2017年高考物理第一轮总复习新课标选修3-2第九章 电磁感应9-3b Word版含解析
高考物理总复习:选修3-2第九章电磁感应
①垂直于磁场 ②垂直于磁场 ③1 T·m2 ④ΦS ⑤ 磁感应强度 ⑥磁通量发生变化 ⑦切割磁感线 ⑧阻 碍引起感应电流的磁通量 ⑨电磁感应 ⑩其余四指 ⑪磁感线 ⑫导体运动的方向 ⑬感应电流 ⑭切割磁 感线
一、磁通量的计算和理解 规律方法 1.求磁通量时要明确是穿过哪一面积的磁通量.且 这一面积必须是磁场内的.
题后反思 判断是否有感应电流产生,分析磁通量是否变化是 唯一的判断依据.可简单理解为判断穿过所研究的面积 内的磁感线的条数是否发生变化.
例3
如图所示,用一根长为 L、质量不计的细杆与一个上 弧长为 l0、下弧长为 d0 的金属线框的中点连接并悬挂于 O 点,悬点正下方存在一个上弧长为 2l0、下弧长为 2d0 的 方向垂直纸面向里的匀强磁场,且 d0≪L.先将线框拉开到 如图所示位置,松手后让线框进入磁场,忽略空气阻力 和摩擦.下列说法正确的是( )
________________________________________ _______________________________________________ _______________________________________________ _______________________________________________ _______________________________________________
(2)S 不变,S 内的磁场变化(即 B 变化),导致 Φ 变 化.ΔΦ=ΔBS.
(3)B 和 S 同时变化,导致 Φ 变化.但 ΔΦ 不一定等 于 ΔB·ΔS.
【重点提示】 磁通量是否发生变化,是判定电磁 感应现象的惟一依据,而引起磁通量变化的原因,主要 是磁场变化和导线相对磁场的运动而引起的,具体方式 有多种多样.
选修3-2 第九章 电磁感应(高考物理复习)
第九章电磁感应第一单元电磁感应现象楞次定律一、高考考点,电磁感应现象Ⅰ(考纲要求)1.电磁感应现象当穿过闭合电路的磁通量时,电路中有产生的现象.2.产生感应电流的条件表述1闭合电路的一部分导体在磁场内做运动.表述2穿过闭合电路的磁通量.3.产生电磁感应现象的实质电磁感应现象的实质是产生,如果回路闭合则产生;如果回路不闭合,则只有,而无 .楞次定律Ⅱ(考纲要求)1.楞次定律(1)内容:感应电流具有这样的方向,即感应电流的磁场总要引起感应电流的的变化.(2)适用条件:所有现象.2.右手定则(如右下图所示)(1)内容:伸开右手,使拇指与垂直,并且都与手掌在同一平面内,让从掌心进入,并使拇指指向导线,这时四指所指的方向就是的方向. (2)适用情况:导体产生感应电流.2.判断感应电流方向的“三步法”:3.右手定则掌心——磁感线垂直穿入,拇指——指向导体运动的方向,四指——指向感应电流的方向.二、基础自测1.下图中能产生感应电流的是().2.如图所示,小圆圈表示处于匀强磁场中的闭合电路一部分导线的横截面,速度v在纸面内.关于感应电流的有无及方向的判断正确的是().A.甲图中有感应电流,方向向里B.乙图中有感应电流,方向向外C.丙图中无感应电流3.(2009·浙江理综)如图在磁感应强度大小为B、方向竖直向上的匀强磁场中,有一质量为m,阻值为R的闭合矩形金属线框abcd用绝缘轻质细杆悬挂在O点,并可绕O点摆动.金属线框从右侧某一位置静止开始释放,在摆动到左侧最高点的过程中,细杆和金属线框平面始终处于同一平面,且垂直纸面.则线框中感应电流的方向是()A.a→b→c→d→aB.d→c→b→a→dC.先是d→c→b→a→d,后是a→b→c→d→aD.先是a→b→c→d→a,后是d→c→b→a→d4.某班同学在探究感应电流产生的条件时,做了如下实验:探究Ⅰ:如图甲,先将水平导轨、导体棒ab放置在磁场中,并与电流表组成一闭合回路.然后进行如下操作:①ab与磁场保持相对静止;②让导轨与ab一起平行于磁感线运动;③让ab做切割磁感线运动.探究Ⅱ:如图乙所示,将螺线管与电流表组成闭合回路.然后进行如下操作:①把条形磁铁放在螺线管内不动;②把条形磁铁插入螺线管;③把条形磁铁拔出螺线管.探究Ⅲ:如图914丙所示,螺线管A、滑动变阻器、电源、开关组成一个回路;A放在螺线管B内,B与电流表组成一个闭合回路.然后进行如下操作:①闭合和断开开关瞬间;②闭合开关,A中电流稳定后;③闭合开关,A中电流稳定后,再改变滑动变阻器的阻值.可以观察到:(请在(1)(2)(3)中填写探究中的序号)(1)在探究Ⅰ中,________闭合回路会产生感应电流;(2)在探究Ⅱ中,________闭合回路会产生感应电流;(3)在探究Ⅲ中,________闭合回路会产生感应电流;(4)从以上探究中可以得到的结论是:当________时,闭合回路中就会产生感应电流.5.(2010·上海卷)如图,金属环A用轻线悬挂,与长直螺线管共轴,并位于其左侧.若变阻器滑片P向左移动,则金属环A将向___ ____(填“左”或“右”)运动,并有_____ ___(填“收缩”或“扩张”)趋势.二、高考体验1.(2009·海南高考)一长直铁芯上绕有一固定线圈M,铁芯右端与一木质圆柱密接,木质圆柱上套有一闭合金属环N,N可在木质圆柱上无摩擦移动.M连接在如图的电路中,其中R为滑动变阻器,E1和E2为直流电源,S为单刀双掷开关.下列情况中,可观测到N向左运动的是()A.在S断开的情况下,S向a闭合的瞬间B.在S断开的情况下,S向b闭合的瞬间C.在S已向a闭合的情况下,将R的滑动头向c端移动时D.在S已向a闭合的情况下,将R的滑动头向d端移动时2.(2009·重庆理综)如图所示为一种早期发电机原理示意图,该发电机由固定的圆形线圈和一对用铁芯连接的圆柱形磁铁构成,两磁极相对于线圈平面对称.在磁极绕转轴匀速转动过程中,磁极中心在线圈平面上的投影沿圆弧XOY运动(O是线圈中心),则().A.从X到O,电流由E经○G流向F,先增大再减小B.从X到O,电流由F经○G流向E,先减小再增大C.从O到Y,电流由F经○G流向E,先减小再增大D.从O到Y,电流由E经○G流向F,先增大再减小3.(2010·海南高考)金属环水平固定放置,现将一竖直的条形磁铁,在圆环上方沿圆环轴线从静止开始释放,在条形磁铁穿过圆环的过程中,条形磁铁与圆环().A.