gap和aox1启动子的联合运用加强表达蛋白
毕赤酵母表达系统研究进展
毕赤酵母表达系统研究进展马银鹏;王玉文;党阿丽;孔祥辉;张介驰【摘要】毕赤酵母是外源蛋白表达的一种重要宿主.毕赤酵母表达系统既具有原核表达系统操作简单、价格低廉、生产率高的优点,又具有真核表达系统能对表达后的蛋白折叠、糖基化和形成二硫键等翻译后进行加工和修饰的功能,因此毕赤酵母表达系统具有广泛的应用前景和重要的研究价值.本研究对毕赤酵母表达系统的特点、组成、影响外源基因高效表达的影响因素等进行总结.【期刊名称】《黑龙江科学》【年(卷),期】2013(004)009【总页数】5页(P27-31)【关键词】毕赤酵母;表达系统;外源蛋白;甲醇【作者】马银鹏;王玉文;党阿丽;孔祥辉;张介驰【作者单位】黑龙江省科学院微生物研究所,哈尔滨150010;黑龙江省科学院微生物研究所,哈尔滨150010;黑龙江省科学院微生物研究所,哈尔滨150010;黑龙江省科学院微生物研究所,哈尔滨150010;黑龙江省科学院高技术研究院,哈尔滨150020;黑龙江省科学院微生物研究所,哈尔滨150010;黑龙江省科学院高技术研究院,哈尔滨150020【正文语种】中文【中图分类】Q815大肠杆菌(Escherichia coli)表达系统由于其具有遗传背景和生化特性清楚、成本低廉、操作简便、生产效率高等优点最早被采用作为外源基因表达系统。
但大肠杆菌表达系统缺少真核生物的蛋白翻译后进行加工和修饰的功能,表达的蛋白大部分以包含体形式存在,且需要经过复杂的复性才能恢复构象和活性以及背景杂蛋白较多[1],为克服这些缺点,人们于1979年开发了酵母表达系统。
酵母是单细胞低等真核生物,既具有原核生物细胞生长速度快、容易培养、操作简单等优点,又具有真核生物表达时对蛋白质的加工和修饰等功能。
因此相对于原核表达系统表达出的不具有活性的蛋白,酵母表达出的蛋白是具有生物学活性的,而且酵母表达系统比其他真核表达系统如昆虫、哺乳动物组织等表达系统快速、简便、成本低[2]。
毕赤酵母蛋白表达系统研究进展
P. pastoris 是甲醇营养型酵母中的一种,可以在 含有甲醇的培养基上快速生长。与其他蛋白表达系
收稿日期: 2010-11-02 基金项目: 福建省科技厅资助项目( 2009N0032) ,福建省教育厅资助项目( JA08041) 作者简介: 杨梅,女,博士,教授,研究方向: 生物化学与分子生物学; E-mail: myang@ fjnu. edu. cn
3 外源蛋白的表达及其影响因素
目前,毕赤酵母蛋白表达系统在国内外应用都 很广泛,已成功表达许多外源蛋白。但由于毕赤酵 母本身仅分泌少量蛋白,因此外源蛋白占培养基中 总蛋白的绝大多数。有些外源蛋白的表达量可达到 g / L 以上水平,如 Hao 等[27]成功表达的重组人复合 α-干扰 素 ( cIFN) 的 表 达 量 达 到 1. 24 g / L; Huang 等[28]表达的截短的 1,3-1,4-β-D-葡聚糖酶的表达 量为 3 g /L。虽然许多外源蛋白都可以在毕赤酵母 中高效表达,但仍然有些蛋白表达量相对较低或不 表达,在同一表达系统中表达不同的外源蛋白,其表 达量千差 万 别,外 源 蛋 白 的 表 达 受 多 方 面 因 素 的 影响。 3. 1 外源基因自身的内在特性
母属( Candida) 和汉逊酵母属( Hansenula) 等。毕赤 酵母( P. pastoris) 作为甲醇酵母的一种,是单细胞低 等真核生物,已发展成为广泛应用的表达宿主。与 其他表达系统相比,毕赤酵母具有不可比拟的优势, 其既有原核生物繁殖快、易于培养、培养基廉价和试 验过程简单可行等特点,又具有强有力的启动子,还 可以对外源蛋白进行加工折叠和翻译后修饰,具备 了典型的真核生物表达体系的特点。毕赤酵母表达 系统已发展成为一个较为理想的蛋白表达系统,被 国内外广泛应用于生产外源蛋白。目前,已有 500 多种外源蛋白在该表达系统中获得表达[4]。
毕赤酵母对甲醇胁迫的响应及其对蛋白表达的影响
gy,Guiyang,Guizhou 550000)
迫,例如代谢产物、不适温度、pH 和离子强度等胁迫,这些胁
迫可能会显著影响细胞的生理特性,包括蛋白合成和分泌表
达能力,该问题已经受到越来越多的科研工作者的关注。 毕
赤酵母是甲基营养型酵母,能以甲醇作为唯一碳源和能源,
同时,甲醇也是诱导毕赤酵母外源蛋白表达最常用的诱导
物,但甲醇本身对宿主也会产生胁迫效应。 因此,若要获得
物饥饿等[20] 都会激发此通路。 UPR 下游靶基因功能涵盖大
在细胞质中被甲醛脱氢酶( FLD1) 催化为甲酸,接着被甲酸
等,对细胞生理特性影响也十分广泛,有些效应并不与蛋白
被醇氧化酶(AOX1 和 AOX2)转化为甲醛和过氧化氢。 甲醛
脱氢酶转化为二氧化碳和水,并释放能量;或是甲醛在二羟
丙酮合成酶(DAS1)作用下与 5-磷酸木酮糖合成 3-磷酸甘
Li 等[15] 研究发现,在甲醇诱导阶段,毕赤酵母能量代谢途径
普遍下调。
2.3 诱发氧化胁迫响应(oxidative stress response) 毕赤酵
母需要提高过氧化物酶水平来抵御甲醇的毒害作用[16] 。 在
部分新生肽合成、折叠、翻译后修饰、运输途径和 ERAD 途径
表达有直接的关联。
chain Fv antibody fragment) [10] 均 能 获 得 理 想 的 表 达 水 平。
Vanz 等[11] 报道,诱导表达乙肝表面抗原( hepatitis B surface
aox1启动子原理
aox1启动子原理
AOX1启动子是一种在基因调控中起着重要作用的DNA序列。
启
动子位于基因的上游区域,通常位于转录起始点附近,它在调控基
因表达过程中起着关键作用。
启动子的主要作用是提供给RNA聚合
酶和其他转录因子结合的位置,从而启动基因的转录过程。
启动子的工作原理涉及多个方面。
首先,启动子中包含特定的DNA序列,这些序列可以与转录因子结合。
转录因子是一类蛋白质,它们能够识别并结合到启动子上特定的DNA序列,从而招募RNA聚
合酶并形成转录复合物。
这一过程使得RNA聚合酶能够在启动子附
近的基因上进行转录,合成出相应的mRNA分子。
其次,启动子的甲基化状态也会影响其功能。
DNA甲基化是一
种常见的表观遗传修饰形式,它可以影响启动子的可及性,从而调
控基因的表达水平。
甲基化状态的改变可能导致启动子的活性发生
变化,进而影响基因的表达。
此外,启动子的结构和序列特征也对其功能产生影响。
一些启
动子可能包含增强子和转录因子结合位点,这些结构特征可以进一
步影响启动子的活性和特异性。
总的来说,AOX1启动子的原理涉及其特定的DNA序列、转录因子的结合、甲基化状态以及结构特征等多个方面,这些因素共同作用,决定了启动子在基因调控中的重要作用。
希望这个回答能够全面回答你的问题。
毕赤酵母表达系统简介
巴斯德毕赤酵母及启动子1.1 毕赤酵母表达系统简介随着蛋白异源表达的飞速发展,越来越多的表达系统被建立并得到应用。
酵母作为单细胞真核生物,因具有比较完备的基因表达调控机制和对表达产物的加工修饰能力,仍表现出不可比拟的优势。
以甲醇营养型酵母(Methylotrophic yeast)-毕赤酵母为代表的第二代酵母表达系统,是近年来被公认的最有效的外源蛋白表达系统之一,已有多种外源蛋白在该宿主系统中获得了成功表达[1]。
作为生产外源蛋白的重要宿主菌,依靠其各种不同功能的表达载体,已经得到广泛的应用。
表达的蛋白质包括酶、膜蛋白、抗原、抗体和调节蛋白等[2,3]。
毕赤酵母(Pichia pastoris)表达系统是近年来发展迅速、应用广泛的一种真表达系统。
它是甲醇营养型酵母菌,有两个乙醇氧化酶(alcohol oxidase,Aox)码基因AOX1和AOX2,两者序列相似,AOX1基因严格受甲醇诱导和调控。
当甲醇为唯一碳源时,AOX1启动子可被甲醇诱导,启动乙醇氧化酶的表达,从而用甲醇进行代谢[4]。
含AOX1启动子的质粒可用来促进编码外源蛋白的目的因的表达。
随着Invitrogen公司开发的一系列毕赤酵母表达试剂盒的应用,目前用该统已成功表达出了数以千计的来自细菌、真菌、原生动物、植物、无脊椎动物、包括人在内的脊椎动物以及病毒等的具有生物学功能的外源蛋白或蛋白结构[5,6]。
1.1.1 P.Pastoris表达载体及其元件由于毕赤酵母没有稳定的附加质粒,表达载体需与宿主染色体发生同源重组,外源基因表达框架整合于染色体中以实现外源基因的表达整合表达的优点在于保持外源基因稳定性并可产生多拷贝基因。
典型的毕赤氏酵母表达载体含有醇氧化酶基因的调控序列,主要的结构包括:5′AOX1启动子片段、多克隆位点(MCS)、转录终止和polyA形成基因序列(TT)、筛选标记(His4或Zeocin)、3′AOX1基因片段,作为一个能在大肠杆菌中繁殖扩增的穿梭质粒,它还有部分pBR322质粒或COLE1序列。
2023北京重点校高三(上)期末生物汇编:基因工程章节综合
2023北京重点校高三(上)期末生物汇编基因工程章节综合一、单选题1.(2023秋·北京昌平·高三统考期末)科研人员在常规PCR基础上发展出同时检测多种病原体的多重PCR技术,检测原理(a、b)及结果(c)如下图。
下列叙述错误..的是()A.需要针对不同病原体设计特异性引物和荧光探针B.图中b是PCR反应的复性过程C.多重PCR同时完成对4种病原体的检测D.由结果推测该检测样品中有A病原体的核酸2.(2023秋·北京昌平·高三统考期末)为探究海鲷催乳素启动子(psbPRL)的关键功能位点,将启动子区域序列进行分段截短,分别构建含荧光素酶基因的重组质粒,检测启动子的启动能力,结果如下图。
下列叙述错误..的是()A.将启动子序列插入荧光素酶基因的上游B.用限制酶和DNA连接酶构建重组质粒C.荧光值越高代表启动子的启动能力越强D.150-700bp之间具有提高启动能力的序列3.(2023秋·北京通州·高三统考期末)下列关于生物技术的操作过程、原理或应用的说法错误..的是()A.基因工程的核心环节是构建基因表达载体B.胚胎分割可以看作动物有性生殖方法的之一C.细胞膜具有流动性是植物体细胞杂交的基础D.稀释涂布平板法可用于微生物的分离与纯化4.(2023秋·北京石景山·高三统考期末)很多人认为“番茄没有小时候的味道了”,这是由于人们在选育番茄时更注重品相而忽略了风味所致。
与番茄风味相关的基因t可在90%以上的野生番茄中检测到,但仅有不到7%的栽培番茄含有此基因。
从进化的角度来看,人工选育番茄()A.加快了新物种的形成B.扩大了番茄的基因库C.定向改变了番茄的进化方向D.为番茄进化提供了原材料5.(2023秋·北京石景山·高三统考期末)下列生物工程中所用物质与其发挥的作用,不能正确对应的是()A.灭活病毒——诱导动物细胞融合B.重组质粒——携带外源基因进入受体细胞C.琼脂——为微生物生长提供碳源D.DNA聚合酶——催化合成新的子链6.(2023秋·北京东城·高三统考期末)人凝血酶Ⅲ是一种分泌蛋白,可预防和治疗急慢性血栓。
酵母表达系统概述及相关研究进展
酵母表达系统的研究进展和前景( XXXXXXXXXXXXXXXXXXXXXXXXXXXX学院)摘要:酵母表达系统在表达真核生物蛋白方面已经得到广泛而成功的应用,表达出的重组蛋白表现出较高甚至比原物种体内的蛋白质更高的生物活性。
近年来,利用酿酒酵母和毕赤巴斯德氏酵母表达人源蛋白或肽类活性物以及其它中间体取得了新的进展。
本文主要从上游设计,重组表达,分离纯化和活性验证等方面进行了总结,并且对未来更好的利用酵母生产药物等活性物质作出展望。
