【附5套中考模拟试卷】广西省崇左市2019-2020学年第五次中考模拟考试数学试卷含解析

合集下载

广西省崇左市2019-2020学年中考五诊数学试题含解析

广西省崇左市2019-2020学年中考五诊数学试题含解析

广西省崇左市2019-2020学年中考五诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适()A.甲B.乙C.丙D.丁2.下列说法:①;②数轴上的点与实数成一一对应关系;③﹣2是的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有( )A.2个B.3个C.4个D.5个3.如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE= 1316,其中正确结论的个数是()A.1 B.2 C.3 D.44.甲队修路120 m与乙队修路100 m所用天数相同,已知甲队比乙队每天多修10 m,设甲队每天修路xm.依题意,下面所列方程正确的是A.120100x x10=-B.120100x x10=+C.120100x10x=-D.120100x10x=+5.如图,在直角坐标系xOy中,若抛物线l:y=﹣12x2+bx+c(b,c为常数)的顶点D位于直线y=﹣2与x轴之间的区域(不包括直线y=﹣2和x轴),则l与直线y=﹣1交点的个数是()A.0个B.1个或2个C.0个、1个或2个D.只有1个6.已知地球上海洋面积约为361 000 000km2,361 000 000这个数用科学记数法可表示为( ) A.3.61×106B.3.61×107C.3.61×108D.3.61×1097.若等式(-5)□5=–1成立,则□内的运算符号为()A.+ B.–C.×D.÷8.3月22日,美国宣布将对约600亿美元进口自中国的商品加征关税,中国商务部随即公布拟对约30亿美元自美进口商品加征关税,并表示,中国不希望打贸易战,但绝不惧怕贸易战,有信心,有能力应对任何挑战.将数据30亿用科学记数法表示为()A.3×109B.3×108C.30×108D.0.3×10109.如图,右侧立体图形的俯视图是()A.B.C.D.10.如图,与∠1是内错角的是( )A.∠2 B.∠3C.∠4 D.∠511.对于有理数x、y定义一种运算“”:,其中a、b、c为常数,等式右边是通常的加法与乘法运算,已知,,则的值为()A.-1 B.-11 C.1 D.1112.二次函数y=3(x﹣1)2+2,下列说法正确的是()A.图象的开口向下B .图象的顶点坐标是(1,2)C .当x >1时,y 随x 的增大而减小D .图象与y 轴的交点坐标为(0,2)二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算2(32)+的结果等于______________________.14.方程3211x x x---=1的解是___. 15.如图,四边形OABC 中,AB ∥OC ,边OA 在x 轴的正半轴上,OC 在y 轴的正半轴上,点B 在第一象限内,点D 为AB 的中点,CD 与OB 相交于点E ,若△BDE 、△OCE 的面积分别为1和9,反比例函数y=k x的图象经过点B ,则k=_______.16.2018年春节期间,反季游成为出境游的热门,中国游客青睐的目的地仍主要集中在温暖的东南亚地区.据调查发现2018年春节期间出境游约有700万人,游客目的地分布情况的扇形图如图所示,从中可知出境游东南亚地区的游客约有________万人.17.甲、乙两个搬运工搬运某种货物.已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等.设甲每小时搬运xkg 货物,则可列方程为_____.18.已知:如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,且BC =6cm ,AC =8cm ,∠ABD =45º.则图中阴影部分的面积是____________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)九(3)班“2017年新年联欢会”中,有一个摸奖游戏,规则如下:有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸.现将4张纸牌洗匀后背面朝上摆放到桌上,然后让同学去翻纸牌. (1)现小芳有一次翻牌机会,若正面是笑脸的就获奖,正面是哭脸的不获奖.她从中随机翻开一张纸牌,求小芳获奖的概率.(2)如果小芳、小明都有翻两张牌的机会.小芳先翻一张,放回后再翻一张;小明同时翻开两张纸牌.他们翻开的两张纸牌中只要出现一张笑脸就获奖.他们获奖的机会相等吗?通过树状图分析说明理由.20.(6分)先化简,再求值:1+÷(1﹣),其中x=2cos30°+tan45°.21.(6分)立定跳远是嘉兴市体育中考的抽考项目之一,某校九年级(1),(2)班准备集体购买某品牌的立定跳远训练鞋.现了解到某网店正好有这种品牌训练鞋的促销活动,其购买的单价y(元/双)与一次性购买的数量x(双)之间满足的函数关系如图所示.当10≤x<60时,求y关于x的函数表达式;九(1),(2)班共购买此品牌鞋子100双,由于某种原因需分两次购买,且一次购买数量多于25双且少于60双;①若两次购买鞋子共花费9200元,求第一次的购买数量;②如何规划两次购买的方案,使所花费用最少,最少多少元?22.(8分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,DE交AC于点E,且∠A=∠ADE.求证:DE是⊙O的切线;若AD=16,DE=10,求BC的长.23.(8分)某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分别直方图和扇形统计图:根据图中提供的信息,解答下列问题:(1)补全频数分布直方图(2)求扇形统计图中m的值和E组对应的圆心角度数(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数24.(10分)如图1,已知直线l:y=﹣x+2与y轴交于点A,抛物线y=(x﹣1)2+m也经过点A,其顶点为B,将该抛物线沿直线l平移使顶点B落在直线l的点D处,点D的横坐标n(n>1).(1)求点B的坐标;(2)平移后的抛物线可以表示为(用含n的式子表示);(3)若平移后的抛物线与原抛物线相交于点C,且点C的横坐标为a.①请写出a与n的函数关系式.②如图2,连接AC,CD,若∠ACD=90°,求a的值.25.(10分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)的图象经过A(0,4),B(2,0),C(-2,0)三点.(1)求二次函数的表达式;(2)在x轴上有一点D(-4,0),将二次函数的图象沿射线DA方向平移,使图象再次经过点B.①求平移后图象顶点E的坐标;②直接写出此二次函数的图象在A,B两点之间(含A,B两点)的曲线部分在平移过程中所扫过的面积.26.(12分)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.27.(12分)问题提出(1)如图1,正方形ABCD的对角线交于点O,△CDE是边长为6的等边三角形,则O、E之间的距离为;问题探究(2)如图2,在边长为6的正方形ABCD中,以CD为直径作半圆O,点P为弧CD上一动点,求A、P 之间的最大距离;问题解决(3)窑洞是我省陕北农村的主要建筑,窑洞宾馆更是一道靓丽的风景线,是因为窑洞除了它的坚固性及特有的外在美之外,还具有冬暖夏凉的天然优点家住延安农村的一对即将参加中考的双胞胎小宝和小贝两兄弟,发现自家的窑洞(如图3所示)的门窗是由矩形ABCD及弓形AMD组成,AB=2m,BC=3.2m,弓高MN=1.2m(N为AD的中点,MN⊥AD),小宝说,门角B到门窗弓形弧AD的最大距离是B、M之间的距离.小贝说这不是最大的距离,你认为谁的说法正确?请通过计算求出门角B到门窗弓形弧AD的最大距离.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】根据方差的概念进行解答即可.【详解】由题意可知甲的方差最小,则应该选择甲.故答案为A.【点睛】本题考查了方差,解题的关键是掌握方差的定义进行解题.2.C【解析】【分析】根据平方根,数轴,有理数的分类逐一分析即可.【详解】①∵,∴是错误的;②数轴上的点与实数成一一对应关系,故说法正确;③∵=4,故-2是的平方根,故说法正确;④任何实数不是有理数就是无理数,故说法正确;⑤两个无理数的和还是无理数,如和是错误的;⑥无理数都是无限小数,故说法正确;故正确的是②③④⑥共4个;故选C.【点睛】本题考查了有理数的分类,数轴及平方根的概念,有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无限不循环小数,其中有开方开不尽的数,如等,也有π这样的数.3.C【解析】∵四边形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∵BP=CQ,∴AP=BQ,在△DAP与△ABQ中,AD ABDAP ABQ AP BQ=⎧⎪∠=∠⎨⎪=⎩,∴△DAP≌△ABQ,∴∠P=∠Q,∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP;故①正确;∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴AO OP OD OA=,∴AO2=OD•OP,∵AE>AB,∴AE>AD,∴OD≠OE,∴OA2≠OE•OP;故②错误;在△CQF与△BPE中FCQ EBPQ PCQ BP∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CQF≌△BPE,∴CF=BE,∴DF=CE,在△ADF与△DCE中,AD CDADC DCE DF CE=⎧⎪∠=∠⎨⎪=⎩,∴△ADF≌△DCE,∴S△ADF﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四边形OECF;故③正确;∵BP=1,AB=3,∴AP=4,∵△AOP∽△DAP,∴43 PB PAEB DA==,∴BE=34,∴QE=134,∵△QOE∽△PAD,∴1345 QO OE QEPA AD PD===,∴QO=135,OE=3920,∴AO=5﹣QO=125, ∴tan ∠OAE=OE OA =1316,故④正确, 故选C .点睛:本题考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,三角函数的定义,熟练掌握全等三角形的判定和性质是解题的关键.4.A【解析】分析:甲队每天修路xm ,则乙队每天修(x -10)m ,因为甲、乙两队所用的天数相同,所以,120100x x 10=-。

