直流伺服电动机实验报告1

合集下载

直流电动机实验报告

直流电动机实验报告

直流电动机实验报告直流电动机实验报告引言直流电动机是一种常见的电动机类型,广泛应用于工业生产和日常生活中。

本实验旨在通过实际操作和数据记录,探究直流电动机的工作原理和性能特点。

实验目的1. 了解直流电动机的基本结构和工作原理;2. 掌握直流电动机的调速方法;3. 研究直流电动机的性能特点,如转速、转矩和效率等。

实验器材1. 直流电动机;2. 直流电源;3. 电流表和电压表;4. 转速测量仪。

实验步骤1. 将直流电动机与电源连接,确保电源开关处于关闭状态;2. 通过电流表和电压表测量直流电动机的额定电流和额定电压;3. 打开电源开关,观察直流电动机的运转情况;4. 使用转速测量仪测量直流电动机的转速;5. 调节电源电压,记录不同电压下的转速和电流数据。

实验结果与分析通过实验记录的数据,我们可以得到直流电动机的转速和电流随电压变化的关系。

在低电压下,电动机的转速较低,电流较小;而在高电压下,电动机的转速较高,电流较大。

这是因为直流电动机的转速与电压成正比,电流与负载有关。

此外,我们还可以计算直流电动机的效率。

效率是指电动机输出的功率与输入的功率之比。

通过测量电动机的输入电流和电压,以及输出的机械功率,我们可以计算出直流电动机的效率。

实验结果显示,直流电动机的效率随着负载的增加而下降,这是因为在负载增加的情况下,电动机需要消耗更多的能量来克服摩擦力和阻力。

讨论与结论本实验通过实际操作和数据记录,深入探究了直流电动机的工作原理和性能特点。

通过分析实验结果,我们可以得出以下结论:1. 直流电动机的转速与电压成正比,电流与负载有关;2. 直流电动机的效率随着负载的增加而下降;3. 直流电动机在不同电压下的运转情况各异,可以根据实际需求进行调速。

在实际应用中,直流电动机具有广泛的用途,如工业生产中的机械传动、交通工具中的驱动系统以及家用电器中的电机等。

了解直流电动机的性能特点对于正确选择和使用电动机至关重要。

“直流伺服电机的建模与性能分析” 实验指导书 - 开放型实验管理系统

“直流伺服电机的建模与性能分析” 实验指导书 - 开放型实验管理系统

开放型实验“直流伺服电机的建模与性能分析”实验指导书一、实验目的1. 了解机理法、实验法建模的基本步骤;2. 会用实验法建立直流伺服电机的数学模型;3. 掌握控制系统稳定性分析的基本方法;二、实验要求1. 采用实验法建立直流伺服电机的数学模型;2. 分析直流伺服电机的稳定性,并在MATLAB 中仿真验证;三、实验设备1. GSMT2014 型直流伺服系统控制平台;2. PC、MATLAB 平台;四、直流伺服系统控制平台简介实际GSMT2014型直流伺服系统控制平台如图1.1所示。

该平台所使用的直流电机的额定电压为26V,额定功率为70W,最高转速为3000r/min,电机的编码器为1000p/r。

图1.1 GSMT2014型直流伺服系统控制平台GSTM2014实验平台是基于双电机高性能运动控制器GT400和智能伺服驱动器的直流伺服电机控制系统,由于GSMT2014平台增加了高性能的GT2014运动控制器,可以在MATLAB/simulink软件下完成实时控制实验掌握通过实验数据来建立系统的数学模型的实验方法,以及现代控制理论的状态反馈法。

五、实验原理系统的建模方法主要分为机理法和实验法。

1.机理法建立直流伺服电机数学模型采用机理法建立系统模型,需要深入理解系统内部的各个部分之间的关系,可以通过简化模型原理图得出,直流伺服电机的简化模型原理图如图1.2所示。

图1.2 直流电机的等效电路a U ——定义为电枢电压(伏特)b U ——定义为反电动势(伏特)a I ——定义为电枢电流(安倍)a R ——定义为电枢电阻(欧姆)a L ——定义为电枢电感(亨利)m T ——定义为电机产生的转矩(牛顿·米)c T ——定义为系统的干扰力矩(牛顿·米)m J ——定义为负载的等效转动惯量(千克·米²)结合直流伺服机的等效电路模型可以得出:(1)电枢电压方程: dt t di La t i a a )()(R t U -t U a b a +=)()((1-1) (2)电动机的转矩:a m kI T =(1-2) 式中:k ——电动机的转矩常数(3)电动机的反电动势:n b w K =b U(1-3) 式中:b K ——反电动势常数(4)转矩平衡方程: c m T dt d J +=22m T θ(1-4)当改变电动机的电枢电压时,根据(1-1)、(1-2)、(1-3)、(1-4)式可以得出直流电动机的动态微分方程为: c f a c e T K U K t n dtt dn dt t n d -=++)()()(m 22m τττ (1-5) 其中:ετ——电磁时间常数; f K ——机械特性斜率;m τ——机械时间常数; c K ——转速常数;)(t n ——电机转速。

直流伺服电机开题报告

直流伺服电机开题报告

直流伺服电机开题报告直流伺服电机开题报告一、引言直流伺服电机是一种广泛应用于自动控制系统中的电机,其具有快速响应、高精度、可靠性强等特点,被广泛应用于机器人、数控机床、印刷设备等领域。