始终相互吸引B.始终相互排斥C.先相互吸引,后相互排斥D.先相互排斥,后相互吸引4.(2010·课标全国理综,21)如图所示,两个端面半径同为R 的圆柱形铁芯同轴水平放置,相对的端面之间有一缝隙,铁芯上绕导线并与电源连接,在缝隙中形成一匀强磁场.一铜质细直棒ab 水平置于缝隙中,且与圆柱轴线等高、垂直.让铜棒从静止开始自由下落,铜棒下落距离为0.2R 时铜棒中电动势大小为E 1,下落距离为0.8R 时电动势大小为E 2.忽略涡流损耗和边缘效应.关于E 1、E 2的大小和铜棒离开磁场前两端的极性,下列判断正确的是( ).A .E 1>E 2,a 端为正B .E 1>E 2,b 端为正C .E 1<E 2,a 端为正D .E 1<E 2,b 端为正5.(2011·上海单科,13)如图所示,均匀带正电的绝缘圆环a 与金属圆环b 同心共面放置,当a 绕O 点在其所在平面内旋转时,b 中产生顺时针方向的感应电流,且具有收缩趋势,由此可知,圆环a ( ).A .顺时针加速旋转B .顺时针减速旋转C .逆时针加速旋转D .逆时针减速旋转6.(2011·上海单科,20)如图所示,磁场垂直于纸面,磁感应强度在竖直方向均匀分布,水平方向非均匀分布,一铜制圆环用丝线悬挂于O 点,将圆环拉至位置a 后无初速释放,在圆环从a 摆向b 的过程中( ).A .感应电流方向先逆时针后顺时针再逆时针B .感应电流方向一直是逆时针C .安培力方向始终与速度方向相反D .安培力方向始终沿水平方向第二单元 法拉第电磁感应定律 自感 涡流一、高考考点法拉第电磁感应定律 Ⅱ(考纲要求)1.感应电动势(1)概念:在 中产生的电动势;(2)产生条件:穿过回路的 发生改变,与电路是否闭合 .(3)方向判断:感应电动势的方向用 或 判断.2.法拉第电磁感应定律(1)内容:感应电动势的大小跟穿过这一电路的 成正比.(2)公式:E =n ΔΦΔt ,其中n 为线圈匝数. (3)感应电流与感应电动势的关系:遵守 定律,即I = .3.导体切割磁感线时的感应电动势(1)导体垂直切割磁感线时.感应电动势可用E = 求出,式中l 为导体切割磁感线的有效长度.(2)导体棒在磁场中转动时.导体棒以端点为轴,在匀强磁场中垂直于磁感线方向匀速转动产生感应电动势 E = = (平均速度等于中点位置线速度12l ω).自感、涡流 Ⅰ (考纲要求)1.自感现象(1)概念:由于导体本身的 变化而产生的电磁感应现象称为自感,由于自感而产生的感应电动势叫做 .(2)表达式:E = .(3)自感系数L①相关因素:与线圈的 、形状、 以及是否有铁芯有关.2.涡流当线圈中的电流发生变化时,在它附近的任何导体中都会产生 ,这种电流像水的漩涡所以叫涡流. 电磁感应的重要应用(1)电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到 ,安培力的方向总是 导体的相对运动(2)电磁驱动:如果磁场相对于导体转动,在导体中会产生 使导体受到安培力的作用,安培力使导体运动起来.交流感应电动机就是利用 的原理工作的.(3)电磁阻尼和电磁驱动的原理体现了 的推广应用1.对公式E =n ΔΦΔt的理解:2.公式E =BL v 与公式E =nΔΦΔt 的比较二、基础自测1.(2012·安徽六校联考)图中a ~d 所示分别为穿过某一闭合回路的磁通量Φ随时间t 变化的图象,关于回路中产生的感应电动势下列论述正确的是( ).A.图a 中回路产生的感应电动势恒定不变B.图b 中回路产生的感应电动势一直在变大C.图c 中回路在0~t 1时间内产生的感应电动势小于在t 1~t 2时间内产生的感应电动势D.图d 中回路产生的感应电动势先变小再变大2.如图所示,半径为r 的金属圆盘在垂直于盘面的匀强磁场B 中,绕O 轴以角速度ω沿逆时针方向匀速转动,则通过电阻R 的电流的方向和大小是(金属圆盘的电阻不计)A.由c 到d ,I =Br 2ωR B .由d 到c ,I =Br 2ωRC.由c 到d ,I =Br 2ω2R D .由d 到c ,I =Br 2ω2R3.在匀强磁场中,有一个接有电容器的单匝导线回路,如图所示,已知C =30 μF ,L 1=5 cm ,L 2=8 cm ,磁场以5×10-2 T/s 的速率增加,则( ).A.电容器上极板带正电,带电荷量为6×10-5 CB.电容器上极板带负电,带电荷量为6×10-5 CC.电容器上极板带正电,带电荷量为6×10-9 CD.电容器上极板带负电,带电荷量为6×10-9 C4.如图所示为一光滑轨道,其中MN 部分为一段对称的圆弧,两侧的直导轨与圆弧相切,在MN 部分有如图所示的匀强磁场,有一较小的金属环如图放置在P 点,金属环由静止自由释放,经很多次来回运动后,下列判断正确的有( ).A.金属环仍能上升到与P 等高处B.金属环最终将静止在最低点C.金属环上升的最大高度与MN 等高D.金属环上升的最大高度一直在变小5.闭合回路由电阻R 与导线组成,其内部磁场大小按Bt 图变化,方向如图所示,则回路中( ).A.电流方向为顺时针方向B.电流强度越来越大C.磁通量的变化率恒定不变D.产生的感应电动势越来越大二、高考体验(一)公式E =Bl v 的应用(高频考查)1.(2010·全国Ⅰ,17)某地的地磁场磁感应强度的竖直分量方向向下,大小为4.5×10-5 T .一灵敏电压表连接在当地入海河段的两岸,河宽100 m ,该河段涨潮和落潮时有海水(视为导体)流过.设落潮时,海水自西向东流,流速为2 m/s.下列说法正确的是( ).A .电压表记录的电压为5 mVB .电压表记录的电压为9 mVC .河南岸的电势较高D .河北岸的电势较高2.(2011·山东理综,21)如图所空间存在两个磁场,磁感应强度大小均为B ,方向相反且垂直纸面,MN 、PQ 为其边界,OO ′为其对称轴.一导线折成边长为l 的正方形闭合回路abcd ,回路在纸面内以恒定速度v 0向右运动,当运动到关于OO ′对称的位置是( ).A .穿过回路的磁通量为零B .回路中感应电动势大小为2Bl v 0C .回路中感应电流的方向为顺时针方向D .回路中ab 边与cd 边所受安培力方向相同3.(2010·全国卷Ⅱ,18)如图空间某区域中有一匀强磁场,磁感应强度方向水平,且垂直于纸面向里,磁场上边界b 和下边界d 水平.在竖直面内有一矩形金属线圈,线圈上下边的距离很短,下边水平.