视频第1章 半导体二极管和半导体三极管 3页

合集下载

放大电路基础知识

放大电路基础知识
上-页 下-页 返回
第一节 半导体二极管
2.最大反向工作电压URM 最大反向工作电压URM是指二极管工作时两端所允许加的最
大反向电压。为保证二极管安全工作、不被击穿,通常URM 约为反向击穿电压UR的一半。 3.反向电流 反向电流是指二极管加最高反向工作电压时的反向电流。反 向电流越小,管子的单向导电性能越好。常温下,硅管的反 向电流一般只有几微安;锗管的反向电流较大,一般在几十 至几百微安之间。 4.最高工作频率
上-页 下-页 返回
第二节 半导体三极管
由图1-14所示的输出特性曲线可以看出如下三点特性。 曲线的起始部分较陡,且不同的IB曲线的上升部分几乎重合,
表明当UCE较小时,只要UCE略有增大, IC就迅速增加,但 IB几乎不受IC的影响。 当UCE较大(例如大于1 V)后,曲线比较平坦。 曲线是非线性的。由于三极管的输入、输出特性曲线都是非 线性的,所以它是非线性器件。 六、晶体管的主要参数 1.穿透电流 穿透电流ICEO是指基极开路时集一射极之间的电流。
在数字电路中,三极管作为开关元件,主要工作在截止状态 或饱和状态,并在截止状态和饱和状态之间经过短促的放大 状态进行快速转换和过渡。
上-页 下-页 返回
第二节 半导体三极管
(1)截止状态 当开关S接位置1时,三极管发射结电压 UBE<UT,相当于开关断开状态,等效电路如图1-11 (b) 所示。
是具有电流放大作用。三极管按其结构不同,分为NPN型和 PNP型两种。相应的结构示意图及电路符号如图1-8所示。 在制作三极管时,其内部的结构特点是: 发射区掺杂浓度高; 基区很薄,且掺杂浓度低; 集电结面积大于发射结面积。 以上特点是三极管实现放大作用的内部条件。 另外,三极管按其所用半导体材料不同,分为硅管和锗管; 按用途不同,分为放大管、开关管和功率管;按工作频率不 同,分为低频管和高频管;按耗散功率大小不同,分为小功

第1章常用半导体器件

第1章常用半导体器件

ui=0时直流电源作用
根据电流方程,rd

uD iD

UT ID
小信号作用
Q越高,rd越小。 静态电流
3. 二极管电路应用举例
(1)开关电路(掌握)
方法:假设法,将D管断开 原则一:单向导电性
阳极 a
k 阴极
D
V阳>V阴,D管正偏,导通 V阳< V阴,D管反偏,截止
原则二:优先导通原则(多二极管电路中)
物质因浓度差而产生的运动称为扩散运动。气 体、液体、固体均有之。
P区空穴 浓度远高 于N区。
N区自由电 子浓度远高
于P区。
扩散运动
扩散运动使靠近接触面P区的空穴浓度降低、靠近接触面 N区的自由电子浓度降低,产生内电场。
由于扩散运动使P区与N区的交界面缺少多数载流子,形成 内电场,从而阻止扩散运动的进行。内电场使空穴从N区向P 区、自由电子从P区向N 区运动。
2
98 0.98
100
综上所述,实现晶体三极管放大作用的 两个条件是:
(1)内部条件:发射区杂质浓度远大于基区 杂质浓度,且基区很薄。
(2)外部条件:发射结正向偏置,集电结反 向偏置。
正偏电压工作,通电流→发光,电信号→光信号 光颜色:红、橙、黄、绿(与材料磷、砷、镓、化有关)
3. 激光二极管
(a)物理结构 (b)符号
发光二极管
光电二极管
一、晶体管的结构及类型 二、晶体管的电流放大原理 三、晶体管的共射输入特性和输出特性 四、温度对晶体管特性的影响 五、主要参数
三极管:电流放大(三个电极)
将PN结封装,引出两个电极,就构成了二极管。
小功率 二极管
大功率 二极管
稳压 二极管

