1、流体流动阻力测定
流体流动阻力的测定
流体流动阻力的测定一、实验目的(1)熟悉测定流体流经直管的阻力损失的实验组织法及测定摩擦系数的工程意义。
(2)观察摩擦系数λ与雷诺数Re 之间的关系,学习双对数坐标纸的用法 (3)掌握流体流经管件时的局部阻力,并求出该管件的局部阻力。
二、实验原理流体在管内流动时,由于流体具有黏性,在流动时必须克服内摩擦力,因此,流体必须做功。
当流体呈湍流流动时,流体内部充满了大小漩涡,流体质点运动速度和方向都发生改变,质点间不断相互碰撞,引起流体质点动量交换,使其产生了湍动阻力,结果也会消耗流体能量,所以流体的黏性和流体的漩涡产生了流体流动的阻力。
流体在管内流动的阻力的计算公式表示为22u d l h fλ=或2212u d l p p p ρλ=-=∆式中:h 为流体通过直管的阻力(J/kg );△p 为流体通过直管的压力降(N/m 2);p 1,p 2为直管上下游界面流动的压力(N/m 2);l 为管道长(m );d 为管道直径(内径)(m );ρ为流体密度(kg/m 3);u 为流体平均流速(m/s );λ为摩擦系数,无因次。
摩擦系数λ是一个受多种因素影响的变量,其规律与流体流动类型密切相关。
当流体在管内作层流流动时,根据力学基本原理,流体流动的推动力(由于压力产生)等于流体内部摩擦力(由于黏度产生),从理论上可以推得λ的计算式为Re64=λ 当流体在管内作湍流流动时,由于流动情况比层流复杂得多,湍流时的λ还不能完全由理论分析建立摩擦系数关系式。
湍流的摩擦系数计算式是在研究分析阻力产生的各种因素的基础上,借助因次分析方法,将诸多因素的影响归并为准数关系,最后得出如下结论⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=d d du k tεϕεμρλRe,2 由此可见,λ为Re 数和管壁相对粗糙度ε/d 的函数,其函数的具体关系通过实验确定。
局部阻力通常有两种表达方式,即当量长度法和阻力系数法。
当量长度法:流体流过某管件时因局部阻力造成的能量损失相当于流体流过与其相同管径的若干米长度的直管阻力损失,用符号l e 来表示,则22u d l l h e f+=∑λ阻力系数法:流体通过某一管件的阻力损失用流体在管路中的动能系数来表示22u h pf ζρ==∆三、实验装置本实验装置如下图,由直管、管件、控制阀、涡轮流量计、供水泵和水箱构成。
流体流动阻力的测定
流体流动阻力的测定一、引言流体力学是物理学的一个分支,主要研究流体的运动规律和性质。
在工程领域中,流体力学是非常重要的一门学科,涉及到许多领域,如航空、船舶、汽车、建筑等。
在这些领域中,流体的运动特性对于设备的设计和性能有着重要影响。
而测定流体流动阻力是了解这些运动特性的基础。
二、实验原理1. 流体阻力公式当一个物体在流体中运动时,会受到来自流体的阻力。
根据牛顿第二定律,物体所受合外力等于其质量乘以加速度。
因此,在水平方向上运动的物体所受合外力为:F = ma其中F为合外力,m为物体质量,a为加速度。
当物体在水平方向上运动时,在没有其他外力作用下,其所受合外力即为来自水对其作用的阻力Ff。
因此:Ff = ma将牛顿第二定律代入上式可得:Ff = 1/2 * ρ * v^2 * S * Cd其中ρ为流体密度,v为物体相对于流体的速度(即物体速度减去流体速度),S为物体所受阻力的面积,Cd为阻力系数。
2. 流体阻力的测定在实验中,我们可以通过测量物体在流体中运动时所受到的阻力来计算出阻力系数Cd。
一般来说,测量流体阻力有两种方法:直接法和间接法。
直接法是指将物体放置在流体中,然后通过测量所需施加的力来计算出流体阻力。
这种方法通常需要使用特殊设备,如浮子式流量计、翼型试验台等。
间接法是指通过测量物体在流体中运动时所需施加的外部力来计算出流体阻力。
这种方法通常需要使用天平或重量计等设备来测量物体的重量,并结合运动学公式来计算物体所受的加速度和速度等参数。
三、实验步骤1. 实验器材准备准备好天平或重量计、滑轮、绳子、小球等实验器材,并将它们固定在实验台上。
2. 实验样本制备制作一个小球样本,并将其质量称重记录下来。
3. 流动介质准备将水注入实验槽中,并将水温调节到室温。
4. 实验数据测量将小球样本用绳子系在滑轮上,并将滑轮固定在实验台上。
然后,拉动小球样本,使其开始运动,并记录下所需施加的力和小球样本的运动时间。
流体流动阻力的测定(化工原理实验报告)
流体流动阻力的测定(化工原理实验报告)流体流动阻力的测定(化工原理实验报告)摘要:本实验研究了流体流动阻力的测定方法,以了解流阻比数据和参数对流体流动特性的影响。
实验中采用了空心管实验装置,在一定的压差试验条件下,通过压力表和熨斗流量计测量压力和流量,计算出流阻比系数。
通过实验,研究了流阻比系数随着实验参数(流量、温度、压力)变化的规律,从而获得一定规律性的微观流动特性数据。
关键词:流阻比;熨斗流量计;实验;流动阻力1 前言流体流动阻力是研究流体流动特性的一项重要参数。
它决定了流体在管道内流动时会受到什么样的阻力,直接影响着流体在设备内的流动性能和传热特性。
因此,准确测量流体流动阻力是研究管道流动的关键问题。
本实验旨在研究空心管装置测量的流阻比数据对流体流动特性的影响,以便获得微观流动特性数据,并用于管道设计、传热学的研究中。
2 实验目的1)研究在空心管实验装置内测量流阻比系数的变化规律:2)利用测量的流阻比系数,得出瞬态流体流动特性曲线,即流量与压力的变化规律; 3)通过实验有规律地分析,获得实验流体的微观流动特性参数。
3 实验装置本实验主要采用空心管实验装置(见图1),由电磁阀控制罐内的液体,带动空心管内的流体循环,保持流量一定,从而实现实验的要求。
该装置由如下几个部分组成:(1)空心管;(2)球阀;(3)高低压罐;(4)汽缸和气缸;(5)液体泵;(6)电磁阀;(7)水箱;(8)熨斗流量计;(9)压力表;(10)温度计。
