超大规模集成电路互连系统的布线构造对散热的影响
《超大规模集成电路设计》考试习题(含答案)完整版
1.集成电路的发展过程经历了哪些发展阶段?划分集成电路的标准是什么?集成电路的发展过程:•小规模集成电路(Small Scale IC,SSI)•中规模集成电路(Medium Scale IC,MSI)•大规模集成电路(Large Scale IC,LSI)•超大规模集成电路(Very Large Scale IC,VLSI)•特大规模集成电路(Ultra Large Scale IC,ULSI)•巨大规模集成电路(Gigantic Scale IC,GSI)划分集成电路规模的标准2.超大规模集成电路有哪些优点?1. 降低生产成本VLSI减少了体积和重量等,可靠性成万倍提高,功耗成万倍减少.2.提高工作速度VLSI内部连线很短,缩短了延迟时间.加工的技术越来越精细.电路工作速度的提高,主要是依靠减少尺寸获得.3. 降低功耗芯片内部电路尺寸小,连线短,分布电容小,驱动电路所需的功率下降.4. 简化逻辑电路芯片内部电路受干扰小,电路可简化.5.优越的可靠性采用VLSI后,元件数目和外部的接触点都大为减少,可靠性得到很大提高。
6.体积小重量轻7.缩短电子产品的设计和组装周期一片VLSI组件可以代替大量的元器件,组装工作极大的节省,生产线被压缩,加快了生产速度.3.简述双阱CMOS工艺制作CMOS反相器的工艺流程过程。
1、形成N阱2、形成P阱3、推阱4、形成场隔离区5、形成多晶硅栅6、形成硅化物7、形成N管源漏区8、形成P管源漏区9、形成接触孔10、形成第一层金属11、形成第一层金属12、形成穿通接触孔13、形成第二层金属14、合金15、形成钝化层16、测试、封装,完成集成电路的制造工艺4.在VLSI设计中,对互连线的要求和可能的互连线材料是什么?互连线的要求低电阻值:产生的电压降最小;信号传输延时最小(RC时间常数最小化)与器件之间的接触电阻低长期可靠工作可能的互连线材料金属(低电阻率),多晶硅(中等电阻率),高掺杂区的硅(注入或扩散)(中等电阻率)5.在进行版图设计时为什么要制定版图设计规则?—片集成电路上有成千上万个晶体管和电阻等元件以及大量的连线。
《超大规模集成电路设计》考试习题(含答案)完整版分析
1.集成电路的发展过程经历了哪些发展阶段?划分集成电路的标准是什么?集成电路的发展过程:•小规模集成电路(Small Scale IC,SSI)•中规模集成电路(Medium Scale IC,MSI)•大规模集成电路(Large Scale IC,LSI)•超大规模集成电路(Very Large Scale IC,VLSI)•特大规模集成电路(Ultra Large Scale IC,ULSI)•巨大规模集成电路(Gigantic Scale IC,GSI)划分集成电路规模的标准2.超大规模集成电路有哪些优点?1. 降低生产成本VLSI减少了体积和重量等,可靠性成万倍提高,功耗成万倍减少.2.提高工作速度VLSI内部连线很短,缩短了延迟时间.加工的技术越来越精细.电路工作速度的提高,主要是依靠减少尺寸获得.3. 降低功耗芯片内部电路尺寸小,连线短,分布电容小,驱动电路所需的功率下降.4. 简化逻辑电路芯片内部电路受干扰小,电路可简化.5.优越的可靠性采用VLSI后,元件数目和外部的接触点都大为减少,可靠性得到很大提高。
6.体积小重量轻7.缩短电子产品的设计和组装周期一片VLSI组件可以代替大量的元器件,组装工作极大的节省,生产线被压缩,加快了生产速度.3.简述双阱CMOS工艺制作CMOS反相器的工艺流程过程。
1、形成N阱2、形成P阱3、推阱4、形成场隔离区5、形成多晶硅栅6、形成硅化物7、形成N管源漏区8、形成P管源漏区9、形成接触孔10、形成第一层金属11、形成第一层金属12、形成穿通接触孔13、形成第二层金属14、合金15、形成钝化层16、测试、封装,完成集成电路的制造工艺4.在VLSI设计中,对互连线的要求和可能的互连线材料是什么?互连线的要求低电阻值:产生的电压降最小;信号传输延时最小(RC时间常数最小化)与器件之间的接触电阻低长期可靠工作可能的互连线材料金属(低电阻率),多晶硅(中等电阻率),高掺杂区的硅(注入或扩散)(中等电阻率)5.在进行版图设计时为什么要制定版图设计规则?—片集成电路上有成千上万个晶体管和电阻等元件以及大量的连线。
集成电路的基本原理和工作原理
集成电路的基本原理和工作原理集成电路是指通过将多个电子元件(如晶体管、电容器、电阻器等)和互连结构(如金属导线、逻辑门等)集成到单个芯片上,形成一个完整的电路系统。
它是现代电子技术的重要组成部分,广泛应用于计算机、通信、嵌入式系统和各种电子设备中。
本文将介绍集成电路的基本原理和工作原理。
一、集成电路的基本原理集成电路的基本原理是将多个电子元件集成到单个芯片上,并通过金属导线将这些元件互连起来,形成一个完整的电路系统。
