2018届高考数学(文)小题集训6含答案

合集下载

2018届高考数学(文)小题集训8含答案

2018届高考数学(文)小题集训8含答案

2018届高考数学(文)小题集训81.[2017·成都七中]复数25i z =+,i 是虚数单位,则z 的共轭复数的虚部是( ) A .5i B .5i -C .5D .5-【答案】D【解析】25i z =-,所以z 的共轭复数的虚部是5-,选D .2.[2017·成都七中] )A B C D 【答案】B【解析】2a = ,24593c c =+=⇒=,32c e a ∴==,选B . 3.[2017·成都七中]已知x ,y 的取值如下表所示从散点图分析y 与x 的线性关系,且0.95ˆyx a =+,则a =( ) A .2.2 B .3.36 C .2.6D .1.95【答案】C【解析】2x = , 4.5y =, 4.50.952 2.6a ∴=-⨯=,选C .4.[2017·成都七中]在等差数列{}n a 中,已知2a 与4a 是方程2680x x -+=的两个根,若42a a >,则2018a =( ) A .2018 B .2017 C .2016D .2015【答案】A【解析】由题意得22a =,44a =,1d ∴=,20182201612018a a =+⨯=,选A . 5.[2017·成都七中]命题:p “e x ∀>,ln 0a x -<”为真命题的一个充分不必要条件是( ) A .1a ≤ B .1a < C .1a ≥D .1a >【答案】B【解析】由题意得min (ln )a x <,∵e x >,∴ln 1x >,∴1a ≤,因为()(],1,1-∞⊂-∞,()(],1,1-∞≠-∞,因此一个充分不必要条件是1a <,选B .6.[2017·成都七中]《孙子算经》中有道算术题:“今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?”,意思是有100头鹿,若每户分一头则还有剩余,再每三户分一头则正好分完,问共有多少户人家?涉及框图如下,则输出i 的值是( )A .77B .7C .75D .74【答案】C【解析】的解,解得75i =,选C .7.[2017·成都七中]如图是一个正三棱柱挖去一个圆柱得到的一个几何体的三视图,则该几何体的体积与挖去的圆柱的体积比为()A1B13-CD1【答案】A【解析】正三棱柱与圆柱体积比为)224πhr h=,因此该几何体的体积与挖去,选A.8.[2017·成都七中]有一个正方体的玩具,六个面分别标注了数字1,2,3,4,5,6,甲乙两位学生进行如下游戏:甲先抛掷一次,记下正方体朝上的数字为a,再由乙抛掷一次,朝上数字为b ,若“默切配合”的概率()ABCD【答案】D【解析】由题意得总事件数为6636⨯=,而满足23333216+++++=,因此所求概率为D.9.[2017·成都七中]数m 的取值范围是( )ABCD【答案】A【解析】()()()322e 2e 21e 221x x x f x m m t t mt m =+++=+++',e 0x t =>,由题意得22210t mt m +++=有两个不同的正根,即()()22421020210m m m m ⎧-+>⎪->⎨⎪+>⎩A . 10.[2017·成都七中]已知等差数列{}n a 中,24a =,57a =,m ,n +∈N ,满足1231m m m m mn n a a a a a +++++= ,则n 等于( )A .1或2B .2或3C .3或4D .2或4 【答案】B【解析】()4212n a n n =+-⋅=+,即()()3423m mm m n n ++⋯++=+,代入验证得当22m n =⎧⎨=⎩或33m n =⎧⎨=⎩时成立,选B .11.[2017·成都七中]若函数()()sin 2f x x b ϕ=++,对任意实数x 都有213f π⎛⎫=- ⎪⎝⎭,则实数b 的值为( ) A .2-或0B .0或1C .1±D .2±【答案】A【解析】πsin 13ϕ⎛⎫+=± ⎪⎝⎭4ππsin π11136k b b ⎛⎫+++=-⇒=-± ⎪⎝⎭2b ⇒=-或0,选A .12.[2017·成都七中]已知1F ,2F 1F 的直线l 与圆222x y b +=相切于点M ,且,则直线l 的斜率是( )A B CD 【答案】C【解析】,在2MF O△中,由余弦定理得()222212cos cos 2b c a b MOF MOF c bc+-∠=-∠=-=C . 13.[2017·成都七中]已知向量()3,0=a ,()2,1=-b ,⊥b c ,且t =+a b c ,则t =__________. 【答案】65-【解析】由t =+a b c 得:26655t t t ⋅=⇒-=⇒=-a b b . 14.[2017·成都七中]将参加冬季越野跑的600名选手编号为:001,002,···,600,采用系统抽样方法抽取一个容量为50的样本,把编号分为50组后,第一组的001到012,这12个编号中随机抽得的号码为004,这600名选手穿着三种颜色的衣服,从001到301穿红色衣服,从302到496穿白色衣服,从497到600穿黄色衣服,则抽到穿白色衣服的选手人数为__________. 【答案】17304,316,···,496,共 15.[2017·成都七中]已知直线l 与x 轴不垂直,且直线l 过点()2,0M 与抛物线24y x =交于A ,B.【解析】设2cos :sin x t l y t αα=+⎧⎨=⎩(t 为参数,α为倾斜角),代入24y x =得22sin 4cos 80t t αα--=,所以16.[2017·成都七中]如图,在棱长为1的正方体1111ABCD A BC D -中,动点P 在其,把点的轨迹长度()L f x =称为“喇叭花”函数,给出下列结论:④其中正确的结论是:__________.(填上你认为所有正确的结论序号)【答案】②③④A()1f由如图三段相同的四分之一个圆心为A半径为1A半径为1的圆弧长组成,B,D,1。

2018年北京市高考数学试题含答案解析

2018年北京市高考数学试题含答案解析

2018年普通高等学校招生全国统一考试(北京卷)数学(文史类)第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.若集合{}2A x x =<,{}2,0,1,2B x =-,则A B =I (A ){}01, (B ){}-101,,(C ){}-201,,(D ){}-1012,,, 2)在复平面内,复数的共轭复数对应的点位于 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限3.执行如图所示的程序框图,输出的s 值为( ).A .12 B .56C .76D .7124.设a ,b ,c ,d 是非零实数,则“ad bc =”是“a ,b ,c ,d 成等比数列”的( ). A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件 .5.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要的贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f ,则第八个单音的频率为( ).ABC .D .6.某四棱锥的三视图如图所示,在此三棱锥的侧面中,直角三角形的个数为( ). A .1 B .2 C .3 D .47. 在平面直角坐标系中,»AB ,»CD ,»EF ,¼GH 是圆221x y +=上的四段弧(如图),点P 在其中的一段上,角α是以Ox 为始边,OP 为始边.若tan cos sin ααα<<,则P 所在的圆弧是(A )»AB(B )»CD (C )»EF(D )¼GH8. 设集合(){},|1,4,2A x y x y ax y x ay =-≥+>-≤,则()A 对任意实数a ,()2,1A ∈ ()B 对任意实数a ,()2,1A ∉ ()C 当且仅当0a <时,()2,1A ∉ ()D 当且仅当32a ≤时,()2,1A ∉ 二.填空(9)设向量()1,0a =r ,()1,b m =-r。

重庆八中2018届高考适应性月考(六)数学(文)答案

重庆八中2018届高考适应性月考(六)数学(文)答案

文科数学参考答案·第1页(共7页)重庆市第八中学2018届高考适应性月考卷(六)文科数学参考答案一、选择题(本大题共12小题,每小题5分,共60分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 C B C C A D C D B B A D 【解析】1.[22]M =-,,(04)N =,,(0][4)N =-∞+∞R ,, ,∴[20]M N =-R , ,故选C .2.由题知21i z =-,121i (1i)(12i)13ii 12i(12i)(12i)5z z +++-+===---+,故选B. 3.∵sin 22sin cos 0ααα=> ,∴sin tan 0cos ααα=>,故选C . 4.∵离心率e ==26a =,a =,故选C . 5.∵函数()f x 为R 上的奇函数,∴0(0)e 0f m =+=,解得1m =-,故1ln (ln 2)2f f ⎛⎫=- ⎪⎝⎭ln 2(ln 2)(e 1)1f =-=--=-,故选A .6.由等差数列的前n 项和性质知3S ,63S S -,96S S -成等差数列,又635S S =-,∴63S S -=36S -,∴96313S S S -=-,即9318S S =-,∴9318S S =-,故选D . 7.该几何体是由一个半圆锥和一个圆柱组合而成,2114ππ22233V ==半圆锥,2π2V = 圆柱 28π=,∴该几何体的体积为28π3,故选C . 8.记3名老年人,2名中年人和1名青年人分别为1A ,2A ,3A ,1B ,2B ,C ,则该随机试验的所有结果可记为12()A A ,,13()A A ,,11()A B ,,12()A B ,,1()A C ,,23()A A ,,21()A B ,,22()A B ,,2()A C ,,31()A B ,,32()A B ,,3()A C ,,12()B B ,,1()B C ,,2()B C ,,共15种,其中来自不同年龄层次的有11种,由古典概型知概率为1115,故选D .文科数学参考答案·第2页(共7页)9.由题意得()2sin(22)g x x ϕ=+,∴πππ2sin 222sin 212126g ϕϕ⎛⎫⎛⎫⎛⎫=⨯+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即πsin 262ϕ⎛⎫+=⎪⎝⎭,又π04ϕ<<,∴ππ2π2663ϕ⎛⎫+∈ ⎪⎝⎭,,∴ππ263ϕ+=,解得π12ϕ=,π()2sin 26g x x ⎛⎫=+ ⎪⎝⎭∴,又πππ2sin 2012126g ⎡⎤⎛⎫⎛⎫-=⨯-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,∴π012⎛⎫- ⎪⎝⎭是()g x 的一个对称中心,故选B .10.图中的程序框图是计算当2x =时,多项式234()032f x x x x x =+++-的值,∴(2)p f ==2-,故选B .11.设BC 的中点为D ,由32AO AB AC AD =+=,知外心与重心重合,则ABC △为等边三角形,而1BC =,∴111cos602AB AC =︒= ,故选A .12.由题知[()()]e 1x f x f x '+=,即(e ())1x f x '= ,∴e ()x f x x c =+(c 为常数),()e xx c f x +=,又(0)1f =,∴1c =,即1()e x x f x +=, ()ex xf x -'=∴.令()0f x '=,得0x =,当(0)x ∈-∞,时,()0f x '>,()f x 单增;当(0)x ∈+∞,时,()0f x '<,()f x 单减,且(1)0f -=,则()f x 的大致图象如图1所示,①12m =-,0n =时,()0f x =或1()2f x =,此时方程有3个不等实根;②1m n +=-时,()1f x =,即0x =恒满足方程;③0n <且1m n +>-时,对函数2()g t t mt n =++有(0)0g <,(1)0g >,()0g t =∴有两个不等的根1t ,2t ,且1(0)t ∈-∞,,2(01)t ∈,,此时,方程有三个不等的根,故①②③均正确,故选D .二、填空题(本大题共4小题,每小题5分,共20分)图1。

