)如图1四边形ABCD 与四边形ADEF分别为正方形和等腰梯形,,AD EF AF =∥4,2AD EF ==,沿AD 边将四边形ADEF 折起,使得平面ADEF ⊥平面ABCD ,如图2,动点M 在线段EF 上,,N G 分别是,AB BC 的中点,设异面直线MN 与AG 所成的角为α,则cos α的最大值为A BC D 4.(山东省泰安第二中学2019-2020学年高三上学期9月月考数学试题)在正方体1111ABCD A B C D -中,点M 是1AA 的中点,已知AB =u u u r a ,AD =u u u rb ,1AA =u u u r c ,用a ,b ,c 表示CM u u u u r ,则CM =u u u u r ______. 5.(河南省天一大联考2019-2020学年高三阶段性测试(三)数学试题)在直四棱柱1111ABCD A B C D -中,底面ABCD 是菱形,60BAD ∠=o ,1122AB AA ==,E 、F 分别是线段1AA 、11C D 的中点.(1)求证:BD CE ⊥;(2)求平面ABCD 与平面CEF 所成锐二面角的余弦值.6.(四川省南充市高中2019-2020学年高三第一次高考适应性考试数学试题)如图,在四棱锥P ABCD -中,底面ABCD 是矩形,2AB =,BC a =,PA ABCD 底面⊥.(1)当a 为何值时,BD PAC ⊥平面?证明你的结论; (2)当122PA a ==时,求面PDC 与面PAB 所成二面角的正弦值.7.(河北省承德市第一中学2019-2020学年高三上学期12月月考数学试题)如图,已知点H 在正方体1111ABCD A B C D -的对角线11B D 上,∠HDA =60︒.(1)求DH 与1CC 所成角的大小;(2)求DH 与平面1A BD 所成角的正弦值.8.(湖北省“荆、荆、襄、宜四地七校考试联盟2019-2020学年高三上学期10月联考数学试题)已知在多面体ABCDE 中,DE AB ∥,AC BC ⊥,24BC AC ==,2AB DE =,DA DC =且平面DAC ⊥平面ABC .(1)设点F 为线段BC 的中点,试证明EF ⊥平面ABC ;(2)若直线BE 与平面ABC 所成的角为60o ,求二面角B AD C --的余弦值.9.(广东省广州市番禺区广东仲元中学2019-2020年高三上学期11月月考数学试题)如图1,PAD △是以AD 为斜边的直角三角形,1PA =,BC AD ∥,CD AD ⊥,22AD DC ==,12BC =,将PAD △沿着AD 折起,如图2,使得2PC =.(1)证明:平面PAD ⊥平面ABCD ; (2)求二面角A PB C --大小的余弦值.10.(天津市部分区2019-2020学年高三上学期期末数学试题)如图,在三棱柱111ABC A B C -中,P 、O 分别为AC 、11A C 的中点,11PA PC ==1111A B B C =1PB ==114A C =.(1)求证:PO ⊥平面111A B C ; (2)求二面角111B PA C --的正弦值;(3)已知H 为棱11B C 上的点,若11113B H BC =u u u u r u u u u r,求线段PH 的长度.1.(2018新课标全国Ⅱ理科)在长方体1111ABCD A B C D -中,1AB BC ==,1AA =则异面直线1AD 与1DB 所成角的余弦值为A .15 BC .5D .22.(2017新课标全国Ⅲ理科)a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论: ①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成60°角; ③直线AB 与a 所成角的最小值为45°; ④直线AB 与a 所成角的最大值为60°.其中正确的是________________.(填写所有正确结论的编号)3.(2018新课标全国Ⅰ理科)如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.4.(2018新课标全国Ⅱ理科)如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值.5.(2018新课标全国Ⅲ理科)如图,边长为2的正方形ABCD 所在的平面与半圆弧»CD 所在平面垂直,M 是»CD上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.6.(2017新课标全国Ⅰ理科)如图,在四棱锥P−ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o . (1)证明:平面P AB ⊥平面P AD ;C(2)若P A =PD =AB =DC ,90APD ∠=o ,求二面角A −PB −C 的余弦值.7.(2017新课标全国Ⅱ理科)如图,四棱锥P −ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,o 1,90,2AB BC AD BAD ABC ==∠=∠= E 是PD 的中点. (1)证明:直线CE ∥平面P AB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为o 45,求二面角M AB D --的余弦值.8.(2017新课标全国Ⅲ理科)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD .(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D–AE–C的余弦值.9.(2019年高考全国Ⅰ卷理数)如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A−MA1−N的正弦值.10.(2019年高考全国Ⅱ卷理数)如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B–EC–C1的正弦值.11.(2019年高考全国Ⅲ卷理数)图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的二面角B−CG−A的大小.。
2020高考数学考前3个月知识方法专题训练第一部分知识方法篇专题4三角函数与平面向量第16练三角函数的化简与
2019年【2019最新】精选高考数学考前3个月知识方法专题训练第一部分知识方法篇专题4三角函数与平面向量第16练三角函数的化简与求值文[题型分析·高考展望] 三角函数的化简与求值在高考中频繁出现,重点考查运算求解能力.运算包括对数字的计算、估值和近似计算,对式子的组合变形与分解变形,属于比较简单的题目,这就要求在解决此类题目时不能丢分,由于三角函数部分公式比较多,要熟练记忆、掌握并能灵活运用.体验高考1.(2015·课标全国Ⅰ)sin 20°cos 10°-cos 160°sin 10°等于( ) A .- B.32C .- D.12 答案 D解析 sin 20°cos 10°-cos 160°sin 10° =sin 20°cos 10°+cos 20°sin 10° =sin 30°=.2.(2015·重庆)若tan α=2tan ,则等于( ) A .1 B .2 C .3 D .4 答案 C 解析=sin ⎝ ⎛⎭⎪⎫π2+α-3π10sin ⎝⎛⎭⎪⎫α-π52019年==sin αcos π5+cos αsinπ5sin αcos π5-cos αsinπ5===3.3.(2016·四川)cos2-sin2=________. 答案22解析 由题可知,cos2-sin2=cos =.4.(2016·课标全国甲)若cos =,则sin 2α等于( ) A. B.15C .-D .-725 答案 D解析 因为sin 2α=cos =2cos2-1, 又因为cos =,所以sin 2α=2×-1=-, 故选D.5.(2016·课标全国丙)若tan α=,则cos2α+2sin 2α等于( ) A. B.4825 C .1 D.1625 答案 A解析 tan α=, 则cos2α+2sin 2α=cos2α+4sin αcos αcos2α+sin2α==.高考必会题型题型一 利用同角三角函数基本关系式化简与求值 基本公式:sin2α+cos2α=1;tan α=.基本方法:(1)弦切互化;(2)“1”的代换,即1=sin2α+cos2α;(3)在进行开方运算时,注意判断符号. 例1 已知tan α=2,求: (1)的值;(2)3sin2α+3sin αcosα-2cos2α的值. 解 (1)方法一 ∵tan α=2, ∴cosα≠0,∴=4sin αcos α-2cos αcos α5sin αcos α+3cos αcos α===.方法二 由tan α=2,得sin α=2cos α,代入得 =4×2cos α-2cos α5×2cos α+3cos α ==.(2)3sin2α+3sin αcosα-2cos2α =3sin2α+3sin αcos α-2cos2αsin2α+cos2α=3tan2α+3tan α-2tan2α+1==.点评 本题(1)(2)两小题的共同点:都是正弦、余弦的齐次多项式.对于这样的多项式一定可以化成切函数,分式可以分子分母同除“cosα”的最高次幂,整式可以看成分母为“1”,然后用sin2α+cos2α代换“1”,变成分式后再化简. 变式训练1 已知sin(3π+α)=2sin ,求下列各式的值:(1);(2)sin2α+sin 2α.解 由已知得sin α=2cos α. (1)原式==-. (2)原式=sin2α+2sin αcos αsin2α+cos2α==.题型二 利用诱导公式化简与求值1.六组诱导公式分两大类,一类是同名变换,即“函数名不变,符号看象限”;一类是异名变换,即“函数名称变,符号看象限”.2.诱导公式化简的基本原则:负化正,大化小,化到锐角为最好! 例2 (1)设f(α)=,则f =________. (2)化简:+sin π-αcos ⎝ ⎛⎭⎪⎫π2+αsin π+α=________.答案 (1) (2)0 解析 (1)∵f(α)=-2sin α-cos α+cos α1+sin2α+sin α-cos2α===, ∴f=1tan -23π6=1tan ⎝⎛⎭⎪⎫-4π+π6==. (2)原式=+sin α-sin α-sin α=-sin α+sin α=0.点评 熟练运用诱导公式和基本关系式,并确定相应三角函数值的符号是解题的关键.另外,切化弦是常用的规律技巧.变式训练2 (1)(2016·课标全国乙)已知θ是第四象限角,且sin =,则tan =________.