圆周运动经典习题带详细答案1
圆周运动习题基础题(经典)
1.质量为m=2.0×103kg的汽车在水平公路上行驶,轮胎与路面间的最大静摩擦力为F m=1.4×104N。
汽车经过半径为R=50m的弯路时,如果车速达到v=72km/h,这辆车会不会发生侧滑?2.在高速公路的拐弯处,通常路面都是外高内低。
如图所示,在某路段汽车向左拐弯,司机左侧的路面比右侧的路面低一些。
汽车的运动可看作是做半径为R的圆周运动。
设内外路面高度差为h,路基的水平宽度为d,路面的宽度为L。
已知重力加速度为g。
要使车轮与路面之间的横向摩擦力(即垂直于前进方向)等于零,则汽车转弯时的车速应是多少?3.如图一辆质量m=500kg的汽车静止在一座半径r=50m的圆弧形拱桥顶部.(g=10m/s2)(1)此时汽车对圆弧形拱桥的压力是多大?(2)如果汽车以6m/s的速度经过拱桥的顶部,则汽车对圆弧形拱桥的压力是多大?(3)汽车以多大速度通过拱桥的顶部时,汽车对圆弧形拱桥的压力恰好为零?4.质量为25kg的小孩坐在秋千上,小孩离系绳子的横梁2.5m。
秋千摆到最低点时,如果小孩运动速度的大小是5m/s,他对秋千的压力是多大?5.如图所示,在光滑水平面上竖直固定一半径为R的光滑半圆槽轨道,其底端恰与水平面相切.质量为m的小球以大小为v0的初速度经半圆槽轨道最低点A滚上半圆槽,小球恰好能通过最高点B后落回到水平面上的C点.不计空气阻力,重力加速度为g,求:(1)小球通过A点时对半圆槽的压力大小;(2)小球达到B点时的速度大小;(3)A、C两点间的距离;C6.如图所示,长为L的细绳一端固定,另一端系一质量为m的小球。
给小球一个合适的初速度,小球便可在水平面内做匀速圆周运动,这样就构成了一个圆锥摆,设细绳与竖直方向的夹角为θ,重力加速度为g,求:(1)细绳对小球的拉力大小?(2)小球运动的线速度大小?(3)小球运动的周期。
θ7.如图所示,一质量m=0.6kg的小球(可看成质点),用l=0.4m长的细线拴住在竖直面内作圆周运动(g=10m/s2),求:(1)小球能够完成圆周运动,在最高点的最小速度是多少?(2)当小球在圆上最高点速度为4m/s时,细线的拉力是多大?(3)当小球在圆上最低点速度为6m/s时,细线的拉力是多大?8.如图所示,长L=0.5m的轻杆(质量不计),其一端连接着一个质量为m=0.1kg的小球(球大小不计),现让小球在竖直平面内绕O点做圆周运动。
圆周运动经典练习(有答案详解)
《圆周运动》练习题(一)1. A. 线速度不变2. A 和B A. 球A B. 球A C. 球A D. 球A3. 演,如图5A. B. C. D.4.A. B. C. D.5.如图1个质量为应为( )6.(M>m 连在一起。
A.mLgm M )(-μC.MLgm M )(+μ7. 如图3A. A 、B C. 若︒=30θ,则8. A. 木块A B. 木块A C. 木块A D. 木块A9. 如图5所示,质量为m 的小球在竖直平面内的光滑圆轨道上做圆周运动。
圆半径为R ,小球经过A. B.C. D.10. 一辆质量为4t 车对桥面压力的0.0511.和60°,则A 、B12.如图所示,a 、b B r OC =(1)B C ωω:13. 转动时求杆OA 和AB14. 司机开着汽车在一宽阔的马路上匀速行驶突然发现前方有一堵墙,他是刹车好还是转弯好?(设转弯时汽车做匀速圆周运动,最大静摩擦力与滑动摩擦力相等。
)(1(21.解析:2. 解析:图4B A 比较线速度时,选用rv m F 2=分析得r 大,v 一定大,A 答案正确。
比较角速度时,选用r m F 2ω=分析得r 大,ω一定小,B 答案正确。
比较周期时,选用r Tm F 2)2(π=分析得r 大,T 一定大,C 答案不正确。
小球A 和B 受到的支持力N F 都等于αsin mg,D 答案不正确。
点评:①“向心力始终指向圆心”可以帮助我们合理处理物体的受力;② 根据问题讨论需要,解题时要合理选择向心力公式。
3. 解析:甲、乙两人做圆周运动的角速度相同,向心力大小都是弹簧的弹力,则有乙乙甲甲r M r M 22ωω=即乙乙甲甲r M r M =且m r r 9.0=+乙甲,kg M 80=甲,kg M 40=乙解得m r 3.0=甲,m r 6.0=乙由于甲甲r M F 2ω=所以)/(62.03.0802.9s rad r M F =⨯==甲甲ω而r v ω=,r 不同,v 不同。
(完整版)匀速圆周运动练习题含答案
匀速圆周运动——练习题一、选择题1、关于角速度和线速度,下列说法正确的是(B)A.半径一定,角速度与线速度成反比B.半径一定,角速度与线速度成正比C.线速度一定,角速度与半径成正比D.角速度一定,线速度与半径成反比2、下列关于甲乙两个做圆周运动的物体的有关说法正确的是( C)A.它们线速度相等,角速度一定相等B.它们角速度相等,线速度一定也相等C.它们周期相等,角速度一定也相等D.它们周期相等,线速度一定也相等3、时针、分针和秒针转动时,下列正确说法是(A)A.秒针的角速度是分针的60倍B.分针的角速度是时针的60倍C.秒针的角速度是时针的360倍D.秒针的角速度是时针的86400倍4、关于物体做匀速圆周运动的正确说法是(D)A.速度大小和方向都改变B.速度的大小和方向都不变C.速度的大小改变,方向不变D.速度的大小不变,方向改变5、物体做匀速圆周运动的条件是(D)A.物体有一定的初速度,且受到一个始终和初速度垂直的恒力作用B.物体有一定的初速度,且受到一个大小不变,方向变化的力的作用C.物体有一定的初速度,且受到一个方向始终指向圆心的力的作用D.物体有一定的初速度,且受到一个大小不变方向始终跟速度垂直的力的作用6、甲、乙两物体都做匀速圆周运动,其质量之比为1:2,转动半径之比为1:2,在相等时间里甲转过60°,乙转过45°,则它们所受外力的合力之比为(C)A. 1:4B.2:3C.4:9D.9:167、如图1所示,用细线吊着一个质量为m的小球,使小球在水平面内做圆锥摆运动,关于小球受力,正确的是(B)A.受重力、拉力、向心力B.受重力、拉力C.受重力D.以上说法都不正确8、冰面对溜冰运动员的最大摩擦力为运动员重力的k倍,在水平冰面上沿半径为R的圆周滑行的运动员,若依靠摩擦力充当向心力,其安全速度为(B)9、火车转弯做圆周运动,如果外轨和内轨一样高,火车能匀速通过弯道做圆周运动,下列说法中正确的是(A)A.火车通过弯道向心力的来源是外轨的水平弹力,所以外轨容易磨损B.火车通过弯道向心力的来源是内轨的水平弹力,所以内轨容易磨损C.火车通过弯道向心力的来源是火车的重力,所以内外轨道均不磨损D.以上三种说法都是错误的10、一圆筒绕其中心轴OO1匀速转动,筒内壁上紧挨着一个物体与筒一起运动相对筒无滑动,如图2所示,物体所受向心力是(C)A.物体的重力B.筒壁对物体的静摩擦力C.筒壁对物体的弹力D.物体所受重力与弹力的合力11、一圆盘可以绕其竖直轴在水平面内转动,圆盘半径为R,甲、乙两物体的质量分别为M 与m(M>m),它们与圆盘之间的最大静摩擦力均为正压力的μ倍,两物体用一根长为l(l <R)的轻绳连在一起,如图3所示,若将甲物体放在转轴的位置上,甲、乙之间接线刚好沿半径方向拉直,要使两物体与转盘之间不发生相对滑动,则转盘旋转的角速度最大值不得超过(C)二、填空题12、做匀速圆周运动的物体,当质量增大到2倍,周期减小到一半时,其向心力大小是原来的___8__倍,当质量不变,线速度大小不变,角速度大小增大到2倍时,其向心力大小是原来的__2____倍。
(完整版)圆周运动习题及答案
《圆周运动》练习(二)1.如图所示,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l,木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是()A.b一定比a先开始滑动B.a、b所受的摩擦力始终相等C.ω=kg2l是b开始滑动的临界角速度D.当ω=2kg3l时,a所受摩擦力的大小为kmg2.如图所示,一质量为M的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g.当小环滑到大环的最低点时,大环对轻杆拉力的大小为()A.Mg-5mg B.Mg+mgC.Mg+5mg D.Mg+10mg3.如图所示的曲线是某个质点在恒力作用下的一段运动轨迹.质点从M点出发经P点到达N点,已知弧长MP大于弧长PN,质点由M点运动到P点与从P点运动到N点所用的时间相等.则下列说法中正确的是()A.质点从M到N过程中速度大小保持不变B.质点在这两段时间内的速度变化量大小相等,方向相同C.质点在这两段时间内的速度变化量大小不相等,但方向相同D.质点在M、N间的运动不是匀变速运动4.如图所示,质量相同的钢球①、②分别放在A、B盘的边缘,A、B两盘的半径之比为2∶1,a、b 分别是与A盘、B盘同轴的轮,a、b轮半径之比为1∶2.当a、b两轮在同一皮带带动下匀速转动时,钢球①、②受到的向心力大小之比为()A.2∶1 B.4∶1C.1∶4 D.8∶15.利用双线可以稳固小球在竖直平面内做圆周运动而不易偏离竖直面,如图所示,用两根长为L的细线系一质量为m的小球,两线上端系于水平横杆上的A、B两点,A、B两点相距也为L,若小球恰能在竖直面内做完整的圆周运动,则小球运动到最低点时,每根线承受的张力为()A.23mg B.3mgC .2.5mg D.73mg26.如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m 处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g 取10 m/s 2.则ω的最大值是( ) A. 5 rad/s B. 3 rad/s C .1.0 rad /s D .0.5 rad/s7.如图所示,在竖直平面内有xOy 坐标系,长为l 的不可伸长细绳,一端固定在A 点,A 点的坐标为(0,l2),另一端系一质量为m 的小球.现在x 坐标轴上(x >0)固定一个小钉,拉小球使细绳绷直并呈水平位置,再让小球从静止释放,当细绳碰到钉子以后,小球可以绕钉子在竖直平面内做圆周运动.(1)当钉子在x =54l 的P 点时,小球经过最低点时细绳恰好不被拉断,求细绳能承受的最大拉力;(2)为使小球释放后能绕钉子在竖直平面内做圆周运动,而细绳又不被拉断,求钉子所在位置的范围.8.如图所示,一小物块自平台上以速度v 0水平抛出,刚好落在邻近一倾角为α=53°的粗糙斜面AB 顶端,并恰好沿该斜面下滑,已知斜面顶端与平台的高度差h =0.032 m ,小物块与斜面间的动摩擦因数为μ=0.5,A 点离B 点所在平面的高度H =1.2 m .有一半径为R 的光滑圆轨道与斜面AB 在B 点相切连接,已知cos 53°=0.6,sin 53°=0.8,g 取10 m/s 2.求: (1)小物块水平抛出的初速度v 0是多少;(2)若小物块能够通过圆轨道最高点,圆轨道半径R 的最大值.9.如图所示为某游乐场内水上滑梯轨道示意图,整个轨道在同一竖直平面内,表面粗糙的AB 段轨道与四分之一光滑圆弧轨道BC 在B 点水平相切.点A 距水面的高度为H ,圆弧轨道BC 的半径为R ,圆心O 恰在水面.一质量为m 的游客(视为质点)可从轨道AB 的任意位置滑下,不计空气阻力.(1)若游客从A 点由静止开始滑下,到B 点时沿切线方向滑离轨道落在水面D 点,OD =2R ,求游客滑到B 点时的速度v B 大小及运动过程轨道摩擦力对其所做的功W f ;(2)某游客从AB 段某处滑下,恰好停在B 点,又因受到微小扰动,继续沿圆弧轨道滑到P 点后滑离轨道,求P 点离水面的高度h .