(8)新人教七上数学1.2 有理数复习
人教版七年级上册 数学 第一章有理数小结复习(二)任务单
人教版七年级上册数学 第一章 有理数 小结复习学习目标:1.掌握有理数的运算法则和运算顺序;2.能够熟练地运用运算法则和运算顺序进行混合运算. 课前学习任务复习有理数的运算法则. 课上学习任务【学习任务一】回顾有理数的运算法则和运算顺序有理数的运算法则:有理数运算顺序:【学习任务二】例题精讲例1 判断下列结论是否正确,并说明理由.(1) ()93133=⎪⎭⎫⎝⎛-⨯- (2)55515-=⨯⎪⎭⎫ ⎝⎛-÷(3)422=--)( (4)8112113-=-)(小结: 例2 计算:(1)⎥⎦⎤⎢⎣⎡-+-⨯-)()(9532132(2))()(83318132-+--- 小结:例3 计算:()()()[]231410223⨯---+-【学习任务三】本节课小结: 【学习任务四】思考题计算: 5234211125⨯--÷----)()(小结复习(二)课后练习1. 812+123-÷2. ⎪⎭⎫⎝⎛-÷⎪⎭⎫ ⎝⎛-+60165127433. 25)52(25322⨯-÷--4. 11112356--+-5. ()232818⨯-÷-6. 22173251[()8]1543-⨯-+⨯--课后练习答案:1. 812+123-÷ 4. 11112356--+-3=12+1289=12+215=2-⨯-- 5451151616263-=+-=+---=2. ⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-+60165127435.()232818⨯-÷- ()30503545606560127604360)6512743(-=+--=⨯+⨯-⨯-=-⨯-+=2461823218182321818=+=⨯⨯+=⨯⎪⎭⎫ ⎝⎛-⨯-=3. 25)52(21322⨯-÷--6. 22173251[()8]1543-⨯-+⨯--2443247524328253425252134=+-=+-=⨯⎪⎭⎫ ⎝⎛-⨯--= 963131084394433108944315225-=-+-=⨯-⨯+-=⎪⎭⎫⎝⎛-⨯+⨯-=。
人教版七年级上有理数全章总复习及试题
人教版七年级上有理数全章总复习及试题1.1 正数与负数一、必记概念:0既,也。
在实际生活中,常常用正数和负数表示具有意义的量。
如果上升10米记作+10米,那么下降5米记作。
二、练习:1. 下列结论中错误的是()A. 零是整数B. 零不是正数C. 零是偶数D. 零不是自然数2. 如果顺时针旋转30°记作-30°,那么逆时针旋转45°记作。
3. 某人向东走5米,又回头向西走5米,此人实际距原地米。
4. 如果中午以后的2小时记作+2小时,那么+2小时前3小时应记作。
5. 观察下面依次排列的一列数,你能发现它们排列的规律是什么吗?后面空格内的三个数是什么,试把它写出来。
(1) 2、-3、4、-5、6、、、、…(2) 1、2、3、5、8、、、、…6. “一个数前面加‘-’,它一定是负数”对吗?1.2 有理数1.2.1 有理数一、必记概念:1. 正整数、零和负整数统称为;正分数和负分数统称为;和统称为有理数。
2. 把一些数放在一起,就组成一个数的,简称数集。
3. 零和正数统称为,零和负数统称为。
4. 正整数和零统称为,又统称为;零和负整数统称为。
二、练习:(一)把下列各数填在相应的集合中:-1、-0.4、35、0、13-、6、9、317-、114、-19正数集合:﹛…﹜负数集合:﹛…﹜整数集合:﹛…﹜分数集合:﹛…﹜非正数集合:﹛…﹜非负数集合:﹛…﹜非正整数集合:﹛…﹜非负整数集合:﹛…﹜(二)判断题:1. 一个有理数不是正数就是分数。
()2. 一个有理数不是整数就是分数。
()3. 有限小数和无限小数都是有理数。
()4. 0C︒表示没有温度。
()(三)选择题:5. 下列说法:(1)零是正数;(2)零是整数;(3)零是有理数;(4)零是非负数;(5)零是偶数。
其中正确的说法的个数为()A. 2个B. 3个C. 4个D. 5个6. 下列说法正确的是()A. 一个有理数不是正数就是负数B. 一个有理数不是整数就是分数C. 有理数是指整数、分数、正有理数、零、负有理数这五类D. 以上结论都不对-表示的数是()7. xA. 负数B. 正数C. 正数或负数D. 以上答案都不对8. 对于有理数a,下面说法正确的是()-表示负有理数A. a表示正有理数B. a-中必有一个是负有理数 D. 以上答案都不对C. a与a(四)填空题:10. 非负整数与正整数的区别是非负整数包括,而正整数不包括。
数学人教版七年级上册有理数复习
有理数(复习)北海中学李莹教学目标1、理解有理数的重要概念2、能用这些概念解决实际问题教学重难点1、理解有理数的七个概念:负数有理数数轴互为相反数互为倒数有理数的绝对值有理数大小的比较2、概念的实际应用教学过程一自学提示1. 负数在正数前面加“—”的数; 0既不是正数,也不是负数2. 有理数分类:3. 数轴:规定了原点、正方向和单位长度的直线4. 互为相反数:互为相反数的两个数和为零5. 互为倒数:乘积是1的两个数互为倒数6. 有理数的绝对值:一个数a的绝对值就是数轴上表示数a的点与原点的距离。
7. 有理数大小的比较二有理数的基本概念(一)、负数:在正数前面加“—”的数; 0既不是正数,也不是负数1判断:1)a一定是正数;2)-(-a)一定大于03)0℃表示没有温度4) 0是正整数。
2 1)增加-20%,实际的意思是_.2)甲比乙大-3表示的意思是_3)某种食用油的价格随着市场经济的变化涨落,规定上涨记为正,则-5.8元的意义是;如果这种油的原价是76元,那么现在的卖价是。
(二)有理数:整数和分数统称有理数1把下列各数填在相应额大括号内: 1,-0.1,-789,25,0,-20,-3.14,-590,6/7 ·正有理数集{…};·非负整数集{…};·负分数集{…}(三).数轴:规定了原点、正方向和单位长度的直线.1)在数轴上表示的两个数,右边的数总比左边的数大;2)正数都大于0,负数都小于0;正数大于一切负数;3)所有有理数都可以用数轴上的点表示。