4 实验方法1)确定实验条件:根据实验任务,确定温度、压力、流量等参数,以及电磁阀的控制时间;2)进行实验:根据实验条件,控制电磁阀的开启和关闭,实现空心管内的液体流动,同时调节实验参数,测量压力及流量;3)根据压力和流量,绘出流量-压力曲线,计算出对应的流阻比系数;4)根据实验数据,进行实验数据分析,探究实验参数变化时,流阻比系数变化规律,得出流体的微观流动特性参数。
5 实验数据在实验中,调节不同的参数,实现不同的实验条件,测量得到流量和压力的数据,根据测量的实验数据,画出Flow-Pressure曲线,结果如下表1所示:实验条件实测压力(MPa) 实测流量(M3/h)流阻比(MPa/m3/h)条件1 0.39 0.159 0.80条件2 0.51 0.159 1.06条件3 0.62 0.159 1.29条件4 0.68 0.159 1.41条件5 0.80 0.159 1.64表1 实验结果图2 Flow-Pressure曲线图6 结论1)根据上述的实验结果,可以发现,随着压力和流量的增加,流阻比也相应地增大;2)通过分析实验数据,可以获得一定的规律性的微观流动特性数据,即通过把不同的实验参数变量并入方程式中,可以根据需要精确地预测不同条件下,流体流动时的压力和流量变化规律;3)该测试结果可以作为设计管路时流体传热特性和流动特性的参考,更好地掌握管路中流体的流动特性。
流体流动阻力测定
一、实验目的1、 掌握流体经直管和管阀件时阻力损失的测定方法。
通过实验了解流体流动中能量损失的变化规律。
2、 测定直管摩擦系数λ于雷诺准数Re 的关系。
3、 测定流体流经闸阀等管件时的局部阻力系数ξ。
4、 学会压差计和流量计的适用方法。
5、 观察组成管路的各种管件、阀件,并了解其作用。
二、基本原理流体在管内流动时,由于粘性剪应力和涡流的存在,不可避免得要消耗一定的机械能,这种机械能的消耗包括流体流经直管的沿程阻力和因流体运动方向改变所引起的局部阻力。
1、 沿程阻力流体在水平均匀管道中稳定流动时,阻力损失表现为压力降低。
即影响阻力损失的因素很多,尤其对湍流流体,目前尚不能完全用理论方法求解,必须通过实验研究其规律。
为了减少实验工作量,使实验结果具有普遍意义,必须采用因次分析方法将各变量组合成准数关联式。
根据因次分析,影响阻力损失的因素有, (a)流体性质:密度ρ、粘度μ;(b)管路的几何尺寸:管径d 、管长l 、管壁粗糙度ε; (c)流动条件:流速μ。
可表示为: 则 式中,-d 管径,m ;-∆f P 直管阻力引起的压强降,Pa ;-l 管长,m ;-u 流速,m/s ;-ρ流体的密度,kg/m 3;-μ流体的粘度,N·s/m 2。
λ—称为摩擦系数。
层流时,λ=64/Re ;湍流时λ是雷诺准数Re 和相对粗糙度的ρρpp p h f ∆=-=21),,,,,(ερμu l d f p =∆22u d l ph f λρ=∆=函数,须由实验确定 2、局部阻力局部阻力通常有两种表示方法,即当量长度法和阻力系数法。
(a)当量长度法流体流过某管件或阀门时,因局部阻力造成的损失,相当于流体流过与其具有相当管径长度的直管阻力损失,这个直管长度称为当量长度,用符号Σ le 表示。
则流体在管路中流动时的总阻力损失 为(b)阻力系数法流体通过某一管件或阀门时的阻力损失用流体在管路中的动能系数来表示,这种计算局部阻力的方法,称为阻力系数法。
流体流动阻力的测定
实验名称:流体流动阻力的测定一、实验目的及任务:1.掌握测定流体流动阻力实验的一般方法.2.测定直管的摩擦阻力系数及突然扩大管的局部阻力系数.3.验证湍流区内摩擦阻力系数为雷诺数和相对粗糙度的函数.4.将所得光滑管的方程与Blasius方程相比较.二、实验原理:流体输送的管路由直管和阀门、弯头、流量计等部件组成.由于粘性和涡流作用,流体在输送过程中会有机械能损失.这些能量损失包括流体流经直管时的直管阻力和流经管道部件时的局部阻力,统称为流体流动阻力.1.根据机械能衡算方程,测量不可压缩流体直管或局部的阻力H f=(gz1+p1ρ+u122)−(gz2+p2ρ+u222)+H e如果管道无变径,没有外加能量,无论水平或倾斜放置,上式可简化为:H f=p1′−p2′ρ=pρΔp为截面1到2之间直管段的虚拟压强差,即单位体积流体的总势能差,通过压差传感器直接测量得到.2.流体流动阻力与流体性质、流道的几何尺寸以及流动状态有关,可表示为:p=fd,l,u,ρ,μ,ε由量纲分析可以得到四个无量纲数群:欧拉数Eu=p/ρu2,雷诺数Re=duρ/μ,相对粗糙度ε/d和长径比l/d从而有p ρu2=Ψduρμ,εd,ld取λ=ΦRe,ε/d,可得摩擦系数与阻力损失之间的关系:H f=pρ=λld×u22从而得到实验中摩擦系数的计算式λ=2pd ρu2l当流体在管径为d的圆形管中流动时,选取两个截面,用压差传感器测出两个截面的静压差,即可求出流体的流动阻力.根据伯努利方程摩擦系数与静压差的关系,可以求出摩擦系数.改变流速可测得不同Re下的λ,可以求出某一相对粗糙度下的λ-Re关系.在湍流区内摩擦系数λ=ΦRe,ε/d,对于光滑管水力学光滑,大量实验证明,Re在103~105氛围内,λ与Re的关系遵循Blasius关系式,即λ=0.3163/Re0.25对于粗糙管,λ与Re的关系以图来表示.3.对局部阻力,可用局部阻力系数法表示:4.H f= ζu22对于扩大和缩小的直管,式中的流速按照细管的流速来计算.对一段突然扩大的圆直管,局部阻力远大于其直管阻力.由忽略直管阻力时的伯努利方程H f= ζu122=(p1ρ+u122)−(p2ρ+u222)可以得到局部阻力系数的计算式:ζ=1−u22+2p/ρu12式中,u1、u2分别为细管和粗管中的平均流速,p为2,1截面的压差.突然扩大管的理论计算式为:ζ=1−A1/A22 ,A1、A2分别为细管和粗管的流通截面积.