(2)已知cos =a(|a|≤1),则cos +sin =________. 答案 (1)- (2)0解析 (1)将θ-转化为(θ+)-.由题意知sin(θ+)=,θ是第四象限角, 所以cos(θ+)>0, 所以cos(θ+)==. tan(θ-)=tan(θ+-) =-tan[-(θ+)]=-=-cos θ+π4sin θ+π4=-=-.(2)cos =cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-θ =-cos =-a. sin =sin =cos =a , ∴cos+sin =0.题型三 利用其他公式、代换等化简求值两角和与差的三角函数的规律有三个方面:(1)变角,目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名,通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”“升幂与降幂”等.(3)变式,根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有“常值代换”“逆用变用公式”“通分与约分”“分解与组合”“配方与平方”等. 例3 化简:(1)sin 50°(1+tan 10°); (2).解 (1)sin 50°(1+tan 10°) =sin 50°(1+tan 60°tan 10°) =sin 50°·cos 60°cos 10°+sin 60°sin 10°cos 60°cos 10°=sin 50°·cos60°-10°cos 60°cos 10° =2sin 50°cos 50°cos 10°===1.(2)原式=2cos2x cos2x -1+122tan ⎝ ⎛⎭⎪⎫π4-x cos2⎝ ⎛⎭⎪⎫π4-x=-4cos2xsin2x +14cos ⎝ ⎛⎭⎪⎫π4-x sin ⎝ ⎛⎭⎪⎫π4-x=1-sin22x2sin ⎝ ⎛⎭⎪⎫π2-2x==cos 2x.点评 (1)二倍角公式是三角变换的主要公式,应熟记、巧用,会变形应用. (2)重视三角函数的“三变”:“三变”是指“变角、变名、变式”.变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的公式恒等变形.变式训练3 (1)在△ABC 中,已知三个内角A ,B ,C 成等差数列,则tan +tan +tan tan 的值为________. (2)的值是( ) A. B.32 C. D.2(3)若α∈,且3cos 2α=sin ,则sin 2α的值为( )2019年A. B .-118 C. D .-1718答案 (1) (2)C (3)D解析 (1)因为三个内角A ,B ,C 成等差数列, 且A +B +C =π,所以A +C =,=,tan =, 所以tan +tan +tan tan C2 =tan +tan tan C2 =+tan tan C2 =. (2)原式=2cos 30°-20°-sin 20°sin 70°=2cos 30°·cos 20°+sin 30°·sin 20°-sin 20°sin 70°==.(3)cos 2α=sin =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4-α =2sincos ⎝ ⎛⎭⎪⎫π4-α代入原式,得6sincos =sin , ∵α∈,sin(-α)≠0, ∴cos=,∴sin 2α=cos ⎝ ⎛⎭⎪⎫π2-2α=2cos2-1=-.高考题型精练1.(2015·陕西)“sin α=cosα”是“cos 2α=0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 答案 A解析 ∵sin α=cosα⇒cos 2α=cos2α-sin2α=0; cos 2α=0⇔cosα=±sin α⇒/ sin α=cosα,故选A. 2.(2016·课标全国丙)若tan θ=-,则cos 2θ等于( ) A .- B .- C. D.45 答案 D解析 tan θ=-,则cos 2θ=cos2θ-sin2θ ===.3.若tan =,且-<α<0,则等于( ) A .- B. C .- D.255 答案 A解析 由tan ==,得tan α=-. 又-<α<0,所以sin α=-. 故=2sin αsin α+cos α22sin α+cos α =2sin α=-.4.已知f(x)=sin2,若a =f(lg 5),b =f(lg),则( ) A .a +b =0 B .a -b =0 C .a +b =1 D .a -b =1 答案 C解析 a =f(lg 5)=sin2(lg 5+) ==,b =f(lg)=sin2(lg +)=1-cos ⎝⎛⎭⎪⎫2lg 15+π22=,则可得a+b=1.5.已知sin+sin α=,则sin的值是( )A.- B. C. D.-45答案D解析sin+sin α=435⇒sin cosα+cossinα+sin α=435⇒sin α+cosα=⇒sin α+cosα=,故sin=sin αcos+cosαsin7π6=-=-.6.若(4tan α+1)(1-4tan β)=17,则tan(α-β)等于( )A. B. C.4 D.12答案C解析由已知得4tan α-16tan αtan β+1-4tan β=17,∴tan α-tan β=4(1+tan αtan β),∴tan(α-β)==4.7.(2015·江苏)已知tan α=-2,tan(α+β)=,则tan β的值为________.答案3解析∵tan α=-2,∴tan(α+β)===,解得tan β=3.8.设当x=θ时,函数f(x)=sin x-2cos x取得最大值,则cosθ=________.答案-255解析f(x)=sin x-2cos x==sin(x-φ),其中sin φ=,cosφ=,当x-φ=2kπ+(k∈Z)时,函数f(x)取到最大值,即θ=2kπ++φ时,函数f(x)取到最大值,所以cosθ=-sin φ=-.9.已知α∈,且2sin2α-sin α·cosα-3cos2α=0,则=________.答案268解析∵α∈,且2sin2α-sin α·cosα-3cos2α=0,∴(2sin α-3cos α)(sin α+cosα)=0,∴2sin α=3cos α,又sin2α+cos2α=1,∴cosα=,sin α=,∴sin⎝⎛⎭⎪⎫α+π4sin 2α+cos 2α+1==.10.(2015·四川)已知sin α+2cos α=0,则2sin αcosα-cos2α的值是________.答案-1解析∵sin α+2cos α=0,∴sin α=-2cos α,∴tan α=-2.又∵2sin αcosα-cos2α==,∴原式==-1.11.(2015·广东)已知tan α=2.(1)求tan的值;(2)求的值.解(1)tan=tan α+tanπ41-tan αtan π4===-3.2019年(2)sin 2αsin2α+sin αcos α-cos 2α-1=2sin αcos αsin2α+sin αcos α-2cos2α-1-1 =2sin αcos αsin2α+sin αcos α-2cos2α===1.12.已知函数f(x)=cos2x +sin xcosx ,x∈R.(1)求f 的值; (2)若sin α=,且α∈,求f.解 (1)f =cos2+sin cos π6=2+×=.(2)因为f(x)=cos2x +sin xcosx=+sin 2x=+(sin 2x +cos 2x)=+sin ,所以f ⎝ ⎛⎭⎪⎫α2+π24 =+sin ⎝ ⎛⎭⎪⎫α+π12+π4 =+sin ⎝ ⎛⎭⎪⎫α+π3 =+.又因为sin α=,且α∈,所以cosα=-,所以f =+22⎝ ⎛⎭⎪⎫12×35-32×45 =.。
高考数学压轴专题2020-2021备战高考《矩阵与变换》专项训练解析附答案
数学《矩阵与变换》知识点一、151.在平面直角坐标系xOy 中,设点()1,2A -在矩阵1001M -⎡⎤=⎢⎥⎣⎦对应的变换作用下得到点A ',将点()3,4B 绕点A '逆时针旋转90o 得到点B ',求点B '的坐标. 【答案】()1,4- 【解析】试题分析:先根据矩阵运算确定()1,2A ',再利用向量旋转变换0110N -⎡⎤=⎢⎥⎣⎦确定:A B ''u u u u r.因为,所以1{4x y =-=试题解析:解:设(),B x y ',依题意,由10110122--⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,得()1,2A ' 则.记旋转矩阵0110N -⎡⎤=⎢⎥⎣⎦, 则01211022x y --⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,即2122x y --⎡⎤⎡⎤=⎢⎥⎢⎥-⎣⎦⎣⎦,解得1{4x y =-=, 所以点B '的坐标为()1,4- 考点:矩阵运算,旋转矩阵2.解关于x ,y ,z 的方程组()1213x my z x y z m x y z ⎧-+=⎪++=⎨⎪-++=⎩.【答案】(1)2m ≠且1m ≠-时,2212112432x m y m m m z m m ⎧=⎪-⎪⎪=⎨+⎪⎪-++=⎪-++⎩;(2)2m =或1m =-时,无解. 【解析】 【分析】先根据方程组中,,x y z 的系数及常数项计算计算出D ,D x ,D y ,D z 下面对m 的值进行分类讨论,并求出相应的解. 【详解】()()21D m m =--+,()1x D m =-+,()2y D m =--,2243z D m m =-++.所以(1)2m ≠且1m ≠-时,2212112432x m y m m m z m m ⎧=⎪-⎪⎪=⎨+⎪⎪-++=⎪-++⎩;(2)2m =或1m =-时,无解. 【点睛】本题考查三元一次方程组的行列式、线性方程组解得存在性,唯一性、三元一次方程的解法等基础知识,考查运算能力与转化思想,属于中档题.3.解关于x ,y 的方程组2122ax y a ax ay a+=+⎧⎨-=-⎩.【答案】见解析 【解析】 【分析】根据对应关系,分别求出D ,x D ,y D ,再分类讨论即可 【详解】 由题可得:()122a D a a a a==-+-,()2211=212x a D a aa+=-+--,221522y a a D a aa+==--.所以,(1)当0a ≠且2a ≠-时,()()221252a x a a a y a ⎧+⎪=⎪+⎨⎪=⎪+⎩; 当0a =或2-时,0x D ≠,方程组无解 【点睛】本题考查二元一次方程的解与行列式的对应关系,属于中档题4.