广西省崇左市2019-2020学年中考第五次适应性考试数学试题含解析

广西省崇左市2019-2020学年中考第五次适应性考试数学试题含解析

广西省崇左市2019-2020学年中考第五次适应性考试数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. “车辆随机到达一个路口,遇到红灯”这个事件是( )A .不可能事件B .不确定事件C .确定事件D .必然事件2.﹣2的绝对值是( )A .2B .12C .12-D .2-3.2012﹣2013NBA 整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是A .科比罚球投篮2次,一定全部命中B .科比罚球投篮2次,不一定全部命中C .科比罚球投篮1次,命中的可能性较大D .科比罚球投篮1次,不命中的可能性较小4.已知3x+y =6,则xy 的最大值为( )A .2B .3C .4D .65.下列运算正确的是( )A .a ﹣3a=2aB .(ab 2)0=ab 2C .8=22±D .3×27=96.如图,在平面直角坐标系中,已知点B 、C 的坐标分别为点B (﹣3,1)、C (0,﹣1),若将△ABC 绕点C 沿顺时针方向旋转90°后得到△A 1B 1C ,则点B 对应点B 1的坐标是( )A .(3,1)B .(2,2)C .(1,3)D .(3,0)7.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是( )A .摸出的三个球中至少有一个球是黑球B .摸出的三个球中至少有一个球是白球C .摸出的三个球中至少有两个球是黑球D .摸出的三个球中至少有两个球是白球8.如图,在ABC V 中,点D 、E 、F 分别在边AB 、BC 、CA 上,且DE CA P ,DF BA P .下列四种说法: ①四边形AEDF 是平行四边形;②如果90BAC ∠=o ,那么四边形AEDF 是矩形;③如果AD 平分BAC ∠,那么四边形AEDF 是菱形;④如果AD BC ⊥且AB AC =,那么四边形AEDF 是菱形. 其中,正确的有( ) 个A .1B .2C .3D .49.下列各式正确的是( )A .0.360.6±=±B .93=±C .33(3)3-=D .2(2)2-=-10.下列实数中,在2和3之间的是( )A .πB .2π-C .325D .32811.等式组26058x x x +⎧⎨≤+⎩>的解集在下列数轴上表示正确的是( ). A .B .C .D .12.PM2.5是指大气中直径小于或等于2.5μm (1μm=0.000001m )的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm 用科学记数法可表示为( )A .52.510m -⨯B .70.2510m -⨯C .62.510m -⨯D .52510m -⨯二、填空题:(本大题共6个小题,每小题4分,共24分.)13.函数y =的自变量x 的取值范围是_____.14.分解因式:244m m ++=___________.15.如图,在矩形ABCD 中,E 是AD 上一点,把△ABE 沿直线BE 翻折,点A 正好落在BC 边上的点F 处,如果四边形CDEF 和矩形ABCD 相似,那么四边形CDEF 和矩形ABCD 面积比是__.16.已知A 、B 两地之间的距离为20千米,甲步行,乙骑车,两人沿着相同路线,由A 地到B 地匀速前行,甲、乙行进的路程s 与x (小时)的函数图象如图所示.(1)乙比甲晚出发___小时;(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,x的取值范围是___.17.如图,a∥b,∠1=110°,∠3=40°,则∠2=_____°.18.将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=20°,则∠DBC为_____度.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)一位运动员推铅球,铅球运行时离地面的高度y(米)是关于运行时间x(秒)的二次函数.已知铅球刚出手时离地面的高度为53米;铅球出手后,经过4秒到达离地面3米的高度,经过10秒落到地面.如图建立平面直角坐标系.(Ⅰ)为了求这个二次函数的解析式,需要该二次函数图象上三个点的坐标.根据题意可知,该二次函数图象上三个点的坐标分别是____________________________;(Ⅱ)求这个二次函数的解析式和自变量x的取值范围.20.(6分)如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上.(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.21.(6分)计算:23182sin60(1)2-︒⎛⎫-+-+ ⎪⎝⎭解不等式组3(1)45513x xxx--⎧⎪-⎨->⎪⎩…,并写出它的所有整数解.22.(8分)计算:+()﹣2﹣|1﹣|﹣(π+1)0.23.(8分)某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.按约定,“小李同学在该天早餐得到两个油饼”是事件;(可能,必然,不可能)请用列表或树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.24.(10分)如图1,在Rt△ABC中,∠ABC=90°,BA=BC,直线MN是过点A的直线CD⊥MN于点D,连接BD.(1)观察猜想张老师在课堂上提出问题:线段DC,AD,BD之间有什么数量关系.经过观察思考,小明出一种思路:如图1,过点B作BE⊥BD,交MN于点E,进而得出:DC+AD=BD.(2)探究证明将直线MN绕点A顺时针旋转到图2的位置写出此时线段DC,AD,BD之间的数量关系,并证明(3)拓展延伸在直线MN绕点A旋转的过程中,当△ABD面积取得最大值时,若CD长为1,请直接写BD的长.25.(10分)Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC边于点D,E是边BC的中点,连接DE,OD.(1)如图①,求∠ODE的大小;(2)如图②,连接OC交DE于点F,若OF=CF,求∠A的大小.26.(12分)如图,在四边形ABCD中,AB=BC=1,CD=3,DA=1,且∠B=90°,求:∠BAD的度数;四边形ABCD的面积(结果保留根号).27.(12分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A作BC的平行线交CE的延长线与F,且AF=BD,连接BF。

〖附5套中考模拟卷〗广西省崇左市2019-2020学年中考物理模拟试题含解析

〖附5套中考模拟卷〗广西省崇左市2019-2020学年中考物理模拟试题含解析

广西省崇左市2019-2020学年中考物理模拟试题一、单选题(本大题共10小题,共30分)1.如图所示,婷婷同学用12N 的水平拉力F 拉滑轮,使足够长的木板A 以0.2m/s 的速度在水平地面上匀速运动,物体B 相对于地面静止,弹簧测力计的示数为2N .若不计滑轮重、弹簧测力计重、绳重和滑轮摩擦,则下列说法中正确的是( )A .B 受到的摩擦力大小为2N ,方向为水平向左B .木板A 受到地面的摩擦力大小为2N ,方向水平向左C .拉力F 做功的功率为1.2WD .在运动过程中若将拉力F 增大,弹簧测力计的示数也将增大C【解析】【详解】A .因为物体B 相对于地面静止,弹簧测力计的示数为2N ,因此B 受到A 对它的向右的摩擦力,大小为2N ,A 错;B .拉力F 为12N ,则A 受到向右的拉力为6N ,受到B 向左摩擦力2N ,则受到地面的摩擦力为4N ,B 错;C .拉力F 的功率P=FV=12N×0.1m/s=1.2W ,C 正确;D .若拉力F 增大,B 受到的摩擦力与压力大小和接触面的粗糙程度有关,不变仍为2N ,D 错。