关键词:酵母表达系统;蛋白分泌:异源基因;糖基化修饰;人源活性药物引言酵母作为一种表达外源基因的宿主菌, 既具有操作简单, 生长快等特点, 又具有真核细胞的翻译后修饰加工系统。
在表达某些基因工程产品时, 可以大规模生产, 从而有效地降低成本。
常用的酵母表达系统有酿酒酵母表达系统, 甲基营养型酵母表达系统和裂殖酵母表达系统。
酿酒酵母(Saccharomyces. cerevisiae)在分子遗传学方面被人们的认识最早,也是最先作为外源基因表达的酵母宿主。
但由于酿酒酵母的局限,1983 年美国Wegner 等人最先发展了以甲基营养型酵母(methylotrophic yeast)为代表的第二代酵母表达系统。
其中毕赤酵母(P. pastoris)是继S. cerevisiae之后被迅速推广的一种外源基因表达的宿主菌。
酿酒酵母难于高密度培养,分泌效率低,几乎不分泌分子量大于30 kD的外源蛋白质,也不能使所表达的外源蛋白质正确糖基化,而且表达蛋白质的C端往往被截短。
因此,一般不用酿酒酵母做重组蛋白质表达的宿主菌。
但是,可以通过基因敲除或改造用酿酒酵母表达亚单位疫苗(如HBV疫苗、口蹄疫疫苗等)或非蛋白活性物质及其中间体(如青蒿素,色素)。
与原核和其它真核表达系统相比,巴斯德毕赤酵母作为重组蛋白表达系统有以下优点[1]:(1)生长速率快,易于高密度培养(2)在几乎不含蛋白质的培养基中具有高水平产率(3)消除了内源毒性和噬菌体感染(4)易于对具有明确特征的酵母表达载体进行操作(5)对毕赤酵母的噬菌体对人没有病原性(6)具有多种翻译后修饰包括多肽折叠,糖基化,乙酰化,甲基化,蛋白质降解调控以及定位至亚细胞结构(7)能够构建分泌的蛋白,这样只需从生长培养基中提纯而不必收集酵母本身细胞。
毕赤酵母表达系统中启动元件的研究进展
毕赤酵母表达系统中启动元件的研究进展蒋慧慧【摘要】毕赤酵母是真核细胞常用表达系统之一,具有细胞密度高、纯化方法简单、转录后修饰功能完善等优点.作为重要的调控元件,表达系统中启动元件的功能强弱与表达效率的高低密切相关.目前,毕赤酵母表达系统中常用的启动元件分为三类,分别是以p A OX为代表的甲醇诱导型、以pGAP为代表的非甲醇诱导型,还有一些新型工业酵母启动子也是理想的表达系统启动元件.充分了解这些酵母启动子的最新研究进展,可以为工业酵母表达系统的优化提供重要的发展思路.【期刊名称】《巢湖学院学报》【年(卷),期】2017(019)003【总页数】6页(P67-72)【关键词】毕赤酵母;启动子;诱导型;组成型【作者】蒋慧慧【作者单位】巢湖学院,安徽巢湖 238000【正文语种】中文【中图分类】Q939.5毕赤酵母(Pichia pastoris)是为数不多的商业化真核表达系统之一,自上世纪70年代Phillips Petroleum公司成功开发出P.pastoris高密度培养方案,迄今已有超过600种蛋白质成功利用这一微生物细胞工厂实现基因克隆并表达[1]。
进入21世纪,P.pastoris在结构基因组学、蛋白质组学等方面也有应用[2]。
毕赤酵母表达系统之所以如此受青睐,不仅因为其具有营养成分单一、细胞密度高、纯化方法简单、转录后修饰完善等优点,还与该系统中可供选择的受严密调控、功能各异的启动元件密不可分。
毕赤酵母等真核表达系统的表达效率很大程度上取决于启动元件的功能,而启动功能的强弱往往决定于它的结构和转录条件。
目前,酵母等大多数真核生物启动元件所共有的结构模式已得到普遍认可,如图1所示[3],包括上游启动子和核心启动子两部分,其中位于转录起始位点上游的TATA区与原核生物Pribnow区类似,是富含TA的保守序列[4];TATA区的中心位置一般位于-20到-30,主要负责转录起始位点的确定;而-40到-110区的CAAT区、GC区属上游激活序列,主要控制转录起始的频率;增强子则能使连锁基因转录频率明显增加。
毕赤酵母蛋白表达载体是什么?
毕赤酵母蛋白表达载体是什么?
毕赤酵母重组蛋白表达载体系统有着非常强大高效的重组蛋白表达能力。
毕赤酵母作为一种甲基营养型酵母,被广泛应用在蛋白产品的研究和工业应用上。
在该载体系统中,目的基因通常被克隆在甘油醛-3-磷酸脱氢酶启动子(GAP)和乙醇氧化酶1启动子(AOX1)的下游,这取决于基因的基本结构和表达诱导条件的要求。
GAP是一个强大的组成型启动子,而AOX1则是受甲醇严格高效调控的启动子,这两个启动子都能够介导目的基因的高水平表达,目的蛋白的累加总量往往可达总细胞可溶性蛋白的30%以上。
一般来说,GAP启动子的表达能力略强于诱导状态下的AOX1启动子。
建议您做一个时间曲线测试,以确定表达目的蛋白的最佳启动子类型。
与酿酒酵母不同的是,毕赤酵母以甲醇为基础碳源,能更高水平地介导重组蛋白的表达(通常是酿酒酵母的的10-100倍)。
另外,毕赤酵母和酿酒酵母在技术上有许多共通之处(如互补作用),通用的基因注释和遗传命名法简化了两个物种的研究。
启动子互作蛋白技术路线
启动子互作蛋白技术路线
启动子互作蛋白技术路线是一种用于研究启动子与互作蛋白之间相互作用的技术方法。
在这种技术路线中,研究人员通常会利用启动子结合互作蛋白的方式来探究启动子的功能及其调控机制。
下面我们将介绍启动子互作蛋白技术路线的相关内容。
首先,启动子是一种位于基因上游的DNA序列,能够调控基因的转录活性。
启动子通常与一些互作蛋白结合,从而影响基因的表达。
互作蛋白是一类在细胞内发挥重要功能的蛋白质,它们能够与启动子结合,调控基因的转录活性。
启动子互作蛋白技术路线的关键步骤包括:首先,研究人员需要确定目标启动子及其潜在的互作蛋白。
其次,利用生物信息学工具对启动子和互作蛋白的结合位点进行预测。
接着,进行实验验证,通常包括染色质免疫沉淀、质谱分析、酶联免疫吸附实验等方法来确认启动子与互作蛋白的相互作用。
最后,研究人员可以进一步探究启动子与互作蛋白之间的功能关系,以及它们在基因调控中的作用机制。
通过启动子互作蛋白技术路线,研究人员可以深入了解启动子与互作蛋白之间的相互作用,揭示基因调控的分子机制。
这种技术路线有助于解析基因的表达调控网络,为疾病发病机制的研究提供重要的线索。
同时,启动子互作蛋白技术路线的应用还可以拓展到药物研发领域,帮助筛选靶向启动子的药物,从而实现个性化治疗的目标。
总的来说,启动子互作蛋白技术路线是一种重要的研究方法,能够深入探究启动子与互作蛋白的互动机制,为基因调控研究和药物研发提供重要的支持。
通过不断优化这一技术路线,我们有望揭示更多基因的调控机制,为疾病的治疗和预防提供更多的科学依据。
启动子互作蛋白技术路线
启动子互作蛋白技术路线启动子互作蛋白技术路线是一种用于研究基因调控的新技术方法,它通过利用启动子间的相互作用来探究基因表达调控网络。
这一技术路线的应用能够帮助研究人员更全面地了解基因表达调控的机制,从而为基因治疗和药物研发提供更深入的理论支持。
首先,启动子互作蛋白技术路线的基本原理是利用启动子间的相互作用来筛选调控同一基因的蛋白因子。
研究人员可以设计合适的实验方法,通过检测启动子区域的相互作用,识别出参与基因调控的关键蛋白因子。
这种技术路线的优势在于可以更准确地识别出参与同一基因调控的蛋白因子,有助于揭示基因表达调控的复杂网络。
其次,启动子互作蛋白技术路线在基因组学研究中具有广泛的应用前景。
通过分析不同基因启动子间的相互作用,研究人员可以构建基因表达调控的网络图谱,揭示不同基因之间的调控关系,为疾病发病机制的研究提供重要的线索。
同时,启动子互作蛋白技术路线还可以帮助研究人员发现新的基因调控通路,为基因治疗和药物研发提供新的靶点。
此外,启动子互作蛋白技术路线的发展也为生物医学研究提供了新的方法和思路。
通过利用启动子间的相互作用,研究人员可以研究基因的调控机制,探究疾病的发病机理,为疾病的诊断和治疗提供新的思路和方法。
启动子互作蛋白技术路线的不断完善和应用,将有助于推动基因组学领域的研究和发展,为人类健康的研究和治疗带来新的希望。
综上所述,启动子互作蛋白技术路线作为一种用于研究基因调控的新技术方法,具有重要的研究意义和应用前景。
通过利用启动子间的相互作用,研究人员可以更全面地了解基因的调控机制,为基因治疗和药物研发提供新的思路和方法。
随着技术的不断完善和应用的深入,启动子互作蛋白技术路线将在基因组学研究和生物医学研究中发挥越来越重要的作用,为人类健康的研究和治疗带来新的希望。
酵母成型脂肪酶筛选方法
酵母成型脂肪酶筛选方法本文作者:朱珊珊、喻晓蔚、徐岩单位:江南大学生物工程学院工业生物技术教育部重点实验室作为真核表达系统,巴斯德毕赤酵母表达系统正以其独特的优势和潜力得到广泛使用[1]。
本实验室在前期研究中,从一株酿造浓香型大曲酒酒曲中筛选获得的华根霉中克隆得到其脂肪酶基因proRCL(GenBank登录号No.EF405962),并在毕赤酵母中实现了克隆与高效表达[2]。
研究所用的表达载体pPIC9K含有一个来自于乙醇氧化酶Ⅰ(AOX1)基因的严格甲醇诱导型的强启动子pAOX1,但甲醇易燃,在工业放大过程中存在安全隐患。
pGAP是一种糖酵解中的关键酶――三磷酸甘油醛脱氢酶(Glyceraldehyde-3-phosphatedehydrogenase,GAP)的启动子,在葡萄糖、甘油等基本碳源的存在条件下,能高效地组成型表达外源基因,在培养过程中不需更换碳源,简化了操作步骤,也更适合工业上的应用,因此我们考虑利用GAP启动子来构建组成型表达proRCL的载体。
外源基因整合入毕赤酵母,根据线性化位点位置的不同,将会导致两种整合入基因组事件――单插入与双交换的发生,产生两种不同的表型,即Mut+和MutS。
单插入事件通常会导致插入不同拷贝数的基因组,而双交换一般是将单拷贝外源基因整合入基因组。
多拷贝外源基因的整合可以提高外源蛋白的表达量,但是利用毕赤酵母表达系统进行定向进化的过程中,多拷贝的发生会干扰重组子的筛选,例如筛选酶活提高突变株时,拷贝数的增加也会导致酶活增高,从而干扰了酶活提高突变酶的筛选。
而利用商业化的pGAPZαA表达质粒无法产生双交换事件,为了同时利用启动子pGAP进行组成型表达筛选,以及将外源基因双交换整合入基因组产生单拷贝重组子,本文在保留了诱导型表达载体pPIC9K上的5′AOX1的基础上,将PCR得到的pGAP基因片段插入到5′AOX1序列之后,华根霉脂肪酶基因proRCL之前,通过载体与基因组之间的5′AOX1及3′AOX1区发生的双交换事件,将构建的组成型表达载体整合到酵母基因组中,产生MutS表型的菌株。
蛋白质表达产量提高各种经典策略序列比较
蛋白质表达产量提高各种经典策略序列比较蛋白质表达是生物学研究中的重要一环,它对于研究蛋白质功能、生物学过程以及开发药物等领域都具有重要意义。
近年来,随着研究技术的不断发展和突破,人们对于提高蛋白质表达产量的需求也越来越迫切。
为了满足这一需求,科学家们开发了各种经典策略序列,本文将对其中几种常用的策略进行比较分析。
1. 启动子序列优化策略启动子是蛋白质表达的重要调控元件,优化启动子序列可以显著提高蛋白质表达产量。
常见的启动子优化策略包括选择强启动子、改变启动子序列中的转录因子结合位点以增强转录活性等。
这些策略主要通过增加转录起始复合物的招募和促进转录过程的进行来增加表达产量。
2. 编码区优化策略编码区是蛋白质表达的另一个重要元件,优化编码区序列可以增加翻译的效率和稳定性。
最常见的编码区优化策略是改变密码子使用频率,将使用频率高的密码子替换为使用频率低的密码子。
这样可以提高翻译过程的效率,并减少转录后修饰过程中的错误。
3. 抗反式梁元件策略抗反式梁元件是一类具有抑制性效果的序列,可以提高目标蛋白质的表达产量。
常见的抗反式梁元件包括抗反式梁RNA(Aptamer RNA)和突变子。
通过与目标蛋白质结合,抗反式梁RNA可以阻断翻译过程中出现的中断位点,从而提高翻译效率。
