2020年高中生物选修三重点基础知识复习提纲(完整版)
生物选修3必背知识点
生物选修3必背知识点知识点一:细胞分裂细胞分裂是生物体生长发育和繁殖的基本过程之一。
主要包括有丝分裂和无丝分裂两种方式。
丝分裂的步骤1.前期:染色质开始缩短、浓缩,成为可见的染色体。
核膜开始溶解。
2.早期:纺锤体形成,有丝分裂纺锤丝从极微管中心体向两极伸展。
3.中期:染色体在纺锤丝的引导下按照染色体的大小、形状和染色体的染色波纹等特征排列在中央板上。
4.晚期:染色体分离成两套相同数量的染色体移向两极,称为有丝分裂的分裂期。
无丝分裂的过程无丝分裂是指染色体不出现纺锤丝分裂的现象,通常见于原核生物。
知识点二:遗传与进化遗传和进化是生物学的重要内容,也是生物选修3中的重点内容。
遗传的基本规律1.孟德尔定律:孟德尔通过对豌豆杂交的观察发现,遗传是由基因决定的,遗传过程中的基本规律包括显性和隐性、分离和独立性等。
2.基因型和表型:基因型决定了个体遗传特点,而表型是基因型与环境相互作用的结果。
进化的基本原理1.自然选择:达尔文提出的自然选择理论认为,物种中存在变异,有利于适应环境的个体更容易生存和繁殖,从而逐渐形成适应环境的特征。
2.突变和基因漂变:突变和基因漂变是引起物种进化的重要原因,它们可以导致基因频率的变化。
知识点三:生态系统和生物多样性生态系统的组成生态系统是由生物群落和非生物因子组成的,包括生物圈、大地系统、水域系统、气候系统等。
生物多样性的保护生物多样性是指地球上生物种类的丰富程度和多样性,保护生物多样性对于维持生态平衡和人类的可持续发展至关重要。
知识点四:免疫系统免疫系统是人体对抗病菌和外界侵扰的一种自然保护机制。
免疫系统的组成免疫系统由体液免疫和细胞免疫两部分组成,包括白细胞、淋巴细胞、抗体等。
免疫的类型1.先天免疫:人体的先天免疫是与生俱来的,通过皮肤、黏膜等机制抵御外界的病原体。
2.后天免疫:人体的后天免疫是通过抗体和记忆淋巴细胞等机制产生的,对特定病原体具有抵抗能力。
以上就是生物选修3中的必备知识点,希望对您的学习有所帮助。
高中生物选修3知识点总结(全)
选修3知识点背诵专题1 基因工程基因工程的概念基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。
基因工程是在D NA分子水平上进行设计和施工的,又叫做DNA重组技术。
(一)基因工程的基本工具1.“分子手术刀”——限制性核酸内切酶(限制酶)(1)来源:主要是从原核生物中分离纯化出来的。
(2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。
(3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。
2.“分子缝合针”——DNA连接酶(1)两种DNA连接酶(E·coliDNA连接酶和T4-DNA连接酶)的比较:①相同点:都缝合磷酸二酯键。
②区别:E·coliDNA连接酶来源于T4噬菌体,只能将双链DNA片段互补的黏性末端之间的磷酸二酯键连接起来;而T4DNA连接酶能缝合两种末端,但连接平末端的之间的效率较低。
(2)与DNA聚合酶作用的异同:DNA聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形成磷酸二酯键。
DNA连接酶是连接两个DNA片段的末端,形成磷酸二酯键。
3.“分子运输车”——载体(1)载体具备的条件:①能在受体细胞中复制并稳定保存。
②具有一至多个限制酶切点,供外源DNA片段插入。
③具有标记基因,供重组DNA的鉴定和选择。
(2)最常用的载体是质粒,它是一种裸露的、结构简单的、独立于细菌染色体之外,并具有自我复制能力的双链环状DNA分子。
(3)其它载体:噬菌体的衍生物、动植物病毒(二)基因工程的基本操作程序第一步:目的基因的获取1.目的基因是指:编码蛋白质的结构基因。
2.原核基因采取直接分离获得,真核基因是人工合成。
人工合成目的基因的常用方法有反转录法_和化学合成法_。
3.PCR技术扩增目的基因(1)原理:DNA双链复制(2)过程:第一步:加热至90~95℃DNA解链;第二步:冷却到55~60℃,引物结合到互补DNA链;第三步:加热至70~75℃,热稳定DNA聚合酶从引物起始互补链的合成。
重点高中生物选修三知识点整理(完整加强版)
重点高中生物选修三知识点整理(完整加强版)————————————————————————————————作者:————————————————————————————————日期:生物选修3知识点(区别不同工程和不同操作水平)专题1 基因工程概念:按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。
基本原理:让目的基因在受体细胞内稳定且高效的表达理论基础:DNA是生物遗传物质的发现,DNA双螺旋结构,遗传信息传递方式核心:构建重组DNA分子(一)基本工具(技术基础)Cf 工具&工具酶1.限制性核酸内切酶(1)来源:主要是从原核生物中分离纯化出来的(不切割自身DNA的原因:原核生物中无该限制酶的识别序列或其已被修饰)(2)功能:识别和切割DNA分子内一小段特殊的脱氧核苷酸序列(偶数碱基对回文序列)特异性表现:识别特定片段、切割该片段中的特定位点、形成一种末端Cf —G↓GATCC— & —↓GATC—(3)结果:DNA片段末端形成末端碱基互补的黏性末端或平末端①用切割(质粒)②根据目的基因的位置或剪辑序列来确定限制酶的种类③切割后的片段要画全2.DNA连接酶(1)功能:连接具有末端碱基互补的2个DNA片段,形成重组DNA分子Cf DNA聚合酶:只能将单个脱氧核苷酸逐个添加到已有的脱氧核苷酸链之后,需模板DNA,连接磷酸二酯键3.