通过集成电路的制造工艺,可以将电子元件和互连结构制造到芯片的表面上,从而实现芯片的压缩和轻量化。
常见的集成电路包括数字集成电路(Digital Integrated Circuit,简称DIC)、模拟集成电路(Analog Integrated Circuit,简称AIC)和混合集成电路(Mixed Integrated Circuit,简称MIC)等。
集成电路的基本原理包括以下几个关键要素:1. 材料选择:集成电路芯片的制造材料通常选择硅材料,因为硅材料具有良好的电子特性和热特性,并且易于形成晶体结构。
2. 晶圆制备:集成电路芯片的制造过程通常从硅晶圆开始。
首先,将硅材料熔化,然后通过拉伸和旋转等方法制备成硅晶圆。
3. 掩膜制备:将硅晶圆表面涂覆上光感光阻,并通过光刻机在光感光阻表面形成图案。
然后使用化学溶液将未曝光的部分去除,得到掩膜图案。
4. 传输掩膜:将掩膜图案转移到硅晶圆上,通过掩膜上沉积或蚀刻等方法,在硅晶圆表面形成金属或电子元件。
5. 互连结构制备:通过金属导线、硅氧化物和金属隔离层等材料,形成元件之间的互连结构,实现元件之间的电连接。
6. 封装测试:将芯片放置在封装材料中,通过引脚等结构与外部电路连接,然后进行测试和封装。
集成电路的基本原理通过以上几个关键步骤实现电子元件和互连结构的制备和组装,最终形成一个完整的电路系统。
二、集成电路的工作原理集成电路的工作原理是指通过控制电流和电压在电路系统中的分布和变化,从而实现电子元件的工作和电路系统的功能。
微电子技术中的超大规模集成电路设计方法
微电子技术中的超大规模集成电路设计方法超大规模集成电路(VLSI)是指具有上百万个晶体管的集成电路。
在微电子技术领域,VLSI设计方法是实现高集成度和高性能的关键因素之一。
本文将介绍一些常用的VLSI设计方法,包括物理设计和逻辑设计。
VLSI的物理设计是将电路设计转化为实际器件的布局和布线。
其中,关键路径优化是物理设计的关键问题之一。
通常,对于高速电路,关键路径上的时延应该尽可能小。
为了达到这个目标,设计工程师可以采用多种技术。
例如,层次布局和多管道化布局可以减少布局中的电气延迟。
另外,时钟树设计也是关键路径优化的一部分。
通过合理的时钟树设计,可以减少时钟信号的延迟和抖动,从而提高电路的工作频率。
此外,VLSI的物理设计还需要考虑功耗优化。
通过采用低功耗器件和电源网络优化技术,可以降低功耗,延长电池寿命。
逻辑设计是将电路功能转化为逻辑元件和电路连接的过程。
在逻辑设计中,设计工程师需要使用硬件描述语言(HDL)来描述电路功能。
常用的HDL包括VHDL和Verilog。
使用HDL,设计工程师可以将电路设计分解为更小的逻辑电路模块,然后将这些模块通过逻辑门、寄存器和触发器等元件进行连接。
在逻辑设计中,设计工程师还需要考虑电路的延迟、功耗和面积等指标。
因此,设计工程师常常需要权衡不同的电路结构和技术参数来优化整个电路的性能。
在VLSI设计过程中,验证是一个非常重要的步骤。
验证是通过仿真、验证和测试来验证电路设计的正确性和可行性。
在仿真过程中,设计工程师可以使用电路仿真工具来验证电路功能的正确性。
通过检查电路输出是否与预期输出一致,设计工程师可以发现并修复电路设计中的错误。
此外,验证还包括对电路的可靠性和容错性进行测试。
通过使用电路测试设备和技术,设计工程师可以检测电路的性能和可靠性,并确保电路在不同工作条件下都能正常工作。
除了物理设计、逻辑设计和验证,VLSI设计还涉及到一些其他的问题。
例如,VLSI设计中的数据通信和互连问题是一个关键的挑战。
集成电路内部构造-概念解析以及定义
集成电路内部构造-概述说明以及解释1.引言1.1 概述集成电路是一种能够将多个电子元件和电路功能集成到一个单一芯片上的技术。
与传统电路相比,集成电路具有体积小、功耗低、速度快等显著优势。
它广泛应用于计算机、通信、嵌入式系统以及各种电子设备中。
在集成电路内部构造方面,包含了多个基本元件和互连结构。
基本元件可以是传统的电阻、电容、电感等passiv元件,也可以是能够实现逻辑功能的转换器、门电路、触发器等active 元件。
互连结构则是将这些元件连接起来,形成一个完整的电路,实现特定的功能。
随着技术的不断进步,集成电路的内部构造也在不断演进。
从早期的小规模集成电路到现在的超大规模集成电路,集成度不断提高,功能更加强大。
同时,集成电路的制造工艺也在不断改进,如光刻技术、扩散技术等,使得更多的元件能够被集成到一个芯片上。
在今后的发展中,集成电路内部构造将更加注重实现更高的集成度和更复杂的功能。
同时,随着人工智能、物联网等技术的兴起,集成电路内部构造也将面临更多的挑战和机遇。
因此,研究和探索集成电路内部构造的意义和应用,以及展望未来的发展方向,对于推动整个电子产业的发展具有重要的意义。
1.2 文章结构文章结构部分的内容主要是对整篇文章的组织和安排进行介绍,目的是帮助读者更好地了解文章的结构和内容安排。