三、实验流程:本实验装置如图1所示,管道水平安装,水循环使用,其中管5为不锈钢管,测压点之间距,内径;管6为镀锌钢管,测压点间距离,内径22..5mm;管7为突然扩大管,由扩大至.各测量元件由测压口与压差传感器相连,通过管口的球阀切换被测管路,系统流量由涡轮流量计3调节,离心泵的功率由变频器通过改变输入频率控制转速来实现控制.四、实验操作要点:1.开泵:在关闭所有阀门的情况下,打开电源,启动变频器至50Hz,固定转速,观察泵出口压力稳定后,即可进行排气.2.排气:在对某一管路进行实验之前,排尽设备主管和该管路及对应测压管路内的空气,每切换管路都要排一次气.关闭其他控制阀,打开对应管路的控制阀、测压阀和排气阀,在50Hz下,调节流量至1-2m3/ℎ,待2min以上,压差传感器示数稳定后,关闭排气阀和流量调节阀,在流量为0下观察压差传感器示数是否为0,若有较大偏差则气未排尽,若偏差较小且稳定则记录初始偏差值.3.实验数据测取:确定排气完毕且其余管路切换阀和测压阀关闭后,调节变频器至25Hz左右.对于直管阻力,按照流量由大到小的顺序,测取10组数据,控制压差在~之间.对于突然扩大管的阻力,可测取3组数据.测取数据时,每个数据点取值应等待2min以上且压差和流量稳定为某值或在很小范围内波动.波动时可取其中点.五、原始数据及处理:1.原始数据记录水的物理性质:测定光滑管时,25℃下,ρ=m3,μ=s测定粗糙管及突然扩大管时,℃下,ρ=m3,μ=s1光滑管和粗糙管实验数据光滑管数据:不锈钢管,l=,d=,ε≈,零点误差p=.=.粗糙管数据:镀锌钢管,l=,d=,ε≈,零点误差p表1 光滑管和粗糙管原始数据记录表光滑管粗糙管序号流量/m3h-1压差/kPa流量/m3h-1压差/kPa 123456789102突然扩大局部阻力系数测定数据突扩管: d1=,d2=,初始误差p0=.表2 突然扩大局部阻力系数数据记录表序号流量/m3h-1压差/kPa1232.数据处理表3 光滑管数据处理表序号流量/m3h-1流速/ms-1实际压差/kPaReλλb169034 262486 357996 450513 545836 638913 731991 825443 919270 1012909 其中,λb项为根据Blasius公式计算的理论摩擦系数值.直管阻力系数的计算示例:由表3中第1组数据为例,u=q vA=4q vπd2=4×3.693.14×21.0×10−32×13600m/s=2.96m/s Re=duρμ=21.0×10−3×2.96×996.950.8973×10−3=69034λ=2pdρu2l=2×7.18×103×21.0×10−3996.95×2.962×1.5=0.02303λb=0.3163Re0.25=0.3163690340.25=0.01951表4 粗糙管数据处理表序号流量/m3h-1流速/ms-1实际压差/kPaReλ166896260913355474449854544234636620731363824837918310 1012509图2 光滑管和粗糙管的λ-Re关系曲线曲线分析:a光滑管和粗糙管的摩擦系数均随Re的增大而减小,且随着Re的增大,摩擦系数减小的趋势趋缓.b在同一Re下,相对粗糙度更高的粗糙管比光滑管的摩擦系数更大,说明ε/d 越大,摩擦系数越大.c在同一Re下,光滑管的摩擦系数大于水力学光滑摩擦系数的理论值,说明实验用的光滑管和理论光滑有一定差距.表5 突然扩大管数据处理表序号流量/m3h-1压差/kPa细管流速/ms-1粗管流速/ms-1ζ123局部阻力的计算示例:以表5中第1组数据为例,u1=qvA1=4qvπd12=4×3.573.14×16.0×10−32×13600m/s=4.93m/su2=qvA2=4qvπd22=4×3.573.14×42.0×10−32×13600m/s=0.72m/sζ=1−u22+2pρu12=1−0.722+2×3.20×103996.584.932=0.7149ζ̅=∑ζi3=0.7159理论值ζt=1−A1/A22=1−d12/d222=1−162/4222=0.7308相对偏差δ=|ζ−ζtζt|×100%=|0.7159−0.73080.7308|×100%=2.04%测量值与理论值基本符合,但存在一定误差.五、结果讨论分析1.本次曲线拟合的相对大小比较准确,但是其中表现的趋势不明显,并未得到随着雷诺数增大,摩擦系数趋近于某一值的结论.可能是测定的摩擦系数和雷诺数范围较小,如果增大测定的雷诺数上限,即在更高的流速下做实验,可以看到更好的趋势.2.测定的局部阻力系数和理论值接近,说明实验结果较好.实验值低于理论值,可能是实验设备本身存在损耗,细管在高流量下腐蚀变粗的结果.可以看到随着流量增大有上升趋势,而的三次结果的差值应该是被忽略的直管阻力的影响,因而随着流量增大,表观的局部阻力系数应该增大而不是减小,可能是实验记录和计算舍入的影响.六、思考题1.在不同设备包括相对粗糙度相同而管径不同、不同温度下测定的λ-Re数据能否关联在一条曲线上答:仅在相对粗糙度不同时可以.由λ=ΦRe,ε/d知,摩擦系数是雷诺数和相对粗糙度的函数,当相对粗糙度不变时,可以关联出一条摩擦系数和雷诺数的曲线,而相对粗糙度与温度无关.因此,当且仅当相对保持粗糙度不变时,不同设备,不同温度的λ-Re数据能关联在一条曲线上.2.以水为工作流体所测得的λ-Re关系能否适用于其他种类的牛顿性流体为什么答:可以.由λ=ΦRe,ε/d知,摩擦系数是雷诺数和相对粗糙度的函数,当保持相对粗糙度不变时,流体性质对λ-Re关系不产生影响,可以适用于所有流体.3.测出的直管摩擦阻力与设备的放置状态有关系吗为什么管径、管长一样,且R1=R2=R3,见图3答:没有关系.因为计算中的压差值实际上是总势能差,可以通过压差传感器直接测得.本实验中因为管道水平放置,所以总势能差等于静压能差.由U型压差计的伯努利方程:p=ρ1−ρgR又H f=p/ρ,得:H f=(ρ1−ρ)gR/ρ即H f与摆放方式无关.。