载体(1)条件:①能在受体细胞中稳定保存并大量复制,基本不影响受体细胞正常生命活动②一至多个限制酶酶切位点(必须在所需标记基因外),供外源DNA片段插入③标记基因,便于筛选含有重组DNA分子的受体细胞——往往需要根据需求改造天然载体(2)功能:①作为运载工具将目的基因转移到受体细胞内——载体选质粒的原因:具有环状结构,能够携带目的基因②利用它在受体细胞内对目的基因进行大量复制和转录/表达(3)质粒(最常用的载体)一种能够自主复制,在细菌(或酵母菌)中独立于染色体之外存在的双链环状DNA分子(4)其它载体:噬菌体、动植物病毒(二)基因工程的基本操作程序第一步:获取目的基因1.目的基因:人们所需要的编码蛋白质的结构基因2.方法(1)序列已知①化学合成法——较长DNA单链合成过程中容易出现碱基缺失如反转录法(e.g获取mRNA逆转录成cDNA再用DNA聚合酶生成双链)②聚合酶链式反应(PCR)扩增Polymerase Chain Reaction(1)原料:水、缓冲液、4种游离脱氧核苷酸、TaqDNA聚合酶、模板DNA(……基因)、对…基因特异的2段DNA引物(防止相互或自身折叠)(2)过程:第一步:加热至90~95℃,DNA在高温下变性解链第二步:冷却到55~60℃,引物结合到互补DNA链(退火)第三步:加热至70~75℃,热稳定DNA聚合酶从引物起始互补链的合成能量来源于dNTP(2)序列未知建立基因文库:建立一个包括目的基因在内的基因文库(保存在受体菌中),再从基因文库中获取3.目的基因大量扩增/分子水平的克隆①利用受体细胞(如E.coli)无性繁殖,利用基因探针钓取,再导入最终受体细胞e.g目的基因→大肠杆菌→农杆菌→植物细胞→植物(主要在细菌分裂时几何级扩增,尽管质粒独立于拟核,可在分裂时发生自我复制,但由于多数细菌对胞内质粒数量有限制,故该种复制对扩增效果不大)②PCR技术第二步:形成重组DNA分子(基因表达载体:启动子+目的基因+终止子+标记基因)1.目的:转运目的基因,并使在受体内稳定存在、复制、表达/转录并稳定遗传(基因型X0)2.过程:(1)单酶切:用同种限制酶分别切割目的基因和载体从而形成相同的粘性末端,然后用DNA连接酶将目的基因和载体连接起来——有时用不同限制酶也可以形成相同的粘性末端(2)双酶切:用两种限制酶切割使目的基因和载体两端各形成两种粘性末端,防止载体和目的基因自身环化第三步:将重组DNA分子导入受体细胞——需将目的基因整合到动植物细胞的染色体DNA上目的基因是否整合到染色体DNA上决定于基因表达载体上是否有相关序列(形成酶)1.植物体细胞:农杆菌转化法(插入Ti质粒上的T-DNA),基因枪法、花粉管通道法——导入叶绿体DNA中,由于细胞质/器DNA的遗传与性别相关联,故可避免因花粉传播而造成基因污染(目的基因传播到非转基因生物中)2.动物受精卵:显微注射技术用(如显微注射)技术/方法将目的基因导入cf转基因/基因工程技术3.原核细胞:CaCl2/Ca2+ 处理法(先用Ca2+处理增加细胞壁通透性,使之成为感受态细胞,再将重组质粒与感受态细胞混合,在一定温度下感受态细胞吸收DNA分子)——原核生物作为受体细胞的原因:①繁殖快②体积小新陈代谢旺盛(目的产物合成效率高)③遗传物质少(便于操作)、④单细胞(容易培养)第四步:筛选含有目的基因的受体细胞1.原因:受体细胞接纳重组DNA分子存在概率2.原理:载体如质粒上的抗性基因等标记基因3.方法:利用选择培养基筛选①蔗糖转运蛋白:仅以蔗糖作为碳源的培养基②菌落表现型:抗……不抗……第五步:目的基因的检测和表达——目的基因导入受体细胞可能仅进行大量扩增,但不一定以此为目的1.DNA/核酸分子杂交技术用cDNA作为探针与从受体细胞中提取并解旋的DNA/mRNA杂交,观察是否会出现杂交带检测①染色体DNA上是否插入了目的基因②目的基因是否转录出了mRNA——①一种基因探针只能检测水体中的一种病毒;检测病毒可对照核酸序列②放射性同位素标记探针③基因探针是一小段cDNA,可以与相应基因转录出的mRNA结合(即使被切割)采用DNA分子杂交技术/方法,用基因探针检测2.抗原-抗体杂交:目的基因是否翻译成蛋白质如E.coli合成人胰岛素原3.个体水平的鉴定:如转基因抗虫植物(让害虫吞食该转基因棉植株的叶片,观察害虫存活情况,以确定其是否具有抗虫形状)——根本原因:联系基因层面,cf基因序列&碱基对/脱氧核苷酸序列(三)基因工程的应用1.动植物基因、细胞工程:优点①所需时间短②克服远缘杂交不亲和的缺陷(对应传统缺点)2.基因工程药物:首次是生长素释放抑制激素,然后胰岛素(E.coli产酶原)、干扰素等干扰素:我国第一个基因重组新药。
高中生物选修三复习提纲
单个细胞悬浮液
①无菌、无毒环境 ②营养 ③适宜的温度和PH ④气体环境(95%空气和5%CO2)
转入特殊培养液中
进行原代培养
应用:
①生产生物制品 ②为基因工程培养细胞 分装到多个扁形培养瓶中 进行传代培养
③检测有毒物质 ④生理学、医药学研究
动物细胞融合 原理: 细胞膜的流动性 过程:
现代生物科技专题复习
基 因 工 程 小 导入植物细胞方法 步骤 结 将目的基因导入受体细胞 导入动物细胞方法
概念: 原理: 来源;作用及特点;结果 限制性核酸内切酶: 工具 DNA连接酶:种类;作用 载体: 作用;PCR技术扩增 人工合成 基因表达载体的构建 :构建目的、组成
高尔基体
中心体 线粒体
细胞内其他物质
卵子受精的标志
卵黄膜和透明带的间隙可以观察到两个极体时, 说明卵子已经完成了受精。
三、胚胎发育
受精卵
卵 裂
桑椹胚 囊胚
(内含囊胚腔)
胎儿
原肠胚
(内含原肠腔)
试管动物技术
通过人工操作使卵子和精子在体外条件下成熟和受 精,并通过培养发育成早期胚胎后,再经移植产生后代 的技术。
协调与平衡原理
整体性原理
物质循环再生原理
系统学和工程学原理
3.生态工程的实例