2.质量相同的甲乙两个物体由于吸热而升温,若它们的比热容之比为1:2,升高的温度之比为3:2,则它们吸收的热量之比是A .3:1B .4:3C .1:3D .3:4D【解析】【详解】由Q cm t =n 可得,Q c m t =n 甲甲甲甲,Q c m t =n 乙乙乙乙, 则11332124Q c m t Q c m t n n 甲甲甲甲乙乙乙乙==⨯⨯=,故D 正确为答案. 3.如图所示,铅笔是由以下材料制成的,通常情况下属于导体的是A.木材金属B.石墨橡皮C.金属橡皮D.金属石墨D【解析】【详解】A.木材是绝缘体,金属是导体,故A错误;B.石墨是导体,橡皮是绝缘体,故B错误;C.金属是导体,橡皮是绝缘体,故C错误;D.金属和石墨都是导体,故D正确。

广西省崇左市2019-2020学年中考第五次模拟数学试题含解析

广西省崇左市2019-2020学年中考第五次模拟数学试题含解析

广西省崇左市2019-2020学年中考第五次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为( )A.B.C.D.2.下列图案中,既是中心对称图形,又是轴对称图形的是()A.B.C.D.3.如图,AB是⊙O的切线,半径OA=2,OB交⊙O于C,∠B=30°,则劣弧»AC的长是()A.12πB.13C.23πD.43π4.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.23B.2 C.3 D.65.如图,是由几个相同的小正方形搭成几何体的左视图,这几个几何体的摆搭方式可能是( )A.B.C.D .6.下表是某校合唱团成员的年龄分布,对于不同的x ,下列关于年龄的统计量不会发生改变的是( ) 年龄/岁 13 14 15 16 频数515x10- x A .平均数、中位数 B .众数、方差 C .平均数、方差D .众数、中位数7.一次函数y kx k =-与反比例函数(0)ky k x=≠在同一个坐标系中的图象可能是( ) A . B . C . D .8.下列图形中,可以看作是中心对称图形的是( )A .B .C .D .9.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为( ) A .11B .16C .17D .16或1710.如图,在下列条件中,不能判定直线a 与b 平行的是( )A .∠1=∠2B .∠2=∠3C .∠3=∠5D .∠3+∠4=180°11.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h 与时间t 之间的关系的图象是( )A .B .C .D .12.如图,AB ∥CD ,DB ⊥BC ,∠2=50°,则∠1的度数是( )A .40°B .50°C .60°D .140°二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.(11·湖州)如图,已知A 、B 是反比例函数(k >0,x <0)图象上的两点,BC ∥x 轴,交y 轴于点C .动点P 从坐标原点O 出发,沿O→A→B→C (图中“→” 所示路线)匀速运动,终点为C .过P 作PM ⊥x 轴,PN ⊥y 轴,垂足分别为M 、N .设四 边形OMPN 的面积为S ,P 点运动时间为t ,则S 关于t 的函数图象大致为14.正多边形的一个外角是72o ,则这个多边形的内角和的度数是___________________. 15.对角线互相平分且相等的四边形是( ) A .菱形B .矩形C .正方形D .等腰梯形16.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =V ,则图中阴影部分面积是 .17.已知n >1,M =1n n -,N =1n n-,P =1nn +,则M 、N 、P 的大小关系为 . 18.鼓励科技创新、技术发明,北京市2012-2017年专利授权量如图所示.根据统计图中提供信息,预估2018年北京市专利授权量约______件,你的预估理由是______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)二次函数y=x2﹣2mx+5m的图象经过点(1,﹣2).(1)求二次函数图象的对称轴;(2)当﹣4≤x≤1时,求y的取值范围.20.(6分)如图,有四张背面相同的卡片A、B、C、D,卡片的正面分别印有正三角形、平行四边形、圆、正五边形(这些卡片除图案不同外,其余均相同).把这四张卡片背面向上洗匀后,进行下列操作:若任意抽取其中一张卡片,抽到的卡片既是中心对称图形又是轴对称图形的概率是;若任意抽出一张不放回,然后再从余下的抽出一张.请用树状图或列表表示摸出的两张卡片所有可能的结果,求抽出的两张卡片的图形是中心对称图形的概率.21.(6分)如图,用红、蓝两种颜色随机地对A,B,C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A,C两个区域所涂颜色不相同的概率.22.(8分)如图所示,AB是⊙O的一条弦,DB切⊙O于点B,过点D作DC⊥OA于点C,DC与AB 相交于点E.(1)求证:DB=DE;(2)若∠BDE=70°,求∠AOB的大小.23.(8分)如图,在平面直角坐标系中,二次函数2y x bx c =++的图象与x 轴交于A ,B 两点,与y 轴交于点()0,3C-,A 点的坐标为()1,0-.(1)求二次函数的解析式;(2)若点P 是抛物线在第四象限上的一个动点,当四边形ABPC 的面积最大时,求点P 的坐标,并求出四边形ABPC 的最大面积;(3)若Q 为抛物线对称轴上一动点,直接写出使QBC ∆为直角三角形的点Q 的坐标.24.(10分)为了解某校初二学生每周上网的时间,两位学生进行了抽样调查.小丽调查了初二电脑爱好者中40名学生每周上网的时间;小杰从全校400名初二学生中随机抽取了40名学生,调查了每周上网的时间.小丽与小杰整理各自样本数据,如下表所示. 时间段(小时/周) 小丽抽样(人数) 小杰抽样(人数) 0~1 6 22 1~2 10 10 2~3 16 6 3~482(1)你认为哪位学生抽取的样本不合理?请说明理由.专家建议每周上网2小时以上(含2小时)的学生应适当减少上网的时间,估计该校全体初二学生中有多少名学生应适当减少上网的时间.25.(10分)已知:如图,在平行四边形ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于G .求证:△ADE ≌△CBF ;若四边形BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论.26.(12分)随着高铁的建设,春运期间动车组发送旅客量越来越大,相关部门为了进一步了解春运期间动车组发送旅客量的变化情况,针对2014年至2018年春运期间的铁路发送旅客量情况进行了调查,过程如下.(Ⅰ)收集、整理数据 请将表格补充完整:(Ⅱ)描述数据为了更直观地显示动车组发送旅客量占比的变化趋势,需要用什么图(回答“折线图”或“扇形图”)进行描述;(Ⅲ)分析数据、做出推测预估2019年春运期间动车组发送旅客量占比约为多少,说明你的预估理由. 27.(12分)化简: 23x 11x 2?x 4+⎛⎫+÷⎪--⎝⎭ 参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.A 【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A选项符合题意,故选A.【名师点睛】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键.2.B【解析】【分析】根据轴对称图形与中心对称图形的概念解答.【详解】A.不是轴对称图形,是中心对称图形;B.是轴对称图形,是中心对称图形;C.不是轴对称图形,也不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.C【解析】【分析】由切线的性质定理得出∠OAB=90°,进而求出∠AOB=60°,再利用弧长公式求出即可.【详解】∵AB是⊙O的切线,∴∠OAB=90°,∵半径OA=2,OB交⊙O于C,∠B=30°,∴∠AOB=60°,∴劣弧ACˆ的长是:602180π⨯=23π,故选:C.【点睛】本题考查了切线的性质,圆周角定理,弧长的计算,解题的关键是先求出角度再用弧长公式进行计算. 4.A【解析】连接BD,交AC于O,∵正方形ABCD,∴OD=OB,AC⊥BD,∴D和B关于AC对称,则BE交于AC的点是P点,此时PD+PE最小,∵在AC上取任何一点(如Q点),QD+QE都大于PD+PE(BE),∴此时PD+PE最小,此时PD+PE=BE,∵正方形的面积是12,等边三角形ABE,,∴BE=AB=1223即最小值是23,故选A.【点睛】本题考查了正方形的性质,等边三角形的性质,轴对称-最短路线问题等知识点的应用,关键是找出PD+PE最小时P点的位置.5.A【解析】【分析】根据左视图的概念得出各选项几何体的左视图即可判断.【详解】解:A选项几何体的左视图为;B选项几何体的左视图为;C选项几何体的左视图为;D选项几何体的左视图为;故选:A.【点睛】本题考查由三视图判断几何体,解题的关键是熟练掌握左视图的概念.6.D【解析】【分析】由表易得x+(10-x)=10,所以总人数不变,14岁的人最多,众数不变,中位数也可以确定. 【详解】∵年龄为15岁和16岁的同学人数之和为:x+(10-x)=10,∴由表中数据可知人数最多的是年龄为14岁的,共有15人,合唱团总人数为30人,∴合唱团成员的年龄的中位数是14,众数也是14,这两个统计量不会随着x的变化而变化. 故选D.7.B【解析】当k>0时,一次函数y=kx﹣k的图象过一、三、四象限,反比例函数y=kx的图象在一、三象限,∴A、C不符合题意,B符合题意;当k<0时,一次函数y=kx﹣k的图象过一、二、四象限,反比例函数y=k x的图象在二、四象限,∴D不符合题意.故选B.8.A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.9.D【解析】试题分析:由等腰三角形的两边长分别是5和6,可以分情况讨论其边长为5,5,6或者5,6,6,均满足三角形两边之和大于第三边,两边之差小于第三边的条件,所以此等腰三角形的周长为5+5+6=16或5+6+6=17.故选项D正确.考点:三角形三边关系;分情况讨论的数学思想10.C【解析】【详解】解:A.∵∠1与∠2是直线a,b被c所截的一组同位角,∴∠1=∠2,可以得到a∥b,∴不符合题意B.∵∠2与∠3是直线a,b被c所截的一组内错角,∴∠2=∠3,可以得到a∥b,∴不符合题意,C.∵∠3与∠5既不是直线a,b被任何一条直线所截的一组同位角,内错角,∴∠3=∠5,不能得到a∥b,∴符合题意,D.∵∠3与∠4是直线a,b被c所截的一组同旁内角,∴∠3+∠4=180°,可以得到a∥b,∴不符合题意,故选C.【点睛】本题考查平行线的判定,难度不大.11.C【解析】【分析】首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢.【详解】根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢。