本文旨在通过对直流伺服电机的研究,探索其原理、特性以及应用。

二、直流伺服电机的原理直流伺服电机是一种以直流电作为动力源的电机,其原理基于电磁感应和电磁力的作用。

当直流电通过电枢线圈时,产生的磁场与永磁体的磁场相互作用,使电枢产生转矩。

而通过控制电枢电流的大小和方向,可以实现对电机转速和位置的精确控制。

三、直流伺服电机的特性1. 高精度:直流伺服电机具有较高的转速精度和位置精度,能够满足对精确运动控制的要求。

2. 快速响应:直流伺服电机的响应速度快,能够迅速调整转速和位置,适用于高速运动和快速响应的场景。

3. 负载能力强:直流伺服电机能够承受较大的负载,具有较高的输出功率和转矩。

4. 可靠性强:直流伺服电机采用了先进的控制算法和保护措施,能够保证系统的稳定性和可靠性。

四、直流伺服电机的应用1. 机器人领域:直流伺服电机广泛应用于各类工业机器人和服务机器人中,用于实现机械臂的精确运动和姿态调整。

2. 数控机床:直流伺服电机在数控机床中被用于驱动主轴和进给系统,实现高精度的切削和定位。

3. 印刷设备:直流伺服电机在印刷设备中用于控制印刷轴的转速和位置,保证印刷品的准确对位和质量。

五、直流伺服电机的发展趋势1. 高效节能:随着环保意识的提高,直流伺服电机的节能性能将成为未来发展的重点,采用高效的电机设计和控制算法,减少能源消耗。

2. 智能化:直流伺服电机将趋向于智能化发展,通过引入传感器和自适应控制算法,实现更加智能化的运动控制。

3. 小型化:随着电子技术的进步,直流伺服电机将趋向于小型化发展,体积更小、重量更轻,适应更多场景的需求。

4. 高集成度:直流伺服电机将趋向于高度集成化发展,将控制器、传感器等功能集成在一体,减少系统的复杂性和成本。

直流伺服电机实验报告材料

直流伺服电机实验报告材料

实验六 直流伺服电机实验一、实验设备及仪器 被测电机铭牌参数:P N =185W ,U N =220V ,I N =1.1A , 使用设备规格(编号):1.MEL 系列电机系统教学实验台主控制屏(MEL-I 、MEL-IIA 、B ); 2.电机导轨及测功机、转速转矩测量(MEL-13); 3.直流并励电动机M03(作直流伺服电机);4.220V 直流可调稳压电源(位于实验台主控制屏的下部); 5.三相可调电阻900Ω(MEL-03); 6.三相可调电阻90Ω(MEL-04);7.直流电压、毫安、安培表(MEL-06);二、实验目的1.通过实验测出直流伺服电动机的参数r a 、e κ、T κ。

2.掌握直流伺服电动机的机械特性和调节特性的测量方法。

三、实验项目1.用伏安法测出直流伺服电动机的电枢绕组电阻r a 。

2.保持U f=U fN=220V,分别测取U a =220V及U a=110V的机械特性n=f(T)。

3.保持U f=U fN=220V,分别测取T2=0.8N.m及T2=0的调节特性n=f(Ua)。

4.测直流伺服电动机的机电时间常数。

四、实验说明及操作步骤1.用伏安法测电枢的直流电阻Ra取三次测量的平均值作为实际冷态电阻值Ra=3132a a a R R R ++。

表中Ra=(R a1+R a2+R a3)/3; R aref =Ra*a ref θ++235235(3)计算基准工作温度时的电枢电阻由实验测得电枢绕组电阻值,此值为实际冷态电阻值,冷态温度为室温。

按下式换算到基准工作温度时的电枢绕组电阻值:R aref =Raaref θθ++235235式中R aref ——换算到基准工作温度时电枢绕组电阻。

(Ω) R a ——电枢绕组的实际冷态电阻。

(Ω)θref ——基准工作温度,对于E 级绝缘为75℃。

θa ——实际冷态时电枢绕组的温度。

(℃)2.测直流伺服电动机的机械特性I S:电流源,位于MEL-13,由“转矩设定”电位器进行调节。

直流伺服电动机实验报告1

直流伺服电动机实验报告1

淄博职业技术学院控制电机实验报告XX学院___年级 XX班姓名________学号_________同组人__________实验日期________年_____月____日温度________ 湿度________ 实验一直流伺服电动机电枢电阻的测量一、实验目的1、通过实验测出直流伺服电动机的参数ra、Ke、KT。

2、掌握直流伺服电动机的机械特性二、实验项目1、测直流伺服电动机的电枢电阻。

三、实验方法1、实验设备:2、用伏安法测直流伺服电动机电枢的直流电阻(1)用伏安法测直流伺服电动机电枢的直流电阻按图1接线,电阻选用2.2K 100W 的变阻器。

电流表的量程选用2A ,电源选用直流电机专用电源上的电枢电源。

图.1 测电枢绕组直流电阻接线图(2) 经检查无误后接通电枢电源,并调至220V ,合上开关S ,调节R 使电枢电流达到0.2A ,迅速测取电机电枢两端电压U 和电流I ,再将电机轴分别旋转三分之一周和三分之二周。