(诱导融合的方法?) 应用:
制备单克隆抗体
生产单克隆抗体 原理:B淋巴(浆)细胞能产生特异性抗体 骨髓瘤细胞能无限增殖
杂交瘤细胞既能产生特异性抗体又能无限增殖 过程:
单抗特点: 特异性强、灵敏度高、可大量制备 应用: ①作为诊断试剂
②用于治疗疾病和运载药物
专题三 胚胎工程
精细胞变形为精子
2020高考生物选修三知识点读背(全)
第一章基因工程第一节基因工程概述由于基因工程是在DNA分子水平上进行操作,因此又叫做重组DNA技术。
二.基因工程的基本工具(一)“分子手术刀”——限制性核酸内切酶(简称限制酶)1.来源:主要是从原核生物中分离纯化出来的。
2.功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开。
3.结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。
(二)“分子针线”——DNA连接酶1.分类:根据酶的来源不同,可分为E·coliDNA连接酶和T4DNA连接酶两类2.功能:恢复被限制酶切开了的两个核苷酸之间的磷酸二酯键。
★两种DNA连接酶(E·coliDNA连接酶和T4DNA连接酶)的比较:①相同点:都缝合磷酸二酯键②区别:E.coIiDNA连接酶来源于大肠杆菌,只能使黏性末端之间连接;T4DNA连接酶能缝合两种末端,但连接平末端之间的效率较低。
(三)“分子运输车”——载体1.载体具备的条件:①能在受体细胞中复制并稳定保存;②具有一至多个限制酶切割位点,供外源DNA片段插入;③具有标记基因,供重组DNA的鉴定和选择。
2.基因工程常用的载体有:质粒、噬菌体和动、植物病毒等。
最早应用的载体是质粒,它是细菌细胞中的一种很小的双链环状DNA分子。
三.基因工程的基本过程(一) 获得目的基因(目的基因的获取)1.获取方法主要有两种:①从自然界中已有的物种中分离出来,如可从基因文库中获取。
②用人工的方法合成。
★获得原核细胞的目的基因可采取直接分离,获取真核细胞的目的基因一般是人工合成。
★人工合成目的基因的常用方法有反转录法和化学合成法。
2.利用PCR技术扩增目的基因(1)PCR的含义:是一项在生物体外复制特定DNA片段的核酸合成技术。
(2)目的:获取大量的目的基因(3)原理:DNA双链复制(4)过程:第一步:加热至90~95℃DNA解链为单链;(5(二)1.重组2(三)1.2.①②③(四)鉴定)1.2.3.4.有时还需进行个体生物学水平的鉴定。
2019-2020年高中生物选修3复习提纲-新课标人教版选修3
2019-2020年高中生物选修3复习提纲-新课标人教版选修31.说出基因工程的含义并指出基因工程的主要内容。
基因工程....就是把一种生物的基因转入另一种生物体中,使其产生我们需要的基因产物,或者让它获得新的遗传性状。
2.说出限制性核酸内切酶的含义及作用特点。
3.说出DNA连接酶的作用。
4.简述质粒的含义、特性及其在基因工程中的作用。
5.解释限制性核酸内切酶、DNA连接酶和质粒在基因工程诞生中的意义。
6.简述基因工程的原理。
7.描述基因工程基本操作的几个步骤。
(P6图)8.举例说出筛选含有目的基因的受体细胞的原理。
(P8简答题2)9.举例说出基因工程在遗传育种、疾病治疗与生态环境保护方面的应用。
10.设计某一转基因生物的培育过程。
(P9图)11.说出基因治疗的基本原理。
12.说出基因诊断的基本原理。
(补充)13.关注基因工程的新进展。
14.尝试应用基因工程技术设计一个解决生活中疑难问题的方案。
(P13简答题)1.说出有性繁殖和无性繁殖的含义。
2.简述克隆的含义及在不同水平上的克隆技术的含义。
3.描述克隆技术的发展历程。
4.举例说出克隆的基本条件。
5.简述植物全能性的含义。
6.简述植物组织培养的程序。
(P22图)7.说出植物克隆成功所需的条件。
8.简述植物细胞培养和器官培养的方法和意义。
9.简述植物细胞工程的概念、操作过程和应用。
10.认同细胞生物学基础理论研究与技术开发之间的关系。
11.说出植物体细胞杂交的过程、原理和意义。
(P26图)12.简述动物细胞组织培养与体细胞克隆。
(P29图)13.说出动物组织培养技术的发展历程。
14.描述细胞系和细胞株的含义。
15.简述动物的克隆培养法。
新课标第一网16.简述动物的细胞融合技术及其应用(单克隆抗体制备)。
(P32图)17.简述动物细胞全能性的表现程度,说出动物难以克隆的原因。
18.简述动物细胞核移植的概念和核移植的程序。
19.列举动物细胞培养与动物细胞核移植的应用(动物体细胞克隆)和发展前景。
(完整word版)高中生物选修3知识点总结
选修3易考知识点背诵专题1 基因工程基因工程的概念基因工程是指按照人们的愿望,进行严格的设计,通过体外DN®组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产晶。
基因工程是在DN 心子水平上进行设计和施工的. 又叫做DNAlt组技术。
(一)基因工程的基本工具1.”分子手术刀”一一限制性核酸内切酶(限制酶) (1)来源:主要是从原核牛物中分离纯化出来的。
(2)功能:能够识别双链DNA^子的某种特定的核音酸序列,并且使每一条链中特定部位的两个核甘酸之间的磷酸二酯键断开.因此具有专二性。
(3)结果:经限制酶切割产生的DN*段末端通常有两种形式:黏性末端和平末端。
2.”分子缝合针” 一一DNA1接酶⑴两种DNAS接酶(E・coliDNA连接酶和T4-DNAS接酶)的比较:①相同点:都缝合磷酸二酯键。
②区别:E- coliDNA连接酶来源于T4噬菌体.只能将双链DNAt段互补的黏性末端之间的磷酸二酯键连接起来;而T,DNA^接酶能缝合两种末端,但连接平末端的之间的效率较低。
⑵与DN谦合酶作用的异同:DNA聚合酶只能将单个核苴豆加到已有的核甘酸片段的末端,形成磷酸二酯键。