广西省崇左市2019-2020学年中考数学五月模拟试卷含解析

广西省崇左市2019-2020学年中考数学五月模拟试卷含解析

广西省崇左市2019-2020学年中考数学五月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.cos45°的值是()A.12B.32C.22D.12.如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于()A.30°B.35°C.40°D.50°3.如图,将矩形沿对角线折叠,使落在处,交于,则下列结论不一定成立的是()A.B.C.D.4.下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣2)关于y轴的对称点为(﹣3,2)D.抛物线y=x2﹣4x+2017对称轴为直线x=25.一个几何体的三视图如图所示,则该几何体的表面积是()A.24+2πB.16+4πC.16+8πD.16+12πA .7.49×107B .74.9×106C .7.49×106D .0.749×1077.如下字体的四个汉字中,是轴对称图形的是( )A .B .C .D .8.若抛物线y =kx 2﹣2x ﹣1与x 轴有两个不同的交点,则k 的取值范围为( ) A .k >﹣1B .k≥﹣1C .k >﹣1且k≠0D .k≥﹣1且k≠09.下列二次根式中,与a 是同类二次根式的是( ) A .2a B .2aC .4aD .4a +10.若分式11x - 有意义,则x 的取值范围是 A .x >1B .x <1C .x≠1D .x≠011.已知二次函数y=(x+a )(x ﹣a ﹣1),点P (x 0,m ),点Q (1,n )都在该函数图象上,若m <n ,则x 0的取值范围是( ) A .0≤x 0≤1 B .0<x 0<1且x 0≠12C .x 0<0或x 0>1D .0<x 0<112.一次函数()()y m 1x m 2=-+-的图象上有点()11M x ,y 和点()22N x ,y ,且12x x >,下列叙述正确的是( )A .若该函数图象交y 轴于正半轴,则12y y <B .该函数图象必经过点()1,1--C .无论m 为何值,该函数图象一定过第四象限D .该函数图象向上平移一个单位后,会与x 轴正半轴有交点 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在等边△ABC 中,AB=4,D 是BC 的中点,将△ABD 绕点A 旋转后得到△ACE ,连接DE 交AC 于点F ,则△AEF 的面积为_______.15.如图,在平面直角坐标系中,点A是抛物线y=a(x+32)2+k与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴,则以AB为边的正方形ABCD的周长为_____.16.不等式组34012412xx+≥⎧⎪⎨-≤⎪⎩的所有整数解的积为__________.17.若2216a b-=,13a b-=,则+a b的值为________ .18.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,□OABC的边OC在y轴的正半轴上,OC=3,A(2,1),反比例函数y=kx(x>0)的图象经过点B.(1)求点B的坐标和反比例函数的关系式;(2)如图2,将线段OA延长交y=k(x>0)的图象于点D,过B,D的直线分别交x轴、y轴于E,F20.(6分)A 、B 两辆汽车同时从相距330千米的甲、乙两地相向而行,s (千米)表示汽车与甲地的距离,t (分)表示汽车行驶的时间,如图,L 1,L 2分别表示两辆汽车的s 与t 的关系. (1)L 1表示哪辆汽车到甲地的距离与行驶时间的关系? (2)汽车B 的速度是多少?(3)求L 1,L 2分别表示的两辆汽车的s 与t 的关系式. (4)2小时后,两车相距多少千米? (5)行驶多长时间后,A 、B 两车相遇?21.(6分)在Rt ABC ∆中,90ACB ∠=o ,CD 是AB 边的中线,DE BC ⊥于E ,连结CD ,点P 在射线CB 上(与B ,C 不重合)(1)如果30A ∠=o ①如图1,DCB ∠=o②如图2,点P 在线段CB 上,连结DP ,将线段DP 绕点D 逆时针旋转60o ,得到线段DF ,连结BF ,补全图2猜想CP 、BF 之间的数量关系,并证明你的结论;时针旋转2 得到线段DF,连结BF,请直接写出DE、BF、BP三者的数量关系(不需证明)22.(8分)2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是______ ;扇形统计图中的圆心角α等于______ ;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.23.(8分)如图,在△ABC中,∠ABC=90°,D,E分别为AB,AC的中点,延长DE到点F,使EF=2DE.(1)求证:四边形BCFE是平行四边形;(2)当∠ACB=60°时,求证:四边形BCFE是菱形.24.(10分)如图,在楼房AB和塔CD之间有一棵树EF,从楼顶A处经过树顶E点恰好看到塔的底部D点,且俯角α为45°,从楼底B点1米的P点处经过树顶E点恰好看到塔的顶部C点,且仰角β为30°.已知树高EF=6米,求塔CD的高度(结果保留根号).25.(10分)某校对学生就“食品安全知识”进行了抽样调查(每人选填一类),绘制了如图所示的两幅统计图(不完整)。