突变子是一种通过在目标蛋白质编码区引入突变,从而形成抗反式梁的序列。
4. 表达宿主优化策略表达宿主也是蛋白质表达产量的重要影响因素,优化宿主的选择可以提高蛋白质表达效率。
目前常用的表达宿主包括大肠杆菌、酵母等。
大肠杆菌是常用的表达宿主之一,其表达系统成熟、操作简便,但也存在蛋白质不稳定和形成包涵体等问题。
而酵母表达系统可以对复杂蛋白质进行正确折叠,同时也能够在酵母中实现大量蛋白质的表达。
5. 提高细胞可用能策略高效能的细胞是提高蛋白质表达产量的关键。
提高细胞可用能策略主要包括提高细胞的代谢活性、提供充足的能量来源等。
常见的方法包括添加适当浓度的葡萄糖、优化培养基成分和添加代谢物等。
与AtGA200xl启动子结合的转录因子筛选分析
doi:10.3969/j.issn.1007 7146.2016.03.013与AtGA20ox1启动子结合的转录因子筛选分析钟 曦,段秋红,李新梅,唐冬英,赵小英 ,刘选明(湖南大学生物学院植物基因组学与发育调控湖南省重点实验室,湖南长沙410082)摘 要:赤霉素(gibberellin,GA)在植物生长发育的各个时期发挥重要作用。
GA20 氧化酶(Gibberellin20 oxidase,GA20ox)是赤霉素生物合成途径中关键的限速酶,因此研究调控GA20ox基因表达的转录因子对进一步阐述赤霉素生物合成及其调控具有重要意义。
本研究通过酵母单杂交技术利用AtGA20ox1启动子筛选拟南芥转录因子库,筛选获得转录因子RAP2.4f;酵母单杂交和X gal显色结果进一步证实RAP2.4能与AtGA20ox1启动子结合;CPRG定量分析发现RAP2.4f与AtGA20ox1启动子结合作用强;双荧光素酶检测结果显示RAP2.4f对AtGA20ox1的启动子活性具有抑制作用。
这些研究结果表明,RAP2.4f可能参与调控AtGA20ox1的转录。
关键词:赤霉素;AtGA20ox1;RAP2.4f;酵母单杂交中图分类号:Q943.2文献标志码:A文章编号:1007 7146(2016)03 0263 07ScreeningofTranscriptionFactorsBindingtothePromoterofAtGA20ox1ZHONGXi,DUANQiuhong,LIXinmei,TANGDongying,ZHAOXiaoying ,LIUXuanming(HunanProvinceKeyLaboratoryofPlantFunctionalGenomicsandDevelopmentalRegulation,CollegeofBiology,HunanUniversity,Changsha410082,Hunan,China)Abstract:Gibberellin(GA)playsanimportantroleinplantgrowthanddevelopment.Gibberellin20 oxidase(GA20ox)isthekeyenzymeinthepathwayofGAbiosynthesis,soitisimportanttofindthetranscriptionfactorsthatregulatetheexpressionofGA20oxtorevealthemechanismunderlineGAmetabolismanditsregulation.Inthisstudy,AtGA20ox1promoterwasusedtoscreenArabidopsistranscriptionfactorlibrarybyyeastonehybrid,andthetranscriptionfactorRAP2.4fwasselected.YeastonehybridandX galassayresultsfurtherconfirmedthatRAP2.4fcanbindtothepromoterofAtGA20ox1.CPRGquantitativeanalysisshowedthattheirbindingactivitywasverystrong.DualluciferaseassayshowedthatRAP2.4finhibitedtheAtGA20ox1promoteractivity.TheseresultsindicatedthatRAP2.4fmightregu latethetranscriptionofAtGA20ox.Keywords:gibberellin;AtGA20ox1;RAP2.4f;yeastonehybrid第25卷第3期2016年6月 激 光 生 物 学 报ACTA LASER BIOLOGY SINICAVol.25No.3Jun.2016收稿日期:2015 12 01;修回日期:2016 01 17基金项目:国家自然科学基金(31171176);湖南省自然科学基金项目(11JJA002);湖南省生物发育工程及新产品研发协同创新中心(20134486)作者简介:钟曦(1990-),女,湖南娄底人,硕士研究生,主要从事植物基因功能分子生物学研究。
优化易错PCR条件以提高毕赤酵母GAP启动子文库突变效率
优化易错PCR条件以提高毕赤酵母GAP启动子文库突变效率秦秀林;钱江潮;储炬【摘要】高效的随机突变策略对于构建含有丰富突变体的启动子文库至关重要。
为了建立一个突变率适中并能获得较多有益突变子的易错PCR(error-prone PCR,EP-PCR)条件,实现毕赤酵母GAP启动子的高效突变,对EP-PCR反应条件进行了优化。
考察了模板浓度、反应循环数和Mg2+浓度对EP-PCR的产物得率和突变率的影响后,确定了适于GAP启动子突变的EP-PCR条件:模板浓度、反应循环数和Mg2+浓度分别为1 ng/μL、25和10 mmol/L。
优化EP-PCR条件后,GAP启动子突变率为1.1%,连续进行3轮EP-PCR后突变率可达到4.0%。
利用优化后EP-PCR对GAP启动子进行随机突变,筛选了250个突变子,获得5个启动子强度高于野生型GAP启动子的突变体,有益突变达到了2%,可用于构建GAP启动子文库。
%The first important step toward a successful preparation of large and diverse promoter library with desired complexity, is to select a suitable mutagenesis strategy. To generate a promoter library of GAP promoter(pGAP)variants, mutations were introduced using error-prone PCR. After optimization of the conditions for EP-PCR random mutagenes, high mutation(error rate 1.1%)frequence was obtained using 1 ng/μL template and 10 mmol/L Mg2+, in combination with 25 thermal cycles. To increase mutational diversity and reach an appropriate error rate, three consecutive rounds of EP-PCR were carried out under the same conditions. After random sequencing of 10 clones from each round, an overall range of mutation rates from 1.1%to 4.0%was observed. Then, 250clones containing pGAP variants were screened using the highthroughput screening approach in 48-deep-well plates. Among them, 5 mutants exhibited higher fluorescent intensity compared to the wild-type promoter.【期刊名称】《生物技术通报》【年(卷),期】2014(000)006【总页数】7页(P211-217)【关键词】易错PCR;突变效率;随机突变;毕赤酵母;GAP启动子【作者】秦秀林;钱江潮;储炬【作者单位】广西大学生命科学与技术学院,南宁 530004;华东理工大学生物反应器工程国家重点实验室,上海 200237;华东理工大学生物反应器工程国家重点实验室,上海 200237【正文语种】中文利用易错PCR(Error prone PCR,EP-PCR)或DNA改组(DNA shuffling)等基因突变技术对基因启动子区进行改造构建启动子文库,并已在原核和真核微生物的代谢工程、功能基因组学和合成生物学中得到了成功应用[1-3]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Enzyme and Microbial Technology33(2003)453–459Combined use of GAP and AOX1promoter to enhance the expression of human granulocyte-macrophage colony-stimulatingfactor in Pichia pastorisJ.M.Wu a,J.C.Lin a,L.L.Chieng a,C.K.Lee a,∗,T.A.Hsu b,ca Department of Chemical Engineering,National Taiwan University of Science and Technology,Taipei106,Taiwanb Division of Biotechnology and Pharmaceutical Research,National Health Research Institutes,Taipei115,Taiwanc Department of Chemical Engineering,National Tsing Hua University,Hsin-Chu300,TaiwanReceived17January2003;accepted8April2003AbstractGlyceraldehydes-3-phosphate dehydrogenase(GAP)promoter provides a strong constitutive expression of heterologous proteins at a level comparable that seen with the methanol-induced alcohol oxidase(AOX1)promoter in Pichia pastoris.In the present study,strain GS115/G was created to constitutively express secreted human granulocyte-macrophage colony-stimulating factor(hGM-CSF)using GAP-based expression system.With addition of1%casamino acids,the cultivation of GS115/G resulted in ca.20%higher cells concentration and ca. 30%higher level secreted protein concentration in YPD medium.The secreted proteins consisted of an unglycosylated glycosylated recombinant hGM-CSF with different extent of glycosylation.Instead of using GAP promoter alone in strain GS115/G,the strain GS115/GA that could constitutively and inducibly express recombinant hGM-CSF was generated by transforming host strain GS115/G with AOX1 promoter-controlled hGM-CSF expression cassette.In the presence of methanol,the strain GS115/GA expressed recombinant hGM-CSF at a level about two-fold higher than that constitutively expressed by GS115/G.