关于ϕ的矩阵()cos sin sin cos A ϕϕϕϕϕ-⎛⎫=⎪⎝⎭,列向量12x X x ⎛⎫= ⎪⎝⎭. (1)已知11x =,23x =,45ϕ=︒,计算()A X ϕ,并指出该算式表示的意义;(2)把反比例函数1xy =的图象绕坐标原点逆时针旋转45︒,求得到曲线的方程;(3)已知数列12n n a =,n *∈N ,猜想并计算()()()12n A a A a A a ⋅⋅⋅⋅⋅⋅. 【答案】(1)⎛⎝,表示把向量X 逆时针旋转45︒得到的向量;(2)22122y x -=; (3)cos1sin1sin1cos1-⎛⎫⎪⎝⎭.【解析】 【分析】(1)根据向量与矩阵的乘法可计算结果,由旋转变换的运算法则即可得到算式表示的意义;(2)由题意,得旋转变换矩阵cos sin4422sin cos 4422A ππππ⎛⎛⎫--⎪ ⎪==⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭,设xy =1上的任意点(),P x y '''在变换矩阵A 作用下为(,)P x y ,确定坐标之间的关系,即可求得曲线的方程;(3)分别求出n =1,n =2,n =3时矩阵相乘的结果,由此猜想算式关于n 的表达式,从而可求得所求算式的结果. 【详解】(1)()cos sin11442233sin cos 44A X ππϕππ⎛⎛⎫--⎪⎛⎛⎫⎛⎫⎪===⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝ ⎪⎪⎝⎭⎭, 该算式表示把向量X 逆时针旋转45︒得到的向量;(2)由题意,得旋转变换矩阵cos sin4422sin cos 4422A ππππ⎛⎛⎫--⎪ ⎪==⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭, 设xy =1上的任意点(),P x y '''在变换矩阵A 的作用下为(,)P x y ,则x x y y ⎛⎫⎛⎫⎪= ⎪ ⎪⎪⎝⎭⎝⎭⎪''⎭,x x y y x y ⎧=⎪⎪∴⎨⎪='''⎩'⎪,则222222y x x y x y x y ⎫⎫''''''-=--==⎪⎪⎪⎪⎝⎭⎝⎭,将曲线xy =1绕坐标原点按逆时针方向旋转45︒,所得曲线的方程为22122y x -=;(3)当n =1时,()111cos sin2211sin cos 22nn n nA a ⎛⎫- ⎪=⎪ ⎪ ⎪⎝⎭; 当n =2时,()()2212221111cos sin cos sin 22221111sin cos sin cos 2222A a A a ⎛⎫⎛⎫-- ⎪⎪=⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭2222222211111111cos cos sin sin cos sin cos sin 2222222211111111sin cos sin cos cos cos sin sin 22222222⎛⎫--- ⎪=⎪ ⎪+- ⎪⎝⎭22221111cos()sin()22221111sin()cos()2222⎛⎫+-+ ⎪= ⎪ ⎪++ ⎪⎝⎭,当n =3时,()()()22331232233111111cos sin cos sincos sin222222111111sin cos sin cos sin cos 222222A a A a A a ⎛⎫⎛⎫⎛⎫--- ⎪⎪⎪=⎪⎪⎪ ⎪⎪⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭23232323111111cos()sin()222222111111sin()cos()222222⎛⎫++-++ ⎪= ⎪ ⎪++++ ⎪⎝⎭,由此猜想:当n =k 时,()()()221222111111cos sin cos sincos sin222222111111sin cos sin cos sin cos 222222k k k kkA a A a A a ⎛⎫⎛⎫⎛⎫--- ⎪⎪ ⎪=⎪⎪⎪ ⎪⎪ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭L L 222211111111cos()sin()cos(1)sin(1)2222222211111111sin()cos()sin(1)cos(1)22222222k k k k k k k k ⎛⎫⎛⎫+++-+++--- ⎪ ⎪== ⎪ ⎪ ⎪ ⎪++++++-- ⎪ ⎪⎝⎭⎝⎭L L L L ,当k →+∞时,1112k -→,所以()()()12cos1sin1sin1cos1n A a A a A a -⎛⎫⋅⋅⋅⋅⋅⋅= ⎪⎝⎭.【点睛】本题考查向量经矩阵变换后的向量求法,曲线的旋转变换和矩阵的乘法,关键掌握住变换的运算法则和矩阵的乘法公式,属中档题.5.用行列式解关于的二元一次方程组:12(1)x y x k y k +=⎧⎨++=⎩.【答案】1k =时,方程组无解; 1k ≠时,12,11k x y k k -==-- 【解析】 【分析】由题方程组中x ,y 的系数及常数项求出D,D ,D X y ,然后再讨论k 的值进行求解方程组的解. 【详解】由题意可得:11D 21k =+= 1k -,11D 11X kk ==+,11 D 22y k k==-,∴当D ?10k =-≠即1k ≠时,方程组有唯一解即D 1D 1X x k ==-,D 2 D 1y k y k -==-; 当D ?10k =-=即1k =时,方程组无解.综上所述: 1k ≠时,方程组有唯一解1121x k k y k ⎧=⎪⎪-⎨-⎪=⎪-⎩; 1k =时,方程组无解. 【点睛】本题考查了二元一次方程组的矩阵形式、线性方程组解得存在性、唯一性以及二元方程解法等基础知识,考查了学生的运算能力,属于中档题.6.已知线性方程组5210258x y x y +=⎧⎨+=⎩.()1写出方程组的系数矩阵和增广矩阵;()2运用矩阵变换求解方程组.【答案】(1)矩阵为5225⎛⎫ ⎪⎝⎭,增广矩阵为5210.258⎛⎫ ⎪⎝⎭ (2)34212021x y ⎧=⎪⎪⎨⎪=⎪⎩【解析】 【分析】()1由线性方程组5210258x y x y +=⎧⎨+=⎩,能写出方程组的系数矩阵和增广矩阵. ()2由170345010521052102121258102540202001012121⎛⎫⎛⎫⎪ ⎪⎛⎫⎛⎫→→→⎪ ⎪ ⎪ ⎪--- ⎪ ⎪⎝⎭⎝⎭ ⎪⎪⎝⎭⎝⎭,能求出方程组的解. 【详解】(1)Q 线性方程组5210258x y x y +=⎧⎨+=⎩.∴方程组的系数矩阵为5225⎛⎫⎪⎝⎭, 增广矩阵为5210.258⎛⎫⎪⎝⎭(2)因为5210258x y x y +=⎧⎨+=⎩,1703452105010521052105210212120258102540021202020010101212121⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎛⎫⎛⎫⎛⎫ ⎪∴→→→→→ ⎪ ⎪ ⎪ ⎪ ⎪⎪----- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⎪ ⎪⎝⎭⎝⎭⎝⎭,34212021x y ⎧=⎪⎪∴⎨⎪=⎪⎩.【点睛】本题考查方程组的系数矩阵和增广矩阵的求法,考查运用矩阵变换求解方程组,考查矩阵的初等变换等基础知识,考查运算求解能力,是基础题.7.用矩阵变换的方法,解二元一次方程组2342x y x y =⎧⎨-=⎩-【答案】17107x y ⎧=⎪⎪⎨⎪=-⎪⎩【解析】 【分析】先将方程组化为矩阵,再根据矩阵运算求结果. 【详解】2312342412x y x x y y =-⎧⎡⎤⎡⎤⎡⎤⇒=⎨⎢⎥⎢⎥⎢⎥-=-⎩⎣⎦⎣⎦⎣⎦- 所以1121123377741241210777x y -⎡⎤⎡⎤-⎢⎥⎢⎥-⎡⎤⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦⎣⎦因此17107x y ⎧=⎪⎪⎨⎪=-⎪⎩【点睛】本题考查利用矩阵解方程组,考查基本分析求解能力,属基础题.8.已知,,x y z 是关于的方程组000ax by cz cx ay bz bx cy az ++=⎧⎪++=⎨⎪++=⎩的解.(1)求证:()111a bc a b ca b a b c c a bcab c =++; (2)设01,,,z a b c =分别为ABC ∆三边长,试判断ABC ∆的形状,并说明理由;(3)设,,a b c 为不全相等的实数,试判断"0"a b c ++=是“222000o x y z ++>”的 条件,并证明.①充分非必要;②必要非充分;③充分且必要;④非充分非必要. 【答案】(1)见解析(2)等边,见解析(3)④,见解析 【解析】 【分析】(1)将行列式的前两列加到第三列上即可得出结论;(2)由方程组有非零解得出a bc ca b bc a =0,即111a b c a b c =0,将行列式展开化简即可得出a =b =c ;(3)利用(1),(2)的结论即可答案. 【详解】(1)证明:将行列式的前两列加到第三列上,得:a b ca b a b c ca b c a a b c b cab c a b c ++=++=++(a +b +c )•111a b c a b c .(2)∵z 0=1,∴方程组有非零解,∴a bc ca b bc a =0,由(1)可知(a +b +c )•111a b c a b c =0. ∵a 、b 、c 分别为△ABC 三边长,∴a +b +c ≠0,∴111a b ca b c =0,即a 2+b 2+c 2﹣ab ﹣bc ﹣ac =0, ∴2a 2+2b 2+2c 2﹣2ab ﹣2bc ﹣2ac =0,即(a ﹣b )2+(b ﹣c )2+(a ﹣c )2=0, ∴a =b =c ,∴△ABC 是等边三角形.(3)若a +b +c =0,显然(0,0,0)是方程组的一组解,即x 02+y 02+z 02=0, ∴a +b +c =0”不是“x 02+y 02+z 02>0”的充分条件; 若x 02+y 02+z 02>0,则方程组有非零解,∴a bc ca b bca=(a +b +c )•111a b c a b c =0. ∴a +b +c =0或111a b ca b c =0.由(2)可知a +b +c =0或a =b =c . ∴a +b +c =0”不是“x 02+y 02+z 02>0”的必要条件. 故答案为④. 