在本篇文章中,文章结构部分可以包括以下内容:文章的结构主要分为以下几个部分:1. 引言部分:在引言部分,我们将对集成电路内部构造的重要性进行概述,并介绍本文的目的和意义。
2. 正文部分:在正文部分,我们将详细介绍集成电路的定义、分类和组成,包括介绍各类集成电路的特点和应用领域等。
- 2.1 集成电路的定义:在这一部分,我们将阐述集成电路的概念和定义,包括对集成电路内部元器件关系的描述。
- 2.2 集成电路的分类:在这一部分,我们将介绍集成电路的不同分类方法,如按工艺、按功能等分类,并详细介绍每类集成电路的特点和应用。
什么是互连
什么是互连?随着深亚微米(Deep Sub-Micron)集成工艺的发展,集成电路中广泛存在宽度仅为深亚微米量级且多层分布的金属互连线,这些互连线已不能近似为一种等电势连接,而需要考虑在电路正常工作情况下,它们之间的电磁耦合寄生效应(Parasitic Effect)。
而且,与晶体管不同,互连线的寄生效应,随着集成电路特征尺寸的缩小和工作频率的增大而日益重要。
研究表明[1],在高速集成电路中,限制其发展的主要因素不是器件的门时延,而是互连线的寄生元件引起的时间时延、互连线之间信号的串扰和电路功耗。
与标准逻辑单元中的短线以及模块电路中的中长线不同,顶层的全局互连线长度不随工艺缩减而减小。
因此在深亚微米技术下,全局互连线的性能成为系统整体性能的主要限制因素。
全局互连线的设计和优化会对系统的整体性能,包括延时、带宽、功耗等产生直接影响,从而在深亚微米集成电路设计中,对全局互连线的极限性能的研究具有一定的理论意义。
互连线是指连接两个元器件之间的传输线。
按照互连线所在的设计层次的不同,可以将互连线分为以下几种:印刷电路版上的互连线、连接电路版的电缆线、芯片内部的互连线、芯片封装时管脚和芯片之间的互连线。
本文所讨论的均是芯片内部的互连线。
芯片内的互连线大致可以分成三种[1-4]:第一种是短线,即局部互连线。
短线主要用于逻辑门之间或者速度不是很快的器件间的连接,通常短线的长度远远小于信号波长,短线的时延主要受到耦合电容的影响,对系统时延没有显著影响一般可以忽略。
第二种是中长线,即模块间互连线。
中长线信号传输速度比短线快,电感耦合效应也变得突出,因而容易引起很高的噪声,中长线需要采用低电阻率金属和中等厚度的绝缘介质。
第三种是长线,即全局互连线。
长线对电路性能起着关键作用,长线特别需要采用低电阻率金属以减小信号线和电源线的电阻损耗,需要厚的绝缘层来增加特征阻抗,减小时延,需要较宽的线间距以减少串扰,虽然线宽和宽间距可以减小RC 时延和串扰,但同样也会影响布线密度。
超大规模集成电路答案
⎞ ⎟⎠
(1
+
λnVM
)
= 115×10−6 × 2× 0.63× (1.05 − 0.4 − 0.63 / 2)(1+ 0.06×1.05)
= 52 ×10−6 A
g = − k Vn DSATn + k Vp DSATp
ID
(VM
)(λn
−
λ p
)
= − 1 2 ×115×10−6 × 0.63 + 3× 30×10−6 ×1
A:Al1 导线平面电容:(0.1×103μm2) ×30aF/μm2=3pF Al1 导线边缘电容:2×(0.1×106μm) ×40aF/μm=8pF Al1 导线总电容:CW=11pF Al1 导线电阻:RW=0.075Ω/□×(0.1×106μm)/ (1μm)=7.5kΩ Al1 导线的 r 和 c 值:c=110aF/μm;r=0.075Ω/μm
由VD2 > VDSATn ,确定 M2 发生速度饱和,因此
ID
=
kn
⎛ ⎜⎝ (VGS 2
− VT 2 )VDSAT
2
− VDSAT 2
⎞ ⎟⎠
,
VGS 2
= VT 2
+
⎛ ⎜ ⎝
ID kn
2
+ VDSAT 2
VDSAT
⎞ ⎟ ⎠
,
VGS 2
=
0.94
+
⎛ ⎜⎝
பைடு நூலகம்
0.2 ×10−3 3× 8.9 ×10−5
( ) ID
=
kn 2
VGS 2 − VT 2
2 , VGS 2 = VT 2 +
2ID kn
集成电路封装中的散热设计与温度控制方法
集成电路封装中的散热设计与温度控制方法在集成电路(Integrated Circuit, IC)的封装设计中,散热是一个至关重要的因素。
随着集成电路发展的进步,封装密度也越来越高,电路器件越来越小,这使得散热变得更为困难。
因此,合理的散热设计和温度控制方法对保证集成电路的性能和可靠性起着至关重要的作用。
散热设计的一项重要任务是有效地将热量从集成电路中传导出去。
为了实现这一目的,可以采用多种方法。
首先,在封装设计中可以引入导热片和散热鳍片来增加散热面积,并提高热传导效率。
导热片通常由具有较高导热性能的材料制成,如铜、铝等。
而散热鳍片则可以增加封装上方的表面积,提高散热效果。
此外,在封装设计中还可以引入散热背板或散热器,以提供更大的散热面积和更好的散热效果。
