数学建模

合集下载

什么是数学建模

什么是数学建模

什么是数学建模数学建模是指运用数学的理论、方法和技术,以模型为基础,通过对实际问题进行抽象、建模、求解和验证,为实际问题的研究和决策提供可靠依据的过程。

数学建模可以帮助我们更好地理解、分析、解决实际问题。

它是一种综合运用数学、物理、计算机科学和其他相关学科知识的跨学科研究领域,可以应用于各个领域的问题,包括自然科学、工程技术、社会科学、医学、金融等。

数学建模的过程一般包括以下几个步骤:1. 定义问题和目标。

在这个阶段,我们需要对实际问题进行全面的了解,明确研究的目标和需要解决的问题是什么,确定问题的限制和条件。

2. 建立模型。

在这个阶段,我们需要根据实际问题的特点和需要解决的问题,选择适当的模型类型,建立数学模型。

模型应该尽可能简明明了,能够比较好地描述实际问题,并且便于求解。

3. 求解模型。

在这个阶段,我们需要根据所建立的模型,采用数学和计算机科学等相关方法,对模型进行求解,得到具体的结果和解决方案。

4. 验证模型。

在这个阶段,我们需要根据模型的求解结果,进行模型的验证。

验证模型的正确性和可靠性,以及对模型的结果进行误差分析和敏感性分析,以保证模型的可行性和实用性。

5. 应用模型。

在这个阶段,我们需要将模型的结果应用于实际问题的解决中。

根据模型的结果,提出相应的决策和措施,实现问题的解决和优化。

数学建模具有广泛的应用领域和重要性。

在物理、化学、生物学和工程技术等领域,数学建模可以帮助我们解决复杂的系统问题,如气候模型、流体力学模型、生物进化模型等。

在社会科学领域,数学建模可以应用于经济学、管理学、社会学等领域,对社会现象进行建模和预测,如人口增长模型、市场模型、网络模型等。

在医学领域,数学建模可以帮助我们研究疾病的发展和治疗方法,如病毒传播模型、治疗模型等。

在金融领域,数学建模可以帮助我们分析风险和投资策略,如股票价格模型、期权评估模型等。

总之,数学建模是一种重要的跨学科研究领域,以模型为基础,运用数学和相关学科知识,对实际问题进行抽象、建模、求解和验证,为实际问题的研究和决策提供可靠依据,具有广泛的应用领域和重要性。

什么是数学建模

什么是数学建模

数学建模当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。

这个建立数学模型的全过程就称为数学建模。

数学近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。

数学模型数学模型(Mathematical Model)是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。

数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。

这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(Mathematical Modeling)。

不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。

数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼。

数学建模应用数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。

数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,自从20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在21世纪这个知识经济时代,数学科学的地位会发生巨大的变化,它正在从国家经济和科技的后备走到了前沿。

数学建模及数学实验

数学建模及数学实验

握相关学科的基本理论和知识,以便更好地进行数学建模和实验。
02 03
提高计算机技能
在现代数学建模和实验中,计算机技能尤为重要。建议学习者提高自己 的计算机编程、算法设计和数据分析能力,以便更高效地处理大规模数 据和复杂模型。
关注前沿动态
随着科学技术的发展,新的数学建模和实验方法不断涌现。建议学习者 关注前沿动态,了解最新的研究进展和应用案例,以便更好地把握学科 发展方向。
03
数学实验的基本方法
数值计算实验
数值计算实验是数学实验中的 一种重要方法,它通过数值计
算来求解数学问题。
数值计算实验通常使用数值计 算软件,如MATLAB、Python 等,进行数学公式的计算和模
拟。
数值计算实验可以用于解决各 种数学问题,如微积分、线性 代数、概率统计等。
数值计算实验的优点是能够快 速得到近似解,并且可以通过 调整参数来观察不同情况下的 结果。
人工智能与大数据分析
人工智能和大数据技术的发展将为数学建模和数学实验提 供更丰富的数据资源和更高效的技术手段,推动其进一步 发展。
复杂系统与多学科协同
面对复杂系统的挑战,需要多学科协同合作,共同开展数 学建模和数学实验研究,以解决实际问题。
05
结论
对数学建模和数学实验的总结
数学建模与数学实验的关系
数学建模和数学实验是相辅相成的。数学建模是利用数学方法解决实际问题的过程,而数学实验则是通过实验手段验 证数学理论或解决数学问题的方法。在实际应用中,数学建模和数学实验常常相互渗透,共同推动问题的解决。
应用领域
数学建模和数学实验在各个领域都有广泛的应用,如物理学、工程学、经济学、生物学等。通过建立数学模型和进行 数学实验,可以深入理解各种现象的本质,预测其发展趋势,为实际问题的解决提供有力支持。

数学建模

数学建模
材料均匀,热传导系数为常数 Q ~单位时间单位面积传导的热量 T~温差, d~材料厚度, k~热传导系数 记双层玻璃窗传导的热量Q1 记单层玻璃窗传导的热量Q2 热量传播只有传导,没有对流
室 内 T1
d
l
d
室 外 T2
Q1

