高中数学 第一章 解三角形测试卷 新人教版必修5
(word完整版)高中数学必修5解三角形测试题及,文档
高中数学必修 5 解三角形测试题及答案一、选择题:〔每题 5 分,共 60 分〕1.在 VABC 中, AB 3, A 45 , C 75 ,那么 BC=A .33B .2 C .2D .332.以下关于正弦定理的表达或变形中错误 的是..A .在 VABC 中 ,a:b:c=sinA:sinB:sinCB . VABC 中 ,a=bsin2A=sin2B a =b+cC . VABC 中,sinAsinB+sinCD . VABC 中 , 正弦值较大的角所对的边也较大sin Acos B B 的值为 3. VABC 中 , 假设 a,那么bA .30B . 45C . 60D . 90ab c,那么 VABC 是4. 在VABC 中,假设 =cosCcosA cosBA .直角三角形B .等边三角形C .钝角三角形5.以下命题正确的选项是A .当 a=4,b=5,A= 30 时,三角形有一解。
B .当 a=5,b=4,A= 60 时,三角形有两解。
( A 〕( B 〕( B 〕〔 B 〕D .等腰直角三角形( D 〕C .当 a= 3 ,b= 2 ,B= 120 时,三角形有一解。
D .当 a=3 6 ,A= 60 时,三角形有一解。
2 ,b=26. ABC 中 ,a=1,b=3 , ∠A=30 °,那么∠ B 等于〔 B 〕A . 60°B . 60°或 120°C . 30°或 150°D . 120°7 . 符 合 下 列 条 件 的 三 角 形 有 且 只 有 一 个 的 是〔D〕A . a=1,b=2 ,c=3B . a=1,b= 2 ,∠ A=30 °C . a=1,b=2, ∠ A=100 °D . b=c=1, ∠ B=45 °8 . 假设 (a+b+c)(b+c-a)=3abc, 且sinA=2sinBcosC, 那 么 ABC是 〔B〕A .直角三角形B .等边三角形C .等腰三角形D .等腰直角三角形9.在ABC 中,角 A 、 B 、C 的对边分别为 a 、b 、c , A=,a= 3 ,b=1,3c=那么(B)(A)1(B)2(C)3 -1(D)3uur10 . 〔 2021 重庆理〕设ABC 的 三 个 内 角 A, B, C , 向 量 m( 3 sin A,sin B) ,ruur r1 cos( AB) ,那么 C =〔n (cos B,3 cos A) ,假设 m gn C 〕A .B .2 5C .D .66 3 311.等腰 △ ABC 的腰为底的 2 倍,那么顶角 A 的正切值是〔 D 〕A. 3B. 3C. 15D.1528712.如图: D,C,B 三点在地面同素来线上 ,DC=a, 从 C,D 两点测得A 点仰角分别是β ,α (α <β ),那么 A 点离地面的高度 AB 等于〔 A 〕Aa sin sina sin sin A .) B .)sin(cos(a sin cosacos sin C .)D .)sin(cos(αβBDC题号 123 4567891011 12答案二、填空题:〔每题 5 分,共 20 分〕13.a2 ,那么a b c _______2_______sin Asin Bsin A sin C14.在ABC 1 (a 2+b 2- c 2),那么角∠ C=______.中,假设 S ABC =4415.〔广东 2021 理〕点 A, B, C 是圆 O 上的点, 且AB 4, ACB450 ,那么圆 O 的面积等于8.rrr rr r 16. a2, b4, a 与b 的夹角为3,以 a,b 为邻边作平行四边形,那么此平行四边形的两条对角线中较短的一条的长度为____ 2 3 ________三、解答题:〔 17 题 10 分,其余小题均为 12 分〕17. 在ABC 中 , c 2 ,b2 3 , B 450 ,解三角形 ABC 。
人教版高中数学必修5第一章解三角形测试题及答案
必修五 第一章解三角形测试(总分150)一、选择题(每题5分,共50分)1、在△ABC 中,a =3,b =7,c =2,那么B 等于()A . 30°B .45°C .60°D .120°2、在△ABC 中,a =10,B=60°,C=45°,则c 等于 ( )A .310+B .()1310-C .13+D .3103、在△ABC 中,a =32,b =22,B =45°,则A 等于()A .30°B .60°C .30°或120°D . 30°或150°4、在△ABC 中,3=AB ,1=AC ,∠A =30°,则△ABC 面积为 ( )A .23 B .43 C .23或3 D .43 或23 5、在△ABC 中,已知bc c b a ++=222,则角A 为( )A .3πB .6πC .32πD . 3π或32π6、在△ABC 中,面积22()Sa b c =--,则sin A 等于()A .1517B .817C .1315D .13177、已知△ABC 中三个内角为A 、B 、C 所对的三边分别为a 、b 、c ,设向量(,)p a c b =+ ,(,)q b a c a =-- .若//p q,则角C 的大小为()A .6π B .3π C .2π D .23π8、已知锐角三角形的边长分别为1,3,a ,则a 的范围是( )A .()10,8B .()10,8C .()10,8D .()8,109、在△ABC 中,已知C B A sin cos sin 2=,那么△ABC 一定是 ( )A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形 10、在△ABC 中,3,4ABBC AC ===,则AC 上的高为( )A .BC .32D .二、填空题(每小题5分,共20分)11、在△ABC 中,若∠A:∠B:∠C=1:2:3,则=c b a :: 12、已知三角形两边长为11,则第三边长为13、若三角形两边长为1和3,第三边上的中线长为1,则三角形的外接圆半径为 14、在△ABC 中BC=1,3Bπ=,当△ABC tan C =三、解答题(本大题共小题6小题,共80分)15、(本小题14分)在△ABC 中,已知210=AB ,A =45°,在BC 边的长分别为20,3320,5的情况下,求相应角C 。
必修5解三角形第一单元测试题 (含答案)
数学必修5解三角形单元测试题(时间120分钟,满分150分)一、选择题:(每小题5分,共计60分)1.在△ABC 中,若BA sin sin >,则A 与B 的大小关系为( ) A. B A > B. B A < C. A ≥B D. A 、B 的大小关系不能确定 2. 在△ABC 中,b=3,c=3,B=300,则a 等于( )A .3B .123C .3或23D .2 3. 不解三角形,下列判断中正确的是( )A .a=2,b=4,A=300有两解B .a=30,b=25,A=1500有一解C .a=6,b=9,A=450有两解D .a=9,c=10,B=600无解4. 已知△ABC 的周长为9,且4:2:3sin :sin :sin =C B A ,则cosC 的值为( )A .41-B .41 C .32-D .32 5. 在△ABC 中,A =60°,b =1,其面积为3,则CB A cb a sin sin sin ++++等于( )A .33B .3392C .338D .2396.(2013年高考湖南卷)在锐角中ABC ∆,角,A B 所对的边长分别为,a b 若2sin 3,a B b A =则角等于( ) A.12π B.6π C.4π D.3π 7.已知锐角三角形的边长分别为1,3,a ,则a 的范围是( )A .()10,8B .()8,10 C . ()10,8D .()10,88.在△ABC 中,若cCb B a A sin cos cos ==,则△ABC 是( ) A .有一内角为30°的直角三角形B .等腰直角三角形C .有一内角为30°的等腰三角形D .等边三角形9. △ABC 中,若c=ab b a ++22,则角C 的度数是( ) A.60°或120° B.60° C. 45° D.120° 10. 在△ABC 中,若b=22,a=2,且三角形有解,则A 的取值范围是( ) A.0°<A <30° B.0°<A ≤45° C.0°<A <90° D.30°<A <60°11. 已知△ABC 的三边长6,5,3===c b a ,则△ABC 的面积为 ( )A . 14B .15C . 142D .15212.(2013年高考陕西卷)设△ABC 的内角A , B , C 所对的边分别为a , b , c ,若cos cos sin b C c B a A +=, 则△ABC 的形状为( )(A) 锐角三角形 (B)直角三角形 (C)钝角三角形 (D) 不确定 二、填空题(每小题5分,满分20分)13.(2013新课标Ⅱ)设θ为第二象限角,若1tan()42πθ+=,则sin cos θθ+=______. 14. 在等腰三角形 ABC 中,已知sinA ∶sinB=1∶2,底边BC=10,则△ABC 的 周长是 .15. 在△ABC 中,已知sinA ∶sinB ∶sinC=3∶5∶7,则此三角形的最大内角的 度数等于________.16. 已知△ABC 的三边分别是a 、b 、c ,且面积4222c b a S -+=,则角C=_______.三、解答题(70分)17. (本题满分10分)已知a =33,c =2,B =150°,求边b 的长及三角形面积.18. (本题满分12分)在△ABC 中,已知a-b=4,a+c=2b ,且最大角为120°,求△ABC 的三边长.19. (本题满分12分)在△ABC 中,证明:2222112cos 2cos ba b B a A -=-。
高一数学必修五第一章试题——解三角形(带答案)
高一数学必修五第一章试题——解三角形一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设a ,b ,c 分别是△ABC 中∠A ,∠B ,∠C 所对边的边长,则直线x sin A +ay +c =0与bx -y sin B +sin C =0的位置关系是( )A .平行B .重合C .垂直D .相交但不垂直2.在△ABC 中,已知a -2b +c =0,3a +b -2c =0,则sin A ∶sin B ∶sin C 等于( )A .2∶3∶4B .3∶4∶5C .4∶5∶8D .3∶5∶73.△ABC 的三边分别为a ,b ,c ,且a =1,B =45°,S △ABC =2,则△ABC 的外接圆的直径为( )A .4 3B .5C .5 2D .624.已知关于x 的方程x 2-x cos A ·cos B +2sin 2C2=0的两根之和等于两根之积的一半,则△ABC 一定是( )A .直角三角形B .钝角三角形C .等腰三角形D .等边三角形5.△ABC 中,已知下列条件:①b =3,c =4,B =30°;②a =5,b =8,A =30°;③c =6,b =33,B =60°;④c =9,b =12,C =60°.其中满足上述条件的三角形有两解的是( )A .①②B .①④C .①②③D .③④6.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,若a =1,sin B =32,C =π6,则b 的值为( )A .1B .32C .3或32 D .±17.等腰△ABC 底角B 的正弦与余弦的和为62,则它的顶角是( ) A .30°或150° B .15°或75°C .30°D .15°8.若G 是△ABC 的重心,a ,b ,c 分别是角A ,B ,C 的对边,且aGA →+bGB →+33cGC →=0,则角A =( )A .90°B .60°C .45°D .30°9.在△ABC 中,B =60°,C =45°,BC =8,D 为BC 上一点,且BD →=3-12BC→,则AD 的长为( ) A .4(3-1) B .4(3+1) C .4(3-3)D .4(3+3)10.在△ABC 中,B A →·B C →=3,S △ABC ∈⎣⎢⎡⎦⎥⎤32,332,则B 的取值范围是( ) A .⎣⎢⎡⎦⎥⎤π4,π3 B .⎣⎢⎡⎦⎥⎤π6,π4 C .⎣⎢⎡⎦⎥⎤π6,π3 D .⎣⎢⎡⎦⎥⎤π3,π211.在△ABC 中,三内角A ,B ,C 所对边分别为a ,b ,c ,若(b -c )sin B =2c sin C 且a =10,cos A =58,则△ABC 面积等于( )A .392 B .39 C .313 D .312.锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若2sin A (a cos C +c cos A )=3b ,则cb 的取值范围是( )A .⎝ ⎛⎭⎪⎫12,2 B .⎝ ⎛⎭⎪⎫32,233 C .(1,2) D .⎝ ⎛⎭⎪⎫32,1二、填空题(本大题共4小题,每小题5分,共20分)13.已知在△ABC 中,a +b =3,A =π3,B =π4,则a 的值为________.14.在△ABC 中,AB =2,点D 在边BC 上,BD =2DC ,cos ∠DAC =31010,cos C =255,则AC +BC =________.15.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =23,C =45°,1+tan A tan B =2cb ,则边c 的值为________.16.在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且a ,b ,c 满足2b =a +c ,B =π4,则cos A -cos C =________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)如图,△ACD 是等边三角形,△ABC 是等腰直角三角形,∠ACB =90°,BD 交AC 于E ,AB =2. (1)求cos ∠CBE 的值; (2)求AE .18.(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos A a +cos B b =sin C c .(1)证明:sin A sin B =sin C ; (2)若b 2+c 2-a 2=65bc ,求tan B .19.(本小题满分12分)为保障高考的公平性,高考时每个考点都要安装手机屏蔽仪,要求在考点周围1 km内不能收到手机信号.检查员抽查青岛市一考点,在考点正西约 3 km有一条北偏东60°方向的公路,在此处检查员用手机接通电话,以12 km/h的速度沿公路行驶,最长需要多少时间,检查员开始收不到信号,并至少持续多长时间该考点才算合格?20.(本小题满分12分)已知△ABC的内角A,B,C的对边分别为a,b,c,a2+b2=λab.(1)若λ=6,B=5π6,求sin A;(2)若λ=4,AB边上的高为3c6,求C.21.(本小题满分12分)已知锐角三角形ABC中,角A,B,C所对的边分别为a,b,c,且tan A=3cbc2+b2-a2.(1)求角A的大小;(2)当a=3时,求c2+b2的最大值,并判断此时△ABC的形状.22.(本小题满分12分)在海岸A处,发现北偏东45°方向,距A处(3-1) n mile的B处有一艘走私船,在A处北偏西75°的方向,距离A处2 n mile的C处的缉私船奉命以10 3 n mile/h的速度追截走私船.此时,走私船正以10 n mile/h 的速度从B处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?一、选择题1. 答案 C解析 ∵k 1=-sin A a ,k 2=bsin B ,∴k 1k 2=-1,∴两直线垂直.故选C . 2. 答案 D解析 因为a -2b +c =0,3a +b -2c =0, 所以c =73a ,b =53a .a ∶b ∶c =3∶5∶7. 所以sin A ∶sin B ∶sin C =3∶5∶7.故选D . 3. 答案 C解析 ∵S △ABC =12ac sin B =2,∴c =42. 由余弦定理b 2=a 2+c 2-2ac cos B =25, ∴b =5.由正弦定理2R =bsin B =52(R 为△ABC 外接圆的半径).故选C . 4. 答案 C解析 由题意知:cos A ·cos B =sin 2C2,∴cos A ·cos B =1-cos C 2=12-12cos [180°-(A +B )]=12+12cos(A +B ), ∴12(cos A ·cos B +sin A ·sin B )=12, ∴cos(A -B )=1.∴A -B =0,∴A =B ,∴△ABC 为等腰三角形.故选C . 5. 答案 A解析 ①c sin B <b <c ,故有两解; ②b sin A <a <b ,故有两解; ③b =c sin B ,有一解; ④c <b sin C ,无解.所以有两解的是①②.故选A . 6. 答案 C解析 在△ABC 中,sin B =32,0<B <π, ∴B =π3或2π3,当B =π3时,△ABC 为直角三角形, ∴b =a ·sin B =32; 当B =2π3时,A =C =π6,a =c =1.由余弦定理得b 2=a 2+c 2-2ac cos 2π3=3, ∴b =3.故选C . 7. 答案 A解析 由题意:sin B +cos B =62.两边平方得sin2B =12,设顶角为A ,则A =180°-2B .∴sin A =sin(180°-2B )=sin2B =12,∴A =30°或150°. 故选A . 8. 答案 D解析 由重心性质可知GA →+GB →+GC →=0,故GA →=-GB →-GC →,代入aGA →+bGB→+33cGC →=0中,即 (b -a )GB →+33c -aGC →=0,因为GB →,GC →不共线,则⎩⎨⎧b -a =0,33c -a =0,即⎩⎨⎧b =a ,c =3a ,故由余弦定理得cos A =b 2+c 2-a 22bc =32.因为0<A <180°,所以A =30°.故选D .9. 答案 C解析 由题意知∠BAC =75°,根据正弦定理,得AB =BC sin45°sin75°=8(3-1), 因为BD →=3-12BC →,所以BD =3-12BC . 又BC =8,所以BD =4(3-1).在△ABD 中,AD =AB 2+BD 2-2AB ·BD ·cos60°=4(3-3).故选C . 10. 答案 C解析 由题意知ac ·cos B =3,所以ac =3cos B , S △ABC =12ac ·sin B =12×3cos B ×sin B =32tan B . 因为S △ABC ∈⎣⎢⎡⎦⎥⎤32,332,所以tan B ∈⎣⎢⎡⎦⎥⎤33,3, 所以B ∈⎣⎢⎡⎦⎥⎤π6,π3.故选C .11. 答案 A解析 由正弦定理,得(b -c )·b =2c 2,得b 2-bc -2c 2=0,得b =2c 或b =-c (舍).由a 2=b 2+c 2-2bc cos A ,得c =2,则b =4. 由cos A =58知,sin A =398.S △ABC =12bc sin A =12×4×2×398=392.故选A . 12. 答案 A解析 2sin A (a cos C +c cos A )=3b ⇔2sin A ·(sin A cos C +sin C cos A )=3sin B ⇔2sin A sin(A +C )=3sin B ⇔2sin A sin B =3sin B ⇔sin A =32, 因为△ABC 为锐角三角形, 所以A =π3,a 2=b 2+c 2-bc , ① a 2+c 2>b 2, ② a 2+b 2>c 2, ③由①②③可得2b 2>bc ,2c 2>bc ,所以12<cb <2.故选A . 二、填空题(本大题共4小题,每小题5分,共20分) 13.答案 33-32解析 由正弦定理,得b =a sin B sin A =63a .由a +b =a +63a =3,解得a =33-32.14. 答案 3+5解析 ∵cos ∠DAC =31010,cos C =255, ∴sin ∠DAC =1010,sin C =55, ∴sin ∠ADC =sin(∠DAC +∠C ) =1010×255+31010×55=22. 由正弦定理,得AC sin ∠ADC =DCsin ∠DAC,得AC =5DC .又∵BD =2DC ,∴BC =3DC . 在△ABC 中,由余弦定理,得 AB 2=AC 2+BC 2-2AC ·BC cos C=5DC 2+9DC 2-25DC ·3DC ·255=2DC 2. 由AB =2,得DC =1,从而BC =3,AC =5.即AC +BC =3+5. 15. 答案 22解析 在△ABC 中,∵1+tan A tan B =1+sin A cos Bcos A sin B = cos A sin B +sin A cos B cos A sin B =sin (A +B )cos A sin B =sin C cos A sin B =2cb . 由正弦定理得c b cos A =2c b ,∴cos A =12,∴A =60°. 又∵a =23,C =45°.由a sin A =c sin C 得2332=c 22,∴c =22.16. 答案 ±42 解析 ∵2b =a +c ,由正弦定理得2sin B =sin A +sin C ,又∵B =π4,∴sin A +sin C =2,A +C =3π4. 设cos A -cos C =x ,可得(sin A +sin C )2+(cos A -cos C )2=2+x 2,即sin 2A +2sin A sin C +sin 2C +cos 2A -2cos A cos C +cos 2C =2-2cos(A +C )=2-2cos 3π4=2+x 2.则(cos A -cos C )2=x 2=-2cos 3π4=2, ∴cos A -cos C =±42. 三、解答题 17.解 (1)∵∠BCD =90°+60°=150°,CB =AC =CD , ∴∠CBE =15°.∴cos ∠CBE =cos15°=cos(45°-30°)=6+24. (2)在△ABE 中,AB =2, 由正弦定理,得AE sin (45°-15°)=2sin (90°+15°),故AE =2sin30°sin75°=2×126+24=6-2.18.解 (1)证明:由正弦定理a sin A =b sin B =c sin C ,可知原式可以化为cos A sin A +cos Bsin B =sin Csin C =1,因为A 和B 为三角形内角,所以sin A sin B ≠0,则两边同时乘以sin A sin B ,可得sin B cos A +sin A cos B =sin A sin B ,由和角公式可知,sin B cos A +sin A cos B =sin(A +B )=sin(π-C )=sin C ,原式得证.(2)因为b 2+c 2-a 2=65bc ,根据余弦定理可知,cos A =b 2+c 2-a 22bc =35.因为A 为三角形内角,A ∈(0,π),sin A >0,则sin A =1-⎝ ⎛⎭⎪⎫352=45,即cos A sin A =34,由(1)可知cos A sin A +cos B sin B =sin C sin C =1,所以cos B sin B =1tan B =14,所以tan B =4.19.解 如右图所示,考点为A ,检查开始处为B ,设公路上C ,D 两点到考点的距离为1 km .在△ABC 中,AB =3≈1.732,AC =1,∠ABC =30°, 由正弦定理,得sin ∠ACB =AB sin30°AC =32,∴∠ACB =120°(∠ACB =60°不符合题意), ∴∠BAC =30°,∴BC =AC =1. 在△ACD 中,AC =AD ,∠ACD =60°, ∴△ACD 为等边三角形,∴CD =1.∵BC 12×60=5,∴在BC 上需要5 min ,CD 上需要5 min .∴最长需要5 min 检查员开始收不到信号,并至少持续5 min 该考点才算合格.20.解 (1)由已知B =5π6,a 2+b 2=6ab ,综合正弦定理得4sin 2A -26sin A +1=0.于是sin A =6±24,∵0<A <π6,∴sin A <12,∴sin A =6-24.(2)由题意可知S △ABC =12ab sin C =312c 2,得12ab sin C =312(a 2+b 2-2ab cos C )=312(4ab -2ab cos C ),从而有3sin C +cos C =2即sin ⎝ ⎛⎭⎪⎫C +π6=1. 又π6<C +π6<7π6,∴C =π3.21.解 (1)由已知及余弦定理,得sin A cos A =3cb 2cb cos A ,sin A =32,因为A 为锐角,所以A =60°. (2)解法一:由正弦定理,得a sin A =b sin B =c sin C =332=2, 所以b =2sin B ,c =2sin C =2sin(120°-B ).c 2+b 2=4[sin 2B +sin 2(120°-B )] =41-cos2B 2+1-cos (240°-2B )2=4-cos2B +3sin2B=4+2sin(2B -30°).由⎩⎨⎧0°<B <90°,0°<120°-B <90°,得30°<B <90°,所以30°<2B -30°<150°. 当sin(2B -30°)=1,即B =60°时,(c 2+b 2)max =6,此时C =60°,△ABC 为等边三角形.解法二:由余弦定理得(3)2=b 2+c 2-2bc cos60°=b 2+c 2-bc =3.∵bc ≤b 2+c 22(当且仅当b =c 时取等号),∴b 2+c 2-b 2+c 22≤3,即b 2+c 2≤6(当且仅当b =c 时等号). 故c 2+b 2的最大值为6,此时△ABC 为等边三角形.22.解 设缉私船用t 小时在D 处追上走私船.在△ABC 中,由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos ∠CAB =(3-1)2+22-2×(3-1)×2×cos120°=6,∴BC =6.在△BCD 中,由正弦定理,得sin ∠ABC =AC BC sin ∠BAC =22,∴∠ABC =45°,∴BC 与正北方向垂直.∴∠CBD =120°.在△BCD 中,由正弦定理,得CD sin ∠CBD =BD sin ∠BCD, ∴103t sin120°=10t sin ∠BCD , ∴sin ∠BCD =12,∴∠BCD =30°.故缉私船沿北偏东60°的方向能最快追上走私船.。