DNA1接酶是连接两个DNA片段的末端,形成磷酸二酯键。
3.”分子运输车”一一载也(1)载体具备的条件:① 能在受体细胞中复制并稳定保存。
②具有一至多个限制酶切点,供外源DN*段插入。
③具有标记基因.供重组DNA 的鉴定和选择。
(2)最常用的载体是质检,它是一种裸露的、结构简单的、独立于细菌染色体之外,并具有自我复制能力的双链环状DNA分子。
(3)其它载体:噬菌体的衍生物、动植物病毒 (二)基因工程的基本操作程序第一步:目的基因的获取1.目的基因是指:编码蛋白质的结构基因。
2.原核基因采取直接分离获得.真核基因是人工合成, 人工合成目的基因的常用方法有反转录法和化学合成法。
3.PCR技术扩增目的基因(1)原理:DNA^链复制(2)过程:第一步:加热至90〜95CDNAK链;第二步:冷却到55〜60C,引物结合到互补DNAA连;第三步:加热至70〜75C,热稳定DN谦合酶从引物起始互补链的合成。
高中生物选修三知识点总结
高中生物选修三知识点总结第一部分:动植物基本知识1.细胞和组织:生物体的基本结构是细胞,细胞可以通过分化形成不同的组织,如细胞间连结组织、上皮组织、腺体组织等。
2.动植物的器官系统:动物由不同的器官组成,如呼吸系统、循环系统、消化系统、排泄系统等。
植物有根、茎和叶等器官系统。
3.动植物的生长和发育:动物主要通过细胞分裂、细胞扩增和细胞分化来进行生长和发育。
植物则通过分根、分茎和分叶等方式生长和发育。
第二部分:进化与发展2.进化的证据:化石记录、生物地理分布、生态配位、生物的形态和生理特征等都是支持进化论的证据。
3.进化的机制:进化的主要机制包括突变、基因流、基因漂变、自然选择和性选择等。
第三部分:生物多样性1.物种多样性和分类学:物种是指具有相似形态、生理特征和能产生可育后代的个体群体。
分类学是研究物种多样性和物种之间的关系的学科。
2.生物的分类:生物根据形态、生理特征、遗传信息和分子结构等特征进行分类,包括界、门、纲、目、科、属和种等不同的分类单位。
3.生物多样性的维护与保护:保护生物多样性是保护地球上的生命和生态系统的重要任务,包括建立自然保护区、限制捕捉和采集野生物种、推广可持续发展等措施。
第四部分:人类生活与健康1.人类的呼吸系统:人类的呼吸系统由鼻腔、喉、气管、支气管、肺和膈肌等器官组成,通过呼吸过程将氧气吸入体内,释放二氧化碳。
2.营养与健康:人类需要摄取一定的营养物质来维持生命活动和健康,如碳水化合物、脂肪、蛋白质、维生素和矿物质等。
3.人体的免疫系统:人体的免疫系统可以防止外来病原体侵入,包括先天性免疫和后天性免疫两种机制。
总体来说,高中生物选修三主要涉及到了动植物基本知识、进化与发展、生物多样性和人类生活与健康等方面的内容。
这些知识点对于理解生物的现象和原理,以及与人类的生活和健康有着密切的关系,是高中生物学习的重要内容。
通过学习这些知识点,我们可以更好地认识和理解自然界的生物多样性,为保护生物和环境做出贡献。
高中生物选修3知识点归纳
高中生物选修3知识点归纳
一、植物的生理生态
1.植物的生长与发育:包括营养、环境因素对植物生长发育的影响,植物对光、水、温度和土壤等要素的适应机制。
2.植物的营养吸收与传输:植物对水分、无机盐和有机物质的吸收和运输机制,根系结构与吸收效能的关系。
3.植物的激素与生长调控:植物激素的种类、生物合成、作用及调控机制,激素在植物生长发育过程中的调控作用。
4.植物对环境的响应:光、温度、水分等环境因素对植物的生长和发育的影响,植物的光合作用和光周期调节。
二、遗传与进化
1.基因与染色体:DNA与RNA的结构与功能,基因的表达与调控,染色体结构与细胞分裂过程。
2.遗传与变异:遗传物质的传递与基因重组,各种遗传变异形式的基本概念与特点,突变的起源与分类。
3.繁殖与发育:有性与无性生殖的基本过程与特点,有性生殖的机制与利弊,生殖细胞的形成与结构。
4.进化与演化:进化论的基本观点与证据,自然选择与适应性进化,物种形成与演化的机制。
三、生物技术
1.基因工程与重组DNA技术:DNA的切割、连接与克隆,转基因技术的原理与应用,基因的突变与修饰。
2.细胞工程与组织培养:细胞的培养与再生,植物体细胞的分化与再生,组织培养技术的原理与应用。
3.生物技术与农业:农业生产中的生物技术应用,农作物的遗传改良与转基因作物的发展,生物农药与抗性的应用。
4.生物技术与医药健康:生物制药与基因治疗的原理与应用,人工合成和修复细胞组织的技术,生物检测与分析技术的应用。
生物复习提纲选修三
生物复习提纲选修三选修三复习提纲一、基因工程(一)基因工程的概念基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。
基因工程是在DNA分子水平上进行设计和施工的,又叫做DNA重组技术。
(一)基因工程的基本工具1.“分子手术刀”——限制性核酸内切酶(限制酶)(1)来源:主要是从原核生物中分离纯化出来的。
(2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。
(3)结果:经限制酶切割产生的DNA片段末端通常2有两种形式:黏性末端和平末端。
2.“分子缝合针”——DNA连接酶:(1)将双链DNA片段互补的黏性末端或平末端之间的磷酸二酯键连接起来(2)与DNA聚合酶作用的异同:DNA聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形成磷酸二酯键。
DNA连接酶是连接两个DNA片段的末端,形成磷酸二酯键。
3.“分子运输车”——载体(1)载体具备的条件:①能在受体细胞中复制并稳定保存。
②具有一至多个限制酶切点,供外源DNA片段插入。
③具有标记基因,供重组DNA的鉴定和选择。
④对宿主无害。