广西省崇左市2019-2020学年中考数学模拟试题(5)含解析

广西省崇左市2019-2020学年中考数学模拟试题(5)含解析

广西省崇左市2019-2020学年中考数学模拟试题(5)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A.168(1﹣x)2=108 B.168(1﹣x2)=108C.168(1﹣2x)=108 D.168(1+x)2=1082.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.75°B.60°C.55°D.45°3.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.4.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①②B.①④C.②③D.③④5.已知x2+mx+25是完全平方式,则m的值为()A.10 B.±10 C.20 D.±206.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有()A.103块B.104块C.105块D.106块7.下面四个立体图形,从正面、左面、上面对空都不可能看到长方形的是()A.B.C.D.8.如图,PA,PB分别与⊙O相切于A,B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°9.下列二次根式,最简二次根式是()A.8B.12C.13D.0.110.五个新篮球的质量(单位:克)分别是+5、﹣3.5、+0.7、﹣2.5、﹣0.6,正数表示超过标准质量的克数,负数表示不足标准质量的克数.仅从轻重的角度看,最接近标准的篮球的质量是()A.﹣2.5 B.﹣0.6 C.+0.7 D.+511.如果代数式3xx+有意义,则实数x的取值范围是()A.x≥﹣3 B.x≠0C.x≥﹣3且x≠0D.x≥312.下列图形中,线段MN的长度表示点M到直线l的距离的是()A.B.C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.从“线段,等边三角形,圆,矩形,正六边形”这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是_____.14.A、B两地相距20km,甲乙两人沿同一条路线从A地到B地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A地的距离y(km)与时间t(h)的关系如图所示,则甲出发_____小时后和乙相遇.15.要使分式51x-有意义,则x的取值范围为_________.16.分解因式:(x2﹣2x)2﹣(2x﹣x2)=______.17.已知图中Rt△ABC,∠B=90°,AB=BC,斜边AC上的一点D,满足AD=AB,将线段AC绕点A逆时针旋转α (0°<α <360°),得到线段AC’,连接DC’,当DC’//BC时,旋转角度α 的值为_________,18.不等式-2x+3>0的解集是___________________三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)计算:(﹣1)2018+(﹣12)﹣2﹣|2﹣12|+4sin60°;20.(6分)如图,在平面直角坐标系中,点A 和点C 分别在x 轴和y 轴的正半轴上,OA=6,OC=4,以OA,OC 为邻边作矩形OABC,动点M,N 以每秒 1 个单位长度的速度分别从点A、C 同时出发,其中点M 沿AO 向终点O 运动,点N沿CB 向终点 B 运动,当两个动点运动了t 秒时,过点N 作NP⊥BC,交OB 于点P,连接MP.(1)直接写出点B 的坐标为,直线OB 的函数表达式为;(2)记△OMP 的面积为S,求S 与t 的函数关系式()06t<<;并求t 为何值时,S有最大值,并求出最大值.21.(6分)尺规作图:用直尺和圆规作图,不写作法,保留痕迹.已知:如图,线段a,h.求作:△ABC,使AB=AC,且∠BAC=∠α,高AD=h.22.(8分)新农村社区改造中,有一部分楼盘要对外销售.某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套房面积均为120米2.若购买者一次性付清所有房款,开发商有两种优惠方案:降价8%,另外每套房赠送a元装修基金;降价10%,没有其他赠送.请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数表达式;老王要购买第十六层的一套房,若他一次性付清所有房款,请帮他计算哪种优惠方案更加合算.23.(8分)解不等式组()22113x xxx⎧-≥-⎪⎨≤+⎪⎩,并把它的解集表示在数轴上.24.(10分)我们来定义一种新运算:对于任意实数x、y,“※”为a※b=(a+1)(b+1)﹣1.(1)计算(﹣3)※9(2)嘉琪研究运算“※”之后认为它满足交换律,你认为她的判断(正确、错误)(3)请你帮助嘉琪完成她对运算“※”是否满足结合律的证明.25.(10分)如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.26.(12分)如图,在平面直角坐标系xOy 中,直线y kx k =+与双曲线4=y x(x>0)交于点1)(,A a . 求a ,k 的值;已知直线l 过点(2,0)D 且平行于直线y kx k =+,点P(m ,n )(m>3)是直线l 上一动点,过点P 分别作x 轴、y 轴的平行线,交双曲线4=y x(x>0)于点M 、N ,双曲线在点M 、N 之间的部分与线段PM 、PN 所围成的区域(不含边界)记为W .横、纵坐标都是整数的点叫做整点.①当4m =时,直接写出区域W 内的整点个数;②若区域W 内的整点个数不超过8个,结合图象,求m 的取值范围.27.(12分)如图所示,一堤坝的坡角62ABC ∠=︒,坡面长度25AB =米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角50ADB ∠=︒,则此时应将坝底向外拓宽多少米?(结果保留到0.01 米)(参考数据:sin620.88︒≈,cos620.47︒≈,tan50 1.20︒≈)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】设每次降价的百分率为x ,根据降价后的价格=降价前的价格(1-降价的百分率),则第一次降价后的价格是168(1-x ),第二次后的价格是168(1-x )2,据此即可列方程求解.【详解】设每次降价的百分率为x ,根据题意得:168(1-x )2=1.故选A .【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.2.B【解析】【分析】由正方形的性质和等边三角形的性质得出∠BAE =150°,AB =AE ,由等腰三角形的性质和内角和定理得出∠ABE =∠AEB =15°,再运用三角形的外角性质即可得出结果.【详解】解:∵四边形ABCD 是正方形,∴∠BAD =90°,AB =AD ,∠BAF =45°,∵△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠BAE=90°+60°=150°,AB=AE,∴∠ABE=∠AEB=12(180°﹣150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故选:B.【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形的外角性质;熟练掌握正方形和等边三角形的性质,并能进行推理计算是解决问题的关键.3.A【解析】【分析】根据轴对称图形的概念判断即可.【详解】A、是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、不是轴对称图形.故选:A.【点睛】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.B【解析】分析:本题是考察数轴上的点的大小的关系.解析:由图知,b<0<a,故①正确,因为b点到原点的距离远,所以|b|>|a|,故②错误,因为b<0<a,所以ab<0,故③错误,由①知a-b>a+b,所以④正确.故选B.5.B【解析】【分析】根据完全平方式的特点求解:a2±2ab+b2.【详解】∵x2+mx+25是完全平方式,故选B.【点睛】本题考查了完全平方公式:a2±2ab+b2,其特点是首平方,尾平方,首尾积的两倍在中央,这里首末两项是x 和1的平方,那么中间项为加上或减去x和1的乘积的2倍.6.C【解析】试题分析:根据题意设出未知数,列出相应的不等式,从而可以解答本题.设这批手表有x块,550×60+(x﹣60)×500>55000 解得,x>104 ∴这批电话手表至少有105块考点:一元一次不等式的应用7.B【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形依此找到从正面、左面、上面观察都不可能看到长方形的图形.【详解】解:A、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误;B、主视图为等腰三角形,左视图为等腰三角形,俯视图为圆,从正面、左面、上面观察都不可能看到长方形,故本选项正确;C、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;D、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误.故选:B.【点睛】本题重点考查三视图的定义以及考查学生的空间想象能力.8.C【解析】试题分析:∵PA、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故选C.考点:切线的性质.9.C【解析】【分析】根据最简二次根式的定义逐个判断即可.A==,不是最简二次根式,故本选项不符合题意;B2C=,不是最简二次根式,故本选项不符合题意.D10故选C.【点睛】本题考查了最简二次根式的定义,能熟记最简二次根式的定义是解答此题的关键.10.B【解析】【分析】求它们的绝对值,比较大小,绝对值小的最接近标准的篮球的质量.【详解】解:|+5|=5,|-3.5|=3.5,|+0.7|=0.7,|-2.5|=2.5,|-0.6|=0.6,∵5>3.5>2.5>0.7>0.6,∴最接近标准的篮球的质量是-0.6,故选B.【点睛】本题考查了正数和负数,掌握正数和负数的定义以及意义是解题的关键.11.C【解析】【分析】根据二次根式有意义和分式有意义的条件列出不等式,解不等式即可.【详解】由题意得,x+3≥0,x≠0,解得x≥−3且x≠0,故选C.【点睛】本题考查分式有意义条件,二次根式有意义的条件,熟练掌握相关知识是解题的关键. 12.A【解析】解:图B、C、D中,线段MN不与直线l垂直,故线段MN的长度不能表示点M到直线l的距离;图A中,线段MN与直线l垂直,垂足为点N,故线段MN的长度能表示点M到直线l的距离.故选A.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.4 5 .