变量间的相关关系教学导案

合集下载

变量间的相关关系教案

变量间的相关关系教案

变量间的相关关系教案一、教学目标1. 让学生理解变量间的相关关系的概念。

2. 让学生掌握如何判断两个变量之间的相关关系。

3. 让学生学会如何绘制相关系数图。

4. 让学生能够运用相关关系解决实际问题。

二、教学内容1. 变量间的相关关系定义。

2. 相关关系的判断方法。

3. 相关系数图的绘制。

4. 实际问题中的应用。

三、教学重点与难点1. 教学重点:变量间的相关关系概念,判断方法,相关系数图的绘制。

2. 教学难点:相关系数图的绘制,实际问题中的应用。

四、教学方法1. 讲授法:讲解变量间的相关关系定义、判断方法和绘制相关系数图的步骤。

2. 案例分析法:分析实际问题,让学生学会运用相关关系解决问题。

3. 互动教学法:引导学生提问、讨论,提高学生的参与度。

五、教学过程1. 导入:通过一个实例引入变量间的相关关系概念。

2. 讲解:讲解变量间的相关关系定义、判断方法,并进行相关系数图的绘制演示。

3. 案例分析:分析实际问题,让学生学会运用相关关系解决问题。

4. 练习:让学生独立完成相关系数图的绘制,并分析实际问题。

6. 作业布置:布置相关练习题,巩固所学知识。

六、教学评价1. 评价方式:采用课堂表现、练习完成情况和课后作业三种方式进行评价。

2. 评价内容:(1)课堂表现:观察学生在课堂上的参与程度、提问和回答问题的情况。

(2)练习完成情况:检查学生练习题的完成质量,包括相关系数图的绘制和实际问题的分析。

(3)课后作业:评估学生作业的完成情况,巩固所学知识。

七、教学反思1. 反思内容:(1)教学内容:回顾本节课的教学内容,确认是否全面覆盖了变量间的相关关系概念、判断方法和实际应用。

(3)课堂互动:评估学生的参与程度,思考如何提高学生的积极性和主动性。

(4)作业布置:检查作业的难度和量,确保学生能够通过作业巩固所学知识。

八、拓展与延伸1. 相关研究:介绍变量间相关关系在学术研究中的应用,如心理学、经济学等领域。

2. 实际案例:分析更多实际问题,让学生了解相关关系在生活中的重要作用。

高中数学人教A版必修3《2.3.1变量间的相关关系》教案4

高中数学人教A版必修3《2.3.1变量间的相关关系》教案4

必修三 2.3.1 变量间的相关关系教学目标1、知识与技能(1)了解变量之间的相关关系。

(2)会区别变量之间的函数关系与变量相关关系。

(3)会举例说明现实生活中变量之间的相关关系。

(4)让学生了解产生变量之间的相关关系是由许多不确定的随机因素的影响。

2、过程与方法(1)通过复习变量之间的函数关系引出变量相关关系,有熟悉到生疏的过程便于学生理解。

(2)通过对变量之间的关系的学习让学生了解从总的变化趋势来看变量之间存在某种关系,但这种关系又不能用确定的函数关系精确表达出来,也让学生了解变量之间的不确定性关系是很普遍的,帮助学生树立科学的辨证唯物主义观点,感受自然的辩证法。

(3)通过对本课的学习,引导学生关注社会,关注生活,进一步学会观察、比较、归纳、分析等一般方法的运用。

3、情感、态度与价值观(1)通过引导学生观察生活中的例子,使学生由能直接找出变量之间的函数关系引出到无法直接找出变量之间的函数关系,即变量之间的相关关系,激发学生的求知欲。

(2)通过引导学生感受生活中实际问题转化为数学问题,学会查找资料,收取信息,学会用统计知识对实际问题进行数学分析。

教学重点1、变量之间的相关关系。

2、会区别变量之间的函数关系与变量相关关系。

3、会举例说明现实生活中变量之间的相关关系。

教学难点1、对变量之间的相关关系的理解。

2、变量之间的函数关系与变量相关关系的区别。

教辅手段教学过程一、情景设置问题1:将汽油以均匀的速度注入桶里,注入的时间t与注入的油量y的关系如下表:从表里数据得出油量y与时间t之间的函数关系式为:问题2、甲、乙两地相距150千米,某人骑车从甲地到乙地,则他的速度v(千米/时)和时间t(小时)的函数大致图象是怎样的?问题3、小麦的产量y千克每亩与施肥量x千克每亩之间的关系如下表:从表里数据能得出小麦的产量y与施肥量x之间的函数关系式吗?提问学生以下三个问题。

问题1:因为是以均匀的速度注入桶里,所以注入的油量y与注入的时间t成正比例关系,由数据表格知,注入的油量y与注入的时间t之间的函数关系式为y=2t(t 0)(实际问题,因此自变量的取值范围应该有意义)问题2:路程一定,所以走完全程所用的时间t与速度v成反比例关系所以其函数图象是反例函数图象。