同样测取U 、I ,记录于表1-1中,取三次的平均值作为实际冷态电阻。

(3)计算基准工作温度时的电枢电阻由实验直接测得电枢绕组电阻值,此值为实际冷态电阻值,冷态温度为室温,按下式换算到基准工作温度时的电枢绕组电阻值。

aref aaref R R θθ++=235235式中: Raref ——换算到基准工作温度时电枢绕组电阻,(Ω)Ra ——电枢绕组的实际冷态电阻,(Ω) θref——基准工作温度,对于E 级绝缘为75℃ θa——实际冷态时电枢绕组温度,(℃) 四、实验报告1、由实验数据求得电机参数:R aref 、K e 、K TR aref ——直流伺服电动机的电枢电阻 ——电势常数——转矩常数五、实验心得通过本次试验加深了对直流伺服电动机的理解, 六、思考题1、若直流伺服电动机正(反)转速有差别,试分析其原因?(1)“零飘”,零点不是绝对零点,要调节零飘点,接近于0位置,正反转就基本一致了 (2)因为可控硅制造工艺和参数问题,实际上反转跟正传的电流环并不一致eT aNe K K n U K π300==。

直流电机伺服系统实验报告

直流电机伺服系统实验报告

直流电机伺服系统实验报告目录直流电机伺服系统实验报告 (1)实验一、MATLAB仿真实验 (2)1.直流电机的阶跃响应 (2)2.直流电机的速度闭环控制 (2)3.直流电机的位置闭环控制 (7)实验二、直流电机调速系统 (11)1.反馈增益调节 (12)2.抗扰动能力对比 (12)3.比例调节下的特性测试与控制参数优化 (13)4.比例积分调节下的特性测试与控制参数优化 (15)5.测试速度环的速度误差系数(选做) (18)6.思考题 (19)实验三、直流电机位置伺服系统 (20)1.测试位置环的速度误差系数 (20)2.位置环采用比例控制器时的特性 (20)3.位置环采用PI 控制器时的动态特性 (23)4.测试工作台位移与输入电压的静特性 (24)5.思考题 (24)实验总结 (27)实验一、 MATLAB 仿真实验1.直流电机的阶跃响应如下图,对直流电机输入一个阶跃信号,画出阶跃响应曲线,指出主导极点。

利用Simulink 仿真搭建模型:实验结果 阶跃响应曲线两个极点是1210,10000s s =-=-,其中主导极点是110s =-。

2. 直流电机的速度闭环控制如下图,用测速发电机检测直流电机转速,用控制器Gc(s)控制加到电机电枢上的电压。

(1)假设()100c G s =,用Matlab 画出控制系统开环Bode 图,计算增益剪切频率、相位裕量、相位剪切频率、增益裕量:当()100c G s =时,改为单位负反馈,开环传递函数:100()(0.11)(0.0011)(0.00011)G s s s s =+++绘制系统开环Bode 图:利用margin 函数,得到:增益剪切频率784.3434/c rad s ω=,相位裕量48.1370γ=,相位剪切频率3179.7/rad s πω-=,增益裕量11.1214g K =。

(2)通过分析Bode 图,选择合适的常数P K 作为()c G s ,使闭环阶跃响应的最大超调量在0~5%之间:超调量(%)100(1sin )5p M γ≈--,降低最大超调量需要适当提高相位裕量γ,反解得到γ的取值为:64.2°<γ<71.8°这就需要减小p K (但是快速性将降低,稳态误差将增大)。

直流伺服电机实验报告

直流伺服电机实验报告

直流电机的特性测试一、实验要求在实验台上测试直流电机机械特性、工作特性、调速特性(空载)和动态特性,其中测试机械特性时分别测试电压、电流、转速和扭矩四个参数,根据测试结果拟合转速—转矩特性(机械特性),并以X 轴为电流,拟合电流—电压特性、电流—转速特性、电流—转矩特性,绘制电机输入功率、输出功率和效率曲线,即绘制电机综合特性曲线。

然后在空载情况下测试电机的调速特性,即最低稳定转速和额定电压下的最高转速,即调速特性;最后测试不同负载和不同转速阶跃下电机的动态特性。

二、实验原理1、直流电机的机械特性直流电机在稳态运行下,有下列方程式:电枢电动势 e E C n =Φ (1-1) 电磁转矩 e m T C I =Φ (1-2) 电压平衡方程 U E IR =+ (1-3)联立求解上述方程式,可以得到以下方程:2e e e m U Rn T C C C =-ΦΦ(1-4) 式中 R ——电枢回路总电阻 Φ——励磁磁通 e C ——电动势常数 m C ——转矩常数 U ——电枢电压 e T ——电磁转矩n ——电机转速在式(1-4)中,当输入电枢电压U 保持不变时,电机的转速n 随电磁转矩eT 变化而变化的规律,称为直流电机的机械特性。

2、直流电机的工作特性因为直流电机的励磁恒定,由式(1-2)知,电枢电流正比于电磁转矩。

另外,将式(1-2)代入式(1-4)后得到以下方程:e e U Rn I C C =-ΦΦ(1-5) 由上式知,当输入电枢电压一定时,转速是随电枢电流的变化而线性变化的。