其次,温度控制是有效进行散热设计的关键,主要包括监控和控制集成电路的温度。
监控温度可以通过在封装中引入温度传感器来实现,这样可以实时监测集成电路的温度变化。
而控制温度则可以通过调整散热装置的工作状态来实现。
例如,可以根据温度传感器的反馈信号,调整风扇的工作速度,增强散热效果。
另外,还可以利用热管、冷却片等被动散热措施来帮助降低集成电路的温度。
散热设计与温度控制方法的优化还可以通过电路布局的调整来实现。
优化电路布局可以减少集成电路之间的热互联,从而降低整个封装的总体温度。
例如,可以通过合理划分电路板的层次,将功耗较大的电路部分与散热设计较好的部分隔离开。
此外,可以采用不同的供电方式,将功耗大的集成电路与其他部分分开,避免集中产生热点。
除了以上提到的散热设计与温度控制方法,还有一些其他的技术方法可以帮助提高散热效果和温度控制能力。
例如,可以在封装设计中加入风道和散热孔,以增加气流的流动性和散热效果。
另外,也可以利用热导率较高的热界面材料来改善芯片与散热装置之间的热传导效率。
此外,还可以采用温度补偿技术,通过智能调节芯片工作状态,以适应温度环境的变化。
散热分析报告
散热分析报告引言散热问题在电子设备设计中起着至关重要的作用。
随着电子设备性能的不断提升和集成度的增加,设备内部的功耗也不断增加,导致了设备散热问题的严重性。
本文对散热问题进行分析,并提出相应的解决方案。
背景在电子设备中,功耗较高的芯片或元件会产生大量的热量,如果不能及时有效地散热,会导致设备温度过高,影响设备的稳定性和寿命。
因此,散热在电子设备设计中具有重要的意义。
分析过程散热问题的解决需要分析以下几个方面:设备热量产生的原因设备中的芯片或元件在工作过程中会产生热量,其中主要原因有以下几点: -芯片内部电流通过导致电阻产生的热量 - 其他器件的损耗也会产生一定的热量设备散热的方式设备散热主要有以下几种方式: - 对流散热:通过自然对流或风扇等装置实现空气流动,将热量带走 - 辐射散热:设备表面通过辐射将热量散发出去 - 传导散热:通过设备中的导热材料将热量传递到其他部件上,再通过其他散热方式将热量散开设备散热的挑战和问题在散热过程中,存在以下一些挑战和问题: - 设备内部空间受限,散热部件的布局有限 - 散热材料的选择和使用需要经过权衡,不同的材料具有不同的散热性能和导热性能 - 设备长时间连续工作时,温度的变化对散热性能有一定的影响 - 设备的工作环境也会对散热性能产生影响,例如高温环境下散热效果会下降解决方案针对上述的问题和挑战,我们提出以下解决方案: 1. 设计合理的散热结构: -合理布局散热器件,优化设备内部空气流动,增加散热效率 - 根据设备的散热需求,选择适当的散热器件,如风扇、散热片等 2. 使用合适的散热材料: - 选择导热性能好的材料作为散热部件,提高散热效率 - 在接触面使用导热膏或热导胶等,提高传热效率 3. 运用散热模拟软件进行仿真: - 使用散热模拟软件对设备的散热性能进行模拟和分析,优化散热结构和材料选择 4. 温度监控和报警系统: - 在设备中设置温度传感器,实时监控设备温度,超过设定的温度范围时触发报警系统,保护设备安全结论散热问题是电子设备设计中必须要考虑的一个重要因素。
PCB散热设计研究
PCB散热设计研究一、引言随着电子技术的快速发展,PCB(印制电路板)作为电子设备中的核心部件,其性能的稳定性和可靠性越来越受到人们的关注。
而散热问题作为影响PCB性能的关键因素之一,其设计合理与否直接关系到整个系统的稳定性和使用寿命。
因此,对PCB散热设计进行深入研究,具有重要的理论和实际意义。
二、PCB散热设计的原则与策略散热设计原则在进行PCB散热设计时,应遵循以下原则:(1)合理布局:根据元器件的发热量和工作特性,合理布局元器件,以减少热量在PCB上的积聚。
(2)优化导热路径:通过合理的导线布局和层叠设计,优化导热路径,提高热量的传递效率。
(3)降低热阻:采用低热阻材料,如导热性能好的金属或导热胶,降低热量在PCB内部的传递阻力。
散热设计策略针对PCB散热问题,可采取以下策略:(1)增加散热面积:通过增大PCB表面积或增加散热片等方式,提高散热效果。
(2)采用散热孔:在PCB上设置散热孔,利用对流散热原理,加速热量的散发。
(3)主动散热:结合风扇、散热器等主动散热设备,提高PCB的散热能力。
三、PCB散热设计的关键因素元器件选型元器件的选型直接影响到PCB的散热性能。
在选择元器件时,应充分考虑其发热量、工作温度和耐温范围等因素,尽量选择低功耗、耐高温的元器件。
PCB材料PCB材料的导热性能对散热效果具有重要影响。
在选择PCB材料时,应关注其导热系数、热膨胀系数等关键参数,以确保PCB具有良好的散热性能。
PCB布局与布线PCB的布局与布线对散热效果具有显著影响。
合理的布局可以减少热量在PCB上的积聚,而优化的布线可以降低热阻,提高热量的传递效率。