【解析】【详解】试题分析:在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个,所以取到的图形既是中心对称图形又是轴对称图形的概率为4 5 .【点睛】本题考查概率公式,掌握图形特点是解题关键,难度不大.14.16 5【解析】【分析】由图象得出解析式后联立方程组解答即可.【详解】由图象可得:y甲=4t(0≤t≤5);y乙=()() 2112 916(24)t tt t<⎧-≤≤⎨-≤⎩;由方程组4916y ty t⎧⎨-⎩==,解得t=165.故答案为165.【点睛】此题考查一次函数的应用,关键是由图象得出解析式解答.15.x≠1【解析】由题意得x-1≠0,∴x≠1.故答案为x≠1.16.x(x﹣2)(x﹣1)2【解析】【分析】先整理出公因式(x2-2x),提取公因式后再对余下的多项式整理,利用提公因式法分解因式和完全平方公式法继续进行因式分解.【详解】解:(x2−2x)2−(2x−x2) =(x2−2x)2+(x2−2x) =(x2−2x)(x2−2x+1) =x(x−2)(x−1)2故答案为x(x﹣2)(x﹣1)2【点睛】此题考查了因式分解-提公因式法和公式法,熟练掌握这两种方法是解题的关键. 17.15或255°【解析】如下图,设直线DC′与AB相交于点E,∵Rt△ABC中,∠B=90°,AB=BC,DC′//BC,∴∠AED=∠ABC=90°,∠ADE=∠ACB=∠BAC=45°,AB=22AC,∴AE=22AD,又∵AD=AB,AC′=AC,∴AE=2AB=22⨯AC=12AC′,∴∠C′=30°,∴∠EAC′=60°,∴∠CAC′=60°-45°=15°,即当DC′∥BC时,旋转角α=15°;同理,当DC′′∥BC时,旋转角α=180°-45°-60°=255°;综上所述,当旋转角α=15°或255°时,DC′//BC.故答案为:15°或255°.18.x<3 2【解析】【分析】根据解一元一次不等式基本步骤:移项、系数化为1可得.【详解】移项,得:-2x >-3,系数化为1,得:x <32, 故答案为x <32. 【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.1.【解析】分析:本题涉及乘方、负指数幂、二次根式化简、绝对值和特殊角的三角函数5个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.详解:原式=1+4-()+4×2,=1.点睛:本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(1)(6,4),23y x =;(2)21(3)3(06)3S t t =--+<<,1,1. 【解析】【分析】(1)根据四边形OABC 为矩形即可求出点B 坐标,设直线OB 解析式为y kx =,将B (6,4)代入即可求直线OB 的解析式;(2)由题意可得6OM t =-,由(1)可得点P 的坐标为2,3t t ⎛⎫ ⎪⎝⎭, 表达出△OMP 的面积即可,利用二次函数的性质求出最大值.【详解】解:(1)∵OA=6,OC=4, 四边形OABC 为矩形,∴AB=OC=4,∴点B (6,4),设直线OB 解析式为y kx =,将B (6,4)代入得46k =,解得23k =,∴23y x =, 故答案为:(6,4);23y x =(2)由题可知,CN AM t ==,6OM t ∴=-由(1)可知,点P 的坐标为2,3t t ⎛⎫ ⎪⎝⎭1223OMP S OM t ∴=⨯⨯V , 12(6)23t t =⨯-⨯ 21t 2t 3=-+ 21(3)3(06)3t t =--+<< ∴当3t =时,S 有最大值1.【点睛】本题考查了二次函数与几何动态问题,解题的关键是根据题意表达出点的坐标,利用几何知识列出函数关系式.21.见解析【解析】【分析】作∠CAB=∠α,再作∠CAB 的平分线,在角平分线上截取AD=h ,可得点D ,过点D 作AD 的垂线,从而得出△ABC .【详解】解:如图所示,△ABC 即为所求.【点睛】考查作图-复杂作图,掌握做一个角等于已知角、作角平分线及过直线上一点作已知直线的垂线的基本作图和等腰三角形的性质是解题的关键.22.(1)30+37601850+3600923x x xyx x x≤≤⎧⎨≤≤⎩(,为整数)=(,为整数);(2)当每套房赠送的装修基金多于10 560元时,选择方案一合算;当每套房赠送的装修基金等于10 560元时,两种方案一样;当每套房赠送的装修基金少于10 560元时,选择方案二合算.【解析】【详解】解:(1)当1≤x≤8时,每平方米的售价应为:y=4000﹣(8﹣x)×30="30x+3760" (元/平方米)当9≤x≤23时,每平方米的售价应为:y=4000+(x﹣8)×50=50x+3600(元/平方米).∴30+37601850+3600923x x xyx x x≤≤⎧⎨≤≤⎩(,为整数)=(,为整数)(2)第十六层楼房的每平方米的价格为:50×16+3600=4400(元/平方米),按照方案一所交房款为:W1=4400×120×(1﹣8%)﹣a=485760﹣a(元),按照方案二所交房款为:W2=4400×120×(1﹣10%)=475200(元),当W1>W2时,即485760﹣a>475200,解得:0<a<10560,当W1<W2时,即485760﹣a<475200,解得:a>10560,∴当0<a<10560时,方案二合算;当a>10560时,方案一合算.【点睛】本题考查的是用一次函数解决实际问题,读懂题目信息,找出数量关系表示出各楼层的单价以及是交房款的关系式是解题的关键.23.不等式组的解是x≥3;图见解析【解析】【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【详解】解:()22113x xxx⎧-≥-⎪⎨≤+⎪⎩①②∵解不等式①,得x≥3,解不等式②,得x≥-1.5,∴不等式组的解是x≥3,在数轴上表示为:.【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.24.(1)-21;(2)正确;(3)运算“※”满足结合律【解析】【分析】(1)根据新定义运算法则即可求出答案.(2)只需根据整式的运算证明法则a ※b=b ※a 即可判断.(3)只需根据整式的运算法则证明(a ※b )※c=a ※(b ※c )即可判断.【详解】(1)(-3)※9=(-3+1)(9+1)-1=-21(2)a ※b=(a+1)(b+1)-1b ※a=(b+1)(a+1)-1,∴a ※b=b ※a ,故满足交换律,故她判断正确;(3)由已知把原式化简得a ※b=(a+1)(b+1)-1=ab+a+b∵(a ※b )※c=(ab+a+b )※c=(ab+a+b+1)(c+1)-1=abc+ac+ab+bc+a+b+c∵a ※(b ※c )=a (bcv+b+c )+(bc+b+c )+a=abc+ac+ab+bc+a+b+c∴(a ※b )※c=a ※(b ※c )∴运算“※”满足结合律【点睛】本题考查新定义运算,解题的关键是正确理解新定义运算的法则,本题属于中等题型.25.(1)抛物线的解析式为223y x x =--+,直线的解析式为3y x =+.(2)(1,2)M -;(3)P 的坐标为(1,2)--或(1,4)-或317(+-或317()--. 【解析】 分析:(1)先把点A ,C 的坐标分别代入抛物线解析式得到a 和b ,c 的关系式,再根据抛物线的对称轴方程可得a 和b 的关系,再联立得到方程组,解方程组,求出a ,b ,c 的值即可得到抛物线解析式;把B 、C 两点的坐标代入直线y=mx+n ,解方程组求出m 和n 的值即可得到直线解析式;(2)设直线BC 与对称轴x=-1的交点为M ,此时MA+MC 的值最小.把x=-1代入直线y=x+3得y 的值,即可求出点M 坐标;(3)设P (-1,t ),又因为B (-3,0),C (0,3),所以可得BC 2=18,PB 2=(-1+3)2+t 2=4+t 2,PC 2=(-1)2+(t-3)2=t 2-6t+10,再分三种情况分别讨论求出符合题意t 值即可求出点P 的坐标.详解:(1)依题意得:1203b a a b c c ⎧-=-⎪⎪++=⎨⎪=⎪⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,∴抛物线的解析式为223y x x =--+.∵对称轴为1x =-,且抛物线经过()1,0A ,∴把()3,0B -、()0,3C 分别代入直线y mx n =+,得303m n n -+=⎧⎨=⎩,解之得:13m n =⎧⎨=⎩, ∴直线y mx n =+的解析式为3y x =+.(2)直线BC 与对称轴1x =-的交点为M ,则此时MA MC +的值最小,把1x =-代入直线3y x =+得2y =,∴()1,2M -.即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为()1,2-.(注:本题只求M 坐标没说要求证明为何此时MA MC +的值最小,所以答案未证明MA MC +的值最小的原因).(3)设()1,P t -,又()3,0B -,()0,3C ,∴218BC =,()2222134PB t t =-++=+,()()222213610PC t t t =-+-=-+,①若点B 为直角顶点,则222BC PB PC +=,即:22184610t t t ++=-+解得:2t =-,②若点C 为直角顶点,则222BC PC PB +=,即:22186104t t t +-+=+解得:4t =,③若点P 为直角顶点,则222PB PC BC +=,即:22461018t t t ++-+=解得:13172t +=,23172t -=. 综上所述P 的坐标为()1,2--或()1,4-或3171,⎛⎫+- ⎪ ⎪⎝⎭或3171,⎛⎫-- ⎪ ⎪⎝⎭. 点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.26.(1)4a =,=2k ;(2)① 3,② 3 4.5m <≤.【解析】【分析】(1)将1)(,Aa 代入4=y x可求出a ,将A 点坐标代入y kx k =+可求出k ; (2)①根据题意画出函数图像,可直接写出区域W 内的整点个数;②求出直线l 的表达式为24y x =-,根据图像可得到两种极限情况,求出对应的m 的取值范围即可.【详解】 解:(1)将1)(,Aa 代入4=y x得a=4 将14)(,A代入=4+k k ,得=2k (2)①区域W 内的整点个数是3②∵直线l 是过点(2,0)D 且平行于直线22y x =+∴直线l 的表达式为24y x =-当24=5-x 时,即=4.5x 线段PM 上有整点∴3 4.5m <≤【点睛】本题考查了待定系数法求函数解析式以及函数图像的交点问题,正确理解整点的定义并画出函数图像,运用数形结合的思想是解题关键.27.6.58米【解析】试题分析:过A点作AE⊥CD于E.在Rt△ABE中,根据三角函数可得AE,BE,在Rt△ADE中,根据三角函数可得DE,再根据DB=DE﹣BE即可求解.试题解析:过A点作AE⊥CD于E.在Rt△ABE中,∠ABE=62°.∴AE=AB•sin62°=25×0.88=22米,BE=AB•cos62°=25×0.47=11.75米,在Rt△ADE中,∠ADB=50°,∴DE==18米,∴DB=DE﹣BE≈6.58米.故此时应将坝底向外拓宽大约6.58米.考点:解直角三角形的应用-坡度坡角问题.。