室 内 T1
2d
室 外 T2
Q2

Ta~内层玻璃的外侧温度 Tb~外层玻璃的内侧温度 k1~玻璃的热传导系数 k2~空气的热传导系数
乙安全线
y0 0 x
y1 y0 0
y=f ( x)
y0 y f ( x) y0 x
x0
P(xm,ym)甲 安 x=g(y) 全 区 x1 x
P~平衡点(双方最少导弹数)
精细 模型
x<y x=y
乙方残存率 s ~甲方一枚导弹攻击乙方一个 基地,基地未被摧毁的概率。 甲方以 x攻击乙方 y个基地中的 x个, sx个基地未摧毁,y–x个基地未攻击。 y0=sx+y–x y0=sy y= y0+(1-s)x y=y0 / s
• (4)模型求解:利用获取的数据资料,对模 型的所有参数做出计算(估计)。 • (5)模型分析:对所得结果进行数学的分析。 • (6)模型检验:将模型分析结果与实际情形 进行比较,以此来验证模型的准确性、合 理性和适用性。如果模型与实际较吻合, 则要对计算结果给出其实际含义,并进行 解释。如果模型与实际吻合较差,则应该 修改假设,再次重复建模过程。 • (7)模型应用:应用方式因问题的性质和建 模的目的而异
0
x0
x
甲方的被动防御也会使双方军备竞赛升级。
模型解释
• 甲方将固定核导弹基地改进为可移动发射架 乙安全线y=f(x)不变

数学建模介绍

数学建模介绍

数学建模介绍1.1 数学模型及其分类数学建模作为用数学方法解决问题的第一步,它与数学本身有着同样悠久的历史。

一个羊倌看着他的羊群进入羊圈,为了确信他的羊没有丢失,他在每只羊进入羊圈时,则在旁边放一颗小石子,如果每天羊全部入圈而他那堆小石子刚好全部放完,则表示他的羊和以前一样多。

究竟羊倌数的是石子还是羊,那是毫无区别的,因为羊的数目同石子的数目彼此相等。

这实际上就使石子与羊“联系”起来,建立了一个使石子与羊一一对应的数学模型。

(1)什么是数学模型人们在认识研究现实世界里的客观对象时,常常不是直接面对那个对象的原形,有些是不方便,有些甚至是不可能直接面对原形,因此,常常设计、构造它的各种各样的模型。

如各式各样的玩具模型、展览厅里的三峡大坝模型、化学上的分子结构模型等。

这些模型都是人们为了一定目的,对客观事物的某一部分进行简化、抽象、提炼出来的原形替代物,集中反映了原形中人们需要的那一部分特征,因而有利于人们对客观对象的认识。

数学模型也是反映客观对象特征的,只不过它刻画的是事物在数量方面的特征或数学结构及其变化规律。

数学模型是人们为了认识客观对象在数量方面的特征、定量地分析对象的内在规律、用数学的语言和符号去近似地刻画要研究的那一部分现象时,所得到的一个数学表述。

建立数学模型的过程称为数学建模。

(2) 数学模型的重要作用进入20世纪以来,数学以空前的广度和深度向一切领域渗透,作为数学的应用,数学建模也越来越受到人们的重视。

在一般工程技术领域,数学模型仍是工程技术人员定量研究有关工程技术问题的重要工具;而随着数学与其他学科领域诸如经济、人口、生态、地质等所谓非物理领域的渗透,一些交叉学科如计量经济学、人口控制论、数学生态学、数学地质学等应运而生;计算机的发展给数学及作为数学应用的数学建模带来了前所未有的机遇和挑战。

计算机改变了人类的生活方式、思考方式和研究方式,极大地提高了人们的计算能力、搜索和分析海量数据和信息的能力。

什么是数学建模

什么是数学建模

什么是数学建模数学建模是指对现实世界的一特定对象,为了某特定目的,做出一些重要的简化和假设,运用适当的数学工具得到一个数学结构,用它来解释特定现象的现实性态,预测对象的未来状况,提供处理对象的优化决策和控制,设计满足某种需要的产品等。

一般来说数学建模过程可用如下框图来表明:数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。

例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。

今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。

特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。

因此数学建模被时代辅予更为重要的意义。

大学生数学建模竞赛自1985年由美国开始举办,竞赛以三名学生组成一个队,赛前有指导教师培训。

赛题来源于实际问题。

比赛时要求就选定的赛题每个队在连续三天的时间里写出论文,它包括:问题的适当阐述;合理的假设;模型的分析、建立、求解、验证;结果的分析;模型优缺点讨论等。

数学建模竞赛宗旨是鼓励大学师生对范围并不固定的各种实际问题予以阐明、分析并提出解法,通过这样一种方式鼓励师生积极参与并强调实现完整的模型构造的过程。

以竞赛的方式培养学生应用数学进行分析、推理、证明和计算的能力;用数学语言表达实际问题及用普通人能理解的语言表达数学结果的能力;应用计算机及相应数学软件的能力;独立查找文献,自学的能力,组织、协调、管理的能力;创造力、想象力、联想力和洞察力。