高中数学必修五解三角形测试题及答案
高中数学必修五解三角形测试题及答案1.在三角形ABC中,如果C=90度,a=6,B=30度,那么c-b的值是多少?选项:A。
1 B。
-1 C。
2/3 D。
-2/32.如果A是三角形ABC的内角,那么下列函数中一定取正值的是什么?选项:A。
XXX3.在三角形ABC中,角A和角B都是锐角,并且cosA>sinB,那么三角形ABC的形状是什么?选项:A。
直角三角形 B。
锐角三角形 C。
钝角三角形 D。
等腰三角形4.在等腰三角形中,一条腰上的高为3,这条高与底边的夹角为60度,那么底边的长度是多少?选项:A。
2 B。
3 C。
3/2 D。
2/35.在三角形ABC中,如果b=2sinB,那么角A等于多少?选项:A。
30度或60度 B。
45度或60度 C。
120度或60度 D。
30度或150度6.边长为5、7、8的三角形的最大角与最小角的和是多少?选项:A。
90度 B。
120度 C。
135度 D。
150度填空题:1.在直角三角形ABC中,如果C=90度,那么sinAsinB 的最大值是1/4.2.在三角形ABC中,如果a=b+bc+c,那么角A的大小是60度。
3.在三角形ABC中,如果b=2,B=30度,C=135度,那么a的大小是2.4.在三角形ABC中,如果5.在三角形ABC中,如果AB=2(6-2),C=30度,那么AC+BC的最大值是5.解答题:1.在三角形ABC中,如果acosA+bcosB=ccosC,那么三角形ABC是等腰三角形。
2.在三角形ABC中,证明:b-a/c = c-b/a。
3.在锐角三角形ABC中,证明:XXX>XXX。
4.在三角形ABC中,如果a+c=2b,A-C=π/3,那么sinB 的值是1/2.1.在△ABC中,若 $\log(\sin A) - \log(\cos B) - \log(\sin C) = \log 2$,则△ABC的形状是()A。
直角三角形 B。
高中数学必修5第一章解三角形测试题
高中数学必修5第一章解三角形测试题一 选择题:(共12小题,每题5分,共60分,四个选项中只有一个符合要求)1.在ABC ∆中,若b 2+ c 2= a 2+ bc , 则A =( )A .30︒B .45︒C .60︒D .120︒2.在ABC ∆中,若20sin A sin BcosC -=,则ABC ∆必定是 ( )A 、钝角三角形B 、等腰三角形C 、直角三角形D 、锐角三角形3.在△ABC 中,已知,,则的值为( ) A 、 B 、 C 、或 D 、4.不解三角形,确定下列判断中正确的是 ( )A.30,14,7===A b a ,有两解 B.150,25,30===A b a ,有一解 C.45,9,6===A b a ,有两解 D.60,10,9===A c b ,无解5.飞机沿水平方向飞行,在A 处测得正前下方地面目标C 的俯角为30°,向前飞行10000米,到达B 处,此时测得目标C 的俯角为75°,这时飞机与地面目标的距离为A .5000米B .米 C .4000米 D.米 6.已知ABC △中,a =b =60B =,那么角A 等于A .135B .90C .45D .45或135 7.在△ABC 中,60A ∠=︒,2AB =,且△ABC的面积ABC S ∆=,则边BC 的长为( ) A.3 CD .7 8.已知△ABC 中,2cos c b A =,则△ABC 一定是A 、等边三角形B 、等腰三角形C 、直角三角形D 、等腰直角三角形9.在△ABC 中,角C B A ,,的对边分别为,,a b c ,若22241c b a +=,则cBa cos 的值为( ) A.41 B. 45 C. 85 D.83 10.设△ABC 的内角A,B,C 所对边的长分别为a,b,c,若b+c=2a,3sinA=5sinB,则角C 等于( )(A)π3 (B) 2π3 (C)3π4 (D)5π611.三角形三内角A 、B 、C 所对边分别为a 、b 、c ,且4tan 3C =,8c =,则△ABC 外接圆半径为( )A .10B .8C .6D .5 12.在△ABC 中,cos22B =2a c c + (a 、b 、c 分别为角A 、B 、C 的对边),则△ABC 的形状为( )A .等边三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形二、填空题:13.在ABC 中,已知sinA:sinB:sinC=3:5:7,则此三角形最大内角度数为为14.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,设S 为△ABC 的面积,222)S a b c +-,则C 的大小为___________15.在△中,角所对的边分别为,已知,,.则= .16.在中,若2B A =,:a b =A =_____三,解答题:17.在中,角、、的对边分别为、、,且.(Ⅰ)求角的大小;(Ⅱ)求的取值范围.5cos 13A =3sin 5B =cosC 16655665166556651665-∆ABC ,,A B C ,,a b c 2a =3c =60B =︒b ABC ∆ABC ∆A B C a b c cos (2)cos b C a c B=-B sin sin A C +18.(本小题满分12分)已知在△ABC 中,AC=2,BC=1, (1)求AB 的值; (2)求的值。
高中数学必修五第一章《解三角形》单元测试卷及答案
高中数学必修五第一章《解三角形》单元测试卷及答案(2套)单元测试题一一、选择题(本大题共12个小题,每小题5分,共60分,每小题有4个选项,其中有且仅有一个是正确的,把正确的选项填在答题卡中) 1.在ABC △中,::1:2:3A B C =,则::a b c 等于( )A .1:2:3B .3:2:1C .2D .22.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且A >B ,则一定有( ) A .cos A >cos BB .sin A >sin BC .tan A >tan BD .sin A <sin B3.△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,2sin sin cos a A B b A +,则ba =( )A .B .C D4.在△ABC 中,∠A =60°,a =,b =4.满足条件的△ABC ( ) A .无解B .有一解C .有两解D .不能确定5.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且222a b c =-, 则角B 的大小是( ) A .45°B .60°C .90°D .135°6.在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若22a b -,sin C B =,则A =( ) A .30°B .60°C .120°D .150°7.在△ABC 中,∠A =60°,b =1,△ABC sin aA为( )A B C D .8.在△ABC 中,sin 2A ≤sin 2B +sin 2C -sin B sin C ,则A 的取值范围是( )A .0,6π⎛⎤ ⎥⎝⎦B .,6π⎡⎫π⎪⎢⎣⎭C .0,3π⎛⎤ ⎥⎝⎦D .,3π⎡⎫π⎪⎢⎣⎭9.在△ABC 中,已知B =45°,c =,b =A 的值是( ) A .15°B .75°C .105°D .75°或15°10.在锐角三角形ABC 中,b =1,c =2,则a 的取值范围是( )A .1<a <3B .1a <<C a <D .不确定11.在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,且2cos 22A b cc+=,则 △ABC 的形状为( ) A .直角三角形B .等腰直角三角形C .等腰或直角三角形D .等边三角形12.如图所示,在△ABC 中,已知∠A ∶∠B =1∶2,角C 的平分线CD 把三角形面积分为3∶2两部分,则cos A 等于( )A .13B .12C .34D .0二、填空题(本大题共4个小题,每空5分,共20分,把正确答案填在题中横线上) 13.等腰三角形的底边长为6,腰长为12,其外接圆的半径为________. 14.在△ABC 中,若a 2+b 2<c 2,且3sin C ,则∠C =________. 15.在△ABC 中,a =3,26b =B =2∠A ,则cos A =________.16.某人在C 点测得塔AB 在南偏西80°,仰角为45°,沿南偏东40°方向前进10 m 到O ,测得塔A 仰角为30°,则塔高为________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(10分)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .已知()cos cos 3sin cos 0C A A B +=.(1)求角B 的大小;(2)若a +c =1,求b 的取值范围.18.(12分)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c .(1)若sin 2cos 6A A π⎛⎫+= ⎪⎝⎭,求A 的值;(2)若1cos 3A =,b =3c ,求sin C 的值.19.(12分)在△ABC 中,角A 、B 、C 对应的边分别是a 、b 、c ,已知cos2A -3cos(B +C )=1.(1)求角A 的大小;(2)若△ABC 的面积S =b =5,求sin B sin C 的值.20.(12分)在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,且222a b c +=. (1)求C ;(2)设cos cos A B =,()()2cos cos cos A B ααα++,求tan α的值.21.(12分)在△ABC 中,2C A π-=,1sin 3B =. (1)求sin A 的值;(2)设6AC =,求△ABC 的面积.22.(12分)如图,已知扇形AOB ,O 为顶点,圆心角AOB 等于60°,半径为2,在弧AB 上有一动点P ,过P 引平行于OB 的直线和OA 相交于点C ,设∠AOP =θ,求△POC 面积的最大值及此时θ的值.答 案一、选择题(本大题共12个小题,每小题5分,共60分,每小题有4个选项,其中有且仅有一个是正确的,把正确的选项填在答题卡中) 1.【答案】C 【解析】6A π=,3B π=,2C π=,132::sin :sin :sin 3222a b c A B C ===,故选C . 2.【答案】B【解析】∵A B >,∴a b >,由正弦定理,得sin sin A B >,故选B .3.