一元二次方程难题、易错题

合集下载

数学 一元二次方程的专项 培优 易错 难题练习题含答案解析

数学 一元二次方程的专项 培优 易错 难题练习题含答案解析
试题解析:
设裁掉的正方形的边长为xdm,
由题意可得(10-2x)(6-2x)=12,
即x2-8x+12=0,解得x=2或x=6(舍去),
答:裁掉的正方形的边长为2dm,底面积为12dm2.
9.“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.
例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n有多少个点?
3.解方程:(3x+1)2=9x+3.
【答案】x1=﹣ ,x2= .
【解析】
试题分析:利用因式分解法解一元二次方程即可.
试题解析:方程整理得:(3x+1)2﹣3(3x+1)=0,
分解因式得:(3x+1)(3x+1﹣3)=0,
可得3x+1=0或3x﹣2=0,
解得:x1=﹣ ,x2= .
点睛:此题主要考查了一元二次方程的解法,解题关键是认真观察一元二次方程的特点,然后再从一元二次方程的解法:直接开平方法、配方法、公式法、因式分解法中合理选择即可.
一、一元二次方程真题与模拟题分类汇编(难题易错题)
1.某建材销售公司在2019年第一季度销售 两种品牌的建材共126件, 种品牌的建材售价为每件6000元, 种品牌的建材售价为每件9000元.
(1)若该销售公司在第一季度售完两种建材后总销售额不低于96.6万元,求至多销售 种品牌的建材多少件?
(2)该销售公司决定在2019年第二季度调整价格,将 种品牌的建材在上一个季度的基础上下调 , 种品牌的建材在上一个季度的基础上上涨 ;同时,与(1)问中最低销售额的销售量相比, 种品牌的建材的销售量增加了 , 种品牌的建材的销售量减少了 ,结果2019年第二季度的销售额比(1)问中最低销售额增加 ,求 的值.

中考数学培优 易错 难题(含解析)之一元二次方程含详细答案

中考数学培优 易错 难题(含解析)之一元二次方程含详细答案

一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.有一个人患了流感,经过两轮传染后共有36人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?【答案】(1)5;(2)180【解析】【分析】(1)设平均一人传染了x 人,根据有一人患了流感,经过两轮传染后共有36人患了流感,列方程求解即可;(2)根据每轮传染中平均一个人传染的人数和经过两轮传染后的人数,列出算式求解即可.【详解】(1)设每轮传染中平均一个人传染了x 个人,根据题意得:x+1+(x+1)x =36,解得:x =5或x =﹣7(舍去).答:每轮传染中平均一个人传染了5个人;(2)根据题意得:5×36=180(个),答:第三轮将又有180人被传染.【点睛】本题考查一元二次方程的应用,解题的关键是能根据题意找到等量关系并列方程.2.已知关于x 的一元二次方程()220x m x m -++=(m 为常数) (1)求证:不论m 为何值,方程总有两个不相等的实数根;(2)若方程有一个根是2,求m 的值及方程的另一个根.【答案】(1)见解析;(2) 即m 的值为0,方程的另一个根为0.【解析】【分析】(1)可用根的判别式,计算判别式得到△=(m+2)2−4×1⋅m=m 2+4>0,则方程有两个不相等实数解,于是可判断不论m 为何值,方程总有两个不相等的实数根;(2)设方程的另一个根为t ,利用根与系数的关系得到2+t=21m + ,2t=m,最终解出关于t 和m 的方程组即可.【详解】(1)证明:△=(m+2)2−4×1⋅m=m 2+4,∵无论m 为何值时m 2≥0,∴m 2+4≥4>0,即△>0,所以无论m 为何值,方程总有两个不相等的实数根.(2)设方程的另一个根为t ,()220x m x m -++=根据题意得2+t=21m + ,2t=m , 解得t=0,所以m=0,即m 的值为0,方程的另一个根为0.【点睛】本题考查根的判别式和根于系数关系,对于问题(1)可用根的判别式进行判断,在判断过程中注意对△的分析,在分析时可借助平方的非负性;问题(2)可先设另一个根为t ,用根于系数关系列出方程组,在求解.3.某社区决定把一块长50m ,宽30m 的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小形状都相同的矩形) ,空白区域为活动区,且四周的4个出口宽度相同,当绿化区较长边x 为何值时,活动区的面积达到21344m ?【答案】当13x m =时,活动区的面积达到21344m【解析】【分析】根据“活动区的面积=矩形空地面积﹣阴影区域面积”列出方程,可解答.【详解】解:设绿化区宽为y ,则由题意得502302x y -=-.即10y x =-列方程: 50304(10)1344x x ⨯--=解得13x =- (舍),213x =.∴当13x m =时,活动区的面积达到21344m【点睛】本题是一元二次方程的应用题,确定等量关系是关键,本题计算量大,要细心.4.已知关于x的一元二次方程有两个实数x2+2x+a﹣2=0,有两个实数根x1,x2.(1)求实数a的取值范围;(2)若x12x22+4x1+4x2=1,求a的值.【答案】(1)a≤3;(2)a=﹣1.【解析】试题分析:(1)由根的个数,根据根的判别式可求出a的取值范围;(2)根据一元二次方程根与系数的关系,代换求值即可得到a的值.试题解析:(1)∵方程有两个实数根,∴△≥0,即22﹣4×1×(a﹣2)≥0,解得a≤3;(2)由题意可得x1+x2=﹣2,x1x2=a﹣2,∵x12x22+4x1+4x2=1,∴(a﹣2)2﹣8=1,解得a=5或a=﹣1,∵a≤3,∴a=﹣1.5.校园空地上有一面墙,长度为20m,用长为32m的篱笆和这面墙围成一个矩形花圃,如图所示.(1)能围成面积是126m2的矩形花圃吗?若能,请举例说明;若不能,请说明理由.(2)若篱笆再增加4m,围成的矩形花圃面积能达到170m2吗?请说明理由.【答案】(1)长为18米、宽为7米或长为14米、宽为9米;(2)若篱笆再增加4m,围成的矩形花圃面积不能达到170m2.【解析】【分析】(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,再根据矩形面积公式列方程求解即可得到答案.(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,再根据矩形面积公式列方程,求得方程无解,即假设不成立.【详解】(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,根据题意得:x(32﹣2x)=126,解得:x1=7,x2=9,∴32﹣2x=18或32﹣2x=14,∴假设成立,即长为18米、宽为7米或长为14米、宽为9米.(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,根据题意得:y(36﹣2y)=170,整理得:y2﹣18y+85=0.∵△=(﹣18)2﹣4×1×85=﹣16<0,∴该方程无解,∴假设不成立,即若篱笆再增加4m,围成的矩形花圃面积不能达到170m2.6.已知关于x的方程x2﹣(k+3)x+3k=0.(1)若该方程的一个根为1,求k的值;(2)求证:不论k取何实数,该方程总有两个实数根.【答案】(1)k=1;(2)证明见解析.【解析】【分析】(1)把x=1代入方程,即可求得k的值;(2)求出根的判别式是非负数即可.【详解】(1)把x=1代入方程x2﹣(k+3)x+3k=0得1﹣(k﹣3)+3k=0,1﹣k﹣3+3k=0解得k=1;(2)证明:1,(3),3a b k c k==-+=24b ac∆=-∴△=(k+3)2﹣4•3k =(k﹣3)2≥0,所以不论k取何实数,该方程总有两个实数根.【点睛】本题考查了一元二次方程的解以及根的判别式,熟练掌握相关知识点是解题关键.7.今年以来猪肉价格不断走高,引起了民众与区政府的高度关注,当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.据统计:从今年年初至11月 10 日,猪排骨价格不断走高,11 月 10 日比年初价格上涨了 75%.今年 11 月 10 日某市民于 A 超市购买 5 千克猪排骨花费 350 元.(1)A 超市 11 月排骨的进货价为年初排骨售价的32倍,按 11 月 10 日价格出售,平均一天能销售出 100 千克,超市统计发现:若排骨的售价每千克下降 1 元,其日销售量就增加20千克,超市为了实现销售排骨每天有 1000 元的利润,为了尽可能让顾客优惠应该将排骨的售价定位为每千克多少元?(2)11 月 11 日,区政府决定投入储备猪肉并规定排骨在 11 月 10 日售价的基础上下调a%出售,A 超市按规定价出售一批储备排骨,该超市在非储备排骨的价格不变情况下,该天的两种猪排骨总销量比 11 月 10 日增加了a%,且储备排骨的销量占总销量的57,两种排骨销售的总金额比 11 月 10 日提高了128a %,求 a 的值. 【答案】(1)售价为每千克65元;(2)a =35.【解析】【分析】 (1)先根据题意计算出11月10的售价和11月的进货价,设每千克降价x 元,则每千克的利润为10-x 元,日销量为100+20x 千克,根据销量×单利润=总利润列出方程求解,并根据为了尽可能让顾客优惠,对所得的解筛选;(2)根据销售总金额=储备排骨销售单价×储备排骨销售数量+非储备排骨销售单价×非储备排骨销售数量,即可得出关于a 的一元二次方程,解之取其正值即可得出结论.【详解】解:(1)11月10日的售价为350÷5=70元/千克年初的售价为:350÷5÷175%=40元/千克,11月的进货价为: 340602元/千克设每千克降价x 元,则每千克的利润为70-60-x=10-x 元,日销量为100+20x 千克 则(10020)(10)1000x x ,解得10x =,25x =因为为了尽可能让顾客优惠,所以降价5元,则售价为每千克65元. (2)根据题意可得52170(1%)100(1%)70100(1%)701001%7728a a a a ⎛⎫-++⨯+=⨯+ ⎪⎝⎭解得135a =,20a =(舍去)所以a =35.【点睛】 本题考查一元二次方程的应用,(1)中理清销售量随着单价的变化而变化的数量关系是解题关键;(2)中在求解时有些难度,可先设令%a t =,解方程求出t 后再求a 的值.8.利民商店经销甲、乙两种商品.现有如下信息信息1:甲乙两种商品的进货单价和为11;信息2:甲商品的零售单价比其进货单价多2元,乙商品的零售单价比其进货单价的2倍少4元:信息3:按零售单价购买甲商品3件和乙商品2件共付37元.()1甲、乙两种商品的进货单价各是多少?()2据统计该商店平均每天卖出甲商品500件,经调查发现,甲商品零售单价每降0.1元,这样甲商品每天可多销售100件,为了使每天获取更大的利润,商店决定把甲种商品的零售单价下降a 元,在不考虑其他因素的条件下,当a 定为多少时,才能使商店每天销售甲种商品获取利润为1500元?【答案】(1)甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件(2)当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元【解析】【分析】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据给定的三个信息,可得出关于x ,y 的二元一次方程组,解之即可得出结论;()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据总利润=单件利润⨯销售数量,即可得出关于a 的一元二次方程,解之即可得出结论.【详解】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据题意得:()()113x 222y 437x y +=⎧++-=⎨⎩, 解得:{56x y ==.答:甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件. ()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据题意得:()()250010001500a a -+=,整理得:22310a a -+=,解得:10.5a =,21a =.答:当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元.【点睛】本题考查了二元一次方程组的应用以及一元二次方程的应用,解题的关键是:()1找准等量关系,正确列出二元一次方程组;()2找准等量关系,正确列出一元二次方程.9. ∵1.7×35=59.5,1.7×80=136<151∴这家酒店四月份用水量不超过m 吨(或水费是按y=1.7x 来计算的),五月份用水量超过m 吨(或水费是按来计算的) 则有151=1.7×80+(80-m )×即m 2-80m+1500=0解得m 1=30,m 2=50.又∵四月份用水量为35吨,m 1=30<35,∴m 1=30舍去.∴m=50【解析】10.我市茶叶专卖店销售某品牌茶叶,其进价为每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后来经过市场调查发现,单价每降低 10 元,则平均每周的销售量可增加 40 千克,若该专卖店销售这种品牌茶叶要想平均每周获利 41600 元,请回答: (1)每千克茶叶应降价多少元?(2)在平均每周获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的 几折出售?【答案】(1)每千克茶叶应降价30元或80元;(2)该店应按原售价的8折出售.【解析】【分析】(1)设每千克茶叶应降价x 元,利用销售量×每件利润=41600元列出方程求解即可; (2)为了让利于顾客因此应下降价80元,求出此时的销售单价即可确定几折.【详解】(1)设每千克茶叶应降价x 元.根据题意,得:(400﹣x ﹣240)(200+10x ×40)=41600. 化简,得:x 2﹣10x +240=0.解得:x 1=30,x 2=80.答:每千克茶叶应降价30元或80元.(2)由(1)可知每千克茶叶可降价30元或80元.因为要尽可能让利于顾客,所以每千克茶叶某应降价80元.此时,售价为:400﹣80=320(元),320100%80%400⨯=. 答:该店应按原售价的8折出售.【点睛】本题考查了一元二次方程的应用,解题的关键是根据题目中的等量关系列出方程.。

一元二次方程难题、易错题

一元二次方程难题、易错题

一元二次方程难题、易错题1.一元二次方程已知关于x的方程mx^2-3(m-1)x+2m-3=0,求证:m取任何实数时,方程总有实数根。

解析:根据一元二次方程的判别式,当判别式大于等于0时,方程有实数根。

将方程化简得到 mx^2-(3m-3)x+2m-3=0,判别式为 (3m-3)^2-8m(m-1) = m^2-2m+1 = (m-1)^2 ≥ 0,因此对于任何实数m,方程都有实数根。

已知关于x的一元二次方程ax^2+bx+1=0有两个相等的实数根,求ab^2-22(a-2)+b-4的值。

解析:由于方程有两个相等的实数根,根据一元二次方程的求根公式,可得到 b^2-4ac=0,即 b^2-4a=0.将b^2-4a代入ab^2-22(a-2)+b-4中,得到 ab^2-22(a-2)+b-4 = ab^2-22b+44+b-4 = ab^2-21b+40 = (ab-16)(b-5)。

因此,要求的值为(ab-16)(b-5)。

2.方程的实数根1)已知关于x的方程2x^2+kx-1=0,求证:方程有两个不相等的实数根。

解析:对于一元二次方程ax^2+bx+c=0,当判别式b^2-4ac>0时,方程有两个不相等的实数根。

将2x^2+kx-1=0的判别式代入得到k^2+8 ≥ 0,即对于任何实数k,方程都有两个不相等的实数根。

2)若方程2x^2+3x+1=0的一个根是-1,求另一个根及k 值。

解析:由于方程的一个根是-1,则另一个根为 -1/2.将-1和-1/2代入方程得到两个方程:2-3+k=0和4+3/2+k=0,解得k=-11/2.3.三角形形状已知a、b、c分别是△ABC的三边,其中a=1,c=4,且关于x的方程x^2-4x+b=0有两个相等的实数根,试判断△XXX的形状。

解析:根据三角形两边之和大于第三边的性质,可知bc,b+c>a,a+c>b,因此△ABC是一个等腰三角形。

一元二次方程易错题(Word版 含答案)

一元二次方程易错题(Word版 含答案)
(3)根据题意,分为:PC=PD,PD=PC,PD=CD,三种情况分别可求解.
试题解析:(1)∵x2-7x+12=(x-3)(x-4)=0
∴ =3或 =4 .
则AB=3,BC=4
(2)由题意得
∴ , (舍去)
则t=4时,AP= .
(3)存在点P,使△CDP是等腰三角形.
①当PC=PD=3时, t= =10(秒).
(1)求2008年底至2010年底该市汽车拥有量的年平均增长率;
(2)为了保护城市环境,缓解汽车拥堵状况,该市交通部门拟控制汽车总量,要求到2012
年底全市汽车拥有量不超过125.48万辆;另据统计,从2011年初起,该市此后每年报废的
汽车数量是上年底汽车拥有量的10%假设每年新增汽车数量相同,请你估算出该市从2011
根据勾股定理得PQ= ,
P,Q两点的距离为2 cm.
(3)点Q从C点移动到B点所花的时间为16÷2=8s,
当点P在AO上时,S△POQ= = =12,
解得t=4.
当点P在OC上时,S△POQ= = =12,
解得t=6或﹣ (舍弃).
当点P在CB上时,S△POQ= = =12,
解得t=18>8(不符合长率为x.
根据题意,得75(1+x)2=108,则1+x=±1.2
解得x1=0.2=20%,x2=﹣2.2(不合题意,舍去).
答:该市汽车拥有量的年平均增长率为20%.
(2)设全市每年新增汽车数量为y万辆,则2010年底全市的汽车拥有量为(108×90%+y)万辆,2011年底全市的汽车拥有量为[(108×90%+y)×90%+y]万辆.
综上所述,经过4s或6s时,△POQ的面积为12cm2.