变量间的相关关系教案

变量间的相关关系教案

变量间的相关关系教案一、教学目标:1. 让学生理解变量间的相关关系概念,掌握相关系数的概念及计算方法。

2. 能够运用相关系数判断两个变量间的线性相关程度。

3. 能够运用图表和数学方法分析实际问题中的变量相关关系。

二、教学内容:1. 变量间的相关关系概念介绍。

2. 相关系数的概念及计算方法。

3. 相关系数与线性相关程度的关系。

4. 实际问题中的变量相关关系分析。

三、教学重点与难点:1. 教学重点:相关系数的概念及计算方法,实际问题中的变量相关关系分析。

2. 教学难点:相关系数的计算方法,如何判断两个变量间的线性相关程度。

四、教学方法:1. 讲授法:讲解变量间的相关关系概念,相关系数的概念及计算方法。

2. 案例分析法:分析实际问题中的变量相关关系。

3. 小组讨论法:分组讨论相关系数与线性相关程度的关系。

五、教学准备:1. 教学PPT:包含变量间的相关关系概念,相关系数的概念及计算方法,实际问题中的变量相关关系分析等内容。

2. 案例材料:选取实际问题中的变量相关关系案例,用于课堂分析。

3. 计算器:用于计算相关系数。

六、教学过程:1. 引入新课:通过一个简单的实际问题,引导学生思考变量间的相关关系。

2. 讲解相关关系概念:介绍变量间的相关关系,解释相关系数的概念。

3. 相关系数的计算方法:讲解相关系数的计算方法,示例演示。

4. 案例分析:分析实际问题中的变量相关关系,引导学生运用相关系数进行判断。

5. 小组讨论:分组讨论相关系数与线性相关程度的关系,分享讨论成果。

6. 总结与反思:总结本节课的主要内容,布置课后作业。

七、课时安排:1. 第一课时:介绍变量间的相关关系概念,相关系数的概念及计算方法。

2. 第二课时:实际问题中的变量相关关系分析,小组讨论,总结与反思。

八、课后作业:1. 复习本节课的内容,掌握相关系数的概念及计算方法。

2. 分析课后练习中的实际问题,运用相关系数判断变量间的线性相关程度。

3. 思考如何运用相关关系解决实际问题,准备课堂分享。

变量间的相关关系教案

变量间的相关关系教案

变量间的相关关系教案教学目标:1. 了解相关关系的概念和特点;2. 掌握散点图的绘制和解读;3. 学会判断变量间的线性相关关系;4. 能够应用相关关系解决实际问题。

教学重点:1. 相关关系的概念和特点;2. 散点图的绘制和解读;3. 判断变量间的线性相关关系。

教学难点:1. 相关系数的计算和解读;2. 实际问题的解决。

教学准备:1. 计算机和投影仪;2. 相关关系的数据集;3. 散点图的绘制工具。

教学过程:一、导入(5分钟)1. 引入相关关系的概念;2. 举例说明相关关系在实际生活中的应用。

二、相关关系的概念和特点(10分钟)1. 讲解相关关系的定义;2. 阐述相关关系的特点;3. 引导学生通过实例判断相关关系。

三、散点图的绘制和解读(10分钟)1. 介绍散点图的概念;2. 演示如何绘制散点图;3. 教授如何解读散点图;4. 学生分组练习绘制和解读散点图。

四、判断变量间的线性相关关系(10分钟)1. 讲解线性相关的概念;2. 介绍线性相关的判断方法;3. 学生分组练习判断变量间的线性相关关系。

五、实际问题的解决(10分钟)1. 提供实际问题情境;2. 引导学生应用相关关系解决问题;3. 学生展示解题过程和结果。

教学反思:本节课通过讲解相关关系的概念和特点,让学生了解变量间的关系。

通过绘制和解读散点图,培养学生对数据的观察和分析能力。

通过判断变量间的线性相关关系,使学生掌握线性相关的判断方法。

通过实际问题的解决,让学生学会应用相关关系解决实际问题。

在教学过程中,注意引导学生积极参与,分组练习,提高学生的动手能力和合作意识。

六、相关系数的计算和解读(10分钟)1. 介绍相关系数的概念;2. 演示如何计算相关系数;3. 教授如何解读相关系数;4. 学生分组练习计算和解读相关系数。

七、非线性相关关系的判断(10分钟)1. 讲解非线性相关的概念;2. 介绍非线性相关的判断方法;3. 学生分组练习判断非线性相关关系。

变量间的相关关系教案

变量间的相关关系教案

变量间的相关关系优秀教案一、教学目标:1. 让学生理解相关关系的概念,能够识别和描述两种变量之间的相关关系。

2. 学生能够运用相关系数来衡量两个变量之间的相关程度。

3. 学生能够运用图表和数学模型来分析变量之间的相关关系。

4. 培养学生的数据分析能力和问题解决能力。

二、教学内容:1. 相关关系的概念和类型。

2. 相关系数的计算和解读。

3. 散点图在分析相关关系中的应用。

4. 线性回归方程的构建和应用。

5. 实际案例分析,运用相关关系解决实际问题。

三、教学重点与难点:重点:相关关系的概念和类型,相关系数的计算和解读,散点图在分析相关关系中的应用。

难点:线性回归方程的构建和应用,实际案例分析。

四、教学方法:1. 采用问题驱动的教学方法,引导学生通过实际案例来理解和应用相关关系。

2. 使用多媒体教学资源,如图表和数学软件,辅助学生直观地理解相关关系。

3. 组织小组讨论和合作活动,培养学生的团队合作能力和问题解决能力。

4. 提供充足的练习机会,让学生通过实践来巩固所学知识。

五、教学过程:1. 引入:通过一个简单的实际案例,引导学生思考两种变量之间的关系。

2. 讲解相关关系的概念和类型,解释相关系数的意义。

3. 演示如何通过散点图来分析两种变量之间的相关关系。

4. 讲解线性回归方程的构建过程,并演示如何应用线性回归方程来预测未知数据。

5. 提供实际案例分析,让学生运用相关关系来解决实际问题。

7. 布置作业,让学生通过练习来巩固所学知识。

六、教学评估与反馈:1. 通过课堂练习和作业,评估学生对相关关系概念的理解程度。

2. 通过小组讨论和案例分析,评估学生在实际问题中运用相关关系的能力。

3. 收集学生的疑问和困难,及时给予反馈和解答。

4. 鼓励学生提出自己的观点和思考,促进学生的主动学习。

七、拓展与深化:1. 介绍相关关系在社会科学、自然科学和工程科学中的应用。

2. 探讨非线性相关关系和多变量相关关系的研究方法。

变量间的相关关系教案

变量间的相关关系教案

变量间的相关关系优秀教案一、教学目标1. 让学生理解相关关系的概念,掌握相关系数的概念及计算方法。

2. 培养学生利用相关系数判断变量间关系强度的能力。

3. 引导学生运用相关分析解决实际问题,提高数据分析能力。

二、教学内容1. 相关关系的定义2. 相关系数的概念及计算方法3. 相关系数的判断标准4. 实际问题中的相关分析应用三、教学重点与难点1. 教学重点:相关关系的概念,相关系数的计算方法,相关分析在实际问题中的应用。