广西省崇左市2019-2020学年中考数学第五次押题试卷含解析

广西省崇左市2019-2020学年中考数学第五次押题试卷含解析

广西省崇左市2019-2020学年中考数学第五次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,将△ABC沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.42 B.96 C.84 D.482.已知实数a<0,则下列事件中是必然事件的是()A.a+3<0 B.a﹣3<0 C.3a>0 D.a3>03.如图是正方体的表面展开图,则与“前”字相对的字是()A.认B.真C.复D.习4.sin45°的值等于()A.2B.1 C.3D.225.下列调查中,最适合采用全面调查(普查)的是()A.对我市中学生每周课外阅读时间情况的调查B.对我市市民知晓“礼让行人”交通新规情况的调查C.对我市中学生观看电影《厉害了,我的国》情况的调查D.对我国首艘国产航母002型各零部件质量情况的调查6.如图所示,把直角三角形纸片沿过顶点B的直线(BE交CA于E)折叠,直角顶点C落在斜边AB 上,如果折叠后得等腰△EBA,那么结论中:①∠A=30°;②点C与AB的中点重合;③点E到AB的距离等于CE的长,正确的个数是()A.0 B.1 C.2 D.37.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为()A.23 B.75 C.77 D.1398.下列运算正确的是()A.a3•a2=a6B.(2a)3=6a3C.(a﹣b)2=a2﹣b2D.3a2﹣a2=2a29.若a+b=3,,则ab等于()A.2 B.1 C.﹣2 D.﹣110.如图,AB是⊙O的直径,弦CD⊥AB于E,∠CDB=30°,⊙O的半径为3,则弦CD的长为()A.32cm B.3cm C.23cm D.9cm11.若A(﹣4,y1),B(﹣3,y2),C(1,y3)为二次函数y=x2﹣4x+m的图象上的三点,则y1,y2,y3的大小关系是( )A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y1<y3<y212.如图,平行四边形ABCD中,E,F分别在CD、BC的延长线上,AE∥BD,EF⊥BC,tan∠ABC=34,EF=,则AB的长为()A 533B.536C.1 D172二、填空题:(本大题共6个小题,每小题4分,共24分.)13.不等式5﹣2x<1的解集为_____.14.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE 的度数为()A .144°B .84°C .74°D .54°15.16的算术平方根是 .16.已知两圆相切,它们的圆心距为3,一个圆的半径是4,那么另一个圆的半径是_______.17.在如图所示(A ,B ,C 三个区域)的图形中随机地撒一把豆子,豆子落在 区域的可能性最大(填A 或B 或C ).18.若|a|=20160,则a=___________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)矩形AOBC 中,OB=4,OA=1.分别以OB ,OA 所在直线为x 轴,y 轴,建立如图1所示的平面直角坐标系.F 是BC 边上一个动点(不与B ,C 重合),过点F 的反比例函数y=kx(k >0)的图象与边AC 交于点E 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广西省崇左市2019-2020学年第五次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.从标号分别为1,2,3,4,5的5张卡片中随机抽取1张,下列事件中不可能事件是()A.标号是2 B.标号小于6 C.标号为6 D.标号为偶数2.如图是一个几何体的三视图,则这个几何体是()A.B.C.D.3.用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是()A.2cm B.32cm C.42cm D.4cm4.如图,圆O是等边三角形内切圆,则∠BOC的度数是()A.60°B.100°C.110°D.120°5.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=1.那么在计算6×7时,左、右手伸出的手指数应该分别为()A.1,2 B.1,3C.4,2 D.4,36.已知a,b为两个连续的整数,且11则a+b的值为()A.7 B.8 C.9 D.107.如图,等腰△ABC中,AB=AC=10,BC=6,直线MN垂直平分AB交AC于D,连接BD,则△BCD 的周长等于()A.13 B.14 C.15 D.168.如果数据x1,x2,…,x n的方差是3,则另一组数据2x1,2x2,…,2x n的方差是()A.3 B.6 C.12 D.59.一个多边形的每一个外角都等于72°,这个多边形是( )A.正三角形B.正方形C.正五边形D.正六边形10.如图所示的工件,其俯视图是()A.B.C.D.11.有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③同一种正五边形一定能进行平面镶嵌;④垂直于同一条直线的两条直线互相垂直.其中假命题的个数有()A.1个B.2个C.3个D.4个12.利用运算律简便计算52×(–999)+49×(–999)+999正确的是A.–999×(52+49)=–999×101=–100899B.–999×(52+49–1)=–999×100=–99900C.–999×(52+49+1)=–999×102=–101898D.–999×(52+49–99)=–999×2=–1998二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知一个多边形的每一个外角都等于,则这个多边形的边数是.14.若方程x2+(m2﹣1)x+1+m=0的两根互为相反数,则m=______15.抛物线y=x2﹣2x+3的对称轴是直线_____.16.将直线y=x+b沿y轴向下平移3个单位长度,点A(-1,2)关于y轴的对称点落在平移后的直线上,则b的值为____.17.直线y=﹣x+1分别交x轴,y轴于A、B两点,则△AOB的面积等于___.18.如图,在平面直角坐标系xOy中,△ABC的顶点A、C在坐标轴上,点B的坐标是(2,2).将△ABC沿x轴向左平移得到△A1B1C1,点1B落在函数y=-6x.如果此时四边形11AAC C的面积等于552,那么点1C的坐标是________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=﹣x+1.求抛物线的表达式;在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;在x轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.20.(6分)向阳中学校园内有一条林萌道叫“勤学路”,道路两边有如图所示的路灯(在铅垂面内的示意图),灯柱BC的高为10米,灯柱BC与灯杆AB的夹角为120°.路灯采用锥形灯罩,在地面上的照射区域DE的长为13.3米,从D、E两处测得路灯A的仰角分别为α和45°,且tanα=1.求灯杆AB的长度.21.(6分)在以“关爱学生、安全第一”为主题的安全教育宣传月活动中,某学校为了了解本校学生的上学方式,在全校范围内随机抽查部分学生,了解到上学方式主要有:A:结伴步行、B:自行乘车、C:家人接送、D:其他方式,并将收集的数据整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列问题:(1)本次抽查的学生人数是多少人?(2)请补全条形统计图;请补全扇形统计图; (3)“自行乘车”对应扇形的圆心角的度数是 度;(4)如果该校学生有2000人,请你估计该校“家人接送”上学的学生约有多少人?22.