人教【数学】培优易错难题一元二次方程辅导专题训练及详细答案

人教【数学】培优易错难题一元二次方程辅导专题训练及详细答案

⼈教【数学】培优易错难题⼀元⼆次⽅程辅导专题训练及详细答案⼀、⼀元⼆次⽅程真题与模拟题分类汇编(难题易错题)1.如图,A、B、C、D为矩形的4个顶点,AB=16cm,BC=6cm,动点P、Q分别以3cm/s、2cm/s的速度从点A、C同时出发,点Q从点C向点D移动.(1)若点P从点A移动到点B停⽌,点P、Q分别从点A、C同时出发,问经过2s时P、Q 两点之间的距离是多少cm?(2)若点P从点A移动到点B停⽌,点Q随点P的停⽌⽽停⽌移动,点P、Q分别从点A、C 同时出发,问经过多长时间P、Q两点之间的距离是10cm?(3)若点P沿着AB→BC→CD移动,点P、Q分别从点A、C同时出发,点Q从点C移动到点D停⽌时,点P随点Q的停⽌⽽停⽌移动,试探求经过多长时间△PBQ的⾯积为12cm2?【答案】(1)PQ=62cm;(2)85s或245s;(3)经过4秒或6秒△PBQ的⾯积为12cm2.【解析】试题分析:(1)作PE⊥CD于E,表⽰出PQ的长度,利⽤PE2+EQ2=PQ2列出⽅程求解即可;(2)设x秒后,点P和点Q的距离是10cm.在Rt△PEQ中,根据勾股定理列出关于x的⽅程(16-5x)2=64,通过解⽅程即可求得x的值;(3)分类讨论:①当点P在AB上时;②当点P在BC边上;③当点P在CD边上时.试题解析:(1)过点P作PE⊥CD于E.则根据题意,得EQ=16-2×3-2×2=6(cm),PE=AD=6cm;在Rt△PEQ中,根据勾股定理,得PE2+EQ2=PQ2,即36+36=PQ2,∴PQ=62cm;∴经过2s时P、Q两点之间的距离是62cm;(2)设x秒后,点P和点Q的距离是10cm.(16-2x-3x)2+62=102,即(16-5x)2=64,∴16-5x=±8,∴x1=85,x2=245;∴经过85s或245sP、Q两点之间的距离是10cm;(3)连接BQ.设经过ys后△PBQ的⾯积为12cm2.①当0≤y≤163时,则PB=16-3y,∴12PB?BC=12,即12×(16-3y)×6=12,解得y=4;②当163<x≤223时,BP=3y-AB=3y-16,QC=2y,则1 2BP?CQ=12(3y-16)×2y=12,解得y1=6,y2=-23(舍去);③223<x≤8时,QP=CQ-PQ=22-y,则1 2QP?CB=12(22-y)×6=12,解得y=18(舍去).综上所述,经过4秒或6秒△PBQ的⾯积为 12cm2.考点:⼀元⼆次⽅程的应⽤.2.如图,在△ABC中,AB=6cm,BC=7cm,∠ABC=30°,点P从A点出发,以1cm/s的速度向B点移动,点Q从B点出发,以2cm/s的速度向C点移动.如果P、Q两点同时出发,经过⼏秒后△PBQ的⾯积等于4cm2?【答案】经过2秒后△PBQ的⾯积等于4cm2.【解析】【分析】作出辅助线,过点Q 作QE ⊥PB 于E ,即可得出S △PQB =12×PB×QE ,有P 、Q 点的移动速度,设时间为t 秒时,可以得出PB 、QE 关于t 的表达式,代⼊⾯积公式,即可得出答案.【详解】解:如图,过点Q 作QE ⊥PB 于E ,则∠QEB =90°.∵∠ABC =30°,∴2QE =QB .∴S △PQB =12PBQE .设经过t 秒后△PBQ 的⾯积等于4cm 2,则PB =6﹣t ,QB =2t ,QE =t .根据题意,12(6﹣t )?t =4. t 2﹣6t+8=0.t 2=2,t 2=4.当t =4时,2t =8,8>7,不合题意舍去,取t =2.答:经过2秒后△PBQ 的⾯积等于4cm 2.【点睛】本题考查了⼀元⼆次⽅程的运⽤,注意对所求的值进⾏检验,对于不合适的值舍去.3.已知关于x 的⽅程24832x nx n --=和()223220x n x n -+-+=,是否存在这样的n 值,使第⼀个⽅程的两个实数根的差的平⽅等于第⼆个⽅程的⼀整数根?若存在,请求出这样的n 值;若不存在,请说明理由?【答案】存在,n=0.【解析】【分析】在⽅程①中,由⼀元⼆次⽅程的根与系数的关系,⽤含n 的式⼦表⽰出两个实数根的差的平⽅,把⽅程②分解因式,建⽴⽅程求n ,要注意n 的值要使⽅程②的根是整数.【详解】若存在n 满⾜题意.设x1,x2是⽅程①的两个根,则x 1+x 2=2n ,x 1x 2=324n +-,所以(x 1-x 2)2=4n 2+3n+2,由⽅程②得,(x+n-1)[x-2(n+1)]=0,①若4n 2+3n+2=-n+1,解得n=-12,但1-n=32不是整数,舍. ②若4n 2+3n+2=2(n+2),解得n=0或n=-14(舍),综上所述,n=0.4.解⽅程:2332302121x x x x --= ? ?--.【答案】x=15或x=1 【解析】【分析】设321x y x =-,则原⽅程变形为y 2-2y-3=0, 解这个⼀元⼆次⽅程求y ,再求x .【详解】解:设321x y x =-,则原⽅程变形为y 2-2y-3=0.解这个⽅程,得y 1=-1,y 2=3, ∴3121x x =--或3321x x =-.解得x=15或x=1.经检验:x=15或x=1都是原⽅程的解.∴原⽅程的解是x=15或x=1.【点睛】考查了还原法解分式⽅程,⽤换元法解⼀些复杂的分式⽅程是⽐较简单的⼀种⽅法,根据⽅程特点设出相应未知数,解⽅程能够使问题简单化,注意求出⽅程解后要验根.5.关于x 的⼀元⼆次⽅程()22210x k x k +-+=有两个不等实根1x ,2x . (1)求实数k 的取值范围;(2)若⽅程两实根1x ,2x 满⾜121210x x x x ++-=,求k 的值.【答案】(1) k <14;(2) k=0. 【解析】【分析】(1)根据⼀元⼆次⽅程的根的判别式得出△>0,求出不等式的解集即可;(2)根据根与系数的关系得出x1+x2=-(2k-1)=1-2k,x1?x2=k2,代⼊x1+x2+x1x2-1=0,即可求出k值.【详解】解:(1)∵关于x的⼀元⼆次⽅程x2+(2k-1)x+k2=0有两个不等实根x1,x2,∴△=(2k-1)2-4×1×k2=-4k+1>0,解得:k<14,即实数k的取值范围是k<14;(2)由根与系数的关系得:x1+x2=-(2k-1)=1-2k,x1?x2=k2,∵x1+x2+x1x2-1=0,∴1-2k+k2-1=0,∴k2-2k=0∴k=0或2,∵由(1)知当k=2⽅程没有实数根,∴k=2不合题意,舍去,∴k=0.【点睛】本题考查了解⼀元⼆次⽅程根的判别式和根与系数的关系等知识点,能熟记根的判别式和根与系数的关系的内容是解此题的关键,注意⽤根与系数的关系解题时要考虑根的判别式,以防错解.6.某⽔果店销售某品牌苹果,该苹果每箱的进价是40元,若每箱售价60元,每星期可卖180箱.为了促销,该⽔果店决定降价销售.市场调查反映:若售价每降价1元,每星期可多卖10箱.设该苹果每箱售价x元(40≤x≤60),每星期的销售量为y箱.(1)求y与x之间的函数关系式;(2)当每箱售价为多少元时,每星期的销售利润达到3570元?(3)当每箱售价为多少元时,每星期的销售利润最⼤,最⼤利润多少元?【答案】(1)y=-10x+780;(2) 57;(3)当售价为59元时,利润最⼤,为3610元【解析】【分析】(1)根据售价每降价1元,每星期可多卖10箱,设售价x元,则多销售的数量为60-x,(2)解⼀元⼆次⽅程即可求解,(3)表⽰出最⼤利润将函数变成顶点式即可求解.【详解】解:(1)∵售价每降价1元,每星期可多卖10箱,设该苹果每箱售价x元(40≤x≤60),则y=180+10(60-x)=-10x+780,(40≤x≤60),(2)依题意得:(x-40)(-10x+780)=3570,解得:x=57,∴当每箱售价为57元时,每星期的销售利润达到3570元.(3)设每星期的利润为w,W=(x-40)(-10x+780)=-10(x-59)2+3610,∵-10 0,⼆次函数向下,函数有最⼤值,当x=59时, 利润最⼤,为3610元.【点睛】本题考查了⼆次函数的实际应⽤,中等难度,熟悉⼆次函数的实际应⽤是解题关键.7.已知关于x的⽅程x2﹣2x+m﹣2=0有两个不相等的实数根.(1)求m的取值范围;(2)如果m为正整数,且该⽅程的根都是整数,求m的值.【答案】(1)m<3;(2)m=2.【解析】【分析】(1)根据题意得出△>0,代⼊求出即可;(2)求出m=1或2,代⼊后求出⽅程的解,即可得出答案.【详解】(1)∵⽅程有两个不相等的实数根.∴△=4﹣4(m﹣2)>0.∴m<3;(2)∵m<3 且 m为正整数,∴m=1或2.当 m=1时,原⽅程为 x2﹣2x﹣1=0.它的根不是整数,不符合题意,舍去;当 m=2时,原⽅程为 x2﹣2x=0.∴x(x﹣2)=0.∴x1=0,x2=2.符合题意.综上所述,m=2.【点睛】本题考查了根的判别式和解⼀元⼆次⽅程,能根据题意求出m的值和m的范围是解此题的关键.8.已知关于x的⽅程(x-3)(x-2)-p2=0.(1)求证:⽆论p取何值时,⽅程总有两个不相等的实数根;(2)设⽅程两实数根分别为x1、x2,且满⾜x12+x22=3 x1x2,求实数p的值.【答案】(1)详见解析;(2)p=±1.【解析】【分析】(1)先把⽅程化成⼀般形式,再计算根的判别式,判定△>0,即可得到总有两个不相等的实数根;(2)根据⼀元⼆次⽅程根与系数的关系可得两根和与两根积,再把2212123x x x x +=变形,化成和与乘积的形式,代⼊计算,得到⼀个关于p 的⼀元⼆次⽅程,解⽅程即可求解.【详解】证明:(1)(x ﹣3)(x ﹣2)﹣p 2=0,x 2﹣5x+6﹣p 2=0,△=(﹣5)2﹣4×1×(6﹣p 2)=25﹣24+4p 2=1+4p 2,∵⽆论p 取何值时,总有4p 2≥0,∴1+4p 2>0,∴⽆论p 取何值时,⽅程总有两个不相等的实数根;(2)x 1+x 2=5,x 1x 2=6﹣p 2,∵2212123x x x x +=,∴(x 1+x 2)2﹣2x 1x 2=3x 1x 2,∴52=5(6﹣p 2),∴p=±1.考点:根的判别式;根与系数的关系.9.⼭西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的⼏折出售?【答案】(1)4元或6元;(2)九折.【解析】【详解】解:(1)设每千克核桃应降价x 元.根据题意,得(60﹣x ﹣40)(100+x 2×20)=2240,化简,得 x 2﹣10x+24=0,解得x 1=4,x 2=6.答:每千克核桃应降价4元或6元.(2)由(1)可知每千克核桃可降价4元或6元.∵要尽可能让利于顾客,∴每千克核桃应降价6元. 此时,售价为:60﹣6=54(元),54100%=90%60. 答:该店应按原售价的九折出售.10.如图,在△ABC中,∠B=90°,AB=6 cm,BC=8 cm,若点P从点A沿AB边向B点以1 cm/s的速度移动,点Q从B点沿BC边向点C以2 cm/s的速度移动,两点同时出发.(1)问⼏秒后,△PBQ的⾯积为8cm2?(2)出发⼏秒后,线段PQ的长为42cm ?(3)△PBQ的⾯积能否为10 cm2?若能,求出时间;若不能,请说明理由.【答案】(1) 2或4秒2 cm;(3)见解析.【解析】【分析】(1)由题意,可设P、Q经过t秒,使△PBQ的⾯积为8cm2,则PB=6-t,BQ=2t,根据三⾓形⾯积的计算公式,S△PBQ=12BP×BQ,列出表达式,解答出即可;(2)设经过x秒后线段PQ的长为2cm,依题意得AP=x,BP=6-x,BQ=2x,利⽤勾股定理列⽅程求解;(3)将△PBQ的⾯积表⽰出来,根据△=b2-4ac来判断.【详解】(1)设P,Q经过t秒时,△PBQ的⾯积为8 cm2,则PB=6-t,BQ=2t,∵∠B=90°,∴12(6-t)× 2t=8,解得t1=2,t2=4,∴当P,Q经过2或4秒时,△PBQ的⾯积为8 cm2;(2)设x秒后,PQ=2 cm,由题意,得(6-x)2+4x2=32,解得x1=25,x2=2,故经过25秒或2秒后,线段PQ的长为2 cm;(3)设经过y秒,△PBQ的⾯积等于10 cm2,S△PBQ=12×(6-y)× 2y=10,即y2-6y+10=0,∵Δ=b2-4ac=36-4× 10=-4< 0,∴△PBQ的⾯积不会等于10 cm2.【点睛】本题考查了⼀元⼆次⽅程的应⽤,熟练的掌握⼀元⼆次⽅程的应⽤是本题解题的关键.。

一元二次方程易错题(Word版 含答案)

一元二次方程易错题(Word版 含答案)