2. 教学难点:相关系数的计算,利用相关系数判断变量间关系强度。

四、教学方法1. 讲授法:讲解相关关系的概念,相关系数的计算方法及判断标准。

2. 案例分析法:分析实际问题,引导学生运用相关分析解决问题。

3. 互动讨论法:分组讨论,分享各组在实际问题中应用相关分析的经验。

五、教学准备1. 教学课件:制作相关关系、相关系数、实际问题分析的课件。

2. 案例资料:收集相关分析在实际问题中应用的案例。

3. 分组讨论工具:将学生分成若干小组,便于互动讨论。

六、教学过程1. 导入新课:通过一个简单的实际问题引入变量间的相关关系概念。

2. 讲解相关关系的定义:解释变量间的关系,引导学生理解相关关系。

3. 讲解相关系数的概念:介绍相关系数的概念,解释相关系数的取值范围及意义。

4. 演示相关系数的计算方法:通过课件或板书,演示相关系数的计算过程。

5. 练习计算相关系数:让学生分组计算给定的数据集的相关系数,巩固计算方法。

6. 讲解相关系数的判断标准:解释相关系数的判断标准,引导学生学会利用相关系数判断变量间关系强度。

7. 分析实际问题:让学生分组分析实际问题中的相关关系,运用相关分析解决问题。

8. 分享与讨论:各组分享分析结果,进行课堂讨论,交流心得体会。

七、作业布置2. 请学生复习相关关系的概念和相关系数的计算方法,完成课后练习题。

八、教学反思教师在课后对自己的教学进行反思,分析教学过程中的优点和不足,针对不足之处提出改进措施,以便提高今后的教学质量。

变量间的相关关系教案

变量间的相关关系教案

变量间的相关关系优秀教案一、教学目标:1. 让学生理解相关关系的概念,掌握相关系数的定义和计算方法。

2. 培养学生运用相关系数分析实际问题,判断变量间的关系。

3. 引导学生利用图表和数据进行推理和分析,提高学生的数据分析能力。

二、教学内容:1. 相关关系的概念和性质2. 相关系数的定义和计算方法3. 相关系数的大小与变量间关系的强度和方向4. 实际问题中的相关关系分析三、教学重点与难点:1. 重点:相关关系的概念、相关系数的定义和计算方法,相关系数的大小与变量间关系的判断。

2. 难点:相关系数计算公式的理解和应用,实际问题中的相关关系分析。

四、教学方法:1. 采用问题驱动的教学方法,引导学生通过实例认识相关关系。

2. 利用图表和数据进行分析,帮助学生理解相关系数的含义和作用。

3. 结合生活中的实际问题,培养学生运用相关系数分析和解决问题的能力。

五、教学准备:1. 准备相关关系的实例和数据,制作PPT进行展示。

2. 准备相关系数计算器,方便学生进行实践操作。

3. 准备一些实际问题,用于课堂讨论和分析。

六、教学过程:1. 引入:通过一个简单的实例,如身高和体重之间的关系,引导学生思考变量间的关系。

2. 讲解相关关系的概念和性质,解释相关系数的作用。

3. 讲解相关系数的定义和计算方法,引导学生理解相关系数的大小与变量间关系的强度和方向。

4. 进行实际问题分析,让学生运用相关系数判断变量间的关系。

5. 总结本节课的重点内容,布置课后作业。

七、课堂练习:1. 让学生使用相关系数计算器,计算给定数据集的相关系数。

2. 让学生分析实际问题中的相关关系,判断变量间的关系强度和方向。

3. 让学生解释相关系数在实际问题中的应用和意义。

八、课堂讨论:1. 引导学生讨论实际问题中的相关关系,分享彼此的想法和观点。

2. 引导学生从相关系数的角度分析实际问题,提出解决方案。

3. 鼓励学生提出问题,促进课堂互动和思考。

九、课后作业:1. 让学生完成相关关系练习题,巩固所学知识。

变量间的相关关系教案

变量间的相关关系教案

变量间的相关关系教案一、教学目标1. 让学生理解相关关系的概念,掌握相关系数的含义和计算方法。

2. 培养学生运用相关分析解决实际问题的能力。

3. 引导学生运用图表和数学方法描述和分析变量间的相关关系。

二、教学内容1. 相关关系的定义和类型2. 相关系数的含义和计算方法3. 绘制相关散点图4. 实际问题中的相关关系分析5. 练习与拓展三、教学重点与难点1. 教学重点:相关关系的概念、相关系数的计算方法、相关散点图的绘制。

2. 教学难点:如何运用相关分析解决实际问题。

四、教学方法与手段1. 采用问题驱动的教学方法,引导学生主动探究相关关系。

2. 利用多媒体课件和实物模型辅助教学,提高学生的直观感受。

3. 开展小组讨论和实践活动,培养学生的合作能力和动手能力。

4. 运用案例分析和练习题,巩固所学知识。

五、教学过程1. 导入:通过一个实际问题引入相关关系的话题,激发学生的兴趣。

2. 讲解相关关系的定义和类型,让学生理解相关关系的概念。

3. 讲解相关系数的含义和计算方法,让学生掌握相关系数的基本运用。

4. 绘制相关散点图,让学生学会用图形表示变量间的相关关系。

5. 分析实际问题中的相关关系,培养学生运用相关分析解决实际问题的能力。

6. 开展小组讨论和实践活动,让学生巩固所学知识。

7. 布置练习题,让学生进一步巩固所学内容。

8. 总结本节课的主要内容,强调相关关系在实际中的应用价值。

9. 布置课后作业,鼓励学生深入研究相关关系。

10. 课后反思:根据学生的反馈,调整教学方法和策略,提高教学质量。

六、教学评价1. 评价目标:检查学生对相关关系概念的理解、相关系数的计算及实际应用能力。

2. 评价方法:课堂练习、小组讨论、课后作业、案例分析等。

3. 评价内容:相关关系的定义、相关系数的计算、绘制相关散点图、实际问题分析。

4. 评价标准:学生能准确理解相关关系概念,熟练计算相关系数,合理运用相关分析解决实际问题。

七、教学拓展1. 介绍更多相关关系类型,如线性相关、非线性相关等。

变量之间的相关关系导学案

变量之间的相关关系导学案

2.3.1变量之间的相关关系(一、二)学习目标1、通过收集现实问题中两个有关联变量的数据认识变量间的相关关系;2、明确事物间的相互关系,现实生活中的变量间除了存在确定的关系外,仍存在大量的非确定性的相关关系,了解相关关系与函数关系的异同点;教学重、难点:通过收集现实问题中两个有关联变量的数据直观认识变量间的相关关系、相关关系与函数关系的异同点。

自主学习1、变量与变量之间的关系常见的有两类:一类是,如;一类是,即当自变量的取值一定,因变量取值带有一定的随机性,这样的两个变量之间的关系称为____________。