(8分)我市为创建全国文明城市,志愿者对某路段的非机动车逆行情况进行了10天的调查,将所得数据绘制成如下统计图(图2不完整):请根据所给信息,解答下列问题:(1)这组数据的中位数是 ,众数是 ;(2)请把图2中的频数直方图补充完整;(温馨提示:请画在答题卷相对应的图上)(3)通过“小手拉大手”活动后,非机动车逆向行驶次数明显减少,经过这一路段的再次调查发现,平均每天的非机动车逆向行驶次数比第一次调查时减少了4次,活动后,这一路段平均每天还出现多少次非机动车逆向行驶情况?23.(8分)如图,已知直线y kx 6=-与抛物线2y ax bx c =++相交于A ,B 两点,且点A (1,-4)为抛物线的顶点,点B 在x 轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P ,使△POB 与△POC 全等?若存在,求出点P 的坐标;若不存在,请说明理由;(3)若点Q 是y 轴上一点,且△ABQ 为直角三角形,求点Q 的坐标.24.(10分)为纪念红军长征胜利81周年,我市某中学团委拟组织学生开展唱红歌比赛活动,为此,该校随即抽取部分学生就“你是否喜欢红歌”进行问卷调查,并将调查结果统计后绘制成如下统计表和扇形统计图. 态度 非常喜欢 喜欢 一般 不知道 频数 90 b 30 10频率a0.350.20请你根据统计图、表,提供的信息解答下列问题: (1)该校这次随即抽取了 名学生参加问卷调查: (2)确定统计表中a 、b 的值:a= ,b= ;(3)该校共有2000名学生,估计全校态度为“非常喜欢”的学生人数.25.(10分)如图,已知BD 是△ABC 的角平分线,点E 、F 分别在边AB 、BC 上,ED ∥BC ,EF ∥AC .求证:BE=CF .26.(12分)计算:2﹣1|﹣2sin45°3821()2- 27.(12分)先化简,再求值:22122()121x x x xx x x x ----÷+++,其中x 满足x 2-2x -2=0.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】利用随机事件以及必然事件和不可能事件的定义依次分析即可解答.【详解】选项A、标号是2是随机事件;选项B、该卡标号小于6是必然事件;选项C、标号为6是不可能事件;选项D、该卡标号是偶数是随机事件;故选C.【点睛】本题考查了随机事件以及必然事件和不可能事件的定义,正确把握相关定义是解题关键.2.B【解析】试题分析:结合三个视图发现,应该是由一个正方体在一个角上挖去一个小正方体,且小正方体的位置应该在右上角,故选B.考点:由三视图判断几何体.3.C【解析】【分析】利用扇形的弧长公式可得扇形的弧长;让扇形的弧长除以2π即为圆锥的底面半径,利用勾股定理可得圆锥形筒的高.【详解】L=1206180π⨯=4π(cm);圆锥的底面半径为4π÷2π=2(cm),=cm).故选C.【点睛】此题考查了圆锥的计算,用到的知识点为:圆锥侧面展开图的弧长=2n r180π;圆锥的底面周长等于侧面展开图的弧长;圆锥的底面半径,母线长,高组成以母线长为斜边的直角三角形.4.D【解析】【分析】由三角形内切定义可知OB、OC是∠ABC、∠ACB的角平分线,所以可得到关系式∠OBC+∠OCB=1 2(∠ABC+∠ACB),把对应数值代入即可求得∠BOC的值.【详解】解:∵△ABC是等边三角形,∴∠A=∠ABC=∠ACB=60°,∵圆O是等边三角形内切圆,∴OB、OC是∠ABC、∠ACB的角平分线,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12(180°﹣60°)=60°,∴∠BOC=180°﹣60=120°,故选D.【点睛】此题主要考查了三角形的内切圆与内心以及切线的性质.关键是要知道关系式∠OBC+∠OCB=1 2(∠ABC+∠ACB).5.A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30,30+4×3=42,故选A.点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.6.A【解析】∵9<11<16,<<,即34<<,∵a ,b 为两个连续的整数,且a b <<, ∴a=3,b=4, ∴a+b=7, 故选A. 7.D 【解析】 【分析】由AB 的垂直平分MN 交AC 于D ,根据线段垂直平分线的性质,即可求得AD=BD ,又由△CDB 的周长为:BC+CD+BD=BC+CD+AD=BC+AC ,即可求得答案. 【详解】解:∵MN 是线段AB 的垂直平分线, ∴AD =BD , ∵AB =AC =10,∴BD+CD =AD+CD =AC =10,∴△BCD 的周长=AC+BC =10+6=16,故选D . 【点睛】此题考查了线段垂直平分线的性质,比较简单,注意数形结合思想与转化思想的应用. 8.C 【解析】【分析】根据题意,数据x 1,x 2,…,x n 的平均数设为a ,则数据2x 1,2x 2,…,2x n 的平均数为2a ,再根据方差公式进行计算:()()()()222221231n S x x x x x x x x n ⎡⎤=-+-+-++-⎣⎦L 即可得到答案. 【详解】根据题意,数据x 1,x 2,…,x n 的平均数设为a , 则数据2x 1,2x 2,…,2x n 的平均数为2a , 根据方差公式:()()()()222221231n S x a x a x a x a n ⎡⎤=-+-+-++-⎣⎦L =3, 则()()()()22222123122222222n S x a x a x a x a n L ⎡⎤=-+-+-++-⎣⎦ =()()()()222212314444n x a x a x a x a n ⎡⎤-+-+-++-⎣⎦L=4×()()()()22221231n x a x a x a x a n ⎡⎤-+-+-++-⎣⎦L=4×3 =12, 故选C .【点睛】本题主要考查了方差公式的运用,关键是根据题意得到平均数的变化,再正确运用方差公式进行计算即可.9.C【解析】【分析】任何多边形的外角和是360°,用360°除以一个外角度数即可求得多边形的边数.【详解】360°÷72°=1,则多边形的边数是1.故选C.【点睛】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.10.B【解析】试题分析:从上边看是一个同心圆,外圆是实线,內圆是虚线,故选B.点睛:本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.看得见部分的轮廓线要画成实线,看不见部分的轮廓线要画成虚线.11.D【解析】【分析】根据对顶角的定义,平行线的性质以及正五边形的内角及镶嵌的知识,逐一判断.【详解】解:①对顶角有位置及大小关系的要求,相等的角不一定是对顶角,故为假命题;②只有当两条平行直线被第三条直线所截,同位角相等,故为假命题;③正五边形的内角和为540°,则其内角为108°,而360°并不是108°的整数倍,不能进行平面镶嵌,故为假命题;④在同一平面内,垂直于同一条直线的两条直线平行,故为假命题.故选:D.【点睛】本题考查了命题与证明.对顶角,垂线,同位角,镶嵌的相关概念.关键是熟悉这些概念,正确判断.12.B【解析】【分析】根据乘法分配律和有理数的混合运算法则可以解答本题.【详解】原式=-999×(52+49-1)=-999×100=-1.故选B.【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.5【解析】【分析】【详解】∵多边形的每个外角都等于72°,∵多边形的外角和为360°,∴360°÷72°=5,∴这个多边形的边数为5.故答案为5.14.﹣1【解析】【分析】根据“方程x2+(m2﹣1)x+1+m=0 的两根互为相反数”,利用一元二次方程根与系数的关系,列出关于m 的等式,解之,再把m 的值代入原方程,找出符合题意的m 的值即可.【详解】∵方程x2+(m2﹣1)x+1+m=0 的两根互为相反数,∴1﹣m2=0,解得:m=1 或﹣1,把m=1代入原方程得:x2+2=0,该方程无解,∴m=1不合题意,舍去,把m=﹣1代入原方程得:x2=0,解得:x1=x2=0,(符合题意),∴m=﹣1,故答案为﹣1.【点睛】。

相关文档
最新文档