©2003Elsevier Inc.All rights reserved.Keywords:hGM-CSF;P.pastoris;GAP promoter;AOX1promoter;Glycoprotein1.IntroductionThe methylotrophic yeast,Pichia pastoris has proven tobe an effective host for the production of both secreted andintracellular heterologous proteins[1].The high level ex-pression of heterologous proteins can be achieved using astrong,tightly regulated,and methanol-induced alcohol oxi-dase(AOX1)promoter[2].Unlike the expression from plas-mid,the heterologous genes of interest are stably integratedinto the Pastoris genome via homologous recombination[3]that eliminates the genetic instability due to segregationalloss.Furthermore,P.pastoris is capable of growing to veryhigh cell density minimal These advantagesmake P.pastoris a very attractive host for recombinant pro-teins production in a large-scale operation.Regulation and induction of heterologous gene expressionmethanol have been shown to be simple,easy to scale-up,and cost-effective for large-scale fermentations[4].How-ever,accurate regulation of the methanol concentration in P.∗Corresponding author.Tel.:+886-2-2737-6629;fax:+886-2-2737-6644.E-mail address:cklee@.tw(C.K.Lee).pastoris cultures is necessary because of the high concen-trations of methanol are toxic to P.pastoris due to the accu-mulation of formaldehyde and hydrogen peroxide insidecells[5,6].Glyceraldehydes-3-phosphate dehydrogenase(GAP)promoter has recently been developed for P.pastorisas an alternative strong constitutive promoter[7].In GAPpromoter expression system,the cloned heterologous proteinwill be expressed along with cell growth if the protein is nottoxic to the cell.Therefore,it can easily adapt to a contin-uous culture that theoretically allows indefinite productionof recombinant proteins.Human granulocyte-macrophagecolony-stimulating factor(hGM-CSF)is required for theproduction of granulocytes and macrophages from normalbone marrow and appears regulate the activity of mature,differentiated granulocytes and macrophages[8].Its genehas been cloned and expressed in Escherichia coli[9]andSaccharomyces cerevisiae[10,11].The best of our knowl-edge,its expression in P.pastoris has never been reported.In this work,the expression of secreted hGM-CSF in P.pastoris under the control of GAP promoter was studied.Most of the reported heterologous proteins expression in P.pastoris is employed using either AOX1or GAP expressionsystem alone[1].The combined use of AOX1promoter and 0141-0229/$–see front matter©2003Elsevier Inc.All rights reserved.doi:10.1016/S0141-0229(03)00147-9454J.M.Wu et al./Enzyme and Microbial Technology 33(2003)453–459GAP promoter in P .pastoris has been mentioned in the study of N -glycan engineering of glycoproteins [12].The GAP promoter-controlled enzyme is expressed to modify the AOX1promoter-controlled target protein with desired glyco-pattern.The combined use of these two promoters has also been employed to sequentially express and separately recover two different heterologous proteins from a single P .pastoris cultivation [13].In this paper,in addition to the GAP promoter expression the expression cassette under the control of AOX1promoter was also integrated into the chromosome of P .pastoris to generate a strain that could produce recombinant hGM-CSF constitutively and inducibly.The enhanced production of hGM-CSF demon-strated another advantage of combined use of GAP and AOX1promoter expression system in P .pastoris .2.Materials and methods 2.1.Strains and vector constructionThe cDNA of human colony-stimulating factor (hGM-CSF)was kindly provided by Dr.Fig.1.P .pastoris vectors for hGM-CSF expression:(a)pJM2was created by placing hGM-CSF gene under control of GAP promoter.Host strain GS115was transformed with pJM2to generate GS115/G for constitutive expression of hGM-CSF;(b)pJM1was created by placing hGM-CSF gene under control of AOX1promoter.Host strain GS115/G was transformed with pJM1to generate GS115/GA for constitutive and inducible expression of hGM-CSF.Mi-Hua Tao of IMBS,Academia Sinica.A construction fragment was generated by PCR on the cDNA of hGM-CSF using primers with the following sequences:forward 5 -AAC CGG AAT TCG CAC CCG CCC GCT CGC CCA GCC CCA GC-3 ,reverse 5 -GGC CGG AAT TCT TAG TGG TGG TGG TGG TGG TGC TCC TGG ACT GGC TCC CAG