一元二次方程易错题(Word 版 含答案)一、初三数学 一元二次方程易错题压轴题(难)1.如图1,平面直角坐标系xOy 中,等腰ABC ∆的底边BC 在x 轴上,8BC =,顶点A在y 的正半轴上,2OA =,一动点E 从(3,0)出发,以每秒1个单位的速度沿CB 向左运动,到达OB 的中点停止.另一动点F 从点C 出发,以相同的速度沿CB 向左运动,到达点O 停止.已知点E 、F 同时出发,以EF 为边作正方形EFGH ,使正方形EFGH 和ABC ∆在BC 的同侧.设运动的时间为t 秒(0t ≥).(1)当点H 落在AC 边上时,求t 的值;(2)设正方形EFGH 与ABC ∆重叠面积为S ,请问是存在t 值,使得9136S =?若存在,求出t 值;若不存在,请说明理由;(3)如图2,取AC 的中点D ,连结OD ,当点E 、F 开始运动时,点M 从点O 出发,以每秒25OD DC CD DO ---运动,到达点O 停止运动.请问在点E 的整个运动过程中,点M 可能在正方形EFGH 内(含边界)吗?如果可能,求出点M 在正方形EFGH 内(含边界)的时长;若不可能,请说明理由.【答案】(1)t=1;(2)存在,143t =,理由见解析;(3)可能,3455t ≤≤或4533t ≤≤或35t ≤≤理由见解析 【解析】 【分析】(1)用待定系数法求出直线AC 的解析式,根据题意用t 表示出点H 的坐标,代入求解即可;(2)根据已知,当点F 运动到点O 停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t ,使重叠面积为9136S =,故t ﹥4,用待定系数法求出直线AB 的解析式,求出点H 落在BC 边上时的t 值,求出此时重叠面积为169﹤9136,进一步求出重叠面积关于t 的表达式,代入解t 的方程即可解得t 值;(3)由已知求得点D (2,1),AC=结合图形分情况讨论即可得出符合条件的时长. 【详解】(1)由题意,A(0,2),B(-4,0),C(4,0), 设直线AC 的函数解析式为y=kx+b , 将点A 、C 坐标代入,得:402k b b +=⎧⎨=⎩,解得:122k b ⎧=-⎪⎨⎪=⎩, ∴直线AC 的函数解析式为122y x =-+, 当点H 落在AC 边上时,点E(3-t ,0),点H (3-t ,1), 将点H 代入122y x =-+,得: 11(3)22t =--+,解得:t=1;(2)存在,143t =,使得9136S =. 根据已知,当点F 运动到点O 停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t ,使重叠面积为9136S =,故t ﹥4, 设直线AB 的函数解析式为y=mx+n , 将点A 、B 坐标代入,得:402m n n -+=⎧⎨=⎩,解得:122m n ⎧=⎪⎨⎪=⎩, ∴直线AC 的函数解析式为122y x =+, 当t ﹥4时,点E (3-t ,0)点H (3-t ,t-3),G(0,t-3), 当点H 落在AB 边上时,将点H 代入122y x =+,得: 13(3)22t t -=-+,解得:133t =;此时重叠的面积为221316(3)(3)39t -=-=, ∵169﹤9136,∴133﹤t ﹤5, 如图1,设GH 交AB 于S ,EH 交AB 于T,将y=t-3代入122y x =+得:1322t x -=+, 解得:x=2t-10, ∴点S(2t-10,t-3),将x=3-t 代入122y x =+得:11(3)2(7)22y t t =-+=-, ∴点T 1(3,(7))2t t --, ∴AG=5-t ,SG=10-2t ,BE=7-t ,ET=1(7)2t -, 211(7)24BET S BE ET t ∆==-, 21(5)2ASGS AG SG t ∆==- 所以重叠面积S=AOB BET ASG S S S ∆∆∆--=4-21(7)4t --2(5)t -=2527133424t t -+-, 由2527133424t t -+-=9136得:1143t =,29215t =﹥5(舍去), ∴143t =;(3)可能,35≤t≤1或t=4. ∵点D 为AC 的中点,且OA=2,OC=4, ∴点D (2,1),AC=255 易知M 点在水平方向以每秒是4个单位的速度运动; 当0﹤t ﹤12时,M 在线段OD 上,H 未到达D 点,所以M 与正方形不相遇; 当12﹤t ﹤1时, 12+12÷(1+4)=35秒, ∴t =35时M 与正方形相遇,经过1÷(1+4)=15秒后,M 点不在正方行内部,则3455t ≤≤; 当t=1时,由(1)知,点F 运动到原E 点处,M 点到达C 处; 当1≤t≤2时,当t=1+1÷(4-1)=43秒时,点M 追上G 点,经过1÷(4-1)=13秒,点M 都在正方形EFGH 内(含边界),4533t ≤≤ 当t=2时,点M 运动返回到点O 处停止运动,当 t=3时,点E 运动返回到点O 处, 当 t=4时,点F 运动返回到点O 处, 当35t ≤≤时,点M 都在正方形EFGH 内(含边界), 综上,当3455t ≤≤或4533t ≤≤或35t ≤≤时,点M 可能在正方形EFGH 内(含边界).【点睛】本题考查了一次函数与几何图形的综合,涉及求一次函数的解析式、正方形的性质、直角三角形的性质、不规则图形的面积、解一元二次方程等知识,解答的关键是认真审题,提取相关信息,利用待定系数法、数形结合法等解题方法确定解题思路,进而推理、探究、发现和计算.2.如图,在矩形ABCD 中,6AB cm =,8AD cm =,点P 从点A 出发沿AD 向点D 匀速运动,速度是1/cm s ,过点P 作PE AC ∥交DC 于点E ,同时,点Q 从点C 出发沿CB 方向,在射线CB 上匀速运动,速度是2/cm s ,连接PQ 、QE ,PQ 与AC 交与点F ,设运动时间为()(08)<<t s t .(1)当t 为何值时,四边形PFCE 是平行四边形;(2)设PQE 的面积为2()s cm ,求s 与t 的函数关系式;(3)是否存在某一时刻t ,使得PQE 的面积为矩形ABCD 面积的932; (4)是否存在某一时刻t ,使得点E 在线段PQ 的垂直平分线上.【答案】(1)83t =;(2)S =299(08)8t t t -+<<;(3)当2t s =或6s 时,PQE 的面积为矩形ABCD 面积的932;(4)当57325-=t 时,点E 在线段PQ 的垂直平分线上 【解析】 【分析】(1)由四边形PFCE 是平行四边形,可得,PF CE ∥由PD QC 得四边形CDPQ 为平行四边形,即PD CQ =,列式82t t -=,计算可解. (2)由PE AC ∥,得=DP DE DA DC ,代入时间t ,得886-=t DE 解得364=-DE t ,34CE t =再通过S S =梯形CDPQ PDE CEQ S S --△△构建联系,可列函数式299(08)8S t t t =-+<<.(3)由PQE 的面积为矩形ABCD 面积的932得299986832S t t =-+=⨯⨯,可解 当2t s =或6s 时,PQE 的面积为矩形ABCD 面积的932. (4)当点E 在线段PQ 的垂直平分线上时,=EQ PE ,得22=EQ PE ,由Rt CEQ 与△Rt PDE 可得,222+=CE CQ EQ ,222PD DE PE +=,即2222+=+CE CQ PD DE ,代入364=-DE t ,34CE t =,2CQ t =,8PD t =-可得222233(2)(8)644⎛⎫⎛⎫+=-+- ⎪ ⎪⎝⎭⎝⎭t t t t ,计算验证可解.【详解】(1)当四边形PFCE 是平行四边形时,∥PF CE , 又∵PD QC ,∴四边形CDPQ 为平行四边形, ∴PD CQ =,即82t t -=, ∴83t =(2)∵PE AC ∥,∴=DP DEDA DC , 即886-=t DE, ∴364=-DE t ,∴336644=-+=CE t t , ∴21133(8)66242248⎛⎫=⋅=--=-+ ⎪⎝⎭△PDE S PD DE t t t t , 2113322244=⋅=⨯⨯=△CEQ S CE CQ t t t ,S 梯形11()(28)632422=+⋅=+-⋅=+CDPQ QC PD CD t t t ,∴S S =梯形299(08)8--=-+<<△△CDPQ PDE CEQ S S t t t (3)由题意,299986832-+=⨯⨯t t 解得12t =,26t =所以当2t s =或6s 时,PQE 的面积为矩形ABCD 面积的932. (4)当点E 在线段PQ 的垂直平分线上时,=EQ PE , ∴22=EQ PE ,在Rt CEQ 中,222+=CE CQ EQ ,在△Rt PDE 中,222PD DE PE +=, ∴2222+=+CE CQ PD DE ,即222233(2)(8)644⎛⎫⎛⎫+=-+- ⎪ ⎪⎝⎭⎝⎭t t t t解得1256-=t ,2256+=-t (舍)所以当256-=t 时,点E 在线段PQ 的垂直平分线上. 【点睛】本题考查的是一次函数与几何图形的实际应用,勾股定理,平行线的性质,解一元二次方程,需要注意的是在解一元二次方程的实际应用中经常会涉及到解的验证,不可忽略.3.随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭.据某市交通部门统计,2008年底该市汽车拥有量为75万辆,而截止到2010年底,该市的汽车拥有量已达108万辆.(1)求2008年底至2010年底该市汽车拥有量的年平均增长率;(2)为了保护城市环境,缓解汽车拥堵状况,该市交通部门拟控制汽车总量,要求到2012年底全市汽车拥有量不超过125.48万辆;另据统计,从2011年初起,该市此后每年报废的汽车数量是上年底汽车拥有量的10%假设每年新增汽车数量相同,请你估算出该市从2011年初起每年新增汽车数量最多不超过多少万辆.【答案】解:(1)2008年底至2010年底该市汽车拥有量的年平均增长率是20%(2)从2011年初起每年新增汽车数量最多不超过20万辆【解析】【分析】(1)设年平均增长率x,根据等量关系“2008年底汽车拥有量×(1+年平均增长率)×(1+年平均增长率)”列出一元二次方程求得.(2)设从2011年初起每年新增汽车的数量y,根据已知得出2011年报废的车辆是2010年底拥有量×10%,推出2011年底汽车拥有量是2010年底拥有量-2011年报废的车辆=2010年拥有量×(1-10%),得出等量关系是: 2010年拥有量×(1-10%)+新增汽车数量]×(1-10%)+新增汽车数量”,列出一元一次不等式求得.【详解】解:(1)设该市汽车拥有量的年平均增长率为x.根据题意,得75(1+x)2=108,则1+x=±1.2解得x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市汽车拥有量的年平均增长率为20%.(2)设全市每年新增汽车数量为y万辆,则2010年底全市的汽车拥有量为(108×90%+y)万辆,2011年底全市的汽车拥有量为[(108×90%+y)×90%+y]万辆.根据题意得(108×90%+y)×90%+y≤125.48,解得y≤20.答:该市每年新增汽车数量最多不能超过20万辆.4.如图,在△ABC 中,∠B=90°,AB=12 cm,BC=16 cm.点 P从点 A 开始沿 AB 边向点 B 以1 cm/s的速度移动,点 Q从点 B开始沿 BC 边向点 C以 2 cm/s的速度移动.如果 P、 Q分别从 A、B同时出发,当一个点到达终点时,另一个点也随之停止运动.设运动的时间为 t 秒.(1)当 t 为何值时,△PBQ的面积等于 35cm2?(2)当 t 为何值时,PQ的长度等82cm?(3)若点 P,Q的速度保持不变,点 P在到达点 B后返回点 A,点 Q在到达点 C后返回点B,一个点停止,另一个点也随之停止.问:当 t为何值时,△PCQ的面积等于 32cm2?【答案】(1)t为5或7;(2)t为45或4;(3)t为4或16【解析】【分析】(1)分别用含t的代数式表示PB,BQ的长,利用面积公式列方程求解即可.(2)分别用含t的代数式表示PB,BQ的长,利用勾股定理列方程求解即可.(3)分段要清楚,,P,Q都没有返回,表示好PB,CQ的长,用面积公式列方程,,P不返回,Q返回,表示好PB,CQ的长,用面积公式列方程,,两点都返回,表示好PB,CQ的长,用面积公式列方程即可得到答案.【详解】解:(1),.根据三角形的面积公式,得,即,整理,得,解得,.故当为5或7时,的面积等于35.(2)根据勾股定理,得,整理,得,解得,.故当为或4时,的长度等于.(3)①当时,,,由题意,得,解得:,(舍去).②当时,,,由题意,得,次方程无解.③当时,,, 由题意,得,解得:(舍去),.综上所述,当为4或16时,的面积等于.【点睛】本题考查的是在运动过程中应用一元二次方程解决实际问题,建立正确情境下的几何模型是解决问题的关键,特别是最后一问,关键是弄懂分段的时间界点,才能正确的表示PB ,CQ 的长.5.已知关于x 的一元二次方程()222130x k x k --+-=有两个实数根.()1求k 的取值范围;()2设方程两实数根分别为1x ,2x ,且满足221223x x +=,求k 的值.【答案】(1)134k ≤;(2)2k =-. 【解析】 【分析】()1根据方程有实数根得出()()22[2k 1]41k 38k 50=---⨯⨯-=-+≥,解之可得.()2利用根与系数的关系可用k 表示出12x x +和12x x 的值,根据条件可得到关于k 的方程,可求得k 的值,注意利用根的判别式进行取舍. 【详解】 解:()1关于x 的一元二次方程()222130x k x k --+-=有两个实数根,0∴≥,即()()22[21]4134130k k k ---⨯⨯-=-+≥,解得134k ≤. ()2由根与系数的关系可得1221x x k +=-,2123x x k =-,()222222121212()2(21)23247x x x x x x k k k k ∴+=+-=---=-+, 221223x x +=,224723k k ∴-+=,解得4k =,或2k =-,134k ≤, 4k ∴=舍去, 2k ∴=-. 【点睛】本题考查了一元二次方程2ax bx c 0(a 0,++=≠a ,b ,c 为常数)根的判别式.当0>,方程有两个不相等的实数根;当0=,方程有两个相等的实数根;当0<,方程没有实数根.以及根与系数的关系.6.计算题(1)先化简,再求值:21x x -÷(1+211x -),其中x=2017.(2)已知方程x 2﹣2x+m ﹣3=0有两个相等的实数根,求m 的值. 【答案】(1)2018;(2)m=4 【解析】分析:(1)根据分式的运算法则和运算顺序,先算括号里面的,再算除法,注意因式分解的作用;(2)根据一元二次方程的根的判别式求解即可.详解:(1)21x x -÷(1+211x -)=2221111x x x x -+÷-- =()()22111x x x x x +-⋅- =x+1,当x=2017时,原式=2017+1=2018(2)解:∵方程x 2﹣2x+m ﹣3=0有两个相等的实数根, ∴△=(﹣2)2﹣4×1×(m ﹣3)=0, 解得,m=4点睛:此题主要考查了分式的混合运算和一元二次方程的根的判别式,关键是熟记分式方程的运算顺序和法则,注意通分约分的作用.7.图1是李晨在一次课外活动中所做的问题研究:他用硬纸片做了两个三角形,分别为△ABC 和△DEF ,其中∠B=90°,∠A=45°,BC=,∠F=90°,∠EDF=30°, EF=2.将△DEF的斜边DE 与△ABC 的斜边AC 重合在一起,并将△DEF 沿AC 方向移动.在移动过程中,D 、E 两点始终在AC 边上(移动开始时点D 与点A 重合). (1)请回答李晨的问题:若CD=10,则AD= ;(2)如图2,李晨同学连接FC ,编制了如下问题,请你回答:①∠FCD的最大度数为;②当FC∥AB时,AD= ;③当以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边时,AD= ;④△FCD的面积s的取值范围是 .【答案】(1)2;(2)① 60°;②;③;④.【解析】试题分析:(1)根据等腰直角三角形的性质,求出AC的长,即可得到AD的长.(2)①当点E与点C重合时,∠FCD的角度最大,据此求解即可.②过点F作FH⊥AC于点H,应用等腰直角三角形的判定和性质,含30度角直角三角形的性质求解即可.③过点F作FH⊥AC于点H,AD=x,应用含30度角直角三角形的性质把FC用x来表示,根据勾股定理列式求解.④设AD=x,把△FCD的面积s表示为x的函数,根据x的取值范围来确定s的取值范围.试题解析:(1)∵∠B=90°,∠A=45°,BC=,∴AC=12.∵CD=10,∴AD=2.(2)①∵∠F=90°,∠EDF=30°,∴∠DEF=60°.∵当点E与点C重合时,∠FCD的角度最大,∴∠FCD的最大度数=∠DEF="60°."② 如图,过点F作FH⊥AC于点H,∵∠EDF=30°, EF=2,∴DF=. ∴DH=3,FH=.∵FC∥AB,∠A=45°,∴∠FCH="45°." ∴HC=. ∴DC=DH+HC=.∵AC=12,∴AD=.③如图,过点F作FH⊥AC于点H,设AD=x,由②知DH=3,FH=,则HC=.在Rt△CFH中,根据勾股定理,得.∵以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边,∴,即,解得.④设AD=x,易知,即.而,当时,;当时,.∴△FCD的面积s的取值范围是.考点:1.面动平移问题;2.等腰直角三角形的判定和性质;3.平行的性质;4.含30度角直角三角形的性质;5.勾股定理;6.由实际问题列函数关系式;7.求函数值.8.如图直线y=kx+k交x轴负半轴于点A,交y轴正半轴于点B,且AB=2(1)求k的值;(2)点P从A出发,以每秒1个单位的速度沿射线AB运动,过点P作直线AB的垂线交x轴于点Q,连接OP,设△PQO的面积为S,点P运动时间为t,求S与t的函数关系式,并直接写出t的取值范围;(3)在(2)的条件下,当P在AB的延长线上,若OQ+AB=7(BQ﹣OP),求此时直线PQ的解析式.【答案】(1)k32)当0<t<12时,S=12•OQ•P y=12(1﹣2t3=﹣323.当t >12时,S =12OQ •P y =12(2t ﹣1)•32t =32t 2﹣34t .(3)直线PQ 的解析式为y =﹣3x +53. 【解析】 【分析】(1)求出点B 的坐标即可解决问题;(2)分两种情形①当0<t <12时,②当t >12时,根据S =12OQ •P y ,分别求解即可;(3)根据已知条件构建方程求出t ,推出点P ,Q 的坐标即可解决问题. 【详解】解:(1)对于直线y =kx +k ,令y =0,可得x =﹣1, ∴A (﹣1,0), ∴OA =1,∵AB =2, ∴OB =223AB OA -=∴k =3. (2)如图,∵tan ∠BAO =3OBOA= ∴∠BAO =60°, ∵PQ ⊥AB , ∴∠APQ =90°, ∴∠AQP =30°, ∴AQ =2AP =2t , 当0<t <12时,S =12•OQ •P y =12(1﹣2t 3323. 当t >12时,S =12OQ •P y =12(2t ﹣1)•32t =32t 2﹣34t . (3)∵OQ +AB 7(BQ ﹣OP ),∴2t ﹣1+2∴2t +121t t -+∴4t 2+4t +1=7t 2﹣7t +7, ∴3t 2﹣11t +6=0, 解得t =3或23(舍弃), ∴P (12Q (5,0), 设直线PQ 的解析式为y =kx +b ,则有1250k b k b ⎧+=⎪⎨⎪+=⎩解得k b ⎧=⎪⎪⎨⎪=⎪⎩,∴直线PQ的解析式为33y x =-+. 【点睛】本题属于一次函数综合题,考查了一次函数的性质,三角形的面积,无理方程等知识,解题的关键是学会利用参数构建方程解决问题.9.使得函数值为零的自变量的值称为函数的零点.例如,对于函数1y x =-,令y=0,可得x=1,我们就说1是函数1y x =-的零点. 己知函数222(3)y x mx m =--+(m m 为常数).(1)当m =0时,求该函数的零点;(2)证明:无论m 取何值,该函数总有两个零点; (3)设函数的两个零点分别为1x 和2x ,且121114x x +=-,此时函数图象与x 轴的交点分 别为A 、B(点A 在点B 左侧),点M 在直线10y x =-上,当MA+MB 最小时,求直线AM 的函数解析式.【答案】(1)当m =0和 (2)见解析,(3)AM 的解析式为112y x =--. 【解析】 【分析】(1)根据题中给出的函数的零点的定义,将m=0代入y=x 2-2mx-2(m+3),然后令y=0即可解得函数的零点;(2)令y=0,函数变为一元二次方程,要想证明方程有两个解,只需证明△>0即可; (3)根据题中条件求出函数解析式进而求得A 、B 两点坐标,个、作点B 关于直线y=x-10的对称点B′,连接AB′,求出点B′的坐标即可求得当MA+MB 最小时,直线AM 的函数解析式 【详解】(1)当m =0时,该函数的零点为6和6-.(2)令y=0,得△=∴无论m 取何值,方程总有两个不相等的实数根.即无论m 取何值,该函数总有两个零点. (3)依题意有,由解得.∴函数的解析式为.令y=0,解得∴A(),B(4,0)作点B 关于直线10y x =-的对称点B’,连结AB’, 则AB’与直线10y x =-的交点就是满足条件的M 点.易求得直线10y x =-与x 轴、y 轴的交点分别为C (10,0),D (0,10). 连结CB’,则∠BCD=45° ∴BC=CB’=6,∠B’CD=∠BCD=45° ∴∠BCB’=90° 即B’(106-,)设直线AB’的解析式为y kx b =+,则20{106k b k b -+=+=-,解得112k b =-=-, ∴直线AB’的解析式为112y x =--, 即AM 的解析式为112y x =--.10.在等腰三角形△ABC 中,三边分别为a 、b 、c ,其中ɑ=4,若b 、c 是关于x 的方程x 2﹣(2k +1)x +4(k ﹣12)=0的两个实数根,求△ABC 的周长. 【答案】△ABC 的周长为10. 【解析】 【分析】分a 为腰长及底边长两种情况考虑:当a=4为腰长时,将x=4代入原方程可求出k 值,将k 值代入原方程可求出底边长,再利用三角形的周长公式可求出△ABC 的周长;当a=4为底边长时,由根的判别式△=0可求出k 值,将其代入原方程利用根与系数的关系可求出b+c 的值,由b+c=a 可得出此种情况不存在.综上即可得出结论. 【详解】当a =4为腰长时,将x =4代入原方程,得:()214421402k k ⎛⎫-++-= ⎪⎝⎭解得:52k = 当52k =时,原方程为x 2﹣6x +8=0, 解得:x 1=2,x 2=4,∴此时△ABC 的周长为4+4+2=10;当a =4为底长时,△=[﹣(2k +1)]2﹣4×1×4(k ﹣12)=(2k ﹣3)2=0, 解得:k =32, ∴b +c =2k +1=4. ∵b +c =4=a ,∴此时,边长为a ,b ,c 的三条线段不能围成三角形. ∴△ABC 的周长为10. 【点睛】本题考查了根的判别式、根与系数的关系、一元二次方程的解、等腰三角形的性质以及三角形的三边关系,分a 为腰长及底边长两种情况考虑是解题的关键.。

培优易错难题一元二次方程辅导专题训练及详细答案

培优易错难题一元二次方程辅导专题训练及详细答案

一、一元二次方程真题与模拟题分类汇编(难题易错题)1.随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2008年底全市汽车拥有量为14.4万辆.已知2006年底全市汽车拥有量为10万辆.(1)求2006年底至2008年底我市汽车拥有量的年平均增长率:(2)为保护城市环境,要求我市到2010年底汽车拥有量不超过15.464万辆,据估计从2008年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同)【答案】详见解析【解析】试题分析:(1)主要考查增长率问题,一般用增长后的量=增长前的量x (1+增长率)解决问题;(2)参照增长率问题的一般规律,表示出2010年的汽车拥有量,然后根据关键语列出不等式来判断正确的解.试题解析:(1)设年平均增长率为x,根据题意得:10 (1+x) 2=144解得x=-2.2 (不合题意舍去)x=0.2,答:年平均增长率为20%:(2)设每年新增汽车数量最多不超过y万辆,根据题意得:2009年底汽车数量为14.4x90%+y,2010 年底汽车数量为(14.4x90%+y) x90%+y,/. (14.4x90%+y) x90%+y<15,464,y<2.答:每年新增汽车数量最多不超过2万辆.考点:一元二次方程一增长率的问题2.关于x的方程必-2 (k-1) x+k2 = 0有两个实数根X】、X2.(1)求k的取值范围;(2 )若X1+X2=l - XPQ,求k的值.【答案】(1)〃[:(2)k=3【解析】试题分析:(1)方程有两个实数根,可得△ = 〃-4acN0,代入可解出k的取值范围:(2)由韦达定理可知,%+9=2(4—1),百马=上列出等式,可得出k的值.试题解析:⑴..W = 4(k—1产-4k2?0, -8k+420, .•.人!;2(2)二・xi+xz=2(k-1), xixz=k\ :. 2(k—l)=l—k2.「・匕=1, kz=—3.1•/ k<-,.」=—3. 23.解方程:(x+l)(x-3)=-l.【答案】Xl=l+ y/3 , x2=l - yf3【解析】试题分析:根据方程的特点,先化为一般式,然后利用配方法求解即可.试题解析:整理得:x2 - 2x=2,配方得:x2 - 2x+l=3,即(X-1) 2=3, 解得:X1=1+ y/3 , X2=l - y/3 .4.“父母恩深重,恩怜无歇时”,每年5月的第二个星期日即为母亲节,节日前夕巴蜀中学学生会计划采购一批鲜花礼盒赠送给妈妈们.(1)经过和花店卖家议价,可在原标价的基础上打八折购进,若在花店购买80个礼盒最多花费7680元,请求出每个礼盒在花店的最高标价:(用不等式解答)(2)后来学生会了解到通过“大众点评"或“美团〃同城配送会在(1)中花店最高售价的基础上降价25%,学生会计划在这两个网站上分别购买相同数量的礼盒,但实际购买过程中,'‘大众点评”网上的购买价格比原有价格上涨2 m%,购买数量和原计划一样:“美团〃网29上的购买价格比原有价格下降了一m元,购买数量在原计划基础上增加15m%,最终,在20两个网站的实际消费总额比原计划的预算总额增加了—m%,求出m的值.2【答案】(1) 120;(2) 20.【解析】试题分析:(1)本题介绍两种解法:解法一:设标价为x元,列不等式为0.8x・8047680,解出即可:解法二:根据单价=总价+数量先求出1个礼盒最多花费,再除以折扣可求出每个礼盒在花店的最高标价:(2)先假设学生会计划在这两个网站上分别购买的礼盒数为a个礼盒,表示在“大众点评" 网上的购买实际消费总额:120a (1-25%)(l+^m%),在“美团〃网上的购买实际消费29总额:a[120(1 - 25%)- —m](l+15m%):根据“在两个网站的实际消费总额比原计划的预算总额增加了"列方程解出即可.2试题解析:(1)解:解法一:设标价为X元,列不等式为0.8x・80W7680, x<120;解法二:76804-80^0.8=964-0.8=120 (元).答:每个礼盒在花店的最高标价是120元;(2)解:假设学生会计划在这两个网站上分别购买的礼盒数为a个礼盒,由题意得:5 9120x0.8a (1 - 25%) (l+-m%) +a[120x0.8 (1 - 25%) - —m]=120x0.8。