四川省成都2018届高考模拟数学文科试题(一)含答案

四川省成都2018届高考模拟数学文科试题(一)含答案

2018届高考模拟考试试题(一)数 学(文科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}1,3,0122≤==≤-+=x y y N x x x M x,则集合{}N x M x x ∉∈且,为A .(]0,3B .[]4,3-C .[)4,0-D .[]4,0-2.已知向量()1,1AB =u u u r ,()2,3AC =u u u r,则下列向量中与BC uuu r 垂直的是A .()3,6a =B .()8,6b =-C .()6,8c =D .()6,3d =- 3.在四面体S ABC -中,2,==⊥BC AB BC AB 2===SB SC SA ,则该四面体外接球的表面积是A .π34B .π316C .π310 D .π384.已知ααππαα2cos 2sin ),,2(,53sin 则且∈=的值等于 A .23 B .43C .—23 D .—435.某几何体的三视图如图所示,则此几何体的体积为A .3B .38C .6226++D .226+A .若a ,b ,c 是等差数列,则log 2a ,log 2b ,log 2c 是等比数列B .若a ,b ,c 是等比数列,则log 2a ,log 2b ,log 2c 是等差数列C .若a ,b ,c 是等差数列,则2a,2b, 2c是等比数列 D .若a ,b ,c 是等比数列,则2a,2b,2c是等差数列7.为了有效管理学生迟到问题,某校专对各班迟到现象制定了相应的等级标准,其中D 级标准为“连续10天,每天迟到不超过7人”,根据过去10天1、2、3、4班的迟到数据,一定符合D 级标准的是A .1班:总体平均值为3,中位数为4B .2班:总体平均值为1,总体方差大于0C ..3班:中位数为2,众数为3D .4班:总体平均值为2,总体方差为3 8.若将函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移ϕ个单位,所得图象关于y 轴对称,则ϕ的最小正值是A .512πB .3πC .23πD .56π- 9.执行如图所示的程序框图,若输入1m =,3n =,输出的 1.75x =,则空白判断框内应填的条件为A .1m n -<B .0.5m n -<C .0.2m n -<D .0.1m n -<10.若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx -2在x =1处有极值,则ab 的最大值是A .2B .3C .6D .911.设函数f (x )=(x -a )2+(ln x 2-2a )2,其中x >0,a ∈R ,存在x 0使得f (x 0)≤b 成立,则实数b 的最小值为A.15B.25 C.45D.1 12已知定义在Rk 的直线l ,若直线l图象至少有4个公共点,则实数k 的取值范围是BCD 第Ⅱ卷(共90分)本卷包括必考题和选考题两部分.第(13)~(21)题为必考题,每个试题考生都必须作答.第(22)~(23)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.16. 13.________.14.的直径的最大值为 .15.是 .16.已知函若函所有零点依次记为__________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知平面向量a =(3,-1),b =⎝ ⎛⎭⎪⎫12,32.(1)证明:a ⊥b ;(2)若存在不同时为零的实数k 和t ,使c =a +(t 2-3)b ,d =-k a +t b ,且c ⊥d ,试求函数关系式k =f (t ).18. 为了了解某学校高三年级学生的数学成绩,从中抽取n 名学生的数学成绩(百分制)作为样本,按成绩分成5组:[5060),,[6070),,[7080),,[8090),,[90100],,频率分布直方图如图所示.成绩落在[7080),中的人数为20.(Ⅰ)求a 和n 的值;(Ⅱ)根据样本估计总体的思想,估计该校高三年级学生数学成绩的平均数x 和中位数m ;(Ⅲ)成绩在80分以上(含80分)为优秀,样本中成绩落在[5080),中的男、女生人数比为1:2,成绩落在[80100],中的男、女生人数比为3:2,完成22⨯列联表,并判断是否有95%的把握认为数学成绩优秀与性别有关.参考公式和数据:22()()()()()n ad bc K a b c d a c b d -=++++.20()P K k ≥ 0.50 0.05 0.025 0.005 0k0.4553.8415.0247.879男生 女生 合计 优秀 不优秀 合计19.如图,在直三棱柱ABC -A 1B 1C 1中,平面A 1BC 丄侧面A 1ABB 1,且AA 1=AB = 2.(1)求证:AB 丄BC ;(2)若直线AC 与面A 1BC 所成的角为,求四棱锥A 1-BB 1C 1C 的体积.20.已知椭圆C :22221x y a b+=(0a b >>)的左右焦点分别为1F ,2F ,离心率为12,点A 在椭圆C 上,1||2AF =,1260F AF ∠=︒,过2F 与坐标轴不垂直的直线l 与椭圆C 交于P ,Q 两点,N 为P ,Q 的中点. (Ⅰ)求椭圆C 的方程;(Ⅱ)已知点1(0,)8M ,且MN PQ ⊥,求直线MN 所在的直线方程.21.(本小题满分12分) 已知函数()()22ln f x x x a x a R =-+∈.(1)当2a =时,求函数()f x 在()()1,1f 处的切线方程;(2)当0a >时,若函数()f x 有两个极值点()1212,x x x x <,不等式()12f x mx ≥恒成立,求实数m 取值范围.请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号. 22.(本题满分10分)选修4—4:坐标与参数方程在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=22cos ⎝⎛⎭⎫θ+π4,直线l 的参数方程为⎩⎨⎧x =t ,y =-1+22t(t 为参数),直线l 和圆C 交于A ,B 两点,P 是圆C 上不同于A ,B 的任意一点.(1)求圆心的极坐标; (2)求△PAB 面积的最大值.23.(本题满分10分)选修4-5:不等式选讲(1(2.成都龙泉中学2018届高考模拟考试试题(一)数学(文科)参考答案1—5 DDBCB 6—10 CDABD 11—12 CB14. 8 16.17.(1)证明 ∵a ·b =3×12-1×32=0, ∴a ⊥b .(2)解 ∵c =a +(t 2-3)b ,d =-k a +t b ,且c ⊥d , ∴c ·d =[a +(t 2-3)b ]·(-k a +t b )=-k a 2+t (t 2-3)b 2+[t -k (t 2-3)]a ·b =0. 又a 2=|a |2=4,b 2=|b |2=1,a ·b =0,∴c ·d =-4k +t 3-3t =0,∴k =f (t )=t 3-3t 4(t ≠0).18.解析:(Ⅰ)由题意可得∴∴(Ⅱ∴550.05650.2750.5850.15950.175.5x =⨯+⨯+⨯+⨯+⨯=. 设中位数为m ,则(70)0.050.5(0.050.2)m -⨯=-+,∴75m =.(Ⅲ)由题意,优秀的男生为6人,女生为4人,不优秀的男生为10人,女生为20人,22⨯列联表 男生 女生 合计 优秀 6410不优秀 10 2030 合计162440由表可得2240(620410) 2.222 3.84116241030K ⨯⨯-⨯=≈<⨯⨯⨯, ∴没有95%的把握认为数学成绩优秀与性别有关. 19.解:(1)取A 1B 的中点为D ,连接AD,面面,,面(2)∠ACD 即AC 与面A 1BC 所成线面角,等于;直角△ABC 中A 1A =AB =2, D 为AB 的中点,∵,【解析】本题主要考查的是线面垂直的性质以及棱锥体积的计算,意在考查考生的逻辑推理能力和运算求解能力.(1)根据线面垂直的判定定理证明,然后根据线面垂直的性质证得;(2)由(1)可得∠ACD 即AC 与面A 1BC 所成线面角,解三角形求得根据棱锥的体积公式即可得到答案.20.解:(Ⅰ)由12e =,得2a c =, 因为1||2AF =,2||22AF a =-,由余弦定理得22121212||||2||||cos ||AF AF AF AF A F F +-⋅=,解得1c =,2a =,∴2223b a c =-=,∴(Ⅱ∵∴21.解:(1)当时,;,则,所以切线方程为,即为.…4分(2)令,则当时,,函数在 增,无极值点;上单调递当且,即时,由,得当变化时,与的变化情况如下表:00单调递增极大值单调递减极小值单调递增当时,函数有两个极值点,则,.由可得..令.因为,所以,,即在递减,即有,所以实数的取值范围为.22.解 (1)圆 C 的普通方程为 x2+y2-2x+2y=0,即(x-1)2+(y+1)2=2.所以圆心坐标为(1,-1),圆心极坐标为 2,54π;(2)直线 l 的普通方程:2 2x-y-1=0,圆心到直线 l 的距离d=|2 2+3 1-1|=2 3 2,所以|AB|=2 2-89=2 310,点 P 到直线 AB 距离的最大值为 r+d= 2+2 3 2=5 3 2,Smax=12×210 5 3×32=1095 .23.解:(1)由 f (x) ≤ 0 有: ln(| 2x 1| | 2x 3|) ≤ln1 ,所以 0 | 2x 1| | 2x 3|≤1 ,即x ≤1 2,或 1 2x3, 2或x ≥3 2,0 2x 1 2x 3≤1 0 2x 1 2x 3≤1 0 2x 1 2x 3≤1,解得不等式的解集为 x1 2x≤3 4 .(2)由 f (x) m 恒成立得 f (x)max m 即可.由(1)0|2x1||2x3|得函数f(x)的定义域为 1 , 2 ,所以有f(x)ln(4x2) 1 2ln4 x≥3 2,x3 2,所以f( x)maxln 4 ,即 m ln 4 .。

2018年普通高考全国1卷文科数学(含答案)排好版

2018年普通高考全国1卷文科数学(含答案)排好版

2018年普通高等学校招生全国统一考试 (新课标Ⅰ卷)文科数学一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合,,则()A.B.C.D.2.设,则()A.0B.C.D3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆:的一个焦点为,则的离心率()A.B.C.D.5.已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ){}02A=,{}21012B=--,,,,A B={}02,{}12,{}0{}21012--,,,,121iz ii-=++z=121C22214x ya+=()2,0C1312231O2O12O OA .B .C .D .6.设函数.若为奇函数,则曲线在点处的切线方程为( ) A . B . C . D .7.在中,为边上的中线,为的中点,则( ) A .B .C .D .8.已知函数,则( ) A .的最小正周期为,最大值为3 B .的最小正周期为,最大值为4C .的最小正周期为,最大值为3D .的最小正周期为,最大值为49.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为( ) A .B .C .D .210.在长方体中,,与平面所成的角为,则该长方体的体积为( ) A .B .C .D .11.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有两点,,122π12π82π10π()()321f x x a x ax =+-+()f x ()y f x =()00,2y x =-y x =-2y x =y x =ABC △AD BC E AD EB =3144AB AC -1344AB AC -3144AB AC +1344AB AC +()222cos sin 2f x x x =-+()f x π()f x π()f x 2π()f x 2πM A N B M N 2172531111ABCD A B C D -2AB BC ==1AC 11BB C C 30︒8628283αx ()1,A a ()2,B b且,则( ) A .B .C .D .12.设函数,则满足的的取值范围是( )A .B .C .D .二、填空题(本题共4小题,每小题5分,共20分)13.已知函数,若,则________.14.若满足约束条件,则的最大值为________.15.直线与圆交于两点,则 ________.16.的内角的对边分别为,已知,,则的面积为________.三、解答题(共70分。

2018年高考文科数学(3卷)答案详解(附试卷)

2018年高考文科数学(3卷)答案详解(附试卷)