3、直流电机的调速特性直流电机的调速方法有三种:调节电枢电压、调节励磁磁通和改变电枢附加电阻。

本实验采取调节电枢电压的方法来实现直流电机的调速。

当电磁转矩一定时,电机的稳态转速会随电枢电压的变化而线性变化,如式(1-4)中所示。

4、直流电机的动态特性直流电机的启动存在一个过渡过程,在此过程中,电机的转速、电流及转矩等物理量随时间变化的规律,叫做直流电机的动态特性。

直流电机启动实训报告

直流电机启动实训报告

一、实训目的本次实训旨在通过对直流电机启动过程的学习和实际操作,使学生了解直流电机的基本原理、结构特点以及启动过程中的关键技术。

通过实训,提高学生对直流电机控制系统的认识,培养动手实践能力和故障排除能力。

二、实训内容1. 直流电机基本原理及结构(1)直流电机的工作原理:直流电机通过电磁感应产生转矩,驱动负载旋转。

当电机的线圈通过直流电流时,线圈在磁场中受到力的作用,从而产生转矩,使电机旋转。

(2)直流电机的结构:直流电机主要由定子、转子、电刷、换向器和端盖等部分组成。

2. 直流电机启动过程及关键技术(1)启动过程:直流电机启动时,需要先使电机转子旋转起来,然后逐渐增加电流,以达到额定转速。

(2)关键技术:①启动转矩:启动转矩是电机启动时克服静摩擦力所需的转矩。

启动转矩越大,电机启动速度越快。

②启动电流:启动电流是电机启动时线圈中通过的电流。

启动电流越大,电机启动转矩越大。

③启动时间:启动时间是电机从静止到达到额定转速所需的时间。

3. 直流电机启动实训步骤(1)准备实训器材:直流电机、电源、启动装置、电流表、电压表、转速表等。

(2)连接电路:按照实训要求,将直流电机、电源、启动装置等连接好。

(3)观察电机启动过程:启动电机,观察启动转矩、启动电流、启动时间等参数。

(4)调整启动参数:根据观察结果,调整启动装置,使电机启动过程满足要求。

(5)记录数据:记录电机启动过程中的各项参数,如启动转矩、启动电流、启动时间等。

(6)分析数据:对记录的数据进行分析,找出影响电机启动的关键因素。

三、实训结果与分析1. 实训结果通过本次实训,学生对直流电机启动过程有了直观的认识,掌握了启动过程中的关键技术。

在实训过程中,成功启动了直流电机,并记录了启动转矩、启动电流、启动时间等参数。

2. 数据分析(1)启动转矩:在实训过程中,电机启动转矩满足要求,说明电机具备足够的启动转矩。

(2)启动电流:启动电流较大,说明电机启动时需要较大的电流来克服静摩擦力。

项目二 直流伺服电机控制实验

项目二 直流伺服电机控制实验

《电力拖动与电力系统创新实验》
电机专业方向创新实验
实验报告
电气工程及其自动化实验中心
实验项目:项目二 直流伺服电机控制实验
姓名:吴朋
学号:1120610812
时间:2015.10.14
成绩:
项目二 直流伺服电机控制实验
一、实验目的
1、掌握直流伺服电机开环回路的电压控制原理,测试响应波形,用比较近似方法确定开环特性参数。

2、掌握直流伺服电机闭环回路的速度和位置控制原理,测试响应波形,用比较近似方法确定闭环特性参数。

3、掌握直流伺服电机加减速、正弦波和可编程波的位置控制原理,测试响应波形,用比较近似方法确定闭环特性参数。

二、实验项目
1、开环回路的电压控制
2、闭环回路的速度控制
3、闭环回路的位置控制
4、加减速的位置控制
5、正弦波的位置控制
6、可编程波的位置控制
三、实验内容
1、开环回路的电压控制
Kamp加倍,速度57,加倍
频率加倍,转停转停频率加倍
负载率增大“转停”的“转”的时间比例变大2、闭环回路的速度控制
4、加减速的位置控制
6、可编程波的位置控制
四、实验心得
本实验了解了直流伺服电机的控制种类及基本方法,但是对于理论知识认识并不是非常深刻,需要在课后时间自学相关知识,才能更好的掌握。