合作探究补充:对于两个变量,如果当一个变量的取值一定时,另一个变量的取值被惟一确定,则这两个变量之间的关系就是一个函数关系。

探究一:在中学校园里,有这样一种说法:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题.”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着某种关系,我们把数学成绩和物理成绩看成是两个变量,那么这两个变量之间的关系是函数关系吗?探究二:“名师出高徒”可以解释为教师的水平越高,学生的水平就越高,那么学生的学业成绩与教师的教学水平之间的关系是函数关系吗?你能举出类似的描述生活中两个变量之间的这种关系的成语吗?探究三:上述两个变量之间的关系是一种非确定性关系,称之为相关关系,那么相关关系的含义如何?以及对于一个变量,可以控制其数量大小的变量称为可控变量,否则称为随机变量,那么相关关系中的两个变量有哪种类型?探究四:相关关系与函数关系的异同点?课堂小结对于两个变量之间的关系,有函数关系和相关关系两种,其中函数关系是一种确定性关系,相关关系是一种非确定性关系。

课后反思1,下列关系中,是带有随机性相关关系的是①正方形的边长面积之间的关系;②水稻产量与施肥量之间的关系;③人的身高与年龄之间的关系;④降雪量与交通事故的发生率之间的关系。

2,下列关系不属于相关关系的是(B)A人的年龄和身高B求的表面积与体积C家庭的收入与支出D人的年龄与体积。

变量间的相关关系教案

变量间的相关关系教案

变量间的相关关系优秀教案第一章:引言1.1 课程介绍本课程旨在帮助学生理解变量间的相关关系,并学会如何进行相关性分析。

通过本章的学习,学生将能够掌握相关性概念,并了解相关性在实际应用中的重要性。

1.2 变量间的相关关系概念1.2.1 变量概念变量是研究对象的特征或属性,可以用来衡量或描述。

在本课程中,我们将关注两种类型的变量:定量变量和分类变量。

1.2.2 相关关系概念相关关系是指两个变量之间的相互关系或关联程度。

相关关系可以是正相关的,即一个变量增加时,另一个变量也增加;也可以是负相关的,即一个变量增加时,另一个变量减少。

第二章:皮尔逊相关系数2.1 皮尔逊相关系数的概念皮尔逊相关系数是衡量两个定量变量之间线性相关程度的一种统计方法。

它的取值范围在-1到1之间,当相关系数为1时,表示完全正相关;当相关系数为-1时,表示完全负相关;当相关系数为0时,表示没有相关关系。

2.2 计算皮尔逊相关系数2.2.1 数据收集收集两组定量变量的数据,并将其整理成表格形式。

2.2.2 计算步骤(1)计算两组数据的均值;(2)计算两组数据的标准差;(3)计算协方差;(4)计算皮尔逊相关系数。

2.3 应用案例通过实际案例,让学生了解如何使用皮尔逊相关系数进行相关性分析,并解释结果。

第三章:斯皮尔曼等级相关系数3.1 斯皮尔曼等级相关系数的概念斯皮尔曼等级相关系数是衡量两个变量之间单调相关程度的一种非参数方法。

它适用于非正态分布的数据或有序分类变量。

3.2 计算斯皮尔曼等级相关系数3.2.1 数据收集收集两组有序分类变量的数据,并将其整理成表格形式。

3.2.2 计算步骤(1)将数据进行等级排序;(2)计算等级差的积;(3)计算等级差的平均值;(4)计算斯皮尔曼等级相关系数。

3.3 应用案例通过实际案例,让学生了解如何使用斯皮尔曼等级相关系数进行相关性分析,并解释结果。

第四章:肯德尔等级相关系数4.1 肯德尔等级相关系数的概念肯德尔等级相关系数是衡量多于两个变量之间单调相关程度的一种非参数方法。

变量间的相关关系教案

变量间的相关关系教案

变量间的相关关系优秀教案第一章:引言1.1 教学目标让学生理解变量间的相关关系概念让学生掌握绘制散点图的方法让学生了解相关系数的概念1.2 教学内容变量间的相关关系定义散点图的绘制方法相关系数的概念及计算方法1.3 教学过程1.3.1 导入通过实际例子引入变量间的相关关系概念,如身高与体重的关系。

1.3.2 新课导入讲解变量间的相关关系定义,解释相关系数的概念。

演示如何绘制散点图,让学生跟随操作。

1.3.3 案例分析提供一些实际数据,让学生绘制散点图,并计算相关系数。

1.3.4 练习与讨论让学生回答相关问题,巩固所学内容。

引导学生讨论实际问题中的变量间相关关系。

1.4 教学评价通过课堂练习和讨论,评估学生对变量间的相关关系的理解和应用能力。

第二章:线性相关关系2.1 教学目标让学生理解线性相关关系的概念让学生掌握线性相关关系的判断方法让学生学会绘制线性回归直线2.2 教学内容线性相关关系的定义线性相关关系的判断方法线性回归直线的绘制方法2.3 教学过程2.3.1 导入通过实际例子引入线性相关关系概念,如房价与面积的关系。

2.3.2 新课导入讲解线性相关关系的定义,解释线性回归直线的概念。

演示如何判断线性相关关系,让学生跟随操作。

2.3.3 案例分析提供一些实际数据,让学生判断线性相关关系,并绘制线性回归直线。

2.3.4 练习与讨论让学生回答相关问题,巩固所学内容。

引导学生讨论实际问题中的线性相关关系。

2.4 教学评价第三章:非线性相关关系3.1 教学目标让学生理解非线性相关关系的概念让学生掌握非线性相关关系的判断方法让学生学会绘制非线性回归直线3.2 教学内容非线性相关关系的定义非线性相关关系的判断方法非线性回归直线的绘制方法3.3 教学过程3.3.1 导入通过实际例子引入非线性相关关系概念,如温度与冰点的关系。