一元二次方程易错题(有答案)教师用

一元二次方程易错题(有答案)教师用

一元二次方程易错题一、填空题:1、关于x 的方程02)1()1(22=--+-x m x m ,当m 1≠± 时,它是一元二次方程,当m= 1- 时,它是一元一次方程,2、方程x x =2的解是 方程x x -=2的根是3 、若412+-mx x 是一个完全平方式,则m 为 1± 4、关于x 的一元二次方程05.12=+-x kx 有两个不相等的实数根,则k 的取值范围 k <16且k≠0 5、配方:=++c bx ax 26、 已知:方程0122=+x ,那么判别式的值为 -87、关于x 的一元二次方程mx 2+m 2=x 2_2x+1的一个根为0,那么m 的值为 ﹣1 .8、已知a 是方程x 2﹣x ﹣1=0的一个根,则a 4﹣3a ﹣2的值为 0 .9、当m = -6 时,方程250x x m ++=的两根之差是710、若二次三项式432++x ax 在实数范围内不能因数分解,那么a 的取值范围是 二、选择题11、若方程(m ﹣2)x |m|+x ﹣1=0是关于x 的一元二次方程,则m 的值为( C )A 、±2B 、2C 、﹣2D 、不能确定12、把一元二次方程2x (x ﹣1)=(x ﹣3)+4化成一般式之后,其二次项系数与一次项分别是( C )A 、2,﹣3B 、﹣2,﹣3C 、2,﹣3xD 、﹣2,﹣3x13、已知(x 2+y 2)2﹣(x 2+y 2)﹣12=0,则(x 2+y 2)的值是( B )A 、﹣3B 、4C 、﹣3或4D 、3或﹣414、关于x 的方程(m ﹣2)x 2﹣2x+1=0有实数解,那么m 的取值范围是( B )A 、m≠2B 、m≤3C 、m≥3D 、m≤3且m≠215、下列命题正确的是( B )A 方程2x =c -一定无实数解B 方程),0(02≠=+a c ax 若a,c 同号,此方程没有实数根 C 方程1162-=xx 是一元二次方程 D 方程02222=+-x x 没有数学根 16、若关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则k 的取值范围是( B )A 、k >﹣1B 、k >﹣1且k≠0C 、k <1D 、k <1且k≠017、下列一元二次方程中,两根之和为2的是( D )A 、x 2﹣x+2=0B 、x 2﹣2x+2=0C 、x 2﹣x ﹣2=0D 、2x 2﹣4x+1=018、关于x 的一元二次方程(m+1)x 2+x+m 2﹣2m ﹣3=0有一根是0,则m 的值是( D )A 、m=3或m=﹣1B 、m=﹣3或m=1C 、m=﹣1D 、m=319、关于未知数x 的方程ax 2+4x ﹣1=0只有正实数根,则a 的取值范围为 ( A )A 、﹣4≤a≤0B 、﹣4≤a <0C 、﹣4<a≤0D 、﹣4<a <020、已知a 、β是方程x 2﹣2x ﹣4=0的两个实数根,则a 3+8β+6的值为 ( D )A 、﹣1B 、2C 、22D 、3021、某厂一月份生产某机器100台,计划二、三月份共生产280台.设二、三月份每月的平均增长率为x ,根据题意列出的方程是(B )A 、100(1+x )2=280B 、100(1+x )+100(1+x )2=280C 、100(1﹣x )2=280D 、100+100(1+x )+100(1+x )2=280三、解方程1、09)23(42=-+x2、 22)13()12(-=+x3、22350x x --=4、06322=--x x5、x x 9)23(2=-6、 2)1()3(22=-++x x四、解答题1、证明:无论买m 取何值,方程08)5(2=-+-+m x m x 一定有两个不同的实数根。

【数学】培优一元二次方程辅导专题训练附答案解析

【数学】培优一元二次方程辅导专题训练附答案解析

一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1、x 2.(1)求k 的取值范围;(2)若x 1+x 2=1﹣x 1x 2,求k 的值.【答案】(1)12k ≤;(2)3k = 【解析】 试题分析:(1)方程有两个实数根,可得240b ac ∆=-≥,代入可解出k 的取值范围; (2)由韦达定理可知,()2121221,x x k x x k +=-=,列出等式,可得出k 的值. 试题解析:(1)∵Δ=4(k -1)2-4k 2≥0,∴-8k +4≥0,∴k ≤12; (2)∵x 1+x 2=2(k -1),x 1x 2=k 2,∴2(k -1)=1-k 2,∴k 1=1,k 2=-3.∵k ≤12,∴k =-3.2.解下列方程:(1)x 2﹣3x=1.(2)12(y+2)2﹣6=0. 【答案】(1)12313313,22x x +-== ;(2)12223,223y y =-+=-- 【解析】试题分析:(1)利用公式法求解即可;(2)利用直接开方法解即可;试题解析:解:(1)将原方程化为一般式,得x 2﹣3x ﹣1=0,∵b 2﹣4ac=13>0∴. ∴12313313,22x x +-==. (2)(y+2)2=12, ∴或,∴12223,223y y =-+=--3.已知为正整数,二次方程的两根为,求下式的值:【答案】【解析】由韦达定理,有,.于是,对正整数,有原式=4.解下列方程:(1)2x2-4x-1=0(配方法);(2)(x+1)2=6x+6.【答案】(1)x1=1+62x2=1-621=-1,x2=5.【解析】试题分析:(1)根据配方法解一元二次方程的方法,先移项,再加减一次项系数一半的平方,完成配方,再根据直接开平方法解方程即可;(2)根据因式分解法,先移项,再提公因式即可把方程化为ab=0的形式,然后求解即可.试题解析:(1)由题可得,x2-2x=12,∴x2-2x+1=32.∴(x-1)2=32.∴x-1=32±6 2.∴x1=1+62,x2=1-62.(2)由题可得,(x+1)2-6(x+1)=0,∴(x+1)(x+1-6)=0.∴x+1=0或x+1-6=0.∴x1=-1,x2=5.5.已知两条线段长分别是一元二次方程28120x x-+=的两根,(1)解方程求两条线段的长。

【数学】数学 一元二次方程的专项 培优易错试卷练习题含答案解析

【数学】数学 一元二次方程的专项 培优易错试卷练习题含答案解析

一、一元二次方程 真题与模拟题分类汇编(难题易错题) 1.已知关于x 的一元二次方程x 2﹣x+a ﹣1=0. (1)当a=﹣11时,解这个方程;(2)若这个方程有两个实数根x 1,x 2,求a 的取值范围;(3)若方程两个实数根x 1,x 2满足[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,求a 的值. 【答案】(1)123,4x x =-=(2)54a ≤(3)-4 【解析】分析:(1)根据一元二次方程的解法即可求出答案; (2)根据判别式即可求出a 的范围; (3)根据根与系数的关系即可求出答案.详解:(1)把a =﹣11代入方程,得x 2﹣x ﹣12=0,(x +3)(x ﹣4)=0,x +3=0或x ﹣4=0,∴x 1=﹣3,x 2=4;(2)∵方程有两个实数根12x x ,,∴△≥0,即(﹣1)2﹣4×1×(a ﹣1)≥0,解得54a ≤:; (3)∵12x x ,是方程的两个实数根,222211221122101011x x a x x a x x a x x a -+-=-+-=∴-=--=-,,,.∵[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,∴221122229x x x x ⎡⎤⎡⎤+-+-=⎣⎦⎣⎦,把22112211x x a x x a -=--=-, 代入,得:[2+a ﹣1][2+a ﹣1]=9,即(1+a )2=9,解得:a =﹣4,a =2(舍去),所以a 的值为﹣4.点睛:本题考查了一元二次方程,解题的关键是熟练运用判别式以及根与系数的关系.2.“父母恩深重,恩怜无歇时”,每年5月的第二个星期日即为母亲节,节日前夕巴蜀中学学生会计划采购一批鲜花礼盒赠送给妈妈们.(1)经过和花店卖家议价,可在原标价的基础上打八折购进,若在花店购买80个礼盒最多花费7680元,请求出每个礼盒在花店的最高标价;(用不等式解答)(2)后来学生会了解到通过“大众点评”或“美团”同城配送会在(1)中花店最高售价的基础上降价25%,学生会计划在这两个网站上分别购买相同数量的礼盒,但实际购买过程中,“大众点评”网上的购买价格比原有价格上涨52m %,购买数量和原计划一样:“美团”网上的购买价格比原有价格下降了920m 元,购买数量在原计划基础上增加15m %,最终,在两个网站的实际消费总额比原计划的预算总额增加了152m %,求出m 的值. 【答案】(1)120;(2)20.试题分析:(1)本题介绍两种解法:解法一:设标价为x 元,列不等式为0.8x •80≤7680,解出即可;解法二:根据单价=总价÷数量先求出1个礼盒最多花费,再除以折扣可求出每个礼盒在花店的最高标价;(2)先假设学生会计划在这两个网站上分别购买的礼盒数为a 个礼盒,表示在“大众点评”网上的购买实际消费总额:120a (1﹣25%)(1+52m %),在“美团”网上的购买实际消费总额:a [120(1﹣25%)﹣920m ](1+15m %);根据“在两个网站的实际消费总额比原计划的预算总额增加了152m %”列方程解出即可. 试题解析:(1)解:解法一:设标价为x 元,列不等式为0.8x •80≤7680,x ≤120; 解法二:7680÷80÷0.8=96÷0.8=120(元). 答:每个礼盒在花店的最高标价是120元;(2)解:假设学生会计划在这两个网站上分别购买的礼盒数为a 个礼盒,由题意得:120×0.8a (1﹣25%)(1+52m %)+a [120×0.8(1﹣25%)﹣920m ](1+15m %)=120×0.8a(1﹣25%)×2(1+ 152m %),即72a (1+ 52m %)+a (72﹣ 920m )(1+15m %)=144a (1+152m %),整理得:0.0675m 2﹣1.35m =0,m 2﹣20m =0,解得:m 1=0(舍),m 2=20.答:m 的值是20.点睛:本题是一元二次方程的应用,第二问有难度,正确表示出“大众点评”或“美团”实际消费总额是解题关键.3.已知关于x 的一元二次方程()220x m x m -++=(m 为常数)(1)求证:不论m 为何值,方程总有两个不相等的实数根; (2)若方程有一个根是2,求m 的值及方程的另一个根. 【答案】(1)见解析;(2) 即m 的值为0,方程的另一个根为0. 【解析】 【分析】(1)可用根的判别式,计算判别式得到△=(m+2)2−4×1⋅m=m 2+4>0,则方程有两个不相等实数解,于是可判断不论m 为何值,方程总有两个不相等的实数根; (2)设方程的另一个根为t ,利用根与系数的关系得到2+t=21m + ,2t=m,最终解出关于t 和m 的方程组即可.(1)证明:△=(m+2)2−4×1⋅m=m2+4,∵无论m为何值时m2≥0,∴m2+4≥4>0,即△>0,所以无论m为何值,方程总有两个不相等的实数根.(2)设方程的另一个根为t,()220x m x m-++=根据题意得2+t=21m+,2t=m,解得t=0,所以m=0,即m的值为0,方程的另一个根为0.【点睛】本题考查根的判别式和根于系数关系,对于问题(1)可用根的判别式进行判断,在判断过程中注意对△的分析,在分析时可借助平方的非负性;问题(2)可先设另一个根为t,用根于系数关系列出方程组,在求解.4.已知关于x的一元二次方程有两个实数x2+2x+a﹣2=0,有两个实数根x1,x2.(1)求实数a的取值范围;(2)若x12x22+4x1+4x2=1,求a的值.【答案】(1)a≤3;(2)a=﹣1.【解析】试题分析:(1)由根的个数,根据根的判别式可求出a的取值范围;(2)根据一元二次方程根与系数的关系,代换求值即可得到a的值.试题解析:(1)∵方程有两个实数根,∴△≥0,即22﹣4×1×(a﹣2)≥0,解得a≤3;(2)由题意可得x1+x2=﹣2,x1x2=a﹣2,∵x12x22+4x1+4x2=1,∴(a﹣2)2﹣8=1,解得a=5或a=﹣1,∵a≤3,∴a=﹣1.5.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.【答案】(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元. 【解析】 【分析】(1)设每个月生产成本的下降率为x ,根据2月份、3月份的生产成本,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论. 【详解】(1)设每个月生产成本的下降率为x , 根据题意得:400(1﹣x )2=361,解得:x 1=0.05=5%,x 2=1.95(不合题意,舍去). 答:每个月生产成本的下降率为5%; (2)361×(1﹣5%)=342.95(万元),答:预测4月份该公司的生产成本为342.95万元. 【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.6.已知关于x 的方程(x-3)(x-2)-p 2=0.(1)求证:无论p 取何值时,方程总有两个不相等的实数根;(2)设方程两实数根分别为x 1、x 2,且满足x 12+x 22=3 x 1x 2,求实数p 的值. 【答案】(1)详见解析;(2)p=±1. 【解析】 【分析】(1)先把方程化成一般形式,再计算根的判别式,判定△>0,即可得到总有两个不相等的实数根;(2)根据一元二次方程根与系数的关系可得两根和与两根积,再把2212123x x x x +=变形,化成和与乘积的形式,代入计算,得到一个关于p 的一元二次方程,解方程即可求解. 【详解】证明:(1)(x ﹣3)(x ﹣2)﹣p 2=0, x 2﹣5x+6﹣p 2=0,△=(﹣5)2﹣4×1×(6﹣p 2)=25﹣24+4p 2=1+4p 2, ∵无论p 取何值时,总有4p 2≥0, ∴1+4p 2>0,∴无论p 取何值时,方程总有两个不相等的实数根; (2)x 1+x 2=5,x 1x 2=6﹣p 2,∵2212123x x x x +=, ∴(x 1+x 2)2﹣2x 1x 2=3x 1x 2, ∴52=5(6﹣p 2),∴p=±1.考点:根的判别式;根与系数的关系.7.已知关于x的方程x2﹣(k+3)x+3k=0.(1)若该方程的一个根为1,求k的值;(2)求证:不论k取何实数,该方程总有两个实数根.【答案】(1)k=1;(2)证明见解析.【解析】【分析】(1)把x=1代入方程,即可求得k的值;(2)求出根的判别式是非负数即可.【详解】(1)把x=1代入方程x2﹣(k+3)x+3k=0得1﹣(k﹣3)+3k=0,1﹣k﹣3+3k=0解得k=1;(2)证明:1,(3),3==-+=a b k c k24∆=-b ac∴△=(k+3)2﹣4•3k =(k﹣3)2≥0,所以不论k取何实数,该方程总有两个实数根.【点睛】本题考查了一元二次方程的解以及根的判别式,熟练掌握相关知识点是解题关键.8.阅读下面的材料,回答问题:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.(1)在由原方程得到方程①的过程中,利用法达到的目的,体现了数学的转化思想.(2)解方程(x2+x)2﹣4(x2+x)﹣12=0.【答案】(1)换元,降次;(2)x1=﹣3,x2=2.【解析】【详解】解:(1)在由原方程得到方程①的过程中,利用换元法达到降次的目的,体现了数学的转化思想;(2)设x2+x=y,原方程可化为y2﹣4y﹣12=0,解得y1=6,y2=﹣2.由x2+x=6,得x1=﹣3,x2=2.由x2+x=﹣2,得方程x2+x+2=0,b2﹣4ac=1﹣4×2=﹣7<0,此时方程无实根.所以原方程的解为x1=﹣3,x2=2.9.关于x的一元二次方程x2﹣(m﹣3)x﹣m2=0.(1)证明:方程总有两个不相等的实数根;(2)设这个方程的两个实数根为x1,x2,且|x1|=|x2|﹣2,求m的值及方程的根.【答案】(1)证明见解析;(2)x1=﹣,x2=﹣1或【解析】试题分析:(1)根据一元二次方程的判别式△=b2﹣4ac的结果判断即可,当△>0时,有两个不相等的实数根,当△=0时,有两个相等的实数根,当△<0时,方程没有实数根;(2)根据一元二次方程根与系数的关系x1+x2=-ba,x1•x2=ca,表示出两根的关系,得到x1,x2异号,然后根据绝对值的性质和两根的关系分类讨论即可求解.试题解析:(1)一元二次方程x2﹣(m﹣3)x﹣m2=0,∵a=1,b=﹣(m﹣3)=3﹣m,c=﹣m2,∴△=b2﹣4ac=(3﹣m)2﹣4×1×(﹣m2)=5m2﹣6m+9=5(m﹣35)2+365,∴△>0,则方程有两个不相等的实数根;(2)∵x1•x2=ca=﹣m2≤0,x1+x2=m﹣3,∴x1,x2异号,又|x1|=|x2|﹣2,即|x1|﹣|x2|=﹣2,若x1>0,x2<0,上式化简得:x1+x2=﹣2,∴m﹣3=﹣2,即m=1,方程化为x2+2x﹣1=0,解得:x1=﹣x2=﹣1,若x1<0,x2>0,上式化简得:﹣(x1+x2)=﹣2,∴x1+x2=m﹣3=2,即m=5,方程化为x2﹣2x﹣25=0,解得:x1=1,x210.若两个一次函数的图象与x轴交于同一点,则称这两个函数为一对“x牵手函数”,这个交点为“x牵手点”.(1)一次函数y=x﹣1与x轴的交点坐标为;一次函数y=ax+2与一次函数y=x﹣1为一对“x牵手函数”,则a=;(2)已知一对“x牵手函数”:y=ax+1与y=bx﹣1,其中a,b为一元二次方程x2﹣kx+k﹣4=0的两根,求它们的“x牵手点”.【答案】(1)(1,0),a=﹣2;(2)“x牵手点”为(12-,0)或(12,0).【解析】【分析】(1)根据x轴上点的坐标特征可求一次函数y=x-1与x轴的交点坐标;把一次函数y=x-1与x轴的交点坐标代入一次函数y=ax+2可求a的值;(2)根据“x牵手函数”的定义得到a+b=0,根据根与系数的关系求得k=0,可得方程x2-4=0,解得x1=2,x2=-2,再分两种情况:①若a=2,b=-2,②若a=-2,b=2,进行讨论可求它们的“x牵手点”.【详解】解:(1)当y=0时,即x﹣1=0,所以x=1,即一次函数y=x﹣1与x轴的交点坐标为(1,0),由于一次函数y=ax+2与一次函数y=x﹣1为一对“x牵手函数”,所以0=a+2,解得a=﹣2;(2)∵y=ax+1与y=bx﹣1为一对“x牵手函数”∴11a b-=,∴a+b=0.∵a,b为x2﹣kx+k﹣4=0的两根∴a+b=k=0,∴x2﹣4=0,∴x1=2,x2=﹣2.①若a=2,b=﹣2则y=2x+1与y=﹣2x﹣1的“x牵手点”为1,02⎛⎫- ⎪⎝⎭;②若a=﹣2,b=2则y=﹣2x+1与y=2x﹣1的“x牵手点”为(12,0 )∴综上所述,“x牵手点”为1,02⎛⎫- ⎪⎝⎭或(12,0)【点睛】本题考查了根与系数的关系、一次函数的性质和一次函数图象上点的坐标特征的运用.。