半导体器件的基础知识

半导体器件的基础知识

向电压—V(BR)CBO。 当集电极开路时,发射极与基极之间所能承受的最高反
向电压—V(BR)EBO。
精选课件
28
1.2 半导体三极管
③ 集电极最大允许耗散功率 PCM 在三极管因温度升高而引起的参数变化不超过允许值时, 集电极所消耗的最大功率称集电极最大允许耗散功率。
三极管应工作在三极 管最大损耗曲线图中的安 全工作区。三极管最大损 耗曲线如图所示。
热击穿:若反向电流增大并超过允许值,会使 PN 结烧 坏,称为热击穿。
结电容:PN 结存在着电容,该电容为 PN 结的结电容。
精选课件
5
1.1 半导体二极管
1.1.3 半导体二极管
1.半导体二极管的结构和符号 利用 PN 结的单向导电性,可以用来制造一种半导体器 件 —— 半导体二极管。 电路符号如图所示。
将两个 NPN 管接入判断 三极管 C 脚和 E 脚的测试电 路,如图所示,万用表显示阻
值小的管子的 值大。
4.判断三极管 ICEO 的大小 以 NPN 型为例,用万用 表测试 C、E 间的阻值,阻值 越大,表示 ICEO 越小。
精选课件
33
1.2 半导体三极管
1.2.6 片状三极管
1.片状三极管的封装 小功率三极管:额定功率在 100 mW ~ 200 mW 的小功率 三极管,一般采用 SOT-23形式封装。如图所示。
精选课件
21
1.2 半导体三极管
由图可见: (1)当 V CE ≥ 1 V 时,特性曲线基本重合。 (2)当 VBE 很小时,IB 等于零,三极管处于截止状态。
精选课件
22
1.2 半导体三极管
(3)当 VBE 大于门槛电压(硅管约 0.5 V,锗管约 0.2 V) 时,IB 逐渐增大,三极管开始导通。

三极管

三极管

N
E EB
PNP VB<VE VC<VB
EC
第一章 半导体二极管、三极管
晶体管放大的条件
发射区掺杂浓度高 1.内部条件 基区薄且掺杂浓度低 I B
集电结面积大 2.外部条件 发射结正偏 集电结反偏
RB
mA A
IC
mA
C B
3DG6
E
IE
EC
晶体管的电流分配和 放大作用
电路条件: EC>EB 发射结正偏 集电结反偏
基极开路
第一章 半导体二极管、三极管
三、极限参数
1. 集电极最大允许电流 ICM
集电极电流 IC上升会导致三极管的值的下降,当值下降到正常值 的三分之二时的集电极电流即为 ICM。 2.反向击穿电压
(1) 集-射极反向击穿电压U(BR)CEO 当集—射极之间的电压UCE 超过一定的数值时,三极管就会被击穿。 手册上给出的数值是25C、基极开路时的击穿电压U(BR) CEO。基极开 路时 C、E极间反向击穿电压。 (2)集电极-基极反向击穿电压U(BR)CBO — 发射极开路时 C、B极间 反向击穿电压。 (3)发射极-基极反向击穿电压U(BR)EBO — 集电极开路时 E、B极间反 向击穿电压。
第一章 半导体二极管、三极管
一、输入特性
iC
iB f (uBE ) u
uCE 0
iB
RB + + uBE

CE常数
与二极管特性相似
RB +

B + RC + 输出 RB E uCE 输入 回路 + uBE + EC 回路 EB IE

iB
C

半导体、二级管和三极管概述

半导体、二级管和三极管概述

PN结加反向电压
PN结加反向电压时, 内建电场被增强,势垒 高度升高,空间电荷区 宽度变宽。这就使得多 子扩散运动很难进行, 扩散电流趋于零;
而少子漂移运动处于优势,形成微小的反向的电流。
流过PN结的反向电流称为反向饱和电流(即IS), PN结呈现为大电阻。由于IS很小,可忽略不计,所 以该状态称为:PN结反向截止。 总结 PN结加正向电压时,正向扩散电流远大于漂移电 流, PN结导通;PN结加反向电压时,仅有很小的 反向饱和电流IS,考虑到IS≈0,则认为PN结截止。
基区空穴 的扩散
扩散运动形成发射极电流IE,复合运动Байду номын сангаас成基极电 流IB,漂移运动形成集电极电流IC。
电流分配:
IE=IB+IC
IE-扩散运动形成的电流 IB-复合运动形成的电流 IC-漂移运动形成的电流
直流电流 放大系数
IC IB
iC iB
交流电流放大系数
I CEO (1 ) I CBO
稳压管的伏安特性
稳压管的主要参数 稳定电压Uz:Uz是在规定电流下稳压管的反向击 穿电压。 稳定电流IZ:它是指稳压管工作在稳压状态时, 稳压管中流过的电流,有最小稳定电流IZmin和最大 稳定电流IZmax之分。
(6)其它类型二极管 发光二极管:在正向导通其正向电流足够大时, 便可发出光,光的颜色与二极管的材料有关。广 泛用于显示电路。
图4 本征半导体中 自由电子和空穴
本征半导体的载流子的浓度 本征激发:半导体在热激发下产生自由电子和空 穴对的现象称为本征激发。 复合:自由电子在运动过程中如果与空穴相遇就 会填补空穴,使两者同时消失。 在一定的温度下,本征激发所产生的自由电子与 空穴对,与复合的自由电子与空穴对数目相等,达 到动态平衡。即在一定温度下本征半导体的浓度是 一定的,并且自由电子与空穴浓度相等。