他还可以培养学生不怕吃苦、敢于战胜困难的坚强意志,培养自律、团结的优秀品质,培养正确的数学观。

这项赛事自诞生起就引起了越来越多的关注,逐渐有其他国家的高校参加。

我国自1989年起陆续有高校参加美国大学生数学建模竞赛。

1992年起我国开始举办自己的大学生数学建模竞赛,并成为国家教育部组织的全国大学生四项学科竞赛之一竞赛简介:本竞赛每年9月下旬举行,竞赛面向全国大专院校的学生,不分专业。

数学建模是什么

数学建模是什么

数学建模是什么
数学建模是指利用数学工具和方法分析和解决实际问题的过程,是一种跨学科的综合性应用科学研究方法。

数学建模的基本步骤包括:问题建模、假设、模型的构建、模型求解和模型评价。

在这个过程中,数学建模的核心是模型的构建和求解,其中模型的构建需要理解实际问题的基本特征和数学方法的应用,而模型求解则需要掌握数学分析、数值计算等技能和方法。

数学建模的应用范围非常广泛,包括但不限于自然科学、社会科学、经济学、工程学等领域的问题。

数学建模在现实生活中的应用包括:企业生产、物流配送、城市交通规划、自然资源评估、环境保护、金融、医学等各个领域。

数学建模的方法多种多样,常见的数学方法包括:微积分、线性代数、概率论、统计学、优化理论等。

通过对实际问题的建模、数学方法的应用和模型求解的计算和分析,数学建模可进一步为决策提供科学依据和参考。

数学建模的主要特点是模型化思维、跨学科交叉和创新性思维。

在这个过程中,数学建模要求研究者对问题进行深入的分析和研究,要对数学方法的应用有较大的理解和掌握,并且要结合实际考虑模型的可行性。

数学建模的创新性思维则要求研究者在模型的构建和求解中体现出一定的创新性和思维深度。

无论是学术界还是实际应用领域,数学建模的应用都已经深入到各个角落。

在数学建模中,数学是一种工具性语言,
而模型则是实际问题的一种映射。

数学建模不仅促进了数学研究和应用之间的相互促进和发展,还连接了传统学科和新兴学科之间的桥梁,推动了知识的跨领域传播和交流。

数学专业的数学建模学研究

数学专业的数学建模学研究

数学专业的数学建模学研究数学建模学是数学专业中的一个重要研究方向。

它通过运用数学工具和方法,对实际问题进行建模,分析和解决,从而为现实世界的各个领域提供有效的数学模型和解决方案。

本文将介绍数学建模学的研究内容、应用领域以及未来的发展趋势。

一、数学建模学的研究内容1. 数学建模的基本思想数学建模的基本思想是将实际问题转化成数学问题,并通过建立适当的数学模型来描述问题的本质。

数学建模的过程包括问题的选择、模型的建立、模型的求解和结果的验证。

在建模过程中,需要考虑问题的实际背景、约束条件以及模型的适用性。

2. 数学建模的数学工具数学建模学运用了众多的数学工具与方法,包括微积分、线性代数、概率论、运筹学等。

这些数学工具可以用来描述问题的量化关系、分析问题的规律以及求解优化问题。

数学建模的研究者需要在实际问题中选用合适的数学工具,并将其灵活应用于建模过程中。

二、数学建模学的应用领域数学建模学的应用领域非常广泛,涵盖了自然科学、社会科学以及工程技术等多个领域。

以下是数学建模在各个领域的应用案例:1. 自然科学领域在物理学、化学和生物学等自然科学领域,数学建模被广泛应用于模拟物理现象、分析化学反应以及研究生物系统。

例如,数学建模可以用来描述地球上大气环流的规律,预测气候变化;同时,数学建模也可以应用于药物设计和生物网络的分析。

2. 社会科学领域在经济学、社会学和人口学等社会科学领域,数学建模被用于分析人类行为、预测市场变化以及研究社会现象。

例如,经济学家可以利用数学建模来研究市场供需关系,预测商品价格的变化;同时,社会学家也可以运用数学建模来分析人口增长模式和社会结构。

3. 工程技术领域在工程技术领域,数学建模被广泛应用于电力系统、交通规划以及网络通信等方面。

例如,电力系统的运行调度可以通过数学建模来优化发电计划,提高电网的稳定性和经济性;同时,交通规划中的交通流量分析也可以通过数学建模来解决。

三、数学建模学的发展趋势1. 多学科融合数学建模学的发展趋势是与其他学科的融合。

数学建模(数学分支)

数学建模(数学分支)

建模背景
数学技术
建模应用
近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来 越重要的作用,而且以空前的广度和深度向经济、管理、金融、生物、医学、环境、地质、人口、交通等新的领 域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。
数学模型(Mathematical Model)是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质 属性的抽象而又简洁的刻画,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展 提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现 实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提 炼出数学模型的过程就称为数学建模(Mathematical Modeling)。
应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立数学模 型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和 研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的 理论和方法去分析和解决问题。这就需要深厚扎实的数学基础、敏锐的洞察力和想象力、对实际问题的浓厚兴趣 和广博的知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领域广泛应用的媒介,是数学科学技术 转化的主要途径。数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代 科技工作者必备的重要能力之一。
为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内 外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等 院校的教学改革和培养高层次的科技人才的一个重要方面,许多院校正在将数学建模与教学改革相结合,努力探 索更有效的数学建模教学法和培养面向21世纪的人才的新思路,与我国高校的其它数学类课程相比,数学建模具 有难度大、涉及面广、形式灵活,对教师和学生要求高等特点,数学建模的教学本身是一个不断探索、不断创新、 不断完善和提高的过程。为了改变过去以教师为中心、以课堂讲授为主、以知识传授为主的传统教学模式,数学 建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。