【点睛】本题考查了行列式变换,齐次线性方程组的解与系数行列式的关系,属于中档题.9.解方程:23649x xx=.【答案】1x = 【解析】 【分析】根据行列式的运算性质,求得29346xx x ⨯-⨯=,转化为322()3()123xx⨯-⨯=,令3()2x t =,得到方程1231t t ⨯-⨯=,进而即可求解【详解】根据行列式的运算性质,可得23293449xx xx=⨯-⨯,即29346x x x ⨯-⨯=,方程两边同除6x,可得322()3()123xx ⨯-⨯=,令3()2xt =,且0t >,则21()3xt =,可得1231t t⨯-⨯=,解32t =或1t =-(舍去), 即33()22x=,解得1x =. 故答案为:1x =. 【点睛】本题主要考查了行列式的运算性质,以及指数幂的运算和一元二次方程的应用,其中解答中熟记行列式的运算性质,结合指数幂的运算和一元二次方程的运算是解答的关键,着重考查了推理与运算能,属于基础题.10.已知矩阵2101M ⎡⎤=⎢⎥⎣⎦(1)求矩阵M 的特征值及特征向量;(2)若21α⎡⎤=⎢⎥-⎣⎦r,求3M αv.【答案】(1)特征值为2;对应的特征向量为210α⎡⎤=⎢⎥⎣⎦u u r(2)91⎡⎤⎢⎥-⎣⎦【解析】 【分析】(1)先根据特征值得定义列出特征多项式,令()0f λ=解方程可得特征值,再由特征值列出方程组即可解得相应的特征向量;(2)由12ααα=+u u r u u r r可得33312M M M ααα=+u u r u u r r ,求解即可. 【详解】(1)矩阵M 的特征多项式为21()01f λλλ--=-(2)(1)λλ=--,令()0f λ=,得矩阵M 的特征值为1或2,当1λ=,时由二元一次方程0000x y x y --=⎧⎨+=⎩. 得0x y +=,令1x =,则1y =-,所以特征值1λ=对应的特征向量为111α⎡-⎤=⎢⎥⎣⎦;当2λ=时,由二元一次方程0000x y x y -=⎧⎨+=⎩. 得0y =,令1x =,所以特征值2λ=对应的特征向量为210α⎡⎤=⎢⎥⎣⎦u u r;(2)1221ααα⎡⎤==+⎢⎥-⎣⎦u ur u u r rQ ,33312M M M ααα∴=+u u r u u r r 331212αα=+u u r u u r 311210⎡⎤⎡⎤=+⎢⎥⎢⎥-⎣⎦⎣⎦91⎡⎤=⎢⎥-⎣⎦.【点睛】本题考查矩阵特征值与特征向量的计算,矩阵的乘法运算,属于基础题.11.已知a ,b R ∈,点()1,1P -在矩阵13a A b ⎡⎤=⎢⎥⎣⎦对应的变换下得到点()1,3Q . (1)求a ,b 的值;(2)求矩阵A 的特征值和特征向量;(3)若向量59β⎡⎤=⎢⎥⎣⎦u r ,求4A βu r .【答案】(1)2a b =⎧⎨=⎩;(2)矩阵A 的特征值为1-,3,分别对应的一个特征值为13⎡⎤⎢⎥-⎣⎦,11⎡⎤⎢⎥⎣⎦;(3)485489⎡⎤⎢⎥⎣⎦ 【解析】 【分析】(1)直接利用矩阵的乘法运算即可; (2)利用特征多项式计算即可;(3)先计算出126βαα=-+u r u u ru u r ,再利用()4444121266A A A A βαααα=-+=-+u r u u r u u r u u r u u r 计算即可得到答案. 【详解】(1)由题意知,11113133a a b b -⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦, 则1133a b -=⎧⎨-=⎩,解得20a b =⎧⎨=⎩. (2)由(1)知2130A ⎡⎤=⎢⎥⎣⎦,矩阵A 的特征多项式()()21233f λλλλλ--==---, 令()0f λ=,得到A 的特征值为11λ=-,13λ=.将11λ=-代入方程组()2030x y x y λλ⎧--=⎨-+=⎩,解得3y x =-,所以矩阵A 的属于特征值1-的一个特征向量为113α⎡⎤=⎢⎥-⎣⎦u u r.再将13λ=代入方程组()2030x y x y λλ⎧--=⎨-+=⎩,解得y x =,所以矩阵A 的属于特征值3的一个特征向量为211α⎡⎤=⎢⎥⎣⎦u u r.综上,矩阵A 的特征值为1-,3,分别对应的一个特征值为13⎡⎤⎢⎥-⎣⎦,11⎡⎤⎢⎥⎣⎦.(3)设12m n βαα=+u ru u r u u r ,即5119313m n m n m n +⎡⎤⎡⎤⎡⎤⎡⎤=+=⎢⎥⎢⎥⎢⎥⎢⎥--+⎣⎦⎣⎦⎣⎦⎣⎦, 所以539m n m n +=⎧⎨-+=⎩,解得16m n =-⎧⎨=⎩,所以126βαα=-+u r u u r u u r ,所以()4444121266A A A A βαααα=-+=-+u r u u r u u r u u r u u r()441148516331489⎡⎤⎡⎤⎡⎤=--+⨯=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦. 【点睛】本题考查矩阵的乘法、特征值、特征向量,考查学生的基本计算能力,是一道中档题.12.已知曲线C :x 2+2xy +2y 2=1,矩阵A =1210⎡⎤⎢⎥⎣⎦所对应的变换T 把曲线C 变成曲线C 1,求曲线C 1的方程. 【答案】x 2+y 2=2 【解析】试题分析:由矩阵变换得相关点坐标关系x =y′,y =2x y '-',再代入已知曲线C 方程,得x 2+y 2=2.试题解析:解:设曲线C 上的任意一点P(x ,y),P 在矩阵A =1210⎡⎤⎢⎥⎣⎦对应的变换下得到点Q(x′,y′).则1210x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎣'⎦⎦', 即x +2y =x′,x =y′, 所以x =y′,y =2x y '-'.代入x 2+2xy +2y 2=1,得y ′2+2y′2x y '-'+2(2x y '-')2=1,即x′2+y′2=2, 所以曲线C 1的方程为x 2+y 2=2.考点:矩阵变换,相关点法求轨迹方程13.[选修4-2:矩阵与变换]已知矩阵A=0110⎡⎤⎢⎥⎣⎦ ,B=1002⎡⎤⎢⎥⎣⎦. 求AB;若曲线C 1;22y =182x + 在矩阵AB 对应的变换作用下得到另一曲线C 2 ,求C 2的方程.【答案】(1)0210⎡⎤⎢⎥⎣⎦(2)228x y += 【解析】试题分析:(1)直接由矩阵乘法可得;(2)先根据矩阵乘法可得坐标之间关系,代入原曲线方程可得曲线2C 的方程. 试题解析:解:(1)因为A =0110⎡⎤⎢⎥⎣⎦, B =1002⎡⎤⎢⎥⎣⎦, 所以AB =01101002⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦ 0110⎡⎤⎢⎥⎣⎦ 1002⎡⎤⎢⎥⎣⎦=0210⎡⎤⎢⎥⎣⎦ 0210⎡⎤⎢⎥⎣⎦. (2)设()00,Q x y 为曲线1C 上的任意一点, 它在矩阵AB 对应的变换作用下变为(),P x y ,则000210x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即002y x x y =⎧⎨=⎩,所以002x yx y =⎧⎪⎨=⎪⎩. 因为()00,Q x y 在曲线1C 上,所以2200188x y +=,从而22188x y +=,即228x y +=.因此曲线1C 在矩阵AB 对应的变换作用下得到曲线2C :228x y +=. 点睛:(1)矩阵乘法注意对应相乘:a b m p am bn ap bq c d n q cm dn cp dq ++⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥++⎣⎦⎣⎦⎣⎦; (2)矩阵变换:a b x x c d y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎣'⎦⎦'表示点(,)x y 在矩阵a b c d ⎡⎤⎢⎥⎣⎦变换下变成点(,)x y ''.14.已知矩阵111A a -⎡⎤=⎢⎥⎣⎦,其中a R ∈,若点(1,1)P 在矩阵A 的变换下得到点(0,3)P '-,求矩阵A 的两个特征值.【答案】矩阵A 的特征值为1-或3.【分析】根据点(1,1)P 在矩阵A 的变换下得到点(0,3)P '-,列出方程求出a ,从而可确定矩阵A ,再求出矩阵A 的特征多项式,令其等于0,即可求出矩阵A 的特征值. 【详解】由1110113a -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,得13a +=-,所以4a =-, 故1141A -⎡⎤=⎢⎥-⎣⎦,则矩阵A 的特征多项式为2211()(1)42341f x -==--=---λλλλλ,令()0f λ=,解得1λ=-或3λ=, 所以矩阵A 的特征值为1-或3. 【点睛】本题主要考查矩阵的特征多项式及特征值的求法,属于中档题.15.设矩阵12M x y ⎡⎤=⎢⎥⎣⎦,2411N ⎡⎤=⎢⎥--⎣⎦,若02513MN ⎡⎤=⎢⎥⎣⎦,求矩阵M 的逆矩阵1M -.【答案】132554155M -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦【解析】 【分析】根据矩阵的乘法运算求出MN ,然后由02513MN ⎡⎤=⎢⎥⎣⎦列出方程组,即可求出4,3x y ==,从而确定矩阵M ,再利用求逆矩阵的公式,即可求出矩阵M 的逆矩阵1M -.【详解】解:因为02513MN ⎡⎤=⎢⎥⎣⎦ ,所以25,413.x y x y -=⎧⎨-=⎩所以4,3x y ==;矩阵1243M ⎡⎤=⎢⎥⎣⎦的逆矩阵132554155M -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦.本题主要考查矩阵的乘法运算及逆矩阵的求解.16.矩阵与变换:变换1T 是逆时针旋转2π的旋转变换,对应的变换矩阵是1M 变换2T 对应用的变换矩阵是21101M ⎡⎤=⎢⎥⎣⎦求曲线221x y +=的图象依次在12,T T 变换的作用下所得曲线的方程.【答案】22221x xy y -+= 【解析】 【分析】旋转变换矩阵10110M -⎡⎤=⎢⎥⎣⎦,求出211110M M M -⎡⎤==⎢⎥⎣⎦,设x y ⎡⎤⎢⎥⎣⎦是变换后曲线上任一点,与之对应的变换前的点是00x y ⎡⎤⎢⎥⎣⎦,得到00x y y y x =⎧⎨=-⎩,即得解.