线圈从水平面a 开始下落.已知磁场上下边界之间的距离大于水平面a 、b 之间的距离.若线圈下边刚通过水平面b 、c (位于磁场中)和d 时,线圈所受到的磁场力的大小分别为F b 、F c 和F d ,则( ).A .F d >F c >F bB .F c <F d <F bC .F c >F b >F dD .F c <F b <F d(二)法拉第电磁感应定律E =n ΔΦΔt的应用(高频考查) 4.(2010·浙江理综,19)半径为r 带缺口的刚性金属圆环在纸面上固定放置,在圆环的缺口两端引出两根导线,分别与两块垂直于纸面固定放置的平行金属板连接,两板间距为d ,如图9216甲所示.有一变化的磁场垂直于纸面,规定向内为正,变化规律如图乙所示.在t =0时刻平板之间中心有一重力不计,电荷量为q 的静止微粒.则以下说法正确的是( ).A .第2秒内上极板为正极B .第3秒内上极板为负极C .第2秒末微粒回到了原来位置D .第2秒末两极板之间的电场强度大小为0.2πr 2d5.(2011·广东卷,15)将闭合多匝线圈置于仅随时间变化的磁场中,线圈平面与磁场方向垂直,关于线圈中产生的感应电动势和感应电流,下列表述正确的是( ).A .感应电动势的大小与线圈的匝数无关B .穿过线圈的磁通量越大,感应电动势越大C .穿过线圈的磁通量变化越快,感应电动势越大D .感应电流产生的磁场方向与原磁场方向始终相同6.(2011·福建卷,17)如图所示,足够长的U 型光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN 与PQ 平行且间距为L ,导轨平面与磁感应强度为B 的匀强磁场垂直,导轨电阻不计.金属棒ab 由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab 棒接入电路的电阻为R ,当流过ab 棒某一横截面的电量为q 时,棒的速度大小为v ,则金属棒ab 在这一过程中( ).A .运动的平均速度大小为12vB .下滑的位移大小为qR BLC .产生的焦耳热为qBL vD .受到的最大安培力大小为B 2L 2v Rsin θ 第3讲 专题 电磁感应的综合应用一、高考考点考点一 电磁感应中的力学问题1.题型特点:电磁感应中产生的感应电流在磁场中将受到安培力的作用,因此,电磁感应问题往往跟力学问题联系在一起,解决这类问题,不仅要应用电磁学中的有关规律,如楞次定律、法拉第电磁感应定律、左手定则、右手定则、安培力的计算公式等,还要应用力学中的有关规律,如牛顿运动定律、动能定理、机械能守恒定律等.要将电磁学和力学的知识综合起来应用.2.解题方法(1)选择研究对象,即哪一根导体棒或几根导体棒组成的系统;(2)用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向;(3)求回路中的电流大小;(4)分析其受力情况;(5)分析研究对象所受各力的做功情况和合外力做功情况,选定所要应用的物理规律;(6)运用物理规律列方程求解.电磁感应力学问题中,要抓好受力情况、运动情况的动态分析:导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化,周而复始地循环,循环结束时,加速度等于零,导体达到稳定状态.附:安培力的方向判断 3.电磁感应问题中两大研究对象及其相互制约关系【典例1】一个质量m=0.1 kg的正方形金属框总电阻R=0.5 Ω,金属框放在表面绝缘的斜面AA′B′B的顶端(金属框上边与AA′重合),自静止开始沿斜面下滑,下滑过程中穿过一段边界与斜面底边BB′平行、宽度为d 的匀强磁场后滑至斜面底端(金属框下边与BB′重合),设金属框在下滑过程中的速度为v,与此对应的位移为x,那么v2x图象如图所示,已知匀强磁场方向垂直斜面向上,金属框与斜面间的动摩擦因数μ=0.5,取g=10 m/s2,sin 53°=0.8;cos 53°=0.6.(1)根据v2x图象所提供的信息,计算出金属框从斜面顶端滑至底端所需的时间T;(2)求出斜面AA′B′B的倾斜角θ;(3)求匀强磁场的磁感应强度B的大小;【变式1】如图甲所示,不计电阻的平行金属导轨竖直放置,导轨间距为L=1 m,上端接有电阻R=3 Ω,虚线OO′下方是垂直于导轨平面的匀强磁场.现将质量m=0.1 kg、电阻r=1 Ω的金属杆ab,从OO′上方某处垂直导轨由静止释放,杆下落过程中始终与导轨保持良好接触,杆下落过程中的v-t图象如图乙所示(取g=10 m/s2).求:(1)磁感应强度B的大小.(2)杆在磁场中下落0.1 s的过程中电阻R产生的热量.1.题型特点:磁通量发生变化的闭合电路或切割磁感线导体将产生感应电动势,回路中便有感应电流.从而涉及电路的分析及电流、电压、电功等电学物理量的计算.2.解题方法(1)确定电源.切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,利用E =Blv sin θ或E =n ΔΦΔt求感应电动势的大小,利用右手定则或楞次定律判断电流方向.如果在一个电路中切割磁感线的有几个部分但又相互联系,可等效成电源的串、并联.(2)分析电路结构(内、外电路及外电路的串并联关系),画出等效电路图.(3)利用电路规律求解.主要应用欧姆定律及串并联电路的基本性质等列方程求解.【典例2】 如图所示,匀强磁场B =0.1 T ,金属棒AB 长0.4 m ,与框架宽度相同,电阻为13Ω,框架电阻不计,电阻R 1=2 Ω,R 2=1 Ω,当金属棒以5 m/s 的速度匀速向左运动时,求:(1)流过金属棒的感应电流多大?(2)若图中电容器C 为0.3 μF ,则充电荷量是多少?【变式2】 如图所示,PN 与QM 两平行金属导轨相距1 m ,电阻不计,两端分别接有电阻R 1和R 2,且R 1=6 Ω,ab 导体的电阻为2 Ω,在导轨上可无摩擦地滑动,垂直穿过导轨平面的匀强磁场的磁感应强度为1 T .现ab 以恒定速度v =3 m/s 匀速向右移动,这时ab 杆上消耗的电功率与R 1、R 2消耗的电功率之和相等,求:(1)R2的阻值.(2)R 1与R 2消耗的电功率分别为多少?(3)拉ab 杆的水平向右的外力F 为多大?解析 (1)内外功率相等,则内外电阻相等,1.题型特点:一般可把图象问题分为三类(1)由给定的电磁感应过程选出或画出正确的图象;(2)由给定的有关图象分析电磁感应过程,求解相应的物理量;(3)根据图象定量计算.2.