(2)最常用的载体是:质粒,它是一种裸露的、结构简单的、独立于细菌染色体之外,并具有自我复制能3力的双链环状DNA分子。
(3)其它载体:噬菌体、动植物病毒(二)基因工程的基本操作程序第一步:目的基因的获取原核基因采取直接分离获得,真核基因一般是人工合成。
直接分离法一般采用霰弹法;人工合成目的基因的常用方法有反转录法和化学合成法。
PCR技术扩增目的基因(1)原理:DNA复制(2)过程:第一步:加热至90~95℃DNA解链;第二步:冷却到55~60℃,引物结合到互补DNA链;第三步:加热至70~75℃,热稳定DNA聚合酶从引物起始互补链的合成。
简记为(1)热变性(2)退火(3)延伸 {(4)再次重复}第二步:基因表达载体的构建41.目的:使目的基因在受体细胞中稳定存在,并且可以遗传至下一代,使目的基因能表达和发挥作用。
((完整版))人教版高中生物选修三知识点汇总(背诵版),推荐文档
17. 作为载体必备的条件?(能够在受体细胞中稳定存在并自我复制,对受体细胞无害,有一个或多个酶切位点,具有标记基因) 18. 质粒?(独立于拟核以外的小型环状双链 DNA 分子) 19. 标记基因的作用?常用的有?(供重组 DNA 的鉴定和选择)(四环素抗性基因,氨苄青霉素抗性基因) 20. 基因工程中使用的质粒是否是天然质粒?(不是,使用的是人工改造过的天然质粒) 21. 基因工程的基本操作程序的步骤?(4 个,获取目的基因,基因表达载体的构建(核心工程),将目的基因导入受体细胞,目的基因
4. 植物组织培养的原理(理论基础)?(细胞的全能性)(细胞最终获得个体才能体现全能性)
5. 全能性的概念?大小比较?(具有某种生物全部遗传信息或全套遗传物质的细胞都具有发育成完整生物体的潜能)(受精卵>生殖细
胞>干细胞>体细胞;植物细胞>动物细胞)
6. 细胞未均表现出全能性的原因?(基因的选择性表达)
境温和不需要热稳定性高的 DNA 聚合酶)(PCR 技术中需要一种特殊的酶:Taq 酶,又叫热稳定性 DNA 聚合酶) 27. 若基因较小,核苷酸序列已知,则可以通过 DNA 合成仪?(用化学方法直接人工合成) 28. 基因表达载体?(不同生物构建的表达载体有差别,但都需具备四部分:启动子,终止子,目的基因,标记基因)(复制原点) 29. 启动子和起始密码子,终止子和终止密码子?(启动子和终止子是 DNA,起始密码子和终止密码子是 RNA。启动子和终止子是转
高中生物选修三知识点整理(完整加强版)
生物选修3知识点(区别不同工程和不同操作水平)专题1 基因工程概念:按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。
基本原理:让目的基因在受体细胞内稳定且高效的表达理论基础:DNA是生物遗传物质的发现,DNA双螺旋结构,遗传信息传递方式核心:构建重组DNA分子(一)基本工具(技术基础)Cf 工具&工具酶1.限制性核酸内切酶(1)来源:主要是从原核生物中分离纯化出来的(不切割自身DNA的原因:原核生物中无该限制酶的识别序列或其已被修饰)(2)功能:识别和切割DNA分子内一小段特殊的脱氧核苷酸序列(偶数碱基对回文序列)特异性表现:识别特定片段、切割该片段中的特定位点、形成一种末端Cf —G↓GATCC— & —↓GATC—(3)结果:DNA片段末端形成末端碱基互补的黏性末端或平末端①用切割(质粒)②根据目的基因的位置或剪辑序列来确定限制酶的种类③切割后的片段要画全2.DNA连接酶(1)功能:连接具有末端碱基互补的2个DNA片段,形成重组DNA分子Cf DNA聚合酶:只能将单个脱氧核苷酸逐个添加到已有的脱氧核苷酸链之后,需模板DNA,连接磷酸二酯键3.载体(1)条件:①能在受体细胞中稳定保存并大量复制,基本不影响受体细胞正常生命活动②一至多个限制酶酶切位点(必须在所需标记基因外),供外源DNA片段插入——往往需要根据需求改造天然载体(2)功能:①作为运载工具将目的基因转移到受体细胞内——载体选质粒的原因:具有环状结构,能够携带目的基因②利用它在受体细胞内对目的基因进行大量复制和转录/表达(3)质粒(最常用的载体)一种能够自主复制,在细菌(或酵母菌)中独立于染色体之外存在的双链环状DNA分子(4)其它载体:噬菌体、动植物病毒(二)基因工程的基本操作程序第一步:获取目的基因1.目的基因:人们所需要的编码蛋白质的结构基因2.方法(1)序列已知①化学合成法——较长DNA单链合成过程中容易出现碱基缺失如反转录法(e.g获取mRNA逆转录成cDNA再用DNA聚合酶生成双链)②聚合酶链式反应(PCR)扩增Polymerase Chain Reaction(1)原料:水、缓冲液、4种游离脱氧核苷酸、TaqDNA聚合酶、模板DNA(……基因)、对…基因特异的2段DNA引物(防止相互或自身折叠)(2)过程:第一步:加热至90~95℃,DNA在高温下变性解链第二步:冷却到55~60℃,引物结合到互补DNA链(退火)第三步:加热至70~75℃,热稳定DNA聚合酶从引物起始互补链的合成能量来源于dNTP(2)序列未知建立基因文库:建立一个包括目的基因在内的基因文库(保存在受体菌中),再从基因文库中获取3.目的基因大量扩增/分子水平的克隆①利用受体细胞(如E.coli)无性繁殖,利用基因探针钓取,再导入最终受体细胞e.g目的基因→大肠杆菌→农杆菌→植物细胞→植物(主要在细菌分裂时几何级扩增,尽管质粒独立于拟核,可在分裂时发生自我复制,但由于多数细菌对胞内质粒数量有限制,故该种复制对扩增效果不大)②PCR技术第二步:形成重组DNA分子(基因表达载体:启动子+目的基因+终止子+标记基因)1.目的:转运目的基因,并使在受体内稳定存在、复制、表达/转录并稳定遗传(基因型X0)2.