数学建模

数学建模
模型建立
在假设的基础上,利用适当的数学工具来刻划各变量常量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。
模型求解
利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。
模型分析
对所要建立模型的思路进行阐述,对所得的结果进行数学上的分析。
模型检验
将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。
建模应用
数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性、结论的明确性和体系的完整性,而且在于它应用的广泛性。自从20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在21世纪这个知识经济时代,数学科学的地位会发生巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展、数学理论与方法的不断扩充,使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。
第二条 竞赛内容
题目有较大的灵活性供参赛者发挥其创造能力。参赛者应根据题目要求,完成一篇包括模型的假设、建立和求解、计算方法的设计和计算机实现、结果的分析和检验、模型的改进等方面的论文(即答卷)。
第三条 竞赛形式、规则和纪律
1.全国统一竞赛题目,采取通讯竞赛方式,以相对集中的形式进行。
2.竞赛每年举办一次,一般在某个周末前后的三天内举行。

什么叫数学建模:

什么叫数学建模:

什么叫数学建模:数学建模指的是,利用数学方法和理论对现实问题进行描述、分析和解决的过程。

这种过程需要数学、自然科学、工程技术等学科的知识和技能,同时需要对现实问题的深入理解和实地调查。

数学建模在解决现实问题方面起着非常重要的作用,尤其是涉及到科学、工程、经济和社会等各个领域。

数学建模可以帮助人们更好地理解问题的本质和特征,从而提供更精确和有效的解决方案。

数学建模的过程可以分为以下几个步骤:1.问题描述。

将现实问题转化为数学问题,确定问题的目标、限制条件、变量等。

2.建立模型。

通过分析问题的本质和特征,选择合适的数学方法和理论,建立数学模型。

3.求解模型。

采用数学计算方法和技术,对模型进行求解和优化,得出问题的解决方案。

4.模型验证。

将建立的模型与实际情况进行比较和验证,检验模型的有效性和可行性。

5.预测和应用。

根据问题的特点,应用建立好的模型进行预测和实际应用。

数学建模在现代科学技术和社会发展中扮演着至关重要的角色。

它可以帮助人们更好地理解复杂的现实问题,并提供科学有效的解决方案。

同时,数学建模也推动了数学学科的发展和应用。

在应用领域,数学建模被广泛应用于车辆运输、环境保护、金融投资、医疗卫生、城市规划等多个方面。

例如,在车辆运输领域,数学建模可以在路面拥堵、车辆行驶路径、节能减排等方面提供解决方案;在环境保护领域,数学建模可以针对大气污染、水质污染等问题提供有效的控制策略。

总之,数学建模是一种非常有价值的方法,它能够帮助人们更好地理解问题、提供科学有效的解决方案,是现代科学技术和社会发展中不可或缺的重要工具。

数学建模常用算法

数学建模常用算法

数学建模常用算法数学建模是指将实际问题转化为数学模型,并通过数学方法进行求解的过程。

在数学建模中,常用的算法有很多种,下面将介绍一些常见的数学建模算法。

1.最优化算法:-线性规划算法:如单纯形法、内点法等,用于求解线性规划问题。

-非线性规划算法:如最速下降法、牛顿法等,用于求解非线性规划问题。

-整数规划算法:如分支定界法、割平面法等,用于求解整数规划问题。

2.概率统计算法:-蒙特卡洛模拟:通过模拟随机事件的方式,得出问题的概率分布。

-贝叶斯统计:利用先验概率和条件概率,通过数据更新后验概率。

-马尔可夫链蒙特卡洛:用马尔可夫链的方法求解复杂的概率问题。

3.图论算法:-最短路径算法:如迪杰斯特拉算法、弗洛伊德算法等,用于求解两点之间的最短路径。

-最小生成树算法:如普里姆算法、克鲁斯卡尔算法等,用于求解图中的最小生成树。

- 最大流最小割算法: 如Edmonds-Karp算法、Dinic算法等,用于求解网络流问题。

4.插值和拟合算法:-多项式插值:如拉格朗日插值、牛顿插值等,用于通过已知数据点拟合出多项式模型。

-最小二乘法拟合:通过最小化实际数据与拟合模型之间的差异来确定模型参数。

-样条插值:通过使用多段低次多项式逼近实际数据,构造连续的插值函数。

5.遗传算法和模拟退火算法:-遗传算法:通过模拟自然选择、遗传变异和交叉等过程,优化问题的解。

-模拟退火算法:模拟固体退火过程,通过随机策略进行,逐步靠近全局最优解。

6.数据挖掘算法:- 聚类算法: 如K-means算法、DBSCAN算法等,用于将数据分为不同的类别。

-分类算法:如朴素贝叶斯算法、决策树算法等,用于通过已知数据的类别预测新数据的类别。

- 关联分析算法: 如Apriori算法、FP-growth算法等,用于发现数据集中的关联规则。

以上只是数学建模中常用的一些算法,实际上还有很多其他算法也可以应用于数学建模中,具体使用哪种算法取决于问题的性质和要求。

数学建模入门篇

数学建模入门篇

数学建模入门篇(新手必看)一、什么是数学建模1、什么是数学模型数学模型是针对参照某种事物系统的特征或数量依存关系,采用数学语言,概括地或近似地表述出的一种数学结构,这种数学结构是借助于数学符号刻画出来的某种系统的纯关系结构。