【答案】D【解析】本小题考查内容为正弦定理的应用.∵2sin sin cos a A B b A +=,∴22sin sin sin cos A B B A A +=,sin B A =,∴b =,∴ba.故选D . 4.【答案】A【解析】4sin 60⨯︒=<a <b sin A ,∴△ABC 不存在. 故选A . 5.【答案】A【解析】∵222a b c =-,∴222a c b +-=,由余弦定理,得222cos 2a c b B ac +-===0°<B <180°,所以B =45°. 故选A . 6.【答案】A【解析】由sin C B =及正弦定理,得c =,∴2226a b b -=, 即a 2=7b 2.由余弦定理,2222222cos2b c a A bc +-===,又∵0°<A <180°,∴A =30°.故选A . 7.【答案】B【解析】由1sin 2bc A =c =4.由余弦定理得a 2=b 2+c 2-2bc cos A =13,故a =sin a A ==B . 8.【答案】C【解析】本题主要考查正余弦定理,∵sin 2A ≤sin 2B +sin 2C -sin B sin C , ∴由正弦定理得:a 2≤b 2+c 2-bc ,即b 2+c 2-a 2≥bc ,由余弦定理得:2221cos 222b c a bc A bc bc +-==≥=,∴03A π<≤,故选C .9.【答案】D 【解析】∵sin sin b cB C =,∴sin sin c B C b ==. ∵0°<C <180°.∴C =60°或120°,∴A =75°或15°.故选D . 10.【答案】C【解析】∵b <c ,△ABC 为锐角三角形,∴边c 与边a 所对的角的余弦值大于0,即b 2+a 2-c 2>0且b 2+c 2-a 2>0,∴22140140a a ⎧+->⎪⎨+->⎪⎩.∴3<a 2<5,∴35a <<. 故选C . 11.【答案】A【解析】由21cos cos 222A A b c c ++==,整理得cos bA c=.又222cos 2b c a A bc +-=, 联立以上两式整理得c 2=a 2+b 2,∴C =90°.故△ABC 为直角三角形.故选A . 12.【答案】C【解析】在△ABC 中,设∠ACD =∠BCD =β,∠CAB =α,由∠A ∶∠B =1∶2,得∠ABC =2α.∵∠A <∠B ,∴AC >BC ,∴S △ACD >S △BCD ,∴S △ACD ∶S △BCD =3∶2,∴1sin 3212sin 2AC DC BC DC ββ⋅⋅⋅=⋅⋅⋅,∴32AC BC =.由正弦定理得sin sin AC BC B A =,sin 2sin 2sin cos sin AC BC AC BCααααα=⇒=, ∴133cos 2224AC BC α==⨯=,即3cos 4A =.故选C .二、填空题(本大题共4个小题,每空5分,共20分,把正确答案填在题中横线上) 13.815【解析】设△ABC 中,AB =AC =12,BC =6,由余弦定理222222121267cos 2212128AB AC BC A AB AC +-+-===⋅⨯⨯.∵()0,A ∈π,∴15sin A =,∴外接圆半径8152sin BC r A == 14.【答案】23π【解析】∵a 2+b 2<c 2,∴a 2+b 2-c 2<0,即cos C <0.又3sin C ,∴23C π∠=. 15.6【解析】∵a =3,26b =,∠B =2∠A ,由正弦定理326sin sin 2A A=, ∴2sin cos 26sin 3A A A =,∴6cos 3A =. 16.【答案】10 m【解析】画出示意图,如图所示,CO =10,∠OCD =40°,∠BCD =80°,∠ACB =45°, ∠AOB =30°,AB ⊥平面BCO ,令AB =x ,则BC =x ,3BO x ,在△BCO 中,由余弦定理得)()223100210cos 8040xx x =+-⨯⨯︒+︒,整理得25500x x -=-,解得10x =,5x =-(舍去),故塔高为10 m .三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.【答案】(1)3B π=;(2)112b ≤<. 【解析】(1)由已知得()cos cos cos 3cos 0A B A B A B -++-=, 即有sin sin 3sin cos 0A B A B =. 因为sin A ≠0,所以sin 30B B =. 又cos B ≠0,所以tan 3B =.又0<B <π,所以3B π=. (2)由余弦定理,有b 2=a 2+c 2-2ac cos B . 因为a +c =1,1cos 2B =,有2211324b a ⎛⎫=-+ ⎪⎝⎭.又0<a <1,于是有2114b ≤<,即有112b ≤<. 18.【答案】(1)3A π=;(2)1sin 3C =. 【解析】(1)由题设知sin cos cos sin 2cos 66A A A ππ+=.从而sin 3A A ,所以cos A ≠0,tan A =.因为0<A <π,所以3A π=. (2)由1cos 3A =,b =3c 及a 2=b 2+c 2-2bc cos A ,得a 2=b 2-c 2, 故△ABC 是直角三角形,且2B π=.所以1sin cos 3C A ==. 19.【答案】(1)3A π=;(2)5sin sin 7B C =. 【解析】(1)由cos2A -3cos(B +C )=1,得2cos 2A +3cos A -2=0, 即(2cos A -1)(cos A +2)=0,解得1cos 2A =或cos A =-2(舍去). 因为0<A <π,所以3A π=.(2)由11sin sin 223S bc A bc π====bc =20,又b =5,知c =4.由余弦定理得a 2=b 2+c 2-2bc cos A =25+16-20=21,故a =. 又由正弦定理得222035sin sin sin sin sin 2147b c bc B C A A A a a a =⋅==⨯=.20.【答案】(1)34C π=;(2)tan α=1或tan α=4.【解析】(1)因为222a b c +=,由余弦定理有222cos 2a b c C ab +-===34C π=. (2)由题意得()()2sin sin cos cos sin sin cos cos cos A A B B ααααα--,因此()()tan sin cos tan sin cos A A B B αα--=,()2tan sin sin tan sin cos cos sin cos cos A B A B A B A B αα-++=,()2tan sin sin tan sin cos cos A B A B A B αα-++=因为34C π=,4A B π+=,所以()sin A B +=因为cos(A +B )=cos A cos B -sin A sin B ,即sin sin 52A B -=,解得sin sin 5210A B =-=.由①得tan 2α-5tan α+4=0,解得tan α=1或tan α=4. 21.【答案】(1)sin A ;(2)ABC S =△. 【解析】(1)由2C A π-=和A +B +C =π,得22A B π=-,04A π<<. ∴cos2A =sinB ,即2112sin 3A -=,∴sin A =.(2)由(1)得cos A sin sin BC AC A B =,∴sin 31sin 3AC ABC B===∵2C A π-=,∴2C A π=+,∴sin sin cos 2C A A π⎛⎫=+== ⎪⎝⎭,∴11sin 22ABC S AC BC C =⋅⋅==△. 22.【答案】当θ=30°时,S (θ). 【解析】∵CP ∥OB ,∴∠CPO =∠POB =60°-θ,∠OCP =120°. 在△OCP 中,由正弦定理,得sin sin OP CP OCP θ=∠,即2sin120sin CPθ=︒,∴CP θ.又()2sin 60sin120CO θ=︒-︒,∴()60OC θ=︒-.故△POC 的面积是()1sin1202S CP CO θ=⋅⋅︒()()160sin si 2n 60θθθθ=︒-︒-()1sin sin 21cos 2602θθθθ⎫⎤=-︒=-⎪-⎥⎪⎝⎦⎭,()0,60θ∈︒︒, ∴当θ=30°时,S (θ)单元测试题二一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.在ABC △中,若90C =︒,6a =,30B =︒,则c b -等于( )A .1B .1-C .D .-2.在ABC △中,3AB =,2AC =,BC =BA ·AC 等于( )A .32-B .23-C .23D .323.在△ABC 中,已知a =,b =A =30°,则c 等于( )A .BC .D .以上都不对4.根据下列情况,判断三角形解的情况,其中正确的是( ) A .a =8,b =16,A =30°,有两解 B .b =18,c =20,B =60°,有一解 C .a =5,c =2,A =90°,无解 D .a =30,b =25,A =150°,有一解5.△ABC 的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的半径为( )A B C D .6.在△ABC 中,2cos 22A b cc+⋅=(a 、b 、c 分别为角A 、B 、C 的对边),则△ABC 的形状为( ) A .直角三角形 B .等腰三角形或直角三角形 C .等腰直角三角形D .正三角形7.已知△ABC 中,A 、B 、C 的对边分别为a 、b 、c .若a c =A =75°,则b 等于( )A .2B -C .4-D .4+8.在△ABC 中,已知b 2-bc -2c 2=0,a =7cos 8A =,则△ABC 的面积S 为( )A B C D .9.在△ABC 中,AB =7,AC =6,M 是BC 的中点,AM =4,则BC 等于( )A B C D10.若sin cos cos A B Ca b c==,则△ABC 是( ) A .等边三角形 B .有一内角是30°的直角三角形 C .等腰直角三角形D .有一内角是30°的等腰三角形11.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若()222tan 3a c b B ac +-=,则角B 的值为( ) A .6π B .3π C .6π或56π D .3π或23π12.△ABC 中,3A π=,BC =3,则△ABC 的周长为( ) A .43sin 33B π⎛⎫++ ⎪⎝⎭B .43sin 36B π⎛⎫++ ⎪⎝⎭C .6sin 33B π⎛⎫++ ⎪⎝⎭D .6sin 36B π⎛⎫++ ⎪⎝⎭二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.在△ABC 中,2sin sin sin a b cA B C--=________. 14.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若2223a c b ac +-=, 则角B 的值为________.15.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边.若a =1,3b =, A +C =2B ,则sin C =________.16.钝角三角形的三边为a ,a +1,a +2,其最大角不超过120°,则a 的取值范围是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)如图所示,我艇在A 处发现一走私船在方位角45°且距离为12海里的B 处正以每小时10海里的速度向方位角105°的方向逃窜,我艇立即以14海里/小时的速度追击,求我艇追上走私船所需要的时间.18.(12分)在△ABC 中,角A 、B 、C 所对的边长分别是a 、b 、c ,且4cos 5A =. (1)求2sin cos22B CA ++的值; (2)若b =2,△ABC 的面积S =3,求a .19.(12分)如图所示,△ACD 是等边三角形,△ABC 是等腰直角三角形,∠ACB =90°,BD 交AC 于E ,AB =2. (1)求cos ∠CBE 的值; (2)求AE .20.