电子技术全套课件完整版ppt教学教程最全

电子技术全套课件完整版ppt教学教程最全
为低频管。 (4)按功率可分为:小功率管和大功率管。耗散功率小于1W为小功率管,耗散功率大于1W为大功
率管。 (5)按用途可分为:普通放大三极管和开关三极管等。
1.3 半导体三极管
1.3.1 三极管的结构
3.图形符号 三极管的图形符号如图1-18所示。
图1-18 三极管的图形符号
1.3 半导体三极管
1.3 半导体三极管
1.3.1 三极管的结构
2.分类 三极管的种类很多,通常按以下方法进行分类: (1)按半导体制造材料可分为:硅管和锗管。硅管受温度影响较小、工作稳定,因此在电子产品中
常用硅管。 (2)按三极管内部基本结构可分为:NPN型和PNP型两类。 (3)按工作频率可分为:高频管和低频管。工作频率高于3MHz为高频管,工作频率在3MHz以下
I 0.01 mA
B
(1)当IB有较小变化时,IC就有较大变化。
(2)直流电流放大系数 (3)交流电流放大系数
IC
IB
I C
I B
1.3 半导体三极管
1.3.2 三极管的电流放大作用
2.电流放大作用 显然,(1-2)和(1-3)两式的意义是不同的。前者反映的是静态(直流工作状态)时集电极与基极电流之
图1-11 硅二极管的伏安特性曲线
1.2 半导体二极管
1.2.2 二极管的特性与参数
3 半导体二极管的主要参数
(1)最大整流电流 IFM:二极管允许通过的最大正向工作电流平均值。
(2)最高反向工作电压 VRM:二极管允许承受的反向工作电压峰值,
VRM
1 2
~
1,也叫 3
反向击穿电压。
(3)反向漏电流 IR:是指在规定的反向电压和环境温度下的二极管反向电流值。IR越小,二 极管的单向导电性能越好。

模拟电子技术基础第四版课件-第一章

模拟电子技术基础第四版课件-第一章
60A 40A
20A IB=0 9 12 UCE(V)
(1-51)
4
IC(mA
) 此区域中UC1E00UBAE,
集电结正偏,
3
IB>IC,UCE800.3VA 称为饱和区。
60A
2
40A
1
20A
IB=0
3 6 9 12 UCE(V)
(1-52)
IC(mA ) 4 3
2
此1区00域A中 :
I,UB=B80E0<,ICA死=I区CEO 电压60,A称为 截止40区A。
变薄
+ P
-+ -+ -+ -+
内电场被削弱,多子 的扩散加强能够形成 较大的扩散电流。
_ N
外电场
R
内电场
E
(1-22)
2、PN 结反向偏置
_ P
变厚
-+ -+ -+ -+
内电场被被加强,多子
的扩散受抑制。少子漂
移加强,但少子数量有
限,只能形成较小的反
向电流。
+
N
内电场
外电场
R
E
(1-23)
3 PN 结方程
I
U
I I S (e UT 1)
U
三 PN结的击穿
(1-24)
四 PN结的电容效应
PN结高频小信号时的等效电路: rd
势垒电容和扩散电 容的综合效应
(1-25)
1. 2 半导体二极管
1.2. 1 半导体二极管的结构和符号
PN 结加上管壳和引线,就成为半导体二极管。
点接触型
触丝线
PN结
引线 外壳线