CAG TCA AAG G-3 .The resulting product contains the open reading frame of hGM-CSF fused with a six histidine tag at C-terminal,and Eco RI sites at both 5 and 3 ends.The inducible and constitutive recombinant hGM-CSF expression vectors constructed for this study are shown in Fig.1.PCR products were inserted into pPIC9K and pGAPZ ␣A vectors (Invitrogen,San Diego,CA)at Eco RI cutting site to form pJM1and pJM2vectors,respectively.Both of the plasmids carry the S.cerevisiae ␣-mating factor secretion signal downstream of the pro-moters.pJM2vector possesses the selectable marker Zeocin,which is bifunctional in both Pichia and E.coli .The pJM1vector possesses the bacterial kanamycin resistance gene which confers resistance to the related eukaryotic an-tibiotic G418necessary for selection of transformants.All the cloning steps were performed in E.coli TOP 10.P .pas-toris strain GS115(his 4)(Invitrogen,San Diego,CA)wasJ.M.Wu et al./Enzyme and Microbial Technology33(2003)453–459455used as a host strain to express and secrete the recombinant hGM-CSF.For constitutive expression of hGM-CSF,host strain GS115was transformed with pJM2to generate a con-stitutive expression strain GS115/G.The strain GS115/GA that can express hGM-CSF constitutively and inducibly was prepared by transforming GS115/G with pJM1.2.2.Pichia transformationThe hGM-CSF expression plasmids pJM1and pJM2 were digested either with Sal I Sac I and either with Bsp HI or Avr II,respectively.P.pastoris cells were made compe-tent and transformed by Electro-competent GS115and GS115/G cells(80l)were mixed with10g of appropriately linearized pJM1and pJM2plasmids in a 0.2-cm electroporation cuvettes and pulsed for∼10ms with afield strength of∼7500V/cm using a Gene (Bio-Rad Lab,Hercules,CA).Transformants GS115/G har-boring the GAP promoter-controlled hGM-CSF expression cassette were selected on Zeocin(0.1mg/ml)containing YPDS plates(1%yeast extract,2%peptone,2%glucose and 1M The generation of strain GS115/GA which can express hGM-CSF constitutively and inducibly was carried out by transforming GS115/G with methanol-inducible hGM-CSF expression cassette.The transformants were selected on minimal dextrose(MD)plates(1.34%yeast nitrogen base without amino acids,400g/l d-biotin,2% glucose)and then on G418(0.25mg/ml)containing YPD plates(1%yeast extract,2%peptone,2%glucose).2.3.Selection of multicopy clonesPutative clones of GS115/G harboring multiple copies of the constitutive hGM-CSF expression cassette were selected on YPD plates containing0.5,1.0,1.5and2.0mg/ml of Zeocin.Clones of GS115/GA were selected on YPD plates containing0.5,1.0,and2.0mg/ml of G418.After4days of incubation at30◦C,clones were evaluated for their ability to grow in presence of increasing concentration of the antibi-otics.Clones that survived the highest antibiotics concen-trations were cultured in test tube to screen their hGM-CSF expression level by Western blot using anti-4xHis antibody (Qiagen)as a probe.2.4.SDS–PAGE and Western blotrecombinant proteins secreted in culture medium were analyzed by SDS–PAGE(15%)and stained with Coomassie Blue.The protein concentrations were deter-mined by Bradford microassay(Bio-Rad).The proteins separated by SDS–PAGE,if necessary,were transferred onto PVDF membrane(Hybond-P,Amersham Pharmacia Biotech,Uppsala,Sweden)by electroblotting(Semi-dry Trans-Blot system,Bio-Rad,Hercules,CA).After blotting, the hGM-CSF on the membrane was detected by mouse anti-4xHis antibody(Qiagen)and followed by anti-mouse antibody conjugated with alkaline phosphatase(Sigma Chemical,St.Louis).2.5.Time course experimentsFor both the GS115/G and GS115/GA clone,100ml cul-tures were grown in500ml baffledflasks in YPD medium or with additional1%casamino acids at30◦C with shaking (250rpm).Methanol was added to every culture after glu-cose was completely consumed and at every24h thereafter to a concentration of0.5%(v/v).The glucose concentration was measured by using glucose analyzer(YSI2700,Yellow Springs,OH).protein concentration of a cultured strain was determined by measuring protein concentration of the supernatant using the YPD medium as a control. 2.6.Recombinant hGM-CSF recovery and its deglycosylationChelating Sepharose fastflow resin(Amersham Pharma-cia Biotech)was employed to recover the6xHis-tagged recombinant hGM-CSF from culture medium.Culture medium of20ml was recycled through the2ml nickel chelated resin at aflow rate of1.6ml/min forfive times. After washing with starting buffer(20mM Na2HPO4,0.5M NaCl,10mM imidazole)for5min,the bound protein was desorbed from the resin by elution buffer(20mM Na2HPO4, 0.5M NaCl,500mM imidazole).The desorbed protein solution was collected at one ml per PNGase F(Peptide:N-glycosidase F,Roche Diagnostics GmbH, Mannheim,Germany)was employed to cleave the N-linked oligosaccharide the recovered hGM-CSF.The deg-lycosylation was carried out by mixing40l hGM-CSF, 0.5l enzyme,and20l reaction buffer(100mM pH7.8 phosphate buffer,25mM