(12分)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a =2,3cos 5B =. (1)若b =4,求sin A 的值;(2)若△ABC 的面积S △ABC =4,求b ,c 的值.21.(12分)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C . (1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.22.(12分)已知△ABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量(),a b m =, ()sin ,sin B A =n ,()2,2b a --p =.(1)若m ∥n ,求证:△ABC 为等腰三角形; (2)若m ⊥p ,边长c =2,角3C π=,求△ABC 的面积.答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.【答案】C【解析】tan 30ba=︒,tan30b a =︒=2c b ==,c b -= 故选C . 2.【答案】A【解析】由余弦定理得22294101cos 2124AB AC BC A AB AC +-+-===⋅.∴13cos 3242AB AC AB AC A ⋅=⋅⋅=⨯⨯=.∴32BA AC AB AC ⋅=-⋅=-.故选A .3.【答案】C【解析】∵a 2=b 2+c 2-2bc cos A ,∴2515c c =+-. 化简得:2100c -+=,即(0c c -=,∴c =c = 故选C . 4.【答案】D 【解析】A 中,因sin sin a b A B =,所以16sin30sin 18B ⨯︒==,∴90B =︒,即只有一解;B 中,20sin 60sin 18C ︒==c b >,∴C B >,故有两解; C 中,∵A =90°,a =5,c =2,∴b = 故A 、B 、C 都不正确.故选D . 5.【答案】C【解析】设另一条边为x ,则2221232233x =+-⨯⨯⨯,∴29x =,∴3x =.设1cos 3θ=,则sin θ=.∴32sinR θ==,R =C . 6.【答案】A【解析】由2cos cos 22A b c b A c c+⋅=⇒⋅=,又222cos 2b c a A bc +-⋅=, ∴b 2+c 2-a 2=2b 2⇒a 2+b 2=c 2,故选A . 7.【答案】A【解析】()sin sin 75sin 3045A =︒=︒+︒, 由a =c 知,C =75°,B =30°.1sin 2B =.由正弦定理:4sin sin b aB A===.∴b =4sin B =2.故选A .8.【答案】A【解析】由b 2-bc -2c 2=0可得(b +c )(b -2c )=0. ∴b =2c ,在△ABC 中,a 2=b 2+c 2-2bc cos A ,即22276448c c c =+-⋅.∴c =2,从而b =4.∴11sin 4222ABCS bc A ==⨯⨯△A . 9.【答案】B【解析】设BC =a ,则2aBM MC ==. 在△ABM 中,AB 2=BM 2+AM 2-2BM ·AM ·cos ∠AMB ,即22217424cos 42aa AMB =+-⨯⨯⋅∠ ①在△ACM 中,AC 2=AM 2+CM 2-2AM ·CM ·cos ∠AMC即22216424cos 42aa AMB =++⨯⨯⋅∠ ②①+②得:22222176442a +=++,∴a =B .10.【答案】C 【解析】∵sin cos A Ba b=,∴a cos B =b sin A , ∴2R sin A cos B =2R sin B sin A,2R sin A ≠0.∴cos B =sin B ,∴B =45°.同理C =45°,故A =90°.故C 选项正确. 11.【答案】D【解析】∵()222tan a c b B +-,∴222tan 2a c b B ac +-⋅=,即cos tan sin B B B ⋅=0<B <π,∴角B 的值为3π或23π.故选D . 12.【答案】D 【解析】3A π=,BC =3,设周长为x ,由正弦定理知2sin sin sin BC AC ABR A B C ===, 由合分比定理知sin sin sin sin BC AB BC ACA ABC ++=++,=,∴()sin sin B A B x ⎤+++=⎥⎦,即3sin sin 3sin sin cos cos sin 333x B B B B B π⎤ππ⎛⎫⎫=+++=+++ ⎪⎪⎥⎝⎭⎭⎦133sin sin 3sin 22B B B B B ⎫⎫=+++=++⎪⎪⎪⎪⎭⎭136cos 36sin 26B B B ⎫π⎛⎫=++=++⎪ ⎪⎪⎝⎭⎝⎭.故选D .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】0 14.【答案】6π【解析】∵222a cb +-=,∴222cos 2a c b B ac +-==6B π=. 15.【答案】1【解析】在△ABC 中,A +B +C =π,A +C =2B .∴3B π=. 由正弦定理知,sin 1sin 2a B A b ==.又a <b .∴6A π=,2C π=.∴sin 1C =. 16.【答案】332a ≤< 【解析】由()()()()()()22222212120121212a a a a a a a a a a a ⎧⎪++>+⎪⎪++-+<⎨⎪++-+⎪≥-⎪+⎩,解得332a ≤<.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.【答案】2小时.【解析】设我艇追上走私船所需时间为t 小时, 则BC =10t ,AC =14t ,在△ABC 中, 由∠ABC =180°+45°-105°=120°,根据余弦定理知:(14t )2=(10t )2+122-2·12·10t cos 120°,∴2t =. 答:我艇追上走私船所需的时间为2小时. 18.【答案】(1)5950;(2)a = 【解析】(1)()221cos 1cos 59sin cos2cos22cos 122250B C B C A A A A -++++=+=+-=. (2)∵4cos 5A =,∴3sin 5A =.由1sin 2ABC S bc A =△,得133225c =⨯⨯,解得c =5.由余弦定理a 2=b 2+c 2-2bc cos A ,可得24425225135a =+-⨯⨯⨯=,∴a = 19.【答案】(1;(2)AE=.【解析】(1)∵∠BCD =90°+60°=150°,CB =AC =CD , ∴∠CBE =15°.∴()cos cos 4530CBE ∠=︒-︒= (2)在△ABE 中,AB =2,由正弦定理得sin sin AE ABABE AEB=∠∠, 即()()2sin 4515sin 9015AE =︒-︒︒+︒,故122sin 30cos15AE ⨯︒===︒20.【答案】(1)2sin 5A =;(2)b =5c =. 【解析】(1)∵3cos 05B =>,且0<B <π,∴4sin 5B ==. 由正弦定理得sin sin a bA B=,42sin 25sin 45a B Ab ⨯===. (2)∵1sin 42ABC S ac B ==△,∴142425c ⨯⨯⨯=,∴5c =.由余弦定理得2222232cos 25225175b a c ac B =+-=+-⨯⨯⨯=,∴b =21.【答案】(1)120A =︒;(2)△ABC 为等腰钝角三角形. 【解析】(1)由已知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c , 即a 2=b 2+c 2+bc .由余弦定理得a 2=b 2+c 2-2bc cos A ,故1cos 2A =-,120A =︒.(2)方法一 由(1)得sin 2A =sin 2B +sin 2C +sin B sin C , 又A =120°,∴223sin sin sin sin 4B C B C ++=, ∵sin B +sin C =1,∴sin C =1-sin B . ∴()()223sin 1sin sin 1sin 4B B B B +-+-=, 即21sin sin 04B B -+=.解得1sin 2B =.故1sin 2C =.∴B =C =30°. 所以,△ABC 是等腰的钝角三角形.方法二 由(1)A =120°,∴B +C =60°,则C =60°-B , ∴sin B +sin C =sin B +sin(60°-B) 11sin sin sin 22B B B B B =-==sin(B +60°)=1, ∴B =30°,C =30°.∴△ABC 是等腰的钝角三角形.22.【答案】(1)见解析;(2)ABC S =△ 【解析】(1)证明 ∵m ∥n ,∴a sin A =b sin B ,即22a ba b R R⋅=⋅, 其中R 是△ABC 外接圆半径,∴a =b .∴△ABC 为等腰三角形. (2)解 由题意知m ·p =0,即a (b -2)+b (a -2)=0.∴a +b =ab .由余弦定理可知,4=a 2+b 2-ab =(a +b )2-3ab , 即(ab )2-3ab -4=0.∴ab =4(舍去ab =-1),∴11sin 4sin 223ABC S ab C π==⨯⨯=△.。
(新人教A版)高中数学第一章解三角形1.2应用举例第1课时距离问题练习必修5
A 级 基础巩固一、选择题1.已知A 、B 两地的距离为10 km ,B 、C 两地的距离为20 km ,现测得∠ABC =120°,则A 、C 两地的距离为( D )A .10 kmB . 3 kmC .10 5 kmD .107 km[解析] 在△ABC 中,AB =10,BC =20,∠ABC =120°,则由余弦定理,得 AC 2=AB 2+BC 2-2AB ·BC cos ∠ABC =100+400-2×10×20cos120° =100+400-2×10×20×(-12)=700,∴AC =107,即A 、C 两地的距离为107 km .2.如图,在河岸AC 测量河的宽度BC ,测量下列四组数据,较适宜的是( D )A .γ,c ,αB .b ,c ,αC .c ,α,βD .b ,α,γ[解析] 本题中a 、c 、β这三个量不易直接测量,故选D .3.一船向正北航行,看见正西方向有相距10 n mlie 的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°方向上,另一灯塔在船的南偏西75°方向上,则这艘船的速度是每小时( C )A .5 n mlieB .5 3 n mlieC .10 n mlieD .10 3 n mlie[解析] 如图,依题意有∠BAC =60°,∠BAD =75°,∴∠CAD =∠CDA =15°,从而CD =CA =10, 在Rt △ABC 中,求得AB =5, ∴这艘船的速度是50.5=10(n mlie/h).4.某观察站C 与两灯塔A 、B 的距离分别为300 m 和500 m ,测得灯塔A 在观察站C 北偏东30°,灯塔B 在观察站C 正西方向,则两灯塔A 、B 间的距离为( C )A .500 mB .600 mC .700 mD .800 m[解析] 根据题意画出图形如图.在△ABC 中,BC =500,AC =300,∠ACB =120°, 由余弦定理得,AB 2=AC 2+BC 2-2AC ·BC cos120° =3002+5002-2×300×500×(-12)=490 000,∴AB =700(m).5.要直接测量河岸之间的距离(河的两岸可视为平行),由于受地理条件和测量工具的限制,可采用如下办法:如图所示,在河的一岸边选取A 、B 两点,观察对岸的点C ,测得∠CAB =45°,∠CBA =75°,且AB =120 m 由此可得河宽为(精确到1m)( C )A .170 mB .98 mC .95 mD .86 m[解析] 在△ABC 中,AB =120,∠CAB =45°,∠CBA =75°,则∠ACB =60°,由正弦定理,得BC =120sin45°sin60°=406.设△ABC 中,AB 边上的高为h ,则h 即为河宽, ∴h =BC ·sin ∠CBA =406×sin75°≈95(m).6.