流体流动阻力测定报告
流体流动阻力测定报告
1. 实验目的
本实验通过测定流体在管道中的流动阻力,探究流体流动的规律,分析影响流动阻力的因素。
2. 实验仪器
(省略)
3. 实验原理
(省略)
4. 实验步骤
(省略)
5. 实验结果与分析
在实验中,我们测定了不同流速下管道的流动阻力,并绘制了流速与流动阻力的关系曲线。
通过实验数据的分析可以得到以下结论:
(以下为对实验结果和分析的描述,不重复标题文字)
6. 结论
本实验得到了流体在管道中的流动阻力与流速的关系曲线,并对实验结果进行了分析。
实验结果表明流速对流动阻力有显著影响,流动阻力随着流速的增加而增加。
此外,还发现了其他影响流动阻力的因素,如管道的直径、流体的粘性等。
这些结果对于研究流体力学以及工程领域中管道系统的设计和优化都具有重要的指导意义。
7. 实验总结
通过本实验,我们深入了解了流体流动阻力的测定方法和原理,并对流速与流动阻力的关系有了更为清晰的认识。
实验中我们还学会了操作仪器设备和数据处理等实验技巧。
通过实验过程中的探索和分析,我们进一步培养了科学研究的能力和实验设计的思维方式。
8. 参考文献
(省略)。
实验一流体流动阻力的测定
实验一 流体流动阻力的测定一、实验目的1、学习直管摩擦阻力ΔP f ,直管摩擦系数λ的测定方法2、掌握直管摩擦系数λ与雷诺数Re 之间关系的测定方法及其变化规律3、学会压差变送器和流量计的安装及使用方法。
4、识别组成管路中各个管件,阀门并了解其作用。
二、 实验内容1、测定水在不同流量下,流过一段等直径水平管的流动阻力和直管摩擦系数。
2、测定不同流量下,流体经阀门或90°弯管时的流动阻力系数,检查数据的重复性。
三、基本原理由于流体粘性的存在,流体在流动的过程中会发生流体间的摩擦,从而导致阻力损失。
层流时阻力损失的计算式是由理论推导得到的;湍流时由于情况复杂得多,未能得出理论式,但可以通过实验研究,获得经验的计算式。
其研究的基本步骤如下:①寻找影响过程的主要因素对所研究的过程作初步的实验和经验的归纳,尽可能地列出影响过程的主要因素。
对湍流时直管阻力损失h f 与诸多影响因素的关系式应为:h f =f(d,u,ρ,μ,l ,ε) (1) ②、因次分析法规划实验当一个过程受多个变量影响时,通常用网络法通过实验以寻找自变量与因变量的关系,以(1)式为例,若每个自变量的数值变化10次,测取h f的值而其他自变量保持不变,6个自变量,实验次数将达106。
为了减少实验工作量,需要在实验前进行规划,以尽可能减少实验次数。
因次分析法是通过将变量组合成无因次数群,从而减少实验自变量的个数,大幅度地减少实验次数。
通过因次分析法可以将对(1)式的研究转变成对以下(2)式的4个无因次数之间的关系的研究。
即:),,('2dd l du f u h f εμρ= (2) 其中,若实验设备已定,那么以上(2)式可写为:2),(2u d l d du f h f ⋅⋅=εμρ (3)若实验设备是水平直管,以上(3)式可写为:2),(2u d l d du f P⋅⋅=∆εμρρ (4) 所以: 22u d l P⋅⋅=∆λρ (5) 即: ),(ddu f εμρλ= (6) Re du ρμ=(7)式中: ΔP f 一直管阻力引起的压强降。
实验1 流体流动阻力的测定
第二章 实验部分实验一 流体流动阻力的测定一、实验目的(1)了解流体流动阻力的测定方法。
(2)测定流体流过直管时的磨擦阻力,并确定磨擦系数λ与雷诺数Re 的关系。
(3)测定流体流过管件(本实验为闸阀)时的局部阻力,并求出阻力系数ξ。
(4)了解与本实验有关的各种流量测量仪表、压差测量仪表的结构特点和安装方式,掌握其测量原理、学会正确使用。
二、基本原理流体在管路中流动时,由于粘性剪应力和涡流的存在,不可避免地会引起压强损耗。
这种损耗包括流体经过直管的沿程阻力以及因流体运动方向改变或因管子大小形状改变所引起的局部阻力。
1.沿程阻力流体在水平均匀管道中稳定流动时,由截面1到截面2,阻力损失表现在压强的降低;h f =gp p ρ21-影响阻力损失的因素十分复杂,目前尚不能完全用理论方法求解,必须通过实验研究其规律。
为了减少实验工作量,扩大实验结果的应用范围,可采用因次分析法将各变量综合成准数关系式。
影响阻力损失的诸因素有:(1)流体性质:密度ρ,粘度μ;(2)管路的几何尺寸:管径d ,管长l ,管壁粗糙度e ; (3)流动条件:流速u 。
可表示为:△P=f(d,l ,μ,ρ,u,e)。
组合成如下的无因次式:,,,2⎪⎭⎫⎝⎛=∆d e d l du u Pμρφρ22Re u d e dl p∙∙∙=∆⎪⎭⎫ ⎝⎛ϕρ引入⎪⎭⎫ ⎝⎛∙=d eRe ϕλ,则上式变为:gu dl pfh22∙=∆=λρ式中,λ称为直管摩擦系数,滞流时λ=64/Re ;湍流时λ与Re 的关系受管壁粗糙度的影响,需由实验求得。
根据伯努利方程可知,流体通过直管的沿程阻力损失,可直接由所测得的液柱压差计读数ΔR 算出:△p=ΔR(ρ指-ρ水)g其中:ρ指——压差计中指示液密度,kg/m 3。
本实验中用水银作指示液,被测流体为水。
ΔR ——U 型管中水银位差,m 。
g ——重力加速度,g=9.81m/s 2。
2.局部阻力局部阻力通常有两种表示方法,即当量长度法和阻力系数法。
实验一 流体流动阻力的测定
实验一 流体流动阻力的测定一、 实验目的和任务1.了解流体流过管路系统的阻力损失的测定方法;2.测定流体流过圆形直管的阻力,确定摩擦系数λ与流体Re 的关系;3.测定流体流过管件的阻力,局部阻力系数ξ;4.学会压差计和流量计的使用方法;5.识别管路中各个管件、阀门,并了解其作用;二、实验原理流体的流动性,即流体内部质点之间产生相对位移。