[基础练习]1 在数轴上画出表示下列各数的点,并按从大到小的顺序排列,用“>”号连接起来。
4, -|-2|, -4.5, 1, 02 选择题:(1)在数轴上,原点及原点左边所表示的数()A整数B负数C非负数D非正数(2)下列语句中正确的是()A数轴上的点只能表示整数B数轴上的点只能表示分数C数轴上的点只能表示有理数D所有有理数都可以用数轴上的点表示出来3 在数轴上点A表示-4,距点A两个单位长度的点表示的数是 _______(四).相反数只有符号不同的两个数,其中一个是另一个的相反数。
人教版数学七年级上册(新) 单元复习课件:第一章《有理数》(共15张PPT)
2 7 5
㈠正数与负数 1、正数与负数的概念: ①正数:大于0的数。 ②负数:小于0的数。带“-”号的数并不都是负数 ③0既不是正数,也不是负数。 2、正数与负数的意义:在实际中表示意义相反的量。
知识要点
(1)相反意义的量包含两个要素:一是它们的意义要相反;二 是它们都具有数量。如前进8m与前进5m,上升与下降不是相反 意义的量;因为前者意义相同,后者缺少数量。 (2)与一个量成相反意义的量不止一个,如与上升2m成相反意 义的量就很多,如:下降1m,下降0.2m,…… (3)在同一问题中,用正、负数表示具有相反意义的量。对于 两个具有相反意义的量,把哪一种意义规定为正,带有任意性, 不过习惯上把向东、上升、盈利、运进、增加、收入等规定为正, 把它们的相反量规定为负的。
负数的绝对值是它的相反数; 0的绝对值是0. ③互为相反数的两个数的绝对值相等。 即︱a︱=︱-a︱且︱a-b︱=︱b-a︱ ④利用绝对值比较大小:两个负数,绝对值大的反而小。其步骤 如下:第一步分别求出两个负数的绝对值,第二步比较这两个绝 对值的大小,第三步根据性质比较。
6、倒数: 1 ①乘积是1的两个数叫作互为倒数。a的倒数是 a (a≠0),0没 有倒数。 ②如果a与b互为倒数,那么ab=1. 例:求下列各数的倒数:2,-2.5,-5 7、实数比大小: ①利用数轴:数轴上两个点表示的数,右边的总比左边的大; 正数大于0,负数小于0,正数大于负数。 ②利用绝对值比较负数大小:两个负数大小,绝对值大的反而小.
-4 2 -2 -4 -3 –2 –1 0 1 2
4 3 4
5、绝对值: ①数轴上看,一个数的绝对值就是表示这个数的点与原点的距离 叫做a的绝对值。 a的绝对值就是数a所表示点到原点的距离。表示成︱a︱。 (︱a︱≥0,一个数的绝对值是非负数) a a
七年级数学上册《有理数》复习课件 新人教版
-(-2/9),
1/2,-1/4 正整数有:12,|-8| 负分数有:-3.14,-2/5,-1/4 非负数有:12,0,-(-2/9),|-8|,1/2
5
例2,在数轴上表示绝对值不小于2而又不大于5.1的
所有整数;并求出绝对值少于4的所有整数的和与积
1、10盒火柴如果以每盒100根 为准,超过的根数记作正数,不 足的根数记作负数,每盒数据记 录如下: +3,+2,0,-1,-2,-3, -2,+3,-2,-2。 求这10盒火柴共有多少根.
15
创新:
2、如图,是用火柴棒摆成的一个大三角形,它是由九 个小三角形组成的,试将1、2、3、4、5、6、7、8、9分 别填入这9个小三角形哪(每个小三角形内只填一个数), 要求靠近大三角形每条边的每五个数相加的和相等,请 想一想,怎样填这些数才能使五个数的和尽可能大一些, 这五个数的和最大是多少?
有理数的概念
注意:零是自然数 概念:有理数、数轴、相反数、绝对值、倒数 分类(1):整数和分数(2):正有理数、负理有数和 零 法则:有理数的加、减、乘、除法法则 运算律:加法、乘法的交换律、结合律,分配律 方法:有理数大小的比较方法 体验:数形结合和数学知识来源于社会实践的原理
解(略) 例3,数X,Y在数轴上的对应点如下 图,化简|X-Y|-|Y+X|+|Y-X| X
6
0
Y
解:|X-Y|-|Y+X|+|Y-X|=Y-X-Y-X+Y-X=Y-3X
要点:
数轴的三要素:原点、正方向和单位长度 数a的相反数是-a,相反数是它本身的数是0,一个数乘以 -1就变为原数的相反数 互为相反数的两个数的绝对值相等,互为相反数的和为 0, 1除以一个数就变为这个数的倒数,互为倒数的积为1
人教版七年级数学上册 1.2有理数 知识点归纳
人教版七年级数学上册 1.2有理数 知识点归纳(含例题)正整数、0、负整数统称为整数,即:整数{ 正整数0负整数正分数、负分数统称为分数,即:分数{正分数负分数整数和分数统称为有理数。
有理数的分类:按定义分类 按性质分类有理数{ 整数{ 正整数0负整数分数{正分数负分数 有理数{正有理数{正整数正分数0负有理数{负整数负分数与小学不同,在初中,如果一个小数能化成分数,那么这个小数也是分数。
例1、因为0.2=15,1.5=32,2.666=223,所以0.2、1.5、2.666都是分数。
例2、无限不循环小数,如π、1.010010001…等都不是分数。
引入负数之后,奇数和偶数的范围扩大了。
例3、不仅1、3、5、7……是奇数,而且-1、-3、-5、-7……也是奇数。
例4、不仅0、2、4、6、8……是偶数,而且-2、-4、-6、-8……也是偶数。
用一条直线上的点表示数,这条直线叫做数轴。
它满足以下要求:①在直线上任取一个点表示数0,这个点叫做原点。
②通常规定直线上从原点向右为正方向,从原点向左为负方向。
在一些特殊情况下,也可以规定直线上从原点向上为正方向,从原点向下为负方向。
例如:温度计。
③选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3,……;从原点向左,用类似方法依次表示-1,-2,-3,……数轴的三要素是:原点、正方向、单位长度。
数轴上,原点右边的数是正数,原点左边的数是负数。
数轴上,右边的数比左边的数大。