中考数学一元二次方程(大题培优 易错 难题)

中考数学一元二次方程(大题培优 易错 难题)

一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.解下列方程:(1)x 2﹣3x=1.(2)12(y+2)2﹣6=0. 【答案】(1)12313313,22x x +-== ;(2)12223,223y y =-+=-- 【解析】试题分析:(1)利用公式法求解即可;(2)利用直接开方法解即可; 试题解析:解:(1)将原方程化为一般式,得x 2﹣3x ﹣1=0,∵b 2﹣4ac=13>0∴. ∴12313313,22x x +-==. (2)(y+2)2=12, ∴或,∴12223,223y y =-+=--2.解方程:(2x+1)2=2x+1.【答案】x=0或x=12-. 【解析】试题分析:根据因式分解法解一元二次方程的解法,直接先移项,再利用ab=0的关系求解方程即可.试题解析:∵(2x+1)2﹣(2x+1)=0,∴(2x+1)(2x+1﹣1)=0,即2x (2x+1)=0,则x=0或2x+1=0,解得:x=0或x=﹣12.3.已知x 1、x 2是关于x 的﹣元二次方程(a ﹣6)x 2+2ax+a=0的两个实数根.(1)求a 的取值范围;(2)若(x 1+1)(x 2+1)是负整数,求实数a 的整数值.【答案】(1)a≥0且a≠6;(2)a 的值为7、8、9或12.【解析】【分析】(1)根据一元二次方程的定义及一元二次方程的解与判别式之间的关系解答即可;(2)根据根与系数的关系可得x1+x2=﹣26aa+,x1x2=6aa+,由(x1+1)(x2+1)=x1x2+x1+x2+1=﹣66a-是是负整数,即可得66a-是正整数.根据a是整数,即可求得a的值2.【详解】(1)∵原方程有两实数根,∴,∴a≥0且a≠6.(2)∵x1、x2是关于x的一元二次方程(a﹣6)x2+2ax+a=0的两个实数根,∴x1+x2=﹣,x1x2=,∴(x1+1)(x2+1)=x1x2+x1+x2+1=﹣+1=﹣.∵(x1+1)(x2+1)是负整数,∴﹣是负整数,即是正整数.∵a是整数,∴a﹣6的值为1、2、3或6,∴a的值为7、8、9或12.【点睛】本题考查了根的判别式和根与系数的关系,能根据根的判别式和根与系数的关系得出关于a的不等式是解此题的关键.4.小王经营的网店专门销售某种品牌的一种保温杯,成本为30元/只,每天销售量y (只)与销售单价x(元)之间的关系式为y=﹣10x+700(40≤x≤55),求当销售单价为多少元时,每天获得的利润最大?最大利润是多少元?【答案】当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元【解析】【分析】表示出一件的利润为(x﹣30),根据总利润=单件利润乘以销售数量,整理成顶点式即可解题.【详解】设每天获得的利润为w元,根据题意得:w=(x﹣30)y=(x﹣30)(﹣10x+700)=﹣10x2+1000x﹣21000=﹣10(x ﹣50)2+4000.∵a=﹣10<0,∴当x=50时,w取最大值,最大值为4000.答:当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元.【点睛】本题考查了一元二次函数的实际应用,中等难度,熟悉函数的性质是解题关键.5.某社区决定把一块长50m ,宽30m 的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小形状都相同的矩形) ,空白区域为活动区,且四周的4个出口宽度相同,当绿化区较长边x 为何值时,活动区的面积达到21344m ?【答案】当13x m =时,活动区的面积达到21344m【解析】【分析】根据“活动区的面积=矩形空地面积﹣阴影区域面积”列出方程,可解答.【详解】解:设绿化区宽为y ,则由题意得502302x y -=-.即10y x =-列方程: 50304(10)1344x x ⨯--=解得13x =- (舍),213x =.∴当13x m =时,活动区的面积达到21344m【点睛】本题是一元二次方程的应用题,确定等量关系是关键,本题计算量大,要细心.6.已知关于x 的方程mx 2+(3﹣m)x ﹣3=0(m 为实数,m≠0).(1) 试说明:此方程总有两个实数根.(2) 如果此方程的两个实数根都为正整数,求整数m 的值.【答案】(1)()2243b ac m -=+≥0;(2)m=-1,-3.【解析】分析: (1)先计算判别式得到△=(m -3)2-4m •(-3)=(m +3)2,利用非负数的性质得到△≥0,然后根据判别式的意义即可得到结论;(2)利用公式法可求出x 1=3m,x 2=-1,然后利用整除性即可得到m 的值. 详解: (1)证明:∵m ≠0,∴方程mx 2+(m -3)x -3=0(m ≠0)是关于x 的一元二次方程,∴△=(m -3)2-4m ×(-3)=(m +3)2,∵(m +3)2≥0,即△≥0,∴方程总有两个实数根;(2)解:∵x =()()332m m m --±+ , ∴x 1=-3m,x 2=1, ∵m 为正整数,且方程的两个根均为整数,∴m =-1或-3.点睛: 本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了解一元二次方程.7.已知关于x 的方程(x-3)(x-2)-p 2=0.(1)求证:无论p 取何值时,方程总有两个不相等的实数根;(2)设方程两实数根分别为x 1、x 2,且满足x 12+x 22=3 x 1x 2,求实数p 的值.【答案】(1)详见解析;(2)p=±1.【解析】【分析】(1)先把方程化成一般形式,再计算根的判别式,判定△>0,即可得到总有两个不相等的实数根;(2)根据一元二次方程根与系数的关系可得两根和与两根积,再把2212123x x x x +=变形,化成和与乘积的形式,代入计算,得到一个关于p 的一元二次方程,解方程即可求解.【详解】证明:(1)(x ﹣3)(x ﹣2)﹣p 2=0,x 2﹣5x+6﹣p 2=0,△=(﹣5)2﹣4×1×(6﹣p 2)=25﹣24+4p 2=1+4p 2,∵无论p 取何值时,总有4p 2≥0,∴1+4p 2>0,∴无论p 取何值时,方程总有两个不相等的实数根;(2)x 1+x 2=5,x 1x 2=6﹣p 2,∵2212123x x x x +=, ∴(x 1+x 2)2﹣2x 1x 2=3x 1x 2,∴52=5(6﹣p 2),∴p=±1.考点:根的判别式;根与系数的关系.8.阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现: 当a >0,b >0时:∵(a b -)2=a ﹣2ab +b ≥0∴a +b ≥2ab ,当且仅当a =b 时取等号.请利用上述结论解决以下问题:(1)请直接写出答案:当x >0时,x +1x 的最小值为 .当x <0时,x +1x 的最大值为 ; (2)若y =27101x x x +++,(x >﹣1),求y 的最小值; (3)如图,四边形ABCD 的对角线AC 、BD 相交于点O ,△AOB 、△COD 的面积分别为4和9,求四边形ABCD 面积的最小值.【答案】(1)2;﹣2.(2)y 的最小值为9;(3)四边形ABCD 面积的最小值为25.【解析】【分析】(1)当x >0时,按照公式a +b ab a =b 时取等号)来计算即可;当x <0时,﹣x >0,1x->0,则也可以按公式a +b ab a =b 时取等号)来计算; (2)将y 27101x x x ++=+的分子变形,分别除以分母,展开,将含x 的项用题中所给公式求得最小值,再加上常数即可;(3)设S △BOC =x ,已知S △AOB =4,S △COD =9,由三角形面积公式可知:S △BOC :S △COD =S △AOB :S △AOD ,用含x 的式子表示出S △AOD ,再表示出四边形的面积,根据题中所给公式求得最小值,加上常数即可.【详解】(1)当x >0时,x 1x +≥1x x⋅=2; 当x <0时,﹣x >0,1x ->0.∵﹣x 1x -≥1x x ⎛⎫-⋅-= ⎪⎝⎭2,∴则x 1x +=-(﹣x 1x -)≤﹣2,∴当x >0时,x 1x +的最小值为 2.当x <0时,x 1x +的最大值为﹣2. 故答案为:2,﹣2.(2)∵x >﹣1,∴x +1>0,∴y 27101x x x ++=+()2(1)5141x x x ++++=+=(x +1)41x +++5=4+5=9,∴y 的最小值为9. (3)设S △BOC =x ,已知S △AOB =4,S △COD =9 则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD ,∴x :9=4:S △AOD ,∴S △AOD 36x =,∴四边形ABCD 面积=4+9+x 36x +≥=25. 当且仅当x =6时,取等号,∴四边形ABCD 面积的最小值为25.【点睛】本题考查了配方法在最值问题中的应用.对不能直接应用公式的,需要正确变形才可以应用.9.我市茶叶专卖店销售某品牌茶叶,其进价为每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后来经过市场调查发现,单价每降低 10 元,则平均每周的销售量可增加 40 千克,若该专卖店销售这种品牌茶叶要想平均每周获利 41600 元,请回答: (1)每千克茶叶应降价多少元?(2)在平均每周获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的 几折出售?【答案】(1)每千克茶叶应降价30元或80元;(2)该店应按原售价的8折出售.【解析】【分析】(1)设每千克茶叶应降价x 元,利用销售量×每件利润=41600元列出方程求解即可; (2)为了让利于顾客因此应下降价80元,求出此时的销售单价即可确定几折.【详解】(1)设每千克茶叶应降价x 元.根据题意,得: (400﹣x ﹣240)(200+10x ×40)=41600. 化简,得:x 2﹣10x +240=0.解得:x 1=30,x 2=80.答:每千克茶叶应降价30元或80元.(2)由(1)可知每千克茶叶可降价30元或80元.因为要尽可能让利于顾客,所以每千克茶叶某应降价80元.此时,售价为:400﹣80=320(元),320100%80% 400⨯=.答:该店应按原售价的8折出售.【点睛】本题考查了一元二次方程的应用,解题的关键是根据题目中的等量关系列出方程.10.若两个一次函数的图象与x轴交于同一点,则称这两个函数为一对“x牵手函数”,这个交点为“x牵手点”.(1)一次函数y=x﹣1与x轴的交点坐标为;一次函数y=ax+2与一次函数y=x﹣1为一对“x牵手函数”,则a=;(2)已知一对“x牵手函数”:y=ax+1与y=bx﹣1,其中a,b为一元二次方程x2﹣kx+k﹣4=0的两根,求它们的“x牵手点”.【答案】(1)(1,0),a=﹣2;(2)“x牵手点”为(12-,0)或(12,0).【解析】【分析】(1)根据x轴上点的坐标特征可求一次函数y=x-1与x轴的交点坐标;把一次函数y=x-1与x轴的交点坐标代入一次函数y=ax+2可求a的值;(2)根据“x牵手函数”的定义得到a+b=0,根据根与系数的关系求得k=0,可得方程x2-4=0,解得x1=2,x2=-2,再分两种情况:①若a=2,b=-2,②若a=-2,b=2,进行讨论可求它们的“x牵手点”.【详解】解:(1)当y=0时,即x﹣1=0,所以x=1,即一次函数y=x﹣1与x轴的交点坐标为(1,0),由于一次函数y=ax+2与一次函数y=x﹣1为一对“x牵手函数”,所以0=a+2,解得a=﹣2;(2)∵y=ax+1与y=bx﹣1为一对“x牵手函数”∴11a b-=,∴a+b=0.∵a,b为x2﹣kx+k﹣4=0的两根∴a+b=k=0,∴x2﹣4=0,∴x1=2,x2=﹣2.①若a=2,b=﹣2则y=2x+1与y=﹣2x﹣1的“x牵手点”为1,02⎛⎫- ⎪⎝⎭;②若a=﹣2,b=2则y=﹣2x+1与y=2x﹣1的“x牵手点”为(12,0 )∴综上所述,“x牵手点”为1,02⎛⎫- ⎪⎝⎭或(12,0)【点睛】本题考查了根与系数的关系、一次函数的性质和一次函数图象上点的坐标特征的运用.。

一元二次方程难题、易错题

一元二次方程难题、易错题

一元二次方程已知:关于x 的方程23(1)230mx m x m --+-=.()032132=-+--m x m mx 求证:m 取任何实数时,方程总有实数根;(2010年广东省广州市)已知关于x 的一元二次方程)0(012≠=++a bx ax 有两个相等的实数根,求4)2(222-+-b a ab 的值。

2.(2009年广东中山)已知:关于x 的方程2210x kx +-=(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是1-,求另一个根及k 值.3.(2009年重庆江津区)已知a、b、c分别是△ABC 的三边,其中a=1,c=4,且关于x 的方程042=+-b x x 有两个相等的实数根,试判断△ABC 的形状.例1.当a 为何值时,关于x 的一元二次方程01)12(22=+-+x a x a 有两个实数根.例 3.已知关于x 的一元二次方程0112)21(2=-+--x k x k 有两个不相等的实数根,求k 的取值范围.例4.关于x 的方程0132=-+x kx 有实数根,则k 的取值范围是( ) (A)49-≤k (B)049≠-≥k k 且 (C)49-≥k (D)049≠->k k 且 例:222()5()60x x x x ---+=,求x 的值例1、下列方程中是关于x 的一元二次方程的是( )A ()()12132+=+x xB 02112=-+x xC 02=++c bx axD 1222+=+x x x变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。

例2、方程()0132=+++mx xm m 是关于x 的一元二次方程,则m 的值为 。

★★3、若方程()112=•+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。

★★★4、若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是( )A.m=n=2B.m=2,n=1C.n=2,m=1D.m=n=1例1、已知322-+y y 的值为2,则1242++y y 的值为 。

一元二次方程难题、易错题(汇编)

一元二次方程难题、易错题(汇编)

一元二次方程已知:关于x 的方程23(1)230mx m x m --+-=.()032132=-+--m x m mx求证:m 取任何实数时,方程总有实数根;(2010年广东省广州市)已知关于x 的一元二次方程)0(012≠=++a bx ax 有两个相等的实数根,求4)2(222-+-b a ab 的值。

2.(2009年广东中山)已知:关于的方程(1)求证:方程有两个不相等的实数根; (2)若方程的一个根是,求另一个根及值.x 2210x kx +-=1-k3.(2009年重庆江津区)已知a、b、c分别是△ABC 的三边,其中a=1,c=4,且关于x 的方程有两个相等的实数根,试判断△ABC 的形状.例1.当a 为何值时,关于x 的一元二次方程01)12(22=+-+x a x a 有两个实数根.例3.已知关于x 的一元二次方程0112)21(2=-+--x k x k 有两个不相等的实数根,求k 的取值范围.例4.关于x 的方程0132=-+x kx 有实数根,则k 的取值范围是( )(A)49-≤k (B)049≠-≥k k 且 (C)49-≥k (D)049≠->k k 且例:222()5()60x x x x ---+=,求x 的值例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132+=+x x B02112=-+xxC 02=++c bx axD 1222+=+x x x042=+-b x x变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。

例2、方程()0132=+++mx x m m是关于x 的一元二次方程,则m 的值为 。

★★3、若方程()112=∙+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。

★★★4、若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是( )A.m=n=2B.m=2,n=1C.n=2,m=1D.m=n=1例1、已知322-+y y 的值为2,则1242++y y 的值为 。