电磁感应的图象:主要包括B-t图象、Φ-t图象、E-t图象和I-t图象,还可能涉及感应电动势E和感应电流I随线圈位移x变化的图象,即E-x图象和I-x图象.【典例3】如图所示,边长为L、总电阻为R的正方形线框abcd放置在光滑水平桌面上,其bc边紧靠磁感应强度为B、宽度为2L、方向竖直向下的有界匀强磁场的边缘.现使线框以初速度v0匀加速通过磁场,下列图线中能定性反映线框从进入到完全离开磁场的过程中,线框中的感应电流的变化的是().——电磁感应图象问题的解决方法(1)明确图象的种类,即是Bt图象还是Φt图象,或者Et图象、It图象等.(2)分析电磁感应的具体过程.(3)用右手定则或楞次定律确定方向对应关系.(4)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等规律写出函数关系式.(5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等.(6)判断图象(或画图象或应用图象解决问题).【变式3】(2012·江西十校二模)矩形导线框abcd放在匀强磁场中,磁感线方向与线圈平面垂直,磁感应强度B随时间变化的图象如图所示,t=0时刻,磁感应强度的方向垂直纸面向里.若规定导线框中感应电流逆时针方向为正,则在0~4 s时间内,线框中的感应电流I以及线框的ab边所受安培力F随时间变化的图象为下图中的(安培力取向上为正方向)().考点四电磁感应中的能量问题1.题型特点:电磁感应过程的实质是不同形式的能量转化的过程,而能量的转化是通过安培力做功的形式实现的,安培力做功的过程,是电能转化为其他形式能的过程,外力克服安培力做功,则是其他形式的能转化为电能的过程.2.能量转化及焦耳热的求法(1)能量转化(2)求解焦耳热Q的几种方法【典例4】如图所示,水平虚线L1、L2之间是匀强磁场,磁场方向水平向里,磁场高度为h.竖直平面内有一等腰梯形线框,底边水平,其上下边长之比为5∶1,高为2h.现使线框AB边在磁场边界L1的上方h高处由静止自由下落,当AB边刚进入磁场时加速度恰好为0,在AB边刚出磁场的一段时间内,线框做匀速运动.求:(1)DC边刚进入磁场时,线框加速度的大小;(2)从线框开始下落到DC边刚进入磁场的过程中,线框的机械能损失和重力做功之比——解决这类问题的基本方法:(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向.(2)画出等效电路,求出回路中电阻消耗的电功率表达式.(3)分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程.【变式4】如图所示,在倾角为θ=37°的斜面内,放置MN和PQ两根不等间距的光滑金属导轨,该装置放置在垂直斜面向下的匀强磁场中.导轨M、P端间接入阻值R1=30 Ω的电阻和理想电流表,N、Q端间接阻值为R2=6 Ω的电阻.质量为m=0.6 kg、长为L=1.5 m的金属棒放在导轨上以v0=5 m/s的初速度从ab处向右上滑到a′b′处的时间为t=0.5 s,滑过的距离l=0.5 m.ab处导轨间距L ab=0.8 m,a′b′处导轨间距L a′b′=1 m.若金属棒滑动时电流表的读数始终保持不变,不计金属棒和导轨的电阻.sin 37°=0.6,cos 37°=0.8,g取10 m/s2,求:(1)此过程中电阻R1上产生的热量;(2)此过程中电流表上的读数;(3)匀强磁场的磁感应强度.二、高考体验一、电磁感应中的图象问题(高频考查)1.(2010·广东理综,16)如图939所示,平行导轨间有一矩形的匀强磁场区域,细金属棒PQ沿导轨从MN 处匀速运动到M′N′的过程中,棒上感应电动势E随时间t变化的图象,可能正确的是().2.(2011·海南卷,6)如图所示,EOF和E′O′F′为空间一匀强磁场的边界,其中EO∥E′O′,FO∥F′O′,且EO⊥OF;OO′为∠EOF的角平分线,OO′间的距离为l;磁场方向垂直于纸面向里.一边长为l的正方形导线框沿O′O方向匀速通过磁场,t=0时刻恰好位于图示位置.规定导线框中感应电流沿逆时针方向时为正,则感应电流i与时间t的关系图线可能正确的是().3.(2011·山东卷,22)如图所示,两固定的竖直光滑金属导轨足够长且电阻不计.两质量、长度均相同的导体棒c、d,置于边界水平的匀强磁场上方同一高度h处.磁场宽为3h,方向与导轨平面垂直.先由静止释放c,c刚进入磁场即匀速运动,此时再由静止释放d,两导体棒与导轨始终保持良好接触.用a c表示c的加速度,E kd表示d的动能,x c、x d分别表示c、d相对释放点的位移,图中正确的是().二、电磁感应中的力、电综合问题(高频考点)4. (2011·天津卷,11)如图9312所示,两根足够长的光滑平行金属导轨MN、PQ间距为L=0.5 m,其电阻不计,两导轨及其构成的平面均与水平面成30°角.完全相同的两金属棒ab、cd分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒质量均为m=0.02 kg,电阻均为R=0.1 Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度B=0.2 T,棒ab在平行于导轨向上的力F作用下,沿导轨向上匀速运动,而棒cd 恰好能够保持静止.取g=10 m/s2,问:(1)通过棒cd的电流I是多少,方向如何?(2)棒ab受到的力F多大?(3)棒cd每产生Q=0.1 J的热量,力F做的功W是多少?5.(2011·浙江卷,23)如图甲所示,在水平面上固定有长为L=2 m、宽为d=1 m的金属“U”型导轨,在“U”型导轨右侧l=0.5 m范围内存在垂直纸面向里的匀强磁场,且磁感应强度随时间变化规律如图乙所示,在t=0时刻,质量为m=0.1 kg的导体棒以v0=1 m/s的初速度从导轨的左端开始向右运动,导体棒与导轨之间的动摩擦因数为μ=0.1,导轨与导体棒单位长度的电阻均为λ=0.1 Ω/m,不计导体棒与导轨之间的接触电阻及地球磁场的影响(取g=10 m/s2).(1)通过计算分析4 s内导体棒的运动情况;(2)计算4 s内回路中电流的大小,并判断电流方向;(3)计算4 s内回路产生的焦耳热.6.