过程:(1)单酶切:用同种限制酶分别切割目的基因和载体从而形成相同的粘性末端,然后用DNA连接酶将目的基因和载体连接起来——有时用不同限制酶也可以形成相同的粘性末端(2)双酶切:用两种限制酶切割使目的基因和载体两端各形成两种粘性末端,防止载体和目的基因自身环化第三步:将重组DNA分子导入受体细胞——需将目的基因整合到动植物细胞的染色体DNA上目的基因是否整合到染色体DNA上决定于基因表达载体上是否有相关序列(形成酶)1.植物体细胞:农杆菌转化法(插入Ti质粒上的T-DNA),基因枪法、花粉管通道法——导入叶绿体DNA中,由于细胞质/器DNA的遗传与性别相关联,故可避免因花粉传播而造成基因污染(目的基因传播到非转基因生物中)2.动物受精卵:显微注射技术用(如显微注射)技术/方法将目的基因导入cf转基因/基因工程技术3.原核细胞:CaCl2/Ca2+ 处理法(先用Ca2+处理增加细胞壁通透性,使之成为感受态细胞,再将重组质粒与感受态细胞混合,在一定温度下感受态细胞吸收DNA分子)——原核生物作为受体细胞的原因:①繁殖快②体积小新陈代谢旺盛(目的产物合成效率高)③遗传物质少(便于操作)、④单细胞(容易培养)第四步:筛选含有目的基因的受体细胞1.原因:受体细胞接纳重组DNA分子存在概率2.原理:载体如质粒上的抗性基因等标记基因3.方法:利用选择培养基筛选①蔗糖转运蛋白:仅以蔗糖作为碳源的培养基②菌落表现型:抗……不抗……第五步:目的基因的检测和表达——目的基因导入受体细胞可能仅进行大量扩增,但不一定以此为目的1.DNA/核酸分子杂交技术用cDNA作为探针与从受体细胞中提取并解旋的DNA/mRNA杂交,观察是否会出现杂交带检测①染色体DNA上是否插入了目的基因②目的基因是否转录出了mRNA——①一种基因探针只能检测水体中的一种病毒;检测病毒可对照核酸序列②放射性同位素标记探针③基因探针是一小段cDNA,可以与相应基因转录出的mRNA结合(即使被切割)采用DNA分子杂交技术/方法,用基因探针检测2.抗原-抗体杂交:目的基因是否翻译成蛋白质如E.coli合成人胰岛素原3.个体水平的鉴定:如转基因抗虫植物(让害虫吞食该转基因棉植株的叶片,观察害虫存活情况,以确定其是否具有抗虫形状)——根本原因:联系基因层面,cf基因序列&碱基对/脱氧核苷酸序列(三)基因工程的应用1.动植物基因、细胞工程:优点①所需时间短②克服远缘杂交不亲和的缺陷(对应传统缺点)干扰素:我国第一个基因重组新药。
2020届高考生物选修三必考基础知识点总结提纲(重点版)
生物选修3知识点总结《专题1基因工程》基因工程的概念基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA 重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。
基因工程是在DNA分子水平上进行设计和施工的,又叫做DNA重组技术。
(-)基因工程的基本工具1.“分子手术刀”一一限制性核酸内切酶(限制酶)(1)来源:主要是从原核生物中分离纯化出来的。
(2)功能:能够识别双链DNA分子的.某种特定的核昔酸序列,并且使每一条链-中特定部位的两个核昔酸之间的磷酸二•酯键断开,因此具有专一性。
(3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。
—DNA连接酶2.“分子缝合针”—⑴两种DNA连接酶(E•coliDNA连接酶和T4-DNA连接酶)的比较:①相同点:都缝合磷酸二酯键。
②区别:E-coliDNA连,接酶来源于T4噬菌体,只能将双链DNA片段互补的黏,性末端之间的磷酸二酯键连接起来;而T4DNA连接酶能缝合两种末端,但连接平末端的之间的效率较低。
(2)与DNA聚合酶作用的异同:DNA聚合酶只能将单个核昔酸加到已有的核昔酸片段的末端,形成磷酸二酯键。
DNA连接酶是连接两个DNA片段的末端,形成磷酸二酯键。
3.“分子运输车”一一载遂(1)载体具备的条件:①能在受体细胞中复制并稳定保存。
②具有一至多个限制酶切点,供外源DNA片段插入。
③具有标记基因,供重组DNA的鉴定和选择。
(2)最常用的载体是质粒,它是一种裸露的、结构简单的、独立于细菌染色体之外,并具有自我复制能力的双链环状DNA分子。
(3)其它载体:噬菌体的衍生物、动植物病毒基因工程的基本操作程序(二)第一步:目的基因的获取’1.目的基因是指:编码蛋白质的结构基因。
2.原核基因采取直接分离获得,真核基因是人工合成。
人工合成目的基因的常用方法有反转录法和化学合成法oPCR技术扩增目的基因3.(1)原理:DNA双链复制(2)过程:第一步:加热至90〜95程DNA解链;第二步:冷却到55 60°C,引物结合到互补DNA链;第•三步:加热至70〜75°C,热稳定DNA 聚合酶从引物起始互补链的合成。
高中生物复习提纲新人教版选修3
选修3复习提纲一、基因工程1、〔a〕基因工程的诞生〔一〕基因工程的概念基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。
基因工程是在DNA分子水平上进行设计和施工的,又叫做DNA重组技术。
2、〔a〕基因工程的原理及技术原理:基因重组技术:〔一〕基因工程的根本工具“分子手术刀〞——限制性核酸内切酶〔限制酶〕〔1〕来源:主要是从原核生物中别离纯化出来的。
〔2〕功能:能够识别双链 DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。
〔3〕结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。
“分子缝合针〞——DNA连接酶两种DNA连接酶〔E·coliDNA连接酶和T4DNA连接酶〕的比较:①相同点:都缝合磷酸二酯键。
②区别:E·coliDNA连接酶来源于T4噬菌体,只能将双链DNA片段互补的黏性末端之间的磷酸二酯键连接起来;而T4DNA连接酶能缝合两种末端,但连接平末端的之间的效率较低。