真实流体质点的相对运动表现出剪切力,又称内摩擦力,流体的粘性是流动产生阻力的内在原因。
流体与管壁面的摩擦亦产生摩擦阻力,统称为沿程阻力。
此外,流体在管内流动时,还要受到管件、阀门等局部阻碍而增加的流动阻力,称为局部阻力。
因此,研究流体流动阻力的大小是十分重要的。
2.1 直管摩擦系数λ测定 流体在管道内流动时,由于流体粘性作用和涡流的影响产生阻力。
阻力表现为流体的能量损失,其大小与管长、管径、流体流速等有关。
流体流过直管的阻力计算公式,常用以下各种形式表示:)2( 2gu d L H 2f λ=或 )3( 2L P P P 221f u d ρλ=-=-∆ 式中h f ——以能量损失表示的阻力,J /kg ; H f ——以压头损失表示的阻力,m 液柱;△P f ——以压降表示的阻力,N /m 2L ——管道长,md ——管道内径,m ; u ——流体平均流速,m/s ;P ——流体密度,kg /m 3; λ——摩擦系数,无因次;g ——重力加速度,g 一9.81m/s 2。
.λ为直管摩擦系数,由于流体流动类型不同,产生阻力的原因也不同。
层流时流体流动主要克服流体粘性作用的内摩擦力。
湍流时除流体的粘性作用外,还包括涡流及管壁粗糙度的影响,因此λ的计算式形式各不相同。
层流时,利用计算直管压降的哈根-泊谡叶公式: )4( duL 32P P P 221f μ=-=-∆ 和直管阻力计算公式(3),比较整理得到λ的理论计算式为 )5( Re64du 232==ρμλ⨯ 由此式可见,λ与管壁粗糙度ε无关,仅为雷诺数的函数。
流体流动阻力测定实验
流体流动阻力测定实验一、实验目的⒈学习管路能量损失(hf),直管摩擦系数(λ)的测定方法。
⒉掌握直管摩擦系数λ与雷诺数Re之间关系及其变化规律。
⒊学习压强差的几种测量方法和技巧。
⒋掌握坐标系的选用方法和对数坐标系的使用方法。
二、实验内容⒈测定实验管路内流体流动的阻力和直管摩擦系数λ。
⒉测定实验管路内流体流动的直管摩擦系数l与雷诺数Re之间关系曲线和关系式。
三、实验原理1.摩擦系数的测定:h f=λ(L/d)(u2/2)λ=h f(d/L)(2/u2)λ--摩擦系数;h f-- 能量损失;d--管内直径,m;L--测压点距离;m;u--流速,m/s;流速的测定可以用流速计,也可以根据单位时间获得流体体积的“容积法”实测流量反推流速,由于已知d、u,则Re=duρ/ μρ--被测流体密度 kg/m3;μ--被测流体粘度PaS;ρ和μ可由测量流体温度查表取得,根据柏努利方程h f=(z1-z2)g+(u12-u22)/2对任一管路而言。
两截面间的能量损失,可以根据在两截面上测出L、z、ρ、u等值计算出。
如果在一条等直径的水平管上选取两个截面时,z1=z2:u1=u2,柏努利方程可以简化为:h f=(p1-p2)/ρ这样根据测量压差及流量便可以推出一定相对粗糙度时直管的λ-Re关系。
2.弯头局部阻力系数测定:局部阻力系数的测定与摩擦系数测定一样ξ=h f(2/u2)只要计算出能量损失h f和流体流速u即可。
四、实验任务:1.Dg40管的摩擦系数测定2.90℃弯头局部阻力系数测定3.绘制λ~Re曲线关系图。
五、实验步骤:1.水箱充水至80%。
然后调节仪表,MMD智能流量仪及LW-15 型涡轮流量计。
(一般实验室的老师已准备好)2.打开压差计上平衡阀,关闭各放气阀。
3.关闭离心泵的出口阀,以免启动电流过大,烧坏电机。
启动离心泵。
4.排气:a.管路排气。
b.侧压导管排气。
c.关闭平衡阀,缓慢旋动压差计上放气阀排除压差计中的气泡,注意:先排进压管,后排低压管(严防压差计中水银冲走),排气完毕。
实验一 流体流动阻力的测定
实验一 流体流动阻力的测定一、实验目的1、了解流体在管道内摩擦阻力的测定方法;2、确定摩擦系数λ与雷诺数Re 的关系。
二、基本原理由于流体具有粘性,在管内流动时必须克服内摩擦力。
当流体呈湍流流动时,质点间不断相互碰撞,引起质点间动量交换,从而产生了湍动阻力,消耗了流体能量。
流体的粘性和流体的涡流产生了流体流动的阻力。
在被侧直管段的两取压口之间列出柏努力方程式,可得:ΔP f =ΔPL —两侧压点间直管长度(m)d —直管内径(m)λ—摩擦阻力系数u —流体流速(m/s )ΔP f —直管阻力引起的压降(N/m 2)µ—流体粘度(Pa.s )ρ—流体密度(kg/m 3)本实验在管壁粗糙度、管长、管径、一定的条件下用水做实验,改变水流量,测得一系列流量下的ΔP f 值,将已知尺寸和所测数据代入各式,分别求出λ和Re ,在双对数坐标纸上绘出λ~Re 曲线 。
三、实验装置与仪器1、实验装置水泵将储水糟中的水抽出,送入实验系统,首先经玻璃转子流量计测量流量,然后送入被测直管段测量流体流动的阻力,经回流管流回储水槽,水循环使用。
被测直管段流体流动阻力△P 可根据其数值大小分别采用变压器或空气—水倒置U 型管来测量。
实验系统流程图见图一压差传感器与直流数字电压表连接方法见图二2、设备的主要技术参数(1)被测直管段:管径d —0.0080(m) 管长L —1.6(m) 材料:紫铜管(2)玻璃转子流量计:型号LZB —25 测量范围100—1000(L/h) 精度:1.5 型号LZB —10 测量范围10—100(L/h) 精度:2.5(3)单项离心清水泵:型号WB70/055 流量20—2000(L/h)扬程:13.5~19(m) 电功功率:550(W) 电机功率:550(W) 电流:1.35(A) 电压:380(V)22u d L P h ff ⨯=∆=λρ22u P L d f ∆⨯=ρλμρdu =Re四、实验步骤:1、向储水槽内注蒸馏水,直到水满为止。
流体流动阻力测定实验
实验一流体流动阻力的测定一、实验目的⒈了解测定流体直管或管件时的阻力损失方法,确定摩擦系数λ与流体Re的关系、局部阻力系数ξ。
⒉学会压差计和流量计的使用方法。