EDTA,0.2%(w/v)SDS,and 1%(v/v)2-mercaptoethanol)at37◦C for1h.3.Results and discussion3.1.Generation of constitutive(GAP)and constitutive (GAP)-inducible(AOX1)combined Pichia clonesHGM-CSF vectors shown in Fig.1were linearized with restriction enzymes prior to transformation of P.pastoris host strain GS115.resultant constitutive expression clones GS115/G were obtained by transforming GS115 with Avr II linearized vector pJM2.Since the ability of the transformants to tolerate increasing zeocin concentrations correlates with enhanced expression cassette copy number, the clones that grow on YPD plates supplemented with the highest zeocin concentration(1.5were selected as high-copy number transformants.One of the high-copy number clones was employed for the constitutive production of hGM-CSF.The clones GS115/GA containing both GAP and AOX1promoters that controls hGM-CSF expression456J.M.Wu et al./Enzyme and Microbial Technology 33(2003)453–459cassettes were obtained by transforming the constitutive production clone GS115/G with Sal I linearized inducible expression vector pJM1.Since the pJM1vector contains a selection marker (kanamycin resistance gene)different from that in pJM2(Zeocin resistance gene),the clones GS115/GA grow on YPD plates supplemented with the highest an-tibiotic G418concentration (2mg/ml)were considered as high-copy number clones and employed for the combined constitutive and inducible production of hGM-CSF.A 6xHis tag was designed to fuse C-terminal of hGM-CSF,fore,the expression of hGM-CSF in the selected clones of GS115/G and GS115/GA was confirmed by Western blot analysis of their culture media using anti-His antibody.3.2.Constitutive expression of hGM-CSFThe strain GS115/G with high-copy number of hGM-CSF expression cassette was cultivated in YPD mediumfor Fig.2.Effect of 1%casamino acids (CA)on cell growth and constitutive expression of hGM-CSF in P .pastoris GS115/G.(a)Growth curve of GS115/G in YPD (open symbol)and YPD with 1%CA addition (closed symbol),methanol was added to 0.5%(v/v)started at 24h and every 24h thereafter.( ,᭡)glucose;(᭺,᭹)optical density;(ᮀ,)secreted protein concentration.(b)SDS–PAGE analysis of YPD and YPD +CA culture medium of 1–4days cultivation.the constitutive expression and secretion of hGM-CSF.It has been reported that by including 1%casamino acids in the culture medium can minimize the extracellular pro-tease activity and increase the yield of expressed protein [14].Therefore,1%casamino acids was included in YPD medium to prevent the constitutively expressed and secreted hGM-CSF from degradation throughout the entire time-span of cultivation.For comparison,a parallel culture using YPD medium only was run for the same As shown in Fig.2a ,GS115/G reveals a slightly high specific growth rate in presence of casamino acids.In both media,the glucose was completely consumed after 1day of cultivation but the cell kept the same growth rate till second day.To maintain cells growth,methanol as a carbon source was added to both cultures to 0.5%(v/v)at 24h and every 24h there-after.Since the constitutive GAP promoter was employed to control the expression of secreted hGM-CSF,as expected,the secreted protein concentration increased with the cellJ.M.Wu et al./Enzyme and Microbial Technology 33(2003)453–459457growth.With 1%casamino acids addition,cell concen-tration as well as secreted protein concentration were about 20and respectively,higher than that without casamino acids.Evidently,the casamino acids provided additional nutrition for the cells to grow into a higher concentration,as a consequence,expressed and secreted a higher level of recombinant hGM-CSF.As shown in the SDS–PAGE analy-sis (Fig.2b ),a minor band corresponding to ∼16kDa and a dominant smear of molecular mass >27kDa were observed in the cultures after 2days of cultivation.Concentrations of the detected bands of the YPD +CA medium were higher than that of YPD medium and increased with culture time accordingly.There were faint bands appeared between ∼16and ∼20kDa and turned stronger after 4days of culti-vation in YPD +CA medium.The observed concentration increase in the detected bands was in accordance with the trend of secreted protein concentration (Fig.2a ).The higherFig.4.Effect of the addition of inducible expression cassette to constitutive expression strain on the enhancement of hGM-CSF production:(a)growth curve of strain GS115/G (open symbol)and GS115/GA (closed symbol)cultivated in YPD +CA medium.Methanol was added to 0.5%(v/v)started at 24h and every 24h thereafter.