四、PCB散热设计的优化方法仿真分析利用仿真软件对PCB的散热性能进行模拟分析,可以预测PCB在不同工作条件下的散热效果,为优化设计提供依据。
实验验证通过实验验证仿真分析的结果,可以进一步了解PCB的散热性能,并针对存在的问题进行改进。
设计迭代根据仿真分析和实验验证的结果,对PCB散热设计进行迭代优化,以提高其散热性能。
集成电路试题库
集成电路试题库(总49页) -本页仅作为预览文档封面,使用时请删除本页-半导体集成电路典型试题绪论1、什么叫半导体集成电路?【答案:】通过一系列的加工工艺,将晶体管,二极管等有源器件和电阻,电容等无源元件,按一定电路互连。
集成在一块半导体基片上。
封装在一个外壳内,执行特定的电路或系统功能。
2、按照半导体集成电路的集成度来分,分为哪些类型,请同时写出它们对应的英文缩写【答案:】小规模集成电路(SSI),中规模集成电路(MSI),大规模集成电路(VSI),超大规模集成电路(VLSI),特大规模集成电路(ULSI),巨大规模集成电路(GSI)3、按照器件类型分,半导体集成电路分为哪几类?【答案:】双极型(BJT)集成电路,单极型(MOS)集成电路,Bi-CMOS型集成电路。
4、按电路功能或信号类型分,半导体集成电路分为哪几类?【答案:】数字集成电路,模拟集成电路,数模混合集成电路。
5、什么是特征尺寸它对集成电路工艺有何影响【答案:】集成电路中半导体器件的最小尺寸如MOSFET的最小沟道长度。
是衡量集成电路加工和设计水平的重要标志。
它的减小使得芯片集成度的直接提高。
6、名词解释:集成度、wafer size、die size、摩尔定律?【答案:】7、分析下面的电路,指出它完成的逻辑功能,说明它和一般动态组合逻辑电路的不同,分析它的工作原理。
【答案:】该电路可以完成NAND逻辑。
与一般动态组合逻辑电路相比,它增加了一个MOS管M kp,它可以解决一般动态组合逻辑电路存在的电荷分配的问题。
对于一般的动态组合逻辑电路,在评估阶段,A=“H” B=“L”, 电荷被OUT处和A处的电荷分配,整体的阈值下降,可能导致OUT的输出错误。
该电路增加了一个MOS管M kp,在预充电阶段,M kp导通,对C点充电到V dd。
在评估阶段,M kp截至,不影响电路的正常输出。
8、延迟时间【答案:】时钟沿与输出端之间的延迟第1章集成电路的基本制造工艺1、四层三结的结构的双极型晶体管中隐埋层的作用【答案:】减小集电极串联电阻,减小寄生PNP管的影响2、在制作晶体管的时候,衬底材料电阻率的选取对器件有何影响【答案:】电阻率过大将增大集电极串联电阻,扩大饱和压降,若过小耐压低,结电容增大,且外延时下推大3、简单叙述一下pn结隔离的NPN晶体管的光刻步骤【答案:】第一次光刻:N+隐埋层扩散孔光刻第二次光刻:P隔离扩散孔光刻第三次光刻:P型基区扩散孔光刻第四次光刻:N+发射区扩散孔光刻第五次光刻:引线孔光刻第六次光刻:反刻铝4、简述硅栅p阱CMOS的光刻步骤【答案:】P阱光刻,光刻有源区,光刻多晶硅,P+区光刻,N+区光刻,光刻接触孔,光刻铝线5、以p阱CMOS工艺为基础的BiCMOS的有哪些不足【答案:】NPN晶体管电流增益小,集电极串联电阻大,NPN管的C极只能接固定电位6、以N阱CMOS工艺为基础的BiCMOS的有哪些优缺点?并请提出改进方法【答案:】首先NPN具有较薄的基区,提高了其性能:N阱使得NPN管C极与衬底断开,可根据电路需要接任意电位。
超大规模集成电路的设计发展趋势
超大规模集成电路的设计发展趋势摘要:随着信息产品市场需求的增长,尤其通过通信、计算机与互联网、电子商务、数字视听等电子产品的需求增长,世界集成电路市场在其带动下高速增长。
本文主要从半导体电子学与计算技术工程方面进行进行的诸多研究成果以及国际集成电路的发展现状和发展趋势反映其在国际上的重要地位。
关键字:超大规模集成电路发展趋势SOC IP复用技术1 引言集成电路是采用半导体制作工艺,在一块较小的单晶硅片上制作许多晶体管及电阻器、电容器等元器件,并按照多层布线或隧道布线的方法将元器件组合成完整的电子电路,通常用IC(Integrated Circuit)表示。
近廿多年来,半导体电子学的发展速度是十分惊人的。
从分离元件发展为集成电路,从小规模集成电路发展为现代的超大规模集成电路。
集成电路的性能差不多提高了3个数量级,而其成本却下降了同样的数量级。
2超大规模集成电路发展的概述集成电路之所以获得如此迅速的发展,与数据处理系统日益增长的各种要求是分不开的,也是半导体电子学与计算技术工程方面进行了许多研究工作的结果。
这些工作可以概括为:(l)改进性能一尽可能减少信号处理的传递时间。
(2)降低成本一从设计、制造、组装、冷却等各方而降低成本。
(3)提高可靠性一减少失效率,增加检测与诊断的手段。
(4)缩短研制/生产周期一加快从确定研制产品到产品可用之间的时间,使产品保持领先地位。