【详解】旋转变换矩阵10110M -⎡⎤=⎢⎥⎣⎦记21110111011010M M M --⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦设x y ⎡⎤⎢⎥⎣⎦是变换后曲线上任一点,与之对应的变换前的点是00x y ⎡⎤⎢⎥⎣⎦,面积00x x M y y ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,也就是000x x y y x =-⎧⎨=⎩,即00x y y y x =⎧⎨=-⎩,代入22001x y +=,得22()1y y x +-=,所以所求曲线的方程是22221x xy y -+= 【点睛】本题主要考查矩阵和变换,意在考查学生对这些知识的理解掌握水平和分析推理能力.17.已知矩阵1101A ⎡⎤=⎢⎥-⎣⎦,0614B ⎡⎤=⎢⎥-⎣⎦.若矩阵C 满足AC B =,求矩阵C 的特征值和相应的特征向量.【答案】特征值12λ=,相应的特征向量21⎡⎤⎢⎥⎣⎦;特征值23λ=,相应的特征向量11⎡⎤⎢⎥⎣⎦【解析】 【分析】设a b C c d ⎡⎤=⎢⎥⎣⎦,由矩阵乘法法则求得矩阵C ,再由特征多项式求得特征值,再得特征向量. 【详解】解:设a b C c d ⎡⎤=⎢⎥⎣⎦,由AC B =,即11060114a b c d ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦, 得0164a c c b d d +=⎧⎪-=⎪⎨+=⎪⎪-=-⎩,解得1214a b c d =⎧⎪=⎪⎨=-⎪⎪=⎩,所以1214C ⎡⎤=⎢⎥-⎣⎦. 设()()()2121425614f λλλλλλλ--==--+=-+-,令()0f λ=,得12λ=,23λ=,特征向量为x y ⎡⎤⎢⎥⎣⎦,当12λ=时,20x y -=,取121α⎡⎤=⎢⎥⎣⎦u u r ;当23λ=时,220x y -=,取211α⎡⎤=⎢⎥⎣⎦u u r .【点睛】本题考查矩阵的乘法运算,考查特征值和特征向量,掌握矩阵乘法运算法则与特征多项式概念是解题基础.18.已知a ,b R ∈,若M =13a b -⎡⎤⎢⎥⎣⎦所对应的变换T M 把直线2x-y=3变换成自身,试求实数a ,b . 【答案】【解析】 【分析】 【详解】 设则即此直线即为则..19.(1)已知矩阵1202A ⎡⎤=⎢⎥-⎣⎦,矩阵B 的逆矩阵111202B -⎡⎤-⎢⎥=⎢⎥⎣⎦,求矩阵AB . (2)已知矩阵122M x ⎡⎤=⎢⎥⎣⎦的一个特征值为3,求10M . 【答案】(1)51401⎡⎤⎢⎥⎢⎥-⎣⎦;(2)29525295242952429525⎡⎤⎢⎥⎣⎦. 【解析】 【分析】(1)依题意,利用矩阵变换求得11112124()221010222B B --⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,再利用矩阵乘法的性质可求得答案.(2)根据特征多项式的一个零点为3,可得x 的值,即可求得矩阵M ,运用对角化矩阵,求得所求矩阵. 【详解】(1)解:111202B -⎡⎤-⎢⎥=⎢⎥⎣⎦Q ,11112124()221010222B B --⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥∴===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,又1202A ⎡⎤=⎢⎥-⎣⎦, 1202AB ⎡⎤∴=⎢⎥-⎣⎦151********⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥⎣⎦. (2)解:矩阵122M x ⎡⎤=⎢⎥⎣⎦的特征多项式为12()(1)()42f x x λλλλλ--==-----, 可得2(3)40x --=,解得1x =,即为1221M ⎡⎤=⎢⎥⎣⎦.由()0f λ=可得13λ=,21λ=-, 当13λ=时,由12321x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即23x y x +=,23x y y +=,即x y =,取1x =, 可得属于3的一个特征向量为11⎡⎤⎢⎥⎣⎦;当11λ=-时,由1221x x y y ⎡⎤⎡⎤⎡⎤=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即2x y x +=-,2x y y +=-,即x y =-,取1x =,可得属于1-的一个特征向量为11⎡⎤⎢⎥-⎣⎦.设1111P ⎡⎤=⎢⎥-⎣⎦,则111221122P -⎡⎤⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦,13001M P P -⎡⎤=⎢⎥-⎣⎦,101115904905904912952529524220159049111295242952522M P P -⎡⎤⎢⎥⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎢⎥-⎢⎥⎣⎦. 【点睛】本题考查逆变换与逆矩阵,考查矩阵乘法的性质,考查了特征值与特征向量,考查了矩阵的乘方的计算的知识.20.已知点()3,1A ,()1,3B -,i v,j v分别是基本单位向量.(1)若点P 是直线2y x =的动点,且0AP i AP j BP jBP i⋅⋅=-⋅⋅u u u v u u u v v v u u u v u u u v v v ,求点P 的坐标 (2)若点(),P x y 满足124126101x y -=且OP OA OB λμ=-u u u v u u u v u u u v,λ,μ是否存在自然数解,若存在,求出所有的自然数的解,若不存在,说明理由.【答案】(1)()0,0,()2,4(2)存在,0λ=,2μ=或2λ=,1μ=或4λ=,0μ=【解析】 【分析】(1)设P 的坐标为(),2x x ,再根据行列式的运算求解即可.(2)利用124126101x y -=求出(),P x y 满足的关系式,再根据OP OA OB λμ=-u u u r u u u r u u u r求出关于(),P x y 满足的关系式,再求自然数解即可.【详解】(1)由题,设P 的坐标为(),2x x ,因为0AP iAP j BP j BP i⋅⋅=-⋅⋅u u u r r u u u r r u u u r ru u u r r ,故()()()()0AP i BP i BP j AP j ⋅⨯⋅--⋅⨯⋅=u u u r r u u u r r u u u r r u u u r r ,化简得0AP BP ⋅=u u u r u u u r,即()()3,211,230x x x x --⋅+-=,即2222348305100x x x x x x --+-+=⇒-=. 解得0x =或2x =.代入可得()0,0或()2,4(2)由124126101xy-=得12(6)4(2)(26)0y x y x ----++=.化简得8y x =-.又OP OA OB λμ=-u u u r u u u r u u u r ,故()()()3,11,3,x y λμ=--,即33x y λμλμ=+⎧⎨=-⎩. 故33824λμλμλμ-=+-⇒+=,又,λμ为自然数.故0λ=,2μ=或2λ=,1μ=或4λ=,0μ= 【点睛】本题主要考查了向量与行列式的基本运算等,需要根据题意求得关于(),P x y 的关系式,属于中等题型.。
2020届高考数学(理)一轮必刷题 专题16 任意角和弧度制及任意角的三角函数(解析版)
考点16 任意角和弧度制及任意角的三角函数1.设,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】当,可以得到,反过来若,则或,所以为充分不必要条件,故选A.2.如图所示,在中,点是的中点,过点的直线分别交直线,于不同的两点,,若,,则以为圆心角且半径为1的扇形的面积为()A.1 B.2 C.3 D.4【答案】A【解析】∵为的中点,∴.又∵三点共线,∴,得.∴扇形的面积为.故选A.3.如图,已知四边形为正方形,扇形的弧与相切,点为的中点,在正方形中随机取一点,则该点落在扇形内部的概率为()A.B.C.D.【答案】A【解析】设正方形的边长为,则扇形的半径为,,在直角三角形中,,所以,所以,,又由,所以,,所以,扇形的面积为该点落在扇形内部的概率为所以,答案选A.4.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就.其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=(弦×矢+矢×矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为,弦长为的弧田.其实际面积与按照上述经验公式计算出弧田的面积之间的误差为()平方米.(其中,)A.15 B.16 C.17 D.18【答案】B【解析】因为圆心角为,弦长为,所以圆心到弦的距离为半径为40,因此根据经验公式计算出弧田的面积为,实际面积等于扇形面积减去三角形面积,为,因此两者之差为,选B.5.已知圆O 与直线l 相切于A ,点,P Q 同时从点A 出发,P 沿着直线l 向右、Q 沿着圆周按逆时针以相同的速度运动,当Q 运动到点A 时,点P 也停止运动,连接OQ ,OP (如图),则阴影部分面积1S ,2S 的大小关系是( )A .12S S =B .12S S ≤C .12S S ≥D .先12S S <,再12S S =,最后12S S >【答案】A 【解析】如图所示,因为直线l 与圆O 相切,所以OA AP ⊥, 所以扇形的面积为1122AOQ S AQ r AQ OA =⋅⋅=⋅⋅扇形,12AOP S OA AP ∆=⋅⋅, 因为AQ AP =,所以扇形AOQ 的面积AOP AOQ S S ∆=扇形, 即AOP AOQ AOB AOB S S S S ∆-=-扇形扇形扇形, 所以12S S =,6.已知点()3,a 和()2,4a 分别在角β和角45β-︒的终边上,则实数a 的值是( ) A .-1 B .6 C .6或-1 D .6或1【答案】B由题得01tan 143tan ,tan(45)31tan 213a a a aββββ--=-===++,所以2560,6a a a --=∴=或-1.当a=-1时,两个点分别在第四象限和第二象限,不符合题意,所以舍去. 故选:B.7.已知角α的顶点在坐标原点,始边与x轴的正半轴重合,M 为其终边上一点,则cos2α=( ) A .23-B .23C .13-D .13【答案】D 【解析】∵M 为角α终边上一点,∴cos 3α===,∴221cos 22cos 1213αα=-=⨯-=. 故选D .8.