电动机试验报告(一)2024

电动机试验报告(一)2024

电动机试验报告(一)引言概述:电动机试验报告(一)旨在对电动机进行全面的试验和评估,以确保其正常运行和性能达标。

本报告将分别从电动机的外观检查、电气参数测试、机械特性测试、效率测试和工作温度测试等五个大点展开分析。

正文内容:一、外观检查1. 检查电动机外壳是否完好无损2. 检查电动机安装固定是否牢固3. 检查电机绝缘材料是否存在损坏4. 检查电动机风扇叶片是否干净无堵塞5. 检查电动机接线盒和电缆连接是否松动或受损二、电气参数测试1. 测试电动机额定电压和额定电流是否符合标准要求2. 测试电动机的绝缘电阻,检查绝缘是否符合安全要求3. 测量电动机的相电流,确保各相电流均匀分布4. 测试电动机的功率因数,评估电动机的功率效率5. 检查电动机电路的过载保护装置是否正常工作三、机械特性测试1. 测试电动机的转速范围和负载特性2. 测量电动机的输出扭矩和转矩曲线3. 检查电动机的轴向和径向游隙,评估电机的运行平稳性4. 检测电动机的振动和噪声水平,确定是否超过标准限值5. 对电动机的轴向和径向承载能力进行测试四、效率测试1. 测试电动机的输入功率和输出功率,计算效率2. 检查电动机的损耗功率和效率曲线3. 测量电动机的电流和功率因数随负载变化的曲线4. 评估电动机的无负载和额定负载下的效率表现5. 根据效率测试结果,提出相应的改进建议五、工作温度测试1. 测试电动机的绕组温度,确保不超过设计限值2. 检查电动机的外壳温度,确保运行不超过安全范围3. 测量电动机轴承的工作温度,判断润滑情况是否良好4. 检测电动机风扇的工作温度,评估散热系统的效果5. 根据温度测试结果,提出相应的改进建议总结:本文档对电动机进行了全面的试验和评估,从外观检查、电气参数测试、机械特性测试、效率测试和工作温度测试等角度进行了详细分析。

通过试验结果的评估,可以确保电动机的运行正常,并提出了相应的改进建议。

直流伺服电机实验报告

直流伺服电机实验报告

直流伺服电机实验报告直流伺服电机实验报告引言:直流伺服电机是一种常见的电动机类型,广泛应用于工业自动化、机械控制和航空航天等领域。

本实验旨在通过对直流伺服电机的测试和分析,了解其性能特点和控制原理。

一、实验目的本实验的主要目的是:1. 理解直流伺服电机的基本原理和工作方式;2. 测试直流伺服电机的性能参数,如转速、转矩和响应时间等;3. 掌握直流伺服电机的控制方法,如位置控制和速度控制。

二、实验装置与步骤1. 实验装置:本实验使用的实验装置包括直流伺服电机、电源、电压表、电流表、转速表和控制器等。

2. 实验步骤:(1)接线:按照实验装置的接线图连接电源、电机和测量仪器。

(2)电机参数测量:通过改变电压和电流的大小,测量直流伺服电机的转速和转矩特性。

(3)控制方法测试:使用控制器对直流伺服电机进行位置控制和速度控制,观察并记录控制效果。

三、实验结果与分析1. 电机参数测量结果:通过改变电压和电流的大小,测量了直流伺服电机在不同工作条件下的转速和转矩。

结果显示,随着电压和电流的增加,电机的转速和转矩也随之增加。

这说明直流伺服电机的性能受电压和电流的影响较大。

2. 控制方法测试结果:通过控制器对直流伺服电机进行位置控制和速度控制,观察了电机的响应时间和控制效果。

结果显示,直流伺服电机对位置控制和速度控制的响应时间较短,控制效果较好。

这说明直流伺服电机具有较高的控制精度和灵敏度。

四、实验结论通过本实验,我们对直流伺服电机的性能特点和控制原理有了更深入的了解。

实验结果表明,直流伺服电机具有较高的转速和转矩,且对位置控制和速度控制具有较好的响应性能。

这使得直流伺服电机在工业自动化和机械控制领域有着广泛的应用前景。

五、实验心得通过本次实验,我深入学习了直流伺服电机的工作原理和控制方法。

在实验过程中,我不仅掌握了实验装置的使用方法,还学会了如何测量和分析电机的性能参数。

这对我今后从事相关领域的研究和工作具有重要意义。

伺服电机实训报告项目小结怎么写

伺服电机实训报告项目小结怎么写

伺服电机实训报告项目小结怎么写一、引言在本次实训项目中,我将深入探讨伺服电机的相关知识,并结合实际操作进行项目小结,以期加深对伺服电机的理解,并总结实训过程中的经验与教训。

二、项目背景伺服电机是一种能够根据控制系统的指令来精确地控制运动的装置,广泛应用于工业自动化、机床、精密加工设备等领域。

本次实训项目的目的在于通过操作实践,掌握伺服电机的基本原理、调试方法以及应用技巧,从而达到提高工程技术人员的实际操作能力和综合素质的目的。

三、实训内容1. 理论学习:通过课堂学习和相关资料阅读,深入理解伺服电机的基本原理和工作机理,包括PID控制、编码器反馈等核心概念。

2. 实际操作:在指导老师的带领下,进行伺服电机的调试、安装与维护等实际操作,了解伺服电机的常见故障及解决方法。

3. 项目实践:结合具体项目案例,对伺服电机在工业自动化控制系统中的应用进行案例分析,并进行实际操作演练。

四、项目小结1. 深度评估:在本次实训项目中,我通过系统学习和实际操作,对伺服电机的原理、调试方法以及应用技巧有了更深入的理解和认识。

在实际操作中,我深刻体会到了伺服电机的高精度、高可靠性和高灵活性,对其在工业自动化领域的重要性有了更清晰的认识。

2. 广度评估:通过实训项目的学习,我对伺服电机在不同行业的应用有了更为全面的了解,包括机床加工、食品包装、印刷设备等领域,从而使我能够更灵活地应对不同的使用场景和需求。