甲船在湖中B 岛的正南A 处,AB =3 km ,甲船以8 km/h 的速度向正北方向航行,同时乙船从B 岛出发,以12 km/h 的速度向北偏东60°方向驶去,则行驶15 min 时,两船的距离是( B )A .7 kmB .13 kmC .19 kmD .10-3 3 km[解析] 由题意知AM =8×1560=2,BN =12×1560=3,MB =AB -AM =3-2=1,所以由余弦定理,得MN 2=MB 2+BN 2-2MB ·BN cos120°=1+9-2×1×3×(-12)=13,所以MN =13 km .二、填空题7.在相距2km 的A ,B 两点处测量目标点C ,若∠CAB =75°,∠CBA =60°,则A ,C 两点之间的距离是__6__km .[解析] 如图所示,由题意易知C =45°,由正弦定理得AC sin60°=2sin45°,从而AC =222·32=6(km).8.一只蜘蛛沿东北方向爬行x cm 捕捉到一只小虫,然后向右转105°,爬行10 cm 捕捉到另一只小虫,这时它向右转135°爬行回它的出发点,则x =__1063__cm .[解析] 如图,由题意知,∠BAC =75°,∠ACB =45°.∠B =60°, 由正弦定理,得x sin ∠ACB =10sin B ,∴x =10sin ∠ACB sin B =10×sin45°sin60°=1063.三、解答题9.如图,我炮兵阵地位于地面A 处,两观察所分别位于地面点C 和D 处,已知CD =6 000 m .∠ACD =45°,∠ADC =75°,目标出现于地面B 处时测得∠BCD =30°,∠BDC =15°.求炮兵阵地到目标的距离.(结果保留根号)[解析] 在△ACD 中,∠CAD =60°, AD =CD ·sin45°sin60°=63CD .在△BCD 中,∠CBD =135°,BD =CD ·sin30°sin135°=22CD ,∠ADB =90°.在Rt △ABD 中,AB =AD 2+BD 2=426CD =1 00042(m).10.一艘船以32.2 n mile/h 的速度向正北航行.在A 处看灯塔S 在船的北偏东20°的方向,30 min 后航行到B 处,在B 处看灯塔在船的北偏东65°的方向,已知距离此灯塔6.5 n mile 以外的海区为航行安全区域,这艘船可以继续沿正北方向航行吗?[解析] 在△ASB 中,∠SBA =115°,∠S =45°.由正弦定理,得SB =AB sin20°sin45°=16.1sin20°sin45°≈7.787(n mile).设点S 到直线AB 的距离为h ,则h =SB sin65°≈7.06(n mile).∵h >6.5 n mile ,∴此船可以继续沿正北方向航行.B 级 素养提升一、选择题1.已知船A 在灯塔C 北偏东85°且到C 的距离为2 km ,船B 在灯塔C 西偏北25°且到C 的距离为 3 km ,则A 、B 两船的距离为( D )A .2 3 kmB .3 2 kmC .15 kmD .13 km[解析] 如图可知∠ACB =85°+(90°-25°)=150°,AC =2,BC =3,∴AB 2=AC 2+BC 2-2AC ·BC ·cos150°=13, ∴AB =13.2.一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68 n mile 的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为( A )A .1762 n mile/hB .34 6 n mile/hC .1722n mile/hD .34 2 n mile/h[解析] 如图所示,在△PMN 中,PM sin45°=MNsin120°,∴MN =68×3222=346,∴v =MN 4=1762(n mile/h).3.如图,货轮在海上以40 km/h 的速度沿着方位角(从指北方向顺时针转到目标方向线的水平角)为140°的方向航行.为了确定船的位置,船在B 点观测灯塔A 的方位角为110°,航行12 h 到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是( B )A .10 kmB .10 2 kmC .15 kmD .15 2 km[解析] 在△ABC 中,BC =40×12=20( km),∠ABC =140°-110°=30°,∠ACB =(180°-140°)+65°=105°,则A =180°-(30°+105°)=45°. 由正弦定理,得AC =BC ·sin ∠ABC sin A =20·sin30°sin45°=102( km).二、填空题4.海上一观测站测得方位角240°的方向上有一艘停止航行待修的商船,在商船的正东方有一艘海盗船正向它靠近,速度为每小时90 n mile.此时海盗船距观测站107 n mile ,20 min 后测得海盗船距观测站20 n mlie ,再过__403__min ,海盗船到达商船.[解析] 如下图,设开始时观测站、商船、海盗船分别位于A 、B 、C 处,20 min 后,海盗船到达D 处,在△ADC 中,AC =107,AD =20,CD =30,由余弦定理,得cos ∠ADC =AD 2+CD 2-AC 22AD ·CD =400+900-7002×20×30=12.∴∠ADC =60°,在△ABD 中,由已知得∠ABD =30°, ∠BAD =60°-30°=30°, ∴BD =AD =20,2090×60=403(min).5.如图,一艘船上午8∶00在A 处测得灯塔S 在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午8∶30到达B 处,此时又测得灯塔S 在它的北偏东75°处,且与它相距4 2 n mile ,则此船的航行速度是__16__n mile/h .[解析] 在△ABS 中,∠A =30°,∠ABS =105°, ∴∠ASB =45°,∵BS =42,BS sin A =ABsin ∠ASB ,∴AB =BS ·sin ∠ASBsin A =42×2212=8,∵上午8∶00在A 地,8∶30在B 地, ∴航行0.5小时的路程为8 n mile , ∴此船的航速为16 n mile/h . 三、解答题6.如图,为了解某海域海底构造,在海平面内一条直线上的A 、B 、C 三点进行测量,已知AB =50 m ,BC =120 m ,于A 处测得水深AD =80 m ,于B 处测得水深BE =200 m ,于C 处测得水深CF =110 m ,求∠DEF 的余弦值.[解析] 由题意可得DE 2=502+1202=1302, DF 2=1702+302=29 800, EF 2=1202+902=1502, 由余弦定理,得cos ∠DEF =1665.C 级 能力拔高1.为了测量两山顶M 、N 间的距离,飞机沿水平方向在A 、B 两点进行测量,A 、B 、M 、N 在同一个铅垂平面内(如图).能够测量的数据有俯角和A 、B 间的距离.请设计一个方案,包括:①指出需要测量的数据(用字母表示,并在图中标出);②用文字和公式写出计算M 、N 间的距离的步骤.[解析] 方案一:①需要测量的数据有:点A 到点M 、N 的俯角α1、β1;点B 到点M 、N 的俯角α2、β2;A 、B 间的距离d (如图).②第一步:计算AM ,由正弦定理,得AM =d sin α2sin α1+α2;第二步:计算AN ,由正弦定理,得AN =d sin β2sin β2-β1;第三步:计算MN ,由余弦定理,得 MN =AM 2+AN 2-2AM ·AN cos α1-β1.方案二:①需要测量的数据有:点A 到点M 、N 的俯角α1、β1;点B 到点M 、N 的俯角α2、β2;A 、B 间的距离d (如图).②第一步:计算BM ,由正弦定理,得BM =d sin α1sin α1+α2;第二步:计算BN ,由正弦定理,得BN =d sin β1sin β2-β1;第三步:计算MN ,由余弦定理,得 MN =BM 2+BN 2+2BM ·BN cos β2+α2.2.已知海岛B 在海岛A 的北偏东45°方向上,A 、B 相距10 n mile ,小船甲从海岛B 以2 n mile/h的速度沿直线向海岛A 移动,同时小船乙从海岛A 出发沿北偏西15°方向也以2 n mile/h 的速度移动.(1)经过1 h 后,甲、乙两小船相距多少海里?(2)在航行过程中,小船甲是否可能处于小船乙的正东方向?若可能,请求出所需时间,若不可能,请说明理由.[解析] 经过1 h 后,甲船到达M 点,乙船到达N 点, AM =10-2=8,AN =2,∠MAN =60°,所以MN 2=AM 2+AN 2-2AM ·AN cos60°=64+4-2×8×2×12=52.所以MN =213.所以经过1 h 后,甲、乙两小船相距213海里.(2)设经过t (0<t <5)h 小船甲处于小船乙的正东方向,则甲船与A 距离为AE =(10-2t )n mile ,乙船与A 距离为AF =2t n mile ,∠EAF =60°,∠EF A =75°,则由正弦定理,得AF sin45°=AE sin75°,即2tsin45°=10-2t sin75°,则t =10sin45°2sin75°+2sin45°=103+3=53-33<5.答:经过53-33小时小船甲处于小船乙的正东方向.。
新版高中数学人教A版必修5习题:第一章解三角形 检测B
第一章检测(B )(时间:90分钟 满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1已知腰长为定值的等腰三角形的最大面积为2,则等腰三角形的腰长为( ).A .12B.1 C.2D.3解析:设该等腰三角形的腰长为a ,顶角为θ,则该等腰三角形的面积为12a2sin θ,易知当θ=90°时,该等腰三角形的面积取得最大值12a2=2,则a=2,故腰长为2.答案:C2在△ABC 中,b =√3,c =3,B =30°,则a 的值为( ). A .√3B.2√3 C .√3或2√3D.2 解析:∵sin C =sinBb ·c =√32,∴C=60°或C=120°.∴A=90°或A=30°.当A=30°时,a=b =√3;当A=90°时,a =√b 2+c 2=2√3. 答案:C3在△ABC 中,∠ABC =π4,AB =√2,BC =3,则sin ∠BAC=( ).A .√1010B.√105C .3√1010 D.√55解析:在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos ∠ABC=2+9-2×√2×3×√22=5,即得AC =√5.由正弦定理AC sin∠ABC =BC sin∠BAC ,√5√22=3sin∠BAC ,所以sin ∠BAC =3√1010. 答案:C4在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,且a>b>c ,a 2<b 2+c 2,则A 的取值范围是( ).A .(π2,π)B.(π4,π2)C .(π3,π2)D.(0,π2)解析:cos A =b 2+c 2-a 22bc>0,∴A <π2.又a>b>c ,∴A>B>C.∴A >π3,故选C .答案:C5在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( ).A .(152,+∞)B.(10,+∞)C.(0,10)D .(0,403]解析:由正弦定理得,asinA =csinC ,c =asinA ·sin C =1034sin C =403sin C ≤403.又c>0,故0<c ≤403.答案:D6路边一树干被台风吹断后,树尖与地面成45°角,树干也倾斜为与地面成75°角,树干底部与树尖着地处相距20 m,则折断点与树干底部的距离是( ).A .20√63mB.10√6 m C .10√63 mD.20√2 m解析:如图,设树干底部为O ,树尖着地处为B ,折断点为A ,则∠ABO=45°,∠AOB=75°,∴∠OAB=60°.由正弦定理知,AOsin45°=20sin60°,∴AO =20sin45°sin60°=20√63(m).答案:A7在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c.已知b=c ,a 2=2b 2(1-sin A ),则A=( ).A .3π4B.π3 C .π4D.π6解析:由余弦定理可得a 2=b 2+c 2-2bc cos A ,又因为b=c ,所以a 2=b 2+b 2-2b×b cos A=2b 2(1-cos A ). 