2018年普通高等学校招生全国统一考试文科数学3卷 答案详解一、选择题:本题共12小题,每小题5分,共60分。

在每小题给的四个选项中,只有一项是符合题目要求的。

1.已知集合,,则A .B .C .D .【解析】∵}1|{≥=x x A ,}2,1{=B A . 【答案】C 2. A .B .C .D .【解析】i i i +=-+3)2)(1(. 【答案】D3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是【解析】看不见的线应该用虚线表示. 【答案】A 4.若,则cos2α= {|10}A x x =-≥{0,1,2}B =A B ={0}{1}{1,2}{0,1,2}(1i)(2i)+-=3i --3i -+3i -3i+1sin 3α=A .B .C .D . 【解析】227cos212sin 199αα=-=-=. 【答案】B5.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为 A .0.3B .0.4C .0.6D .0.7【解析】只用现金支付、既用现金支付也用非现金支付、不用现金支付,三者是互斥事件,所以不用现金支付的概率为10.450.15=0.4--.【答案】B 6.函数2tan ()1tan xf x x=+的最小正周期为A .B .C .D .【解析】∵222222tan tan cos sin cos 1()sin cos sin 21tan (1tan )cos cos sin 2x x x x x f x x x x x x x x x ⋅=====++⋅+, ∴()f x 的最小正周期为 π .【答案】C7.下列函数中,其图像与函数的图像关于直线对称的是 A .B .C .D .【解析】解法一:从图A7中可以看出,函数)In(x y -=向右平移2个单位得到的图像,就是函数的图像关于直线对称的图像,其函数表达式为)2In(+-=x y .897979-89-4π2ππ2πln y x =1x =ln(1)y x =-ln(2)y x =-ln(1)y x =+ln(2)y x =+ln y x =1x =图A7解法一:(特殊值法)由题意可知,所求函数与函数的图像上的对应点关于对称. 在函数的图像任取一点(1,0),其关于对称的点为(1,0),即点(1,0)一定在所求的函数图像上,只有选项B 符合.【答案】B8.直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是 A .B .C .D .【解析】如图所示,由题意可知)0,2(-A 、)0,2(-B ,∴22||=AB .过点P 作△ABP 的高PH ,由图可以看出,当高PH 所在的直线过圆心)0,2(时,高PH 取最小值或最大值. 此时高PH 所在的直线的方程为02=-+y x .将02=-+y x 代入,得到与圆的两个交点:)1,1(-N 、)1,3(M ,因此22|211|min =+-=|PM|,232|213|max =++=|PM|. 所以222221min=⨯⨯=S ,6232221max =⨯⨯=S. ln y x =1x =ln y x =1x =20x y ++=x y A B P 22(2)2x y -+=ABP △[2,6][4,8]22(2)2x y -+=图A8【答案】A9.函数的图像大致为【解析】设2)(24++-==x x y x f ,∵02)0(>=f ,因此排除A 、B ;)12(224)(23--=+-='x x x x x f ,由0)(>'x f 得22-<x 或220<<x ,由此可知函数)(xf 422y x x =-++在),(220内为增函数,因此排除C.【答案】D10.已知双曲线C :22221(0,0)x y a b a b-=>>(4,0)到C 的渐近线的距离为AB.C .D .【解析】由题意可知c =,∴b a ==,渐近线方程为y x =±,即0x y ±=.∴ 点(4,0)到C 的渐近线的距离为222|4|=. 【答案】D11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为4222c b a -+,则C =A .B .C .D .【解析】由已知和△ABC 的面积公式有,4sin 21222c b a C ab -+=,解得C ab c b a sin 2222=-+.∴ C abCab ab c b a C sin 2sin 22cos 222==-+=,又∵1cos sin 22=+C C ,∴22sin cos ==C C ,4π=C . 【答案】C12.设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为39,则三棱锥D -ABC 体积的最大值为 A .312B .318C .324D .354【解析】如图A12所示,球心为O ,△ABC 的外心为O ′,显然三棱锥D -ABC 体积最大时D 在O′O 的延长线与球的交点.△ABC 为为等边三角形且其面积为39,因此有39432=⨯AB ,解得AB =6. 222π3π4π6π∴3260sin 32=⋅⨯=' AB C O ,2)32(42222=-='-='O O OC O O , ∴642=+='D O .∴ 三棱锥D -ABC 体积的最大值为31863931=⨯⨯=V .图A12【答案】B二、填空题:本题共4小题,每小题5分,共20分。

2018年成人高考高起点数学(文)考试真题及答案

2018年成人高考高起点数学(文)考试真题及答案

2018年成人高考高起点数学(文)考试真题及答案第一部分 选择题(85分)一、选择题(本大题共17小题,每小题5分,共85分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={ 2,4,8 },B={ 2,4,6,8 },则A ∪B=( )A. { 6 }B. { 2,4 }C. { 2,4,8 }D. { 2,,4,6,8 }2.不等式 x ²-2x<0 的解集为( )A. { x | 0 < x < 2 }B. { x |-2 < x < 0 }C. { x | x < 0 或 x > 2 }D. { x | x < -2 或 x > 0 }1.1.2.1y .A .62.D .C 2.B 4.A 3x 2tan x f .53y .D x y .C sinxy .B x y .A 04.) 1,0 ( D.)0,2 ( C.)0,1 ( B.)0,1- ( A.x-12y .3213x-21-+=-==+=+=====∞+=---x y D x y C y B x x的是()下列函数中,为偶函数ππππ)的最小周期是()π()(函数)内为增函数的是(),下列函数中,在区间(的对称中心是()曲线7.函数y=log ₂(x+2)的图像向上平移一个单位后,所得图像对应的函数为( )A. y=log ₂(x+1)B. y=log ₂(x+2)+1C. y=log ₂(x+2)-1D. y=log ₂(x+3)8.在等差数列y=log ₂(x=2)的图像向上平移1个单位后,所得图像对应的函数为( )A. -2B. -1C. 1D. 29.从1,2,3,4,5中任取2个不同的数,这2个数都是偶数的概率为( )A.1/10B.1/5C.3/10D.3/510. 圆x ²+y ²+2x-6y-6=0的半径为( )16.D 4.C 15.B 10.A11. 双曲线3x ²-4y ²=12的焦距为( )72.D 4.C 32.B 2.A12. 已知抛物线y=6x 的焦点为F ,点A (0,1),则直线AF 的斜率为() 32-.D 23-.C 32.B 23.A13.若1名女生和3名男生排成一排,则该女生不在两端的不同排法共有( )A. 24种B. 16种C. 12种D. 8种14.已知平面向量a=(1,t ),b=(-1,2)若a+mb 平行于向量(-2,1)则()A. 2t-3m+1=0B. 2t-3m-1=0C. 2t+3m+1=0D. 2t+3m-1=01-.D 0.C 3B.A.233-3-x 3cos 2x f .15的最大值是()π,π)在区间π()(函数⎥⎦⎤⎢⎣⎡=16. 函数y=x ²-2x-3的图像与直线y=x+1交于A,B 两点,则|AB|=( )4.D 13.C 25.B 132.A17.设甲:y=f(x)的图像有对称轴;乙:y=f(x)是偶函数,则( )A 甲是乙的充分条件但不是必要条件B 甲是乙的必要条件但不是充分条件C 甲是乙的充要条件D 甲既不是乙的充分条件也不是乙的必要条件第二部分 非选择题(65分)二、填空题(本大题共4小题,每小题4分,共16分)18.过点(1,-2)且与直线3x+y-1=0垂直的直线方程为_____.18. 掷一枚硬币时,正面向上的概率为1/2,掷这枚硬币4次,则恰有2次正面向上的概率是_____.._____x 2sin x 53-sinx .20==为第四象限角,则,且已知._____)0,01e -x y .21x 2处的切线方程为在点(曲线+=三、解答题(本大题共4小题,共49分。

2018年高考文数真题试题(全国Ⅲ卷)(Word版+答案+解析)

2018年高考文数真题试题(全国Ⅲ卷)(Word版+答案+解析)

2018年高考文数真题试卷(全国Ⅲ卷)一、选择题1.已知集合 A ={x|x −1≥0},B ={0,1,2} ,则 A ∩B = ( ) A. {0} B. {1} C. {1,2} D. {0,1,2}2.(1+i)(2−i) =( )A. -3-iB. -3+iC. 3-iD. 3+i3.中国古建筑借助榫卯将木构件连接起来,构件的突出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头,若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )A. B.C. D.4.若 sinα=13 ,则 cos2α =( )A. 89 B. 79 C. - 79 D. - 895.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( )A. 0.3B. 0.4C. 0.6D. 0.7 6.函数 f(x)=tanx1+tan 2x 的最小正周期为( )A. π4 B. π2 C. π D. 2 π7.下列函数中,其图像与函数 y =lnx 的图像关于直线 x =1 对称的是( ) A. y =ln(1−x) B. y =ln(2−x) C. y =ln(1+x) D. y =ln(2+x)8.直线 x +y +2=0 分别与 x 轴, y 轴交于点 A,B 两点,点 P 在圆 (x −2)2+y 2=2 上,则 ΔABP 面积的取值范围是( )A. [2,6]B. [4,8]C. [√2,3√2]D. [2√2,3√2] 9.函数 y =−x 4+x 2+2 的图像大致为( )A. B.C. D.10.已知双曲线 C:x 2a2−y 2b 2=1 (a >0,b >0) 的离心率为 √2 ,则点 (4,0) 到 C 的渐近线的距离为( )A. √2B. 2C.3√22D. 2√2 11.ΔABC 的内角 A,B,C 的对边分别为 a,b,c ,若 ΔABC 的面积为 a 2+b 2−c 24,则 C =( )A. π2 B. π3 C. π4 D. π612.设 A,B,C,D 是同一个半径为 4 的球的球面上四点, ΔABC 为等边三角形且其面积为 9√3 ,则三棱锥 D −ABC 体积的最大值为( )A. 12√3B. 18√3C. 24√3D. 54√3二、填空题13.已知向量 a ⃗=(1,2) , b ⃗⃗=(2,−2) , c ⃗=(1,λ) ,若 c ⃗∥(2a ⃗+b ⃗⃗) ,则 λ= ________。

(完整版)2018年高考全国卷1文科数学试题及含答案

(完整版)2018年高考全国卷1文科数学试题及含答案

2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己の姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目の答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出の四个选项中,只有一项是符合题目要求の。

1.已知集合{}02A =,,{}21012B =--,,,,,则A B =I A .{}02,B .{}12,C .{}0D .{}21012--,,,, 2.设1i2i 1iz -=++,则z = A .0B .12C .1D .23.某地区经过一年の新农村建设,农村の经济收入增加了一倍.实现翻番.为更好地了解该地区农村の经济收入变化情况,统计了该地区新农村建设前后农村の经济收入构成比例.得到如下饼图:则下面结论中不正确の是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入の总和超过了经济收入の一半4.已知椭圆C :22214x y a +=の一个焦点为(20),,则C の离心率为A .13B .12C .22D .2235.已知圆柱の上、下底面の中心分别为1O ,2O ,过直线12O O の平面截该圆柱所得の截面是面积为8の正方形,则该圆柱の表面积为 A .122πB .12πC .82πD .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处の切线方程为A .2y x =-B .y x =-C .2y x =D .y x =7.在△ABC 中,AD 为BC 边上の中线,E 为AD の中点,则EB =u u u rA .3144AB AC -u u ur u u u r B .1344AB AC -u u ur u u u r C .3144AB AC +u u ur u u u rD .1344AB AC +u u ur u u u r8.已知函数()222cos sin 2f x x x =-+,则 A .()f x の最小正周期为π,最大值为3 B .()f x の最小正周期为π,最大值为4 C .()f x の最小正周期为2π,最大值为3 D .()f x の最小正周期为2π,最大值为49.某圆柱の高为2,底面周长为16,其三视图如右图.圆柱表面上の点M 在正视图上の对应点为A ,圆柱表面上の点N 在左视图上の对应点为B ,则在此圆柱侧面上,从M 到N の路径中,最短路径の长度为 A .217 B .25 C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成の角为30︒,则该长方体の体积为 A .8B .62C .82D .8311.已知角αの顶点为坐标原点,始边与x 轴の非负半轴重合,终边上有两点()1A a ,,()2B b ,,且 2cos 23α=,则a b -=A .15BCD .112.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<のx の取值范围是A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+の最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.16.△ABC の内角A B C ,,の对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC の面积为________.三、解答题:共70分。