3.3.2 新课导入讲解非线性相关关系的定义,解释非线性回归直线的概念。

演示如何判断非线性相关关系,让学生跟随操作。

变量间的相关关系 导学案

变量间的相关关系 导学案

五步教学设计主备人:钟园秋必修3变量间的相关关系一、学习目标1.通过收集现实问题中两个有关联变量的数据认识变量间的相关关系.2.明确事物间的相互联系.认识现实生活中变量间除了存在确定的关系外,仍存在大量的非确定性的相关关系,并利用散点图直观体会这种相关关系.3.经历用不同估算方法描述两个变量线性相关的过程.知道最小二乘法的思想,能根据给出的线性回归方程的系数公式建立线性回归方程.二、预习导学1相关关系的概念:自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫做相关关系.两个变量之间的关系分两类:①确定性的函数关系,例如我们以前学习过的一次函数、二次函数等;②带有随机性的变量间的相关关系,例如“身高者,体重也重”,我们就说身高与体重这两个变量具有相关关系.相关关系是一种非确定性关系.三、问题引领,知识探究(1)粮食产量与施肥量有关系吗?“名师出高徒”可以解释为教师的水平越高,学生的水平也越高.教师的水平与学生的水平有什么关系?你能举出更多的描述生活中两个变量的相关关系的成语吗?(2)两个变量间的相关关系是什么?有几种?(3)两个变量间的相关关系的判断.练习内化1 有时候,一些东西吃起来口味越好,对我们的身体越有害.下表给出了不同类型的某种食品的数据.第二列表示此种食品所含热量的百分比,第三列数据表示由一些美食家以百分制给出的对此种食品口味的评价:品牌所含热量的百分比口味记录A 25 89B 34 89C 20 80(1)作出这些数据的散点图.(2)关于两个变量之间的关系,你能得出什么结论?四、目标检测一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10次试验,收集数据如下:画出散点图;关于加工零件的个数与加工时间,你能得出什么结论?五、分层配餐1.下列两个变量之间的关系哪个不是函数关系()A.角度和它的余弦值B.正方形边长和面积C.正n边形的边数和它的内角和D.人的年龄和身高2.三点(3,10),(7,20),(11,24)的线性回归方程是()A.^y= B.^y=+C.^y= D.^y=+3.已知关于某设备的使用年限x与所支出的维修费用y(万元),有如下统计资料:设y对x呈线性相关关系.试求:(1)线性回归方程^y=bx+a的回归系数a,b;(2)估计使用年限为10年时,维修费用是多少?4.我们考虑两个表示变量x与y之间的关系的模型,δ为误差项,模型如下:模型1:y=6+4x;模型2:y=6+4x+e.(1)如果x=3,e=1,分别求两个模型中y的值;(2)分别说明以上两个模型是确定性模型还是随机模型.5.以下是收集到的新房屋销售价格y与房屋大小x的数据:(1)画出数据的散点图;(2)用最小二乘法估计求线性回归方程.。

高中数学《变量间的相关关系》导学案设计

高中数学《变量间的相关关系》导学案设计

2.3.1变量间的相关关系学案一、目标:明确事物间的相互关系,认识现实生活中的变量间除了存在确定的关系外,仍存在大量的非确定性的相关关系,并利用散点图直观体会这种相关关系。

二、教学过程预习检测1.什么叫散点图: 叫做散点图。

2.三种关系:①如果所有的样本点都落在某一函数的曲线上,就用该函数来描述变量之间的关系,即 ②如果所有的样本点都落在某一函数曲线附近,变量之间就有 ③如果所有的样本点都落在某一直线附近,变量之间就有 3.正、负相关的概念。

如果散点图中的点分布在从左下角到右上角的区域内,称为 如果散点图中的点分布在从左上角到右下角的区域内,称为 4.线性相关的概念: 教学实图:人体的脂肪百分比和年龄如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有 关系,这条直线叫做_ ,回归直线对应的方程叫回归直线方程,它的方程简称 。

设回归方程为a x b y +=,则有1122211()()()________________n ni i i i i i n n i i i i x x y y x y nx y b x x x nx a ====⎧---⎪⎪==⎨--⎪⎪=⎩∑∑∑∑ ,其中1ni i x x ==∑,1ni i y y ==∑,b 是回归方程的_______,a是_______。

线性回归方程过点( ) 三、概念巩固:1.下列关系中,是带有随机性相关关系的是① 正方形的边长面积之间的关系;② 水稻产量与施肥量之间的关系③ 人的身高与年龄之间的关系④ 降雪量与交通事故的发生率之间的关系。

2.下列关系不属于相关关系的是 ( ) A 人的年龄和身高 B 球的表面积与体积。

C 家庭的收入与支出。

D 人的年龄与身体脂肪含量。

3.下列两个变量之间的关系,不是函数关系的是 ( )。

A ,角度和它的余弦值。

B 正方形的边长和面积。

B .正n 边形的边数和内角和。

D 人的年龄和身高。

变量间的相关关系教案

变量间的相关关系教案

变量间的相关关系一、教材分析学生情况分析:学生已经具备了对样本数据进行初步分析的能力,且掌握了一定的计算基础。

教材地位和作用:变量间的相关关系是高中新教材人教A版必修3第二章2.3节的内容, 本节课主要探讨如何利用线性回归思想对实际问题进行分析与预测。

为以后更好地研究选修2-3第三章3.2节回归分析思想的应用奠定基础。

二、教学目标1、知识与技能:利用散点图判断线性相关关系,了解最小二乘法的思想及线性回归方程系数公式的推导过程,求出回归直线的方程并对实际问题进行分析和预测,通过实例加强对回归直线方程含义的理解。

2 、过程与方法:①通过自主探究体会数形结合、类比、及最小二乘法的数学思想方法。

②通过动手操作培养学生观察、分析、比较和归纳能力。

3、情感、态度与价值观:类比函数的表示方法,使学生理解变量间的相关关系,增强应用回归直线方程对实际问题进行分析和预测的意识。

三、教学重点、难点重点:利用散点图直观认识两个变量之间的线性相关关系,了解最小二乘法的思想并利用此思想求出回归方程。

难点:对最小二乘法的数学思想和回归方程的理解,教学实施过程中的难点是根据给出的线性回归方程的系数公式建立线性回归方程。

四、教学设计)(一)、创设情境导入新课1、相关关系的理解我们曾经研究过两个变量之间的函数关系:一个自变量对应着唯一的一个函数值,这两者之间是一种确定关系。

生活中的任何两个变量之间是不是只有确定关系呢?如:学生成绩与教师水平之间存在着某种联系,但又不是必然联系,对于学生成绩与教师水平之间的这种不确定关系,我们称之为相关关系。