⒊识别管路中各个管件、阀门,并了解其作用。
二、实验内容1.测定流体流过直管的阻力,确定摩擦系数λ与雷诺数Re的关系;2.测定阀门、管件的局部阻力系数ζ。
三、实验原理流体在管路中流动时,由于粘性剪应力和涡流的存在,不可避免地要消耗一定的机械能。
管路是由直管和管件(如三通、肘管及大小弯头等)、阀件等组成。
流体在直管中流动造成的机械能损失称直管阻力。
而在通过管件、阀件等局部障碍时因流动方向和流动截面的突然改变所造成的机械能损失称局部阻力。
流体在水平管道中作定常流动时,由截面1流动到截面2的阻力损失表现在静压的降低,即所以流体流过直管时的能量损失[J/kg]λ=2dΔP1/ρlu2流体流过阀门或管件因局部阻力引起的能量损失[J/kg]ζ=2ΔP2/ρu2式中λ——摩擦系数; l ——管长,m; d ——管内径,m; u ——管内流速,m/s;ζ——阻力系数;ρ——流体密度,kg/m3; Δp1,Δp2——可由U形管压差计中的读数R值求得;Δp=(ρ指-ρ)gR ρ指——指示液的密度,kg/m3; g ——重力加速度,9.81m/s2四、实验装置流体流动测定示意图1—真空表 2—压力表 3—测压阀 4—控制阀5—涡轮流量计 6—平衡阀 7—放气阀 8—U形管压差计五、操作方法⒈选择进行实验的管路,打开其两端的阀门,同时关闭其余管路两端的阀门。
⒉打开各U形管压差计上的平衡阀及相应的测压阀。
⒊开启流量指示积算仪。
⒋转动泵轴,看其松紧是否正常。
⒌打开管路未端出口阀,关闭泵出口阀。
⒍引水灌泵。
7.开启泵的电源开关,若真空表和压力表上有读数,说明泵的转动正常,此时就可以送液。
(注意在泵出口阀关阀的情况下,泵转动不可过久,以防其发热损坏)。
8.逐渐打开出口阀,至流量指示积算仪上的指针达到满量程为止,然后关闭管路末端出口阀。
化工原理实验(三)流体流动阻力的测定
化工原理实验(三)流体流动阻力的测定一、实验目的1.掌握测定流体流经直管、管件和阀门时阻力损失的一般实验方法。
2.测定直管摩擦系数λ与雷诺准数Re 的关系,验证在一般湍流区内λ与Re 的关系曲线。
3.测定流体流经管件、阀门时的局部阻力系数ξ。
4.学会倒U 形压差计和涡轮流量计的使用方法。
5.识辨组成管路的各种管件、阀门,并了解其作用。
二、基本原理流体通过由直管、管件(如三通和弯头等)和阀门等组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。
流体流经直管时所造成机械能损失称为直管阻力损失。
流体通过管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。
1.直管阻力摩擦系数λ的测定流体在水平等径直管中稳定流动时,阻力损失为:2221u d l p p p w ff λρρ=-=∆=(1)即, 22lu p d fρλ∆=(2)式中: λ —直管阻力摩擦系数,无因次;d —直管内径,m ;f p ∆—流体流经l 米直管的压力降,Pa ;f w —单位质量流体流经l 米直管的机械能损失,J/kg ;ρ —流体密度,kg/m 3;l —直管长度,m ;u —流体在管内流动的平均流速,m/s 。
滞流(层流)时,Re 64=λ(3)μρdu =Re(4)式中:Re —雷诺准数,无因次;μ —流体粘度,kg/(m·s)。
湍流时λ是雷诺准数Re 和相对粗糙度(ε/d )的函数,须由实验确定。
由式(2)可知,欲测定λ,需确定l 、d ,测定f p ∆、u 、ρ、μ等参数。
l 、d 为装置参数(装置参数表格中给出), ρ、μ通过测定流体温度,再查有关手册而得, u 通过测定流体流量,再由管径计算得到。
例如本装置采用涡轮流量计测流量,V ,m 3/h 。
2900dVu π= (5)f p ∆可用U 型管、倒置U 型管、测压直管等液柱压差计测定,或采用差压变送器和二次仪表显示。
实验一 流体流动阻力的测定
1、掌握测定流体流经圆形直管时的阻力损失hf和摩擦系数λ的方法; 2、掌握测定局部阻力系数ξ的方法; 3、学习双对数坐标纸的用法,在双对数坐标图上标绘λ―Re关系曲线; 4、学习U型压差计和流量计的使用方法。实验原理
流体在管道内流动时,由于流体的粘性作用和涡流的影响会产生阻力。流体在直管内流动阻力的大小与管长、管径、流体流速和管道摩擦系数有关,它们之间存在如下关系。
hf=ΔP/ρ= λι/dx(u^2)/2 (1-1 )
λ=2d/ριxΔPf/u^2 (1-2)
Re=ρdu/μ (1-3)
式中:
d——管径,m;
ΔPf——直管阻力引起的压强降,Pa;
u——流速, m/s;
ρ——流体的密度.kg/m3;
1、试验准备 ①将水槽注满水。 ②打开U型差压计的平衡阀,关闭离心泵出口阀门,启动离心泵,并打开转速显示仪开关。 ③打开离心泵出口阀门至最大循环几分钟,排出管路中气体,再把U型差压计上放气阀打开,让水把测压导管中气体记取U型差压计初始读数,打开出口阀,再关闭,看初始读数有无变化,如不变表明气体排尽。2、实验过程 ①测定直管阻力 调节泵出口阀门,使流量逐渐增大,在流量变化中取8~10组数据(流量小时数据密些),流量稳定时读取数据。 ②测定局部阻力(可在测定直管阻力时同时测定)测定不同流量时的5组数据。 ③记录水温。 ④实验完毕后的检查工作 a首先关闭泵出口阀门,及仪表开关,将U型压差计上平衡阀关闭,再关泵。b 排除槽中水。
实验报告要求
1、绘出λ、Re关系曲线 2、计算闸阀局部阻力系数ξ,并求出平均值。
思考题
1.在测量前为什么要将设备中的空气排尽?怎样赶气?如何检验是否赶尽? 2.在U型差压计上装设的“平衡阀”有何作用?在什么情况下它是开着的,又在什么情况下它应该是关闭的?(不测定时开,测量时关) 3.不同管径、不同水温测定的λ、Re关系曲线能否用于空气?如何应用? 4.如测压孔边缘有毛刺或安装就正,对静压的测量是否有影响?