( ,᭡)glucose;(᭺,᭹)optical density;(ᮀ,)secreted protein concentration;(b)SDS–PAGE analysis of GS115/GA (lanes 2 –5 ),GS115/G (lanes 2–5),and GS115(lane C)culture medium of 2–5days cultivation.Fig. 3.SDS–PAGE and Western blot analysis of secreted hGM-CSF expressed by GS115/G in YPD +CA culture medium:(1)before and (2)after deglycosylation treatment with PNGase F.458J.M.Wu et al./Enzyme and Microbial Technology33(2003)453–459recombinant hGM-CSF concentration in YPD+CA mediumwas probably resulted from the higher cell concentrationand reduced protease activity toward against hGM-CSF.YPD+CA medium was,employed for the rest ofrecombinant hGM-CSF expression studies.Since there are two potential N-linked glycosylationsites on hGM-CSF sequence,most of the observed bandson SDS–PAGE probably are considered as recombinanthGM-CSF with different glycosylation extent.Only the ∼16kDa protein is considered as the unglycosylated re-combinant hGM-CSF because its molecular weight matcheswith that calculated from nucleotide sequence kDa).The existence of unglycosylated recombinant hGM-CSFsuggests that due to the strong GAP promoter theflow ofnewly synthesized␣-MF-hGM-CSF-6xHis fusion proteinthrough the secretory pathway might be too fast to allowsufficient or complete glycosylation.In contrast,the signalpeptide processing protease KEX2on the secretory pathwayhas a cleavage rate fast enough to release the␣-MF signalsequence from the unglycosylated fusion protein.To con-firm the secreted recombinant hGM-CSF was glycosylated,the proteins recovered from culture medium was deglyco-sylated using PNGase F as demonstrated in SDS–PAGEand Western blotting analysis(Fig.3).All the secretedmaterials with molecular weight other than∼16kDa wereconversed into a band with a molecular weight slightlyhigher than that of unglycosylated hGM-CSF after degly-cosylation of N-linked saccharides.Several investigators[11,15,16]have reported that the signal sequence␣-MF ofsome secreted fusion products are not able to be cleavedby KEX2when the secreted products are over-expressed.The molecular weight of␣-MF is about10kDa,there-fore,the observed new protein band after PNGase Ftreatment to remove the N-linked oligosaccharides shouldnot be unglycosylated␣-MF-hGM-CSF-6xHis fusionprotein26kDa).Since O-linked glycosylation of re-combinant proteins have been shown to be present in P.pastoris and the O-linked saccharides are generally shortas compared with N-linked saccharides[17],the unex-pected protein was probably O-glycosylated.As a conse-quence,it possessed a molecular weight slightly higherthan that of unglycosylated recombinant hGM-CSF.UnlikeSDS–PAGE,the unglycosylated and deglycosylated recom-binant hGM-CSF shows a stronger intensity than that ofglycosylated in Western blot(Fig.3).Thus,it indicates thatthe interaction between the6xHis tagged on hGM-CSF andanti-His antibody would be interfered with the N-linkedoligosaccharides of the glycosylated recombinant hGM-CSF.3.3.Constitutive-inducible combined expression ofhGM-CSFThe recombinant hGM-CSF have been constitutively ex-pressed and secreted by strain GS115/G to a level of90mg/las shown in Fig.2a.In order to increase its expression level further,promoter-controlled hGM-CSF expression cassette was integrated into the chromosome of GS115/G to generate strain GS115/GA.A higher hGM-CSF expres-sion level can be expected for GS115/GA when the AOX1 promoter is induced to operate by adding methanol after the exhaustion of glucose.cell growth and level of se-creted protein expression of both GS115/G and GS115/GA strain are compared in Fig.4a.For the strain GS115/G, the secreted protein concentration increased with the cell growth and leveled-off at90mg/l after the cells reached its stationary phase.As expected,the secreted protein of GS115/G is a growth-related product because only the con-stitutive GAP promoter is employed to control the expres-sion of hGM-CSF.On the other the strain GS115/GA resulted in a cell concentration about10%lower than that of GS115/G at The secreted pro-tein concentration,however,was about two-fold(180mg/l) higher than that of GS115/G.The lower cell concentra-tion and higher secreted protein concentration suggests that,instead of being used for growth,part of resources of GS115/GA were diverted to express the recombinant hGM-CSF when methanol was added to turn on the AOX1 Fig.4b shows that SDS–PAGE analysis of se-creted proteins produced by strain GS115/G and GS115/GA with respect to culture time.The characteristic unglycosylated band(∼16kDa)and highly glycosylated smear(30–42.7kDa)of recombinant hGM-CSF were not detected in culture medium of control strain How-ever,the intensities of the two characteristic bands produced by GS115/GA were much stronger than that produced by GS115/G.This again demonstrated that the expression level of recombinant hGM-CSF can be greatly enhanced by combined use of GAP and AOX1promoter in P.pastoris strain GS115.Since6xHis peptide has been designedto Fig. 5.SDS–PAGE analysis of secreted proteins recovered from GS115/GA and GS115/G culture medium after6days of cultivation using Ni-chelating Sepharose column.Most of proteins appeared at fractions 3–5while eluting with0.5M imidazole.J.M.Wu et al./Enzyme and Microbial Technology33(2003)453–459459fuse to C-terminal of hGM-CSF,immobilized metal affinity chromatography(IMAC)was applied