2018年重庆市高考数学试卷(文科)(全国新课标ⅱ)含答案

2018年重庆市高考数学试卷(文科)(全国新课标ⅱ)含答案

2018年重庆市高考数学试卷(文科)(全国新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)i(2+3i)=()A.3﹣2i B.3+2i C.﹣3﹣2i D.﹣3+2i2.(5分)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=()A.{3}B.{5}C.{3,5}D.{1,2,3,4,5,7}3.(5分)函数f(x)=的图象大致为()A.B.C.D.4.(5分)已知向量,满足||=1,=﹣1,则•(2)=()A.4 B.3 C.2 D.05.(5分)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为()A.0.6 B.0.5 C.0.4 D.0.36.(5分)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x7.(5分)在△ABC中,cos=,BC=1,AC=5,则AB=()A.4 B. C. D.28.(5分)为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1 B.i=i+2 C.i=i+3D.i=i+49.(5分)在正方体ABCD﹣A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为()A.B.C.D.10.(5分)若f(x)=cosx﹣sinx在[0,a]是减函数,则a的最大值是()A.B.C. D.π11.(5分)已知F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF2,且∠PF2F1=60°,则C的离心率为()A.1﹣B.2﹣C.D.﹣112.(5分)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f (1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50 B.0 C.2 D.50二、填空题:本题共4小题,每小题5分,共20分。

2018年天津市高考数学试卷及解析(文科)

2018年天津市高考数学试卷及解析(文科)