(2011·大纲全国卷,24)如图所示,两根足够长的金属导轨ab、cd竖直放置,导轨间距离为L,电阻不计.在导轨上端并接两个额定功率均为P、电阻均为R的小灯泡.整个系统置于匀强磁场中,磁感应强度方向与导轨所在平面垂直.现将一质量为m、电阻可以忽略的金属棒MN从图示位置由静止开始释放,金属棒下落过程中保持水平,且与导轨接触良好.已知某时刻后两灯泡保持正常发光.重力加速度为g.求:(1)磁感应强度的大小;(2)灯泡正常发光时导体棒的运动速率.补练第一单元电磁感应现象楞次定律【典例1】如图一个U形金属导轨水平放置,其上放有一个金属导体棒ab,有一个磁感应强度为B的匀强磁场斜向上穿过轨道平面,且与竖直方向的夹角为θ.在下列各过程中,一定能在轨道回路里产生感应电流的是().A.ab向右运动,同时使θ减小B.使磁感应强度B减小,θ角同时也减小C.ab向左运动,同时增大磁感应强度BD.ab向右运动,同时增大磁感应强度B和θ角(0°<θ<90°)【变式1】如图所示,光滑导电圆环轨道竖直固定在匀强磁场中,磁场方向与轨道所在平面垂直,导体棒ab的两端可始终不离开轨道无摩擦地滑动,当ab由图示位置释放,直到滑到右侧虚线位置的过程中,关于ab棒中的感应电流情况,正确的是().A.先有从a到b的电流,后有从b到a的电流B.先有从b到a的电流,后有从a到b的电流C.始终有从b到a的电流D.始终没有电流产生【典例2】下图是验证楞次定律实验的示意图,竖直放置的线圈固定不动,将磁铁从线圈上方插入或拔出,线圈和电流表构成的闭合回路中就会产生感应电流.各图中分别标出了磁铁的极性、磁铁相对线圈的运动方向以及线圈中产生的感应电流的方向等情况,其中表示正确的是().【变式2】北半球地磁场的竖直分量向下.如图所示,在北京某中学实验室的水平桌面上,放置边长为L的正方形闭合导体线圈abcd,线圈的ab边沿南北方向,ad边沿东西方向.下列说法中正确的是().A.若使线圈向东平动,则a点的电势比b点的电势低B.若使线圈向北平动,则a点的电势比b点的电势低C.若以ab为轴将线圈向上翻转,则线圈中感应电流方向为a→b→c→d→aD.若以ab为轴将线圈向上翻转,则线圈中感应电流方向为a→d→c→b→a【典例3】如图所示,水平放置的两条光滑轨道上有可自由移动的金属棒PQ、MN,MN的左边有一闭合电路,当PQ在外力的作用下运动时,MN向右运动.则PQ所做的运动可能是().A.向右加速运动B.向左加速运动C.向右减速运动D.向左减速运动【变式3】如图所示,金属导轨上的导体棒ab在匀强磁场中沿导轨做下列哪种运动时,铜制线圈c中将有感应电流产生且被螺线管吸引().A.向右做匀速运动B.向左做减速运动C.向右做减速运动D.向右做加速运动【典例】如图所示,光滑固定导轨M、N水平放置,两根导体棒P、Q平行放置在导轨上,形成一个闭合回路,当一条形磁铁从高处下落接近回路时().A.P、Q将互相靠拢B.P、Q将互相远离C.磁铁的加速度仍为gD.磁铁的加速度小于g。
《物理导练》2017年高考物理第一轮总复习新课标选修3-2第九章 电磁感应课件9-3
自主复习评估
自主测评
考点突破
易错疑难例析
高考•模拟•创新
第24页
经典品质/超越梦想
高考总复习/新课标 物理
典例剖析 【例2】 矩形导线框abcd固定在匀强磁场中,磁感线的方向与导线框所在平面垂 ) 直.规定磁场的正方向垂直纸面向里,磁感应强度B随时间变化的规律如图9-3-7所 示.若规定顺时针方向为感应电流i的正方向,下列i—t图中正确的是(
典例剖析 【例3】 如图9-3-8甲所示,两根足够长的直金属导轨MN、PQ平行放置在倾角 为θ的绝缘斜面上,两导轨间距为L,M、P两点间接有阻值为R的电阻.一根质量为m的 均匀直金属杆ab放在两导轨上,并与导轨垂直.整套装置处于磁感应强度为B的匀强磁 场中,磁场方向垂直于斜面向下.导轨和金属杆的电阻可忽略.让ab杆沿导轨由静止开 始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.
经典品质/超越梦想
高考总复习/新课标 物理
(2)当ab杆速度为v时,感应电动势E=BLv, E BLv 此时电路中电流I= = . R R B2L2v ab杆受到安培力F=BIL= . R 根据牛顿运动定律,有mgsinθ-F=ma, B2L2v 以上各式联立解得a=gsinθ- . mR mgRsinθ (3)当a=0时,ab杆有最大速度:vmax= . B2L2
自主复习评估
自主测评
考点突破
易错疑难例析
高考•模拟•创新
第 7页
经典品质/超越梦想
高考总复习/新课标 物理
电磁感应中的力学问题
通过导体的感应电流在____中将受到安培力作用,电磁感应往往和力学问题结合在 一起.解决这类问题需要综合应用电磁感应规律(法拉第电磁感应定律、________)及力 学中的有关规律(________、能量守恒定律、动能定理等).
高考物理一轮总复习 第九章 电磁感应 第2讲 法拉第电磁感应定律 自感和涡流课件(选修3-2)
知识点二 自感 涡流 1.自感现象:由于通过导体自身的 电流 发生变化而产 生的电磁感应现象. 2.自感电动势 (1)定义:在自感现象中产生的感应电动势. (2)表达式:E=__L_ΔΔ_It___.
(3)自感系数L ①相关因素:与线圈的大小、形状、 圈数 以及是否有 铁芯 等因素有关. ②单位:亨利(H),常用单位还有毫亨(mH)、微亨 (μH).1 mH= 10-3 H,1 μH= 10-6 H.
率.
2.应用法拉第电磁感应定律的三种情况 (1)磁通量的变化是由面积变化引起时,ΔΦ=B·ΔS,则 E=nBΔΔtS; (2)磁通量的变化是由磁场变化引起时,ΔΦ=ΔB·S,则 E=nΔΔBt·S; (3)磁通量的变化是由于面积和磁场变化共同引起的, 则根据定义求,ΔΦ=Φ末-Φ初,E=nB2S2-ΔtB1S1≠nΔBΔΔt S.
(2)通过R1的电荷量 q=It1=nB30Rπtr022t1
R1上产生的热量 Q=I2R1t1=2n2B9R20πt202r42t1
[答案] (1)n3BR0πt0r22 方向由b到a
(2)nB30Rπtr022t1
2n2B20π2r42t1 9Rt20
解答本题时容易出现的错误 (1)计算磁通量时,误用线圈面积S=πr21. (2)不会借助数学知识求得ΔΔBt =Bt00. (3)计算电量时不会用公式q=It求解.