所有有理数都可以用数轴上的点来表示,包括分数或小数也可以用数轴上的点表示。
例5、从原点向右3.5个单位长度的点表示小数3.5 。
例6、从原点向左52个单位长度的点表示分数-52 。
一般地,设a 是一个正数,则数轴上表示数a 的点在原点的右边,与原点的距离是a 个单位长度;表示数-a 的点在原点的左边,与原点的距离是a 个单位长度。
只有符号不同的两个数互为相反数。
新人教版七年级上册数学教材配题-1.2有理数、1.3有理数加减法
第一章 有理数1.2.1有理数P6——练习1. 所有正数组成正数集合,所有负数组成负数集合。
把下面的有理数填入它属于的集合的圈内15,19-,-5,512-,138-,0.1,-5.32,-80, 123, 2.333.2.指出下列各数中的正数、负数、整数、分数:-15,+6,-2,-0.9,1,35,0,134,0.63,-4.91.2.2数轴P7——思考怎样用数简明地表示这些树、电线杆与汽车站牌的相对位置关系(方向、距离) 思考图1.2-3中的温度计可以看做表示正数、0和负数的直线,它和图1.2-2有什么共同点,有什么不同点?P9——练习1.如图,写出数轴上点A ,B ,C ,D ,E 表示的数.DCABE(第1题)2.画出数轴并表示下列有理数:1.5,-2,2,-2.5,92,34-,0.3.数轴上,如果表示数a 的点在原点的左边,那么a 是一个____ 数;如果表示数b 的点在原点的右边,那么b 是一个____ 数.正数集合 负数集合1.2.3相反数P9——探究在数轴上,与原点的距离是2的点有几个?这些点各表示哪个数?设a 是一个正数,数轴上与原点的距离等于a 的点有几个?这些点表示的数有什么关系? 思考设a 表示一个数,-a 一定是负数么? 练习1.判断下列说法是否正确;(1)-3是相反数; (2)+3是相反数; (3) 3是-3的相反数; (4)-3与+3互为相反数.2.写出下列各数的相反数:5116,8, 3.9,,,100,0.22---3.如果a a =-,那么表示a 的点在数轴上的什么位置?4.化简下列各数:3(68),(0.75),(),( 3.8).5---+---+1.2.4绝对值P11——练习1. 写出下列个数的绝对值:6,-8,-3.9,52,211-,100, 0. 2. 判断下列说法是否正确:(1) 符号相反的数互为相反数;(2) 一个数的绝对值越大,它表示的点在数轴上越靠右; (3) 一个数的绝对值越大,表示它的点在数轴上离原点越远;(4) 当0a ≠时,a 总是大于0. 3. 判断下列各式是否正确:(1)55=-;(2) 55-=-;(3)-5= 5-.P12——思考图1.2-7给出了未来一周中每天的最高气温和最低气温,其中最低气温是多少?最高气温呢?你能将这七天中每天的最低气温按从低到高的顺序排列吗?思考对于正数、0和负数这三类数,它们之间有什么大小关系?两个负数之间如何比较大小?前面最低气温由低到高的排列与你的结论一致吗?例 比较下列各对数的大小: (1)-(-1)和-(+2);(2)821-和37-;(3)-(-0.3)和1-3P13——练习比较下列各对数的大小(1)3和-3; (2)-3和-5 (3)-2.5和- -2.25; (4)3-5和3-4P14—习题1.2 复习巩固1. 把下面的有理数填在相应的大括号里(将各数用逗号分开)15,3-8,0, 0.15,-30,-12.8,225,+20,-60. 正数:{ …} 负数{ … }2. 在数轴上表示下列各数:235,3, 3.5,0,,,0.75.32-+--3. 在数轴上,点A 表示-3,从点A 出发,沿数轴移动4个单位长度到达点B ,则点B 表示的数是多少?4. 写出下列各数的相反数,并将这些数连同它们的相反数在数轴上表示出来:194,2, 1.5,0,,.34-+--5. 写出下列各数的绝对值:23125,23, 3.5,0,,,0.05.32-+---在上面的数中哪个数的绝对值最大?哪个数的绝对值最小?6. 将下列各数按从小到大的顺序排列,并用“<”号连接:2310.25, 2.3,0.15,0,,,,0.05.322-+----综合运用7. 下面是我国几个城市某年一月份的平均气温,把它们按从高到低的顺序排列. 北京 武汉 广州 哈尔滨 南京-4.6℃ 3.8℃ 13.1℃ -19.4℃ 2.4℃8. 如图,检测5个排球,其中超过标准的克数记为正数,不足的克数记为负数.从轻重的角度看,哪个球最接近标准?9. 某年我国人均水资源比上年的增幅是-5.6%.后续三年各年比上年的增幅分别是-4.0%,13.0%,-9.6%.这些增幅中哪个最小?增幅是负数说明什么?10. 在数轴上,表示哪个数的点与表示-2和4的点的距离相等?拓广探索11.(1)-1与0之间还有负数吗?12-与0之间呢?如有,请举例. (2)-3与-1之间有负整数吗?-2与2之间有哪些整数? (3)有比-1大的负整数吗?(4)写出3个小于-100并且大于-103的数.12.如果2x =,那么x 一定是2吗?如果0x =,那么x 等于几?如果x x =-,那么x 等于几?1.3有理数的加减法 1.3.1有理数的加法P14——思考小学学过的加法是正数与正数相加、正数与0相加.引入负数后,加法有哪几种情况? 思考如果物体先向右运动5m ,再向右运动3m ,那么两次运动的最后结果是什么?可以用怎样的算式表示? 思考如果物体先向左运动5m ,再向左运动3m ,那么两次运动的最后结果是什么?可以用怎样的算式表示? 探究(1)如果物体先向左运动3m ,再向右运动5m ,那么两次运动的最后结果怎样?如何用算式表示? (2)如果物体先向右运动3m ,再向左运动5m ,那么两次运动的最后结果怎样?如何用算式表示? 探究如果物体先向右运动5m 再向左运动5m ,那么两次运动的最后结果如何?P18——例1计算:(1)(-3)+(-9) (2)(-4.7)+3.9练习:1.用算式表示下面的结果: (1)温度由-4℃上升7℃; (2)收入7元,又支出5元.2.