2018年天津市高考数学试卷(文科)一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1、(5分)设集合A={1,2,3,4},B={﹣1,0,2,3},C={x∈R|﹣1≤x<2},则(A∪B)∩C=()A、{﹣1,1}B、{0,1}C、{﹣1,0,1}D、{2,3,4}2、(5分)设变量x,y满足约束条件,则目标函数z=3x+5y的最大值为()A、6B、19C、21D、453、(5分)设x∈R,则“x3>8”是“|x|>2”的()A、充分而不必要条件B、必要而不充分条件C、充要条件D、既不充分也不必要条件4、(5分)阅读如图的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为()A、1B、2C、3D、45、(5分)已知a=log3,b=(),c=log,则a,b,c的大小关系为()A、a>b>cB、b>a>cC、c>b>aD、c>a>b6、(5分)将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A、在区间[]上单调递增B、在区间[﹣,0]上单调递减C、在区间[]上单调递增D、在区间[,π]上单调递减7、(5分)已知双曲线=1(a>0,b>0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点、设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为()A、﹣=1B、﹣=1C、﹣=1D、﹣=18、(5分)在如图的平面图形中,已知OM=1,ON=2,∠MON=120°,=2,=2,则的值为()A、﹣15B、﹣9C、﹣6D、0二.填空题:本大题共6小题,每小题5分,共30分.9、(5分)i是虚数单位,复数=、10、(5分)已知函数f(x)=e x lnx,f′(x)为f(x)的导函数,则f′(1)的值为、11、(5分)如图,已知正方体ABCD﹣A1B1C1D1的棱长为1,则四棱锥A1﹣BB1D1D 的体积为、12、(5分)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为、13、(5分)已知a,b∈R,且a﹣3b+6=0,则2a+的最小值为、14、(5分)已知a∈R,函数f(x)=、若对任意x∈[﹣3,+∞),f(x)≤|x|恒成立,则a的取值范围是、三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15、(13.00分)己知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160、现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动、(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作、(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率、16、(13.00分)在△ABC中,内角A,B,C所对的边分别为a,b,c、已知bsinA=acos (B﹣)、(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值、17、(13.00分)如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=2,∠BAD=90°、(Ⅰ)求证:AD⊥BC;(Ⅱ)求异面直线BC与MD所成角的余弦值;(Ⅲ)求直线CD与平面ABD所成角的正弦值、18、(13.00分)设{a n}是等差数列,其前n项和为S n(n∈N*);{b n}是等比数列,公比大于0,其前n项和为T n(n∈N*)、已知b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6、(Ⅰ)求S n和T n;(Ⅱ)若S n+(T1+T2+……+T n)=a n+4b n,求正整数n的值、19、(14.00分)设椭圆+=1(a>b>0)的右顶点为A,上顶点为B、已知椭圆的离心率为,|AB|=、(Ⅰ)求椭圆的方程;(Ⅱ)设直线l:y=kx(k<0)与椭圆交于P,Q两点,1与直线AB交于点M,且点P,M均在第四象限、若△BPM的面积是△BPQ面积的2倍,求k的值、20、(14.00分)设函数f(x)=(x﹣t1)(x﹣t2)(x﹣t3),其中t1,t2,t3∈R,且t1,t2,t3是公差为d的等差数列、(Ⅰ)若t2=0,d=1,求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)若d=3,求f(x)的极值;(Ⅲ)若曲线y=f(x)与直线y=﹣(x﹣t2)﹣6有三个互异的公共点,求d 的取值范围、参考答案与试题解析一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1、(5分)设集合A={1,2,3,4},B={﹣1,0,2,3},C={x∈R|﹣1≤x<2},则(A∪B)∩C=()A、{﹣1,1}B、{0,1}C、{﹣1,0,1}D、{2,3,4}题目分析:直接利用交集、并集运算得答案、试题解答:解:∵A={1,2,3,4},B={﹣1,0,2,3},∴(A∪B)={1,2,3,4}∪{﹣1,0,2,3}={﹣1,0,1,2,3,4},又C={x∈R|﹣1≤x<2},∴(A∪B)∩C={﹣1,0,1}、故选:C、点评:本题考查交集、并集及其运算,是基础的计算题、2、(5分)设变量x,y满足约束条件,则目标函数z=3x+5y的最大值为()A、6B、19C、21D、45题目分析:先画出约束条件的可行域,利用目标函数的几何意义,分析后易得目标函数z=3x+5y的最大值、试题解答:解:由变量x,y满足约束条件,得如图所示的可行域,由解得A(2,3)、当目标函数z=3x+5y经过A时,直线的截距最大,z取得最大值、将其代入得z的值为21,故选:C、点评:在解决线性规划的小题时,常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解、也可以利用目标函数的几何意义求解最优解,求解最值、3、(5分)设x∈R,则“x3>8”是“|x|>2”的()A、充分而不必要条件B、必要而不充分条件C、充要条件D、既不充分也不必要条件题目分析:由x3>8得到|x|>2,由|x|>2不一定得到x3>8,然后结合查充分条件、必要条件的判定方法得答案、试题解答:解:由x3>8,得x>2,则|x|>2,反之,由|x|>2,得x<﹣2或x>2,则x3<﹣8或x3>8、即“x3>8”是“|x|>2”的充分不必要条件、故选:A、点评:本题考查充分条件、必要条件及其判定方法,是基础题、4、(5分)阅读如图的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为()A、1B、2C、3D、4题目分析:根据程序框图进行模拟计算即可、试题解答:解:若输入N=20,则i=2,T=0,==10是整数,满足条件、T=0+1=1,i=2+1=3,i≥5不成立,循环,=不是整数,不满足条件、,i=3+1=4,i≥5不成立,循环,==5是整数,满足条件,T=1+1=2,i=4+1=5,i≥5成立,输出T=2,故选:B、点评:本题主要考查程序框图的识别和判断,根据条件进行模拟计算是解决本题的关键、5、(5分)已知a=log3,b=(),c=log,则a,b,c的大小关系为()A、a>b>cB、b>a>cC、c>b>aD、c>a>b题目分析:把a,c化为同底数,然后利用对数函数的单调性及1的关系进行比较、试题解答:解:∵a=log 3,c=log=log35,且5,∴,则b=()<,∴c>a>b、故选:D、点评:本题考查对数值的大小比较,考查了指数函数与对数式的单调性,是基础题、6、(5分)将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A、在区间[]上单调递增B、在区间[﹣,0]上单调递减C、在区间[]上单调递增D、在区间[,π]上单调递减题目分析:由函数的图象平移求得平移后函数的解析式,结合y=Asin(ωx+φ)型函数的单调性得答案、试题解答:解:将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数解析式为y=sin[2(x﹣)+]=sin2x、当x∈[]时,2x∈[,],函数单调递增;当x∈[,]时,2x∈[,π],函数单调递减;当x∈[﹣,0]时,2x∈[﹣,0],函数单调递增;当x∈[,π]时,2x∈[π,2π],函数先减后增、故选:A、点评:本题考查y=Asin(ωx+φ)型函数的图象变换及其性质,是中档题、7、(5分)已知双曲线=1(a>0,b>0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点、设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为()A、﹣=1B、﹣=1C、﹣=1D、﹣=1题目分析:画出图形,利用已知条件,列出方程组转化求解即可、试题解答:解:由题意可得图象如图,CD是双曲线的一条渐近线y=,即bx﹣ay=0,F(c,0),AC⊥CD,BD⊥CD,FE⊥CD,ACDB是梯形,F是AB的中点,EF==3,EF==b,所以b=3,双曲线=1(a>0,b>0)的离心率为2,可得,可得:,解得a=、则双曲线的方程为:﹣=1、故选:A、点评:本题考查双曲线的简单性质的应用,双曲线方程的求法,考查计算能力、8、(5分)在如图的平面图形中,已知OM=1,ON=2,∠MON=120°,=2,=2,则的值为()A、﹣15B、﹣9C、﹣6D、0题目分析:解法Ⅰ,由题意判断BC∥MN,且BC=3MN,再利用余弦定理求出MN和∠OMN的余弦值,计算•即可、解法Ⅱ:用特殊值法,不妨设四边形OMAN是平行四边形,由题意求得的值、试题解答:解:解法Ⅰ,由题意,=2,=2,∴==2,∴BC∥MN,且BC=3MN,又MN2=OM2+ON2﹣2OM•ON•cos120°=1+4﹣2×1×2×(﹣)=7,∴MN=;∴BC=3,∴cos∠OMN===,∴•=||×||cos(π﹣∠OMN)=3×1×(﹣)=﹣6、解题Ⅱ:不妨设四边形OMAN是平行四边形,由OM=1,ON=2,∠MON=120°,=2,=2,知=﹣=3﹣3=﹣3+3,∴=(﹣3+3)•=﹣3+3•=﹣3×12+3×2×1×cos120°=﹣6、故选:C、点评:本题考查了平面向量的线性运算与数量积运算问题,是中档题、二.填空题:本大题共6小题,每小题5分,共30分.9、(5分)i是虚数单位,复数=4﹣i、题目分析:根据复数的运算法则计算即可、试题解答:解:====4﹣i,故答案为:4﹣i点评:本题考查了复数的运算法则,属于基础题、10、(5分)已知函数f(x)=e x lnx,f′(x)为f(x)的导函数,则f′(1)的值为e、题目分析:根据导数的运算法则求出函数f(x)的导函数,再计算f′(1)的值、试题解答:解:函数f(x)=e x lnx,则f′(x)=e x lnx+•e x;∴f′(1)=e•ln1+1•e=e、故答案为:e、点评:本题考查了导数的运算公式与应用问题,是基础题、11、(5分)如图,已知正方体ABCD﹣A1B1C1D1的棱长为1,则四棱锥A1﹣BB1D1D 的体积为、题目分析:求出四棱锥的底面面积与高,然后求解四棱锥的体积、试题解答:解:由题意可知四棱锥A1﹣BB1D1D的底面是矩形,边长:1和,四棱锥的高:A1C1=、则四棱锥A1﹣BB1D1D的体积为:=、故答案为:、点评:本题考查几何体的体积的求法,判断几何体的形状是解题的关键、12、(5分)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为(x﹣1)2+y2=1(或x2+y2﹣2x=0)、题目分析:【方法一】根据题意画出图形,结合图形求得圆心与半径,写出圆的方程、【方法二】设圆的一般方程,把点的坐标代入求得圆的方程、试题解答:解:【方法一】根据题意画出图形如图所示,结合图形知经过三点(0,0),(1,1),(2,0)的圆,其圆心为(1,0),半径为1,则该圆的方程为(x﹣1)2+y2=1、【方法二】设该圆的方程为x2+y2+Dx+Ey+F=0,则,解得D=﹣2,E=F=0;∴所求圆的方程为x2+y2﹣2x=0、故答案为:(x﹣1)2+y2=1(或x2+y2﹣2x=0)、点评:本题考查了圆的方程与应用问题,是基础题、13、(5分)已知a,b∈R,且a﹣3b+6=0,则2a+的最小值为、题目分析:化简所求表达式,利用基本不等式转化求解即可、试题解答:解:a,b∈R,且a﹣3b+6=0,可得:3b=a+6,则2a+==≥2=,当且仅当2a=、即a=﹣3时取等号、函数的最小值为:、故答案为:、点评:本题考查函数的最值的求法,基本不等式的应用,也可以利用换元法,求解函数的最值、考查计算能力、14、(5分)已知a∈R,函数f(x)=、若对任意x∈[﹣3,+∞),f(x)≤|x|恒成立,则a的取值范围是[] 、题目分析:根据分段函数的表达式,结合不等式恒成立分别进行求解即可、试题解答:解:当x≤0时,函数f(x)=x2+2x+a﹣2的对称轴为x=﹣1,抛物线开口向上,要使x≤0时,对任意x∈[﹣3,+∞),f(x)≤|x|恒成立,则只需要f(﹣3)≤|﹣3|=3,即9﹣6+a﹣2≤3,得a≤2,当x>0时,要使f(x)≤|x|恒成立,即f(x)=﹣x2+2x﹣2a,则直线y=x的下方或在y=x上,由﹣x2+2x﹣2a=x,即x2﹣x+2a=0,由判别式△=1﹣8a≤0,得a≥,综上≤a≤2,故答案为:[,2]、点评:本题主要考查不等式恒成立问题,利用分段函数的不等式分别进行转化求解即可、注意数形结合、三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15、(13.00分)己知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160、现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动、(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作、(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率、题目分析:(Ⅰ)利用分层抽样的性质能求出应从甲、乙、丙三个年级的学生志愿意者中分别抽取得3人,2人,2人、(Ⅱ)(i)从抽取的7名同学中抽取2名同学,利用列举法能求出所有可能结果、(ii)设抽取的7名学生中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,M为事件“抽取的2名同学来自同一年级”,利用列举法能求出事件M发生的概率、试题解答:解:(Ⅰ)由已知得甲、乙、丙三个年级的学生志愿者人数之比为3:2:2,由于采用分层抽样的方法从中抽取7名同学,∴应从甲、乙、丙三个年级的学生志愿意者中分别抽取得3人,2人,2人、(Ⅱ)(i)从抽取的7名同学中抽取2名同学的所有可能结果为:{A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B,F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},{D,G},{E,F},{E,G},{F,G},共21个、(i)设抽取的7名学生中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,M为事件“抽取的2名同学来自同一年级”,则事件M包含的基本事件有:{A,B},{A,C},{B,C},{D,E},{F,G},共5个基本事件,∴事件M发生的概率P(M)=、点评:本题考查分层抽样、用列举法计算随机事件所含基本事件数、古典概型及其概率计算公式等基础知识,考查运用概率知识解决简单实际问题的能力、16、(13.00分)在△ABC中,内角A,B,C所对的边分别为a,b,c、已知bsinA=acos (B﹣)、(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值、题目分析:(Ⅰ)由正弦定理得bsinA=asinB,与bsinA=acos(B﹣)、由此能求出B、(Ⅱ)由余弦定理得b=,由bsinA=acos(B﹣),得sinA=,cosA=,由此能求出sin(2A﹣B)、试题解答:解:(Ⅰ)在△ABC中,由正弦定理得,得bsinA=asinB,又bsinA=acos(B﹣)、∴asinB=acos(B﹣),即sinB=cos(B﹣)=cosBcos+sinBsin=cosB+,∴tanB=,又B∈(0,π),∴B=、(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由bsinA=acos(B﹣),得sinA=,∵a<c,∴cosA=,∴sin2A=2sinAcosA=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2AcosB﹣cos2AsinB==、点评:本题考查角的求法,考查两角差的余弦值的求法,考查运算求解能力,考查函数与方程思想,是中档题、17、(13.00分)如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=2,∠BAD=90°、(Ⅰ)求证:AD⊥BC;(Ⅱ)求异面直线BC与MD所成角的余弦值;(Ⅲ)求直线CD与平面ABD所成角的正弦值、题目分析:(Ⅰ)由平面ABC⊥平面ABD,结合面面垂直的性质可得AD⊥平面ABC,则AD⊥BC;(Ⅱ)取棱AC的中点N,连接MN,ND,又M为棱AB的中点,可得∠DMN(或其补角)为异面直线BC与MD所成角,求解三角形可得异面直线BC与MD所成角的余弦;(Ⅲ)连接CM,由△ABC为等边三角形,M为边AB的中点,可得CM⊥AB,且CM=,再由面面垂直的性质可得CM⊥平面ABD,则∠CDM为直线CD与平面ABD所成角,求解三角形可得直线CD与平面ABD所成角的正弦值、试题解答:(Ⅰ)证明:由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD ⊥AB,得AD⊥平面ABC,故AD⊥BC;(Ⅱ)解:取棱AC的中点N,连接MN,ND,∵M为棱AB的中点,故MN∥BC,∴∠DMN(或其补角)为异面直线BC与MD所成角,在Rt△DAM中,AM=1,故DM=,∵AD⊥平面ABC,故AD⊥AC,在Rt△DAN中,AN=1,故DN=,在等腰三角形DMN中,MN=1,可得cos∠DMN=、∴异面直线BC与MD所成角的余弦值为;(Ⅲ)解:连接CM,∵△ABC为等边三角形,M为边AB的中点,故CM⊥AB,CM=,又∵平面ABC⊥平面ABD,而CM⊂平面ABC,故CM⊥平面ABD,则∠CDM为直线CD与平面ABD所成角、在Rt△CAD中,CD=,在Rt△CMD中,sin∠CDM=、∴直线CD与平面ABD所成角的正弦值为、点评:本题考查异面直线所成角、直线与平面所成角、平面与平面垂直等基本知识,考查空间想象能力、运算求解能力与推理论证能力,属中档题、18、(13.00分)设{a n}是等差数列,其前n项和为S n(n∈N*);{b n}是等比数列,公比大于0,其前n项和为T n(n∈N*)、已知b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6、(Ⅰ)求S n和T n;(Ⅱ)若S n+(T1+T2+……+T n)=a n+4b n,求正整数n的值、题目分析:(Ⅰ)设等比数列{b n}的公比为q,由已知列式求得q,则数列{b n}的通项公式与前n项和可求;等差数列{a n}的公差为d,再由已知列关于首项与公差的方程组,求得首项与公差,代入等差数列的通项公式与前n项和公式可得S n;(Ⅱ)由(Ⅰ)求出T1+T2+……+T n,代入S n+(T1+T2+……+T n)=a n+4b n,化为关于n的一元二次方程求解正整数n的值、试题解答:解:(Ⅰ)设等比数列{b n}的公比为q,由b1=1,b3=b2+2,可得q2﹣q﹣2=0、∵q>0,可得q=2、故,;设等差数列{a n}的公差为d,由b4=a3+a5,得a1+3d=4,由b5=a4+2a6,得3a1+13d=16,∴a1=d=1、故a n=n,;(Ⅱ)由(Ⅰ),可得T1+T2+……+T n==2n+1﹣n﹣2、由S n+(T1+T2+……+T n)=a n+4b n,可得,整理得:n2﹣3n﹣4=0,解得n=﹣1(舍)或n=4、∴n的值为4、点评:本题主要考查等差数列、等比数列的通项公式及前n项和等基础知识,考查数列求和的基本方法及运算能力,是中档题、19、(14.00分)设椭圆+=1(a>b>0)的右顶点为A,上顶点为B、已知椭圆的离心率为,|AB|=、(Ⅰ)求椭圆的方程;(Ⅱ)设直线l:y=kx(k<0)与椭圆交于P,Q两点,1与直线AB交于点M,且点P,M均在第四象限、若△BPM的面积是△BPQ面积的2倍,求k的值、题目分析:(1)设椭圆的焦距为2c,由已知可得,又a2=b2+c2,解得a=3,b=2,即可、(Ⅱ)设点P(x1,y1),M(x2,y2),(x2>x1>0)、则Q(﹣x1,﹣y1)、由△BPM的面积是△BPQ面积的2倍,可得x2﹣x1=2[x1﹣(﹣x1)],x2=5x1,联立方程求出由>0.,可得k、试题解答:解:(1)设椭圆的焦距为2c,由已知可得,又a2=b2+c2,解得a=3,b=2,∴椭圆的方程为:,(Ⅱ)设点P(x1,y1),M(x2,y2),(x2>x1>0)、则Q(﹣x1,﹣y1)、∵△BPM的面积是△BPQ面积的2倍,∴|PM|=2|PQ|,从而x2﹣x1=2[x1﹣(﹣x1)],∴x2=5x1,易知直线AB的方程为:2x+3y=6、由,可得>0、由,可得,⇒,⇒18k2+25k+8=0,解得k=﹣或k=﹣、由>0、可得k,故k=﹣,点评:本题考查了椭圆的方程、几何性质,考查了直线与椭圆的位置关系,属于中档题、20、(14.00分)设函数f(x)=(x﹣t1)(x﹣t2)(x﹣t3),其中t1,t2,t3∈R,且t1,t2,t3是公差为d的等差数列、(Ⅰ)若t2=0,d=1,求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)若d=3,求f(x)的极值;(Ⅲ)若曲线y=f(x)与直线y=﹣(x﹣t2)﹣6有三个互异的公共点,求d 的取值范围、题目分析:(Ⅰ)求出t2=0,d=1时f(x)的导数,利用导数求斜率,再写出切线方程;(Ⅱ)计算d=3时f(x)的导数,利用导数判断f(x)的单调性,求出f(x)的极值;(Ⅲ)曲线y=f(x)与直线y=﹣(x﹣t2)﹣6有三个互异的公共点,等价于关于x的方程f(x)+(x﹣t2)﹣6=0有三个互异的实数根,利用换元法研究函数的单调性与极值,求出满足条件的d的取值范围、试题解答:解:(Ⅰ)函数f(x)=(x﹣t1)(x﹣t2)(x﹣t3),t2=0,d=1时,f(x)=x(x+1)(x﹣1)=x3﹣x,∴f′(x)=3x2﹣1,f(0)=0,f′(0)=﹣1,∴y=f(x)在点(0,f(0))处的切线方程为y﹣0=﹣1×(x﹣0),即x+y=0;(Ⅱ)d=3时,f(x)=(x﹣t2+3)(x﹣t2)(x﹣t2﹣3)=﹣9(x﹣t2)=x3﹣3t2x2+(3﹣9)x ﹣+9t2;∴f′(x)=3x2﹣6t2x+3﹣9,令f′(x)=0,解得x=t2﹣或x=t2+;当x变化时,f′(x),f(x)的变化情况如下表;x(﹣∞,t2﹣)t2﹣(t2﹣,t2+)t2+(t2+,+∞)f′(x)+0﹣0+f(x)单调增极大值单调减极小值单调增∴f(x)的极大值为f(t2﹣)=﹣9×(﹣)=6,极小值为f(t2+)=﹣9×=﹣6;(Ⅲ)曲线y=f(x)与直线y=﹣(x﹣t2)﹣6有三个互异的公共点,等价于关于x的方程(x﹣t2+d)(x﹣t2)(x﹣t2﹣d)+(x﹣t2)﹣6=0有三个互异的实数根,令u=x﹣t2,可得u3+(1﹣d2)u+6=0;设函数g(x)=x3+(1﹣d2)x+6,则曲线y=f(x)与直线y=﹣(x﹣t2)﹣6有3个互异的公共点,等价于函数y=g(x)有三个不同的零点;又g′(x)=3x2+(1﹣d2),当d2≤1时,g′(x)≥0恒成立,此时g(x)在R上单调递增,不合题意;当d2>1时,令g′(x)=0,解得x1=﹣,x2=;∴g(x)在(﹣∞,x1)上单调递增,在(x1,x2)上单调递减,在(x2,+∞)上也单调递增;∴g(x)的极大值为g(x1)=g(﹣)=+6>0;极小值为g(x2)=g()=﹣+6;若g(x2)≥0,由g(x)的单调性可知,函数g(x)至多有两个零点,不合题意;若g(x2)<0,即>27,解得|d|>,此时|d|>x2,g(|d|)=|d|+6>0,且﹣2|d|<x1;g(﹣2|d|)=﹣6|d|3﹣2|d|+6<0,从而由g(x)的单调性可知,函数y=g(x)在区间(﹣2|d|,x1),(x1,x2),(x2,|d|)内各有一个零点,符合题意;∴d的取值范围是(﹣∞,﹣)∪(,+∞)、点评:本题主要考查了导数的运算以及导数的几何意义,运用导数研究函数的单调性与极值的应用问题,是综合题、。