第 2 讲 法拉第电磁感应定律 自感和涡流
基础
知识回顾
知识点一 法拉第电磁感应定律 1.感应电动势 (1)概念:在 电磁感应 现象中产生的电动势. (2)产生:只要穿过回路的 磁通量 发生变化,就能产生 感应电动势,与电路是否闭合无关. (3)方向:产生感应电动势的电路(导体或线圈)相当于电 源,电源的正、负极可由 右手定则 或 楞次定律 判断.
(新课标)高三物理一轮总复习第9章电磁感应第1节电磁感应现象感应电流的方向考点集训(选修3-2)
第1节电磁感应现象感应电流的方向一、选择题:1~8题为单选,9~10题为多选.1.如图所示的各图中,闭合线框中能产生感应电流的是A.①②B.①③C.②④D.③④2.法拉第通过精心设计的一系列实验,发现了电磁感应现象,将历史上认为各自独立的学科“电学”与“磁学”联系起来.在下面几个典型的实验设计思想中,所作的推论后来被实验否定的是A.既然磁铁可使近旁的铁块带磁,静电荷可使近旁的导体表面感应出电荷,那么静止导线上的稳恒电流也可在近旁静止的线圈中感应出电流B.既然磁铁可在近旁运动的导体中感应出电动势,那么稳恒电流也可在近旁运动的线圈中感应出电流C.既然运动的磁铁可在近旁静止的线圈中感应出电流,那么静止的磁铁也可在近旁运动的导体中感应出电动势D.既然运动的磁铁可在近旁的导体中感应出电动势,那么运动导线上的稳恒电流也可在近旁的线圈中感应出电流3.如图所示,在匀强磁场中的矩形金属轨道上,有等长的两根金属棒ab和cd,它们以相同的速度匀速运动,则A.断开开关S,ab中有感应电流B.闭合开关S,ab中有感应电流C.无论断开还是闭合开关S,ab中都有感应电流D.无论断开还是闭合开关S,ab中都没有感应电流4.如图,一根长导线弯成“∩”形,通以直流电I,正中间用不计长度的一段绝缘线悬挂一金属环C,环与导线处于同一竖直平面内,在电流I增大的过程中,下列叙述正确的是A.金属环C中无感应电流产生B.金属环C仍能保持静止状态C.金属环C中有沿顺时针方向的感应电流D.悬挂金属环C的竖直线拉力变小5.无限长通电直导线在其周围某一点产生磁场的磁感应强度大小与电流成正比,与导线到这一点的距离成反比,即B =k I r(式中k 为常数).如图甲所示,光滑绝缘水平面上平行放置两根无限长直导线M 和N ,导线N 中通有方向如图的恒定电流I N ,导线M 中的电流I M 大小随时间变化的图象如图乙所示,方向与N 中电流方向相同.绝缘闭合导线框ABCD 放在同一水平面上,AB 边平行于两直导线,且位于两者正中间.则以下说法不正确的是A .0~t 0时间内,流过R 的电流方向由C→DB .t 0~2t 0时间内,流过R 的电流方向由D→CC .0~t 0时间内,不计CD 边电流影响,则AB 边所受安培力的方向向左D .t 0~2t 0时间内,不计CD 边电流影响,则AB 边所受安培力的方向向右6.如图所示,在图甲中是两根不平行的导轨,图乙中是两根平行的导轨,其它条件都相同,当金属棒MN 在导轨上向右匀速运动时,在棒的运动过程中,将观察到A .两个小电珠都发光,只是亮度不同B .两个小电珠都不发光C .L 1发光且越来越亮,L 2发光且亮度不变D .L 1发光且亮度不变,L 2始终不发光7.如图所示,A 线框接一灵敏电流计,B 线框放在匀强磁场中,B 线框的电阻不计,具有一定电阻的导体棒可沿线框无摩擦滑动,今用恒力F 向右拉CD 由静止开始运动,B 线框足够长,则通过电流计中的电流方向和大小变化是A .G 中电流向下,强度逐渐减弱,最后为零B .G 中电流向上,强度逐渐减弱,最后为零C .G 中电流向下,强度逐渐增强,最后为某一定值D .G 中电流向上,强度逐渐增强,最后为某一定值8.等腰三角形线框abc 与长直导线MN 绝缘,且线框被导线分成面积相等的两部分,如图所示,接通电源瞬间有由N 流向M 的电流A .线框中无感应电流B .线框中有沿abca 方向感应电流C.线框中有沿acba方向感应电流D.条件不足无法判断9.电阻R、电容C与一线圈连成闭合回路,条形磁铁静止于线圈的正上方,N极朝下,如图所示,现使磁铁由静止开始下落,在N极接近线圈上端的过程中,下列说法不正确的是A.流过R的电流方向是b到aB.电容器的下极板带负电C.磁铁下落过程中,加速度保持不变D.穿过线圈的磁通量不断增大10.如图所示,M为水平放置的橡胶圆盘,在其外侧面均匀地带有负电荷.在M正上方用丝线悬挂一个闭合铝环N,铝环也处于水平面中,且M盘和N环的中心在同一条竖直线O1O2上.现让橡胶圆盘由静止开始绕O1O2轴按图示方向逆时针加速转动,下列说法正确的是A.铝环N对橡胶圆盘M的作用力方向竖直向下B.铝环N对橡胶圆盘M的作用力方向竖直向上C.铝环N有扩大的趋势,丝线对它的拉力增大D.铝环N有缩小的趋势,丝线对它的拉力减小二、填空题11.在做研究电磁感应现象的实验中所给器材如下图所示.(1)请你用笔画线的形式把实物图连接起来.(2)某同学连好实物图,他在做实验时发现当开关闭合时,电流表的指针向向右偏,请你帮他判断当迅速移动滑动变阻器使电路中的电阻减小时,指针将__________(选填“向左偏”、“向右偏”或“不偏”),由此实验说明______________________________________.题号答第1节电磁感应现象感应电流的方向【考点集训】1.A 2.A 3.B 4.B 5.B 6.D7.A8.C9.BC10.AD11.(1)(2)向右偏不论用什么方法,只要使穿过闭合回路中的磁通量发生变化,回路中就会产生感应电流(意思对即可)。
高考物理一轮复习(人教版)课件:选修3—2第9章第2讲法拉第电磁感应定律 自感 涡流
• 3 . (2010· 全国Ⅰ卷 ) 某地的地磁场磁感应 强度的竖直分量方向向下,大小为4.5×10 - 5T. 一灵敏电压表连接在当地入海河段的 两岸,河宽100 m,该河段涨潮和落潮时有 海水(视为导体)流过.设落潮时,海水自西 向东流,流速为 2 m/s. 下列说法正确的是 ( ) • A.电压表记录的电压为5 mV B.电压 表记录的电压为9 mV • C.河南岸的电势较高 D . 河北 岸的 电势较高 • 解析: 由E=BLv=4.5×10-5×100×2= 9×10-3 (V)可知A项错误,B项正确.再由
• 一、对公式E=Blv的理解 • 1.E= Blvsin θ中的v若为瞬时速度,则算 出的 E 为瞬时电动势,当 v 为平均速度时, 算出的就是平均电动势.