电子课件电子技术基础第六版第一章半导体二极管

电子课件电子技术基础第六版第一章半导体二极管

当反向电压增加到反向击穿电压 UBR 时,反向电流会急 剧增大,这种现象称为“反向击穿”。反向击穿会破坏二极管 的单向导电性,如果没有限流措施,二极管很可能因电流过 大而损坏。
无论硅管还是锗管,即使工作在最大允许电流下,二极管 两端的电压降一般也都在 0.7 V 以下,这是由二极管的特殊 结构所决定的。所以,在使用二极管时,电路中应该串联限 流电阻,以免因电流过大而损坏二极管。
§1-1 半导体的基本知识 §1-2 半导体二极管
§1-1 半导体的基本知识
学习目标
1. 了解半导体的导电特性。 2. 理解 PN 结正偏、反偏的含义。 3. 掌握 PN 结的单向导电性。
一、半导体的导电特性
物质按导电能力强弱不同可分为导体、半导体和绝缘体三 大类。半导体的导电能力介于导体和绝缘体之间。目前,制 造半导体器件用得最多的是硅和锗两种材料。由于硅和锗是 原子规则排列的单晶体,因此用半导体材料制成的半导体管 属于晶体管。
半导体具有不同于导体和绝缘体的导电特性,见表。
半导体的导电特性
纯净的半导体称为本征半导体,它的导电能力是很弱的。 利用半导体的掺杂特性,可制成 P 型和 N 型两种杂质半导体 。
二、PN 结及其单向导电性
1. PN 结 用特殊的工艺使 P 型半导体和 N 型半导体结合在一起,就会在交界处 形成一个特殊薄层,该薄层称为“PN 结”,如图所示。PN 结是制造半导体 二极管、半导体三极管、场效应晶体 管等各种半导体器件的基础。
2. 分类
二极管的种类
二、二极管的伏安特性
为了直观地说明二极管的性质,通常用二极管两端的电压 与通过二极管的电流之间的关系曲线,即二极管的伏安特性 曲线来描述,如图所示。
在下图所示的坐标图中,位于第一象限的曲线表示二极管 的正向特性,位于第三象限的曲线表示二极管的反向特性。

最新第2讲 二极管、三极管PPT课件

最新第2讲 二极管、三极管PPT课件
iB
1. 分别分析uI=0V、5V时T是工作在截止状态还是导通状态; 2. 已知T导通时的UBE=0.7V,若uI=5V,则β在什么范围内T 处于放大状态?在什么范围内T处于饱和状态?
讨论二
2.7
ΔiC
PCMiCuCE
uCE=1V时的iC就是ICM
iC
iB
UC E
U(BR)CEO
由图示特性求出PCM、ICM、U (BR)CEO 、β。
讨论一
判断电路中二极管的工作状态,求解输出电压。
判断二极管工作状态的方法?
讨论二
1. V=2V、5V、10V时二极管中
的直流电流各为多少?
2. 若输入电压的有效值为5mV,
则上述各种情况下二极管中的交
ID
流电流各为多少? V=5V时,
rd
uD iD
UT IDQ
Q uD=V-iR
ID
V
UD R
V 较小时应实测伏安 特性,用图解法求ID。
直流电流 放大系数
IC
IB
iC
iB
ICEO(1)ICBO
交流电流放大系数
穿透电流 集电结反向电流
为什么基极开路集电极回 路会有穿透电流?
三、晶体管的共射输入特性和输出特性
1. 输入特性
iBf(uBE )UCE
为什么像PN结的伏安特性? 为什么UCE增大曲线右移? 为什么UCE增大到一定值曲 线右移就不明显了?
一、晶体管的结构和符号
为什么有孔?
小功率管
中功率管
大功率管
多子浓度高
多子浓度很 低,且很薄
面积大
晶体管有三个极、三个区、两个PN结。
二、晶体管的放大原理
放大的条 uuC BB E 件 U 0, o( n 即 u发 CE射 uB( E结集 正电 偏结 )反偏)
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章半导体二极管和三极管
1. 半导体基础知识
半导体是导电能力介于导体和绝缘体之间的物质。

本征半导体是一种无杂质、晶体结构完整的半导体。

半导体内部有电子与空穴两种载流子,半导体的导电能力取决于其载流子的多少,
本征半导体有热敏特性、光敏特性和掺杂特性。

本征半导体在热激发条件下仅有少数价电子获得足够能量形成电子空穴对,因此,载流子的数量少,导电能力差,且受温度的影响大。

掺杂后形成的杂质半导体中多数载流子浓度大大增加,导电能力增强。

按所掺杂质元素的不同半导体又可分为P型半导体和N型半导体。

2. PN结的单向导电特性
当PN结两端加正向电压(即正向偏置)时,PN结变窄,PN结的正向电阻很小,将形成较大的正向电流,此时PN结处于导通状态;反之,当PN结加反向电压时(即反向偏置),PN结变宽,PN结反向电阻很大,因而反向电流很小,PN结处于截止状态,所以PN结具有单向导电特性。