与DNA聚合酶作用的异同:DNA聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形成磷酸二酯键。
DNA连接酶是连接两个DNA片段的末端,形成磷酸二酯键。
3.“分子运输车〞——载体〔1〕载体具备的条件:①能在受体细胞中复制并稳定保存。
②具有一至多个限制酶切点,供外源DNA片段插入。
③具有标记基因,供重组DNA的鉴定和选择。
〔2〕最常用的载体是质粒,它是一种裸露的、结构简单的、独立于细菌染色体之外,并具有自我复制能力的双链环状DNA分子。
〔3〕其它载体:噬菌体的衍生物、动植物病毒(二)基因工程的根本操作程序第一步:目的基因的获取1.目的基因是指:编码蛋白质的结构基因。
原核基因采取直接别离获得,真核基因是人工合成。
人工合成目的基因的常用方法有反转录法_和化学合成法_。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选修3知识要点专题1 基因工程1.1 DNA重组技术的基本工具1.基因工程是在DNA分子水平上进行设计施工的,因此又叫做DNA重组技术,这种技术是在生物体外,通过体外DNA重组和转基因等技术,赋予生物新的遗传特性。
2.基因操作的工具包括基因的“剪刀”――限制性核酸内切酶;基因的“针线”――DNA连接酶;基因的“运输工具”――运载体。
3.限制酶主要来源于原核生物。
限制酶的作用特点是能够识别DNA中某种特定的核苷酸序列,切开两个核苷酸之间的磷酸二酯键。
限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。
4.DNA连接酶的作用是将双链DNA片段连接起来,恢复被限制酶切开的两个核苷酸之间的磷酸二脂键。
根据酶的来源不同,可以将这些酶分为两类:T4DNA连接酶和 E.coli DNA连接酶。
5.目前基因工程中经常使用的运载体有质粒、动植物病毒和λ噬菌体的衍生物。
6.质粒是一种裸露的、结构简单、独立于细菌染色体之外,并具有自我复制能力的双链环状DNA分子。
7.作为基因进入细胞的载体,必须具备的条件是能在宿主细胞中复制并稳定保存、具有一至多个限制酶切点、具有某些标记基因、对宿主的生存没有决定性的作用。
1.2 基因工程的基本操作程序1.基因工程的基本操作程序主要包括四个步骤:目的基因的获取、基因表达载体的构建、将目的基因导入受体细胞、目的基因的检测与鉴定。
2.目的基因主要是指编码蛋白质的结构基因,也可以是一些具有调控作用的因子。
获取目的基因的途径有从基因文库中获取、利用PCR技术扩增获得、直接人工合成。
3.PCR是利用DNA双链复制的原理,将基因的核苷酸序列加以复制,使其数目呈指数方式增加。
需要的前提是要有一段已知目的基因的核苷酸序列,扩增的过程是:目的基因DNA受热变性后解链为单链,引物与单链相应互补序列结合,然后在DNA聚合酶的作用下进行延伸,如此重复循环多次。
4.基因工程的核心是基因表达载体的构建,其目的是使目的基因在受体细胞中稳定存在,并可以遗传给下一代,同时,使目的基因能够表达和发挥作用。
5.一个基因表达载体的组成有:目的基因、启动子、终止子和标记基因。
6.将目的基因导入植物细胞的方法有农杆菌转化法、基因枪法和花粉管通道法。
采用最多的方法是农杆菌转化法,通过农杆菌的转化作用,就可以使目的基因进入植物细胞,并将其插入到植物细胞中的染色体DNA上,使目的基因的遗传性状得以稳定维持和表达。
7.基因工程选取原核生物作为受体细胞的原因是由于其具有其他生物没有的一些特点,如繁殖快、多为单细胞、遗传物质相对较少等8.大肠杆菌常用的转化方法是:先用Ca2+处理细胞,再将载体DNA分子溶于缓冲液中与此种细胞混合,在一定的温度下促进感受态细胞吸收DNA分子,完成转化过程。
9.检测目的基因是否成功插入到转基因生物的染色体上的方法是采用DNA分子杂交技术,此方法使用的探针是同位素标记的含有目的基因的DNA片段,与检测目的基因是否转录出mRNA所用的探针一样。
检测目的基因是否翻译成蛋白质,检测方法是从转基因生物体内提取蛋白质,用相应的抗体进行抗原-抗体杂交,若有杂交带出现,表明目的基因已形成蛋白质产品。
除了上述的分子检测外,有时还需要进行个体生物学水平的鉴定,如对抗虫植物做抗虫的接种实验。
1.3 基因工程的应用1.植物基因工程技术主要用于提高农作物的抗逆能力,以及改良农作物的品质和利用植物生产药物等方面。
2.抗病转基因植物所采用的基因,使用最多的是病毒外壳蛋白基因和病毒的复制基因;抗真菌转基因植物中可使用的基因有几丁质酶基因和抗毒素合成基因。
3.在培育抗逆转基因植物中,使用调节细胞渗透压的基因来提高农作物的抗盐碱和抗干旱的能力;将鱼的抗冻蛋白基因导入烟草和番茄,提高它们的耐寒能力;将抗除草剂基因导入作物,使作物抗除草剂。
4.在利用转基因改良植物的品质方面,我国科学家将富含赖氨酸的蛋白质编码基因导入玉米,获得的转基因玉米中赖氨酸的含量比对照提高30%。
5.动物基因工程从诞生那天起,就在动物品种改良、建立生物反应器、器官移植等很方面显示了广阔的前景。
6.乳腺生物反应器的操作过程为:将药用蛋白基因与乳腺蛋白基因的启动子等调控组件重组在一起,通过显微注射等方法,导入哺乳动物的受精卵中,然后,将受精卵送入母体内,使其生长发育成转基因动物。
7.为解决器官移植中的免疫排斥反应,科学家正在想办法对猪的器官进行改造,采用的方法是将器官供体基因组导入某种调节因子,以抑制抗原决定基因的表达或设法除去抗原决定基因,结合克隆技术,培育出没有免疫排斥反应的转基因克隆猪器官。
8.基因治疗是把正常基因导入病人体内使该基因的表达产物发挥作用,从而达到治疗疾病的目的。
其方法可以分为体外基因治疗和体内基因治疗。