• 2 . E = Blvsin θ 中的 l 为有效切割长度,即
导体在与v垂直方向上的投影长度,如图中
导体的有效长度l分别为:
• 甲:l=cd·sin β(容易错认为l=ab·sin β).
• 三、通电和断电自感的比较
通电自感 断电自感
电路图
器材 要求
A1、A2同规格,R=RL,L较大
L很大(有铁芯),RL≪RA
现象
在S闭合瞬间,A2灯立即亮起来, 在开关S断开时,灯A突然闪 A1灯逐渐变亮,最终一样亮 亮一下后再渐渐熄灭
通电自感
断电自感
断开开关S时,流过线圈L的电流
由于开关闭合时,流过电 感线圈的电流迅速增大, 原因
导体棒以端点为轴,在匀强磁场中垂直于磁感线方向匀速转动产 1 1 生感应电动势E=Bl v = Bl2ω (平均速度等于中点位置线速度 lω). 2 2
• 三、自感和涡流 • 1.自感现象 • (1)概念:由于导体本身的 变化而产 电流 生的电磁感应现象称为自感,由于自感而 自感电动势 产生的感应电动势叫做 . ΔI
《物理导练》2017年高考物理第一轮总复习新课标选修3-2第九章电磁感应9-2aWord版含解析
自主测评一、基础知识题组 1.[法拉第电磁感应定律](2014年高考·安徽卷) 英国物理学家麦克斯韦认为,磁场变化时会在空间激发感生电场,如图9-2-1所示,一个半径为r 的绝缘细圆环水平放置,环内存在竖直向上的匀强磁场B ,环上套一带电荷量为+q 的小球.已知磁感强度B 随时间均匀增加,其变化率为k ,若小球在环上运动一周,则感生电场对小球的作用力所做功的大小是( )图9-2-1A .0B .12r 2qk C .2πr 2qkD .πr 2qk解析:沿圆环一周产生的感生电动势U =nS ΔBΔt=πr 2·k ,则感生电场力做的功W =qU =πr 2qk.答案:D 2.[自感现象]图9-2-2如图9-2-2所示的电路中,电源的电动势为E ,内阻为r ,电感L 的电阻不计,电阻R 的阻值大于灯泡D 的阻值.在t =0时刻闭合开关S ,经过一段时间后,在t =t 1时刻断开S .下列表示A 、B 两点间电压U AB 随时间t 变化的图象中,正确的是( )解析:开关闭合时,线圈由于自感对电流的阻碍作用,可看作“变化的电阻”,线圈电阻逐渐减小,并联电路电阻逐渐减小,电压U AB 逐渐减小;开关闭合后再断开时,线圈的感应电流与原电流方向相同,形成回路,灯泡的电流与原电流方向相反,又由于电阻R 的阻值大于灯泡D 的阻值,电路稳定时,电感中电流小于灯泡中的电流,断电后电流突变为较小的值并逐渐减小到0,所以正确选项为B .答案:B二、规律方法题组 3.[导体切割磁感线问题]图9-2-3如图9-2-3所示,在磁感应强度为B 、方向垂直纸面向里的匀强磁场中,金属杆MN 在平行金属导轨上以速度v 向右匀速滑动,MN 中产生的感应电动势为E 1;若磁感应强度增为2B ,其他条件不变,MN 中产生的感应电动势变为E 2.则通过电阻R 的电流方向及E 1与E 2之比分别为( )A .c →a,2∶1B .a →c,2∶1C .a →c,1∶2D .c →a,1∶2解析:由右手定则可知金属杆中的电流方向为N →M ,通过电阻R 的电流方向为a →c.磁感应强度为B 时,金属杆切割磁感线产生的感应电动势为E 1=Blv ;磁感应强度为2B 时,金属杆切割磁感线产生的感应电动势为E 2=2Blv ,因而E 1∶E 2=1∶2.综上可知选项C 正确.答案:C图9-2-44.[用结论“q =n ΔΦR 总”解题]如图9-2-4所示,正方形线圈abcd 位于纸面内,边长为L ,匝数为N ,线圈内接有电阻值为R 的电阻,过ab 中点和cd 中点的连线OO ′恰好位于垂直纸面向里的匀强磁场的右边界上,磁场的磁感应强度为B.当线圈转过90°时,通过电阻R 的电荷量为( )A .BL 22R B .NBL 22R C .BL 2RD .NBL 2R解析:初状态时,通过线圈的磁通量为Φ1=BL 22,当线圈转过90°时,通过线圈的磁通量为0,由q =N ΔΦR 总可得通过电阻R 的电荷量为NBL 22R. 答案:B。
高考物理一轮复习人教课件选修32第9章电磁感应章末大盘点
• (1)流过R0的最大电流; • (2)从开始到速度最大的过程中ab杆沿斜面
下滑的距离; • (3【)错在因时分析间】1 典s例内4 通错误过的主ab要杆原因横:一截是面对串积、的并联最电路大中电焦
荷量.
耳热的分配不清楚,误认为焦耳热都和电阻成正比,错误地认为 ab 杆
的焦耳热是 R0 的 1/2 为 0.25 J;二是对公式 q=ΔRΦ=BRΔS认识不清,ΔS
• (1)线框中产生的总电动势大小和导线中的 电流大小;
• (2)线框所受安培力的大小和方向. 【错因分析】 没有考虑线框的 ab、cd 两条边在方向相反的磁场中
均产生电动势,只按一条边切割磁感线来计算电动势,得出 E=nB0Lv 的错误结果.
求线框所受安培力时,一是不注意总安培力为 n 匝线圈受力之和; 二是没有考虑线框的 ab、cd 两条边均受到安培力,得出 F=BIL= nB0R2L2v的错误结论.
A
=0.5 A
流过R0的最大电流为I0=I2m=0.25 A.