(5)结构上的改进一半导体存储器的进展,推动了计算机体系的发展。
1.改进性能在计算机中采用高密度的半导体集成电路是减少信号传递时间,提高机器性能的重要环节。
因为在普通采用小规模集成电路(551)或中规模集成电路(MSI)的硬件结构中,信号传输与负载引起的延迟,与插件上的门的有效组装密度的平方根成正比,如图(1.1.1)。
也就是说,组装延迟与每个门所需的有效面积的平方根成正比。
因此将组装延迟减少一半的话,必须提高组装密度4倍。
从ssl/Msl发展为LSI/VLsl标志着芯片上元件的集成度得到了很大的提高。
公务员考试行政职业能力倾向模拟试题(六)(含答案)
[数量关系测验、⾔语理解与表达、判断推理、常识、资料分析、及参考答案]第⼀部分数量关系⼀、数字推理下⾯的每⼀道试题都是按某种规律排列的数列,但其中缺少⼀项,请你仔细观察数列的排列规律,然后从四个供选择的答案中选择出你认为最合适、最合理的⼀个,来填补空缺,并在答题纸上将相应题号下⾯的选项涂⿊。
1. 1 3 6 10 15,( )A.17 B.19 C.21 D.162.1 -4 9 -16 ( )A.20 B.25 C.-20 D.183.1 1/3 1/9 1/27 1/18 ( )A.1/243 B. 1/255 C. 1/162 D.1/1644.2 3 5 7 11 ( )A.13 B.12 C.15 D.145.1/2 1/6 1/12 1/20 1/30 ( )A.1/40 B.1/37 C.1/31 D.1/42⼆、数字运算6.⼀个数的1/2⽐它的1/3多5,则这个数是:A.24 B.30 C.12 D.407.35 12 83 114 91的平均数为:A.81 B.54 C.67 D.83,758.⽐a的1/3⼤4的数为8,则。
为:A.24 B.3 C.6 D.129.浓度为70%的酒精溶液500克与浓度为50%的酒精溶液300克,混合后所得到的酒精溶液的浓度是多少?A.54.2% B.62.5% C.34.5% D.60%10.若甲把⾃⼰的⽕柴分1/2给⼄,则⼄的⽕柴是甲的4/3倍,则未分之前甲、⼄⽕柴数之⽐为:A.3:1 B.4:1 C.6:1 D.2:111.⽔池上装有甲、⼄两个⼤⼩不同的⽔龙头,单开甲龙头1⼩时可注满⽔池。
现在两个⽔龙头同时注⽔;20分钟可注满⽔池的1/2,如果单开⼄龙头需要多长时间注满⽔池?A.1⼩时 B.2⼩时 C.3⼩时 D.4⼩时12.某校共1000⼈,男⼥⽐例为6:4;教师与学⽣⽐例为2:8;若男教师为100名,则⼥学⽣共有多少名?A.50 B.100 C.200 D.300,13.599764—33642.35=( )A.566122.65 B.566121.65 C.566121.35 D.566122.3514。
大规模散热数据中心的设计与实现研究
大规模散热数据中心的设计与实现研究随着信息技术的不断发展与普及,越来越多的企业和机构开始将业务转移到云计算中心,而数据中心作为云计算的核心基础设施,日益成为信息化建设的重要组成部分。
而在数据中心的运行过程中,散热问题成为了制约数据中心稳定运行的关键问题之一。
因此,本文将介绍大规模散热数据中心的设计与实现研究,以期为相关领域的研究者提供一些有益的参考。
一、散热问题概述数据中心的散热问题是由于大量的服务器和其它设备工作时产生的热量无法有效地排出而导致的。
散热问题的解决方案不仅关乎数据中心的安全稳定,而且也会影响到数据中心的节能和运营成本等方面。
当前,数据中心的热量问题已成为制约其发展的重要制约因素之一。
因此,如何设计和实现高效的散热方案是大规模散热数据中心的一个重要课题。
二、散热方案的设计与实现为解决数据中心的散热问题,研究者们已经提出了多种散热方案,其中比较常用的有:空气式散热、水冷散热和液体浸没散热。
在这些方案中,空气散热是最为常用的散热方式,其最大的优点是成本低、可靠性高,但同时也存在空气流动不畅、散热效率低等问题。
而水冷散热则是利用水的热传递性质对设备进行散热,其散热效率要比空气式散热高很多,但相比之下,它的造价则较高。
另外,液体浸没散热利用液体的热传递性质进行散热,可以大幅提高散热效率,但由于液体与电子器件之间的相容性问题,这种方案目前还没有被广泛应用。
三、散热方案的优化在设计和实现散热方案时,优化方案也是至关重要的一步。
优化的目标是尽可能地提高散热效率、缩短散热时长和降低成本。
这需要对数据中心的电子设备、空调系统、通风方式以及电源供应等方面进行改进和优化。
另外,数据中心的物理结构设计也是影响散热效果的重要因素之一。
例如,对机房的布线及空间进行分析,统计和评测,科学合理地设计机柜、机架等基础设施的尺寸和密度,以确保通风顺畅、空气流通良好,从而提高机房的散热效率。
四、未来发展趋势现代数据中心复杂多变,其散热问题是由于大量的服务器和其它设备工作时产生的热量无法有效地排出而导致的。
《工程学概论》超大规模集成电路基础