1.4 蛋白质工程的崛起1.蛋白质工程是指以蛋白质分子的结构规律及其与生物功能的关系作为基础,通过基因修饰或基因合成,对现有蛋白质进行改造,或制造一种新的蛋白质,以满足人们生产和生活的需求。
与基因工程合成的蛋白质的主要区别是基因工程只能合成自然界已存在的蛋白质,而蛋白质工程可合成一些自然界中原本不存在的蛋白质。
2.玉米中赖氨酸含量较低,原因是赖氨酸合成过程中两种酶――天冬氨酶激酶和二氢吡啶二羧酶合成酶的活性受细胞内赖氨酸浓度的影响,当赖氨酸达到一定量时会抑制这两种酶活性。
3.蛋白质工程的基本途径中预期蛋白质功能→设计蛋白质结构→推测氨基酸序列→找出对应的脱氧核苷酸序列。
专题2 细胞工程2.1 植物细胞工程2.1.1 植物细胞工程的基本技术1.植物的花瓣属于高度分化的组织,利用它来培育出新的植株,首选要经过激素的诱导,使其脱分化成为具有分生能力的薄壁细胞,进而形成愈伤组织。
再经过一定的条件培养,又可以再分化出根和芽,形成完整的小植株。
2.每个植物都具有全能性的特点,原因是每个细胞中都具有某种生物的全部遗传信息。
3.在植物的生长发育过程中,细胞并不会表现出全能性,而是分化成各种组织和器官,原因是细胞中的基因会选择性表达出各种蛋白质,从而构成植物的不同组织和器官。
4.植物的组织培养就是在无菌和人工控制的条件下,将离体的植物器官、组织、细胞,培养在人工配置的培养基上给予适宜的培养条件,诱导其产生愈伤组织、丛芽,最终形成完整的植株。
5.植物组织培养全过程,证明了分化的植物细胞仍具有形成完整的植物所需要的全部基因。
6.番茄和马铃薯不能进行传统的杂交,原因是它们是两个不同的物种,因此它们之间想想着天然的生殖隔离,但是,如果采用体细胞杂交的方法,就能得到“番茄-马铃薯”杂种植株,这各方法成功的关键是:①利用纤维素酶和果胶酶除去细胞壁获得具有活力的原生质体;②原生质体融合。
成功的标志是融合后的杂种细胞再生细胞壁。
7.进行原生质体间的融合,必须要借助一定的技术手段进行人工诱导。
人工诱导的方法基本可以分为两大类――物理法和化学法,物理法包括离心、振动、电激等;化学法一般使用聚乙二醇(PEG)作为诱导剂来诱导细胞融合。
8.植物体细胞杂交就是将不同种的植物体细胞,在一定的条件下融合成杂种细胞,并将其培育成新的植物体的技术。
植物体细胞融合引起的变异属于染色体变异。
9.植物细胞工程常采用的技术手段有植物组织培养技术和植物体细胞杂交技术等。
2.1.2 植物细胞工程的实际应用1.植物的微型繁殖技术又称快速繁殖技术,其意义是①可以保持优良品种的遗传性状;②高效快速地实现大量繁殖。
2.植物长期进行营养生殖,病毒会在作物体内逐年积累,结果导致作物产量降低、品质变差。
如果用分生区(茎尖)作为组织培养的材料,就会培育出无病毒的脱毒苗,用脱毒苗进行快速繁殖,种植的作物就不会或极少感染病毒。
3.所谓人工种子,就是以植物组织培养得到的胚状体、不定芽、顶芽和腋芽等为材料,经过人工薄膜包装得到种子,人工种子在适宜的条件下同样能够萌发长成幼苗。
人工种子由人工种皮、胶质和胚状体三部分组成,其中的胶质相当于单子叶植物种子的胚乳或双子叶植物种子的子叶。
人工种皮的制备是生物膜结构和功能的研究深入到分子水平的体现。
4.通过花药培养获得单倍体,再经过人工诱导使染色体加倍,即可得到稳定遗传的优良品种。
这项技术称为单倍体育种,其优点是明显缩短育种年限。
该技术所依据的遗传学原理是染色体变异。
5.在植物的组织培养过程中,由于培养的细胞一直处于不断分生状态,因此容易受到培养条件和外界压力的影响而产生突变,从这些生产突变的个体中可以筛选出对人们有用的突变体,进而培育成新品种。
6.植物组织培养技术除了在农业上的应用外,还广泛应用于细胞产物的工厂化生产等领域,可获得蛋白质、脂肪、糖类、药物、香料、生物碱等细胞产物。
2.2 动物细胞工程2.2.1 动物细胞培养和核移植技术1.动物细胞工程常用的技术手段有动物细胞培养、动物细胞核移植、动物细胞融合、生产单克隆抗体等,其中动物细胞培养技术是其他动物细胞工程技术的基础。
2.将从健康的动物体内取出的组织块剪碎,加入胰蛋白酶或胶原蛋白酶处理一段时间后,组织块就会分散成单个细胞。
对动物细胞进行培养时,要求培养皿或培养瓶内表面光滑、无毒、易于贴附;当贴壁细胞分裂生长到表面相互接触时,细胞就会停止分裂增殖,这种现象称为细胞的接触抑制。
人们通常将动物组织消化后的初次培养称为原代培养。
3.贴满瓶壁的细胞需要重新用胰蛋白酶处理,然后分瓶继续培养,让细胞继续增殖,这样的培养称为传代培养。
细胞传代至10代~50代左右时,增殖会逐渐减慢,以至于完全停止,但少部分细胞会克服寿命的极限,获得不死性,这些细胞已经发生了突变,正在朝着等同于癌细胞的方向发展。
4.动物细胞培养的条件包括无菌、无毒的环境,营养,温度和pH,气体环境。
5.动物核移植是将动物的一个细胞的细胞核移入一个已经去掉细胞核的卵母细胞中,使其重组并发育成一个新的胚胎,这个胚胎最终发育成为动物个体。
6.用于核移植的供体细胞一般都选用传代10代以内的细胞,因为这样的细胞能保持正常的二倍体核型。
通过细胞核移植方法生产的克隆动物,并不是对核供体动物100%的复制,因为生物的性状除受细胞核基因控制以外,还受细胞质基因和外界环境的影响。
7.体细胞核移植技术的应用前景有:促进优良畜群繁育;保护濒危动物;克隆人的细胞、组织、器官,进行器官移植等。
2.2.2 动物细胞融合与单克隆抗体1.动物细胞融合常用的诱导因素有聚乙二醇(PEG)、灭活病毒、电激等。
细胞融合技术的优点是突破了有性杂交方法的局限,使远缘杂交成为可能。
2.制备单克隆抗体的技术流程是:用羊的红细胞对小鼠进行注射,使小鼠产生免疫反应。
然后,把相应的B淋巴细胞和骨髓瘤细胞融合,再用特定的选择性培养基进行筛选,在该培养基上,未融合的亲本细胞和融合的具有同一种核的细胞都会死亡,只有融合的杂种细胞才能生长。