to recover the recom-binant hGM-CSF from culture medium.Based on the pro-tein concentration,about80%of the secreted proteins were recovered from the cultured medium.The SDS–PAGE anal-ysis of the recovered secreted proteins of both GS115/GA and GS115/G strains is shown in Fig.5.As expected,the amount of proteins recovered from GS115/GA is much higher than that from GS115/G.The characteristic ungly-cosylated and highly glycosylated recombinant hGM-CSF bands were also observed.This indicates that oligosaccha-rides on the glycosylated recombinant hGM-CSF will not prevent its6xHis tag from binding with the immobilized nickel ion.4.ConclusionThe addition of1%casamino acids was beneficial for the cell growth and constitutive expression of recombinant hGM-CSF of P.pastoris strain GS115/G cultivated in YPD medium.The cell concentration and expressed secreted protein concentration of YPD+CA culture were about20 and30%,respectively higher than that of YPD culture. The secreted recombinant hGM-CSF showed two major characteristic molecular weights distribution.One is ung-lycosylated recombinant hGM-CSF of molecular weight about16kDa.The other is recombinant hGM-CSF with dif-ferent glycosylation extent of molecular weight30–43kDa. Recombinant hGM-CSF could be constitutively and in-ducibly expressed by strain GS115/GA which was created by transforming GS115/G with AOX1-controlled hGM-CSF expression vector.In the presence of methanol induction, the strain GS115/GA grew to a cell concentration10% lower and produced secreted hGM-CSF with a level about two-fold higher than that of GS115/G.The oligosaccha-rides on the glycosylated recombinant hGM-CSF would not prevent anti-His antibody and immobilized nickel ion from binding with the6xHis tag fused on the C-terminal of hGM-CSF.AcknowledgmentsWe thank Dr.Mi-Hua Tao(IMBS,Academia Sinica, Taiwan)for the plasmids carrying the cDNA sequence of hGM-CSF.The work was founded by National Science Council of Taiwan(NSC-90-2214-E-011-005).References[1]Cereghino JL,Cregg JM.Heterologous protein expression inthe methylotrophic yeast Pichia pastoris.FEMS Microb Rev 2000;24:45–66.[2]Tschopp JF,Brust PF,Cregg JM,Stillman CA,Gingeras TR.Expression of the lac Z gene from two methanol regulated promoters in Pichia pastoris.Nucleic Acids Res1987;15:3859–76.[3]Cregg JM,Madden KR,Barringer KJ,Thill GP,Stillman CA.Functional characterization of the two alcohol oxidase genes from the yeast Pichia pastoris.Mol Cell Biol1989;9:1316–23.[4]Cregg JM,Vedvick TS,Raschke WC.Recent advances in theexpression of foreign genes in Pichia pastoris.Bio/technology 1993;11:905–10.[5]Couderc R,Baratti J.Oxidation of methanol by the yeast,Pichiapastoris.Purification and properties of the alcohol oxidase.Agric Biol Chem1980;44:2279–89.[6]Murray WD,Duff SJB,Lanthier PH.Induction and stability ofalcohol oxidase in the methylotrophic yeast Pichia pastoris.Appl Microbiol Biotechnol1989;32:95–100.[7]Waterham HR,Digan ME,Koutz PJ,Lair SV,Cregg JM.Isolationof the Pichia pastoris glyceraldehydes-3-phosphate dehydrogenase gene and regulation and use of its promoter.Gene1997;186:37–44.[8]Metcalf D.The molecular biology and functions of the granulocyte-macrophage colony-stimulating factors.Blood1986;67:257–67. [9]Libby RT,Braedt G,Krohheim SR,March CJ,Urdal DL,ChiaverottiTA.Expression and purification of native human granulocyte-macrophage colony-stimulating factor from an Escherichia coli secretion vector.DNA1987;6:221–9.[10]Cantrell MA,Anderson D,Cerretti DP,Price V,McKereghanK,Tushinski RT.Cloning sequence and expression of a human granulocyte/macrophage colony-stimulating factor.Proc Natl Acad Sci USA1985;82:6250–4.[11]Miyajima A,Otsu K,Schreurs J,Bond MW,Abrams JS,AraiK.Expression of murine and human granulocyte-macrophage colony-stimulating factors in S.cerevisiae:mutagensis of the potential glycosylation sites.EMBO J1986;5:1193–7.[12]Callewaert N,Laroy W,Cadirgi H,Geysens S,Saelens X,Jou WM.Use of HDEL-tagged Trichoderma reesei mannosyl oligosaccharide 1,2-␣-d-mannosidase for N-glycan engineering in Pichia pastoris.FEBS Lett2001;503:173–8.[13]Wu JM,Chieng LL,Hsu TA,Lee CK.Sequential expression ofrecombinant proteins and their separate recovery from a Pichia pastoris cultivation.Biochem Eng J,in press.[14]Clare JJ,Romanos MA,Rayment FB,Rowedder JE,Smith MA,Payne MM.Production of epidermal growth factor in yeast: high-level secretion using Pichia pastoris strains containing multiple gene copies.Gene1991;105:205–12.[15]Reverter D,Ventura S,Villegas V,Vendrell J,Aviles FX.Overexpression of human procarboxypeptidase A2in Pichia pastoris and detailed characterization of its activation pathway.J Biol Chem 1998;273:3535–41.[16]Shaw KJ,Frommer BR,Anagnost JA,Narula S,Leibowitz PJ.Regulated secretion of muGM-CSF in Saccharomyces cerevisiae via GAL1:MF␣1prepro sequences.DNA1988;7:117–26.[17]Bretthauer RK,Castellino FJ.Glycosylation of Pichia pastoris-derived proteins.Biotechnol Appl Biochem1999;30:193–200.。