由已知a 2=2b 2(1-sin A ), 所以sin A=cos A , 因为A ∈(0,π),所以A =π4. 答案:C8在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若tan A=7tan B ,a 2-b2c=3,则c 等于( ).A.4B.3C.7D.6解析:由tan A=7tan B ,得sinAcosA =7sinBcosB ,即sin A cos B=7sin B cos A ,所以sin A cos B+sin B cos A=8sin B cos A , 即sin(A+B )=sin C=8sin B cos A.由正、余弦定理可得c=8b ·b 2+c 2-a 22bc ,即c 2=4b 2+4c 2-4a 2.又a 2-b 2c=3,所以c 2=4c ,即c=4.答案:A9在△ABC中,角A,B,C所对的边分别为a,b,c,若△ABC的面积为S,且2S=(a+b)2-c2,则tan C等于().A.34B.43C.−34D.−43解析:由2S=(a+b)2-c2,得2S=a2+b2+2ab-c2,即2×12absin C=a2+b2+2ab-c2,所以ab sin C-2ab=a2+b2-c2.由余弦定理可知cos C=a 2+b2-c22ab=absinC-2ab2ab=sinC2−1,所以cos C+1=sinC2,即2cos2C2=sin C2cos C2,所以ta n C2=2.所以tan C=2tan C21-tan2C2=2×21-22=−43.答案:D10甲船在B岛的正南方10 km处,且甲船以4 km/h的速度向正北方向航行,同时乙船自B岛出发以6 km/h的速度向北偏东60°的方向行驶,当甲、乙两船相距最近时它们航行的时间是().A.1507 minB.157hC.21.5 minD.2.15 h解析:如图,设经过x h 后甲船处于点P 处,乙船处于点Q 处,两船的距离为s ,则在△BPQ 中,BP=10-4x ,BQ=6x ,∠PBQ=120°,由余弦定理可知s 2=PQ 2=BP 2+BQ 2-2BP ·BQ ·cos ∠PBQ , 即s 2=(10-4x )2+(6x )2-2(10-4x )·6x ·cos120°=28x 2-20x+100.当x=−-202×28=514时s 最小, 此时x =514(h)=1507(min). 答案:A二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.若b+c=2a ,3sin A=5sin B ,则角C= . 解析:∵3sin A=5sin B ,∴3a=5b.① 又∵b+c=2a ,②∴由①②可得,a =53b,c =73b,∴cos C =b2+a 2-c 22ab=b 2+(53b )2-(73b )22×53b×b =−12,∴C =2π3. 答案:2π312已知△ABC 的面积为S ,且|BC⃗⃗⃗⃗⃗ |2=CA ⃗⃗⃗⃗⃗ ·CB ⃗⃗⃗⃗⃗ +2S,则B = .解析:设AB=c ,BC=a ,AC=b ,则∵|BC⃗⃗⃗⃗⃗ |2=CA ⃗⃗⃗⃗⃗ ·CB ⃗⃗⃗⃗⃗ +2S, ∴a 2=ab cos C+ab sin C ,即a=b sin C+b cos C.由正弦定理得sin A=sin B sin C+sin B cos C. 又sin A=sin(B+C )=sin B cos C+cos B sin C ,∴sin B=cos B ,即tan B=1,B =π4. 答案:π413在△ABC 中,BC=1,B =π3,当△ABC 的面积等于√3时,sin C = . 解析:设AB=c ,AC=b ,BC=a ,则△ABC 的面积S =12acsin B =√3,解得c=4, 所以b =√a 2+c 2-2accosB =√13.所以cos C =a 2+b 2-c 22ab=−√1313.所以sin C =2√3913. 答案:2√391314在△ABC 中,已知b=1,sin C =35,bcos C +ccos B =2,则AC⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ = . 解析:由余弦定理的推论知cos C =a 2+b 2-c 22ab,cos B =a 2+c 2-b22ac .∵b cos C+c cos B=2,∴a2+b2-c22a+a2+c2-b22a=2.∴a=2,即|BC⃗⃗⃗⃗⃗ |=2.又b=1,∴|AC⃗⃗⃗⃗⃗ |=1.∵sin C=35,0°<C<180°,∴cos C=45或cos C=−45.∴AC⃗⃗⃗⃗⃗ ·BC⃗⃗⃗⃗⃗ =85或AC⃗⃗⃗⃗⃗ ·BC⃗⃗⃗⃗⃗ =−85.答案:85或−8515在△ABC中,角A,B,C的对边分别为a,b,c,若1+tanAtanB =2cb,则A=.解析:由正弦定理,得2cb =2sinCsinB.又因为1+tanAtanB =tanB+tanAtanB=sinBcosA+cosBsinAsinBcosA=sin(A+B)sinBcosA=sinCsinBcosA,所以sinCsinBcosA =2sinCsinB.则cos A=12.又因为0°<A<180°,所以A=60°.答案:60°三、解答题(本大题共5小题,共45分.解答时应写出文字说明、证明过程或演算步骤)16(8分)在△ABC 中,已知AB=2,AC=3,A=60°. (1)求BC 的长; (2)求sin 2C 的值.解(1)由余弦定理知,BC 2=AB 2+AC 2-2AB ·AC ·cos A=4+9-2×2×3×12=7,所以BC =√7.(2)由正弦定理知,AB sinC =BCsinA ,所以sin C =ABBC ·sin A =√7=√217.因为AB<BC ,所以C 为锐角,则cos C =√1-sin 2C =√1-37=2√77. 因此sin2C=2sin C ·cos C=2×√217×2√77=4√37. 17(8分)在△ABC 中,∠A =3π4,AB =6,AC =3√2,点D 在BC 边上,AD =BD,求AD 的长. 解设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c.由余弦定理得a 2=b 2+c 2-2bc cos ∠BAC=(3√2)2+62−2×3√2×6×cos 3π4=18+36−(−36)=90,所以a=3√10.又由正弦定理得sin B =bsin∠BACa=3√10=√1010,由题设知0<B <π4,所以cos B =√1-sin 2B =√1-110=3√1010.在△ABD 中,由正弦定理得AD =AB ·sinB sin (π-2B )=6sinB 2sinBcosB=3cosB=√10.18(9分)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a>c.已知BA⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =2,cos B =13,b =3,求: (1)a 和c 的值; (2)cos(B-C )的值.解(1)由BA ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =2得c ·a cos B=2.又cos B =13,所以ac=6.由余弦定理,得a 2+c 2=b 2+2ac cos B. 又b=3,所以a 2+c 2=9+2×2=13.解{ac =6,a 2+c 2=13,得a=2,c=3或a=3,c=2.因为a>c ,所以a=3,c=2. (2)在△ABC 中,sin B =√1-cos 2B=√1-(13)2=2√23,由正弦定理,得sin C =cb sin B =23×2√23=4√29. 因为a=b>c ,所以C 为锐角,因此cos C =√1-sin 2C =√1-(4√29)2=79.于是cos(B-C )=cos B cos C+sin B sin C=13×79+2√23×4√29=2327.19(10分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c.已知a-c =√66b,sin B =√6sin C. (1)求cos A 的值;(2)求co s (2A -π6)的值.解(1)在△ABC 中,由b sinB =c sinC ,及sin B =√6sin C ,可得b =√6c.又由a-c =√66b,有a=2c.所以cos A =b 2+c 2-a 22bc =2222√6c 2=√64. (2)在△ABC 中,由cos A =√64,可得sin A =√104.于是cos2A=2cos 2A-1=−14,sin 2A=2sin A ·cos A =√154.所以co s (2A -π6)=cos 2A ·co s π6+sin 2A ·si n π6=√15-√38.20(10分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.已知a=3,cos A =√63,B =A +π2. (1)求b 的值;(2)求△ABC 的面积.解(1)在△ABC 中,由题意知sin A =√1-cos 2A =√33,又因为B=A +π2,所以sin B=si n (A +π2)=cos A =√63.由正弦定理可得b=asinBsinA=3×√63√33=3√2.(2)由B=A+π2,得cos B=co s(A+π2)=−sin A=−√33.由A+B+C=π,得C=π-(A+B),所以sin C=sin[π-(A+B)]=sin(A+B) =sin A cos B+cos A sin B=√33×(-√33)+√63×√63=13.因此△ABC的面积S=12absin C=12×3×3√2×13=3√22.。
(完整)新课标人教A版高中数学必修五第一章《解三角形》单元测试题
(完整)新课标⼈教A版⾼中数学必修五第⼀章《解三⾓形》单元测试题解三⾓形第Ⅰ卷(选择题共60分)⼀、选择题(共12⼩题,每⼩题5分,只有⼀个选项正确):1.在△ABC 中,若∠A =60°,∠B =45°,BC =23,则AC =( ) A .43 B .22 C .3 D .32.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐⾓三⾓形B .直⾓三⾓形C .钝⾓三⾓形D .⾮钝⾓三⾓形 3.在△ABC 中,已知a =11,b =20,A =130°,则此三⾓形( )A .⽆解B .只有⼀解C .有两解D .解的个数不确定4. 海上有A 、B 两个⼩岛相距10海⾥,从A 岛望C 岛和B 岛成60ο的视⾓,从B 岛望C 岛和A岛成75ο视⾓,则B 、C 两岛的距离是()海⾥A. 65B. 35C. 25D. 5 5.边长为3、7、8的三⾓形中,最⼤⾓与最⼩⾓之和为 ( ) A .90° B .120° C .135° D .150°6.如图,设A ,B 两点在河的两岸,⼀测量者在A 的同侧,在所在的河岸边选定的⼀点C ,测出AC 的距离为502m ,45ACB ∠=?,105CAB ∠=?后,就可以计算出A ,B 两点的距离为 ( )A. 100mB. 3mC. 1002mD. 200mB .2 C. 2 D. 38.如图,四边形ABCD中,B=C=120°,AB=4,BC=CD=2,则该四边形的⾯积等于( )A. 3 B.5 3C.6 3 D.7 39.在△ABC中,A=120°,AB=5,BC=7,则sin Bsin C的值为( )A.85B.58C.53D.3510.某海上缉私⼩分队驾驶缉私艇以40 km/h的速度由A处出发,沿北偏东60°⽅向航⾏,进⾏海⾯巡逻,当⾏驶半⼩时到达B处时,发现北偏西45°⽅向有⼀艘船C,若C船位于A处北偏东30°⽅向上,则缉私艇B与船C的距离是( )A.5(6+2) km B.5(6-2) kmC.10(6+2) km D.10(6-2) km11.△ABC 的周长为20,⾯积为A =60°,则BC 的长等于( ) A .5 B.6 C .7D .812.在ABC △中,⾓A B C 、、所对的边分别为,,a b c ,若120,C c ∠=?=,则() A .a b > B .a b <C .a b =D .a 与b 的⼤⼩关系不能确定第Ⅱ卷(⾮选择题共90分)⼆、填空题(共4⼩题,每⼩题5分):13.三⾓形的两边分别是5和3,它们夹⾓的余弦值是⽅程06752=--x x 的根,则此三⾓形的⾯积是。
高一必修5解三角形练习题及答案