(提示:在圆周运动过程中任一点,质点所受的向心力与其速率的关系为F 向=m v 2R )10.如图所示,一块足够大的光滑平板放置在水平面上,能绕水平固定轴MN 调节其与水平面的倾角.板上一根长为l =0.6 m 的轻细绳,它的一端系住一质量为m 的小球P ,另一端固定在板上的O 点.当平板的倾角固定为α时,先将轻绳平行于水平轴MN 拉直,然后给小球一沿着平板并与轻绳垂直的初速度v 0=3 m /s.若小球能在板面内做圆周运动,倾角α的值应在什么范围内(取重力加速度g =10 m/s 2)?11.半径为R 的水平圆盘绕过圆心O 的竖直轴匀速转动,A 为圆盘边缘上一点.在O 的正上方有一个可视为质点的小球以初速度v 水平抛出时,半径OA 方向恰好与v 的方向相同,如图所示.若小球与圆盘只碰一次,且落在A点,重力加速度为g,则小球抛出时距O的高度h=________,圆盘转动的角速度大小ω=________.12.一长l=0.80 m的轻绳一端固定在O点,另一端连接一质量m=0.10 kg的小球,悬点O距离水平地面的高度H=1.00 m.开始时小球处于A点,此时轻绳拉直处于水平方向上,如图所示.让小球从静止释放,当小球运动到B点时,轻绳碰到悬点O正下方一个固定的钉子P时立刻断裂.不计轻绳断裂的能量损失,取重力加速度g=10 m/s2.求:(1)当小球运动到B点时的速度大小;(2)绳断裂后球从B点抛出并落在水平地面上的C点,求C点与B点之间的水平距离;(3)若OP=0.6 m,轻绳碰到钉子P时绳中拉力达到所能承受的最大拉力断裂,求轻绳能承受的最大拉力.答案1. 答案 AC解析 小木块a 、b 做圆周运动时,由静摩擦力提供向心力,即f =mω2R .当角速度增加时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a :f a =mω2a l ,当f a =kmg 时,kmg =mω2a l ,ωa=kgl;对木块b :f b =mω2b ·2l ,当f b =kmg 时,kmg =mω2b ·2l ,ωb = kg2l,所以b 先达到最大静摩擦力,选项A 正确;两木块滑动前转动的角速度相同,则f a =mω2l ,f b =mω2·2l ,f a <f b ,选项B 错误;当ω=kg2l时b 刚开始滑动,选项C 正确;当ω= 2kg 3l 时,a 没有滑动,则f a =mω2l =23kmg ,选项D 错误. 2. 答案 C解析 设大环半径为R ,质量为m 的小环下滑过程中遵守机械能守恒定律,所以12m v 2=mg ·2R .小环滑到大环的最低点时的速度为v =2gR ,根据牛顿第二定律得F N -mg =m v 2R,所以在最低点时大环对小环的支持力F N =mg +m v 2R =5mg .根据牛顿第三定律知,小环对大环的压力F N ′=F N =5mg ,方向向下.对大环,据平衡条件,轻杆对大环的拉力T =Mg +F N ′=Mg +5mg .根据牛顿第三定律,大环对轻杆拉力的大小为T ′=T =Mg +5mg ,故选项C 正确,选项A 、B 、D 错误. 3. 答案 B解析 由题图知,质点在恒力作用下做一般曲线运动,不同地方弯曲程度不同,即曲率半径不同,所以速度大小在变,所以A 错误;因是在恒力作用下运动,根据牛顿第二定律F =ma ,所以加速度不变,根据Δv =a Δt 可得在相同时间内速度的变化量相同,故B 正确,C 错误;因加速度不变,故质点做匀变速运动,所以D 错误. 4. 答案 D解析 皮带传送,边缘上的点线速度大小相等,所以v a =v b ,因为a 轮、b 轮半径之比为1∶2,根据线速度公式v =ωr 得:ωa ωb =21,共轴的点,角速度相等,两个钢球的角速度分别与共轴轮子的角速度相等,则ω1ω2=21.根据向心加速度a =rω2,则a 1a 2=81,由F =ma 得F 1F 2=81,故D 正确,A 、B 、C 错误. 5. 答案 A解析 小球恰好过最高点时有:mg =m v 21R解得v 1=32gL ① 根据动能定理得:mg ·3L =12m v 22-12m v 21② 由牛顿第二定律得:3T -mg =m v 2232L ③联立①②③得,T =23mg 故A 正确,B 、C 、D 错误. 6. 答案 C解析 当小物体转动到最低点时为临界点,由牛顿第二定律知,μmg cos 30°-mg sin 30°=mω2r 解得ω=1.0 rad/s ,故选项C 正确.7. 审题突破 (1)由数学知识求出小球做圆周运动的轨道半径,由机械能守恒定律求出小球到达最低点时的速度,然后由牛顿第二定律求出绳子的拉力.(2)由牛顿第二定律求出小球到达最高点的速度,由机械能守恒定律求出钉子的位置,然后确定钉子位置范围. 解析 (1)当钉子在x =54l 的P 点时,小球绕钉子转动的半径为:R 1=l - (l2)2+x 2 小球由静止到最低点的过程中机械能守恒:mg (l 2+R 1)=12m v 21在最低点细绳承受的拉力最大,有:F -mg =m v 21R 1联立求得最大拉力F =7mg .(2)小球绕钉子做圆周运动恰好到达最高点时,有:mg =m v 22R 2运动中机械能守恒:mg (l 2-R 2)=12m v 22钉子所在位置为x ′= (l -R 2)2-(l2)2联立解得x ′=76l因此钉子所在位置的范围为76l ≤x ≤54l .答案 (1)7mg (2)76l ≤x ≤54l8. 解析 (1)小物块自平台做平抛运动,由平抛运动知识得:v y =2gh =2×10×0.032 m /s =0.8 m/s(2分)由于物块恰好沿斜面下滑,则tan 53°=v yv 0(3分)得v 0=0.6 m/s.(2分)(2)设小物块过圆轨道最高点的速度为v ,受到圆轨道的压力为N .则由向心力公式得:N +mg =m v 2R(2分)由动能定理得:mg (H +h )-μmgH cos 53°sin 53°-mg (R +R cos 53°)=12m v 2-12m v 20(5分)小物块能过圆轨道最高点,必有N ≥0(1分) 联立以上各式并代入数据得:R ≤821 m ,即R 最大值为821m .(2分)答案 (1)0.6 m/s (2)821 m9. 答案 (1)2gR -(mgH -2mgR ) (2)23R解析 (1)游客从B 点做平抛运动,有 2R =v B t ①R =12gt 2②由①②式得 v B =2gR ③从A 到B ,根据动能定理,有mg (H -R )+W f =12m v 2B -0④由③④式得W f =-(mgH -2mgR )⑤(2)设OP 与OB 间夹角为θ,游客在P 点时的速度为v P ,受到的支持力为N ,从B 到P 由机械能守恒定律,有mg (R -R cos θ)=12m v 2P -0⑥过P 点时,根据向心力公式,有mg cos θ-N =m v 2PR ⑦N =0⑧cos θ=hR⑨由⑥⑦⑧⑨式解得h =23R ⑩10. 答案 α≤30°解析 小球在板面上运动时受绳子拉力、板面弹力、重力的作用.在垂直板面方向上合力为0,重力在沿板面方向的分量为mg sin α,小球在最高点时,由绳子的拉力和重力分力的合力提供向心力:T +mg sinα=m v 21l ①研究小球从释放到最高点的过程,据动能定理:-mgl sin α=12m v 21-12m v 20② 若恰好通过最高点绳子拉力F T =0,联立①②解得:sin α=v 203gl =323×10×0.6=12.故α最大值为30°,可知若小球能在板面内做圆周运动,倾角α的值应满足α≤30°.11. 答案 gR 22v 2 2n πvR(n =1,2,3,…)解析 小球做平抛运动,在竖直方向:h =12gt 2①在水平方向R =v t ②由①②两式可得h =gR 22v2③小球落在A 点的过程中,OA 转过的角度θ=2n π=ωt (n =1,2,3,…)④由②④两式得ω=2n πvR (n =1,2,3,…)12. 答案 (1)4 m/s (2)0.80 m (3)9 N解析 (1)设小球运动到B 点时的速度大小为v B ,由机械能守恒定律得 12m v 2B=mgl 解得小球运动到B 点时的速度大小v B =2gl =4 m/s (2)小球从B 点做平抛运动,由运动学规律得 x =v B t y =H -l =12gt 2解得C 点与B 点之间的水平距离 x =v B2(H -l )g=0.80 m (3)若轻绳碰到钉子时,轻绳拉力恰好达到最大值F m ,由牛顿定律得F m -mg =m v 2Brr =l -OP由以上各式解得F m =9 N。
《圆周运动》练习题 (附解析)
在圆周运动中,最常见和最简单的是匀速圆周运动(因为速度是矢量,所以匀速圆周运动实际上是指匀速率圆周运动)。
一、选择题1.下列有关洗衣机中脱水筒的脱水原理的说法正确的是( )A.水滴受离心力作用而背离圆心方向甩出B.水滴受到向心力,由于惯性沿切线方向甩出C.水滴受到的离心力大于它受到的向心力,而沿切线方向甩出D.水滴与衣服间的附着力小于它所需要的向心力,于是水滴沿切线方向甩出2.关于铁道转弯处内外铁轨间的高度关系,下列说法中正确的是( )A.内、外轨一样高,以防列车倾倒造成翻车事故B.因为列车在转弯处有向内倾倒的可能,故一般使内轨高于外轨,以防列车翻倒C.外轨比内轨略高,这样可以使列车顺利转弯,减少车轮与铁轨的挤压D.以上说法均不正确3.在世界一级方程式锦标赛中,赛车在水平路面上转弯时,常常在弯道上冲出跑道,其原因是( )A.是由于赛车行驶到弯道时,运动员未能及时转动方向盘造成的B.是由于赛车行驶到弯道时,没有及时加速造成的C.是由于赛车行驶到弯道时,没有及时减速造成D.是由于在弯道处汽车受到的摩擦力比在直道上小造成的4.在光滑的轨道上,小球滑下经过圆弧部分的最高点A时,恰好不脱离轨道,此时小球受到的作用力是( )A.重力、弹力和向心力B.重力和弹力C.重力和向心力D.重力5.用长为L的细绳拴着质量为m的小球在竖直平面内做圆周运动,正确的说法是( )A.小球在圆周最高点时所受的向心力一定为重力B.小球在最高点时绳子的拉力有可能为零C.若小球刚好能在竖直平面内做圆周运动,则其在最高点的速率为0D.小球过最低点时绳子的拉力一定大于小球的重力6.在高速公路的拐弯处,路面建造得外高内低,即当车向右拐弯时,司机左侧的路面比右侧的要高一些,路面与水平面间的夹角为θ,设拐弯路段是半径为R的圆弧,要使车速为v时车轮与路面之间的横向(即垂直于前进方向)摩擦力等于零,θ应等于( )A.sin θ=B.tan θ=C.sin 2θ=D.cot θ=7.长为l的轻杆,一端固定一个小球,另一端固定在光滑的水平轴上,使小球在竖直面内做圆周运动,关于最高点的速度v,下列说法正确的是( )A.v的极小值为B.v由零逐渐增大,向心力也增大C.当v由逐渐增大时,杆对小球的弹力逐渐增大D.当v由逐渐减小时,杆对小球的弹力逐渐增大二、非选择题8.一根长l=0.625 m的细绳,一端拴一质量m=0.4 kg 的小球,使其在竖直平面内绕绳的另一端做圆周运动,g取10 m/s2,求:(1)小球通过最高点时的最小速度;(2)若小球以速度v=3.0 m/s通过圆周最高点时,绳对小球的拉力多大?若此时绳突然断了,小球将如何运动?