3. 总结回顾:本次实训项目使我对伺服电机的工作原理和应用领域有了更为深刻的认识,并通过操作实践提升了我的专业技能和综合素质。

在未来的工作中,我将能够更好地应用所学知识,为企业的自动化控制系统提供更专业的支持和服务。

五、个人观点和理解通过本次实训项目,我对伺服电机的重要性和广泛应用有了更加深刻的认识。

伺服电机作为工业自动化的重要组成部分,其高精度、高可靠性和高灵活性的特点,为工业生产和制造提供了强大的动力支持。

在未来的工作中,我将不断加强对伺服电机技术的学习和掌握,努力提升自己的专业能力,为工业自动化控制系统的发展贡献自己的力量。

直流伺服电动机实验报告2

直流伺服电动机实验报告2

淄博职业技术学院控制电机实验报告XX学院___年级XX班姓名________学号_________同组人__________实验日期________年_____月____日温度________ 湿度________实验二直流伺服电动机电磁力矩系数测量一、实验目的1、通过实验测出直流伺服电动机的参数ra、Ke、KT。

2、掌握直流伺服电动机的机械特性二、实验项目1、测直流伺服电动机的电枢电压、电流、力矩测量。

三、实验方法1、实验设备:7 光电转速表 12、测取直流伺服电动机的电磁力矩系数图4.1.2 直流伺服电动机接线图(1) 按实验指导书图示接线,图中R f1选用D42上1800Ω阻值,R1选用D42上900Ω与900并联共450Ω阻值采用分压器接法,S2选用D51,A1、A2选用两只D31上200mA档。

(2) 把R f1、R1调至最小,R L调至最大,开关S2打开,涡流测功机不加载。

先接通励磁电源,再接通电枢电源并调至220V,电机运行后把R1调至最大。

(3) 调节涡流测功机给定调节旋钮,给直流伺服电机加载。

同时调节直流伺服电机的励磁电阻R f1使电机达到n N=1600r/min,Ia=0.8A,U=U N=220V,此时电机的励磁电流即额定励磁电流。

(4) 保持此额定励磁电流不变,调节涡流测功机的给定调节旋钮逐渐减载,从额定负载到空载范围内测取将n、I a、T数据记录于表1-2中。

=220VNn(r/min) 1600I a(A) 0.8T(N.m) 62(数据在数值的基础上进行浮动即可)见课本P132Tem=Kt*i参数可见P211或者本页后(5) 调节电枢电压为U=110V ,保持I f =I fN 不变,调节涡流测功机的给定调节旋钮,使I a =0.8A ,再减小伺服电机的负载,一直到空载,其间记录7~8组数据于表1-4中。

四、实验报告1、由实验数据求得电机参数:R aref 、K e 、K TR aref ——直流伺服电动机的电枢电阻 ——电势常数——转矩常数 五、实验心得六、思考题1、若直流伺服电动机正(反)转速有差别,试分析其原因?(1)“零飘”,零点不是绝对零点,要调节零飘点,接近于0位置,正反转就基本一致了 (2)因为可控硅制造工艺和参数问题,实际上反转跟正传的电流环并不一致e T aNe KK n U K π300==。

直流伺服电机控制实验指导书

直流伺服电机控制实验指导书
二、实验器件
挂箱NMEL-30-YJ-A以及直流伺服电机一只
三、关于点动控制运行
内部指令控制,无需接收上位机指令
四、实验内容
点动控制系统接线方式
图2-1点动(JOG)控制模式标准接线图
点动(JOG)控制模式参数一览
参数代码
参数名称
功能简介
P-4
电机控制模式
选择点动控制模式。(设定值:3)
P-8
上位机接口低6位端子取反控制
VD100=100kHz SPD=2930
VD100=50kHz SPD=1465
P49=2048; P48=1000
VD100=100kHz SPD=3000
VD100=50kHz SPD=1500
7.保存当前的参数设置,然后重启。操作流程如下:
注意事项:如果不保存或备份参数列表,驱动器断电后参数将丢失。
四、实验内容
速度试运行模式系统接线方式:
ቤተ መጻሕፍቲ ባይዱ速度试运行模式参数一览
参数代码
参数名称
功能简介
P-4
电机控制模式
选择速度试运行控制模式。(设定值:4)
五、实验步骤:
1.将NMEL-30-YJ-A直流伺服挂箱与伺服电机相连接。UVW三相一一对应;连接航空插座线。
2.确认接线无误后,上电。
3.设置参数Pn-4为4(速度试运行模式)
2.确认接线无误后,上电。
3.设置Pn-4为2(设置运行模式为位置控制模式)
4.设置Pn-52为0(设定伺服驱动器接收指令脉冲的类型为指令/方向脉冲型指令)
5.设置Pn-53为0 (设定为0时,电机按方向指令运行;设定为1时,电机按与方向指令相反的方向运行)
6.设置PN48=1000 ; PN49=2048(此2参数为电子齿轮比)当脉冲频率达到100kHz时,电机转速达到3000转/分钟

直流伺服电动机机械特性-word

直流伺服电动机机械特性-word

控制电机实验报告实验名称:实验二 直流伺服电动机机械特性测试 院系:信息工程学院 专业:自动化实验参与:指导老师: 日期:20100611实验二 直流伺服电动机机械特性测试一、 实验仪器直流测速发电机 一台 直流电动机 一台 电机及制动控制装置 一台 测速器 一台 导线 若干 万用表 一个二、 实验原理及相关公式电磁感应定律………………………………………………F =Bli电磁转矩……………………………………………………a T I G T Φ= (1) 稳态转矩平衡方程式………………………………………L T T T T =-=02 电压平衡方程式……………………………………………a a a a R I E U += (2) 反电势………………………………………………………e a C E =Φn (3)由(1)、(3)分别可得 Φ=T a G TI e a C E =Φn将以上各式带入(2)中,化简即可得到电动机机械特性曲线所对应的方程,即 。