3. 半导体二极管
半导体二极管是在一个PN结两端加上电极引线做成管芯,并以管壳封装加固而成。

因此,单向导电性是半导体二极管最重要的特性。

半导体二极管常用伏安特性曲线表示其性能,它由正向特性和反向特性两部分组成。

学习时应注意以下几点:
(1)在正向特性的起始部分,二极管呈现出很大的正向电阻处于截止状态,这个部分称为死区,对应的电压称为死区(阈值)电压,当正向电压大于死区电压后,正向电流随正向电压的上升而急剧上升,二极管正向电阻变得很小,此时二极管处于导通状态。

二极管的死区电压硅管约为0.5V,锗管约为0.1 V,二极管的实际导通电压硅管约为0.7V,锗管约0.3V,与死区电压约有差异。

(2)在反向特性部分,当反向电压不超过某一范围时,反向电流很小且不随反向电压变化,只有反向电压增加到某一数值时,反向电流才会急剧增大,这种现象称为反向击穿,对应的反向电压称为反向击穿电压。

PN结反向击穿时电流很大,因而消耗在PN结上的功率很大,容易使PN结发热超过它的耗散功率而烧毁二极管。

(3)伏安特性与温度有很大关系。

当加反向电压时,由于少数载流子的浓度是由温度决定的,所以温度上升时,反向饱和电流随温度上升增加很快。

(4)为了分析与计算方便,常常假设二极管是理想的,即把半导体二极管的特性理想化,认为二极管的正向电阻为零,而反向电阻为无穷大,而且忽略正向压降(令其为0V)和反向电流。

(5)半导体二极管的主要参数有最大整流电流IFM最高反向工作电压VRM和最大反向电流IRM。

其中最大整流电流和最高反向工作电压两个参数是合理选择和使用二极管的主要依据。

应当注意最高反向工作电压和反向击穿电压的区别,最高反向工作电压是确保二极管安全工作所允许使用的电压值,约为反向击穿电压的一半。

4. 稳压二极管
稳压二极管是一种特殊的半导体二极管,与一般二极管不同的是,它的反向击穿电压较低,反向击穿特性较陡,击穿后除去反向电压又能恢复正常,可利用它在反向击穿状态下的恒压特性进行稳压。

5. 半导体三极管
半导体三极管又称晶体三极管。

它有发射区、基区和集电区三个区,各自引出的三个电极分别称为发射极、基极和集电极,分别用字母e,b,c(或E,B,C)表示。

发射区和基区之间的PN结称为发射结,集电区和基区之间PN结称为集电结。

晶体管按半导体材料可分为硅
管和锗管,按PN结组合方式不同有可分为PNP型和NPN型。

半导体三极管工作在放大状态时,通常在它的发射结加正向电压,集电结加反向电压,正常工作时发射结正向压降变化不大,硅管约为0.7V,锗管约为0.3V。

6 三极管的电流放大作用与电流分配关系
(1)半导体三极管具有电流放大作用。

它是通过较小的基极电流IB的变化去控制较大的集电极电流IC的变化,即基极的控制作用。

因此,半导体三极管是一种电流控制型器件。

(2)半导体三极管实现电流放大的条件分为外部条件和内部条件。

外部条件(偏置条件)是发射结正向偏置,集电结反向偏置,即NPN型管要求VC>VB>VE;NPN型管要求VE>VB>VC。

内部条件(工艺条件) 是发射区掺杂浓度高,基区很薄且杂质浓度低,集电结面积大,杂质浓度较低。

(3)三极管在放大状态时的电流分配关系为
iE=iB+iC,iC=βiB
7三极管的特性曲线和三种工作状态
共射电路三极管的输入特性
输入特性曲线类似于二极管的正向特性,也存在死区电压及发射结正向压降,半导体管的输入特性是非线性的。

共射电路三极管的输出特性
通常把输出特性曲线分成截止、饱和、放大三个工作区来分析半导体三极管的工作状态。

发射结和集电结均处于反向偏置时,半导体三极管处于截止状态;当发射结和集电结均为正向偏置时,半导体三极管工作于饱和状态;当发射结正向偏置、集电结反向偏置时,半导体三极管工作在放大状态。

在放大区内iC=βiB,存在电流放大作用。

集电极电流iC仅受iB的控制,与vCE无关,这时可以把三极管视为-个受基极电流iB控制的受控电流源。

三极管的三种工作状态及特点如表1.1所示。

1。

相关文档
最新文档