从广义理解,数学模型包括数学中的各种概念,各种公式和各种理论。

(MBA智库)2、数学建模数学建模课看作是把问题定义转化为数学模型的过程。

简单的来说,对于我们学过的所有数学知识,要去解决生活中遇到的各种各样的问题,就需要我们建立相关的模型,使用数学这个工具来解决各种实际的问题,这就是建模的核心。

3、数学建模的思想对于数学建模的思想可以分为下列方法:(知乎张浩驰)对于数学建模的思想知乎上有各种解释,下面一篇解释的非常好,大家感兴趣的可以去知乎浏览什么是数学建模(讲的比较好)?二、数学建模比赛数学建模的相关比赛有很多,不同的比赛的影响力不同,在各个高校的认可度也不一样。

下面列举一些影响力和认可度较大的比赛。

1、"高教社杯"全国大学生数学建模竞赛参赛对象:本科生参赛时间:每年9月份(2020年为9月10日-9月13日)竞赛简介:“高教社杯”是目前影响力以及认可度最高的数学建模比赛,俗称“国赛”。

2020年共有来自全国及美国、英国、马来西亚的1470所院校/校区、45680队(本科41826队、专科3854队)、13万多人报名参赛。

在一些高校中对于国赛的认可度较高,国家级奖更是有极高的含金量。

竞赛官网:"高教社杯"全国大学生数学建模竞赛2、美国大学生数学建模竞赛参赛对象:本科生参赛时间:每年2月份左右竞赛简介:美国大学生数学建模竞赛(MCM/ICM)由美国数学及其应用联合会主办,是唯一的国际性数学建模竞赛,也是世界范围内最具影响力的数学建模竞赛。

赛题内容涉及经济、管理、环境、资源、生态、医学、安全、等众多领域。

竞赛官网:[美国大学生数学建模竞赛]添加链接描述(https:///undergraduate/contests/mcm/login.php)3、中国研究生数学建模竞赛(华为杯)参赛对象:研究生参赛时间:每年9月份左右竞赛简介:该赛事起源于2003年东南大学发起并成功主办的“南京及周边地区高校研究生数学建模竞赛”,2013年被纳入教育部学位中心“全国研究生创新实践系列活动”。