人教备战中考数学一元二次方程(大题培优 易错 难题)附详细答案

人教备战中考数学一元二次方程(大题培优 易错 难题)附详细答案

一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.解下列方程:(1)x 2﹣3x=1.(2)12(y+2)2﹣6=0. 【答案】(1)12313313,22x x +-== ;(2)12223,223y y =-+=-- 【解析】试题分析:(1)利用公式法求解即可;(2)利用直接开方法解即可;试题解析:解:(1)将原方程化为一般式,得x 2﹣3x ﹣1=0,∵b 2﹣4ac=13>0∴. ∴12313313,22x x +-==. (2)(y+2)2=12, ∴或,∴12223,223y y =-+=--2.已知关于x 的方程x 2﹣(2k +1)x +k 2+1=0.(1)若方程有两个不相等的实数根,求k 的取值范围;(2)若方程的两根恰好是一个矩形两邻边的长,且k =2,求该矩形的对角线L 的长.【答案】(1)k >34;(215 【解析】【分析】(1)根据关于x 的方程x 2-(2k +1)x +k 2+1=0有两个不相等的实数根,得出△>0,再解不等式即可;(2)当k=2时,原方程x 2-5x+5=0,设方程的两根是m 、n ,则矩形两邻边的长是m 、n ,利用根与系数的关系得出m+n=5,mn=522m n +,利用完全平方公式进行变形即可求得答案.【详解】(1)∵方程x 2-(2k +1)x +k 2+1=0有两个不相等的实数根,∴Δ=[-(2k +1)]2-4×1×(k 2+1)=4k -3>0,∴k >34;(2)当k =2时,原方程为x 2-5x +5=0,设方程的两个根为m ,n ,∴m +n =5,mn =5,∴==. 【点睛】本题考查了根的判别式、根与系数的关系、矩形的性质等,一元二次方程根的情况与判别式△的关系:(1)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.3.计算题(1)先化简,再求值:21x x -÷(1+211x -),其中x=2017. (2)已知方程x 2﹣2x+m ﹣3=0有两个相等的实数根,求m 的值.【答案】(1)2018;(2)m=4【解析】分析:(1)根据分式的运算法则和运算顺序,先算括号里面的,再算除法,注意因式分解的作用;(2)根据一元二次方程的根的判别式求解即可.详解:(1)21x x -÷(1+211x -) =2221111x x x x -+÷-- =()()22111x x x x x+-⋅- =x+1,当x=2017时,原式=2017+1=2018(2)解:∵方程x 2﹣2x+m ﹣3=0有两个相等的实数根,∴△=(﹣2)2﹣4×1×(m ﹣3)=0,解得,m=4点睛:此题主要考查了分式的混合运算和一元二次方程的根的判别式,关键是熟记分式方程的运算顺序和法则,注意通分约分的作用.4.如图,在Rt ABC 中,90B =∠,10AC cm =,6BC cm =,现有两点P 、Q 的分别从点A 和点B 同时出发,沿边AB ,BC 向终点C 移动.已知点P ,Q 的速度分别为2/cm s ,1/cm s ,且当其中一点到达终点时,另一点也随之停止移动,设P ,Q 两点移动时间为xs .问是否存在这样的x ,使得四边形APQC 的面积等于216cm ?若存在,请求出此时x 的值;若不存在,请说明理由.【答案】假设不成立,四边形APQC 面积的面积不能等于216cm ,理由见解析【解析】【分析】根据题意,列出BQ 、PB 的表达式,再列出方程,判断根的情况.【详解】解:∵90B ∠=,10AC =,6BC =,∴8AB =.∴BQ x =,82PB x =-;假设存在x 的值,使得四边形APQC 的面积等于216cm , 则()1168821622x x ⨯⨯--=, 整理得:2480x x -+=,∵1632160=-=-<,∴假设不成立,四边形APQC 面积的面积不能等于216cm .【点睛】本题考查了一元二次方程的应用,熟练掌握方程根的判别方法、理解方程的意义是本题的解题关键.5.已知关于x 的一元二次方程()2211204x m x m +++-=. ()1若此方程有两个实数根,求m 的最小整数值;()2若此方程的两个实数根为1x ,2x ,且满足22212121184x x x x m ++=-,求m 的值. 【答案】(1)m 的最小整数值为4-;(2)3m =【解析】【分析】(1)根据方程有两个实数根得0∆≥,列式即可求解,(2)利用韦达定理即可解题.【详解】(1)解:()22114124m m ⎛⎫∆=+-⨯⨯- ⎪⎝⎭22218m m m =++-+29m =+方程有两个实数根0∴∆≥,即290m +≥92m ∴≥- ∴ m 的最小整数值为4-(2)由根与系数的关系得:()121x x m +=-+,212124x x m =- 由22212121184x x x x m ++=-得:()22211121844m m m ⎛⎫⎡⎤-+--=- ⎪⎣⎦⎝⎭13m ∴=,25m =- 92m ≥- 3m ∴=【点睛】本题考查了根的判别式和韦达定理,中等难度,熟悉韦达定理是解题关键.6.阅读下面的例题,范例:解方程x 2﹣|x|﹣2=0,解:(1)当x≥0时,原方程化为x 2﹣x ﹣2=0,解得:x 1=2,x 2=﹣1(不合题意,舍去). (2)当x <0时,原方程化为x 2+x ﹣2=0,解得:x 1=﹣2,x 2=1(不合题意,舍去). ∴原方程的根是x 1=2,x 2=﹣2请参照例题解方程x 2﹣|x ﹣10|﹣10=0.【答案】x 1=4,x 2=﹣5.【解析】【分析】分为两种情况:当x≥10时,原方程化为x 2﹣x=0,当x <10时,原方程化为x 2+x ﹣20=0,分别求出方程的解即可.【详解】当x≥10时,原方程化为x 2﹣x+10﹣10=0,解得x 1=0(不合题意,舍去),x 2=1(不合题意,舍去);当x <10时,原方程化为x 2+x ﹣20=0,解得x 3=4,x 4=﹣5,故原方程的根是x 1=4,x 2=﹣5.【点睛】本题考查了解一元二次方程——因式分解法,解此题的关键是能正确去掉绝对值符号.7.某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?【答案】(1)2000;(2)2米【解析】【分析】(1)设未知数,根据题目中的的量关系列出方程;(2)可以通过平移,也可以通过面积法,列出方程【详解】解:(1)设该项绿化工程原计划每天完成x米2,根据题意得:4600022000x-﹣46000220001.5x-= 4解得:x=2000,经检验,x=2000是原方程的解;答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为x米,根据题意得,(20﹣3x)(8﹣2x)=56解得:x=2或x=263(不合题意,舍去).答:人行道的宽为2米.8.如图,在△ABC中,∠B=90°,AB=6 cm,BC=8 cm,若点P从点A沿AB边向B点以1 cm/s的速度移动,点Q从B点沿BC边向点C以2 cm/s的速度移动,两点同时出发.(1)问几秒后,△PBQ的面积为8cm²?(2)出发几秒后,线段PQ的长为42cm ?(3)△PBQ的面积能否为10 cm2?若能,求出时间;若不能,请说明理由.【答案】(1) 2或4秒2 cm;(3)见解析.【解析】【分析】(1)由题意,可设P、Q经过t秒,使△PBQ的面积为8cm2,则PB=6-t,BQ=2t,根据三角形面积的计算公式,S △PBQ=12BP×BQ ,列出表达式,解答出即可; (2)设经过x 秒后线段PQ 的长为42cm ,依题意得AP=x ,BP=6-x ,BQ=2x ,利用勾股定理列方程求解;(3)将△PBQ 的面积表示出来,根据△=b 2-4ac 来判断.【详解】(1)设P ,Q 经过t 秒时,△PBQ 的面积为8 cm 2,则PB =6-t ,BQ =2t ,∵∠B =90°,∴12(6-t)× 2t =8, 解得t 1=2,t 2=4, ∴当P ,Q 经过2或4秒时,△PBQ 的面积为8 cm 2;(2)设x 秒后,PQ =42 cm ,由题意,得(6-x)2+4x 2=32,解得x 1=25,x 2=2, 故经过25秒或2秒后,线段PQ 的长为42 cm ; (3)设经过y 秒,△PBQ 的面积等于10 cm 2,S △PBQ =12×(6-y)× 2y =10, 即y 2-6y +10=0, ∵Δ=b 2-4ac =36-4× 10=-4< 0,∴△PBQ 的面积不会等于10 cm 2.【点睛】本题考查了一元二次方程的应用,熟练的掌握一元二次方程的应用是本题解题的关键.9.如图,在四边形 ABCD 中, AD //BC , C 90∠=︒ , BC 16=, DC 12= , AD 21= ,动点P 从点D 出发,沿线段 DA 的方向以每秒2个单位长的速度运动;动点Q 从点 C 出发,在线段 CB 上以每秒1个单位长的速度向点 B 运动;点P ,Q 分别从点D ,C 同时出发,当点 P 运动到点 A 时,点Q 随之停止运动,设运动的时间为t 秒).(1)当 t 2=时,求 BPQ 的面积;(2)若四边形ABQP 为平行四边形,求运动时间 t . (3)当 t 为何值时,以 B 、P 、Q 为顶点的三角形是等腰三角形?【答案】(1)S 84=;(2)t 5= ;(3)7t 2=或163. 【解析】【分析】(1)过点P 作PM BC ⊥于M ,则PM=DC ,当t=2时,算出BQ ,求出面积即可;(2)当四边形ABQP 是平行四边形时,AP BQ =,即212t 16t -=-,解出即可;(3)以 B 、P 、Q 为顶点的三角形是等腰三角形,分三种情况,①PQ BQ =,②BP BQ =,③PB PQ =分别求出t 即可.【详解】解 :(1)过点P 作PM BC ⊥于M ,则四边形PDCM 为矩形.∴PM DC 12==,∵QB 16t =-,当t=2时,则BQ=14,则1S QB PM 2=⨯=12×14×12=84; (2)当四边形ABQP 是平行四边形时,AP BQ =, 即212t 16t -=-:解得:t 5=∴当t 5=时,四边形ABQP 是平行四边形.(3)由图可知,CM=PD=2t ,CQ=t ,若以B 、P 、Q 为顶点的三角形是等腰三角形,可以分为以下三种情况:①若PQ BQ =,在Rt PMQ 中,222PQ 12t =+,由22PQ BQ =得()2221216t t +=- 解得:7t 2= ; ②若BP BQ =,在Rt PMB 中,()222PB 16212t =-+,由22PB BQ ?=得()()222 1621216t t -+=- ,即2332t 1440t -+=,此时,()232431447040=--⨯⨯=-<△ ,所以此方程无解,所以BP BQ ≠ ;③若PB PQ =,由22PB PQ ?=得()2222 12162t 12t +=-+ ,得116 3t=,216t=(不合题意,舍去);综上所述,当7t2=或163时,以B、P、Q为顶点的三角形是等腰三角形.【点睛】本题是对四边形即可中动点问题的考查,熟练掌握动点中线段的表示、平行四边形和等腰三角形的性质及判断是解决本题的关键,难度适中.10.∵1.7×35=59.5,1.7×80=136<151∴这家酒店四月份用水量不超过m吨(或水费是按y=1.7x来计算的),五月份用水量超过m吨(或水费是按来计算的)则有151=1.7×80+(80-m)×即m2-80m+1500=0解得m1=30,m2=50.又∵四月份用水量为35吨,m1=30<35,∴m1=30舍去.∴m=50【解析】。

备战中考数学一元二次方程(大题培优 易错 难题)及答案解析

备战中考数学一元二次方程(大题培优 易错 难题)及答案解析

一、一元二次方程 真题与模拟题分类汇编(难题易错题) 1.关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1、x 2. (1)求k 的取值范围;(2)若x 1+x 2=1﹣x 1x 2,求k 的值.【答案】(1)12k ≤;(2)3k = 【解析】试题分析:(1)方程有两个实数根,可得240b ac ∆=-≥,代入可解出k 的取值范围; (2)由韦达定理可知,()2121221,x x k x x k +=-=,列出等式,可得出k 的值.试题解析:(1)∵Δ=4(k -1)2-4k 2≥0,∴-8k +4≥0,∴k ≤12; (2)∵x 1+x 2=2(k -1),x 1x 2=k 2,∴2(k -1)=1-k 2, ∴k 1=1,k 2=-3. ∵k ≤12,∴k =-3.2.使得函数值为零的自变量的值称为函数的零点.例如,对于函数1y x =-,令y=0,可得x=1,我们就说1是函数1y x =-的零点. 己知函数222(3)y x mx m =--+(m m 为常数).(1)当m =0时,求该函数的零点;(2)证明:无论m 取何值,该函数总有两个零点; (3)设函数的两个零点分别为1x 和2x ,且121114x x +=-,此时函数图象与x 轴的交点分 别为A 、B(点A 在点B 左侧),点M 在直线10y x =-上,当MA+MB 最小时,求直线AM 的函数解析式.【答案】(1)当m =0和 (2)见解析,(3)AM 的解析式为112y x =--. 【解析】 【分析】(1)根据题中给出的函数的零点的定义,将m=0代入y=x 2-2mx-2(m+3),然后令y=0即可解得函数的零点;(2)令y=0,函数变为一元二次方程,要想证明方程有两个解,只需证明△>0即可; (3)根据题中条件求出函数解析式进而求得A 、B 两点坐标,个、作点B 关于直线y=x-10的对称点B′,连接AB′,求出点B′的坐标即可求得当MA+MB 最小时,直线AM 的函数解析【详解】(1)当m =0时,该函数的零点为6和6-.(2)令y=0,得△=∴无论m 取何值,方程总有两个不相等的实数根.即无论m 取何值,该函数总有两个零点. (3)依题意有,由解得.∴函数的解析式为.令y=0,解得∴A(),B(4,0)作点B 关于直线10y x =-的对称点B’,连结AB’, 则AB’与直线10y x =-的交点就是满足条件的M 点.易求得直线10y x =-与x 轴、y 轴的交点分别为C (10,0),D (0,10). 连结CB’,则∠BCD=45° ∴BC=CB’=6,∠B’CD=∠BCD=45° ∴∠BCB’=90° 即B’(106-,)设直线AB’的解析式为y kx b =+,则20{106k b k b -+=+=-,解得112k b =-=-, ∴直线AB’的解析式为112y x =--, 即AM 的解析式为112y x =--.3.如图,在△ABC 中,AB =6cm ,BC =7cm ,∠ABC =30°,点P 从A 点出发,以1cm/s 的速度向B 点移动,点Q 从B 点出发,以2cm/s 的速度向C 点移动.如果P 、Q 两点同时出发,经过几秒后△PBQ 的面积等于4cm 2?【答案】经过2秒后△PBQ的面积等于4cm2.【解析】【分析】作出辅助线,过点Q作QE⊥PB于E,即可得出S△PQB=12×PB×QE,有P、Q点的移动速度,设时间为t秒时,可以得出PB、QE关于t的表达式,代入面积公式,即可得出答案.【详解】解:如图,过点Q作QE⊥PB于E,则∠QEB=90°.∵∠ABC=30°,∴2QE=QB.∴S△PQB=12•PB•QE.设经过t秒后△PBQ的面积等于4cm2,则PB=6﹣t,QB=2t,QE=t.根据题意,12•(6﹣t)•t=4.t2﹣6t+8=0.t2=2,t2=4.当t=4时,2t=8,8>7,不合题意舍去,取t=2.答:经过2秒后△PBQ的面积等于4cm2.【点睛】本题考查了一元二次方程的运用,注意对所求的值进行检验,对于不合适的值舍去.4.图1是李晨在一次课外活动中所做的问题研究:他用硬纸片做了两个三角形,分别为△ABC和△DEF,其中∠B=90°,∠A=45°,BC=,∠F=90°,∠EDF=30°, EF=2.将△DEF 的斜边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).(1)请回答李晨的问题:若CD=10,则AD= ;(2)如图2,李晨同学连接FC,编制了如下问题,请你回答:①∠FCD的最大度数为;②当FC∥AB时,AD= ;③当以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边时,AD= ;④△FCD的面积s的取值范围是 .【答案】(1)2;(2)① 60°;②;③;④.【解析】试题分析:(1)根据等腰直角三角形的性质,求出AC的长,即可得到AD的长.(2)①当点E与点C重合时,∠FCD的角度最大,据此求解即可.②过点F作FH⊥AC于点H,应用等腰直角三角形的判定和性质,含30度角直角三角形的性质求解即可.③过点F作FH⊥AC于点H,AD=x,应用含30度角直角三角形的性质把FC用x来表示,根据勾股定理列式求解.④设AD=x,把△FCD的面积s表示为x的函数,根据x的取值范围来确定s的取值范围.试题解析:(1)∵∠B=90°,∠A=45°,BC=,∴AC=12.∵CD=10,∴AD=2.(2)①∵∠F=90°,∠EDF=30°,∴∠DEF=60°.∵当点E与点C重合时,∠FCD的角度最大,∴∠FCD的最大度数=∠DEF="60°."② 如图,过点F作FH⊥AC于点H,∵∠EDF=30°, EF=2,∴DF=. ∴DH=3,FH=.∵FC∥AB,∠A=45°,∴∠FCH="45°." ∴HC=. ∴DC=DH+HC=.∵AC=12,∴AD=.③如图,过点F作FH⊥AC于点H,设AD=x,由②知DH=3,FH=,则HC=.在Rt△CFH中,根据勾股定理,得.∵以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边,∴,即,解得.④设AD=x,易知,即.而,当时,;当时,.∴△FCD的面积s的取值范围是.考点:1.面动平移问题;2.等腰直角三角形的判定和性质;3.平行的性质;4.含30度角直角三角形的性质;5.勾股定理;6.由实际问题列函数关系式;7.求函数值.5.沙坪坝区各街道居民积极响应“创文明城区”活动,据了解,某街道居民人口共有7.5万人,街道划分为A,B两个社区,B社区居民人口数量不超过A社区居民人口数量的2倍.(1)求A社区居民人口至少有多少万人?(2)街道工作人员调查A,B两个社区居民对“社会主义核心价值观”知晓情况发现:A社区有1.2万人知晓,B社区有1.5万人知晓,为了提高知晓率,街道工作人员用了两个月的时间加强宣传,A社区的知晓人数平均月增长率为m%,B社区的知晓人数第一个月增长了45m%,第二月在第一个月的基础上又增长了2m%,两个月后,街道居民的知晓率达到92%,求m的值.【答案】(1)A社区居民人口至少有2.5万人;(2)m的值为50.【解析】【分析】(1)设A社区居民人口有x万人,根据“B社区居民人口数量不超过A社区居民人口数量的2倍”列出不等式求解即可;(2)A社区的知晓人数+B社区的知晓人数=7.5×92%,据此列出关于m的方程并解答.【详解】解:(1)设A社区居民人口有x万人,则B社区有(7.5-x)万人,依题意得:7.5-x≤2x,解得x≥2.5.即A社区居民人口至少有2.5万人;(2)依题意得:1.2(1+m%)2+1.5×(1+45m%)+1.5×(1+45m%)(1+2m%)=7.5×92%,解得m=50答:m的值为50.【点睛】本题考查了一元二次方程和一元一次不等式的应用,解题的关键是读懂题意,找到题中相关数据的数量关系,列出不等式或方程.6.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.【答案】(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.【解析】【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【详解】(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%;(2)361×(1﹣5%)=342.95(万元),答:预测4月份该公司的生产成本为342.95万元.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.7.关于x的一元二次方程(k-2)x2-4x+2=0有两个不相等的实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程x2-4x+k=0与x2+mx-1=0有一个相同的根,求此时m的值.【答案】(1)k<4且k≠2.(2)m=0或m=8 3 .【解析】分析:(1)由题意,根据一元二次方程的定义和一元二次方程根的判别式列出关于k的不等式组,解不等式组即可求得对应的k的取值范围;(2)由(1)得到符合条件的k 的值,代入原方程,解方程求得x 的值,然后把所得x 的值分别代入方程x 2+mx -1=0即可求得对应的m 的值. 详解:(1)∵一元二次方程(k-2)x 2-4x+2=0有两个不相等的实数根, ∴△=16-8(k-2)=32-8k >0且k-2≠0. 解得:k <4且k≠2.(2)由(1)可知,符合条件的:k=3, 将k=3代入原方程得:方程x 2-4x+3=0, 解此方程得:x 1=1,x 2=3.把x=1时,代入方程x 2+mx-1=0,有1+m-1=0,解得m=0. 把x=3时,代入方程x 2+mx-1=0,有9+3m-1=0,解得m=83-. ∴m=0或m=83-.点睛:(1)知道“在一元二次方程20?(0)ax bx c a ++=≠中,当△=240b ac ->时,方程有两个不相等的实数根;当△=240b ac -=时,方程有两个相等的实数根;△=240b ac -<时,方程没有实数根”是正确解答第1小题的关键;(2)解第2小题时,需注意相同的根存在两种情况,解题时不要忽略了其中任何一种情况.8. ∵1.7×35=59.5,1.7×80=136<151∴这家酒店四月份用水量不超过m 吨(或水费是按y=1.7x 来计算的), 五月份用水量超过m 吨(或水费是按来计算的)则有151=1.7×80+(80-m )×即m 2-80m+1500=0 解得m 1=30,m 2=50.又∵四月份用水量为35吨,m 1=30<35,∴m 1=30舍去. ∴m=50 【解析】9.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元. (1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x 元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x 的值.【答案】(1)甲、乙两种苹果的进价分别为10元/千克,8元/千克;(2)x 的值为2或7. 【解析】 【分析】(1)根据题意列二元一次方程组即可求解,(2)根据题意列一元二次方程即可求解. 【详解】(1)解:设甲、乙两种苹果的进价分别为a 元/千克, b 元/千克.由题得:()()18344282a b a b +=⎧⎨+++=⎩ 解之得:108a b =⎧⎨=⎩答:甲、乙两种苹果的进价分别为10元/千克,8元/千克 (2)由题意得:()()()()410010214010960x x x x +-++-= 解之得:12x =,27x =经检验,12x =,27x =均符合题意 答:x 的值为2或7. 【点睛】本题考查了二元一次方程组和一元二次方程的实际应用,中等难度,列方程是解题关键.10.解方程:(x +1)(x -1)=x.【答案】x 1,x 2 【解析】试题分析:根据方程的特点,根据平方差公式化为一般式,然后可根据公式法求解即可.试题解析:(x +1)(x -1)=x 2-2x-1=0 ∵a=1,b=-c=-1 ∴△=b 2-4ac=8+4=12>0∴x=2b a-±∴x1x 2.。