这就是我们这节课要共同探讨的内容————变量间的相关关系。

生活中还有很多描述相关关系的成语,如:“虎父无犬子”,“瑞雪兆丰年”。

通过学生熟悉的函数关系,引导学生关注生活中两个变量之间还存在的相关关系。

让学生体会研究变量之间相关关系的重要性。

感受数学来源于生活。

(二)、初步探索,直观感知1、根据样本数据作出散点图,直观感知变量之间的相关关系。

高中数学《变量之间的相关关系》导学案

高中数学《变量之间的相关关系》导学案

第二章统计2.3.1 变量之间的相关关系(第1课时)一、学习目标1.通过实例了解变量之间的相互关系,认识现实生活中变量间存在的非确定性的相互关系,体会研究此类问题在现实生活中的重要性2.会做散点图,学会用数量来描述现实关系【重点、难点】两个变量之间的线性相关的概念及有关公式、方程二、学习过程1 .函数是研究两个变量之间的依存关系的一种数量形式.对于两个变量,如果当一个变量的取值一定时,另一个变量的取值被,则这两个变量之间的关系就是一个函数关系.2.相关关系:两个变量之间的关系是一种,称之为相关关系。

3.散点图:将样本中的描在平面直角坐标系中得到的图形4.正相关:点的分布的方向负相关:点的分布的方向【典型例题】例1.判断下列问题中两个变量之间是否是相关关系:(1)商品销售收入与广告支出经费;(2)粮食产量与施肥量;(3)人体内的脂肪含量与年龄(4)出租车费与行驶的里程(5)铁的大小与质量例2.以下是某地搜集到的新房屋的销售价格和房屋的面积的数据:画出数据对应的散点图,并指出销售价格与房屋面积这两个变量是正相关还是负相关.【变式拓展】1.在下列两个变量的关系中,哪些是相关关系?①正方形边长与面积之间的关系;②作文水平与课外阅读量之间的关系;③人的身高与年龄之间的关系;④降雪量与交通事故的发生率之间的关系.三、学习总结1.对于两个变量之间的关系,有函数关系和相关关系两种,其中函数关系是一种确定性关系,相关关系是一种非确定性关系.2.散点图能直观反映两个相关变量之间的大致变化趋势,利用计算机作散点图是简单可行的办法.3.一般情况下两个变量之间的相关关系成正相关或负相关,类似于函数的单调性.四、随堂检测1.有关相关关系的说法,不正确的是( )A.相关关系的两个变量是非确定关系B.散点图能直观地反映数据的相关关系C.散点图的点分布有一定规律,则两变量具有相关关系D.散点图的点越集中,两个变量的线性相关性越强2.下面是四个散点图中的点的分布状态,直观上判断两个变量之间具有线性相关关系的是( )3.一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10次试验,测得数据如下:y与x是否具有线性相关关系?。

变量间的相关关系导学案

变量间的相关关系导学案

◆高一◆数学必修3◆第二章 班级 学号 姓名§2.3 变量间的相关关系学习目标1. 通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系.2. 知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程※ 学习重点、难点:重点:作出散点图和根据给出的线性回归方程系数公式建立线性回归方程 难点:对最小二乘法的理解1.相关关系:①自变量取值一定时,因变量的取值带有 的两个变量之间的关系,叫做相关关系.②函数关系是一种非常 的关系,而相关关系是一种 性关系.2. 散点图将样本中的几个数据点描在平面直角坐标系中所得的图形叫做 ; 从散点图上看,点散布在从左下角到右上角的区域内,两个变量的这种相关关系称之为 ,点散布在从左上角到右下角的区域内,两个变量相关关系为_ .3. 两个变量的线性相关如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有 关系,这条直线叫做_ ,回归直线对应的方程叫回归直线方程,它的方程简称 。

通过求__________________Q =的最小值,即使得样本数据的点到回归直线的距离的平方和最小的求回归直线的方法叫做 .设回归方程为a x b y +=,则有1122211()()()________________n n i i i i i i n ni ii i x x y y x y nx y b x x x nx a ====⎧---⎪⎪==⎨--⎪⎪=⎩∑∑∑∑ nn2014年上学期◆高一 第二章 统计2※ 知识检测 1、下列变量之间的关系是函数关系的是( ) A 、光照时间和果树亩产量 B 、圆柱体积和它的底面直径 C 、自由下落的物体的质量与落地时间 D 、球的表面积和它的半径2、下列有关线性回归的说法,不正确的是( )A 、变量取值一定时,因变量取值带有一定的随机性的两个变量之间的关系叫做相关关系B 、在平面直角坐标系中用描点的方法得到表示具有相关关系的两个变量的一组数据的图形叫做散点图 C 、线性回归直线方程最能代表观测值之间的关系 D 、任何一组观测值都能得到代表意义的回归直线方程 3、下列有关回归直线方程a x b y +=叙述正确的是( )①反映ˆy 与x 之间的函数关系 ②反映y 与x 之间的函数关系 ③反映ˆy 与x 之间的不确定关系 ④表示最接近y 与x 之间真实关系的一条直线A 、①②B 、②③C 、③④D 、①④4、农民工月工资y (元)随劳动生产率x (千元)变化回归方程为ˆ50080yx =+,判断正确的是( )A 、劳动生产率为1000元时,工资为80元B 、劳动生产率提高1000元时,工资平均提高80元 C 、劳动生产率提高1000元时,工资平均提高580元 D 、当月工资为660元时,劳动生产率为2000元5.已知的x 、y 的取值如下表, 从散点图分析,y 与x 线性相关,且回归方程为a x y+=95.0,※ 能力提升(2007年广东)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程ˆy bx a =+; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性同归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考值:3 2.543546 4.566.5⨯+⨯+⨯+⨯=)小结:※ 达标练习: 1.有关线性回归的说法,不正确的是 ( ) A.相关关系的两个变量不是因果关系 B.散点图能直观地反映数据的相关程度C.回归直线最能代表线性相关的两个变量之间的关系 D.任一组数据都有回归方程2.下面哪些变量是相关关系( )A.出租车费与行驶的里程B.房屋面积与房屋价格 C.身高与体重 D.铁的大小与质量3.回归方程yˆ=1.5x -15,则( ) A.y =1.5x -15 B.15是回归系数a C.1.5是回归系数a D.x =10时,y =0 4.线性回归方程yˆ=bx +a 过定点____ ___. 5.设有一个回归方程为ˆ2 1.5yx =-,则变量x 增加一个单位时( )A.y 平均增加1.5单位B. y 平均增加2单位C. y 平均减少1.5单位D. y 平均减少2单位 6.某城市近10年居民的年收入x 与支出y 之间的关系大致符合 0.80.1y x =+(单位:亿元),预计今年该城市居民年收入为15亿元,则年支出估计是 .。