设函数54,(0)()2,(0)xx x f x x +<⎧=⎨≥⎩,若角α的终边经过(4,3)P -,则[(sin )]f f α的值为( ) A .12B .1C .2D .4【答案】C 【解析】因为角α的终边经过()4,3P -,所以3sin 5y r α-==,所以33(sin )()5()4155f f α=-=⨯-+=,则1[(sin )](1)22f f f α===,故选C .9.若复数cos isin z θθ=+,当4π3θ=时,则复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C由题,当4π3θ=时,1sin 22θθ=-=-所以复数122z =--在复平面所对应的点为1(,22--在第三象限 故选C .10.已知α∈(22ππ-,),tanα=sin76°cos46°﹣cos76°sin46°,则sinα=( ) AB. CD. 【答案】A 【解析】解:由tanα=sin76°cos46°﹣cos76°sin46°=sin (76°﹣46°)=sin30°12=, 且α∈(22ππ-,),∴α∈(0,2π), 联立22121sin cos sin cos αααα⎧=⎪⎨⎪+=⎩,解得sinα5=. 故选:A .11.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上一点,则( )A .B .C .D .【答案】A 【解析】由三角函数定义得tan ,即,得3cos解得或(舍去) 故选:A .12.在平面直角坐标系中,角的顶点在原点,始边与轴的非负半轴重合,终边经过点,则( )A.B.C.D.【答案】D【解析】解:∵角的顶点在原点,始边与轴的非负半轴重合,终边经过点,∴,∴.则.故选:D.13.已知角的顶点都为坐标原点,始边都与轴的非负半轴重合,且都为第一象限的角,终边上分别有点,,且,则的最小值为()A.1 B.C.D.2【答案】C【解析】由已知得,,,因为,所以,所以,,所以,当且仅当,时,取等号.14.在等差数列中,角顶点在坐标原点,始边与x轴正半轴重合,终边经过点,则A.5 B.4 C.3 D.2【答案】B【解析】解:角顶点在坐标原点,始边与x轴正半轴重合,终边经过点,可得,则.故选:B.15.已知扇形的圆心角为,其弧长为,则此扇形的面积为____________。
2020年高考数学(文数)选择题强化专练——解析几何、立体几何、三角函数与解三角形、函数与导数含答案
(文数)选择题强化专练——解析几何、立体几何、三角函数与解三角形、函数与导数一、选择题(本大题共15小题,共75.0分)1.已知双曲线-=1(a>0,b>0)的离心率为2,则渐近线方程为()A. y=±2xB. y=±xC. y=±xD. y=±x2.已知焦点为F的抛物线的方程为,点Q的坐标为(3,4),点P在抛物线上,则点P到y轴的距离与到点Q的距离的和的最小值为()A. 3B.C.D. 73.过双曲线的左焦点作倾斜角为30°的直线l,若l与y轴的交点坐标为(0,b),则该双曲线的离心率为()A. B. C. D.4.椭圆2x2-my2=1的一个焦点坐标为(0,),则实数m=()A. B. C. D.5.在平面直角坐标系中,经过点P(2,-),渐近线方程为y=x的双曲线的标准方程为()A. B. C. D.6.设m,n表示不同的直线,α,β表示不同的平面,且m,n⊂α.则“α∥β”是“m∥β且n∥β”的()A. 充分但不必要条件B. 必要但不充分条件C. 充要条件D. 既不充分又不必要条件7.已知四棱锥E-ABCD,底面ABCD是边长为1的正方形,ED=1,平面ECD⊥平面ABCD,当点C到平面ABE的距离最大时,该四棱锥的体积为()A. B. C. D. 18.已知正方形ABCD的边长为2,CD边的中点为E,现将△ADE,△BCE分别沿AE,BE折起,使得C,D两点重合为一点记为P,则四面体P-ABE外接球的表面积是()A. B. C. D.9.将函数向右平移个单位后得到函数,则具有性质A. 在上单调递增,为偶函数B. 最大值为1,图象关于直线对称C. 在上单调递增,为奇函数D. 周期为,图象关于点对称10.要得到函数y=-sin3x的图象,只需将函数y=sin3x+cos3x的图象( )A. 向右平移个单位长度B. 向右平移个单位长度C. 向左平移个单位长度D. 向左平移个单位长度11.△ABC的内角A,B,C的对边分别为a,b,c,若,,,则b=( )A. B. C. D.12.在中,角的对边分别是,若,则的形状是()A. 等腰三角形B. 直角三角形C. 等腰直角三角形D. 等腰或直角三角形13.函数f(x)=|log2x|+x-2的零点个数为()A. 1B. 2C. 3D. 414.已知函数f(x)=(x<-1),则()A. f(x)有最小值4B. f(x)有最小值-4C. f(x)有最大值4D. f(x)有最大值-415.若曲线y=x2与曲线y=a ln x在它们的公共点P处具有公共切线,则实数a等于()A. 1B.C. -1D. 2答案和解析1.【答案】C【解析】解:双曲线-=1(a>0,b>0)的离心率为2,可得e==2,即有c=2a,由c2=a2+b2,可得b2=3a2,即b=a,则渐近线方程为y=±x,即为y=±x.故选:C.运用双曲线的离心率公式和a,b,c的关系可得b=a,再由近线方程y=±x,即可得到所求方程.本题考查双曲线的渐近线方程的求法,注意运用离心率公式和a,b,c的关系,考查运算能力,属于基础题.2.【答案】B【解析】【分析】本题考查了抛物线的定义,属于中档题.利用抛物线的定义进行转化,可知当三点共线时满足题设最小要求.【解答】解:如图所示:抛物线y2=4x的焦点为F(1,0),准线l:x=-1,过点P作PM⊥l,垂足为M,则|PM|=|PF|,因为Q(3,4)在抛物线外,因此当F、P、Q三点共线时,|PF|+|PQ|取得最小值,也即|PM|+|PQ|最小∴(|PM|+|PQ|)min=(|PF|+|PQ|)min=|QF|=.则点P到y轴的距离与到点Q的距离的和的最小值为.故选B.3.【答案】A【解析】解:直线l的方程为,令x=0,得.因为,所以a2=c2-b2=3b2-b2=2b2,所以.故选:A.求出直线方程,利用l与y轴的交点坐标为(0,b),列出关系式即可求解双曲线的离心率.本题考查直线与双曲线的位置关系以及双曲线的标准方程,考查运算求解能力.4.【答案】A【解析】【分析】利用椭圆的标准方程,结合焦点坐标,求解即可.本题考查了椭圆的标准方程,椭圆的性质及其几何意义的应用,是基本知识的考查,基础题.【解答】解:椭圆2x2-my2=1的标准方程为:,一个焦点坐标为(0,),可得,解得m=,故选:A.5.【答案】B【解析】解:根据题意,双曲线的渐近线方程为y=x,设双曲线方程为:,双曲线经过点P(2,-),则有8-1=a,解可得a=7,则此时双曲线的方程为:,故选:B.设出双曲线的方程,经过点P(2,-),求出a的值,即可得双曲线的方程.本题考查双曲线的几何性质,涉及双曲线的标准方程的求法,注意双曲线离心率公式的应用.6.【答案】A【解析】解:当α∥β 时,因为m,n⊂α,故能推出m∥β且n∥β,故充分性成立.当m∥β且n∥β 时,m,n⊂α,若m,n是两条相交直线,则能推出α∥β,若m,n不是两条相交直线,则α与β 可能相交,故不能推出α∥β,故必要性不成立.故选:A.由面面平行的性质得,充分性成立;由面面平行的判定定理知,必要性不成立.本题考查平面与平面平行的判定和性质,充分条件、必要条件的定义域判断方法.7.【答案】B【解析】解:如图所示,由题意可得:ED⊥平面ABCD时,△ADE的面积最大,可得点C即点D到平面ABE的距离最大.此时该四棱锥的体积==.故选:B.如图所示,由题意可得:ED⊥平面ABCD时,△ADE的面积最大,可得点C即点D到平面ABE的距离最大.即可得出此时该四棱锥的体积.本题考查了空间线面位置关系、数形结合方法,考查了推理能力与计算能力,属于中档题.8.【答案】C【解析】解:如图,PE⊥PA,PE⊥PB,PE=1,△PAB是边长为2的等边三角形,设H是△PAB的中心,OH⊥平面PAB,O是外接球的球心,则OH=,PH=,则.故四面体P-ABE外接球的表面积是S=.故选:C.由题意画出图形,找出四面体P-ABE外接球的球心,求得半径,代入球的表面积公式求解.本题考查多面体外接球表面积与体积的求法,考查数形结合的解题思想方法,是中档题.9.【答案】A【解析】【分析】本题主要考查三角函数平移、单调性、奇偶性、周期的知识,解答本题的关键是掌握相关知识,逐一分析,进行解答.【解答】解:将f(x)=2x的图象向右平移个单位,得g(x)=2(x-)=(2x-)=-2x,则g(x)为偶函数,在上单调递增,故A正确,g(x)的最大值为1,对称轴为2x=kπ,k∈Z,即x=,k∈Z,当k=1,图象关于x=对称,故B错误,由2kπ≤2x≤2kπ+π,k∈Z,函数g(x)单调递增,∴kπ≤x≤kπ+,k∈Z,∴g(x)在上不是单调函数,故C错误,函数的周期T=π,不关于点对称,故D错误 .故选A.10.【答案】C【解析】【分析】本题考查三角函数的图象的平移变换,是基础题.由条件利用y=A sin(ωx+φ)的图象变换规律,得出结论.【解答】解:因为,所以将其图象向左平移个单位长度,可得,故选C.11.【答案】B【解析】【分析】本题主要考查了正弦定理,两角和与差的三角函数公式,是基础题.先求出sin B,再根据正弦定理求解即可.【解答】解:在△ABC中,,,则,,=,,.故选B.12.【答案】D【解析】【分析】本题考查三角形的形状判断,着重考查正弦定理的应用与三角函数化简运算的能力,属于中档题.化简,得出A=或B=A,即可求解.【解答】解:∵c-a cos B=(2a-b)cos A,C=π-(A+B),∴由正弦定理得:sin C-sin A cos B=2sin A cosA-sin B cos A,∴sin A cos B+cos A sin B-sin A cos B=2sin A cosA-sin B cos A,∴cos A(sin B-sin A)=0,∴cos A=0,或sin B=sin A,∵在中,角的取值范围均为,∴A=或B=A或B=π-A(舍去),故选D.13.【答案】B【解析】【分析】本题考查函数的零点的求法,零点个数问题,考查数形结合以及计算能力,转化思想的应用.转化函数零点问题为方程的根的问题,通过两个函数的图象交点个数判断求解即可.【解答】解:函数f(x)=|log2x|+x-2的零点个数,就是方程|log2x|+x-2=0的根的个数.令h(x)=|log2x|,g(x)=2-x,画出两函数的图象,如图.由图象得h(x)与g(x)有2个交点,∴方程|log2x|+x-2=0的解的个数为2.故选B.14.【答案】A【解析】【分析】本题主要考查利用基本不等式求函数最值的知识,属于中档题.利用“配凑”将函数化为基本不等式的形式,然后根据基本不等式进行计算即可.【解答】解:f(x)==-=-=-=-(x+1)++2,因为x<-1,所以x+1<0,-(x+1)>0,所以f(x)≥2+2=4,当且仅当-(x+1)=,即x=-2时,等号成立.故f(x)有最小值4.故选A.15.【答案】A【解析】【分析】本题考查了利用导数研究曲线上某点切线方程,属于中档题.利用导数的几何意义求切线的斜率以及切线方程,即可得结论.【解答】解:∵曲线的导数为,∴在P(s,t)处的斜率为,又∵曲线y=a ln x的导数为,∴在P(s,t)处的斜率为,∴曲线与曲线y=a ln x在它们的公共点P(s,t)处具有公共切线,∴,并且,t=a ln s,即,∴,解得s2=e,∴a=1.故选A.。