参考答案1.D [根据离心运动的特点知,水滴的离心现象是由于水滴与衣服间的附着力小于水滴运动所需要的向心力,即提供的向心力不足,所以水滴沿切线方向甩出,正确选项为D.]2.C [铁道转弯处外轨比内轨略高,从而使支持力的水平方向分力可提供一部分向心力,以减少车轮与铁轨的挤压避免事故发生,C对,A、B、D错.]3.C [赛车在水平弯道上行驶时,摩擦力提供向心力,而且速度越大,需要的向心力越大,如不及时减速,当摩擦力不足以提供向心力时,赛车就会做离心运动,冲出跑道,故C正确.]4.D [小球在最高点恰好不脱离轨道时,小球受轨道的弹力为零,而重力恰好提供向心力,向心力并不是小球受到的力,而是根据力的作用效果命名的,故D正确,A、B、C均错误.]5.BD [设在最高点小球受的拉力为F1,最低点受到的拉力为F2,当在最高点v1>时,则F1+mg=m,即向心力由拉力F1与mg的合力提供,A错;当v1=时,F1=0,B对;v1=为球经过最高点的最小速度,即小球在最高点的速率不可能为0,C错;在最低点,F2-mg=m,F2=mg+m,所以经最低点时,小球受到绳子的拉力一定大于它的重力,D对.]6.B[当车轮与路面的横向摩擦力等于零时,汽车受力如图所示,则有:Nsin θ=m,Ncos θ=mg,解得:tan θ=,故B正确.]7.BCD [由于是轻杆,即使小球在最高点速度为零,小球也不会掉下来,因此v 的极小值是零;v由零逐渐增大,由F=可知,F也增大,B对;当v=时,F==mg,此时杆恰对小球无作用力,向心力只由其自身重力来提供;当v由增大时,则=mg+F′F′=m-mg,杆对球的力为拉力,且逐渐增大;当v由减小时,杆对球为支持力.此时,mg-F′=,F′=mg-,支持力F′逐渐增大,杆对球的拉力、支持力都为弹力,所以C、D也对,故选B、C、D.]8.(1)2.5 m/s(2)1.76 N 平抛运动解析(1)小球通过圆周最高点时,受到的重力G=mg必须全部作为向心力F向,否则重力G中的多余部分将把小球拉进圆内,而不能实现沿竖直圆周运动.所以小球通过圆周最高点的条件应为F向≥mg,当F向=mg时,即小球受到的重力刚好全部作为通过圆周最高点的向心力,绳对小球恰好没有力的作用,此时小球的速度就是通过圆周最高点的最小速度v0,由向心力公式有:mg=m解得:G=mg=mv0== m/s=2.5 m/s.(2)小球通过圆周最高点时,若速度v大于最小速度v0,所需的向心力F向将大于重力G,这时绳对小球要施加拉力F,如图所示,此时有F+mg=m解得:F=m-mg=(0.4×-0.4×10) N=1.76 N若在最高点时绳子突然断了,则提供的向心力mg小于需要的向心力m,小球将沿切线方向飞出做离心运动(实际上是平抛运动).。
圆周运动大全(附答案)
圆周运动练习题1班别姓名学号一.单项选择题1.关于作匀速圆周运动的物体的向心加速度,下列说法正确的是:()A.向心加速度的大小和方向都不变B.向心加速度的大小和方向都不断变化C.向心加速度的大小不变,方向不断变化D.向心加速度的大小不断变化,方向不变2.对于做匀速圆周运动的质点,下列说法正确的是:()A.根据公式a=v2/r,可知其向心加速度a与半径r成反比B.根据公式a=ω2r,可知其向心加速度a与半径r成正比C.根据公式ω=v/r,可知其角速度ω与半径r成反比D.根据公式ω=2πn,可知其角速度ω与转数n成正比3.机械手表的时针、分针、秒针的角速度之比为()A.1:60:360B.1:12:360C.1:12:720D.1:60:72004.甲、乙两个物体分别放在广州和北京,它们随地球一起转动时,下面说法正确的是()A.甲的线速度大,乙的角速度小B.甲的线速度大,乙的角速度大C.甲和乙的线速度相等D.甲和乙的角速度相等5.一个做匀速圆周运动的物体,如果半径不变,而速率增加到原来速率的三倍,其向心力增加了64牛顿,那么物体原来受到的向心力的大小是()A.16NB.12NC.8ND.6N6.同一辆汽车以同样大小的速度先后开上平直的桥和凸形桥,在桥的中央处有()A.车对两种桥面的压力一样大B.车对平直桥面的压力大C.车对凸形桥面的压力大D.无法判断7.火车在水平轨道上转弯时,若转弯处内外轨道一样高,则火车转弯时:()A.对外轨产生向外的挤压作用B.对内轨产生向外的挤压作用C.对外轨产生向内的挤压作用D.对内轨产生向内的挤压作用8.如图所示,用细绳系着一个小球,使小球在水平面内做匀速圆周运动,不计空气阻力,关于小球受力说法正确的是()A.只受重力B.只受拉力C.受重力、拉力和向心力D.受重力和拉力.钟表上时针、分针都在做圆周运动 A .分针角速度是时针的12倍 B .时针转速是分针的1/60 C .若分针长度是时针的1.5倍,则端点线速度是时针的1.5倍 D .分针角速度是时针的60倍10.如图,一物块以1m/s 的初速度沿曲面由A 处下滑,到达较低的B 点时速度恰好也是1m/s ,如果此物块以2m/s 的初速度仍由A 处下滑,则它达到B 点时的速度A .等于2m/sB .小于2m/sC .大于2m/sD .以上三种情况都有可能11.如图所示,一水平平台可绕竖直轴转动,平台上有a 、b 、c 三个物体,其质量之比m a ︰m b ︰m c =2︰1︰1,它们到转轴的距离之比r a ︰r b ︰r c =1︰1︰2,三物块与平台间的动摩擦因数相同,且最大静摩擦力均与其压力成正比,当平台转动的角速度逐渐增大时,物块将会产生滑动,以下判断正确的是 A .a 先滑B .b 先滑C .c 先滑D .a 、c 同时滑12.一个小球在竖直环内至少做N 次圆周运动,当它第(N -2)次经过环的最低点时,速度是7m/s ;第(N -1)次经过环的最低点时,速度是5m/s ,则小球在第N 次经过环的最低点时的速度一定满足 ( ) A .v >1m/s B .v =1m/s C .v <1m/s D .v =3m/s13.甲、乙两球分别以半径R 1、R 2做匀速圆周运动,M 甲=2M 乙,圆半径R 甲=R 乙/3,甲球每分钟转30周,乙球每分钟转20周,则甲、乙两球所需向心力大小之比为 A .2:3 B .3:2 C .3:1 D .3:414.在质量为M 的电动机的飞轮上,固定着一个质量为m 的重物,重物到转轴的距离为r ,如图所示,为了使放在地面上的电动机不会跳起,电动机飞轮的角速度不能超过A .g mr m M +B .g mr m M +C .g mr m M -D .mrMg二.多项选择题15.一质点做圆周运动,速度处处不为零,则 ( ) A.任何时刻质点所受的合力一定不为零 C.质点速度的大小一定不断地变化 B.任何时刻质点的加速度一定不为零D.质点速度地方向一定不断地变化ωm16.如图,小物体m 与圆盘保持相对静止,随盘一起做匀速圆周运动,则物体的受力情况是:( )A .受重力、支持力、静摩擦力和向心力的作用B .摩擦力的方向始终指向圆心OC .重力和支持力是一对平衡力D .摩擦力是使物体做匀速圆周运动的向心力17.图中所示为一皮带传动装置,右轮的半径为r ,a 是它边缘 上的一点。
【物理】物理生活中的圆周运动练习题20篇及解析
【物理】物理生活中的圆周运动练习题20篇及解析一、高中物理精讲专题测试生活中的圆周运动1.如图,光滑轨道abcd 固定在竖直平面内,ab 水平,bcd 为半圆,在b 处与ab 相切.在直轨道ab 上放着质量分别为m A =2kg 、m B =1kg 的物块A 、B (均可视为质点),用轻质细绳将A 、B 连接在一起,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左侧的光滑水平地面上停着一质量M =2kg 、长L =0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,之后A 向左滑上小车,B 向右滑动且恰好能冲到圆弧轨道的最高点d 处.已知A 与小车之间的动摩擦因数µ满足0.1≤µ≤0.3,g 取10m /s 2,求(1)A 、B 离开弹簧瞬间的速率v A 、v B ; (2)圆弧轨道的半径R ;(3)A 在小车上滑动过程中产生的热量Q (计算结果可含有µ).【答案】(1)4m/s (2)0.32m(3) 当满足0.1≤μ<0.2时,Q 1=10μ ;当满足0.2≤μ≤0.3时,22111()22A A m v m M v -+ 【解析】 【分析】(1)弹簧恢复到自然长度时,根据动量守恒定律和能量守恒定律求解两物体的速度; (2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R ;(3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q. 【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为v A 、v B , 由动量守恒定律:0=A A B B m v m v - 由能量关系:2211=22P A A B B E m v m v -解得v A =2m/s ;v B =4m/s(2)设B 经过d 点时速度为v d ,在d 点:2dB B v m g m R=由机械能守恒定律:22d 11=222B B B B m v m v m g R +⋅ 解得R=0.32m(3)设μ=μ1时A 恰好能滑到小车左端,其共同速度为v,由动量守恒定律:=()A A A m v m M v +由能量关系:()2211122A A A A m gL m v m M v μ=-+ 解得μ1=0.2讨论:(ⅰ)当满足0.1≤μ<0.2时,A 和小车不共速,A 将从小车左端滑落,产生的热量为110A Q m gL μμ== (J )(ⅱ)当满足0.2≤μ≤0.3时,A 和小车能共速,产生的热量为()22111122A A Q m v m M v =-+,解得Q 2=2J2.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。
【物理】物理生活中的圆周运动题20套(带答案)含解析
【物理】物理生活中的圆周运动题20套(带答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。
铁球继续运动,到达水平桌面边缘A 点飞出,恰好落到竖直圆弧轨道BCD 的B 端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点D .已知∠BOC =37°,A 、B 、C 、D 四点在同一竖直平面内,水平桌面离B 端的竖直高度H =0.45m ,圆弧轨道半径R =0.5m ,C 点为圆弧轨道的最低点,求:(取sin37°=0.6,cos37°=0.8)(1)铁球运动到圆弧轨道最高点D 点时的速度大小v D ;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小F C ;(计算结果保留两位有效数字) (3)铁球运动到B 点时的速度大小v B ; (4)水平推力F 作用的时间t 。
【答案】(1)铁球运动到圆弧轨道最高点D 5;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小为6.3N ;(3)铁球运动到B 点时的速度大小是5m/s ; (4)水平推力F 作用的时间是0.6s 。