2.3.变量间的相关关系-人教B版必修三教案

2.3.变量间的相关关系-人教B版必修三教案

2.3 变量间的相关关系-人教B版必修三教案教学目标1.掌握什么是相关系数及其计算方法2.理解两个变量之间的相关程度3.熟悉散点图的绘制方法4.熟练运用Excel进行相关系数的计算教学重难点1.相关系数的计算方法2.散点图的绘制方法及其解读3.Excel进行相关系数计算的方法教学内容及进度安排教学内容时间(分钟)师生互动介绍 5知识点讲解25实践演示:绘制散点图15小组合作:Excel计算相关系数20总结讲评10教学方法1.师生互动式教学法2.演示法3.合作学习法教学过程及内容步骤一:师生互动介绍(5分钟)老师与学生进行互动,引入相关系数的概念,询问学生是否知道相关系数是什么,以及相关系数的意义。

步骤二:知识点讲解(25分钟)老师通过PPT或黑板,向学生讲解相关系数的定义、代号、计算公式和判定标准。

同时,向学生介绍散点图的绘制方法和散点图的解读。

让学生了解相关系数的三种情况:正相关、负相关、不相关,以及这些情况对应的散点图形态。

步骤三:实践演示:绘制散点图(15分钟)老师设计一个简单的数据表格,让学生利用Excel或手工绘制散点图。

通过散点图,学生可以直观地了解相关系数的计算和判定过程,同时熟练掌握散点图的绘制方法和解读。

步骤四:小组合作:Excel计算相关系数(20分钟)学生分成小组,自行利用Excel或手工计算相关系数,并交流讨论结果。

老师在一旁提供指导和帮助,解决学生可能出现的疑惑和问题。

这个环节让学生通过小组合作的方式更深入地理解相关系数和散点图的含义。

步骤五:总结讲评(10分钟)老师通过讲评,对学生进行总结回顾,让学生了解相关系数的重要性和应用。

同时,老师与学生共同探讨相关系数的应用场景和优缺点。

教学评估1.资料:散点图、Excel计算表格2.成果:学生会手工或利用Excel计算相关系数,会绘制散点图并解读其含义3.测评方式:学生在小组内展示绘制的散点图和相关系数计算结果,并给出解释。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变量间的相关关系教案————————————————————————————————作者:————————————————————————————————日期:变量间的相关关系一、教材分析学生情况分析:学生已经具备了对样本数据进行初步分析的能力,且掌握了一定的计算基础。

教材地位和作用:变量间的相关关系是高中新教材人教A版必修3第二章2.3节的内容, 本节课主要探讨如何利用线性回归思想对实际问题进行分析与预测。

为以后更好地研究选修2-3第三章3.2节回归分析思想的应用奠定基础。

二、教学目标1、知识与技能:利用散点图判断线性相关关系,了解最小二乘法的思想及线性回归方程系数公式的推导过程,求出回归直线的方程并对实际问题进行分析和预测,通过实例加强对回归直线方程含义的理解。

2 、过程与方法:①通过自主探究体会数形结合、类比、及最小二乘法的数学思想方法。

②通过动手操作培养学生观察、分析、比较和归纳能力。

3、情感、态度与价值观:类比函数的表示方法,使学生理解变量间的相关关系,增强应用回归直线方程对实际问题进行分析和预测的意识。

三、教学重点、难点重点:利用散点图直观认识两个变量之间的线性相关关系,了解最小二乘法的思想并利用此思想求出回归方程。

难点:对最小二乘法的数学思想和回归方程的理解,教学实施过程中的难点是根据给出的线性回归方程的系数公式建立线性回归方程。

四、教学设计)(一)、创设情境导入新课1、相关关系的理解我们曾经研究过两个变量之间的函数关系:一个自变量对应着唯一的一个函数值,这两者之间是一种确定关系。

生活中的任何两个变量之间是不是只有确定关系呢?如:学生成绩与教师水平之间存在着某种联系,但又不是必然联系,对于学生成绩与教师水平之间的这种不确定关系,我们称之为相关关系。

这就是我们这节课要共同探讨的内容————变量间的相关关系。

生活中还有很多描述相关关系的成语,如:“虎父无犬子”,“瑞雪兆丰年”。

通过学生熟悉的函数关系,引导学生关注生活中两个变量之间还存在的相关关系。

让学生体会研究变量之间相关关系的重要性。

感受数学来源于生活。

(二)、初步探索,直观感知1、根据样本数据作出散点图,直观感知变量之间的相关关系。

在研究相关关系前,先回忆一下函数的表示方法有哪些——列表,画图象,求解析式。

下面我们就用这些方法来研究相关关系。

看这样一组数据:在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据,根据样本数据,人体的脂肪含量与年龄之间有怎样的关系?23 27 39 4 56 57 58 60 61 年龄9.5 17.8 21.2 25.9 27.5 26.3 28.2 29.6 30.2 31.4 30.8 33.5 35.2 34.6 脂肪05101520253035405101520253035404550556065年龄脂肪含量结论:随着年龄增长,脂肪含量在增加。

用x 轴表示年龄,y 轴表示脂肪。

一组样本数据就对应着一个点。

散点图这个图跟我们所学过的函数图象有区别,它叫作散点图。

2、判断正、负相关、线性相关:请观察这4幅图,看有什么特点?图1呈上升趋势,图2呈下降趋势。

这就像函数中的增函数和减函数。

即一个变量从小到大,另一个变量也从小到大,或从大到小。

对于图1中的两个变量的相关关系,我们称它为正相关。

图2中的两个变量的相关关系,称为负相关。

后面两个图很乱,前面两个图中点的分布呈条状。

从数学的角度来解释:即图1、2中的点的分布从整体上看大致在一条直线附近。

我们称图1、2中的两个变量具有线性相关关系。

这条直线叫做回归直线。

图3、4中的两个变量是非线性相关关系(三)、循序渐进、延伸拓展年龄 脂肪 23 9.5 27 17.8 39 21.2 41 25.9 45 27.5 49 26.3 50 28.2 53 29.6 54 30.2 56 31.4 57 30.8 58 33.5 60 35.2 6134.620.84r =-图图105101520253035405101520253035404550556065年龄脂肪含量2004006008001000050100150123456789145678910.0.0.0.11.-00.0.0.0.11.2图图3图405101520253035405101520253035404550556065年龄脂肪含量1、找回归直线师:下面我们再来看一下年龄与脂肪的散点图, 从整体上看,它们是线性相关的。