安徽省示范高中(皖江八校)2018届高三第八次(5月)联考数学文试题(精编含解析)

安徽省示范高中(皖江八校)2018届高三第八次(5月)联考数学文试题(精编含解析)

数学(文科)第Ⅰ卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设 (为虚数单位),则()A. B. C. D.【答案】A【解析】分析:将复数化简成,利用公式计算复数的模.详解:,,故选A.点睛:复数题在高考中属于简单题,多以选择、填空形式出现. 解题时注意,切勿忽略符号导致出错.2. 已知集合,若,则实数的值为()A. B. C. D.【答案】B【解析】分析:根据已知得,代入求解的值,验证互异性可得.详解:或,解得或,由集合中元素的互异性知,故选B.点睛:本题主要考察集合的交集运算,解题时注意验证集合中元素的互异性.3. 已知函数的图象如图所示,则的大小关系为()A. B. C. D.【答案】A【解析】分析:根据图像分析得,可得结论.详解:由图像可知,,得,故选A.4. 已知双曲线,四点,中恰有三点在双曲线上,则该双曲线的离心率为()A. B. C. D.【答案】C【解析】分析:由对称性分析可得点在双曲线上,代入求得,计算离心率.详解:由双曲线对称性可知,点在双曲线上,且点一定不再双曲线上,则点在双曲线上,代入可得,则,所以,故选C.点睛:本题解题的关键是能够根据对称性判断出哪三个点在双曲线上,进而求解的值,利用公式求出离心率.5. 已知输入实数,执行如图所示的流程图,则输出的是()A. B. C. D.【答案】C【解析】分析:初始化数值,执行循环结构,判断条件,可得.详解:初始化数值执行第一次循环:成立,;执行第二次循环:成立,;执行第三次循环:成立,;判断不成立,输出.故选C.点睛:程序框图问题是高考数学中的常考问题,属于得分题,解题时只要按照循环结构,注意判断条件的成立与否完成解答即可.6. 已知为圆上的三点,若,圆的半径为,则()A. B. C. D.【答案】D【解析】分析:画出图形,根据向量关系得四边形为菱形,可将问题转化为求的值.详解:如下图所示,由,知四边形是边长为的菱形,且,.点睛:本题主要是根据题设中给出的向量关系,利用将问题转化为求解的值,再根据向量的数量积公式得出结论.7. 2018年1月31日晚上月全食的过程分为初亏、食既、食甚、生光、复圆五个阶段,月食的初亏发生在19时48分,20时51分食既,食甚时刻为21时31分,22时08分生光,直至23时12分复圆.全食伴随有蓝月亮和红月亮,全食阶段的“红月亮”将在食甚时刻开始,生光时刻结東,一市民准备在19:55至21:56之间的某个时刻欣赏月全食,则他等待“红月亮”的时间不超过30分钟的概率是()A. B. C. D.【答案】A【解析】分析:求出他等待“红月亮”不超过30分钟的时间长度,代入几何概型概率计算公式,即可得答案.详解:如下图,时间轴点所示,概率为故选A.点睛:本题主要考察“长度型”几何概型问题的概率计算,分别求出构成事件的区域长度及试验的全部构成的区域长度,再利用几何概型的计算公式即可求解.8. 已知定义在上的函数在上单调递减,且是偶函数,不等式对任意的恒成立,则实数的取值范围是()A. B.C. D.【答案】D【解析】分析:根据函数为偶函数可得函数关于对称,再结合函数的单调性可得,解得.详解:是偶函数,所以则函数的图像关于对称,由得所以,解得.故选D.点睛:本题解题的关键在于能够根据题意,分析出函数的单调性,画出函数的草图,利用数形结合找到不等关系,解不等式即可.9. 某几何体的三视图如图所示,其中每个单位正方体的边长为,则该几何体的体积A. B. C. D.【答案】B【解析】分析:根据三视图分析该几何体的结构为一个半圆柱挖去一个三棱锥,计算半圆柱的体积和三棱锥的体积,相减可得该几何体的体积.详解:由三视图可知,该几何体是半圆柱挖去一个三棱锥,其体积为.点睛:本题的核心关键在于弄清楚该几何体的构成,再利用体积公式求解,解题时注意公式要记忆准确,避免“丢三落四”而出错.10. 已知是函数·的一个极小值点,则的一个单调递增区间是()A. B. C. D.【答案】A【解析】分析:将已知函数化简为,可得函数的周期为,结合极小值点,可得函数的单调递减区间.详解:,由已知是函数过最小值点的对称轴结合图像可知是函数的一个单调增区间,因为,所以是函数的一个单调递增区间,故选A.点睛:设为三角函数的极小值点,为三角函数的最小正周期,则从三角函数的图像可知是函数的一个单调递减区间,是函数的一个单调递增区间.11. 已知圈经过原点且圆心在轴正半轴上,经过点且倾斜角为的直线与圆相切于点,点在轴上的射影为点,设点为圆上的任意一点,则()A. B. C. D.【答案】C【解析】分析:根据题干写出直线方程,再利用直线与圆相切求出圆心坐标为,写出圆的方程,得出点坐标,设,并将圆的方程代入可求得值为.详解:由题可知直线,即,设圆心,则,解得.所以圆的方程为:,将代入圆的方程,可解得,故,设,则,将圆的方程代入得,所以,故选C.点睛:已知直线方程,和圆的方程,且设圆心到直线的距离为,则直线与圆相交;直线与圆相交.12. 设函数 (为自然对数的底数),当时恒成立,则实数的最大值为()A. B. C. D.【答案】D【解析】分析:令,则可转化为的恒成立问题,画出函数的草图,利用数形结合可得参数的取值范围.详解:由,得,令,则,令,得或,分别作出的图像,要使的图象在的图象下方,设切点,切线为,即,由切线过得,,解得或或,由图像可知.故选D.点睛:利用导数研究含参变量函数的恒成立问题:(1)其中关键是根据题目找到给定区间上恒成立的不等式,转化成最值问题;(2)恒成立问题的标志关键词:“任意”,“所有”,“均有”,“恒成立”等等;(3)对于“曲线在曲线上方(下方)”类型的恒成立问题,可以转化为()恒成立.第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,请把正确的答案填在横线上.13. 已知满足条件则点到点的距离的最小值是__________.【答案】【解析】分析:作出可行域,研究目标函数的几何意义可知,当时目标函数取得最小值为.详解:作出不等式组所表示的阴影部分,易知点到点的距离的最小值为,又.所以点到点的距离的最小值为.点睛:在解决线性规划问题时,要注意分析目标函数是属于“截距型”、“斜率型”、“距离型”中的哪一种,利用数形结合分析目标函数取得最值时对应的取值14. 已知是长轴长为的椭圆的左右焦点,是椭圆上一点,则面的最大值为__________.【答案】2【解析】分析:根据椭圆的定义可计算出,再根据三角形面积公式,利用均值定理可得的最大值为.详解:,又根据题意,则,所以面积的最大值为,点睛:本题主要考察椭圆的定义及焦点三角形问题,在使用均值定理求最值问题时注意“=”成立的条件.【答案】1【解析】分析:根据题意画出图形,列出等式关系,联立即可求解.详解:如图,已知(尺),(尺),,∴,解得,因此,解得,故折断后的竹干高为尺.点睛:本题属于解三角形中的简单题型,主要考察解三角形的实际应用问题,关键在于读懂题意,根据题设做出图形.16. 在中,是角所对的边长,若,则__________.【答案】1【解析】分析:根据正弦定理找到三角形中边之间的关系,再利用余弦定理可计算出的值.详解:由正弦定理得,又由余弦定理知,∴.点睛:正弦定理为实现“边角互化”提供了依据,而当已知三边比例关系时,则可利用余弦定理求出任何一个内角的余弦值.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.解答应写在答题卡上的指定区域内.17. 设是等差数列,是各项都为正数的等比数列,且,,.(I)求数列和的通项公式;(Ⅱ)求数列的前项和.【答案】(Ⅰ),(Ⅱ)【解析】试题分析:(Ⅰ)设的公差为,的公比为,则,解得,又,所以…5分(Ⅱ),所以两式作差,整理得:. …10分考点:本小题主要考查等差数列和等比数列中基本量的计算,和错位相减法求数列的前项和,考查学生的运算求解能力.点评:错位相减法是求数列的前项和的重要方法,难在相减后的整理过程容易出错,要仔细整理.18. 某市为制定合理的节电方案,对居民用电情况进行了调查,通过抽样,获得了某年200户居民每户的月均用电量(单位:百度),将数据按照,,分成组,制成了如图所示的频率分布直方图:(I)求直方图中的值;56789月均用电量百厦(Ⅱ)设该市有100万户居民,估计全市每户居民中月均用电量不低于6百度的人数,估计每户居民月均用电量的中位数,说明理由;(Ⅲ)政府计划对月均用电量在4(百度)以下的用户进行奖励,月均用电量在内的用户奖励20元/月,月均用电量在内的用户奖励10元/月,月均用电量在内的用户奖励2元/月.若该市共有400万户居民,试估计政府执行此计划的年度预算.【答案】(Ⅰ)(Ⅱ)(Ⅲ)亿元【解析】分析:(1)利用频率分布直方图中所有小矩形的面积之和为,可求出参数的值;(2)根据频率分布直方图计算出200户居民月均用电量不低于6百度的频率为,则可估计100万户居民中月均用电量不低于6百度的户数为120000,设中位数为,由前4组频率之和为,前5组频率之和为,可知,可继续计算出的值;(3)分别计算出月均用电量在内的用户数,可得出一年的预算.详解:(Ⅰ)(Ⅱ)200户居民月均用电量不低于6百度的频率为,100万户居民中月均用水量不低于6百度的户数有;设中位数是百度,前组的频率之和而前组的频率之和所以,,故.(Ⅲ)该市月均用电量在,,内的用户数分别为,,,所以每月预算为元,故一年预算为万元亿元.点睛:本题主要结合频率直方图考察样本估计总体,以及样本数字特征的计算等知识。