数学建模的几个过程

数学建模的几个过程

数学建模的几个过程数学建模是一种将实际问题转化为数学问题并求解的方法,通常包括四个基本过程:问题建模、模型建立、模型求解和模型验证。

下面将详细介绍这四个过程。

一、问题建模:问题建模是数学建模的第一步,其目的是明确问题的具体解决要求和限制条件。

具体步骤如下:1.问题描述:对问题进行全面准确的描述,了解问题的背景、目标和约束条件。

2.数据收集与处理:收集和整理与问题相关的数据,并进行必要的处理和分析,以便后续建模和求解。

3.确定目标函数与约束条件:明确问题的目标和约束条件,将其转化为数学表达式。

二、模型建立:模型建立是数学建模的核心过程,其目的是将问题转化为数学形式。

具体步骤如下:1.建立模型的数学描述:根据问题的特点和要求,选取适当的数学方法,将问题进行数学化描述。

2.假设与简化:对问题进行适度的简化和假设,以降低问题的复杂性和求解难度。

3.变量定义和量纲分析:明确定义模型中的各个变量和参数,并进行量纲分析和归一化处理,以确保模型的合理性和可靠性。

三、模型求解:模型求解是对建立的数学模型进行求解,以得到问题的解答。

具体步骤如下:1.求解方法选择:根据模型的特点和求解要求,选择适当的数学方法进行求解,如解析解法、数值解法、近似解法等。

2.模型编程与计算:对所选的求解方法进行程序设计和算法实现,利用计算机进行模型求解,得到问题的数值解。

3.求解结果分析与解释:对求解结果进行分析和解释,解释结果的含义和对问题的解答进行验证。

四、模型验证:模型验证是对建立的数学模型进行验证和评估,以确定模型的合理性和可靠性。

1.合理性检验:对模型的假设和简化进行合理性的检验,检查是否存在明显的偏差和不合理的结果。

2.稳定性与敏感性分析:对模型的稳定性和敏感性进行分析,研究模型对参数变化和扰动的响应情况。

3.模型与数据的拟合度:比较模型的预测结果与实际观测数据之间的拟合度,评估模型对实际问题的适用性。

综上所述,数学建模的主要过程包括问题建模、模型建立、模型求解和模型验证。

数学建模是什么

数学建模是什么

数学建模是什么1. 什么是数学建模?:数学建模是一种以数学方法描述和分析实际问题的方法。

它是一种将实际问题的复杂性转化为数学模型,以便更好地理解和解决实际问题的方法。

数学建模的过程包括描述实际问题,建立数学模型,求解模型,验证模型,以及分析模型的结果。

数学建模的目的是提出有效的解决方案,以解决实际问题,并且可以更好地控制和管理实际问题。

数学建模的应用非常广泛,可以用于科学研究,经济分析,社会研究,工程设计,管理决策,以及其他各种实际问题的分析和解决。

2. 数学建模的基本步骤:数学建模是一种将实际问题转换为数学模型,以便利用数学方法来解决实际问题的方法。

它是一种以数学抽象的方式来描述实际问题的过程,是一种将实际问题转换为数学模型的过程,是一种将实际问题转换为数学模型的过程。

数学建模的基本步骤包括:首先,要确定问题的范围和目标,明确问题的描述,确定变量和参数,构建数学模型,解决模型,分析模型的结果,并将模型的结果应用到实际问题中。

确定问题的范围和目标时,要明确问题的描述,以便确定问题的范围和目标,以及确定变量和参数。

确定变量和参数时,要确定变量的类型,变量的取值范围,参数的取值,以及变量和参数之间的关系。

构建数学模型时,要根据问题的描述,确定变量和参数,构建一个恰当的数学模型,以表达问题的特征。

解决模型时,要根据模型的特征,利用数学方法来解决模型,求出模型的解。

分析模型的结果时,要分析模型的结果,分析模型的有效性,并对模型的结果进行评价。

最后,将模型的结果应用到实际问题中,以解决实际问题。

3. 数学建模的应用领域数学建模的应用领域十分广泛,从社会科学到工程科学,从经济学到生物学,都可以使用数学建模来解决问题。

在社会科学领域,数学建模可以用来研究社会系统中的结构和行为,以及社会系统中的社会经济、政治、文化等因素之间的关系。

在工程科学领域,数学建模可以用来研究和设计工程系统,比如电力系统、燃气系统、水利系统等,以及这些系统中的各种参数和变量之间的关系。

数学建模基本要素

数学建模基本要素

问题定义不清
总结词
数据是数学建模的基础,数据不足或不准确会导致模型无法准确反映实际情况。
详细描述
在数学建模过程中,需要收集大量相关数据作为输入。如果数据量不足或数据质量不高,会导致模型精度下降,甚至得出错误的结论。解决这个问题的方法是尽可能多地收集高质量的数据,同时采用合适的数据处理方法对数据进行清洗和预处理,提高数据的质量和准确性。
详细描述
05
CHAPTER
数学建模的常见问题与解决方案
总结词
问题定义不清是数学建模中常见的问题,它可能导致模型建立偏离实际需求。
详细描述
在数学建模过程中,首先需要对问题进行清晰、准确的定义。如果问题定义模糊或过于宽泛,会导致建模过程中出现偏差,甚至得出错误的结论。解决这个问题的方法是仔细分析问题,明确问题的边界和约束条件,确保模型能够准确反映实际需求。
通过代数方程和不等式来描述和解决问题的方法。
详细描述
代数法是数学建模中最基本的方法之一,它通过建立代数方程或不等式来描述和解决各种实际问题。例如,在解决几何问题时,可以通过代数法找到未知数,进而求出问题的解。
代数法
利用微积分的基本概念和定理来建模的方法。
总结词
微积分法是数学建模中常用的一种方法,它利用微积分的基本概念和定理来描述和解决实际问题。例如,在经济学中,可以通过微积分法建立需求和供给函数,进而求出市场的均衡价格。
详细描述
变量选择需要考虑与问题相关的各种因素,并确定哪些因素对模型输出有显著影响。参数设定则需要根据已知数据和经验进行合理估计,以确保模型的有效性和准确性。
变量选择与参数设定
总结词
假设条件是数学建模中不可或缺的一部分,它们限制了模型的可能解的范围,有助于简化模型并提高预测精度。

数学建模简介

数学建模简介

图. 地貌示意图
进一步问题: 你怎样使你的模型适合于下面两个限制 条件的情况呢? 1.当道路转弯时,角度至少为140度; 2.道路必须通过一个已知地点(如P)。
其他例子:
• 关于肥猪的最佳销售时机问题 • 中国男女人口失衡问题研究与对策
谢谢大家!
据标本的主要制作者辽宁大学生命科 学系刘明玉教授介绍,这头猪体长2.5米, 腰围2.23米,体重900公斤,獠牙长144毫米, 属于长白与梅山杂交品种。这头猪能长到 如此重的 程度,主要是由于猪的主人精心 饲养以及生长年限较长所致。
在我国饲养猪主要是用来食用,很少 有人能将猪养至3年以上,而这头猪的主人 徐长金老人5年多来,一直将猪养在室内, 精心地饲喂,直至猪由于躯体过于庞大, 无法正常活动而死亡。
数学建模入门简介