如果可以求出回归直线的方程,我们就可以清楚地了解年龄与体内脂肪含量的相关性。

这条直线可以作为两个变量具有线性相关关系的代表。

能否画出这条直线? 数学实验1: 画出回归直线学生方案一 学生方案二第一种 第二种多种方法展示总结: 第二种方法好,因为所有的点离这条直线最近。

从整体上看,各点与此直线的距离和最小。

2、利用最小二乘法推导回归系数公式51015202530354005101520253035404550556065年龄脂肪含量051015202530354005101520253035404550556065年龄脂肪含量05101520253035405101520253035404550556065年龄脂肪含量假设我们已经得到两个具有线性相关关系的变量的一组数据:11(,)x y 22(,)x y ……(,)n n x y 。

当自变量x 取i x (i =1,2,……,n )时,可以得到ˆi ybx a =+(i =1,2,……,n ),它与实际收集到的i y 之间的偏差是ˆ()i i i i y yy bx a -=-+(i =1,2,……,n ),这样用n 个偏差的和来刻画“各点与此直线的整体偏差”是比较合适的。

总的偏差为1ˆ()ni i i y y=-∑,偏差有正有负,易抵消,所以采用绝对值1ˆni i i y y=-∑,由于带绝对值计算不方便所以换成平方,222221122331ˆ()()()()()ni i n n i Q y yy bx a y bx a y bx a y bx a ==-=--+--+--+⋅⋅⋅+--∑现在的问题就归结为:当a ,b 取什么值时Q 最小。

将上式展开、再合并,就可以得到可以求出Q 取最小值时1122211()()()n niii ii i nni i i i x x y y x y nx yb x x x nx a y bx====---==--=-∑∑∑∑(其中11n i i x x n ==∑,11ni i y y n ==∑) 推导过程用到偏差的平方,由于平方又叫二乘方,所以这种使“偏差的和”最小的方法叫 “最小二乘法”。

3、求出回归直线方程,并分析它的意义利用最小二乘法就可以求出回归系数,进一步求出回归方程。

下面我们具体操作一下。

我们先明确几个符号的含义:i x 表示年龄,1x 是23,2x 是27,直到14x 是61。

i 从1到14, i y 表示脂肪,1y 是9.5,2y 是17.8 。

i i x y 表示年龄与脂肪的成绩,2i x 表示 年龄的平方年龄 脂肪2221221221111()()()()()()()()()nni i i i n n i i i i n n i i i i i i x x y y x x y y Q n a y bx x x b y y x x x x ======⎡⎤⎡⎤----⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥=--+---+-⎣⎦⎢⎥--⎢⎥⎣⎦∑∑∑∑∑∑2x ix iy ix y i i11n i i x x n ==∑表示自变量年龄的平均数,11ni i y y n ==∑表示因变量脂肪的平均数,21ni i x =∑表示自变量的平方和,1ni i i x y =∑表示自变量与因变量乘积的和。

要求出 a ,b ,必须先求出这些量。

数学实验2:求出下列各式的值(n=14)11ni i x x n ==∑= 11ni i y y n ==∑= 1n i ii x y =∑= 21nii x=∑=1221ni ii nii x y nx yb xnx==-==-∑∑ a y bx =-=ˆybx a =+ 通过计算,求出了0.448,0.5765a b =-= ˆ0.57650.448yx =- 求出回归直线方程有什么用呢?表格中选取年龄x 的一个值代入上述回归直线的方程,看看得出的数据与真实数值之间的关系。

23 9.5 218.5 529 27 17.8 480.6 729 39 21.2 826.8 1521 41 25.9 1061.9 1681 45 27.5 1237.5 2025 49 26.3 1288.7 2401 50 28.2 1410 2500 53 29.6 1568.8 2809 54 30.2 1630.8 2916 56 31.4 1758.4 3136 57 30.8 1755.6 3249 58 33.5 1943 3364 60 35.2 2112 3600 61 34.6 2110.6 3721 48.071 27.26428619403.234181ˆ0.5765500.44829.272y=⨯-=估计值是29.272,与实际值28.2有偏差,为什么会出现这样的结果?回归直线是估计出的,把a 带入肯定有误差。

试预测某人37岁时,他体内的脂肪含量。

并说明结果的含义。

代入计算ˆ0.5765370.44820.882y=⨯-=我们不能说他的体内脂肪含量的百分比一定是20.882%?只能说他体内的脂肪含量在20.90%,附近的可能性比较大。

(四)、线性回归分析思想在实际中的应用总结:我们利用回归直线对年龄与脂肪的关系做了上述分析,这种分析方法叫做线性回归分析。

利用这种分析方法可以对生活中的很多问题进行分析与预测。

例2有一个同学家开了一个小卖部,他为了研究气温对销售热饮的影响,经过统计,得到一个卖出的热饮杯数与当天气温的对比表:(1)画出散点图(2)从散点图中发现气温与热饮销售杯数之间关系的一般规律 (3)求回归方程(4)如果某天的气温是2℃,预测这天卖出的热饮杯数 数学实验3:求出下列各式的值(n=11)11ni i x x n ==∑= 11ni i y y n ==∑= 1n i ii x y =∑= 21nii x=∑=1221ni ii nii x y nx yb xnx==-==-∑∑ a y bx =-=ˆybx a =+ (五)利用相关系数判断线性相关程度利用最小二乘法求出回归直线的方程后,可以对上面两个变量的关系进行分析与预测。

是不是所有的相关关系都可以求出回归直线的方程?请大家观察这4幅图摄氏温度/℃ -5 0 4 7 12 6 热饮杯数8937654结论:前两个是线性相关,可以求回归方程,后两个是非线性相关,直线不能很好地反映图中两个变量之间的关系。

相关文档
最新文档