(经典解析版)2018年北京文数高考试题文档版(含答案)

(经典解析版)2018年北京文数高考试题文档版(含答案)

绝密★启封并使用完毕前2018年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合A={(|||<2)},B={−2,0,1,2},则A B=(A){0,1} (B){−1,0,1}(C){−2,0,1,2}(D){−1,0,1,2}(2)在复平面内,复数11i-的共轭复数对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)执行如图所示的程序框图,输出的s值为(A )12 (B )56 (C )76(D )712(4)设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(5)“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率f ,则第八个单音频率为 (A )32f (B )322f (C )1252f(D )1272f(6)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A )1 (B )2 (C )3(D )4(7)在平面坐标系中,,,,AB CD EF GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以O 为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是(A )AB(B )CD (C )EF(D )GH(8)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则(A )对任意实数a ,(2,1)A ∈ (B )对任意实数a ,(2,1)A ∉ (C )当且仅当a <0时,(2,1)A ∉ (D )当且仅当32a ≤时,(2,1)A ∉ 第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

2018届高考数学(文)二轮专题复习习题:第1部分 专题二 函数、不等式、导数 1-2-3

2018届高考数学(文)二轮专题复习习题:第1部分 专题二 函数、不等式、导数 1-2-3

限时规范训练六 导数的简单应用 限时45分钟,实际用时________ 分值81分,实际得分________一、选择题(本题共6小题,每小题5分,共30分)1.设函数f (x )=x 24-a ln x ,若f ′(2)=3,则实数a 的值为( )A .4B .-4C .2D .-2解析:选B.f ′(x )=x 2-a x ,故f ′(2)=22-a2=3,因此a =-4.2.曲线y =e x在点A 处的切线与直线x -y +3=0平行,则点A 的坐标为( ) A .(-1,e -1) B .(0,1) C .(1,e)D .(0,2)解析:选B.设A (x 0,e x 0),y ′=e x,∴y ′|x =x 0=e x 0.由导数的几何意义可知切线的斜率k =e x 0.由切线与直线x -y +3=0平行可得切线的斜率k =1. ∴e x 0=1,∴x 0=0,∴A (0,1).故选B.3.若函数f (x )=x 3-2cx 2+x 有极值点,则实数c 的取值范围为 ( ) A.⎣⎢⎡⎭⎪⎫32,+∞ B.⎝⎛⎭⎪⎫32,+∞ C.⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞ D.⎝⎛⎭⎪⎫-∞,-32∪⎝ ⎛⎭⎪⎫32,+∞ 解析:选D.若函数f (x )=x 3-2cx 2+x 有极值点,则f ′(x )=3x 2-4cx +1=0有两根,故Δ=(-4c )2-12>0,从而c >32或c <-32. 4.已知f (x )=a ln x +12x 2(a >0),若对任意两个不等的正实数x 1,x 2都有f x 1-f x 2x 1-x 2≥2恒成立,则实数a 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(0,1)D .(0,1]解析:选A.由条件可知在定义域上函数图象的切线斜率大于等于2,所以函数的导数f ′(x )=a x+x ≥2.可得x =a 时,f ′(x )有最小值2.∴a ≥1.5.若定义在R 上的函数f (x )满足f (0)=-1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( )A .f ⎝ ⎛⎭⎪⎫1k<1kB .f ⎝ ⎛⎭⎪⎫1k >1k -1C .f ⎝⎛⎭⎪⎫1k -1<1k -1D .f ⎝⎛⎭⎪⎫1k -1>1k -1解析:选C.构造函数g (x )=f (x )-kx +1,则g ′(x )=f ′(x )-k >0,∴g (x )在R 上为增函数. ∵k >1,∴1k -1>0,则g ⎝ ⎛⎭⎪⎫1k -1>g (0). 而g (0)=f (0)+1=0, ∴g ⎝⎛⎭⎪⎫1k -1=f ⎝ ⎛⎭⎪⎫1k -1-k k -1+1>0,即f ⎝⎛⎭⎪⎫1k -1>k k -1-1=1k -1,所以选项C 错误,故选C.6.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝ ⎛⎭⎪⎫12,c =f (3),则( )A .a <b <cB .c <b <aC .c <a <bD .b <c <a解析:选C.因为当x ∈(-∞,1)时,(x -1)f ′(x )<0,所以f ′(x )>0,所以函数f (x )在(-∞,1)上是单调递增函数,所以a =f (0)<f ⎝ ⎛⎭⎪⎫12=b ,又f (x )=f (2-x ),所以c =f (3)=f (-1),所以c =f (-1)<f (0)=a ,所以c <a <b ,故选C.二、填空题(本题共3小题,每小题5分,共15分)7.(2017·高考全国卷Ⅰ)曲线y =x 2+1x在点(1,2)处的切线方程为________.解析:∵y ′=2x -1x2,∴y ′|x =1=1,即曲线在点(1,2)处的切线的斜率k =1, ∴切线方程为y -2=x -1, 即x -y +1=0. 答案:x -y +1=08.已知函数f (x )=-12x 2-3x +4ln x 在(t ,t +1)上不单调,则实数t 的取值范围是________.解析:由题意得,f (x )的定义域为(0,+∞),∴t >0, ∴f ′(x )=-x -3+4x=0在(t ,t +1)上有解,∴x 2+3x -4x=0在(t ,t +1)上有解,∴x 2+3x -4=0在(t ,t +1)上有解,由x 2+3x -4=0得x =1或x =-4(舍去),∴1∈(t ,t +1),∴t ∈(0,1),故实数t 的取值范围是(0,1).答案:(0,1)9.已知函数f (x )=1-xax+ln x ,若函数f (x )在[1,+∞)上为增函数,则正实数a 的取值范围为________.解析:∵f (x )=1-x ax +ln x ,∴f ′(x )=ax -1ax2(a >0).∵函数f (x )在[1,+∞)上为增函数,∴f ′(x )=ax -1ax 2≥0在x ∈[1,+∞)上恒成立,∴ax -1≥0在x ∈[1,+∞)上恒成立,即a ≥1x在x ∈[1,+∞)上恒成立,∴a ≥1.答案:[1,+∞)三、解答题(本题共3小题,每小题12分,共36分) 10.(2017·高考全国卷Ⅱ)设函数f (x )=(1-x 2)e x. (1)讨论f (x )的单调性;(2)当x ≥0时,f (x )≤ax +1,求a 的取值范围. 解:(1)f ′(x )=(1-2x -x 2)e x.令f ′(x )=0得x =-1-2或x =-1+ 2. 当x ∈(-∞,-1-2)时,f ′(x )<0; 当x ∈(-1-2,-1+2)时,f ′(x )>0; 当x ∈(-1+2,+∞)时,f ′(x )<0.所以f (x )在(-∞,-1-2),(-1+2,+∞)单调递减,在(-1-2,-1+2)单调递增.(2)f (x )=(1+x )(1-x )e x.当a ≥1时,设函数h (x )=(1-x )e x,则h ′(x )=-x e x<0(x >0),因此h (x )在[0,+∞)单调递减.而h (0)=1,故h (x )≤1,所以f (x )=(x +1)h (x )≤x +1≤ax +1.当0<a <1时,设函数g (x )=e x-x -1,则g ′(x )=e x-1>0(x >0),所以g (x )在[0,+∞)单调递增.而g (0)=0,故e x≥x +1.当0<x <1时,f (x )>(1-x )(1+x )2,(1-x )(1+x )2-ax -1=x (1-a -x -x 2),取x 0=5-4a -12,则x 0∈(0,1),(1-x 0)(1+x 0)2-ax 0-1=0,故f (x 0)>ax 0+1. 当a ≤0时,取x 0=5-12,则x 0∈(0,1),f (x 0)>(1-x 0)(1+x 0)2=1≥ax 0+1. 综上,a 的取值范围是[1,+∞).11.(2017·河南郑州质量检测)设函数f (x )=12x 2-m ln x ,g (x )=x 2-(m +1)x .(1)求函数f (x )的单调区间;(2)当m ≥0时,讨论函数f (x )与g (x )图象的交点个数.解:(1)函数f (x )的定义域为(0,+∞),f ′(x )=x 2-mx,当m ≤0时,f ′(x )>0,所以函数f (x )的单调递增区间是(0,+∞),无单调递减区间. 当m >0时,f ′(x )=x +mx -mx,当0<x <m 时,f ′(x )<0,函数f (x )单调递减;当x >m 时,f ′(x )>0,函数f (x )单调递增.综上,当m ≤0时,函数f (x )的单调递增区间是(0,+∞),无单调递减区间;当m >0时,函数f (x )的单调递增区间是(m ,+∞),单调递减区间是(0,m ).(2)令F (x )=f (x )-g (x )=-12x 2+(m +1)x -m ln x ,x >0,问题等价于求函数F (x )的零点个数,当m =0时,F (x )=-12x 2+x ,x >0,有唯一零点;当m ≠0时,F ′(x )=-x -x -m x,当m =1时,F ′(x )≤0,函数F (x )为减函数,注意到F (1)=32>0,F (4)=-ln 4<0,所以F (x )有唯一零点.当m >1时,0<x <1或x >m 时,F ′(x )<0;1<x <m 时,F ′(x )>0,所以函数F (x )在(0,1)和(m ,+∞)上单调递减,在(1,m )上单调递增,注意到F (1)=m +12>0,F (2m +2)=-m ln(2m +2)<0,所以F (x )有唯一零点.当0<m <1时,0<x <m 或x >1时,F ′(x )<0;m <x <1时,F ′(x )>0,所以函数F (x )在(0,m )和(1,+∞)上单调递减,在(m,1)上单调递增,易得ln m <0, 所以F (m )=m2(m +2-2ln m )>0,而F (2m +2)=-m ln(2m +2)<0,所以F (x )有唯一零点.综上,函数F (x )有唯一零点,即两函数图象有一个交点. 12.(2017·河南洛阳模拟)已知函数f (x )=ln x -a x +x -1,曲线y =f (x )在点⎝ ⎛⎭⎪⎫12,f ⎝ ⎛⎭⎪⎫12处的切线平行于直线y =10x +1.(1)求函数f (x )的单调区间;(2)设直线l 为函数g (x )=ln x 的图象上任意一点A (x 0,y 0)处的切线,在区间(1,+∞)上是否存在x 0,使得直线l 与曲线h (x )=e x也相切?若存在,满足条件的x 0有几个?解:(1)∵函数f (x )=ln x -a x +x -1,∴f ′(x )=1x+2a x -2,∵曲线y =f (x )在点⎝ ⎛⎭⎪⎫12,f ⎝ ⎛⎭⎪⎫12处的切线平行于直线y =10x +1, ∴f ′⎝ ⎛⎭⎪⎫12=2+8a =10,∴a =1,∴f ′(x )=x 2+1x x -2.∵x >0且x ≠1,∴f ′(x )>0,∴函数f (x )的单调递增区间为(0,1)和(1,+∞). (2)存在且唯一,证明如下:∵g (x )=ln x ,∴切线l 的方程为y -ln x 0=1x 0(x -x 0),即y =1x 0x +ln x 0-1 ①,设直线l 与曲线h (x )=e x相切于点(x 1,e x 1), ∵h ′(x )=e x,∴e x 1=1x 0,∴x 1=-ln x 0,∴直线l 的方程也可以写成y -1x 0=1x 0(x +ln x 0),即y =1x 0x +ln x 0x 0+1x 0②,由①②得ln x 0-1=ln x 0x 0+1x 0,∴ln x 0=x 0+1x 0-1.证明:在区间(1,+∞)上x 0存在且唯一. 由(1)可知,f (x )=ln x -x +1x -1在区间(1,+∞)上单调递增, 又f (e)=-2e -1<0,f (e 2)=e 2-3e 2-1>0,结合零点存在性定理,说明方程f (x )=0必在区间(e ,e 2)上有唯一的根,这个根就是所求的唯一x 0.。