1. 数学建模的基本概念 2. 数学建模竞赛 3. 数学建模技术与数学方法 4. 学习建议 5. 建模案例
1. 数学建模的基本概念
1.1 数学模型 1.2 数学建模目的 1.3 数学建模一般过程 1.4 数学建模综合技能
1.1数学模型
数学模型(E.A.Bendar 定义):关于部分 现实世界为一定目的而做的抽象、简化 的数学结构。
数学模型是现实世界的简化而本质的描述, 是用数学符号、数学公式、程序、图、表 等刻画客观事物的本质属性与内在联系的 理想化表述.
1.2数学建模目的
• 优化决策及控制 • 预测目的 • 解释现象
1.3数学建模一般过程
Step1:问题分析:明确目标,分析条件与数据 Step2:建立模型:简化及假设,总体任务设计, 模型建立 Step3:模型求解:借助软件(包括数学软件), 编写程序求解(直接调用或自己设计算法) Step4:结果分析与检验 Step5:如果发现结果有问题或不满意,从上面 某些步骤开始重新操作(自己分析再定) Step6:回答实际问题、模型评价与改进方向
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中国人口增长预测论文数学系信计二班李艳君周子健梁灿林中国人口增长预测一:问题重述中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。

根据已有数据,运用数学建模的方法,对中国人口做出分析和预测是一个重要问题。

近年来中国的人口发展出现了一些新的特点,例如,老龄化进程加速、出生人口性别比持续升高,以及乡村人口城镇化等因素,这些都影响着中国人口的增长。

2007年初发布的《国家人口发展战略研究报告》(附录1) 还做出了进一步的分析。

关于中国人口问题已有多方面的研究,并积累了大量数据资料。

附录2就是从《中国人口统计年鉴》上收集到的部分数据。

试从中国的实际情况和人口增长的上述特点出发,参考附录2中的相关数据(也可以搜索相关文献和补充新的数据),建立中国人口增长的数学模型,并由此对中国人口增长的中短期和长期趋势做出预测;特别要指出你们模型中的优点a与不足之处。

二:摘要人类社会进入21世纪以来,在科学技术和生产力飞速发展的同时,世界人口也以空前的规模增长。

我国正处于全面建设小康社会时期,这是社会快速转型期,人口发展面临着前所未有的复杂局面,人以1:3安全风险依然存在,人口与经济社会资源环境之间总体上仍处于紧张状态,因此建立合适的人口增长模型,对中国人口增长的中短期和长期趋势作预测,具有极其重要的战略意义.这将对今后人口政策的制定具有指导作用.本文中用带初值的偏微分方程组建立了带扰动的中国人口增长预测模型。

关键词:人口发展方程;人口迁移;人口状况;移动加权平均值三:基本假设(1)假设不会出现较为恶劣的自然灾害、瘟疫、战争等而导致人口大量迁移或死亡;(2)只考虑人口从乡迁移到市,从乡迁移到镇,即乡村城镇化,不考虑其他情况;(3)当迁移率为负数时视为零,同时不考虑年龄在65岁以上人口的迁移率.四:符号说明F(r,t)t时刻(年代)市所有年龄小于r岁的人口总数G(r,£)t时刻(年代)镇所有年龄小于r岁的人口总数H(r,c)t时刻(年代)乡所有年龄小于r岁的人口总数用)rM x表示t时刻单位时间内城市按年龄死亡密度函数(t,五、问题分析与建模及人口预测5.1人口增长的连续模型记F(r,t),G(r,£),H(r,c)分别为t时刻(年代)市、镇、乡所有年龄小于r岁的人口总数,称为人口函数.此处r,t都是连续变量.显然F(r,t)≥0,G(r,t)≥0,H(r,t)≥0,且对于任意固定的t,F(r,t),G(r,t),H(r,t)都是r的递增函数.r为人的最大寿命.为建模需要,不妨假记z(t),y(t),z(t)分别为市、镇、乡t时刻的总人数,mr=90(年龄大于90岁的我们也视作90).则:设mr,t)=F(∞,t)=z(t),F(0,t)=0,F(mr,t)=G(∞,t)=y(t),G(0,t)=0,G(mH(0,t)=0,H(m r ,t)=rF∂∂H(∞,t)=z(t). 因人口是一个很大的整数,故当r,t 连续变化时,可视F(r ,t),G(r ,t),H(r ,t)对每个变量都是连续变化的.进一步假定它们的一阶偏导数,t F ∂∂,r G ∂∂,t G ∂∂,r H ∂∂,t H ∂∂也是连续函数.令f(r,t)=rF∂∂,g(r,t)=r G ∂∂,h(r ,t)=rH∂∂,分别称为市、镇、乡人口密度函数,因F(r ,t),G(r ,t),H(r ,t)均是r的递增函数,故f(r ,t)≥0,f(m r ,t)=0; g(r ,t)≥0,g(m r ,t)=0; h(r ,t)≥0,h(k m r ,t)=0. 且⎰⎰⎰===oot)d ,f( ),()(,),(),(ξξξξξξmr rd t f t x d t f t r F ,⎰⎰⎰===oot)d ,g( ),()(,),(),(ξξξξξξmr rd t g t y d t f t r G,⎰⎰⎰===oot)d ,h( ),()(,),(),(ξξξξξξmr rd t h t z d t f t r H用),(t r M x 表示t 时刻单位时间内城市按年龄死亡密度函数,则在[r,△r]时段内,单位时间城市 死亡的人数为),(t r M x △r,而同一时段内城市存活着的人数为f(r ,t)△r . 可得到中国人口的增长预测模型⎰⎰⎰=========---=∂∂+∂∂+-=∂∂+∂∂+-=∂∂+∂∂212121),(),(),(),0(),(),(),(),0(),(),(),(),0(,0),(),()0,(,0),(),()0,(,0),(),()0,(),,(),(),(),(),(),(),(),(),,(),(),(),(),(),(),,(),(),(),(),(),(000r r z z r r y y r r x x m m m y x z y y x x drt r h t r k t r l t h dr t r g t r k t r l t g dr t r f t r k t r l t f t r h r h r h t r g r g r g t r f r f r f t r h t r a t r h t r a t r h t r U tt r h r t r h t r h t r a t r g t r U tt r g r t r g t r h t r a t r f t r U t t r f r t r f本模型综合考虑了市、镇、乡人口在许多指标上的差异性,充分利用了现有抽样数据.同时考虑了近年来有加速趋势的人口城镇化因素,并考虑自从实行计划生育政策以来全国已累计有了将近1亿独生子女对生育水平的影响,抓住了问题的关键,比较全面、科学地反映了我国人口增长更替.模型得出的最终预测结果比较好,与《国家人口战略研究报告》中的有关预测结果比较吻合. 5.2用于中长期的人口预测模型鉴于影响人口发展的众多不确定因素,我们应用灰色动态模型GM(1,1).为了得到最准确的预测结果,在选取数据年份和年数上,我们进行了认真的分析验证。