流体流动阻力的测定
化工原理实验报告报告摘要流体阻力的大小关系到输送机械的动力消耗和输送机械的选择,测定流体流动阻力对化工及相关过程工业的设计、生产和科研具有重要意义。
本实验利用由水箱、离心泵、光滑管、粗糙管、层流管、突然扩大管及自动测压、测流量装置等组成的装置,以水为工作流体,在常温常压下测定了光滑管、粗糙管、层流管的摩擦阻力系数λ和突然扩大管的局部阻力系数ξ,依据伯努利方程及Blasius关系式等,探讨了直管的摩擦阻力系数λ随雷诺数Re的变化关系,验证了湍流区内摩擦阻力系数λ为雷诺数Re和相对粗糙度ε/d的函数,并由测得的一系列数据得到了直管的λ-Re关系曲线,实验成功地完成了相关任务,达到了预期的目的。
一、实验目的及任务1、掌握测定流体流的阻力实验的一般实验方法。
2、测定直管的摩擦阻力系数λ及突然扩大管和阀门的局部阻力系数ξ。
3、测定层流管的摩擦阻力。
4、验证湍流区内摩擦阻力系数λ为雷诺数Re和相对粗糙度的函数。
5、将所得光滑管的λ—Re方程与Blasius方程相比较。
二、基本原理1.直管摩擦阻力不可压缩流体(如水),在圆形直管中做稳定流动时,由于黏性和涡流的作用产生摩擦阻力;流体在流过突然扩大、弯头等管件时,由于流体运动的速度和方向突然变化,产生局部阻力。
影响流体阻力的因素较多,在工程上通常采用量纲分析方法简化实验,得到在一定条件下具有普遍意义的结果,其方法如下。
流体流动阻力与流体的性质,流体流经处的几何尺寸以及流动状态有关,可表示为ΔP=f(d , l , u ,ρ,μ,ε)引入下列无量纲数群。
雷诺数Re=duρ/μ相对粗糙度ε/d 管子长径比l/d从而得到2(,,)pdu lud dρεψρμ∆= 令λ=Φ(Re, ε/d )2(R e,)2pl ud d ερ∆=Φ可得摩擦阻力系数与压头损失之间的关系,这种关系可用试验方法直接测得。
22f pl uh dλρ∆==⨯式中 fh —直管阻力,J/kg;L —被测管长, m; D —被测管内径,m;u —平均流速, m/s;λ—摩擦阻力系数。
流体流动阻力的测定实验报告
流体流动阻力的测定实验报告实验报告名称:流体流动阻力的测定一、实验目的本实验旨在通过实验测定流体的流动阻力,理解流体流动的基本原理,掌握流体流动阻力的计算方法,提高实验操作和数据处理能力。
二、实验原理在流体流动过程中,由于流体的粘滞性,会产生流动阻力。
流动阻力与流体的性质、管道的几何尺寸和流速等因素有关。
根据伯努利方程,流体的能量守恒,但在流动过程中会存在压力损失,这种压力损失即为流动阻力。
流动阻力的大小可以通过测定管道两端的压力差来计算。
三、实验步骤1.实验准备:准备实验器材,包括水、测压计、管道、阀门、流量计等。
2.开始实验:开启水源,调节流量,打开测压计,记录初始数据。
3.改变流量:通过调节阀门改变流量,记录每次改变流量后测压计的数据。
4.结束实验:关闭水源,整理实验数据。
四、数据分析表1 测压计数据记录表根据实验数据,我们发现随着流量的增加,测压计的压力差也在增加。
这说明流速越大,流动阻力也越大。
同时,我们可以通过计算得到每个流量下的阻力值。
将数据绘制成图表可以更直观地观察阻力与流量之间的关系。
通过线性拟合可以找到阻力与流量之间的定量关系。
这将为我们后续的流体流动分析提供重要依据。
五、实验结论本实验通过测定不同流量下管道两端的压力差,成功地测得了流体的流动阻力。
实验结果表明,随着流量的增加,流动阻力也相应增加。
这说明流速是影响流动阻力的一个重要因素。
此外,本实验还初步探讨了流动阻力与流量之间的关系,为今后更深入的流体流动研究奠定了基础。
本实验不仅提高了我们的实验操作能力,还强化了我们对于流体流动基本原理的理解。
通过数据处理和图表分析,我们能够更准确地把握流动阻力的变化规律,为实际生产过程中的流体输送和分配提供了重要参考依据。
六、实验体会与建议在本次实验中,我深刻体会到了实践对于理论知识的检验作用。
通过实际操作和观察,我对流体流动阻力的概念有了更深入的理解。
同时,我也意识到了实验数据处理和误差分析的重要性。
化工原理 实验一
30
(5)流体在管内流动时,如要测取管截面上的 流速分布,应选用流量计测量。 A 皮托管 B 孔板流量计 C 文丘里流量计 D 转子流量计 (6)流体在圆形管道中作层流流动,如果只将流 速增加一倍,则阻力损失为原来的 2 倍;如果 只将管径增加一倍而流速不变,则阻力损失为 原来的 1/4 倍。 (7)粘性流体在流动过程中产生直管阻力的原 因是什么?产生局部阻力的原因又是什么?
28
6.不同管径、不同水温下测定的λ~Re曲线数据能 否关联到同一曲线? 7.在λ~Re曲线中,本实验装置所测Re在一定范围 内变化,如何增大或减小Re的变化范围? 8.本实验以水作为介质,作出λ~Re曲线,对其它 流体是否适用?为什么? 9.影响λ值测量准确度的因素有哪些?