口算:(1)(15)+(-6) (2)4+(-6) (3)(-4)+6 (4)(-4)+4 (5)(-4)+14 (6)(-14)+4 (7)6+(-6) (8)0+(-6)3.计算:(1)15+(-22) (2)(-13)+(-8) (3)(-0.9)+1.5 (4))32(21-+4.请你用生活实例解释5+(-3)=2,(-5)+(-3)=-8的意义.P19——探究 计算30+(-20) (-20)+30两次所得的和相同吗?换几个加数再试.从上述计算中,你能得出什么结论? 探究 计算[]8(5)(4),+-+- []8(5)(4)+-+-.两次所得的和相同吗?换几个加数再试.从上述计算中,你能得出什么结论?例2计算 16(25)24(35)+-++-.例 3 10袋小麦称后记录如图 1.3-3所示(单位:kg ).10袋小麦一共多少千克?如果每袋小麦以90kg 为标准,10袋小麦总计超过多少千克或不足多少千克?P20——练习 1.计算(1)()()2317622+-++-; (2)()()()231324-+++-++-. 2.计算: (1)1111()()236+-++-; (2)13323(2)5(8)4545+-++-.1.3.2有理数的减法P22——探究从③式能看出减-3相当于加哪个数吗?把3换成0,-1,-5,用上面的方法考虑()()()()()03,13,53.--------这些数减-3的结果与它们加+3的结果相同么?计算()()98,98;157,157.-+--+-从中又有什么新发现?例4 计算(1)()()35---; (2) 07- (3) ()7.2 4.8--; (4)11(3)524--.P23——练习 1.计算(1)69- ; (2)()()47+--; (3)()()58---; (4)()05--; (5)()2.5 5.9--; (6)()1.90.6--.2.计算:(1)比2℃低8℃的温度; (2)比-3℃低6℃的温度.例5 计算()()()()20357-++---+.P24——探究在数轴上,点A ,B 分别表示数a ,b 利用有理数减法,分别计算下列情况下点A,B 之间的距离: 2,6;0,6;2,6;2, 6.a b a b a b a b ======-=-=-你能发现点A ,B 之间的距离与数a ,b 之间的关系吗?P24——练习 计算:(1)1430.5-+- ; (2) 2.4 3.5 4.6 3.5-+-+; (3)()()()()75410--++---; (4)3712()()14263-+----.P24——习题1.3 复习巩固 1.计算:(1)(-10)+(+6); (2)(+12)+(-4); (3)(-5)+(-7); (4)(+6)+(+9); (5)(-0.9)+(-2.7); (6))53(52-+;(7)52)31(+- ; (8))1211()413(-+-.2.计算:(1)(-8)+10+2+(-1)(2)5+(-6)+3+9+(-4)+(-7)(3)(-0.8)+1.2+(-0.7)+(-2.1)+0.8+3.5 (4))31()21(54)32(21-+-++-+3.计算:(1)()88--; (2)()()88---; (3)()88--; (4)88-; (5)06-; (6)()06--; (7 1647-); (8)()2874--; (9)()()3.87--+; (10)()()5.9 6.1---.4. 计算(1)23()()55+--; (2)23()()55---; (3)1123-; (4)11()23--;(5)21()36---; (6)30()4--;(7)2(2)()3--+; (8)311(16)(10)(1)442----+.5. 计算:(1) 4.2 5.78.410-+-+; (2)15214632-++-; (3)12(18)(7)15--+--; (4)4.7(8.9)7.5(6)---+-;(5)7111(4)(5)(4)(3)8248---+--+; (6)2151()054(9)3663-+-+-+-.综合运用6. 如图,陆上最高处是珠穆朗玛峰的峰顶,最低处位于亚洲西部名为死海的湖,两处高度相差是多少?7. 一天早晨的气温是-7℃,中午上升了11℃,半夜又下降了9℃,半夜的气温是多少摄氏度?8. 食品店一周中各天的盈亏情况如下(盈余为正);132元,-12.5元,-10.5元,127元,-87元,136.5元,98元.一周总的盈亏情况如何?9. 有8筐白菜,以每筐25kg 为准,超过的千克数记作正数,不足的记作负数,称后的记录如下:1.5,-3,2,-0.5,1,-2,-2,-2.5.这8筐白菜一共多少千克?10. 某地一周内每天的最高气温与最低气温记录如下表,哪天的温差最大?哪天的温差最小?拓广探索11.填空:(1)__1127+=; (2)7__4+=; (3)(9)__9-+=; (4)12__0+=; (5)(8)__15-+=-; (6)__(13)6+-=-.12.计算下列各式的值:(2)(2)-+-, (2)(2)(2)-+-+-,(2)(2)(2)(2)-+-+-+-, (2)(2)(2)(2)(2)-+-+-+-+-.猜想下列各式的值:(2)2-⨯,(2)3-⨯,(2)4-⨯,(2)5-⨯.你能进一步猜出负数乘正数的法则吗?13一种股票第一天的最高价比开盘价高0.3元,最低价比开盘价低0.2元;第二天的最高价比开盘价高0.2元,最低价比开盘价低0.1元;第三天的最高价等于开盘价,最低价比开盘价低0.13元.计算每天最高价与最低价的差,以及这些差的平均值.。
人教版数学七年级上册1.2《有理数的除法》教案
人教版数学七年级上册1.2《有理数的除法》教案一. 教材分析《有理数的除法》是初中数学的重要内容,人教版七年级上册第1.2节主要介绍有理数的除法法则。
学生在学习了有理数的加减乘法之后,进一步学习有理数的除法,有助于加深对有理数运算规律的理解。