其中,0n 为该直线在纵坐标上的截距,k 为该直线斜率,k 前的负号表示直线是向下倾斜的。

不同的电枢电压下,电动机的机械特性将有所改变。

但斜率k 和电枢电压a U 无关。

所以对应不同的电枢电压a U 可以得到一组相互平行的机械特性,如下图所示。

电枢电压越大,曲线的位置越高。

图1 不同控制电压时直流伺服电动机机械特性三、实验步骤1、原理图如图2所示,按图连接好电路,所有电阻均设置到最大。

2、变化电枢电压,是电枢电压a U 为80V ,并调节电枢回路上的电阻ΩR 为0Ω。

使电枢电流a I 慢慢增大,并记录相应的转速于表中。

3、重复步骤2,将电压分别设置到80V 、160V ,电阻分别调到0Ω、180Ω,记录相应的数据。

图2 机械特性测试原理图四、实验数据记录、处理、图形绘制由步骤三可得一下数据: 当=1a U 160V ,=o R 0Ω时,当=1a U 160V ,=o R 180Ω时,当=1a U 80V ,=o R 0Ω时,当=1a U 80V ,=o R 180Ω时,上述数据对应的线性方程如下图所示:上述运算所需相关公式:其中,n P =185w ,N n =1600r/min ,N I =1.2A五、讨论由公式 可得: 当 0n =Φe aC U 不变时,该直线在纵坐标上的截距不会变。

直流电动机的实训报告

直流电动机的实训报告

一、实训目的本次实训旨在通过实际操作,深入了解直流电动机的结构、工作原理、性能特点以及在实际应用中的调试和维护方法。

通过本次实训,我们能够掌握直流电动机的基本知识,提高动手能力,并培养理论联系实际的工作能力。

二、实训环境实训地点:XXX实训室实训设备:直流电动机、直流电源、电压表、电流表、转速表、示波器、万用表等。

三、实训原理直流电动机是一种将直流电能转换为机械能的装置。

其工作原理是利用电磁感应原理,当电流通过电动机的线圈时,线圈在磁场中受到力的作用而产生转动。

四、实训过程1. 直流电动机的结构观察首先,我们对直流电动机的结构进行了详细的观察。

直流电动机主要由定子、转子、电刷、换向器、轴承等部分组成。

定子由铁心和绕组组成,产生磁场;转子由铁心和绕组组成,产生电磁转矩;电刷和换向器保证电流方向的正确;轴承则支撑转子的转动。

2. 直流电动机的工作原理实验我们通过实验验证了直流电动机的工作原理。

首先,将直流电动机接入直流电源,调节电源电压,观察电动机的转速变化;然后,通过改变电流方向,观察电动机转动方向的变化;最后,观察电动机在不同电压和电流下的转速和转矩变化。

3. 直流电动机的调试在实验过程中,我们对直流电动机进行了调试。

首先,调整电刷位置,使电刷与换向器接触良好;然后,通过调节电源电压,使电动机达到额定转速;最后,观察电动机在不同负载下的转速和转矩变化,调整电源电压,使电动机稳定运行。