29
九、练习题
(2)全开的截止阀
式 (1—3) 中 pf 为两测压点间的局部阻力与直管 阻力之和。由于管件或阀门距测压孔的直管长 度很短,引起的摩擦阻力与局部阻力相比可以 忽略, pf可近似认为全部由局部阻力损失引起。
2 p 2 u
的大小与管径、阀门的材料及加工精度有关。
15
(2)突然扩大与突然缩小 在水平管的两测压点间列柏努力方程式
u12 p1 u2 2 p2 hf 2 2
局部阻力
hf
p1 p2
u12 u2 2 2
2 p1 p2 u12 u2 2 2( ) u 2
可见,pf的大小除了包括局部阻力损失和可忽略的摩擦 阻力损失之外,还包括动能和静压能之间能量转换值。
(1) 流体在变径管中作稳定流动,在管径缩小 的地方其静压能 。 (2)测流体流量时,随流量增加孔板流量计两侧 压差值将 ,若改用转子流量计,随 流量增加转子两侧压差值将 。 (3) 流体流动时的摩擦阻力损失hf所损失的是机 械能中的 (动能、位能、静压能)。 (4) 毕托管测量管道中流体的 ,而孔板流 量计测量管道中流体的 。
化工原理实验—流体流动阻力测定实验
三、实验基本原理
流体管路是由直管、管件(如三通、肘管、弯头) 、阀门等部件组成。流体 在管路中流动时, 由于黏性剪应力和涡流的作用,不可避免地要消耗一定的机械 能,流体在直管中流动的机械能损失为直管阻力;而流体通过阀门、管件等部件 时, 因流动方向或流动截面的突然改变导致的机械能损失称为局部阻力。在化工 过程设计中, 流体流动阻力的测定或计算, 对于确定流体输送所需推动力的大小, 例如泵的功率、液位或压差,选择适当的输送条件都有不可或缺的作用。
1.直管阻力
流体在水平的均匀管道中稳定流动时, 由截面 1 流动至截面 2 的阻力损失表 现为压力的降低,即 ℎ������ =
������1 −������2 ������
=
������ ������
①
由于流体分子在流动过程中的运动机理十分复杂, 影响阻力损失的因素众多, 目前尚不能完全用理论方法来解决流体阻力的计算问题, 必须通过实验研究掌握 其规律。为了减少实验工作量,简化实验工作难度,并使实验结果具有普遍应用
2
������ ������
⑦
中国地质大学(武汉)
031112 班
化工原理实验报告
理论指导下的实验方法具有“由小见大,由此及彼”的功效。
2.局部阻力
局部阻力通常用当量长度法或局部阻力系数法来表示。 当量长度法: 流体通过管件或阀门的局部阻力损失,若与流体流这一定长度 的相同管径的直管阻力相当, 则称这一直管长度为管件或阀门的当量长度,用符 号������������表示。 这样, 就可用直管阻力的公式来计算局部阻力的损失。 在管路计算时, 可将管路中的直管长度与管件阀门的当量长度合并在一起计算, 如管路系统中直 管长度为������ ,各种局部阻力的当量长度之和为∑������ ������������������ ,则流体在管路中流动的总阻 力损失为 ∑ h������ = ������ [
流体流动阻力的测定
流体流动阻力的测定引言流体流动阻力的测定是流体力学领域中的重要研究内容。
了解流体在流动过程中的阻碍情况对于各种应用和工程设计都具有重要意义。
本文将从流体流动阻力的原理、测定方法以及实验过程等多个方面进行探讨。
流体流动阻力的原理流体流动阻力是流体在流动过程中受到的阻碍力。
其大小取决于流体的性质、流动速度以及物体形状等因素。
根据伯努利定律,流体在流动过程中会产生压力变化。
而由牛顿第二定律可知,物体所受到的阻力与速度成正比。
因此,可以通过测量压力变化和流速来确定流动阻力的大小。
流体流动阻力的测定方法测定方法一:压力差法压力差法是一种常见的测定流体流动阻力的方法。
它通过测量流体流过物体前后的压力差来确定阻力的大小。
具体步骤如下: 1. 设置合适的试验装置,包括流体源、测压装置和物体样品。
2. 测量流体流过物体前后的压力差,可以使用压力传感器或者水银柱测压法。
3. 根据压力差和流体速度计算出流体流动阻力。
测定方法二:阻力系数法阻力系数法是另一种常用的测定流体流动阻力的方法。
它通过测量物体在流体中所受到的阻力,结合流体的性质和运动状态,计算出阻力系数。
具体步骤如下: 1. 设置合适的实验装置,包括流体源、测力装置和物体样品。
2. 测量物体在流体中所受到的阻力,可以使用力传感器或者天平等装置。
3. 根据阻力大小、流体密度、物体形状等参数计算出阻力系数。
流体流动阻力的实验过程实验准备1.准备好实验所需的仪器和设备,包括流体源、压力传感器、流速计、物体样品等。
2.根据实验需要调整流体源的流量和压力。
3.确保实验环境稳定,以减小外界因素对实验结果的影响。
实验步骤1.将流体导入实验装置,确保流体稳定流过物体样品。
2.实时监测流体的压力和流速,并记录相应数据。
3.若使用压力差法,需分别测量流体流过物体前后的压力值。
4.若使用阻力系数法,需测量物体在流体中所受到的阻力。
实验数据处理1.根据测得的数据计算流体流动阻力的大小。
实验一流体流动阻力的测定
实验一流体流动阻力的测定1.进行测试系统的排气工作时,是否应关闭系统的出口阀门?为什么?答:在进行测试系统的排气时,不应关闭系统的出口阀门,因为出口阀门是排气的通道,若关闭,将无法排气,启动离心泵后会发生气缚现象,无法输送液体。
2.如何检验系统内的空气已被排除干净?答:可通过观察离心泵进口处的真空表和出口处压力表的读数,在开机前若真空表和压力表的读数均为零,表明系统内的空气已排干净;若开机后真空表和压力表的读数为零,则表明,系统内的空气没排干净。
3.在U形压差计上装设“平衡阀”有何作用?在什么情况下它是开着的,又在什么情况下它应该关闭的?答:用来改变流经阀门的流动阻力以达到调节流量的目的,其作用对象是系统的阻力,平衡阀能够将新的水量按照设计计算的比例平衡分配,各支路同时按比例增减,仍然满足当前气候需要下的部份负荷的流量需求,起到平衡的作用。
平衡阀在投运时是打开的,正常运行时是关闭的。
4.U行压差计的零位应如何校正?答:打开平衡阀,关闭二个截止阀,即可U行压差计进行零点校验。
5.为什么本实验数据须在对数坐标纸上进行标绘?答:为对数可以把乘、除因变成加、减,用对数坐标既可以把大数变成小数,又可以把小数扩大取值范围,使坐标点更为集中清晰,作出来的图一目了然。
6.本实验中掌握了哪些测试流量、压强的方法,它们有什么特点?答:测流量用转子流量计、测压强用U形管压差计,差压变送器。
转子流量计,随流量的大小,转子可以上、下浮动。
U形管压差计结构简单,使用方便、经济。
差压变送器,将压差转换成直流电流,直流电流由毫安表读得,再由已知的压差~电流回归式算出相应的压差,可测大流量下的压强差。
7.是否要关闭流程尾部的流量调节答:不能关闭流体阻力的测定主要根据压头来确定;尾部的流量调解阀;起的作用是调解出流量;由于测试管道管径恒定;根据出流量可以确定管道内流体流速;而流速不同所测得的阻力值是不同的;这个在水力计算速查表中也有反映出的。