【解析】 【详解】(1)小球恰好通过D 点时,重力提供向心力,由牛顿第二定律可得:2Dmv mg R=可得:D 5m /s v =(2)小球在C 点受到的支持力与重力的合力提供向心力,则:2Cmv F mg R-=代入数据可得:F =6.3N由牛顿第三定律可知,小球对轨道的压力:F C =F =6.3N(3)小球从A 点到B 点的过程中做平抛运动,根据平抛运动规律有:2y 2gh v = 得:v y =3m/s小球沿切线进入圆弧轨道,则:35m/s 370.6y B v v sin ===︒(4)小球从A 点到B 点的过程中做平抛运动,水平方向的分速度不变,可得:3750.84/A B v v cos m s =︒=⨯=小球在水平面上做加速运动时:1F mg ma μ-=可得:218/a m s =小球做减速运动时:2mg ma μ=可得:222/a m s =-由运动学的公式可知最大速度:1m v a t =;22A m v v a t -= 又:222m m A v v vx t t +=⋅+⋅ 联立可得:0.6t s =2.如图所示,带有14光滑圆弧的小车A 的半径为R ,静止在光滑水平面上.滑块C 置于木板B 的右端,A 、B 、C 的质量均为m ,A 、B 底面厚度相同.现B 、C 以相同的速度向右匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g ) (1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【答案】(1)023v gR =(2)123gRv =253gR v =【解析】本题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为v 0,AB 相碰过程中动量守恒,设碰后AB 总体速度u ,由02mv mu =,解得02v u =C 滑到最高点的过程: 023mv mu mu +='222011123222mv mu mu mgR +⋅=+'⋅ 解得023v gR =(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有01222mv mu mv mv +=+22220121111222222mv mu mv mv +⋅=+⋅解得:123gRv =,253gR v =3.如图所示,水平传送带AB 长L=4m ,以v 0=3m/s 的速度顺时针转动,半径为R=0.5m 的光滑半圆轨道BCD 与传动带平滑相接于B 点,将质量为m=1kg 的小滑块轻轻放在传送带的左端.已,知小滑块与传送带之间的动摩擦因数为μ=0.3,取g=10m/s 2,求:(1)滑块滑到B 点时对半圆轨道的压力大小;(2)若要使滑块能滑到半圆轨道的最高点,滑块在传送带最左端的初速度最少为多大. 【答案】(1)28N.(2)7m/s 【解析】 【分析】(1)物块在传送带上先加速运动,后匀速,根据牛顿第二定律求解在B 点时对轨道的压力;(2)滑块到达最高点时的临界条件是重力等于向心力,从而求解到达D 点的临界速度,根据机械能守恒定律求解在B 点的速度;根据牛顿第二定律和运动公式求解A 点的初速度. 【详解】(1)滑块在传送带上运动的加速度为a=μg=3m/s 2;则加速到与传送带共速的时间01v t s a == 运动的距离:211.52x at m ==, 以后物块随传送带匀速运动到B 点,到达B 点时,由牛顿第二定律:2v F mg m R-= 解得F=28N ,即滑块滑到B 点时对半圆轨道的压力大小28N.(2)若要使滑块能滑到半圆轨道的最高点,则在最高点的速度满足:mg=m 2Dv R解得v D 5; 由B 到D ,由动能定理:2211222B D mv mv mg R =+⋅ 解得v B =5m/s>v 0可见,滑块从左端到右端做减速运动,加速度为a=3m/s 2,根据v B 2=v A 2-2aL 解得v A =7m/s4.如图所示,一滑板放置在光滑的水平地面上,右侧紧贴竖直墙壁,滑板由圆心为O 、半径为R 的四分之一光滑圆弧轨道和水平轨道两部分组成,且两轨道在B 点平滑连接,整个系统处于同一竖直平面内.现有一可视为质点的小物块从A 点正上方P 点处由静止释放,落到A 点的瞬间垂直于轨道方向的分速度立即变为零,之后沿圆弧轨道AB 继续下滑,最终小物块恰好滑至轨道末端C 点处.已知滑板的质量是小物块质量的3倍,小物块滑至B 点时对轨道的压力为其重力的3倍,OA 与竖直方向的夹角为θ=60°,小物块与水平轨道间的动摩擦因数为μ=0.3,重力加速度g 取102/m s ,不考虑空气阻力作用,求:(1)水平轨道BC 的长度L ; (2)P 点到A 点的距离h . 【答案】(1)2.5R (2)23R 【解析】 【分析】(1)物块从A 到B 的过程中滑板静止不动,先根据物块在B 点的受力情况求解B 点的速度;滑块向左滑动时,滑板向左也滑动,根据动量守恒和能量关系列式可求解水平部分的长度;(2)从P 到A 列出能量关系;在A 点沿轨道切向方向和垂直轨道方向分解速度;根据机械能守恒列出从A 到B 的方程;联立求解h . 【详解】(1)在B 点时,由牛顿第二定律:2BB v N mg m R-=,其中N B =3mg ;解得2B v gR =从B 点向C 点滑动的过程中,系统的动量守恒,则(3)B mv m m v =+; 由能量关系可知:2211(3)22B mgL mv m m v μ=-+ 联立解得:L=2.5R ;(2)从P 到A 点,由机械能守恒:mgh=12mv A 2; 在A 点:01sin 60A A v v =,从A 点到B 点:202111(1cos60)22A B mv mgR mv +-= 联立解得h=23R5.如图所示,A 、B 两球质量均为m ,用一长为l 的轻绳相连,A 球中间有孔套在光滑的足够长的水平横杆上,两球处于静止状态.现给B 球水平向右的初速度v 0,经一段时间后B 球第一次到达最高点,此时小球位于水平横杆下方l /2处.(忽略轻绳形变)求:(1)B 球刚开始运动时,绳子对小球B 的拉力大小T ; (2)B 球第一次到达最高点时,A 球的速度大小v 1;(3)从开始到B 球第一次到达最高点的过程中,轻绳对B 球做的功W .【答案】(1)mg+m 20v l (2)2012v gl v -=(3)204mgl mv - 【解析】 【详解】(1)B 球刚开始运动时,A 球静止,所以B 球做圆周运动对B 球:T-mg =m 2v l得:T =mg +m 20v l(2)B 球第一次到达最高点时,A 、B 速度大小、方向均相同,均为v 1以A 、B 系统为研究对象,以水平横杆为零势能参考平面,从开始到B 球第一次到达最高点,根据机械能守恒定律,2220111112222l mv mgl mv mv mg -=+- 得:2012v gl v -=(3)从开始到B 球第一次到达最高点的过程,对B 球应用动能定理 W -mg221011222l mv mv =- 得:W =204mgl mv -6.如图所示为某款弹射游戏示意图,光滑水平台面上固定发射器、竖直光滑圆轨道和粗糙斜面AB ,竖直面BC 和竖直靶板MN .通过轻质拉杆将发射器的弹簧压缩一定距离后释放,滑块从O 点弹出并从E 点进人圆轨道,绕转一周后继续在平直轨道上前进,从A 点沿斜面AB 向上运动,滑块从B 点射向靶板目标(滑块从水平面滑上斜面时不计能量损失).已知滑块质量5m g =,斜面倾角37θ=︒,斜面长25L cm =,滑块与斜面AB 之间的动摩擦因数0.5μ=,竖直面BC 与靶板MN 间距离为d ,B 点离靶板上10环中心点P 的竖直距离20h cm =,忽略空气阻力,滑块可视为质点.已知sin370.6,37cos 0.8︒︒==,取210/g m s =,求:(1)若要使滑块恰好能够到达B 点,则圆轨道允许的最大半径为多大?(2)在另一次弹射中发现滑块恰能水平击中靶板上的P 点,则此次滑块被弹射前弹簧被压缩到最短时的弹性势能为多大? (结果保留三位有效数字)(3)若MN 板可沿水平方向左右移动靠近或远高斜面,以保证滑块从B 点出射后均能水平击中靶板.以B 点为坐标原点,建立水平竖直坐标系(如图) ,则滑块水平击中靶板位置坐标(),x y 应满足什么条件?【答案】(1)0.1R m = (2) 24.0310J p E -=⨯ (3)38y x =,或38y x =,或83x y = 【解析】 【详解】(1)设圆轨道允许的半径最大值为R 在圆轨道最高点:2mv mg R= 要使滑块恰好能到达B 点,即:0B v =从圆轨道最高点至B 点的过程:21sin 2cos 02mgL mgR mgL mv θμθ-+-=-代入数据可得0.1R m =(2)滑块恰能水平击中靶板上的P 点,B 到P 运动的逆过程为平抛运动 从P 到B :2h t g=y gt =v3sin y v v θ=代入数据可得:10m/s 3B v =从弹射至点的过程:21sin cos 02B Ep mgL mgL mv θμθ--=- 代入数据可得:24.0310J Ep -=⨯(3)同理根据平抛规律可知:1tan 372y x =︒ 即38y x = 或38y x = 或83x y =7.过山车是游乐场中常见的设施.下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,B 、C 、D 分别是三个圆形轨道的最低点,B 、C 间距与C 、D 间距相等,半径1 2.0m R =、2 1.4m R =.一个质量为 1.0m =kg 的小球(视为质点),从轨道的左侧A 点以012.0m/s v =的初速度沿轨道向右运动,A 、B 间距1 6.0L =m .小球与水平轨道间的动摩擦因数0.2μ=,圆形轨道是光滑的.假设水平轨道足够长,圆形轨道间不相互重叠,如果小球恰能通过第二圆形轨道.如果要使小球不能脱离轨道,试求在第三个圆形轨道的设计中,半径3R 应满足的条件.(重力加速度取210m/s g =,计算结果保留小数点后一位数字.)【答案】300.4R m <≤或 31.027.9m R m ≤≤ 【解析】 【分析】 【详解】设小球在第二个圆轨道的最高点的速度为v 2,由题意222v mg m R =①()22122011222mg L L mgR mv mv μ-+-=- ② 由①②得 12.5L m = ③要保证小球不脱离轨道,可分两种情况进行讨论:I .轨道半径较小时,小球恰能通过第三个圆轨道,设在最高点的速度为v 3,应满足233v mg m R = ④()221330112222mg L L mgR mv mv μ-+-=- ⑤ 由④⑤得30.4R m = ⑥II .轨道半径较大时,小球上升的最大高度为R 3,根据动能定理()213012202mg L L mgR mv μ-+-=- ⑦解得 3 1.0R m = ⑧为了保证圆轨道不重叠,R 3最大值应满足()()2222332R R L R R +=+- ⑨解得:R 3=27.9m ⑩综合I 、II ,要使小球不脱离轨道,则第三个圆轨道的半径须满足下面的条件300.4R m <≤或 31.027.9m R m ≤≤ ⑾【点睛】本题为力学综合题,要注意正确选取研究过程,运用动能定理解题.动能定理的优点在于适用任何运动包括曲线运动.知道小球恰能通过圆形轨道的含义以及要使小球不能脱离轨道的含义.8.光滑水平面上放着质量m A =1kg 的物块A 与质量m B =2kg 的物块B ,A 与B 均可视为质点,A 靠在竖直墙壁上,A 、B 间夹一个被压缩的轻弹簧(弹簧与A 、B 均不拴接),在A 、B 间系一轻质细绳,细绳长度大于弹簧的自然长度,用手挡住B 不动,此时弹簧弹性势能E P =49J 。