一元二次方程易错题

一元二次方程易错题

一元二次方程易错题一、概念理解类1. 方程(m - 1)x^2+3x - 1=0是关于x的一元二次方程,则m的取值范围是()- 题目解析:- 对于一元二次方程的一般形式ax^2+bx + c = 0(a≠0)。

在方程(m - 1)x^2+3x - 1 = 0中,要使其为一元二次方程,二次项系数不能为0,即m - 1≠0,解得m≠1。

2. 下列方程中,是一元二次方程的是()- ①x^2+(1)/(x^2)=0;②ax^2+bx + c = 0;③(x - 1)(x + 2)=x^2-1;④3x^2-2xy - 5y^2=0;⑤x^2=0- 题目解析:- ①x^2+(1)/(x^2) = 0是分式方程,因为方程中含有分式(1)/(x^2),不符合一元二次方程整式方程的要求。

- ②ax^2+bx + c = 0,当a = 0时,它就不是一元二次方程,所以该方程不一定是一元二次方程。

- ③将(x - 1)(x + 2)=x^2-1展开得x^2+x - 2=x^2-1,化简后为x - 1 = 0,是一元一次方程,不是一元二次方程。

- ④3x^2-2xy - 5y^2=0含有两个未知数x和y,是二元二次方程,不是一元二次方程。

- ⑤x^2=0符合一元二次方程的定义ax^2+bx + c = 0(a≠0),这里a = 1,b = 0,c = 0,所以它是一元二次方程。

二、解方程类1. 解方程x^2-2x - 3 = 0- 题目解析:- 对于一元二次方程ax^2+bx + c = 0,这里a = 1,b=-2,c = - 3。

- 可以使用求根公式x=frac{-b±√(b^2)-4ac}{2a}。

- 先计算判别式Δ=b^2-4ac=<=ft(-2)^2-4×1×<=ft(-3)=4 + 12 = 16。

- 然后将其代入求根公式,x=(2±√(16))/(2)=(2±4)/(2),得到x_1=(2 +4)/(2)=3,x_2=(2-4)/(2)=-1。

数学 一元二次方程的专项 培优 易错 难题练习题及详细答案

数学 一元二次方程的专项 培优 易错 难题练习题及详细答案

一、一元二次方程真题与模拟题分类汇编(难题易错题)1.已知x1、x2是关于x的﹣元二次方程(a﹣6)x2+2ax+a=0的两个实数根.(1)求a的取值范围;(2)若(x1+1)(x2+1)是负整数,求实数a的整数值.【答案】(1)a≥0且a≠6;(2)a的值为7、8、9或12.【解析】【分析】(1)根据一元二次方程的定义及一元二次方程的解与判别式之间的关系解答即可;(2)根据根与系数的关系可得x1+x2=﹣26aa+,x1x2=6aa+,由(x1+1)(x2+1)=x1x2+x1+x2+1=﹣66a-是是负整数,即可得66a-是正整数.根据a是整数,即可求得a的值2.【详解】(1)∵原方程有两实数根,∴,∴a≥0且a≠6.(2)∵x1、x2是关于x的一元二次方程(a﹣6)x2+2ax+a=0的两个实数根,∴x1+x2=﹣,x1x2=,∴(x1+1)(x2+1)=x1x2+x1+x2+1=﹣+1=﹣.∵(x1+1)(x2+1)是负整数,∴﹣是负整数,即是正整数.∵a是整数,∴a﹣6的值为1、2、3或6,∴a的值为7、8、9或12.【点睛】本题考查了根的判别式和根与系数的关系,能根据根的判别式和根与系数的关系得出关于a的不等式是解此题的关键.2.解方程:(3x+1)2=9x+3.【答案】x1=﹣13,x2=23.【解析】试题分析:利用因式分解法解一元二次方程即可.试题解析:方程整理得:(3x+1)2﹣3(3x+1)=0,分解因式得:(3x+1)(3x+1﹣3)=0,可得3x+1=0或3x﹣2=0,解得:x 1=﹣13,x 2=23. 点睛:此题主要考查了一元二次方程的解法,解题关键是认真观察一元二次方程的特点,然后再从一元二次方程的解法:直接开平方法、配方法、公式法、因式分解法中合理选择即可.3.用适当的方法解下列一元二次方程:(1)2x 2+4x -1=0;(2)(y +2)2-(3y -1)2=0.【答案】(1)x 1=-1x 2=-12)y 1=-14,y 2=32. 【解析】试题分析:(1)根据方程的特点,利用公式法解一元二次方程即可;(2)根据因式分解法,利用平方差公式因式分解,然后再根据乘积为0的方程的解法求解即可.试题解析:(1)∵a=2,b=4,c=-1∴△=b 2-4ac=16+8=24>0∴x=2b a -±=41222-=-±⨯∴x 1=-1,x 2=-1 (2)(y +2)2-(3y -1)2=0[(y+2)+(3y-1)][ (y+2)-(3y-1)]=0即4y+1=0或-2y+3=0解得y 1=-14,y 2=32.4.关于x 的一元二次方程ax 2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根.【答案】(1)方程有两个不相等的实数根;(2)b=-2,a=1时,x 1=x 2=﹣1.【解析】【详解】分析:(1)求出根的判别式24b ac ∆=-,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则240b ac ∆=-=,写出一组满足条件的a ,b 的值即可.详解:(1)解:由题意:0a ≠.∵()22242440b ac a a a ∆=-=+-=+>, ∴原方程有两个不相等的实数根.(2)答案不唯一,满足240b ac -=(0a ≠)即可,例如:解:令1a =,2b =-,则原方程为2210x x -+=,解得:121x x ==.点睛:考查一元二次方程()200++=≠ax bx c a 根的判别式24b ac ∆=-, 当240b ac ∆=->时,方程有两个不相等的实数根.当240b ac ∆=-=时,方程有两个相等的实数根.当240b ac ∆=-<时,方程没有实数根.5.淘宝网举办“双十一”购物活动许多商家都会利用这个契机进行打折让利的促销活动.甲网店销售的A 商品的成本为30元/件,网上标价为80元/件.(1)“双十一”购物活动当天,甲网店连续两次降价销售A 商品吸引顾客,问该店平均每次降价率为多少时,才能使A 商品的售价为39.2元/件?(2)据媒体爆料,有一些淘宝商家在“双十一”购物活动当天先提高商品的网上标价后再推出促销活动,存在欺诈行为.“双十一”活动之前,乙网店销售A 商品的成本、网上标价与甲网店一致,一周可售出1000件A 商品.在“双十一”购物活动当天,乙网店先将A 商品的网上标价提高a %,再推出五折促销活动,吸引了大量顾客,乙网店在“双十一”购物活动当天卖出的A 商品数量相比原来一周增加了2a %,“双十一”活动当天乙网店的利润达到了3万元,求乙网店在“双十一”购物活动这天的网上标价.【答案】(1)平均每次降价率为30%,才能使这件A 商品的售价为39.2元;(2)乙网店在“双十一”购物活动这天的网上标价为100元.【解析】【分析】(1)设平均每次降价率为x ,才能使这件A 商品的售价为39.2元,根据原标价及经过两次降价后的价格,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论; (2)根据总利润=每件的利润×销售数量,即可得出关于a 的一元二次方程,解之取其正值即可得出a 的值,再将其代入80(1+a %)中即可求出结论.【详解】(1)设平均每次降价率为x ,才能使这件A 商品的售价为39.2元,根据题意得:80(1﹣x )2=39.2,解得:x 1=0.3=30%,x 2=1.7(不合题意,舍去).答:平均每次降价率为30%,才能使这件A 商品的售价为39.2元.(2)根据题意得:[0.5×80(1+a %)﹣30]×1000(1+2a %)=30000,整理得:a 2+75a ﹣2500=0,解得:a 1=25,a 2=﹣100(不合题意,舍去),∴80(1+a %)=80×(1+25%)=100.答:乙网店在“双十一”购物活动这天的网上标价为100元.【点睛】本题考查一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.6.已知关于x的方程x2﹣(2k+1)x+4(k﹣12)=0.(1)求证:无论k取何值,此方程总有实数根;(2)若等腰△ABC的一边长a=3,另两边b、c恰好是这个方程的两个根,求k值多少?【答案】(1)详见解析;(2)k=32或2.【解析】【分析】(1)计算判别式的值,利用完全平方公式得到△=(2k﹣3)2≥0,然后根据判别式的意义得到结论;(2)利用求根公式解方程得到x1=2k﹣1,x2=2,再根据等腰三角形的性质得到2k﹣1=2或2k﹣1=3,然后分别解关于k的方程即可.【详解】(1)∵△=(2k+1)2﹣4×4(k﹣12)=4k2﹣12k+9=(2k﹣3)2≥0,∴该方程总有实数根;(2)() 2k12k3 x=2±+﹣∴x1=2k﹣1,x2=2,∵a、b、c为等腰三角形的三边,∴2k﹣1=2或2k﹣1=3,∴k=32或2.【点睛】本题考查了根的判别式以及等腰三角形的性质,分a是等腰三角形的底和腰两种情况是解题的关键.7.某产品每件成本为20元,经过市场调研发现,这种产品在未来20天内的日销售量m (单位:件)是关于时间t(单位:天)的一次函数,调研所获的部分数据如下表:这20天中,该产品每天的价格y(单位:元/件)与时间t的函数关系式为:1254y t=+(t为整数),根据以上提供的条件解决下列问题:(1)直接写出m关于t的函数关系式;(2)这20天中哪一天的日销售利润最大,最大的销售利润是多少?(3)在实际销售的20天中,每销售一件商品就捐赠a 元(4a <)给希望工程,通过销售记录发现,这20天中,每天扣除捐赠后的日销利润随时间t 的增大而增大,求a 的取值范围.【答案】(1)2100m t =-+;(2)在第15天时日销售利润最大,最大利润为612.5元;(3)2.54a ≤<.【解析】【分析】(1)从表格可看出每天比前一天少销售2件,即可确定一次函数关系式;(2)根据日利润=日销售量×每件利润列出函数解析式,然后根据函数性质求最大值,即可确定答案;(3)根据20天中每天扣除捐赠后的日销售利润,根据函数性质求a 的取值范围【详解】(1)设该函数的解析式为:m=kx+b由题意得:98=k b 94=3k b +⎧⎨+⎩解得:k=-2,b=100∴m 关于t 的函数关系式为:2100m t =-+.(2)设前20天日销售利润为W 元,由题意可知,()1210025204W t t ⎛⎫=-++- ⎪⎝⎭ 21151002t t =-++ ()2115612.52t =--+ ∵102<,∴当15t =时,612.5W =最大. ∴在第15天时日销售利润最大,最大利润为612.5元. (3)由题意得:()1210025204W t t a ⎛⎫=-++--⎪⎝⎭ ()211525001002t a t a =-+++-, ∴对称轴为:152t a =+,∵每天扣除捐赠后的日销利润随时间t 的增大而增大,且120t ≤≤,∴15220a +≥,∴ 2.5a ≥,∴2.54a ≤<.【点睛】本题主要考查了二次函数的应用,熟练掌握各函数的性质和图象特征,掌握解决最值问题的方法是解答本题的关键.8.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.(1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x 元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x 的值.【答案】(1)甲、乙两种苹果的进价分别为10元/千克,8元/千克;(2)x 的值为2或7.【解析】【分析】(1)根据题意列二元一次方程组即可求解,(2)根据题意列一元二次方程即可求解.【详解】(1)解:设甲、乙两种苹果的进价分别为a 元/千克, b 元/千克.由题得:()()18344282a b a b +=⎧⎨+++=⎩解之得:108a b =⎧⎨=⎩答:甲、乙两种苹果的进价分别为10元/千克,8元/千克(2)由题意得:()()()()410010214010960x x x x +-++-=解之得:12x =,27x =经检验,12x =,27x =均符合题意答:x 的值为2或7.【点睛】本题考查了二元一次方程组和一元二次方程的实际应用,中等难度,列方程是解题关键.9.已知关于x 的方程(a ﹣1)x 2+2x +a ﹣1=0.(1)若该方程有一根为2,求a 的值及方程的另一根;(2)当a 为何值时,方程的根仅有唯一的值?求出此时a 的值及方程的根.【答案】(1)a=15,方程的另一根为12;(2)答案见解析. 【解析】【分析】(1)把x=2代入方程,求出a 的值,再把a 代入原方程,进一步解方程即可;(2)分两种情况探讨:①当a=1时,为一元一次方程;②当a≠1时,利用b 2-4ac =0求出a 的值,再代入解方程即可.【详解】(1)将x =2代入方程2(a 1)x 2x a 10-++-=,得4(a 1)4a 10-++-=,解得:a =15. 将a =15代入原方程得24x 2054x 5-+-=,解得:x 1=12,x 2=2. ∴a =15,方程的另一根为12; (2)①当a =1时,方程为2x =0,解得:x =0.②当a≠1时,由b 2-4ac =0得4-4(a -1)2=0,解得:a =2或0.当a =2时, 原方程为:x 2+2x +1=0,解得:x 1=x 2=-1;当a =0时, 原方程为:-x 2+2x -1=0,解得:x 1=x 2=1.综上所述,当a =1,0,2时,方程仅有一个根,分别为0,1,-1.考点:1.一元二次方程根的判别式;2.解一元二次方程;3.分类思想的应用.10.阅读下面的材料,回答问题:解方程x 4﹣5x 2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是: 设x 2=y ,那么x 4=y 2,于是原方程可变为y 2﹣5y +4=0 ①,解得y 1=1,y 2=4. 当y =1时,x 2=1,∴x =±1;当y =4时,x 2=4,∴x =±2;∴原方程有四个根:x 1=1,x 2=﹣1,x 3=2,x 4=﹣2.(1)在由原方程得到方程①的过程中,利用 法达到 的目的,体现了数学的转化思想.(2)解方程(x 2+x )2﹣4(x 2+x )﹣12=0.【答案】(1)换元,降次;(2)x 1=﹣3,x 2=2.【解析】【详解】解:(1)在由原方程得到方程①的过程中,利用换元法达到降次的目的,体现了数学的转化思想;(2)设x 2+x =y ,原方程可化为y 2﹣4y ﹣12=0,解得y 1=6,y 2=﹣2.由x 2+x =6,得x 1=﹣3,x 2=2.由x 2+x =﹣2,得方程x 2+x +2=0,b 2﹣4ac =1﹣4×2=﹣7<0,此时方程无实根.所以原方程的解为x 1=﹣3,x 2=2.。