4. 直流电动机的故障分析在实训过程中,我们遇到了一些故障,如电动机转速不稳定、转速过快等。

通过分析故障原因,我们采取了相应的解决措施,如检查电刷磨损情况、调整电源电压等。

5. 直流电动机的性能测试我们对直流电动机进行了性能测试,包括空载转速、负载转速、额定转矩、额定电流等参数的测量。

通过测试,我们了解了直流电动机的性能特点。

五、实训结果1. 直流电动机的结构和原理得到了充分的了解。

2. 掌握了直流电动机的调试和维护方法。

直流电动机检测实训报告

直流电动机检测实训报告

一、实训目的本次实训旨在使学生掌握直流电动机的基本结构、工作原理,了解电动机的检测方法和调试技巧,提高学生对直流电动机的认识和应用能力。

二、实训内容1. 直流电动机的基本结构直流电动机主要由定子、转子、电刷、换向器、轴承等部分组成。

定子产生磁场,转子在磁场中旋转,电刷和换向器将直流电源引入转子绕组,产生电磁转矩,驱动负载。

2. 直流电动机的工作原理直流电动机的工作原理是利用电磁感应定律和洛伦兹力定律。

当直流电源通过电刷和换向器引入转子绕组时,绕组产生电流,根据电磁感应定律,绕组周围产生磁场。

转子在磁场中旋转,根据洛伦兹力定律,绕组中的电流与磁场相互作用,产生电磁转矩,驱动负载。

3. 直流电动机的检测方法(1)外观检查:检查电动机的各个部件是否完好,有无破损、变形、松动等情况。

(2)绝缘电阻测试:使用兆欧表测试电动机绕组的绝缘电阻,确保电动机的安全运行。

(3)电枢电阻测试:使用万用表测量电枢绕组的电阻,了解电动机的负载特性。

(4)空载试验:将电动机接入直流电源,观察电动机的转速和温升,判断电动机的性能。

(5)负载试验:在电动机上接入一定负载,观察电动机的转速、电流和温升,判断电动机的负载特性。

4. 直流电动机的调试技巧(1)调整电刷压力:适当调整电刷压力,确保电刷与换向器接触良好,减少火花产生。

(2)调整换向器间隙:适当调整换向器间隙,确保换向器与电刷接触良好,减少火花产生。

(3)调整电刷角度:根据电动机的转速和负载,调整电刷角度,提高电动机的效率和性能。

(4)调整磁场强度:根据电动机的负载和转速,调整磁场强度,提高电动机的效率和性能。

三、实训过程1. 实训准备:准备直流电动机、直流电源、兆欧表、万用表、电刷、换向器等工具和器材。

2. 外观检查:检查电动机的各个部件,确保电动机完好。

3. 绝缘电阻测试:使用兆欧表测试电动机绕组的绝缘电阻,记录测试数据。

4. 电枢电阻测试:使用万用表测量电枢绕组的电阻,记录测试数据。

直流电机实验报告1

直流电机实验报告1

直流电机实验报告直流电机实验报告篇一:并励直流电机实验报告实验二直流并励电动机一.实验目的1.掌握用实验方法测取直流并励电动机的工作特性和机械特性。

2.掌握直流并励电动机的调速方法。

1.什么是直流电动机的工作特性和机械特性?答:工作特性:当U = UN, Rf + rf = C时,η, n ,T 分别随P2 变;机械特性:当U = UN, Rf + rf = C时, n 随 T 变;2.直流电动机调速原理是什么?答:由n=(U-IR)/Ceφ可知,转速n和U、I有关,并且可控量只有这两个,我们可以通过调节这两个量来改变转速。

即通过人为改变电动机的机械特性而使电动机与负载两条特性的交点随之改变,从而达到调速的目的。

二.预习要点三.实验项目1.工作特性和机械特性保持U=UN 和If =IfN 不变,测取n=f(Ia)及n=f(T2)。

2.调速特性(1)改变电枢电压调速保持U=UN 、If=IfN =常数,T2 =常数,测取n=f(Ua)。

(2)改变励磁电流调速保持U=UN,T2 =常数,R1 =0,测取n=f(If)。

(3)观察能耗制动过程四.实验设备及仪器1.MEL-I系列电机教学实验台的主控制屏。

2.电机导轨及涡流测功机、转矩转速测量(MEL-13)、编码器、转速表。

3.可调直流稳压电源(含直流电压、电流、毫安表)4.直流电压、毫安、安培表(MEL-06)。

5.直流并励电动机。

6.波形测试及开关板(MEL-05)。

S (2)测取电动机电枢电流Ia、转速n和转矩T2,共取数据7-8组填入表1-8中表1-8 U=UN=220V If=IfN=0.0748A Ka= Ω 2.调速特性(1)改变电枢端电压的调速表1-9 I(2)改变励磁电流的调速一7接线 f:直流电机电枢MEL-09) MEL-03中两Ω电阻并联。

刀双掷开关(MEL-05)六.注意事项-全文完-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

淄博职业技术学院控制电机实验报告XX学院___年级 XX班姓名________学号_________同组人__________
实验日期________年_____月____日温度________ 湿度________ 实验一直流伺服电动机电枢电阻的测量
一、实验目的
1、通过实验测出直流伺服电动机的参数ra、Ke、KT。

2、掌握直流伺服电动机的机械特性
二、实验项目
1、测直流伺服电动机的电枢电阻。

三、实验方法
1、实验设备:
2、用伏安法测直流伺服电动机电枢的直流电阻
(1)用伏安法测直流伺服电动机电枢的直流电阻
按图1接线,电阻选用2.2K 100W 的变阻器。

电流表的量程选用2A ,电源选用直流电机专用电源上的电枢电源。

图.1 测电枢绕组直流电阻接线图
(2) 经检查无误后接通电枢电源,并调至220V ,合上开关S ,调节R 使电枢电流达到0.2A ,迅速测取电机电枢两端电压U 和电流I ,再将电机轴分别旋转三分之一周和三分之二周。

同样测取U 、I ,记录于表1-1中,取三次的平均值作为实际冷态电阻。

(3)
计算基准工作温度时的电枢电阻
由实验直接测得电枢绕组电阻值,此值为实际冷态电阻值,冷态温度为室温,按下式换算到基准工作温度时的电枢绕组电阻值。

a
ref a
aref R R θθ++=235235
式中: Raref ——换算到基准工作温度时电枢绕组电阻,(Ω)
Ra ——电枢绕组的实际冷态电阻,(Ω) θref——基准工作温度,对于E 级绝缘为75℃ θa——实际冷态时电枢绕组温度,(℃) 四、实验报告
1、由实验数据求得电机参数:R aref 、K e 、K T
R aref ——直流伺服电动机的电枢电阻 ——电势常数
——转矩常数
五、实验心得
通过本次试验加深了对直流伺服电动机的理解, 六、思考题
1、若直流伺服电动机正(反)转速有差别,试分析其原因?
(1)“零飘”,零点不是绝对零点,要调节零飘点,接近于0位置,正反转就基本一致了 (2)因为可控硅制造工艺和参数问题,实际上反转跟正传的电流环并不一致
e
T aN
e K K n U K π
300
=
=。

相关文档
最新文档