本节内容通过具体的例子,引导学生掌握有理数除法的基本法则,为学生以后学习更复杂的数学运算打下基础。
二. 学情分析学生在进入七年级之前,已经掌握了整数的除法运算,但对负数的除法了解不多。
因此,在教学过程中,教师需要利用学生已有的知识,通过具体的实例,引导学生理解负数除法的规律。
同时,学生需要在学习过程中,培养运算的准确性,以及解决问题的能力。
三. 教学目标1.了解有理数除法的基本概念,掌握有理数除法的法则。
2.能够正确进行有理数的除法运算。
3.培养学生的运算能力,提高学生解决问题的能力。
四. 教学重难点1.教学重点:有理数除法的基本法则,有理数除法的运算过程。
2.教学难点:负数除法运算的理解,以及运算过程的准确性。
五. 教学方法采用问题驱动法,通过实例引导学生自主探究有理数除法的规律,以小组合作交流的方式,共同解决问题。
同时,结合讲授法,对学生的疑问进行解答,帮助学生深入理解有理数除法。
六. 教学准备1.教学PPT,包括有理数除法的定义,除法法则,以及相关的实例。
2.练习题,包括不同类型的有理数除法题目。
3.教学黑板,用于板书关键知识点和运算过程。
七. 教学过程1.导入(5分钟)教师通过一个简单的实例,引导学生回顾整数的除法运算,激发学生的学习兴趣。
例如:5除以3等于多少?引导学生思考,引出有理数除法的学习。
2.呈现(10分钟)教师通过PPT展示有理数除法的定义,除法法则,以及相关的实例。
让学生初步了解有理数除法的基本概念。
3.操练(10分钟)教师提出练习题目,让学生独立完成。
例如:计算以下有理数除法题目:(1)8除以3;(2)-6除以4;(3)7除以-2。
教师在这个过程中,对学生的疑问进行解答,帮助学生掌握有理数除法的运算过程。
人教版七年级数学上课件第一二章复习课件
1.已知:_2 3
x3my3 与 -
1_ 4
x6yn+1是同类项,求
m、n的值
.
2.已知: 2xm ym1 与 3x2 yn 能合并.
则 m= 2 ,n= 3 .
3.关于a, b的多项式 a2 6ab 8b2 2mab b2
不ab含项. 则m= 3 . 4.如果2a2bn+1与-4amb3是同类项,则m=_2__,n=_2_;
(3) [19 (8 2 32 )] (12)
(4) 3 [5 0.2 4 (2)2 ] 5
三、观察下列算式:22 – 02 =4=1 ×4, 42 – 22 =12=3 ×4, 62- 42 =20=5 ×4, 82 – 62 =28=7 ×4, ……
(1)第5个等式是_______ _______; (2)第n个等式是_______ _______. 四、按规律填数: (1)2,7,12,17,( ),( ),…… (2)1,2,4,8,16,( ),( ),…… 五、如果规定符号*的意义是 a b a b ,求2*(-3)*4的值
0的绝对值是0;
负数的绝对值是它的相反数。
即:
a a(a 0)
例如:
a a(a 0)
a 3, a _______.
1,若 x 1 2,则x .
2若a 12 b 2 0,则a b .
6、有理数的大小比较:
正数都大于0,负数都小于0。即负数<0<正数。 数轴上两个点表示的数,右边的总比左边的大。
5、分配律: a(b c) ab ac
有理数混和运算的运算顺序: 先算乘方,再算乘除,最后算加减。如果有括号就先
新人教版七年级数学上册第一章《有理数复习课》教案
新人教版七年级数学上册第一章《有理数复习课》教案一、内容和内容解析1.内容有理数的有关概念、运算.2.内容解析本章,我们学习了一类新的数——负数,使数的范围扩充到有理数,再引进数轴、相反数、绝对值等概念,为学习有理数的运算作好铺垫.有理数的运算,是初等数学的基本运算,掌握有理数的运算,是学好后续内容的重要前提,是本章学习的重点.对于有理数的运算,我们总是把与负数相关的运算归结为正数之间的运算,其中,数形结合、化归是很重要的思想方法,也是本章需要重点关注的.基于以上分析,确定本节课的教学重点:有理数的运算及数形结合、化归的思想方法.二、教材解析数轴是数形结合思想的产物.引进数轴后,可以用数轴上的点直观地表示有理数,从而也为学生提供了理解相反数、绝对值的直观工具,同时也为学习有理数的运算法则作了准备.引入相反数的概念,一方面可以加深对相反意义的量的认识,另一方面可以为学习绝对值、有理数运算作准备.绝对值的概念借助距离的概念加以定义.在数轴上,一个点由方向和距离(长度)确定;相应地,一个实数由符号与绝对值确定.这里,“方向”与“符号”对应,“距离”与“绝对值”对应,又一次体现了数与形的结合、转化.所以,学习绝对值的概念可以促进对数轴概念的理解.在“数与代数”中,运算是核心内容.“引进一种新的数,就要研究相应的运算;定义一种运算,就要研究相应的运算律”是代数的核心思想.在数系、运算法则和运算律(即对任何数都成立的通性)中获得的知识,可以方便地迁移到“以字母表示数”后的学习内容中去.因此,本章的重点是有理数的运算和运算律.在领悟有理数概念、运算法则和运算律内涵的过程中,让学生体会从特殊到一般,从具体到抽象的研究过程和方法,使他们既学会发现,又学会归纳、概括,从而逐步提高学生的思考力,培养用数学的思想和方法来思考和处理问题的习惯.三、教学目标和目标解析1.教学目标(1)梳理有理数的有关概念,理解概念之间的内在联系;(2)熟练地进行有理数的运算,并能运用运算律简化运算,体会数系扩充之后运算的一致性;(3)通过利用数轴的直观性解决问题,体会数形结合的思想方法.2.目标解析达成目标(1)的标志:学生能够解决与数轴、相反数、绝对值有关的问题;达成目标(2)的标志:学生能合理运用运算律简化运算,准确进行有理数的运算;达成目标(3)的标志:学生能够利用数轴解决有关的问题.四、教学问题诊断分析本章的难点是对有理数运算法则的理解.有理数运算,与以前学过的运算的一个重要区别就是多了一个符号问题,而在有理数的混合运算中,还应注意运算顺序的问题.当这两个问题同时出现时,有些学生往往顾此失彼,造成计算结果失误.“绝对值”是“距离”这一几何量的代数表示.