芯片(Chip, Die) 硅片(Wafer)
集成电路的成品率:
硅片上好的芯片数
Y= 硅片上总的芯片数
100%
成品率的检测,决定工艺的稳定性, 成品率对集成电路厂家很重要
集成电路的性能指标: 集成度 速度、功耗 特征尺寸 可靠性
集成电路发展的原动力:不断提高的性能/价格比
集成电路发展的特点:性能提高、价格降低
VDD
IN
OUT
Y
A1
A2
CMOS反相器
与非门:Y=A1A2
5.3 影响集成电路性能的因素和发展趋势
器件的门延迟: 迁移率 沟道长度
途径: 提高迁移率,如GeSi材料 减小沟道长度
电路的互连延迟: 线电阻(线尺寸、电阻率) 线电容(介电常数、面积)
互连的类别: 芯片内互连、芯片间互连
长线互连(Global) 中等线互连 短线互连(Local)
互连技术与器件特征尺寸的缩小 (资料来源:Solidstate Technology Oct.,1998)
多层互连
Motorata开发的六层Cu互连结构的相片
结束语
•
树立质量法制观念、提高全员质量意 识。20. 10.2420 .10.24Saturday , October 24, 2020
•
专注今天,好好努力,剩下的交给时 间。20. 10.2420 .10.241 0:2210:22:111 0:22:11 Oct-20
•
牢记安全之责,善谋安全之策,力务 安全之 实。202 0年10 月24日 星期六1 0时22 分11秒Saturday , October 24, 2020
•
相信相信得力量。20.10.242020年10月 24日星 期六10 时22分 11秒20 .10.24
超大规模集成电路串扰问题的研究
北京邮电人学颂”I:论文格数。
用Ccoupled来表示相互平行重叠的互连线间的耦合电容,用Csubstrate来表示布线段对衬底(substrate)的耦合电容(互连线问的串扰与Csubstrate无关),用R柬表示布线段的电阻。
假设电容的单元长度系数(fringingcapacitance)为a,串扰的修『F系数为Y,所以,由相互平行重叠的相邻互连线间的耦合电容引起的串扰Cerosstalk为:c一“-(i,j)=r+ccou。
-“(ij)2y+【iiii簧;笔巧了互】2y+[T:i:i;;;靠1(3一)图3-8互连线间的Rc物理模型(即指考虑容性耦合的互连线串执模型)由公式(3-1)可知:1.互连线iJ的串扰『F比于它们平行重叠部分的长度l舒,即Ccrosstalk(i,j)。
clij。
所以,在通道布线中,尽可能地减小lij,可使串扰达到最小。
c…(i,剃‘丽a*ljM1+[譬】(3.2)2.当假设布线段的宽度wi(wj)很小或者忽略时,由公式(3-2),互连线ij的串扰反比于它们间的垂直距离diJ。
3.4.2考虑串扰的布线的算法考虑串扰的布线问题是十分复杂的,通常情况下详细布线的串扰研究可划分为两类:一是有网格的布线模型,二是无网格的布线模型。
在第一类模型中。
可以通过对轨道、和线层和布线段(或线网)的扰动改变和重新指定来减少串扰;在第二类模型中,可以调整相邻线网之间的距离来减少串扰。
所以,考虑性能的布线过程可分为两步,首先是完成通道布线得到初始解,其目标是减少通道面积(即减各种算法少总的轨道数);然后是设计一个后处理算法,以减少整个芯片的性能(如:串扰或者时延等)。
下面简要介绍考虑串扰的曼哈顿通道布线算法的研究现状。
a.1993年T.Gao和c,L.Liu[34]首先提出考虑串扰的有网格的曼哈顿通道布线算法。
该算法提出了满足串扰约束(crosstalkconstraints)的目标函数,通过扰动布线轨道(routingtrack)来达到串扰最小。
如何提高高功率电子设备的散热性能
如何提高高功率电子设备的散热性能在当今科技飞速发展的时代,高功率电子设备在各个领域的应用越来越广泛,从高性能计算机、数据中心服务器到工业自动化设备、电动汽车等。
然而,随着电子设备功率密度的不断提高,散热问题成为了制约其性能和可靠性的关键因素。
如果不能有效地解决散热问题,过高的温度可能会导致电子元件性能下降、寿命缩短,甚至出现故障和损坏。
因此,如何提高高功率电子设备的散热性能是一个至关重要的课题。
一、优化散热设计良好的散热设计是提高散热性能的基础。
首先,在设备的结构设计上,要确保热流路径的畅通。
例如,将发热元件合理布局,避免热量集中在局部区域。
对于多层电路板,要设计良好的导热通道,将热量迅速传导到散热片或其他散热装置上。
其次,选择合适的散热材料也非常重要。
金属材料如铜、铝等具有良好的导热性能,常用于制造散热片和导热管。
在一些高端应用中,还会使用到具有更高导热性能的材料,如金刚石、石墨烯等。
另外,增加散热面积也是一种有效的方法。
可以通过设计更多的散热鳍片、增大散热片的表面积等方式来提高散热效果。
同时,合理设计风道和风扇,利用强制对流来增强散热能力。