(2)Q总=4Q0=2 J,E=ImR总=0.5×2 V=1.0 V
此时杆的速度为vm=BEL=1.01×.00.4 m/s=2.5 m/s
由动能定理得mgxsin θ-μmgxcos θ-Q总=12mvm2-0
求得杆下滑的距离
x=2mgmsvinm2θ+-2μQc总os θ=2×0.10×.11×0×2.502+.6-2×0.25×0.8 m
• t=0时,磁场在xOy平面内的分布如下 图所示,其磁感应强度的大小均为B0,方 向垂直于xOy平面,相邻磁场区域的磁场方 向相反,每个同向磁场区域的宽度均为L0 ,整个磁场以速度v沿x轴正方向匀速运动 .若在磁场所在区间内放置一由n匝线圈组 成的矩形线框abcd,线框的bc边平行于x轴 .bc=LB、ab=L,LB略大于L0,总电阻为 R,线框始终保持静止.求:
(新课标)2017届高考物理一轮总复习 第九章 电磁感应 第1讲 电磁感应现象 楞次定律课件(选修3-2)
2.在下图所示的闭合铁芯上绕有一组线圈,线圈与滑 动变阻器、电池构成电路,a、b、c为三个闭合金属圆环, 假定线圈产生的磁场的磁感线全部集中在铁芯内,则当滑动 变阻器滑动触头左右滑动时,能产生感应电流的圆环是 ()
A.a、b两环 C.a、c两环 [答案] A
B.b、c两环 D.a、b、c三个环
考点一 磁通量 电磁感应现象 1.穿过闭合电路的磁通量发生变化,大致有以下几种情 况 (1)磁感应强度 B 不变,线圈面积 S 发生变化.例如,闭 合电路的一部分导体切割磁感线时. (2)线圈面积 S 不变,磁感应强度 B 发生变化.例如,线 圈与磁体之间发生相对运动时或者磁场是由通电螺线管产 生,而螺线管中的电流变化时.
1.电磁感应现象:当闭合电路的磁通量发生变化时,电
路中有 感应电流 产生的现象.
2.产生感应电流的两种情况 (1)闭合电路的磁通量 发生变化 . (2)闭合电路的一部分导体切割 磁感线
运动.
3.电磁感应现象的实质:电路中产生 感应电动势 ,如 果电路闭合则有感应电流产生.
4.能量转化:发生电磁感应现象时,是机械能或其他形 式的能量转化为 电能 .
[跟踪训练] 1.(2015·福建莆田一模)某实验小组用如图所示的实验装 置来验证楞次定律.当条形磁铁自上而下穿过固定的线圈时, 通过电流计的感应电流方向是( ) A.a→G→b B.先 a→G→b,后 b→G→a C.b→G→a D.先 b→G→a,后 a→G→b
[解析] 条形磁铁在穿入线圈的过程中,磁场方向向 下.线圈中向下的磁通量增加,由楞次定律知,线圈中感应 电流产生的磁场方向向上,应用右手定则可以判断感应电流 的方向为逆时针(俯视),即 b→G→a.同理可以判断:条形磁 铁穿出线圈的过程中,向下的磁通量减小,由楞次定律可得 线圈中将产生顺时针方向(俯视)的感应电流,即 a→G→b.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考·模拟·创新
图9-3-13
1.(2015年高考·福建卷)如图9-3-13,由某种粗细均匀的总电阻为3R的金属条制成的矩形线框abcd,固定在水平面内且处于方向竖直向下的匀强磁场B中.一接入电路电阻为R的导体棒PQ,在水平拉力作用下沿ab、dc以速度v匀速滑动,滑动过程PQ始终与ab 垂直,且与线框接触良好,不计摩擦.在PQ从靠近ad处向bc滑动的过程中()
A.PQ中电流先增大后减小
B.PQ两端电压先减小后增大
C.PQ上拉力的功率先减小后增大
D.线框消耗的电功率先减小后增大
解析:PQ棒垂直切割磁感线匀速运动,它相当于恒定电源.PQ 棒移动过程中,abcd线框的等效电阻是变化的,设PQ左边线路电阻
为R1,所以R总=R+R1(3R-R1)
3R,PQ棒移到中间时,abcd框的等
效电阻最大,此刻PQ棒电流最小,故PQ中电流先减小后增大,A 项错误;PQ两端电压U=E-IR,因为电流先减小后增大,所以电压先增大后减小,B项错误;PQ棒到中间时,安培力最小,据P=Fv,拉力的瞬时功率最小,C项正确;当外电阻为R时功率最大,外电阻
由小于R增至3
2R再减小到小于R,故线圈消耗功率先大再小、再大再小,D错.
答案:C
2.(2015年高考·山东卷)如图9-3-14甲,R0为定值电阻,两
金属圆环固定在同一绝缘平面内.左端连接在一周期为T0的正弦交流电源上,经二极管整流后,通过R0的电流i始终向左,其大小按图乙所示规律变化.规定内圆环a端电势高于b端时,a、b间的电压u ab为正,下列u ab—t图象可能正确的是()
图9-3-14
解析:在第一个0.25T0时间内,通过大圆环的电流为顺时针逐渐增加,由楞次定律可判断内环内a端电势高于b端,因电流的变化率逐渐减小故内环的电动势逐渐减小;同理在第0.25T0~0.5T0时间内,通过大圆环的电流为顺时针逐渐减小,由楞次定律可判断内环内a端电势低于b端,因电流的变化率逐渐变大,故内环的电动势逐渐变大;故选项C正确.
答案:C
3.(2015年高考·北京卷)如图9-3-15所示,足够长的平行光滑金属导轨水平放置,宽度L=0.4 m,一端连接R=1 Ω的电阻.导轨所在空间存在竖直向下的匀强磁场,磁感应强度B=1 T.导体棒MN 放在导轨上,其长度恰好等于导轨间距,与导轨接触良好.导轨和导体棒的电阻均可忽略不计.在平行于导轨的拉力F作用下,导体棒沿
导轨向右匀速运动,速度v=5 m/s.求:
图9-3-15
(1)感应电动势E和感应电流I;
(2)在0.1 s时间内,拉力的冲量I F的大小;
(3)若将MN换为电阻r=1 Ω的导体棒,其他条件不变,求导体棒两端的电压U.
解析:(1)根据法拉第电磁感应定律可得,
感应电动势E=BLv=1 T×0.4 m×5 m/s=2 V
感应电流I=E
R=
2 V
1 Ω=
2 A.
(2)导体棒所受安培力大小F安=BIL=0.8 N,
导体棒在匀速运动过程中,拉力大小等于安培力,所以导体棒所受拉力F=F安=0.8 N
拉力的冲量I F=Ft=0.8 N×0.1 s=0.08 N·s.
(3)由闭合电路欧姆定律可得,电路中电流
I′=
E
R+r
=1 A,
由欧姆定律可得,导体棒两端电压U=I′R=1 V. 答案:(1)2 V 2 A(2)0.08 N·s(3)1 V。