2018年高考数学全国卷试题答案解析(6套)

2018年高考数学全国卷试题答案解析(6套)

中,最短路径的长度为
5
A. 【答案】B
B.
C.
D. 2
【解析】分析:首先根据题中所给的三视图,得到点 M 和点 N 在圆柱上所处的位置,点 M 在上底面上,点 N 在下底面上,并且将圆柱的侧面展开图平铺,点 M、N 在其四分之一的 矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果. 详解:根据圆柱的三视图以及其本身的特征, 可以确定点 M 和点 N 分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的 长方形的对角线的端点处, 所以所求的最短路径的长度为 ,故选 B.
【答案】B 【解析】分析:首先利用余弦的倍角公式,对函数解析式进行化简,将解析式化简为 ,之后应用余弦型函数的性质得到相关的量,从而得到正确选项. 详解:根据题意有 所以函数 且最大值为 的最小正周期为 ,故选 B. , ,
点睛: 该题考查的是有关化简三角函数解析式, 并且通过余弦型函数的相关性质得到函数的 性质,在解题的过程中,要注意应用余弦倍角公式将式子降次升角,得到最简结果. 9. 某圆柱的高为 2,底面周长为 16,其三视图如右图.圆柱表面上的点 在正视图上的对 应点为 ,圆柱表面上的点 在左视图上的对应点为 ,则在此圆柱侧面上,从 到 的路径
2018 年高考全国卷数学试题答案解析
目录
文科 全国一卷 全国二卷 全国三卷 2-18 19-35 36-47
理科 全国一卷 全国二卷 全国三卷 48-66 67-80 81-96
1
全国卷 1 ቤተ መጻሕፍቲ ባይዱ科数学试题解析
1. 已知集合 A. 【答案】A 【解析】 分析: 利用集合的交集中元素的特征, 结合题中所给的集合中的元素, 求得集合 中的元素,最后求得结果. 详解:根据集合交集中元素的特征,可以求得 2. 设 A. 0 B. ,则 C. D. ,故选 A. B. , C. D. ,则

2018年全国统一高考数学试题(文)(Word版,含答案解析)

2018年全国统一高考数学试题(文)(Word版,含答案解析)

绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>的离心率为3,则其渐近线方程为A .2y x =±B .3y x =±C .22y x =±D .32y x =±7.在ABC △中,5cos 25C =,1BC =,5AC =,则AB = A .42B .30C .29D .258.为计算11111123499100S =-+-++-,设计了如图的程序框图,则在空白框中应填入 开始0,0N T ==S N T =-S 输出1i =100i <1N N i =+11T T i =++结束是否A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A .22B .32C .52D .7210.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为 A .312-B .23-C .312- D .31-12.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(f ff++(50)f ++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。

2018年高考(陕西省)真题数学(文)试题及答案解析

2018年高考(陕西省)真题数学(文)试题及答案解析

2018年陕西高考数学试题(文)
一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合2{|0,},{|1,}M x x x R N x x x R =≥∈=<∈,则M N = ( )
.[0,1]A .(0,1)B .(0,1]C .[0,1)D
2.函数()cos(2)4f x x π
=+的最小正周期是( )
.2A π
.B π .2C π .4D π
3.已知复数2z i =-,则z z ⋅的值为( )
.5A
B .3C
4.根据右边框图,对大于2的整数N ,输出的数列的通项公式是( )
.2n Aa n = .2(1)n B a n =- .2n n C a = 1
.2n n D a -=
输出a 1,a 2,...,a N
结束


i >N
i =i +1
S =a i
S =1,i =1
输入N
开始
a i =2*S
5.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积为( )
.4A π .3B π .2C π .D π
6.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018届高考数学(文)小题集训6
1.[2017·吉林实验中学]若2i
2i
z -=
+,则z =( ) A .
15
B .1
C .5
D .25
【答案】B
【解析】()()()()2i 2i 2i 34i 34
i 2i 2i 2i 555
z ----=
===-++-,则1z =.故选:B .
2.[2017·吉林实验中学]{}
22B x x =-≤,则A B = ( ) A .(]1,0- B .[)0,3
C .(]3,4
D .()1,3-
【答案】B
【解析】
B .
3.[2017·吉林实验中学]已知平面向量()1,2=a ,(),1m =-b ,()4,m =c ,且()-⊥a b c ,则m =( ) A .3 B .3-
C .4
D .4-
【答案】C
【解析】()1,3m -=-a b ,又()-⊥a b c ,所以()()4130m m -⋅=-+=a b c ,4m =,故选C .
4.[2017·吉林实验中学]已知1sin 123απ⎛
⎫-
= ⎪⎝⎭,则5cos 12απ⎛
⎫+ ⎪⎝
⎭的值等于( )
A .
1
3
B C .13
-
D .【答案】C
【解析】51cos cos sin 12122123ααα⎡⎤ππππ⎛⎫⎛⎫⎛
⎫+
=-+=--=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝
⎭⎝⎭⎣⎦,故选C . 5.[2017·吉林实验中学]函数()sin 0ln x
y x x
=
≠的部分图象大致是( ) A . B .
C .
D .
【答案】A
【解析】首先函数为奇函数,排除C ,D ,又当()0,1x ∈时,0y <,排除B ,故选A .
6.[2017·吉林实验中学]已知[]x 表示不超过x 的最大整数,执行如图所示的程序框图,若输入的x 值为2.4,则输出z 的值为( )
A .1.2
B .0.6
C .0.4
D .-0.4
【答案】D
【解析】程序运行时,变量值依次为 2.4y =,1x =,满足0x ≥, 1.2x =; 1.2y =,0x =,满足
0x ≥,0.6x =;0.6y =,1x =-,不满足0x ≥,执行10.60.4z x y =+=-+=-,故选D .
7.[2017·吉林实验中学](0x >),若0x 满足()00f x '=,设()00,m x ∈,()0,n x ∈+∞,则( )
A .()0f m '<,()0f n '<
B .()0f m '>,()0f n '>
C .()0f m '<,()0f n '>
D .()0f m '>,()0f n '<
【答案】C
,当0x >时,()0f x ''>,所以函数,在()00f x '=时,若00m x <<,则()0f m '<,同理()0f n '>,故选C .
8.[2017·吉林实验中学],则其表面积为( )
A .
3
2
π+B .
32
π C .
3
4
π+D .
3
4
π+【答案】A
【解析】该几何体是半个圆锥,21123V r =⨯⨯π=,1r =,母线长为2l r =,所以其表面
积为2211133222222S rl r r r ππ⎛=
π+π+⨯=+=+ ⎝A .
9.[2017·吉林实验中学]已知将函数()21cos cos 2f x x x x =+-的图象向左平移512
π
个单位长度后得到()y g x =的图象,则()g x 在,123ππ⎡⎤
-
⎢⎥⎣⎦
上的值域为( )
A .1,12⎡⎤
-⎢⎥⎣⎦
B .11,2⎡⎤-⎢⎥⎣⎦
C .122⎡⎤
-⎢⎥⎣
⎦ D .1,22⎡-⎢⎣⎦
【答案】B
【解析】因()1π2cos 2sin 226f x x x x ⎛
⎫=
+=+ ⎪⎝
⎭,故()()5sin 2sin 2126g x x x ⎡⎤
ππ⎛⎫=++=+π= ⎪⎢⎥⎝
⎭⎣⎦
sin 2x -,因123x ππ-
≤≤,故2263x ππ-≤≤,则1sin 212x -≤≤,所以()1
12
g x -≤≤,应选答案B . 10.[2017·吉林实验中学]已知双曲线22
221x y a b
-=(0a >,0b >),过其左焦点F 作x 轴的垂线,
交双曲线于A 、B 两点,若双曲线的右顶点在以AB 为直径的圆内,则双曲线离心率的取值范围是( )
A .31,2⎛⎫
⎪⎝⎭
B .()1,2
C .3,2⎛⎫+∞ ⎪⎝⎭
D .()2,+∞
【答案】D
【解析】AB 是双曲线通径,22b AB a =,由题意2
b a
c a +<,即2222a ac b c a +<=-,
2220c ac a -->,即220e e -->,解得2e >(1e <-舍去),故选D .
11.[2017·吉林实验中学]已知三棱锥S ABC -外接球的直径6SC =,且3AB BC CA ===,则三棱锥S ABC -的体积为( )
A .
4
B .
4
C .
2
D .
2
【答案】D
【解析】
如图,由题设可知ABC △是边长为3等边三角形,设球心为O ,点O 在面ABC 内的射影是M ,则
M 是ABC △的中心,则2333MB OB =
==,故OM ==S 到平面
ABC △的距离是d =23ABC S =
=
△S ABC -的体积为
11
33ABC V S d ===
△,应选答案D .
12.[2017·吉林实验中学]在区间[]
6,6-所有零点的和为( ) A .6 B .8
C .12
D .16
【答案】C
【解析】的零点是函数()y f x =与两个函数的图象都关于直线2x =对称,在2x <时,()f x 是增函数,()21f -=-,()21f =,函数
4的周期函数,()21h =-,()21h -=-,()01h =,因此在2x <时,两函数图象有三个交点,从而共有6个交点,其横坐标之和为()32212⨯⨯=,故选C .
13.[2017·吉林实验中学]ABC △中,a 、b 、c 分别是角A 、B 、C 所对的边,若cos 2cos C a c
B b
-=,则B =__________.
【答案】
3
π 【解析】因为
cos 2cos C a c B b -=,由正弦定理得cos 2sin sin cos sin C A C
B B
-=,即cos sin 2sin cos C B A B = sin cos C B -,()2sin cos cos sin sin cos sin A B C B C B B C =+=+sin A =,所以1
cos 2
B =,3
B π=
. 14.[2017·吉林实验中学]已知变量x ,y 满足约束条件26x y y x x y +⎧⎪
⎨⎪⎩
≤≤≤,则2z x y =-的取值范围是
_________. 【答案】[]6,0-
【解析】作出不等式组对应的平面区域如图:
由2z x y =-得1122y x z =
-,平移直线1122y x z =-,由图象可知当直线11
22y x z =-经过点()2,4A 时,直线1122y x z =
-的截距最大,此时z 最小为286z =-=-;当直线11
22
y x z =-经过点()0,0O 时,直线11
22
y x z =
-的截距最小,此时z 最大为0z =,故60z -≤≤.故答案为:[]6,0-.
15.[2017·吉林实验中学]已知抛物线24y x =的焦点为F ,其准线与x 轴交于点H ,点P 在抛物线,则点P 的横坐标为__________. 【答案】1
【解析】设()00,P x y ,则所以()2
2
01y x =+,()2
0041x x =+,解得01x =. 16.[2017·吉林实验中学]关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请200名同学,每人随机写下一个都小于1的正实数对(x ,y );再统计两数能与1构成钝角三角形三边的数对(x ,y )的个数m ;最后再根据统计数m 来估计π的值.假如统计结果是56m =,那么可以估计π≈__________.(用分数表示)
【答案】
78
25
【解析】由题意,200对都小于1的正实数对(),x y ,对应区域的面积为1,两个数能与1构成钝角三角形三边的数对(),x y ,满足221x y +<且x ,y 都小于1,1x y +>,面积为π1
42
-,因为统计两数能与1构成钝角三角形三边的数对(),x y 的个数56m =,所以
56π120042=-,所以78
25
π=.故答案为:78
25
.。

相关文档
最新文档