2020年新高考全国1数学高考真题变式题11-16题-(学生版)
2020年新高考全国1数学高考真题变式题11-16题原题111.已知a >0,b >0,且a +b =1,则( )A .2212a b +≥B .122a b->C .22log log 2a b +≥-D 变式题1基础2.已知正数a ,b 满足21a b +=,则下面表达正确地是( ).A .ab 地最小值是18B .24a b +地最小值是C .11a b+地最小值是D .224a b +地最小值是12变式题2基础3.下面选项正确地是( )A .若0a ≠,则1a a+地最小值为4B .若x ∈R ,2C .若0ab <,则b aa b+地最大值为-2D .若正实数,x y 满足21x y +=,则21x y+地最小值为8变式题3巩固4.设a >0,b >0,a +b =1,则下面表达正确地是( )A .41a b+地最小值为9B .222a b +地最小值为23C 没有最小值D 变式题4巩固5.已知正数a ,b 满足21a b +=,则( )A .ab 地最大值为18B .224a b +地最小值为12C .12a b +地最小值为4D .1ab ab+地最小值为2变式题5巩固6.下面函数地最小值为2地有( )A .222,[0,8]y x x x =-+∈B .222,(1,4]1x x y x x -+=∈-C .1111,(0,)42122y x x x =+⋅∈-D .y =变式题6提升7.已知0a >,0b >,下面命题中正确地是( )A .若2a b +=,则lg lg 0a b +≤B .若20ab a b --=,则29a b +≥C .若2a b +=,则112a b ab +-≥D .若111123a b +=++,则14ab a b ++≥+变式题7提升8.已知0x >,0y >且3210x y +=,则下面结论正确地是( )A .xy 地最大值为625B C .32x y +地最小值为52D .22xy +地最大值为10013原题129.信息熵是信息论中地一个重要概念.设随机变量X 所有可能地取值为1,2,,n ,且1()0(1,2,,),1ni i i P X i p i n p ===>==∑ ,定义X 地信息熵21()log ni i i H X p p ==-∑.( )A .若n =1,则H (X )=0B .若n =2,则H (X )随着1p 地增大而增大C .若1(1,2,,)i p i n n== ,则H (X )随着n 地增大而增大D .若n =2m ,随机变量Y 所有可能地取值为1,2,,m ,且21()(1,2,,)j m j P Y j p p j m +-==+= ,则H (X )≤H (Y )变式题1基础10.为了更好地支持“中小型企业”地发展,某市决定对部分企业地税收进行适当地减免,现调查了当地地100家中小型企业年收入情况,并依据所得数据画出了样本地频率分布直方图,则下面结论正确地是A .样本在区间[]500,700内地频数为18B .假如规定年收入在300万圆以内地企业才能享受减免税政策,估计有30%地当地中小型企业能享受到减免税政策C .样本地中位数小于350万圆D .可估计当地地中小型企业年收入地平均数超过400万圆(同一组中地数据用该组区间地中点值为代表变式题2基础11.端午节,又称端阳节,龙舟节,天中节等,与春节,清明节,中秋节并称为中国四大传统节日.扒龙舟与食粽是端午节地两大礼俗,这两大礼俗在中国自古传承,至今不辍.在一个袋中装有大小一样地6个豆沙粽,4个咸肉粽,现从中任取4个粽子,设取出地4个粽子中咸肉粽地个数为X ,则下面结论正确地是( )A .()327P X ==B .随机变量X 服从二项分布C .随机变量X 服从超几何分布D .()191435P X <<=变式题3巩固12.算盘是我国古代一项伟大地发明,是一类重要地计算工具.下图是一把算盘地初始状态,自右向左,分别表示个位、十位、百位、千位……,上面一粒珠子(称上珠)代表5,下面一粒珠子(称下珠)代表1,五粒下珠地大小等于同组一粒上珠地大小.例如,个位拨动一粒上珠、十位拨动一粒下珠至梁上,表示数字15.现将算盘地个位、十位、百位、千位分别随机拨动一粒珠子至梁上,设事件A =“表示地四位数能被3整除”,B =“表示地四位数能被5整除”,则( )A .()38P A =B .()13P B =C .()1116P A B ⋃=D .()316P AB =变式题4巩固13.依据中国古代重要地数学著作《孙子算经》记载,我国古代诸侯地等级自低到高分为:男,子,伯,侯,公五个等级,现有每个级别地诸侯各一人,君王要把50处领地全部分给5位诸侯,要求每位诸侯都分到领地且级别每高一级就多分m 处(m 为正整数),按这种分法,下面结论正确地是( )A .为“男”地诸侯分到地领地不大于6处地概率是34B .为“子”地诸侯分到地领地不小于6处地概率是14C .为“伯”地诸侯分到地领地恰好为10处地概率是1D .为“公”地诸侯恰好分到16处领地地概率是14变式题5巩固14.“双11”购物节中,某电商对顾客实行购物优惠活动,规定一次购物付款总额满一定额度,可以给与优惠:(1)假如购物总额不超过50圆,则不给予优惠。
2020年高考全国1数学理高考真题变式题16-20题-(学生版)
2020年高考全国1数学理高考真题变式题16-20题原题161.如图,在三棱锥P–ABC的平面展开图中,AC=1,3AB AD==AB⊥AC,AB⊥AD,⊥CAE=30°,则cos⊥FCB=______________.变式题1基础2.棱长为1的正四面体(四个面都是正三角形)ABCD中,M为BC的中点;则直线AM和CD夹角的余弦值为___________.变式题2基础3.“一带一路”国际合作高峰论坛(于2017年5月14日至15日)在北京举行,会议期间达成了多项国际合作协议,其中有一项是在某国投资建设一个深水港码头,如图所示,工程师为了了解深水港码头海域海底的构造,在海平面内一条直线上的A ,B ,C 三点进行测量.已知AB =60m ,BC =120m ,于A 处测得水深AD =120m ,于B 处测得水深BE =200m ,于C 处测得水深CF =150m ,则cos⊥DEF =_______.变式题3巩固4.如图,在三棱锥D ABC -中,ABC ,ACD △都是正三角形,E ,F ,O 分别为棱AD ,BC ,AC 的中点,设直线EF 与平面BOD 所成角为θ,则cos θ的取值范围为_________.变式题4巩固5.如图ABC 中,已知点D 在BC 边上,2DAC π∠=,cos BAC ∠=4AB =,3AD =,则CD =___________.变式题5巩固6.某烟花厂按以下方案测试一种“烟花”的垂直弹射高度:在C 处(点C 在水平地面下方,O 为CH 与水平地面ABO 的交点)进行该烟花的垂直弹射,水平地面上两个观察点A ,B 两地相距30米,⊥BAC =60°,其中B 到C 的距离为70米.在A 地测得C 处的俯角为⊥OAC =15°,最高点H 的仰角为⊥HAO =30°,则该烟花的垂直弹射高度CH≈2.446)( )A .40米B .56米C .65米D .113米变式题6提升7.在矩形ABCD 中,3AB =,4=AD ,P 在AD 上运动,设ABP θ∠=,将ABP △沿BP 折起,使得平面ABP 垂直于平面BPDC ,AC 长最小时θ的值为__________.原题178.设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项. (1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和. 变式题1基础9.已知数列{}n a 中,10a ≠,()()*121n n a a S n N =+∈,n S 为数列{}n a 的前n 项和.(1)求数列{}n a 的通项公式n a ; (2)设n nnb a =,求数列{}n b 的前n 项和为n T . 变式题2基础10.已知{}n a 为各项均为正数的等比数列,且13a =,42332a a a =+. (1)求数列{}n a 的通项公式;(2)令2n n b n a =⋅,求数列{}n b 前n 项和n S . 变式题3巩固11.已知等比数列{}n a 的前n 项和为n S ,12a =,且满足14a ,22a ,3a 成等差数列. (1)求数列{}n a 的通项公式;(2)求数列{}(1)n n a +的前n 项和为n T .变式题4巩固12.已知正项数列{}n a 的前n 项和为n S n a 和1a 的等差中项. (1)求数列{}n a 的通项公式; (2)若n=2nn a b ,求{}n b 的前n 项和n T . 变式题5巩固13.已知等比数列{}n a 中,12a =,32a +是2a 和4a 的等差中项. (1)求数列{}n a 的通项公式;(2)记2log =n n n b a a ,求数列{}n b 的前n 项和n S . 变式题6提升14.已知等差数列{}n a 中,1516a a +=,617a =. (1)求数列{}n a 的通项公式;(2){}n b 为正项数列,若{}n b 的前n 项和为n S ,且12S =,12n n b S +=+,求数列{}n n a b ⋅的前n 项和n T . 原题1815.如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC 是底面的内接正三角形,P 为DO 上一点,PO .(1)证明:PA ⊥平面PBC ; (2)求二面角B PC E --的余弦值. 变式题1基础16.如图,在四棱锥P ABCD -中,底面ABCD 直角梯形,,,AD BC AD AB ABP ⊥∕∕是等边三角形,且2,4AB BC AD ===.(1)若CD PC ⊥,证明:平面PAC ⊥平面ABCD ;(2)若平面PAB ⊥平面ABCD ,求平面PBC 与平面PCD 所成锐二面角的余弦值. 