圆周运动测试题含答案
圆周运动测试题(含答案)圆周运动测试题1.A、B两个质点分别做匀速圆周运动,在相等时间内通过的弧长之比为:4:3S S=,转过的A B圆心角之比:3:2θθ=,则下列说法在中正确的A B是()A.它们的线速度之比:4:3v v=A BB.它们的角速度之比:2:3ωω=A BC.它们的周期之比:3:2T T=A BD.它们的向心加速度之比:3:2a a=A B2.如图所示,为一在水平面内做匀速圆周运动的圆锥摆,不计空气阻力,关于摆球A的受力情况,下列说法中正确的是()A.摆球A受重力、拉力和向心力的作用B.摆球A受拉力和向心力的作用C.摆球A受拉力和重力的作用D.摆球A受重力和向心力的作用3.同一辆汽车以同样大小的速度先后开上平直的桥和凸形桥,在桥的中央处有()A.车对两种桥面的压力一样大 B.车对平直桥面的压力大C.车对凸形桥面的压力大 D.无法判断4.如图,小球被细线拴着在光滑水平面上绕转轴以速率v做匀速圆周运动,已知运动一周用时为t,则()A.小球1秒内转的圈数为B.小球运动的角速度为C.小球运动的加速度为D.小球运动的加速度为05.如图所示,A、B为咬合传动的两齿轮,RA =2RB,则A、B两轮边缘上两点的()A.角速度之比为2:1 B.向心加速度之比为1:2C.周期之比为1:2 D.转速之比为2:16.如图所示,小物体m与圆盘保持相对静止,随圆盘一起做匀速圆周运动,则物体的受力情况是()A .受重力、支持力和静摩擦力的作用B .受重力、支持力和向心力的作用C .静摩擦力的方向与运动方向相反D .重力和支持力是一对相互作用力7.下列对圆锥摆的受力分析正确的是( )8.如图所示,半径为r 的圆筒,绕竖直中心轴OO′转动,小物块a 靠在圆筒的内壁上,它与圆筒的动摩擦因数为μ,现要使a 不下滑,则圆筒转动的角速度ω至少为( )A .gr μ。
g μ.gr .g r μ9.关于向心力的说法中正确的是( )A .物体由于做圆周运动而产生一个指向圆心的力就是向心力B.向心力不能改变做圆周运动物体的速度的大小C.做匀速圆周运动的物体,其向心力就是物体所受的合外力D.做匀速圆周运动的物体,其向心力是一个不变的力10.水流星是一种常见的杂技项目,可以简化为长为2L的轻绳两端各系着质量相等的小球,两小球在竖直平面内做匀速圆周运动,如图所示;已知重力加速度为g,忽略空气阻力,则下列说法正确的是()A.当一个小球运动到最高点时拉两小球的轻绳中拉力可能相等B gLC.轻绳中最小拉力为2mgD.两小球组成的系统的机械能不守恒11.如图所示为皮带传动装置,皮带轮为O、O′,RB =12RA,RC=23RA,当皮带轮匀速转动时,皮带与皮带轮之间不打滑,求A、B、C三点的角速度之比、线速度之比、周期之比。
圆周运动经典习题带详细答案
1. 在观看双人花样滑冰表演时,观众有时会看到女运动员被男运动员拉着离开冰面在空中做水平方向的匀速圆周运动.已知通过目测估计拉住女运动员的男运动员的手臂和水平冰面的夹角约为45°,重力加速度为g =10 m/s 2,若已知女运动员的体重为35 k g ,据此可估算该女运动员( ) A .受到的拉力约为350 2 N B .受到的拉力约为350 N C .向心加速度约为10 m/s 2 D .向心加速度约为10 2 m/s 2图4-2-112.中央电视台《今日说法》栏目最近报道了一起发生在湖南长沙某区湘府路上的离奇交通事故.家住公路拐弯处的张先生和李先生家在三个月内连续遭遇了七次大卡车侧翻在自家门口的场面,第八次有辆卡车冲进李先生家,造成三死一伤和房屋严重损毁的血腥惨案.经公安部门和交通部门协力调查,画出的现场示意图如图4-2-12所示.交警根据图示作出以下判断,你认为正确的是( ) A .由图可知汽车在拐弯时发生侧翻是因为车做离心运动 B .由图可知汽车在拐弯时发生侧翻是因为车做向心运动 C .公路在设计上可能内(东)高外(西)低 D .公路在设计上可能外(西)高内(东)低图4-2-123. (2010·湖北部分重点中学联考)如图4-2-13所示,质量为m 的小球置于正方体的光滑盒子中,盒子的边长略大于球的直径.某同学拿着该盒子在竖直平面内做半径为R 的匀速圆周运动,已知重力加速度为g ,空气阻力不计,要使在最高点时盒子与小球之间恰好无作用力,则( )A .该盒子做匀速圆周运动的周期一定小于2πRgB .该盒子做匀速圆周运动的周期一定等于2πRgC .盒子在最低点时盒子与小球之间的作用力大小可能小于2mgD .盒子在最低点时盒子与小球之间的作用力大小可能大于2mg图4-2-134.图示所示, 为某一皮带传动装置.主动轮的半径为r 1,从动轮的半径为r 2.已知主动轮做顺时针转动,转速为n ,转动过程中皮带不打滑.下列说法正确的是( ) A .从动轮做顺时针转动 B .从动轮做逆时针转动C .从动轮的转速为r 1r 2nD .从动轮的转速为r 2r 1n5.质量为m的石块从半径为R的半球形的碗口下滑到碗的最低点的过程中,如果摩擦力的作用使得石块的速度大小不变,如图4-2-17所示,那么()A.因为速率不变,所以石块的加速度为零B.石块下滑过程中受的合外力越来越大C.石块下滑过程中受的摩擦力大小不变D.石块下滑过程中的加速度大小不变,方向始终指向球心图4-2-176.2008年4月28日凌晨,山东境内发生两列列车相撞事故,造成了大量人员伤亡和财产损失.引发事故的主要原因是其中一列列车转弯时超速行驶.如图4-2-18所示,是一种新型高速列车,当它转弯时,车厢会自动倾斜,提供转弯需要的向心力;假设这种新型列车以360 k m/h的速度在水平面内转弯,弯道半径为1.5 k m,则质量为75 k g的乘客在列车转弯过程中所受到的合外力为()A.500 N B.1 000 N C.500 2 N D.0图4-2-187.如图4-2-19甲所示,一根细线上端固定在S点,下端连一小铁球A,让小铁球在水平面内做匀速圆周运动,此装置构成一圆锥摆(不计空气阻力).下列说法中正确的是()A.小球做匀速圆周运动时,受到重力、绳子的拉力和向心力作用B.小球做匀速圆周运动时的角速度一定大于gl(l为摆长)C.另有一个圆锥摆,摆长更大一点,两者悬点相同,如图4-2-19乙所示,如果改变两小球的角速度,使两者恰好在同一水平面内做匀速圆周运动,则B球的角速度大于A球的角速度D.如果两个小球的质量相等,则在图乙中两条细线受到的拉力相等图4-2-198.汽车甲和汽车乙质量相等,以相等速率沿同一水平弯道做匀速圆周运动,甲车在乙车的外侧.两车沿半径方向受到的摩擦力分别为Ff甲和Ff乙.以下说法正确的是()A.Ff甲小于Ff乙B.Ff甲等于Ff乙C.Ff甲大于Ff乙D.Ff甲和Ff乙大小均与汽车速率无关9. 在高速公路的拐弯处,通常路面都是外高内低.如图4-2-20所示,在某路段汽车向左拐弯,司机左侧的路面比右侧的路面低一些.汽车的运动可看作是做半径为R的圆周运动.设内外路面高度差为h,路基的水平宽度为d,路面的宽度为L.已知重力加速度为g.要使车轮与路面之间的横向摩擦力(即垂直于前进方向)等于零,则汽车转弯时的车速应等于()A. gRhL B.gRhd C.gRLh D.gRdh图4-2-2010.如图4-2-24所示,一个竖直放置的圆锥筒可绕其中心OO′转动,筒内壁粗糙,筒口半径和筒高分别为R和H,筒内壁A点的高度为筒高的一半.内壁上有一质量为m的小物块随圆锥筒一起做匀速转动,则下列说法正确的是()A.小物块所受合外力指向O点B.当转动角速度ω=2gHR时,小物块不受摩擦力作用C.当转动角速度ω> 2gHR时,小物块受摩擦力沿AO方向D.当转动角速度ω< 2gHR时,小物块受摩擦力沿AO方向图4-2-2411. 如图4-2-25所示,一水平光滑、距地面高为h、边长为a的正方形MNPQ桌面上,用长为L 的不可伸长的轻绳连接质量分别为m A、m B的A、B两小球,两小球在绳子拉力的作用下,绕绳子上的某点O以不同的线速度做匀速圆周运动,圆心O与桌面中心重合,已知m A=0.5 k g,L=1.2 m,L AO =0.8 m,a=2.1 m,h=1.25 m,A球的速度大小v A=0.4 m/s,重力加速度g取10 m/s2,求:(1)绳子上的拉力F以及B球的质量m B;(2)若当绳子与MN平行时突然断开,则经过1.5 s两球的水平距离;(与地面撞击后。
(完整版)圆周运动习题及答案
《圆周运动》练习(二)1.如图所示,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l,木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是()A.b一定比a先开始滑动B.a、b所受的摩擦力始终相等C.ω=kg2l是b开始滑动的临界角速度D.当ω=2kg3l时,a所受摩擦力的大小为kmg2.如图所示,一质量为M的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g.当小环滑到大环的最低点时,大环对轻杆拉力的大小为()A.Mg-5mg B.Mg+mgC.Mg+5mg D.Mg+10mg3.如图所示的曲线是某个质点在恒力作用下的一段运动轨迹.质点从M点出发经P点到达N点,已知弧长MP大于弧长PN,质点由M点运动到P点与从P点运动到N点所用的时间相等.则下列说法中正确的是()A.质点从M到N过程中速度大小保持不变B.质点在这两段时间内的速度变化量大小相等,方向相同C.质点在这两段时间内的速度变化量大小不相等,但方向相同D.质点在M、N间的运动不是匀变速运动4.如图所示,质量相同的钢球①、②分别放在A、B盘的边缘,A、B两盘的半径之比为2∶1,a、b 分别是与A盘、B盘同轴的轮,a、b轮半径之比为1∶2.当a、b两轮在同一皮带带动下匀速转动时,钢球①、②受到的向心力大小之比为()A.2∶1 B.4∶1C.1∶4 D.8∶15.利用双线可以稳固小球在竖直平面内做圆周运动而不易偏离竖直面,如图所示,用两根长为L的细线系一质量为m的小球,两线上端系于水平横杆上的A、B两点,A、B两点相距也为L,若小球恰能在竖直面内做完整的圆周运动,则小球运动到最低点时,每根线承受的张力为()A.23mg B.3mgC .2.5mg D.73mg26.如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m 处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g 取10 m/s 2.则ω的最大值是( ) A. 5 rad/s B. 3 rad/s C .1.0 rad /s D .0.5 rad/s7.如图所示,在竖直平面内有xOy 坐标系,长为l 的不可伸长细绳,一端固定在A 点,A 点的坐标为(0,l2),另一端系一质量为m 的小球.现在x 坐标轴上(x >0)固定一个小钉,拉小球使细绳绷直并呈水平位置,再让小球从静止释放,当细绳碰到钉子以后,小球可以绕钉子在竖直平面内做圆周运动.(1)当钉子在x =54l 的P 点时,小球经过最低点时细绳恰好不被拉断,求细绳能承受的最大拉力;(2)为使小球释放后能绕钉子在竖直平面内做圆周运动,而细绳又不被拉断,求钉子所在位置的范围.8.如图所示,一小物块自平台上以速度v 0水平抛出,刚好落在邻近一倾角为α=53°的粗糙斜面AB 顶端,并恰好沿该斜面下滑,已知斜面顶端与平台的高度差h =0.032 m ,小物块与斜面间的动摩擦因数为μ=0.5,A 点离B 点所在平面的高度H =1.2 m .