距离是基本而重要的几何概念,相应的,绝对值是基本而重要的代数概念.从绝对值的定义出发,可以得到求一个数的绝对值的具体操作方法,即看这个数是正数、负数还是0等三类情况分别得出结果,有些学生对绝对值的理解可能只停留在能按此方法,求出一个数的绝对值,但不能把绝对值与数轴、相反数等概念联系起来.基于以上学情的分析,本节课的教学难点:有理数的混合运算中,每一步的运算中符号的确定以及对绝对值概念的深入理解.五、教学过程设计1.梳理知识,建立联系问题1本章学习了哪些知识?它们之间的联系是什么?教师引导学生通过举例来回顾本章知识要点,指出知识之间的内在联系.教师应重点关注: (1)学生对正数、负数、有理数等概念的理解;(2)学生对数轴、相反数、绝对值等概念及它们之间的联系的理解.【设计意图】通过回顾本章知识要点,帮助学生建立有理数的有关概念之间的联系,体会相反数、绝对值等概念与有理数运算的联系.2.加强运算,熟练掌握例1 计算:(1)0.125+⎪⎭⎫ ⎝⎛413++⎪⎭⎫ ⎝⎛813--⎪⎭⎫ ⎝⎛3211--0.25; (2)⎪⎭⎫ ⎝⎛185+65-43+127-×(-36); (3)(-2)÷⎪⎭⎫ ⎝⎛121-÷⎪⎭⎫ ⎝⎛121-; (4)(-24)÷2322⎪⎭⎫ ⎝⎛+215×⎪⎭⎫ ⎝⎛61--(-0.5)2. 问题2 有理数运算中,应该注意哪些问题?学生独立完成练习,教师巡视,把学生练习中出现的典型错误用实物投影仪呈现出来,学生找出问题后,进行更正,展示正确的解法.师生共同归纳有理数运算中,应该注意的问题.第(1)题把减法转化为加法时,要注意减号和减数的性质符号要同时改变.对多个有理数相加减的题目,要观察数的特征,能利用运算律时,要利用运算律使计算简便.第(2)题运用运算律时要注意符号问题.第(3)题运用除法法则进行运算时,首先应确定商的符号,然后把绝对值相除,还要注意,对同一级运算要按从左至右的顺序进行.第(4)题中-24≠(-2)4,要注意两者的底数及符号的差别;计算2322⎪⎭⎫⎝⎛时,先将带分数化成假分数,然后求乘方;要根据有利于计算的原则,将小数化为分数;要注意运算顺序.教师应对学生进行学法指导.在计算前认真审题,选择简便途径,确定运算顺序;计算中按步骤审慎进行;最后要检验.本环节中,教师应重点关注:(1)学生能否根据算理进行每一步的运算;(2)学生是否有良好的解题习惯.【设计意图】通过计算、呈现错例、找出错误、归纳在有理数运算中应注意的问题,达到熟练掌握有理数运算的目的.3.应用拓展,提高能力例2 观察下列五组数:1,-1,-1;2,-4,-6;3,-9,-15;4,-16,-28;5,-25,-45;…(1)每组数中的第2个数与第1个数有什么关系?(2)每组数中的第3个数与第1个数有什么关系?(3)计算第50组数的和.答案:(1)每组数中的第2个数分别是-12,-22,-32,-42,-52,….每组数中的第2个数是第1个数的平方的相反数;(2)每组数中的第3个数分别是-1×1,-2×3,-3×5,-4×7,-5×9,….即-1×(2×1-1),-2×(2×2-1),-3×(2×3-1),-4×(2×4-1),-5×(2×5-1),….每组数中的第3个数是第1个数乘第1个数的2倍与1的差所得积的相反数;(3)第50组数的3个数分别是50,-502,-50×(2×50-1),它们的和为50+(-502)+[-50×(2×50-1)]=50―2 500―4 950=-7 400.问题3 怎样解决有关数的规律探索性问题(结合例题)?学生尝试解决问题,教师点拨.教师应关注学生能否对每组中的数从符号、绝对值两方面考虑,能否把数的绝对值与组数的序号联系起来.例3 (教科书第52页第14题)结合具体的数的运算,归纳有关特例,然后比较下列数的大小:(1)小于1的正数a,a的平方,a的立方;(2)大于-1的负数b,b的平方,b的立方.答案:(1)a>a2>a3;(2)b2>b3>b.学生独立完成,教师巡视,个别辅导.教师应关注学生举出的具体的数是否符合题目要求,是否能多举出几个具体的例子.例4 若a>0,b<0,且a+b<0,把a、-a、b、-b、0按从大到小的顺序进行排列.答案:-b>a>0>-a>b.教师启发学生利用数轴解决问题.教师应关注学生在数轴上表示的数位置是否正确.问题4 从例3、例4的解题方法中,你受到哪些启发?【设计意图】例2是有关数的规律探索性问题.联系数的乘方、乘法,从符号与绝对值两方面考虑排列规律.使学生体会找规律的方法.例3是让学生通过具体计算,归纳得出结论,体会由特殊到一般这一认识事物规律的方法.解决例4的关键是从已知条件及有理数加法法则分析得出|b|>|a|,然后把表示a、-a、b、-b的点在数轴上表示出来,让学生学会利用数轴解决问题,体会数形结合的方法.4.归纳小结,反思提高问题5谈谈通过本节课的复习,有哪些新的收获?本环节中,教师应重点关注:(1)学生是否能利用数轴建立起相反数、绝对值等概念的联系;(2)学生是否能体会到由特殊到一般、数形结合等方法的作用.【设计意图】通过小结,加深对知识及解决问题的方法的理解,为今后的学习奠定基础.作业:教科书第51页第1,2,3,4,5,6,10题.六、目标检测设计1.计算:(1)-3.2+733-6.8+745; (2)14+56÷(-7);(3)⎪⎭⎫ ⎝⎛151-109×30; (4)⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛÷⨯22233-+3-21-34-23-)(×(-1)3. 2.已知数轴上表示负有理数m 的点是点M ,那么在数轴上与点M 相距|m |个单位的点中,与原点距离较远的点对应的数是( ).A .-2mB .2mC .-mD .m【设计意图】检测是否能熟练地进行有理数的运算,是否能运用运算律简化运算,以及是否会利用数轴解决问题.。
人教版七年级数学上学期《有理数》复习课件
①几个不等于0的数相乘,积的符号 由负因数的个数决定,当负因数有奇 数个时,积为负;当负因数有偶数个 时,积为正.