数据筛选过程如下:1、我们选取了1970—1980 和1980—1990这两段时间的人口数,带入灰色动态模型中,计算出1995-1999这个时间段的人口数,和查得的资料数据进行比较,得到表格如下:结论1:年份越近,预测越准。

2、我们选取1989-1994 6年和 1988-1995 8年的时间段的人口数,带入灰色动态模型中,计算出1996-1999这个时间段的人口数,和查得的资料数据进行比较,得到表格如下:结论2:年份越少,预测越准。

于是,我们选取1999-2004这六年的人口数据,带入到灰色动态模型中,得到灰色动态人口模型:N(t)=17.6260714-17.731509330.0225527t e (规定1999年时t=0)并用该模型预测人口数如下:5.3人口老龄化对我国人口的影响由附件所给数据得出2001~2002年65岁以上人口占总人口的比例,计算公式为:K(T)=65岁以上人口数据/总人口数据(City(T)+Town(T)+Village(T)),得如下表格:由该表格得出65岁以上人口比例曲线: 图表标题R 2 = 0.86010.010.020.030.040.050.060.070.080.090.1200020012002200320042005可见老龄人口数量总体上在逐年增多,老龄化进程加快。

资料表明,自1999年中国进入老龄社会年 实际总人口(万人) 1970-1980预测值 预测误差 1980-1990预测值 预测误差 1965-1980预测值预测误差1995 121121 120866 0.21 122651 1.26 129429 6.86 1996 122389 122345 0.04 124330 1.59 131458 7.41 1997 123626 123825 0.16 126004 1.92 133622 8.09 1998 124810 125309 0.4 127694 2.31 135870 8.86 1999125909 126901 0.71 129404 2.78 138151 9.72年实际总人口(万人) 1989-1994预测值 预测误差 1988-1995预测值 预测误差 1996 122389 122216 0.141 122543 0.126 1997 123626 123337 0.234 123796 0.138 1998 124810 124400 0.329 125052 0.194 1999 125909 126066 0.325 126309 0.318 年 2007 2008 2009 2010 2015 2020 2025 预测人口数133028 133734 134404 135042 137780 139888 141496年 2030 2035 2040 2045 2050 预测人口数142736 143696 144464 145104 145600 年份 65岁以上人口所占比例 2001 0.07536 2002 0.07696 2003 0.071692004 0.07897 2005 0.08571开始,老年人口数撤不断增加,老龄化程度持续加深。

老龄化的加深势必导致总人口的上升。

中国将面临人口老龄化和人口总量过多的双重压力。

目前人口总规模高达13亿,预计到2030年达到最大人口规模14.65亿,总人口。

过多的压力将长期存在。

与此同时,人口老龄化压力已经开始显现。

并将随着老龄化的发展而不断加重。

整个21世纪,这两方面压力将始终交织在一起,给中国经济、社会发展带来严峻的挑战。

六、模型优缺点分析及改进方向6.1 模型的优点:6.1.1微分方程模型的优点:该模型是在马尔萨斯的人口指数增长模型的基础上,增加了出生率和死亡率这两大影响人口变化的关键因素,在未知总人口数的情况下,预测了人口的相对发展趋势并为简化计算,忽略了其他因素对人口变化的影响,使得所建立的模型不仅承传了指数增长模型简单的优点,而且能比其更准确的预测出中国人口的增长。

是一个较实用的中国人口短期预测模型。

6.1.2中长期及老龄化人口模型的优点:对于影响人口系统的因素,出了出生率和死亡率外,还有净迁入量,社会经济,自然环境, 科学技术等一系列方面, 这些众多的因素, 不是用几个指标所能表达清楚的.而且, 它们之间的结构关系错综复杂, 它们对人口增长的作用更是无法精确计算.多数因素都在动态变化之中, 其运行机制和变化规律难以完全明白. 所以,将灰色模型用到人口预测中不仅简单而且能达到比较准确的预测效果。

相关文档
最新文档