有一半径为R 的光滑圆轨道与斜面AB 在B 点相切连接,已知cos 53°=0.6,sin 53°=0.8,g 取10 m/s 2.求: (1)小物块水平抛出的初速度v 0是多少;(2)若小物块能够通过圆轨道最高点,圆轨道半径R 的最大值.9.如图所示为某游乐场内水上滑梯轨道示意图,整个轨道在同一竖直平面内,表面粗糙的AB 段轨道与四分之一光滑圆弧轨道BC 在B 点水平相切.点A 距水面的高度为H ,圆弧轨道BC 的半径为R ,圆心O 恰在水面.一质量为m 的游客(视为质点)可从轨道AB 的任意位置滑下,不计空气阻力.(1)若游客从A 点由静止开始滑下,到B 点时沿切线方向滑离轨道落在水面D 点,OD =2R ,求游客滑到B 点时的速度v B 大小及运动过程轨道摩擦力对其所做的功W f ;(2)某游客从AB 段某处滑下,恰好停在B 点,又因受到微小扰动,继续沿圆弧轨道滑到P 点后滑离轨道,求P 点离水面的高度h .(提示:在圆周运动过程中任一点,质点所受的向心力与其速率的关系为F 向=m v 2R )10.如图所示,一块足够大的光滑平板放置在水平面上,能绕水平固定轴MN 调节其与水平面的倾角.板上一根长为l =0.6 m 的轻细绳,它的一端系住一质量为m 的小球P ,另一端固定在板上的O 点.当平板的倾角固定为α时,先将轻绳平行于水平轴MN 拉直,然后给小球一沿着平板并与轻绳垂直的初速度v 0=3 m /s.若小球能在板面内做圆周运动,倾角α的值应在什么范围内(取重力加速度g =10 m/s 2)?11.半径为R 的水平圆盘绕过圆心O 的竖直轴匀速转动,A 为圆盘边缘上一点.在O 的正上方有一个可视为质点的小球以初速度v 水平抛出时,半径OA 方向恰好与v 的方向相同,如图所示.若小球与圆盘只碰一次,且落在A点,重力加速度为g,则小球抛出时距O的高度h=________,圆盘转动的角速度大小ω=________.12.一长l=0.80 m的轻绳一端固定在O点,另一端连接一质量m=0.10 kg的小球,悬点O距离水平地面的高度H=1.00 m.开始时小球处于A点,此时轻绳拉直处于水平方向上,如图所示.让小球从静止释放,当小球运动到B点时,轻绳碰到悬点O正下方一个固定的钉子P时立刻断裂.不计轻绳断裂的能量损失,取重力加速度g=10 m/s2.求:(1)当小球运动到B点时的速度大小;(2)绳断裂后球从B点抛出并落在水平地面上的C点,求C点与B点之间的水平距离;(3)若OP=0.6 m,轻绳碰到钉子P时绳中拉力达到所能承受的最大拉力断裂,求轻绳能承受的最大拉力.答案1. 答案 AC解析 小木块a 、b 做圆周运动时,由静摩擦力提供向心力,即f =mω2R .当角速度增加时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a :f a =mω2a l ,当f a =kmg 时,kmg =mω2a l ,ωa=kgl;对木块b :f b =mω2b ·2l ,当f b =kmg 时,kmg =mω2b ·2l ,ωb = kg2l,所以b 先达到最大静摩擦力,选项A 正确;两木块滑动前转动的角速度相同,则f a =mω2l ,f b =mω2·2l ,f a <f b ,选项B 错误;当ω=kg2l时b 刚开始滑动,选项C 正确;当ω= 2kg 3l 时,a 没有滑动,则f a =mω2l =23kmg ,选项D 错误. 2. 答案 C解析 设大环半径为R ,质量为m 的小环下滑过程中遵守机械能守恒定律,所以12m v 2=mg ·2R .小环滑到大环的最低点时的速度为v =2gR ,根据牛顿第二定律得F N -mg =m v 2R,所以在最低点时大环对小环的支持力F N =mg +m v 2R =5mg .根据牛顿第三定律知,小环对大环的压力F N ′=F N =5mg ,方向向下.对大环,据平衡条件,轻杆对大环的拉力T =Mg +F N ′=Mg +5mg .根据牛顿第三定律,大环对轻杆拉力的大小为T ′=T =Mg +5mg ,故选项C 正确,选项A 、B 、D 错误. 3. 答案 B解析 由题图知,质点在恒力作用下做一般曲线运动,不同地方弯曲程度不同,即曲率半径不同,所以速度大小在变,所以A 错误;因是在恒力作用下运动,根据牛顿第二定律F =ma ,所以加速度不变,根据Δv =a Δt 可得在相同时间内速度的变化量相同,故B 正确,C 错误;因加速度不变,故质点做匀变速运动,所以D 错误. 4. 答案 D解析 皮带传送,边缘上的点线速度大小相等,所以v a =v b ,因为a 轮、b 轮半径之比为1∶2,根据线速度公式v =ωr 得:ωa ωb =21,共轴的点,角速度相等,两个钢球的角速度分别与共轴轮子的角速度相等,则ω1ω2=21.根据向心加速度a =rω2,则a 1a 2=81,由F =ma 得F 1F 2=81,故D 正确,A 、B 、C 错误. 5. 答案 A解析 小球恰好过最高点时有:mg =m v 21R解得v 1=32gL ① 根据动能定理得:mg ·3L =12m v 22-12m v 21② 由牛顿第二定律得:3T -mg =m v 2232L ③联立①②③得,T =23mg 故A 正确,B 、C 、D 错误. 6. 答案 C解析 当小物体转动到最低点时为临界点,由牛顿第二定律知,μmg cos 30°-mg sin 30°=mω2r 解得ω=1.0 rad/s ,故选项C 正确.7. 审题突破 (1)由数学知识求出小球做圆周运动的轨道半径,由机械能守恒定律求出小球到达最低点时的速度,然后由牛顿第二定律求出绳子的拉力.(2)由牛顿第二定律求出小球到达最高点的速度,由机械能守恒定律求出钉子的位置,然后确定钉子位置范围. 解析 (1)当钉子在x =54l 的P 点时,小球绕钉子转动的半径为:R 1=l - (l2)2+x 2 小球由静止到最低点的过程中机械能守恒:mg (l 2+R 1)=12m v 21在最低点细绳承受的拉力最大,有:F -mg =m v 21R 1联立求得最大拉力F =7mg .(2)小球绕钉子做圆周运动恰好到达最高点时,有:mg =m v 22R 2运动中机械能守恒:mg (l 2-R 2)=12m v 22钉子所在位置为x ′= (l -R 2)2-(l2)2联立解得x ′=76l因此钉子所在位置的范围为76l ≤x ≤54l .答案 (1)7mg (2)76l ≤x ≤54l8. 解析 (1)小物块自平台做平抛运动,由平抛运动知识得:v y =2gh =2×10×0.032 m /s =0.8 m/s(2分)由于物块恰好沿斜面下滑,则tan 53°=v yv 0(3分)得v 0=0.6 m/s.(2分)(2)设小物块过圆轨道最高点的速度为v ,受到圆轨道的压力为N .则由向心力公式得:N +mg =m v 2R(2分)由动能定理得:mg (H +h )-μmgH cos 53°sin 53°-mg (R +R cos 53°)=12m v 2-12m v 20(5分)小物块能过圆轨道最高点,必有N ≥0(1分) 联立以上各式并代入数据得:R ≤821 m ,即R 最大值为821m .(2分)答案 (1)0.6 m/s (2)821 m9. 答案 (1)2gR -(mgH -2mgR ) (2)23R解析 (1)游客从B 点做平抛运动,有 2R =v B t ①R =12gt 2②由①②式得 v B =2gR ③从A 到B ,根据动能定理,有mg (H -R )+W f =12m v 2B -0④由③④式得W f =-(mgH -2mgR )⑤(2)设OP 与OB 间夹角为θ,游客在P 点时的速度为v P ,受到的支持力为N ,从B 到P 由机械能守恒定律,有mg (R -R cos θ)=12m v 2P -0⑥过P 点时,根据向心力公式,有mg cos θ-N =m v 2PR ⑦N =0⑧cos θ=hR⑨由⑥⑦⑧⑨式解得h =23R ⑩10. 答案 α≤30°解析 小球在板面上运动时受绳子拉力、板面弹力、重力的作用.在垂直板面方向上合力为0,重力在沿板面方向的分量为mg sin α,小球在最高点时,由绳子的拉力和重力分力的合力提供向心力:T +mg sinα=m v 21l ①研究小球从释放到最高点的过程,据动能定理:-mgl sin α=12m v 21-12m v 20② 若恰好通过最高点绳子拉力F T =0,联立①②解得:sin α=v 203gl =323×10×0.6=12.故α最大值为30°,可知若小球能在板面内做圆周运动,倾角α的值应满足α≤30°.11. 答案 gR 22v 2 2n πvR(n =1,2,3,…)解析 小球做平抛运动,在竖直方向:h =12gt 2①在水平方向R =v t ②由①②两式可得h =gR 22v2③小球落在A 点的过程中,OA 转过的角度θ=2n π=ωt (n =1,2,3,…)④由②④两式得ω=2n πvR (n =1,2,3,…)12. 答案 (1)4 m/s (2)0.80 m (3)9 N解析 (1)设小球运动到B 点时的速度大小为v B ,由机械能守恒定律得 12m v 2B=mgl 解得小球运动到B 点时的速度大小v B =2gl =4 m/s (2)小球从B 点做平抛运动,由运动学规律得 x =v B t y =H -l =12gt 2解得C 点与B 点之间的水平距离 x =v B2(H -l )g=0.80 m (3)若轻绳碰到钉子时,轻绳拉力恰好达到最大值F m ,由牛顿定律得F m -mg =m v 2Brr =l -OP由以上各式解得F m =9 N。
圆周运动典型例题50道
圆周运动典型例题50道1. 一质点绕一个定半径圆轨道做匀速圆周运动,已知质点每秒的线速度为8 m/s,求质点的角速度。
答案:2 rad/s2. 一个自行车轮子的半径为0.5 m,自行车轮子的角速度为5 rad/s,求自行车轮子的线速度。
答案:2.5 m/s3. 一个半径为2 m的圆盘以每分钟180转的角速度旋转,求圆盘上一点的线速度。
答案:376.99 m/min4. 一个转速为1200 rpm的转盘半径为0.1 m,求转盘上一点的线速度。
答案:125.66 m/s5. 一个半径为3 m的汽车轮胎正在行驶,已知轮胎转速为100 rpm,求汽车轮胎的线速度。
答案:31.42 m/s6. 一个质点以半径为4 m的圆轨道做匀速圆周运动,已知质点的线速度为10 m/s,求质点的角速度。
答案:2.5 rad/s7. 一个自行车轮子的半径为0.2 m,自行车轮子的线速度为3 m/s,求自行车轮子的角速度。
答案:15 rad/s8. 一个半径为5 m的圆盘上一点的线速度为20 m/s,求圆盘的角速度。
答案:4 rad/s9. 一个转盘上一点的线速度为10 m/s,转盘的半径为2 m,求转盘的角速度。
答案:5 rad/s10. 一个汽车轮胎的线速度为20 m/s,轮胎半径为2 m,求汽车轮胎的角速度。
答案:10 rad/s11. 一个半径为3 m的旋转半球的角速度为2 rad/s,求旋转半球上一点的线速度。
答案:6 m/s12. 一个旋转圆环的半径为1 m,旋转圆环的线速度为10 m/s,求旋转圆环的角速度。
答案:10 rad/s13. 一个直径为10 cm的转盘上一点的线速度为5 m/s,求转盘的角速度。
答案:10 rad/s14. 一个转速为500 rpm的圆盘上一点的线速度为4 m/s,求圆盘的半径。
答案:0.51 m15. 一个半径为2 m的转盘上一点的线速度为8 m/s,求转盘的转速。