变式题2基础17.如图,四棱锥P ABCD -的底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,E 是PC 的中点,=2PD DC =,F 为棱PB 上的点且13PF PB =.(1)证明://PA 平面BDE ; (2)证明:直线PB ⊥平面DEF ; (3)求二面角B DE C --的余弦值. 变式题3巩固18.如图,在三棱锥P ABC -中,BC ⊥平面PAC ,AD BP ⊥,2AB =,1BC =,33PD BD ==.(1)求证:PA AC ⊥;(2)求二面角P AC D --的余弦值. 变式题4巩固19.如图,在四棱锥P ABED -中,AD AB ⊥,//BE AD ,2224AD BE AB PA ====,PA ⊥平面ABED ,M 为AD 的中点.(1)证明:ED ⊥平面PAE ;(2)求直线PD 与平面PBM 所成角的余弦值. 变式题5巩固20.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是矩形,24PA AD AB ===,M 是PD 的中点.(1)证明:CD ⊥平面P AD . (2)求二面角B AM C --的余弦值. 变式题6提升21.如图,在四棱锥E ABCD -中,底面ABCD 为直角梯形,AE ⊥平面ABCD ,//AD BC ,AB BC ⊥,2AB =,3AD =,4BC =,5AE =,F 为BE 中点.(1)求证:AF BC ⊥;(2)P 为线段AD 上一点,//PF 平面EDC ,求二面角F PC D --的余弦值. 原题1922.甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12,(1)求甲连胜四场的概率; (2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率.变式题1基础23.甲、乙两名射击运动员在进行射击训练,已知甲命中10环,9环,8环的概率分别是13,1 3,13,乙命中10环,9环,8环的概率分别是18,14,58,任意两次射击相互独立.(1)求甲运动员两次射击命中环数之和恰好为18的概率;(2)现在甲、乙两人进行射击比赛,每一轮比赛两人各射击1次,环数高于对方为胜,环数低于对方为负,环数相等为平局,规定连续胜利两轮的选手为最终的胜者,比赛结束,求恰好进行3轮射击后比赛结束的概率变式题2基础24.甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.(1)求甲获得这次比赛胜利的概率;(2)求经过5局比赛,比赛结束的概率变式题3巩固25.9粒种子分种在甲、乙、丙3个坑内,每坑3粒,每粒种子发芽的概率为0.5.若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种.(1)求甲坑不需要补种的概率;(2)求3个坑中恰有1个坑不需要补种的概率;(3)求有坑需要补种的概率.(精确到0.001)变式题4巩固26.排球比赛实行“每球得分制”,即每次发球都完成得分,谁取胜谁就得1分,得分的队拥有发球权,最后先得25分的队获得本局比赛胜利,若出现比分24:24,要继续比赛至某队领先2分才能取胜,该局比赛结束.甲、乙两队进行一局排球比赛,已知甲队发球时甲队获胜的概率为23,乙队发球时甲队获胜的概率为25,且各次发球的胜负结果相互独立,若甲、乙两队双方:X X平后,甲队拥有发球权.(1)当24X=时,求两队共发2次球就结束比赛的概率;(2)当22X=时,求甲队得25分且取得该局比赛胜利的概率.变式题5巩固27.1.第32届夏季奥林匹克运动会于2021年7月23日至8月8日在日本东京举办,某国男子乒乓球队为备战本届奥运会,在某训练基地进行封闭式训练,甲、乙两位队员进行对抗赛,每局依次轮流发球,连续赢2个球者获胜,通过分析甲、乙过去对抗赛的数据知,甲发球甲赢的概率为23,乙发球甲赢的概率为14,不同球的结果互不影响,已知某局甲先发球.(1)求该局打4个球甲赢的概率; (2)求该局打5个球结束的概率. 变式题6提升28.甲、乙、丙、丁4名棋手进行象棋比赛,赛程如下面的框图所示,其中编号为i 的方框表示第i 场比赛,方框中是进行该场比赛的两名棋手,第i 场比赛的胜者称为“胜者i ”,负者称为“负者i ”,第6场为决赛,获胜的人是冠军.已知甲每场比赛获胜的概率均为 34,而乙、丙、丁相互之间胜负的可能性相同.(⊥)求甲获得冠军的概率;(⊥)求乙进入决赛,且乙与其决赛对手是第二次相遇的概率. 原题2029.已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点. 变式题1基础30.已知椭圆E :22221(0,0)x y a b a b+=>>经过点3(1,)2,且离心率12e =.(1)求椭圆E 的方程;(2)设椭圆E 的右顶点为A ,若直线:l y kx m =+与椭圆E 相交于M 、N 两点(异于A 点),且满足MA NA ⊥,试证明直线l 经过定点,并求出该定点的坐标. 变式题2基础31.已知椭圆2222:1x y C a b +=(0)a b >>22,以原点为圆心,椭圆的短半轴为半径的圆与直线20y x -+=相切. (1)求椭圆C 的方程;(2)设(P -,A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PB 交椭圆C 于另一点E ,证明:直线AE 与x 轴相交于定点G . 变式题3巩固32.已知椭圆C :()222210x y a b a b+=>>的左、右顶点分别为A ,B ,右焦点为F ,且C 上的动点M 到F 的距离的最大值为4,最小值为2. (1)证明:10MA MB -≤⋅≤.(2)若直线l :y mx n =+与C 相交于P ,Q 两点(P ,Q 均不与A ,B 重合),且PB QB ⊥,试问l 是否经过定点?若经过,求出此定点坐标;若不经过,请说明理由. 变式题4巩固33.已知椭圆2222:1(0)x y E a b a b+=>>,点)M在椭圆上,椭圆E 上存在点N 与左焦点F 关于直线y x =对称(1)求椭圆E 的方程;(2)若A 、B 为椭圆的左、右顶点,过点(4,)(0)≠T m m 的直线TA ,TB 与椭圆相交于点P 、Q 两点,求证:直线PQ 过定点,并求出定点坐标. 变式题5巩固34.已知A 、B 分别为椭圆E ⊥22221(0)x y a b a b +=>>的右顶点和上顶点、,F 1、F 2为椭圆的左、右焦点,点P 是线段AB 上任意一点,且12PF PF ⋅的最小值为7110-. (1)求椭圆E 的方程;(2)若直线l 是圆C ⊥x 2+y 2=9上的点(22处的切线,点M 是直线l 上任一点,过点M 作椭圆C 的切线MG ,MH ,切点分别为G ,H ,设切线的斜率都存在.试问⊥直线GH 是否过定点?若过定点,求出该定点的坐标;若不过定点,请说明理由. 变式题6提升35.已知圆()22+18E x y +=:,点(,0)(0)F m m >,P 是圆E 上一点,线段PF 的垂直平分线l 与直线EP 相交于点Q .(1)若m=2,点P 在圆E 上运动时,点Q 的轨迹是什么?说明理由;(2)若m=1,点P 在圆E 上运动时,点Q 的轨迹记为曲线C .过E 点作两条互相垂直的直线12l l 、,1l 与曲线C 交于两点A 、B ,2l 与曲线C 交于两点C 、D ,M 为线段AB 的中点,N 为线段CD 的中点.试问,直线MN 是否过定点?若过定点,并求出该定点的坐标,若不过定点,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六)
题号 1 2 3 4 5 6 7 8 9 10 11 12 答案
1.满足条件∅≠⊂M ≠⊂{0,1,2}的集合共有( )
A .3个
B .6个
C .7个
D .8个
2.等差数列}{n a 中,若39741=++a a a ,27963=++a a a ,则前9项的和9S 等于( )
A .66
B .99
C .144
D .297 3.函数)1(log 2-=x y 的反函数图像是( )
A B C D
4.已知函数)cos()sin()(ϕϕ+++=x x x f 为奇函数,则ϕ的一个取值为( ) A .0 B .4
π
-
C .2π
D .π
5.从10种不同的作物种子中选出6种放入6个不同的瓶子中展出,如果甲、乙两种种
子不能放入第1号瓶内,那么不同的放法共有( )
A .4
82
10A C 种 B .5
91
9A C 种 C .5
91
8A C 种 D .5
81
8A C 种 6.函数512322
3
+--=x x x y 在[0,3]上的最大值、最小值分别是( ) A .5,-15 B .5,-4 C .-4,-15 D .5,-16 7.已知9)222(-x
展开式的第7项为4
21
,则实数x 的值是( ) A .31-
B .-3
C .4
1
D .4 8.过球面上三点A 、B 、C 的截面和球心的距离是球半径的一半,且AB =6,BC =8,
AC =10,则球的表面积是( )
A .π100
B .π300
C .
π3100 D .π3
400
9.给出下面四个命题:①“直线a 、b 为异面直线”的充分非必要条件是:直线a 、b
不相交;②“直线l 垂直于平面α内所有直线”的充要条件是:l ⊥平面α;③“直线a ⊥b ”的充分非必要条件是“a 垂直于b 在平面α内的射影”;④“直线α∥平面β”的必要非充分条件是“直线a 至少平行于平面β内的一条直线”.其中正确命题的个数是( )
A .1个
B .2个
C .3个
D .4个
10.若0<a <1,且函数|log |)(x x f a =,则下列各式中成立的是( )
A .)41()3
1
()
2(f f f >> B .)3
1()2()41(f f f >>
C .)41()2()31(f f f >>
D .)2()3
1
()41(f f f >>
11.如果直线y =kx +1与圆042
2
=-+++my kx y x 交于M 、N 两点,且M 、N 关于
直线x +y =0对称,则不等式组:⎪⎩
⎪
⎨⎧≥≤-≥+-0001y my kx y kx 表示的平面区域的面积是( )
A .
41 B .2
1
C .1
D .2 12.九0年度大学学科能力测验有12万名学生,各学科成绩采用15级分,数学学科能
力测验成绩分布图如下图:请问有多少考生的数学成绩分高于11级分?选出最接近的数目( )
A .4000人
B .10000人
C .15000人
D .xx0人。