二、高效的散热方式1、风冷散热风冷散热是目前应用最为广泛的散热方式之一。
通过风扇将冷空气吹向散热片,带走热量。
在设计风冷散热系统时,要考虑风扇的风量、风压、转速等参数,以及风扇的布局和风道的优化。
同时,选择合适的散热片形状和尺寸,以提高风冷散热的效率。
2、水冷散热水冷散热的效率通常比风冷散热更高。
它通过水泵将冷却液循环流经发热元件和散热器,将热量带走。
水冷散热系统的关键在于冷却液的选择、水泵的性能、散热器的设计以及管道的布局。
冷却液要具有良好的导热性能和稳定性,水泵要能够提供足够的流量和压力,散热器要有足够的散热面积和高效的散热结构。
3、热管散热热管是一种高效的导热装置,它利用工质的相变来传递热量。
热管具有极高的导热系数,可以迅速将热量从发热源传递到散热片上。
pcb,热阻,散热设计
pcb,热阻, 散热设计散热设计(二)降低IC封装热阻的封装设计方法随着IC封装轻薄短小以及发热密度不断提升的趋势,散热问题日益重要,如何降低封装热阻以增进散热效能是封装设计中很重要的技术。
由于构造不同,各种封装形式的散热效应及设计方式也不尽相同,本片文中将介绍各种封装形式,包括导线架(Leadframe)形式、球状格子数组形式(BGA)以及覆晶(Flip Chip)形式封装的散热增进设计方式及其影响。
前言随着电子产品的快速发展,对于功能以及缩小体积的需求越来越大,除了桌上型计算机的速度不断升级,像是笔记型计算机、手机、迷你CD、掌上型计算机等个人化的产品也成为重要的发展趋势,相对的产品所使用的IC功能也越来越强、运算速度越来越快、体积却越来越小,如<图1>所示。
整个演进的趋势正以惊人的速度推进,而对这种趋势能造成阻碍的一个主要因素就是「热」。
热生成的主要因素是由于IC中百万个晶体管计算时所产生的功率消耗,这些热虽然可藉由提升IC 制程能力来降低电压等方式来减少,但是仍然不能解决发热密度增加的趋势,以CPU为例,如<图2>所示,发热瓦数正逐年增加。
散热问题如不解决,会使IC因过热而影响到产品的可靠性,造成寿命减低甚至损毁的结果。
图1 电子产品及IC尺寸演进图2 Intel CPU发热功率趋势封装发展的趋势从早期PCB穿孔的安装方式到目前以表面黏着的型式,PCB上可以安装更多更密的IC,使得组装的密度增高,散热的问题也更为严重。
针对于IC封装层级的散热问题,最基本的方式就是从组件本身的构造来做散热增强的设计。
而采用多层板的设计等方式,对PCB层级的散热也有明显的帮助,而当发热密度更大时,则需要近一步的系统层级的散热设计如散热片或风扇的安装等,才能解决散热问题。
就成本的角度来看,各层级所需的费用是递增的,因此IC封装层级的散热问题就特别重要了。
IC封装的型式很多,如<图1>所示,包括了以导线脚或是以锡球连接于印刷电路板上的方式,以导线脚连接的方式像是TSOP、QFP、LCC等封装,是由金属导线架支撑封装结构,借着两面或四边的接脚和PCB连接。
PCB板散热设计技巧
PCB板散热设计技巧PCB散热主要从导热、对流、辐射三方面来进行PCB板散热设计技巧散热是PCB热设计的主要内容。
散热的目的是在元器件温度超过可靠性保证温度时,采取适当的散热对策,使温度降低到可靠性工作范围内。
PCB散热主要从导热、对流、辐射三方面来进行。
本文主要介绍PCB电路板的散热设计技巧一、元器件排列散热1、元件布置满足散热要求交错分散排列。
在布板设计进行元件布局时,应将发热元器件与一般器件及温度敏感器件区分开,发热器件周围应留有足够的散热气体流动通道,发热元件应错开分散排列。
这与通常布局时的整齐划一排列恰好相反,有利于改善散热效果。
当热性能不同的元件混合安装时,最好将发热量大的元件安装在下风处,放热小的元件安装在上风处,否则耐热差的元件会处在发热元件散热的路径上,其结果是耐热性差的元件处较高温度处。
具有相同水平的耐热元件混合排列时,基本排列顺序是:耗电大的元件、散热性差的元件应装在上风处。
2 、高发热器件的散热当PCB中有少数器件发热量较大时时,可在发热器件上加散热器或导热管,当温度还不能降下来时,可采用带风扇的散热器,以增强散热效果。
当发热器件量较多时,可采用大的散热罩,它是按PCB板上发热器件的位置和高低而定制的专用散热器或是在一个大的平板散热器上抠出不同的元件高低位置。
将散热罩整体扣在元件面上,与每个元件接触而散热。
但由于元器件装焊时高低一致性差,散热效果并不好。
通常在元器件面上加柔软的热相变导热垫来改善散热效果。
二、PCB电路板散热PCB板材是覆铜/环氧玻璃布基材或酚醛树脂玻璃布基材,还有少量使用的纸基覆铜板材。
这些基材虽然具有优良的电气性能和加工性能,但散热性差,作为高发热元件的散热途径是从元件的表面向周围空气中散热。
但只靠表面积十分小的元件表面来散热是非常不够的。
同时由于元器件产生的热量大量地传给PCB板,因此解决散热的最好方法是提高与发热元件直接接触的PCB自身的散热能力,通过PCB板传导出去或散发出去。