答案:60 rpm16. 一个转速为1000 rpm的汽车轮胎的线速度为5 m/s,求汽车轮胎的半径。
【单元练】高中物理必修2第六章【圆周运动】习题(1)
一、选择题1.如图所示,固定的锥形漏斗内壁是光滑的,内壁上有两个质量不相等的小球A 和B ,在各自不同的水平面做匀速圆周运动,关于球A 和球B 以下物理量的大小相等的是( )A .线速度B .角速度C .向心加速度D .对内壁的压力C解析:C两个小球均受到重力mg 和筒壁对它的弹力F N 的作用,其合力必定在水平面内指向圆心。
由图可知,筒壁对球的弹力为N sin mgF θ=向心力为n tan mgF θ=向心加速度为n tan g a θ=其中θ为圆锥顶角的一半。
ABC .对于A 、B 两球θ角相等,所以向心加速度相等,选项C 正确;根据2n v a r= 得 n v a r =两球的轨迹半径不相等,所以线速度不相等,选项A 错误;根据2n a r ω= 得na rω=两球的轨迹半径不相等,所以角速度不相等,选项B 错误;D .由于A 、B 两球质量不相等,θ角相等,根据上述N sin mgF θ=可知,A 、B 两球受到筒壁的弹力大小不相等,A 、B 两小球对筒壁的压力大小也不相等,选项D 错误。
故选C 。
2.下面说法正确的是( ) A .平抛运动属于匀变速运动B.匀速圆周运动属于匀变速运动C.圆周运动的向心力就是做圆周运动物体受到的合外力D.如果物体同时参与两个直线运动,其运动轨迹一定是直线运动A解析:AA.做平抛运动的物体只受重力作用,加速度恒等于重力加速度g,属于匀变速运动,A正确;B.匀速圆周运动的加速度方向是变化的,不属于匀变速运动,B错误;C.只有匀速圆周运动的向心力才是做圆周运动物体受到的合外力,C错误;D.如果物体同时参与两个直线运动,轨迹也可能是曲线,比如抛体运动,D错误。
故选A。
3.如图所示,一圆筒绕其中心轴匀速转动,圆筒内壁上紧靠着一个物体与圆筒一起运动,相对筒无滑动,物体所受向心力是()A.物体的重力B.筒壁对物体的弹力C.筒壁对物体的静摩擦力D.物体所受重力与弹力的合力B解析:B物体做匀速圆周运动,合外力提供向心力,则合力指向圆心,物体受重力竖直向下,弹力指向圆心,静摩擦力竖直向上,所以物体所受向心力是筒壁对物体的弹力,则B正确;ACD错误;故选B4.如图所示,一圆盘绕过O点的竖直轴在水平面内旋转,角速度为ω,半径R,有人站在盘边缘P点处面对O随圆盘转动,他想用枪击中盘中心的目标O,子弹发射速度为v,则()A.枪应瞄准O点射击B.枪应向PO左方偏过θ角射击,cosRvωθ=C.枪应向PO左方偏过θ角射击,tanRvωθ=D .枪应向PO 左方偏过θ角射击,sin Rvωθ= D解析:D子弹沿圆盘切线方向上的速度为1v R ω=子弹沿枪口方向上的速度为v ,如图所示根据平行四边形定则,有1sin v R v vωθ== 所以v 的方向应瞄准PO 的左方偏过θ角射击。
圆周运动(答案版)
1、如图所示,B 和C 是一组塔轮,即B 和C 半径不同,但固定在同一转动轴上,其半径之比为R B ∶R C =3∶2,A 轮的半径大小与C 轮相同,它与B 轮紧靠在一起,当A 轮绕其中心的竖直轴转动时,由于摩擦的作用,B 轮也随之无滑动地转动起来.a 、b 、c 分别为三轮边缘的三个点,则a 、b 、c 三点在运动过程中的( ) A .线速度大小之比为3∶2∶2 B .角速度之比为3∶3∶2 C .转速之比为2∶3∶2D .向心加速度大小之比为9∶6∶42、如图所示,两根长度相同的细线分别系有两个完全相同的小球,细线的上端都系于O 点。
设法让两个小球均在水平面上做匀速圆周运动。
已知L 1跟竖直方向的夹角为60°,L 2跟竖直方向的夹角为30°,下列说法正确的是( )A .细线L 1和细线L 2所受的拉力大小之比为3∶1B .小球m 1和m 2的角速度大小之比为3∶1C .小球m 1和m 2的向心力大小之比为3∶1D .小球m 1和m 2的线速度大小之比为33∶13、如图所示,一光滑轻杆沿水平方向放置,左端O 处连接在竖直的转动轴上,a 、b 为两个可视为质点的小球,穿在杆上,并用细线分别连接Oa 和ab,且Oa=ab,已知b 球质量为a 球质量的3倍.当轻杆绕O 轴在水平面内匀速转动时,Oa 和ab 两线的拉力之比为( ) A.1∶3 B.1∶6 C.4∶3 D.7∶64、如图所示,在光滑水平面上,钉有两个钉子A 和B ,一根长细绳的一端系一个小球,另一端固定在钉子A 上,开始时小球与钉子A 、B 均在一条直线上(图示位置),且细绳的一大部分沿俯视顺时针方向缠绕在两钉子上,现使小球以初速度v 0在水平面上沿俯视逆时针方向做匀速圆周运动,使两钉子之间缠绕的绳子逐渐释放,在绳子完全被释放后与释放前相比,下列说法正确的是( )A .小球的速度变大B .小球的角速度变大C .小球的加速度变小 D.细绳对小球的拉力变小5、如图所示,两物块A 、B 套在水平粗糙的CD 杆上,并用不可伸长的轻绳连接,整个装置能绕过CD 中点的轴OO 1转动。
高中物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)及解析
高中物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,一根长为0.1 m的细线,一端系着一个质量是0.18kg的小球,拉住线的另一端,使球在光滑的水平桌面上做匀速圆周运动,当小球的转速增加到原转速的3倍时,细线断裂,这时测得线的拉力比原来大40 N.求:(1)线断裂的瞬间,线的拉力;(2)这时小球运动的线速度;(3)如果桌面高出地面0.8 m,线断裂后小球沿垂直于桌子边缘的方向水平飞出去落在离桌面的水平距离.【答案】(1)线断裂的瞬间,线的拉力为45N;(2)线断裂时小球运动的线速度为5m/s;(3)落地点离桌面边缘的水平距离2m.【解析】【分析】【详解】(1)小球在光滑桌面上做匀速圆周运动时受三个力作用;重力mg、桌面弹力F N和细线的拉力F,重力mg和弹力F N平衡,线的拉力提供向心力,有:F N=F=mω2R,设原来的角速度为ω0,线上的拉力是F0,加快后的角速度为ω,线断时的拉力是F1,则有:F1:F0=ω2: 2=9:1,又F1=F0+40N,所以F0=5N,线断时有:F1=45N.(2)设线断时小球的线速度大小为v,由F1=2vmR,代入数据得:v=5m/s.(3)由平抛运动规律得小球在空中运动的时间为:t =220.810h s g ⨯==0.4s , 则落地点离桌面的水平距离为:x =vt =5×0.4=2m .2.如图所示,在光滑的圆锥体顶部用长为的细线悬挂一质量为的小球,因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为,物体绕轴线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知,重力加速度g 取若北小球运动的角速度,求此时细线对小球的拉力大小。
【答案】【解析】 【分析】根据牛顿第二定律求出支持力为零时,小球的线速度的大小,从而确定小球有无离开圆锥体的斜面,若离开锥面,根据竖直方向上合力为零,水平方向合力提供向心力求出线对小球的拉力大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 在观看双人花样滑冰表演时,观众有时会看到女运动员被男运动员拉着离开冰面在空中做水平方向的匀速圆周运动.已知通过目测估计拉住女运动员的男运动员的手臂和水平冰面的夹角约为45°,重力加速度为g =10 m/s 2,若已知女运动员的体重为35 k g ,据此可估算该女运动员( ) A .受到的拉力约为350 2 N B .受到的拉力约为350 N C .向心加速度约为10 m/s 2 D .向心加速度约为10 2 m/s 2图4-2-11解析:本题考查了匀速圆周运动的动力学分析.以女运动员为研究对象,受力分析如图.根据题意有G =mg =350 N ;则由图易得女运动员受到的拉力约为350 2 N ,A 正确;向心加速度约为10 m/s 2,C 正确. 答案:AC2.中央电视台《今日说法》栏目最近报道了一起发生在湖南长沙某区湘府路上的离奇交通事故.家住公路拐弯处的张先生和李先生家在三个月内连续遭遇了七次大卡车侧翻在自家门口的场面,第八次有辆卡车冲进李先生家,造成三死一伤和房屋严重损毁的血腥惨案.经公安部门和交通部门协力调查,画出的现场示意图如图4-2-12所示.交警根据图示作出以下判断,你认为正确的是( ) A .由图可知汽车在拐弯时发生侧翻是因为车做离心运动 B .由图可知汽车在拐弯时发生侧翻是因为车做向心运动 C .公路在设计上可能内(东)高外(西)低 D .公路在设计上可能外(西)高内(东)低图4-2-12解析:由题图可知发生事故时,卡车在做圆周运动,从图可以看出卡车冲入民宅时做离心运动,故选项A 正确,选项B 错误;如果外侧高,卡车所受重力和支持力提供向心力,则卡车不会做离心运动,也不会发生事故,故选项C 正确.答案:AC 3. (2010·湖北部分重点中学联考)如图4-2-13所示,质量为m 的小球置于正方体的光滑盒子中,盒子的边长略大于球的直径.某同学拿着该盒子在竖直平面内做半径为R 的匀速圆周运动,已知重力加速度为g ,空气阻力不计,要使在最高点时盒子与小球之间恰好无作用力,则( )A .该盒子做匀速圆周运动的周期一定小于2πRgB .该盒子做匀速圆周运动的周期一定等于2πRgC .盒子在最低点时盒子与小球之间的作用力大小可能小于2mgD .盒子在最低点时盒子与小球之间的作用力大小可能大于2mg图4-2-13解析:要使在最高点时盒子与小球之间恰好无作用力,则有mg =m v 2R ,解得该盒子做匀速圆周运动的速度v =gR ,该盒子做匀速圆周运动的周期为T =2πRv =2πRg .选项A 错误,B 正确;在最低点时,盒子与小球之间的作用力和小球重力的合力提供小球运动的向心力,由F -mg =m v 2R ,解得F =2mg ,选项C 、D 错误. 答案:B4.图示所示, 为某一皮带传动装置.主动轮的半径为r 1,从动轮的半径为r 2.已知主动轮做顺时针转动,转速为n ,转动过程中皮带不打滑.下列说法正确的是( ) A .从动轮做顺时针转动 B .从动轮做逆时针转动C .从动轮的转速为r 1r 2nD .从动轮的转速为r 2r 1n解析:本题考查的知识点是圆周运动.因为主动轮顺时针转动,从动轮通过皮带的摩擦力带动转动,所以从动轮逆时针转动,选项A 错误B 正确;由于通过皮带传动,皮带与轮边缘接触处的速度相等,所以由2πnr 1=2πn 2r 2n 为频率,2πn 为角速度,得从动轮的转速为n 2=nr 1r2,选项C 正确D错误. 答案:BC5.质量为m 的石块从半径为R 的半球形的碗口下滑到碗的最低点的过程中,如果摩擦力的作用使得石块的速度大小不变,如图4-2-17所示,那么( ) A .因为速率不变,所以石块的加速度为零 B .石块下滑过程中受的合外力越来越大 C .石块下滑过程中受的摩擦力大小不变D .石块下滑过程中的加速度大小不变,方向始终指向球心图4-2-17解析:由于石块做匀速圆周运动,只存在向心加速度,大小不变,方向始终指向球心,D 对,A 错.由F 合=F 向=ma 向知合外力大小不变,B 错,又因石块在运动方向(切线方向)上合力为零,才能保证速率不变,在该方向重力的分力不断减小,所以摩擦力不断减小,C 错. 答案:D 6.2008年4月28日凌晨,山东境内发生两列列车相撞事故,造成了大量人员伤亡和财产损失.