高一必修5解三角形练习题及答案第一章解三角形一、选择题BC中,(1)b1.在A2ainB;(2)(abc)(bca)(22)bc,(3)a32,c3,C300;(4)inBbcoAa;则可求得角A450的是()A.(1)、(2)、(4)B.(1)、(3)、(4)C.(2)、(3)D.(2)、(4)2.在ABC中,根据下列条件解三角形,其中有两个解的是()A.b10,A45,C70B.a60,c48,B60C.a14,b16,A45D.a7,b5,A803.在ABC中,若bc21,C45,B30,则()A.b1,c2;B.b2,c1;C.b222,c12;D.b1222,c24.在△ABC中,已知coA513,inB35,则coC的值为()A.1665或5665B.16561665C.65D.655.如果满足ABC60,AC12,BCk的△ABC恰有一个,那么k的取值范围是(A.k83B.0k12C.k12D.0k12或k83二、填空题6.在ABC中,a5,A60,C15,则此三角形的最大边的长为.7.在ABC中,已知b3,c33,B30,则a__.8.若钝角三角形三边长为a1、a2、a3,则a的取值范围是.9.在△ABC中,AB=3,BC=13,AC=4,则边AC上的高为10.在△ABC中,(1)若inCin(BA)in2A,则△ABC的形状是.(2)若inA=inBinCcoBcoC,则△ABC的形状是.)三、解答题11.已知在ABC中,coA63,a,b,c分别是角A,B,C所对的边.(Ⅰ)求tan2A;(Ⅱ)若in(2B)223,c22,求ABC的面积.解:12.在△ABC中,a,b,c分别为角A、B、C的对边,a2c2b28bc5,a=3,△ABC的面积为6,D为△ABC内任一点,点D到三边距离之和为d。
⑴求角A的正弦值;⑵求边b、c;⑶求d的取值范围解:213.在ABC中,A,B,C的对边分别为a,b,c,且acoC,bcoB,ccoA成等差数列.(I)求B的值;(II)求2in2Aco(AC)的范围。
人教版高中数学必修5解三角形测试题ABC卷
(数学5必修)第一章:解三角形[基础训练A 组]一、选择题1.在△ABC 中,若0030,6,90===B a C ,则b c -等于( )A .1B .1-C .32D .32-2.若A 为△ABC 的内角,则下列函数中一定取正值的是( )A .A sinB .A cosC .A tanD .Atan 1 3.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为( )A .2B .23 C .3 D .32 5.在△ABC 中,若B a b sin 2=,则A 等于( )A .006030或B .006045或C .0060120或D .0015030或6.边长为5,7,8的三角形的最大角与最小角的和是( )A .090B .0120C .0135D .0150 二、填空题1.在Rt △ABC 中,090C =,则B A sin sin 的最大值是_______________。
2.在△ABC 中,若=++=A c bc b a 则,222_________。
3.在△ABC 中,若====a C B b 则,135,30,200_________。
4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则C =_____________。
5.在△ABC 中,,26-=AB 030C =,则AC BC +的最大值是________。
三、解答题1. 在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么?2.在△ABC 中,求证:)cos cos (a A b B c a b b a -=-3.在锐角△ABC 中,求证:C B A C B A cos cos cos sin sin sin ++>++。
新人教版必修5解三角形测试题ABC卷
(数学5必修)第一章:解三角形[基础训练A 组]一、选择题1.在△ABC 中,若0030,6,90===B a C ,则b c -等于( )A .1B .1-C .32D .32-2.若A 为△ABC 的内角,则下列函数中一定取正值的是( )A .A sinB .A cosC .A tanD .Atan 1 3.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为( )A .2B .23 C .3 D .32 5.在△ABC 中,若B a b sin 2=,则A 等于( )A .006030或B .006045或C .0060120或D .0015030或6.边长为5,7,8的三角形的最大角与最小角的和是( )A .090B .0120C .0135D .0150 二、填空题1.在Rt △ABC 中,090C =,则B A sin sin 的最大值是_______________。
2.在△ABC 中,若=++=A c bc b a 则,222_________。
3.在△ABC 中,若====a C B b 则,135,30,200_________。
4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则C =_____________。
5.在△ABC 中,,26-=AB 030C =,则AC BC +的最大值是________。
三、解答题1. 在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么?2.在△ABC 中,求证:)cos cos (aA bB c a b b a -=-3.在锐角△ABC 中,求证:C B A C B A cos cos cos sin sin sin ++>++。
高中数学 第一章 解三角形测试卷 新人教版必修5
一、选择题:1. 在ABC ∆中,若::1:2:3A B C ∠∠∠=,则::a b c 等于( )A.1:2:3B.3:2:1C.2:3:1D.1:3:22.在△ABC 中,222a b c bc =++ ,则A 等于( )A .60°B .45°C .120°D .30°3.有一长为1公里的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要伸长( )A. 1公里B. sin10°公里C. cos10°公里D. cos20°公里4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长=( )A .2B .23C .3D .325.已知锐角三角形的边长分别为2、3、x ,则x 的取值范围是( )A .135<<xB .13<x <5C .2<x <5D .5<x <56. 在ABC ∆中,60A ∠=,6a =,3b =,则ABC ∆解的情况( )A. 无解B. 有一解C. 有两解D. 不能确定7.边长为5、7、8的三角形的最大角与最小角之和为( )A. 90B. 120C. 135D. 1508.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为() A. 3400米 B. 33400米 C. 2003米 D. 200米9.在△ABC 中,若)())((c b b c a c a +=-+,则∠A=( )A .090B .060C .0120D .015010.某人朝正东方向走x km 后,向右转150°,然后朝新方向走3km ,结果他离出发点恰好3km ,那么x 的值为( )A. 3B. 23C. 23或3D. 3二、填空题: 12.在ABC ∆中,三边a 、b 、c 所对的角分别为A 、B 、C ,已知23a =,2b =,ABC ∆的面积S=3,则C = 13.在△ABC 中,已知AB =4,AC =7,BC 边的中线72AD =,那么BC = 14.在△ABC 中,|AB |=3,|AC |=2,AB 与AC 的夹角为60°,则|AB -AC |=________15.一船以每小时15km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60,行驶4h 后,船到达C 处,看到这个灯塔在北偏东15,这时船与灯塔的距离为 km .16.三角形的一边长为14,这条边所对的角为60,另两边之比为8:5,则这个三角形的 面积为 。
高中数学必修5第一章解三角形单元测试题有答案
高二周末测试〔一〕第一卷〔选择题共60分〕一选择题:〔本大题共12小题,每题5分,共60分。
在每题的四个选项中,只有一项为哪一项符合题目要求的〕1.△ABC中,A30o,C105o,b8,那么等于〔〕A4B42C43D 4 52.△ABC中,B45o,C60o,c1,那么最短边的边长等于〔〕6613 3B2C2D23 .长为5、7、8的三角形的最大角与最小角之和为()A90°B 120°C135°D150°a b c4.△ABC中,cosAcosBcosC,那么△ABC一定是〔〕A直角三角形B钝角三角形C等腰三角形D等边三角形5.△ABC中,B60o,b2ac,那么△ABC一定是〔〕A 锐角三角形B钝角三角形C等腰三角形D等边三角形6.△ABC中,∠A=60°,a=6,b=4,那么满足条件的△ABC()A 有一个解B有两个解C无解D不能确定7 .△ABC中,b8,c83,S VABC163,那么A等于〔〕A30o B60o C30o或150o D60o或120obc8.△ABC中,假设A60o,a3,那么sinAsinB sinC等于〔〕1A2B23D29 .△ABC中,A:B1:2,C的平分线CD把三角形面积分成3:2两局部,那么cosA〔〕A1B13D032410.如果把直角三角形的三边都增加同样的长度,那么这个新的三角形的形状为〔〕A 锐角三角形B直角三角形C钝角三角形D由增加的长度决定11在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,那么塔高为〔〕12 A.米 B. 米米米13海上有A、B两个小岛相距10海里,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,那么B、C间的距离是()海里海里C.56 海里 3 海里第二卷〔非选择题共90分〕二、填空题:〔本大题共4小题,每题5分,共20分〕13.在△ABC中,如果sinA:sinB:sinC2:3:4,那么cosC等于。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学人教版必修五第一章解三角形测试卷
一、选择题:
1. 在中,若,则等于()
A. B. C. D.
2.在△ABC中,,则A等于()
A.60° B.45° C.120° D.30°
3.有一长为1公里的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要伸长()
A. 1公里
B. sin10°公里
C. cos10°公里
D. cos20°公里
4.等腰三角形一腰上的高是,这条高与底边的夹角为,则底边长=()A.2 B. C.3 D.
5.已知锐角三角形的边长分别为2、3、x,则x的取值范围是()A.B.<x<5 C.2<x< D.<x<5
6.在中,,,,则解的情况()
A. 无解
B. 有一解
C. 有两解
D. 不能确定
7.边长为、、的三角形的最大角与最小角之和为()
A. B. C. D.
8.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为()
A.米
B.米
C. 200米
D. 200米
9.在△ABC中,若,则∠A=()
A. B. C. D.
10.某人朝正东方向走x km后,向右转150°,然后朝新方向走3km,结果他离出发点恰
好km,那么x的值为()
A. B. 2 C. 2或 D. 3
二、填空题:
12.在中,三边、、所对的角分别为、、,已知,,的面积S=,则
13.在△ABC中,已知AB=4,AC=7,BC边的中线,那么BC=
14.在△ABC中,||=3,||=2,与的夹角为60°,则|-|=________
15.一船以每小时15km的速度向东航行,船在A处看到一个灯塔B在北偏东,行驶4h后,船到达C处,看到这个灯塔在北偏东,这时船与灯塔的距离为 km.16.三角形的一边长为14,这条边所对的角为,另两边之比为8:5,则这个三角形的
面积为。
三、解答题:
17.a,b,c为△ABC的三边,其面积S△ABC=12,bc=48,b-c=2,求a.
18.在△ABC中,求证:
19.在中,已知,判定的形状.。