②几个数相乘,有一个因数为0, 积就为0.
用数学语言描述有理数乘法法则:
①同号相乘
若a>0,b>0,则 ab = + ︱a︱×︱b︱
若a<0,b<0,则 ab = +︱a︱×︱b︱
负分数
有理数
正有理数 零 负有理数
正整数 正分数 负整数 负分数
3.数 轴
规定了原点、正方向和单位长度的直线.
-3 –2 –1 0 1 2 3 4
1)在数轴上表示的两个数, 右边的数总比左边的数大
2)正数都大于0,负数都小于0; 正数大于一切负数
3)所有有理数都可以用数轴上 的点表示
1、使教育过程成为一种艺术的事业。 2、教师之为教,不在全盘授予,而在相机诱导。2021/10/222021/10/222021/10/2210/22/2021 4:26:18 PM 3、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人4、智力教育就是要扩大人的求知范围 5、教育是一个逐步发现自己无知的过程。 6、要经常培养开阔的胸襟,要经常培养知识上诚实的习惯,而且要经常学习向自己的思想负责任。2021年10月 2021/10/222021/10/222021/10/2210/22/2021
二、有理数的运算
加、减、乘、除、乘方运算
一、有理数的基本概念
1.负数:在正数前面加“—”的数;
0既不是正数,也不是负数.
判断: 1)a一定是正数 × 2)-a一定是负数 × 3)-(-a)一定大于0 × 4)0是正整数 ×
2.有理数: 整数和分数统称有理数.
人教版数学七年级上册 1.2 第1课时 有理数复习 课件(共21张PPT)
(2)两个圈的重叠部分表示的是正整数的集合.
12.在七(1)班举行的“数学晚会”上,A,B,C,D,E 五名同
学手上各拿着一张卡片,卡片上分别写着下列各数:2,- ,0,
3, .主持人按照卡片上的这些数的特征,将这五名同学分成
两组或三组来表演节目(每组人数不限,每名同学只能参加
一组).如果让你来分,那么你会如何分组呢?
};
8.【易错题】下列说法正确的有 ( B )
①正有理数是正整数和正分数的统称;
②整数是正整数和负整数的统称;
③有理数是正整数、负整数、正分数、负分数的统
称;
④0 是偶数,但不是整数;
⑤偶数包括正偶数、负偶数和零.
A.1 个 B.2 个 C.3 个 D.4 个
9.下列说法错误的是 ( C )
A.-5 是负有理数,也是负整数
C.-1
D.0
2.【2019·江西】在 4,1.5,0,-2 这四个数中属于正分数
的是( B )
A.4
B.1.5
C.0
D.-12
3.在+1, ,0,-5,-3.2,- 这几个数中,整数有 ( C )
A.1 个
B.2 个
C.3 个
D.4 个
· ·
4.下列各数:3.141 592 6,- ,π,-4.0,其中不是有理数
};
(1)非负数:{
(3)负分数:{
};
(2)正整数:{15,+20};
(4)奇数:{15}.
7.把下列各数填在相应的大括号里:
8,-0.82,-30 ,3.14,-2,0,-100,- ,1.
1.2 有理数 复习课件(新人教版七年级上)
1
0 1 2 B
-2 -1 0 1 2 D
C
例2
数轴上的点A、B、C、D分别表示数a、b、c、d,已知点A在B的
D
右侧,C在B的左侧,D在B、C之间,则下列式子成立的是(
).
A. a<b<c<d ; C. c<d<a<b ;
B. b<c<d<a; D. c<d<b<a.
例3
有理数概念复习
举例
班里举行数学竞赛,评分标准是:答对一题
得 ,加10分 ;答错一题得 ,减10分; 不回答得 ,得0分.每个组的基础分均为0 分.
数学竞赛答题统计表
题号 一组 二组
1
2
3
4
5
得分 10 20 0 -10
三组 四组
每个组的得分是多少?
º C
30
零上4º C 零下5º C
25 15 5 -5 -15
例7 一名足球守门员练习折返跑,向前记作正数,返回记作负数,各次
练习记录如下(单位:米) :
第一次练习:+5,-7,+10,-8 ; 第二次练习:-6,+9,-11,+4. (1)各次练习后守门员是否回到原处? (2)守门员共跑多少米?
例8
若三个互不相等的有理数既可以表示为1,a,a+b的形式,又
例5 数轴上的点A、B、C分别对应数0,-1,x,C 与A 的距离大于C
与B 的距离,则( ).
D A. x > 0 ; C. x ≤ -1; B. x ≥ -1 ; D. x < - 0.5.
例6
(1) a为何值时,|-a|=-a?