引发事故的主要原因是其中一列列车转弯时超速行驶.如图4-2-18所示,是一种新型高速列车,当它转弯时,车厢会自动倾斜,提供转弯需要的向心力;假设这种新型列车以360 k m/h 的速度在水平面内转弯,弯道半径为1.5 k m ,则质量为75 k g 的乘客在列车转弯过程中所受到的合外力为( ) A .500 N B .1 000 N C .500 2 N D .0图4-2-18解析:360 k m/h =100 m/s ,乘客在列车转弯过程中所受的合外力提供向心力F =m v 2r =75×10021.5×103N=500 N. 答案:A7.如图4-2-19甲所示,一根细线上端固定在S 点,下端连一小铁球A ,让小铁球在水平面内做匀速圆周运动,此装置构成一圆锥摆(不计空气阻力).下列说法中正确的是( ) A .小球做匀速圆周运动时,受到重力、绳子的拉力和向心力作用B .小球做匀速圆周运动时的角速度一定大于 gl (l 为摆长)C .另有一个圆锥摆,摆长更大一点,两者悬点相同,如图4-2-19乙所示,如果改变两小球的角速度,使两者恰好在同一水平面内做匀速圆周运动,则B 球的角速度大于A 球的角速度D .如果两个小球的质量相等,则在图乙中两条细线受到的拉力相等图4-2-19解析:如下图所示,小铁球做匀速圆周运动时,只受到重力和绳子的拉力,而向心力是由重力和拉力的合力提供,故A 项错误.根据牛顿第二定律和向心力公式可得:mg tan θ=mlω2sin θ,即ω=g /l cos θ.当小铁球做匀速圆周运动时,θ一定大于零,即cos θ一定小于1,因此,当小铁球做匀速圆周运动时角速度一定大于g /l ,故B 项正确.设点S 到点O 的距离为h ,则mg tan θ=mhω2tan θ,即ω=g /h ,若两圆锥摆的悬点相同,且两者恰好在同一水平面内做匀速圆周运动时,它们的角速度大小一定相等,即C 项错误.如右上图所示,细线受到的拉力大小为F T =mgcos θ,当两个小球的质量相等时,由于θA <θB ,即cos θA >cos θB ,所示A 球受到的拉力小于B 球受到的拉力,进而可以判断两条细线受到的拉力大小不相等,故D 项错误. 答案:B8.汽车甲和汽车乙质量相等,以相等速率沿同一水平弯道做匀速圆周运动,甲车在乙车的外侧.两车沿半径方向受到的摩擦力分别为Ff 甲和Ff 乙.以下说法正确的是( ) A .Ff 甲小于Ff 乙 B .Ff 甲等于Ff 乙 C .Ff 甲大于Ff 乙 D .Ff 甲和Ff 乙大小均与汽车速率无关解析:本题重点考查的是匀速圆周运动中向心力的知识.根据题中的条件可知,两车在水平面做匀速圆周运动,则地面对车的摩擦力来提供其做圆周运动的向心力,则F 向=f ,又有向心力的表达式F 向=m v 2r,因为两车的质量相同,两车运行的速率相同,因此轨道半径大的车的向心力小,即摩擦力小,A 正确. 答案:A9. 在高速公路的拐弯处,通常路面都是外高内低.如图4-2-20所示,在某路段汽车向左拐弯,司机左侧的路面比右侧的路面低一些.汽车的运动可看作是做半径为R 的圆周运动.设内外路面高度差为h ,路基的水平宽度为d ,路面的宽度为L .已知重力加速度为g .要使车轮与路面之间的横向摩擦力(即垂直于前进方向)等于零,则汽车转弯时的车速应等于( )A. gRh LB. gRh dC. gRL hD. gRd h图4-2-20解析:考查向心力公式.汽车做匀速圆周运动,向心力由重力与斜面对汽车的支持力的合力提供,且向心力的方向水平,向心力大小F 向=mg tan θ,根据牛顿第二定律:F 向=m v 2R ,tan θ=h d ,解得汽车转弯时的车速v = gRhd,B 对.答案:B 10.如图4-2-24所示,一个竖直放置的圆锥筒可绕其中心OO ′转动,筒内壁粗糙,筒口半径和筒高分别为R 和H ,筒内壁A 点的高度为筒高的一半.内壁上有一质量为m 的小物块随圆锥筒一起做匀速转动,则下列说法正确的是( ) A .小物块所受合外力指向O 点B .当转动角速度ω=2gHR 时,小物块不受摩擦力作用C .当转动角速度ω> 2gHR 时,小物块受摩擦力沿AO 方向D .当转动角速度ω< 2gHR 时,小物块受摩擦力沿AO 方向图4-2-24解析:匀速圆周运动物体所受合外力提供向心力,指向物体圆周运动轨迹的圆心,A 项错;当小物块在A 点随圆锥筒做匀速转动,且其所受到的摩擦力为零时,小物块在筒壁A 点时受到重力和支持力的作用,它们的合力提供向心力,设筒转动的角速度为ω,有:mg tan θ=mω2·R2,由几何关系得:tan θ=H R ,联立以上各式解得ω=2gHR ,B 项正确;当角速度变大时,小物块所需向心力增大,故摩擦力沿AO 方向,其水平方向分力提供部分向心力,C 项正确;当角速度变小时,小物块所需向心力减小,故摩擦力沿OA 方向,抵消部分支持力的水平分力,D 项错. 答案:BC如图4-2-25所示,一水平光滑、距地面高为h 、边长为a 的正方形MNPQ 桌面上,用长为L 的不11. 如图4-2-25所示,一水平光滑、距地面高为h 、边长为a 的正方形MNPQ 桌面上,用长为L 的不可伸长的轻绳连接质量分别为m A 、m B 的A 、B 两小球,两小球在绳子拉力的作用下,绕绳子上的某点O 以不同的线速度做匀速圆周运动,圆心O 与桌面中心重合,已知m A =0.5 k g ,L =1.2 m ,L AO=0.8 m ,a =2.1 m ,h =1.25 m ,A 球的速度大小v A =0.4 m/s ,重力加速度g 取10 m/s 2,求: (1)绳子上的拉力F 以及B 球的质量m B ;(2)若当绳子与MN 平行时突然断开,则经过1.5 s 两球的水平距离;(与地面撞击后。
前进方向的速度不变)(3)两小球落至地面时,落点间的距离.图4-2-25解析:(1)F =m A v 2AL OA =0.5×0.420.8 N =0.1 N ,由F =m A ω2L OA =m B ω2L OB 得m B =m A L OA L OB=1 k g.(2)x =(v A +v B )t 1=0.6×1.5 m =0.9 m ,水平距离为s =x 2+L 2=0.92+1.22 m =1.5 m.(3)t 2= 2hg = 2×1.2510s =0.5 s ,x ′=(v A +v B )t 2+a =0.6×0.5 m +2.1 m =2.4 m 距离为s ′=x ′2+L 2= 2.42+1.22 m =655m.答案:(1)1 k g (2)1.5 m (3)655m12.图4-2-26如图4-2-26所示,小球从光滑的圆弧轨道下滑至水平轨道末端时,光电装置被触动,控制电路会使转筒立刻以某一角速度匀速连续转动起来.转筒的底面半径为R ,已知轨道末端与转筒上部相平,与转筒的转轴距离为L ,且与转筒侧壁上的小孔的高度差为h ;开始时转筒静止,且小孔正对着轨道方向.现让一小球从圆弧轨道上的某处无初速滑下,若正好能钻入转筒的小孔(小孔比小球略大,小球视为质点,不计空气阻力,重力加速度为g ),求: (1)小球从圆弧轨道上释放时的高度为H ; (2)转筒转动的角速度ω.解析:(1)设小球离开轨道进入小孔的时间为t ,则由平抛运动规律得h =12gt 2,L -R =v 0t小球在轨道上运动过程中机械能守恒,故有mgH =12m v 20联立解得:t = 2hg ,H =(L -R )24h.(2)在小球做平抛运动的时间内,圆筒必须恰好转整数转,小球才能钻进小孔,即ωt =2n π(n =1,2,3…).所以ω=n π 2gh (n =1,2,3…)答案:(1)(L -R )24h(2)n π 2gh (n =1,2,3…)13、如图所示,放置在水平地面上的支架质量为M ,支架顶端用细线拴着的摆球质量为m ,现将摆球拉至水平位置,而后释放,摆球运动过程中,支架始终不动,以下说法正确的是( ) A.在释放前的瞬间,支架对地面的压力为(m +M)g B.在释放前的瞬间,支架对地面的压力为MgC.摆球到达最低点时,支架对地面的压力为(m +M)gD.摆球到达最低点时,支架对地面的压力为(3m +M)g 【答案】选B 、D. 14、【2011·济南模拟】如图所示,半径为R =0.8 m 的四分之一圆弧形光滑轨道竖直放置,圆弧最低点B 与长为L =1 m 的水平桌面相切于B 点,BC 离地面高为h =0.45 m ,质量为m =1.0 kg 的小滑块从圆弧顶点D 由静止释放,已知滑块与水平桌面间的动摩擦因数μ=0.6,取g =10 m /s 2.求:(1)小滑块刚到达圆弧面的B 点时对圆弧的压力大小; (2)小滑块落地点与C 点的水平距离.【解析】 (1)滑块由D 到B 过程中:mgR =12m v 2B在B 点F -mg =m v 2BR解得v B =4 m/s ,F =30 N由牛顿第三定律知,小滑块刚到达圆弧面的B 点时对圆弧的压力为30 N.(2)由B 到C 过程:-μmgL =12m v 2C -12m v 2B 解得vC =2 m/s滑块由C 点平抛:h =12gt 2解得t =2hg=0.3 s落地点与C 点水平距离为x =v C t =0.6 m15.一小球用轻绳悬挂在某固定点,现将轻绳水平拉直,然后由静止释放小球,则小球由静止开始运动至①小球在水平方A.①③B.C.①②D.【解析】 小球由释放摆至最低点的过程中,轻绳拉力始终有水平分力存在,因此小球水平方向始终存在加速度,所以其水平方向速度越来越大,即①对.而竖直方向轻绳拉力的分量越来越大,由小于重力变为大于重力,其竖直方向加速度先减小至零,再反向增大,所以竖直方向的速度先增大后减小,故知②、④错.另由小球下摆过程中机械能守恒,摆至最低点时,重力势能最小,动能最大,所以最低点线速度最大,即③对.正确选项为A.16..如图1-5-3所示,两半径不同而内壁光滑的半圆轨道固定于地面,一个小球分别从与球心在同一水平高度的A 、B图1-5-3A.①④B.C.①③D.【解析】 设轨道半径为R ,则由机械能守恒可得小球到达最低点时速度v =gR 2,由牛顿第二定律,得:F -mg =m R v 2,所以F =mg +m Rv 2=3mg .可见,小球对轨道的压力与轨道的半径无关,同样最低点处小球的向心加速度也与轨道半径无关,恒为2g . A17.如图1所示,质量为m 的物块从半径为R 的半球形碗边向碗底滑动,滑到最低点时的速度为v ,若物块滑到最低点时受到的摩擦力是F f ,则物块与碗的动摩擦因数为 ( ) 图1 A.F f mg B.F f mg +m v 2R C.F f mg -m v 2R D.F f mv 2R18.如图2所示,天车下吊着两个质量都是m 的工件A 和B ,系A 的吊 绳较短,系B 的吊绳较长.若天车运动到P 处突然停止,则两吊绳 所受的拉力F A 和F B 的大小关系为 ( )A .F A >FB B .F A <F B 图2C .F A =F B =mgD .F A =F B >mg17. 解析:物块滑到最低点时受竖直方向的重力、支持力和水平方向的摩擦力三个力作用,据牛顿第二定律得F N -mg =m v 2R ,又F f =μF N ,联立解得μ=F fmg +mv 2R,选项B 正确.:B18. 解析:天车运动到P 处突然停止后,A 、B 各以天车上的悬点为圆心做圆周运动,线速度相同而半径不同,由F -mg =m v 2L ,得:F =mg +m v 2L ,因为m 相等,v 相等,而L A <L B ,所以F A >F B ,A 选项正确.答案:A。