(2)若|a|=4, |b|=9,且a >b,求a+b的值;
七年级数学上册1《有理数》复习综合指导素材(新版)新人教版.docx
第一章《有理数》复习综合指导一、复习目标及建议:(一)复习目标:1•理解负数的意义,能够运用正、负数表示具有相反意义的量;2.会进行有理数的分类,会画数轴,并会利用数轴表示两个有理数的大小;3.理解相反数、绝对值、倒数的意义,会求一个数的相反数、绝对值、倒数并能利用它们的性质进行化简计算;4.掌握有理数的各种运算法则、运算律、运算顺序,并进行有理数的混合运算;5.会用科学记数法表示较大的数,按要求用四舍五入法求一个数的近似数,能数出一个近似数的有效数字;6.理解去括号、利用法则进行化简计算。
(二)复习建议:本章的概念、法则较多,要着重在理解中强化记忆,在应用中加强理解。
要注意与小学的数及运算的联系与区别,注意它们的异同。
复习有理数的的运算,关键是有理数加法和乘法中符号的确定,减法可以转化为加法,除法转化为乘法,要灵活运用运算律化简运算、掌握技巧。
二、重要知识点回顾:(一)主要概念:1.负数:____________ 叫负数;对于负数应这样理解:①小学尝过的非零数前面有“一”号的数;②负数在实际中表示的意义与正数相反;③带“一”号的数并不都是负数,如一a, 一(-2)等。
2.______________________________ 有理数的概念:统称有理数。
注意:①正数除正整数、零这外还有负整数;②分数除正分数外还有负分数;③圆周率龙是无限不循环小数,不能化成分数, 所以不是有理数。
有限小数和无限循环小数都是有理数。
④正确进行有理数的两种分类。
3.____________________ 数轴的概念: __________________ 叫做数轴,它的三要素是:①_______________________ ,②____________________________ ,③______ o4.___________________________ 相反数:①代数意义是 __________ ,—:②几何意义是:_______________________________ o求任意一个数的相反数实际上是在这个数前面加上“一”号。
新人教版七年级数学上册-有理数复习资料
有理数总复习1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数练习:(1)有理数的定义: 、 、 、 、 都可以写成 的形式,这样的数统称为有理数。
(2)数集:把一些数放在一起就组成了一个数的集合。
集合的表示方法:有 和 两种。
▲集合里一定不要忘记写 。
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.练习:有理数在数轴上的位置如图,用“> ”或“< ”填空:a+b______0,a-b______0。
3.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;练习:1、比较大小:-2 -3,0 │-821│,-32 -43 2、最大的负整数是 ,最小的正整数3、在-5,-0.3,0,1,π,-π,-521,0.0002中,最小的数是4.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0(3)相反数的商为-1.(4)相反数的绝对值相等练习:1. 23的相反数是________,-15的相反数是______,0的相反数是________. 2.若a=8.7,则-a=_______,-(-a )=________,+(-a )=________.3.-(-6.3)的相反数是________.4.化简(1)-(-32)=________;(2)+(+15)=_______; (3)+[-(+1)]=________; (4)-[-(-5)]=_________.5.若-a=13,则a=_______,若-a=-7.7,则a=________.5.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ;(3) 0a 1a a>⇔= ; 0a 1a a<⇔-=;(4) |a|是重要的非负数,即|a|≥0;练习:1、-5的绝对值是______ 若|x|=7,则x=______ 若|a|=a,那a_____0;2、已知052=++-y x ,求x,y 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)-3.5
千米;
(3)0千米
例2 把下列各数填入相应的集合中:
正数集合{ 负数集合{
…}; …};
整数集合{
分数集合{ 有理数集合{Βιβλιοθήκη …};…}; …};
例题3、某检修队从A 地出发,在东西方向的公 路上检修线路,如果规定向东行驶为正,向西行 驶为负,这个检修队一天中行驶的距离记录如下 (单位千米):-4,+7,-9,+8,+6, -5,-3。若检修队所乘的汽车每千米耗油 0.3升,问在收工时在A地的什么位置?从出发到 收工时总共耗油多少升?
二选择题:
9、下列说法不具有相反意义的量的是( ) (A)向东2.5千米和向西2千米 (B)上升3米和下降1.5米 (C)零上6 ℃ 和零下5 ℃
负数 分数
(D)收入5000元和亏损5000元
12、一个数小于它的绝对值,那么这个数是( )
(A)正数 (B)负数 (C)整数 (D)零
13、有A、B、C、D、E、F共6位同学排在一起拍照,A说 他左边第2个人是D,第4人是C,C说他右边第3人是E,左 边第1人是B,F说D在他右边第一位,如果把他们“排列” 在数轴上,E是最大的负整数。 (1)说出这6个同学的排列顺序
例4、在数轴上表示数-3,0 ,4,
3 2
并比较这些数的大小,用“<”号连接起来。
例5、 a , b , c 是有理数,试 探究
a a
值是多少?
b b
c c
的
1.下面说法中正确的是( ) A.“向东5米”与“向西10米”不是相反意义的 量; B.如果汽球上升25米记作+25米,那么-15米的意 义就是下降-15米; C.如果气温下降6℃记作-6℃,那么+8℃的意义 就是零上8℃; D.若将高1米设为标准0,高1.20米记作+0.20米, 那么-0.05米所表示的高是0.95米.
有理数: 整数和分数统称为有理数
正整数
整数 零
有理数
分数
负整数
正分数 负分数
几个重要概念
1、数轴:意义、三要素、点、----数对应。
。2、相反数:概念及求法、性质
3
3、绝对值:概念和性质
例1 如果向东走8千米记作+8千米,向西走5千米记作-5 千米,那么下列各数分别表示什么?
(1)+4千米;
3.(1)如果把向北的方向规定为正,那么走3.5千 米,走-1.2千米,走0千米的意义各是什么?
(2)一天中午12时的气温是20℃,下午2时的气 温比中午上升了4℃,晚上8时的气温比中午12时下 降了5℃,下午2时的气温是多少?晚上8时的气温 是多少?
6、数轴上到原点的距离为4的点表示的有理数是____; 7、某一天杭州的最低气温是零下3℃,最高气温是零上8 ℃,则一天的最大温差是______; 8、如图,两个圏分别表示负数和分数,请写出属于三个 圈的重叠部分的数___________;
2.用正数或负数表示下列各题中的数量: (1)如果火车向东开出400千米记作+400千米,那么火 车向西开出4000千米,记作______; (2)球赛时,如果胜2局记作+2,那么-2表示______;
(3)若-4万表示亏损4万元,那么盈余3万元记作 ______;
(4)+150米表示高出海平面150米,低于海平面200米 应记作______;
(2)若用连续整数表示这6位同学的位置,应怎样表示?
14、正式足球比赛对所用足球质量有严格的规定,下面是8 个足球质量检测结果(用正数记超过规定质量的克数,用 负数记不足规定质量的克数):+11,-24,+29,-11,+13, -39,+3,-5请指出哪一个足球的质量好一些,并用绝对值 的知识说明。求出质量最大的足球的质量比质量最小的足 球大多少克?