一元二次方程易错题

一元二次方程易错题

一元二次方程难题易错题一、选择题1、若对于 x 的一元二次方程 (m-1)x 2+5x+m 2-3m+2=0 有一个根为0,则 m 的值等于()A 、1B 、2 C、1或 2 D 、02、巴中日报讯:今年我市小春粮油再获丰收,全市产量预计由前年的45 万吨提升到50 万吨,设从前年到今年我市的粮油产量年平均增添率为x ,则可列方程为()A.45 2x 50 B .45(1 x) 2 50 C.50(1 x) 2 45 D .45(1 2x) 503、已知a,b是对于x的一元二次方程x2 nx 1 0 的两实数根,则式子 b a的值是a b()A .n2 2B .n2 2 C.n2 2 D .n2 24、已知 a、 b、 c 分别是三角形的三边,则方程(a + b)x 2 + 2cx + (a + b) = 0 的根的情况是()A.没有实数根B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根5、已知m, n是方程 x 2 2x 1 0 的两根,且(7m2 14m a)(3n 2 6n 7)8,则 a 的值等于()A.- 56、已知方程x2bx a有一个根是a( a0),则以下代数式的值恒为常数的是()aA .abB.bC.a bD .a b7、 x2 2x 2 0的一较小根为x1,下面对x1 的预计正确的选项是()A . 2 x1 1 B.1x1C.0x1 1 D.1x1 28 、关于x的一元二次方程x2 mx 2m 1 0 的两个实数根分别是x1、x2,且x12 x22 7,则( x1 x2 )2 的值是()A . 1 B.12 C.13 D.259、中江县 2011 年初中毕业生诊疗考试)某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张表示纪念,全班共送了2450 张相片,若是全班有x 名学生,依照题意,列出方程为 ( )A、 x( x 1) 2450B、 x(x 1) 2450C、 2x( x 1) 2450x( x 1)2450 D、 210、若对于 x 的一元二次方程k1 x2 x k 2的一个根为 1,则 k的值为 ()A .- 1B .C . 1D .0或111、设a , b是方程x 2x 2009的两个实数根,则 a 22a b的值为()A . 2006B . 2007C . 2008D . 200912、对于一元二次方程 ax2+bx+c=O(a ≠ 0),以下说法: ①若 a+c=0,方程 ax2+bx+c=O 必有实数根;②若 b2+4ac<0,则方程 ax2+bx+c=O 必然有实数根;③若 a-b+c=0,则方程 ax2+bx+c=O 必然有两个不等实数根;④若方程 ax2+bx+c=O 有两个实数根,则方程 cx2+bx+a=0 必然有两个实数根.其中正确的选项是 ( )A .①②B .①③C .②③D .①③④二、填空题1、若一元二次方程 x2- (a+2)x+2a=0 的两个实数根分别是 3、 b ,则 a+b=_______ .2、设 x1 、x2 是一元二次方程 x2+4x -3=0 的两个根,2x1(x22+5x2 - 3)+a =2 ,则 a= _______.3、方程( x ﹣ 1)( x + 2) = 2 ( x + 2)的根是 _______ .4 、 已 知 关 于 x 的 一 元 二 次 方 程ax 2bx 1 0( a 0)有 两 个 相 等 的 实 数 根 , 求ab 2(a 2)2b24的值为 __________ .5 、 在 等 腰 △ ABC 中 , 三 边 分 别 为 a 、 b 、 c, 其 中a5, 若 关 于x的 方 程x 2b 2 x 6 b 0有两个相等的实数根,则△ABC 的周长为 __________.6、已知对于 x的一元二次方程x 26x k2( k为常数).12为方程的两个实数根,且 x 1 2x 2 14,则 K 的值为 __________ .设 x, x7、已知m 、 n 是 方 程 x22 0 0 x32 0 0 4 的0两 根 , 则 (n 22004n2005) 与(m 2 2004m 2005) 的积是.三、简答题x 3 x 25x23x1 0 的实数 根,求代数式:3x 26x x 2已知 x 是一元二次方程的值.2、已知对于x2 2m 1 x m2 0有两个实数根x1和x2。

中考数学 一元二次方程 培优 易错 难题练习(含答案)含答案

中考数学 一元二次方程 培优 易错 难题练习(含答案)含答案

一、一元二次方程 真题与模拟题分类汇编(难题易错题) 1.解方程:(x+1)(x ﹣3)=﹣1.【答案】x 1=1+3,x 2=1﹣3 【解析】试题分析:根据方程的特点,先化为一般式,然后利用配方法求解即可. 试题解析:整理得:x 2﹣2x=2,配方得:x 2﹣2x+1=3,即(x ﹣1)2=3, 解得:x 1=1+3,x 2=1﹣3.2.按上述方案,一家酒店四、五两月用水量及缴费情况如下表所示,那么,这家酒店四、五两月的水费分别是按哪种方案计算的?并求出的值.月份用水量(吨)水费(元)四月3559.5五月80151【答案】3.已知关于x 的一元二次方程()2204mmx m x -++=. (1)当m 取什么值时,方程有两个不相等的实数根;(2)当4m =时,求方程的解.【答案】(1)当1m >-且0m ≠时,方程有两个不相等的实数根;(2)1354x +=,2354x =. 【解析】 【分析】(1)方程有两个不相等的实数根,>0∆,代入求m 取值范围即可,注意二次项系数≠0;(2)将4m =代入原方程,求解即可. 【详解】(1)由题意得:24b ac ∆=- =()22404mm m+->,解得1m >-. 因为0m ≠,即当1m >-且0m ≠时,方程有两个不相等的实数根.(2)把4m =带入得24610x x -+=,解得1354x +=,2354x -=. 【点睛】本题考查一元二次方程根的情况以及求解,熟练掌握根的判别式以及一元二次方程求解是加大本题的关键.4.关于x 的一元二次方程.(1).求证:方程总有两个实数根;(2).若方程的两个实数根都是正整数,求m 的最小值. 【答案】(1)证明见解析;(2)-1. 【解析】 【分析】(1)根据一元二次方程根的个数情况与根的判别式关系可以证出方程总有两个实数根. (2)根据题意利用十字相乘法解方程,求得,再根据题意两个根都是正整数,从而可以确定的取值范围,即求出吗 的最小值. 【详解】(1)证明:依题意,得.,∴ .∴方程总有两个实数根.由.可化为:得 ,∵ 方程的两个实数根都是正整数,∴ . ∴ . ∴的最小值为. 【点睛】本题主要考查了一元二次方程根的判别式与根的个数关系和利用十字相乘法解含参数的方程,熟知根的判别式大于零方程有两个不相等的实数根,判别式等于零有两个相等的实数根或只有一个实数根,判别式小于零无根和十字相乘法的法则是解题关键.5.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?【答案】(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元. 【解析】 【分析】(1)设每次降价的百分率为 x ,(1﹣x )2 为两次降价后的百分率,40元 降至 32.4元 就是方程的等量条件,列出方程求解即可;(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由销售问题的数量关系建立方程求出其解即可 【详解】解:(1)设每次降价的百分率为 x . 40×(1﹣x )2=32.4x =10%或 190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件 32.4元,两次下降的百分率为10%;(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元, 由题意,得()4030y (448)5100.5y--⨯+= 解得:1y =1.5,2y =2.5, ∵有利于减少库存,∴y =2.5.答:要使商场每月销售这种商品的利润达到 510 元,且更有利于减少库存,则每件商品应降价 2.5 元. 【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.6.“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法. 例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n 有多少个点?我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;所以容易求出图10、图n中黑点的个数分别是、.请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:(1)第5个点阵中有个圆圈;第n个点阵中有个圆圈.(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.【答案】60个,6n个;(1)61;3n2﹣3n+1,(2)小圆圈的个数会等于271,它是第10个点阵.【解析】分析:根据规律求得图10中黑点个数是6×10=60个;图n中黑点个数是6n个;(1)第2个图中2为一块,分为3块,余1,第2个图中3为一块,分为6块,余1;按此规律得:第5个点阵中5为一块,分为12块,余1,得第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,(2)代入271,列方程,方程有解则存在这样的点阵.详解:图10中黑点个数是6×10=60个;图n中黑点个数是6n个,故答案为:60个,6n个;(1)如图所示:第1个点阵中有:1个,第2个点阵中有:2×3+1=7个,第3个点阵中有:3×6+1=17个,第4个点阵中有:4×9+1=37个,第5个点阵中有:5×12+1=60个,…第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,故答案为:60,3n2﹣3n+1;(2)3n2﹣3n+1=271,n2﹣n﹣90=0,(n﹣10)(n+9)=0,n1=10,n2=﹣9(舍),∴小圆圈的个数会等于271,它是第10个点阵.点睛:本题是图形类的规律题,采用“分块计数”的方法解决问题,仔细观察图形,根据图形中圆圈的个数恰当地分块是关键.7.为了让学生亲身感受合肥城市的变化,蜀山中学九(1)班组织学生进行“环巢湖一日研学游”活动,某旅行社推出了如下收费标准:(1)如果人数不超过30人,人均旅游费用为100元;(2)如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.该班实际共支付给旅行社3150元,问:共有多少名同学参加了研学游活动?【答案】共有35名同学参加了研学游活动.【解析】试题分析:由该班实际共支付给旅行社3150元,可以判断出参加的人数在30人以上,等量关系为:(100﹣在30人基础上降低的人数×2)×参加人数=3150,得到相关解后根据人均活动费用不得低于80元作答即可.试题解析:∵100×30=3000<3150,∴该班参加研学游活动的学生数超过30人.设九(1)班共有x人去旅游,则人均费用为[100﹣2(x﹣30)]元,由题意得:x[100﹣2(x﹣30)]=3150,整理得x2﹣80x+1575=0,解得x1=35,x2=45,当x=35时,人均旅游费用为100﹣2(35﹣30)=90>80,符合题意.当x=45时,人均旅游费用为100﹣2(45﹣30)=70<80,不符合题意,应舍去.答:该班共有35名同学参加了研学旅游活动.考点:一元二次方程的应用.8.某产品每件成本为20元,经过市场调研发现,这种产品在未来20天内的日销售量m (单位:件)是关于时间t(单位:天)的一次函数,调研所获的部分数据如下表:时间t/天131020日销售量m/件98948060这20天中,该产品每天的价格y(单位:元/件)与时间t的函数关系式为:1254y t=+(t 为整数),根据以上提供的条件解决下列问题: (1)直接写出m 关于t 的函数关系式;(2)这20天中哪一天的日销售利润最大,最大的销售利润是多少?(3)在实际销售的20天中,每销售一件商品就捐赠a 元(4a <)给希望工程,通过销售记录发现,这20天中,每天扣除捐赠后的日销利润随时间t 的增大而增大,求a 的取值范围.【答案】(1)2100m t =-+;(2)在第15天时日销售利润最大,最大利润为612.5元;(3)2.54a ≤<. 【解析】 【分析】(1)从表格可看出每天比前一天少销售2件,即可确定一次函数关系式;(2)根据日利润=日销售量×每件利润列出函数解析式,然后根据函数性质求最大值,即可确定答案;(3)根据20天中每天扣除捐赠后的日销售利润,根据函数性质求a 的取值范围 【详解】(1)设该函数的解析式为:m=kx+b由题意得:98=k b94=3k b +⎧⎨+⎩解得:k=-2,b=100∴m 关于t 的函数关系式为:2100m t =-+. (2)设前20天日销售利润为W 元,由题意可知,()1210025204W t t ⎛⎫=-++- ⎪⎝⎭21151002t t =-++()2115612.52t =--+ ∵102<,∴当15t =时,612.5W =最大. ∴在第15天时日销售利润最大,最大利润为612.5元. (3)由题意得:()1210025204W t t a ⎛⎫=-++--⎪⎝⎭()211525001002t a t a =-+++-,∴对称轴为:152t a =+,∵每天扣除捐赠后的日销利润随时间t 的增大而增大,且120t ≤≤, ∴15220a +≥, ∴ 2.5a ≥,∴2.54a ≤<. 【点睛】本题主要考查了二次函数的应用,熟练掌握各函数的性质和图象特征,掌握解决最值问题的方法是解答本题的关键.9.重庆市旅游文化商店自制了一款文化衫,每件成本价为20元,每天销售150件: (1)若要每天的利润不低于2250元,则销售单价至少为多少元?(2)为了回馈广大游客,同时也为了提高这种文化衫的认知度,商店决定在“五一”节当天开展促销活动,若销售单价在(1)中的最低销售价的基础上再降低m%,则日销售量可以在150件基础上增加m 件,结果当天的销售额达到5670元;要使销售量尽可能大,求出m 的值.【答案】(1)销售单价至少为35元;(2)m=16. 【解析】试题分析:(1)根据利润的公式列出方程,再求解即可; (2)销售价为原销售价×(1﹣m%),销售量为(150+m ),列出方程求解即可.试题解析:(1)设销售单价至少为x 元,根据题意列方程得,150(x ﹣20)=2250, 解得x=35,答:销售单价至少为35元;(2)由题意得:35×(1﹣m%)(150+m )=5670,150+m ﹣150×m%﹣m%×m=162,m ﹣m 2=12,60m ﹣3m 2=192, m 2﹣20m+64=0, m 1=4,m 2=16, ∵要使销售量尽可能大, ∴m=16.【考点】一元二次方程的应用;一元一次不等式的应用.10.若两个一次函数的图象与x 轴交于同一点,则称这两个函数为一对“x 牵手函数”,这个交点为“x 牵手点”.(1)一次函数y =x ﹣1与x 轴的交点坐标为 ;一次函数y =ax +2与一次函数y =x ﹣1为一对“x 牵手函数”,则a = ;(2)已知一对“x牵手函数”:y=ax+1与y=bx﹣1,其中a,b为一元二次方程x2﹣kx+k﹣4=0的两根,求它们的“x牵手点”.【答案】(1)(1,0),a=﹣2;(2)“x牵手点”为(12-,0)或(12,0).【解析】【分析】(1)根据x轴上点的坐标特征可求一次函数y=x-1与x轴的交点坐标;把一次函数y=x-1与x轴的交点坐标代入一次函数y=ax+2可求a的值;(2)根据“x牵手函数”的定义得到a+b=0,根据根与系数的关系求得k=0,可得方程x2-4=0,解得x1=2,x2=-2,再分两种情况:①若a=2,b=-2,②若a=-2,b=2,进行讨论可求它们的“x牵手点”.【详解】解:(1)当y=0时,即x﹣1=0,所以x=1,即一次函数y=x﹣1与x轴的交点坐标为(1,0),由于一次函数y=ax+2与一次函数y=x﹣1为一对“x牵手函数”,所以0=a+2,解得a=﹣2;(2)∵y=ax+1与y=bx﹣1为一对“x牵手函数”∴11a b-=,∴a+b=0.∵a,b为x2﹣kx+k﹣4=0的两根∴a+b=k=0,∴x2﹣4=0,∴x1=2,x2=﹣2.①若a=2,b=﹣2则y=2x+1与y=﹣2x﹣1的“x牵手点”为1,02⎛⎫- ⎪⎝⎭;②若a=﹣2,b=2则y=﹣2x+1与y=2x﹣1的“x牵手点”为(12,0 )∴综上所述,“x牵手点”为1,02⎛⎫- ⎪⎝⎭或(12,0)【点睛】本题考查了根与系数的关系、一次函数的性质和一次函数图象上点的坐标特征的运用.。

中考数学复习一元二次方程专项易错题含详细答案

中考数学复习一元二次方程专项易错题含详细答案
【答案】(1)当 且 时,方程有两个不相等的实数根;(2) , .
【解析】
【分析】
(1)方程有两个不相等的实数根, ,代入求m取值范围即可,注意二次项系数≠0;
(2)将 代入原方程,求解即可.
【详解】
(1)由题意得: = ,解得 .
因为 ,即当 且 时,方程有两个不相等的实数根.
(2)把 带入得 ,解得 , .
试题解析:(1)∵Δ=4(k-1)2-4k2≥0,∴-8k+4≥0,∴k≤ ;
(2)∵x1+x2=2(k-1),x1x2=k2,∴2(k-1)=1-k2,
∴k1=1,k2=-3.
∵k≤ ,∴k=-3.
2.李明准备进行如下操作实验,把一根长40 cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.
(1)要使这两个正方形的面积之和等于58 cm2,李明应该怎么剪这根铁丝?
由方程②得,(x+n-1)[x-2(n+1)]=0,
①若4n2+3n+2=-n+1,解得n=- ,但1-n= 不是整数,舍.
②若4n2+3n+2=2(n+2),解得n=0或n=- (舍),综上所述 Nhomakorabean=0.
5.已知关于x的一元二次方程x2+(2m+3)x+m2=0有两根α,β.
(1)求m的取值范围;
(2)两正方形面积之和为48时, , ,∵ ,∴该方程无实数解,也就是不可能使得两正方形面积之和为48cm2,李明的说法正确.
考点:1.一元二次方程的应用;2.几何图形问题.
3.如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为x=﹣1.
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程
已知:关于x 的方程23(1)230mx m x m --+-=.()032132
=-+--m x m mx 求证:m 取任何实数时,方程总有实数根;
(2010年广东省广州市)已知关于x 的一元二次方程)0(012
≠=++a bx ax 有两个相等的实数根,求4
)2(222
-+-b a ab 的值。

2.(2009年广东中山)已知:关于x 的方程2210x kx +-=
(1)求证:方程有两个不相等的实数根;
(2)若方程的一个根是1-,求另一个根及k 值.
3.(2009年重庆江津区)已知a、b、c分别是△ABC 的三边,其中a=1,c=4,且关于x 的方程042=+-b x x 有两个相等的实数根,试判断△ABC 的形状.
例1.当a 为何值时,关于x 的一元二次方程01)12(2
2=+-+x a x a 有两个实数根.
例3.已知关于x 的一元二次方程0112)21(2=-+--x k x k 有两个不相等的实数根,
求k 的取值范围.
例4.关于x 的方程0132=-+x kx 有实数根,则k 的取值范围是( ) (A)49-
≤k (B)04
9≠-≥k k 且 (C)49-≥k (D)049≠->k k 且 例:222
()5()60x x x x ---+=,求x 的值
例1、下列方程中是关于x 的一元二次方程的是( )
A ()()12132+=+x x
B 02112=-+x x
C 02=++c bx ax
D 1222+=+x x x
变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。

例2、方程()0132=+++mx x
m m 是关于x 的一元二次方程,则m 的值为 。

★★3、若方程()112=•+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。

★★★4、若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是( )
A.m=n=2
B.m=2,n=1
C.n=2,m=1
D.m=n=1
例1、已知322-+y y 的值为2,则1242
++y y 的值为 。

例2、关于x 的一元二次方程()0422
2=-++-a x x a 的一个根为0,则a 的值为 。

例3、已知关于x 的一元二次方程()002
≠=++a c bx ax 的系数满足b c a =+,则此方程 必有一根为 。

例4、已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582
=+-m y y 的两个根, 则m 的值为 。

★1、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。

★2、已知关于x 的方程022=-+kx x 的一个解与方程31
1=-+x x 的解相同。

⑴求k 的值;
⑵方程的另一个解。

★3、已知m 是方程012=--x x 的一个根,则代数式=-m m 2 。

★★4、已知a 是0132=+-x x 的根,则=-a a 622 。

★★5、方程()()02
=-+-+-a c x c b x b a 的一个根为( ) A 1- B 1 C c b - D a -
★★★6、若=•=-+y x 则y x 324,0352 。

例3、若()()2
221619+=-x x ,则x 的值为 。

例2、若()()044342
=-+++y x y x ,则4x+y 的值为 。

变式1:()()
=+=-+-+2222222,06b 则a b a b a 。

变式2:若()()032=+--+y x y x ,则x+y 的值为 。

变式3:若142=++y xy x ,282
=++x xy y ,则x+y 的值为 。

例3、方程062
=-+x x 的解为( ) A.2321=-=,x x B.2321-==,x x C.3321-==,x x D.2221-==,x x
例4、解方程: ()
04321322=++++x x
例5、已知023222=--y xy x ,则y
x y x -+的值为 。

变式:已知02322
2=--y xy x ,且0,0>>y x ,则y x y x -+的值为 。

例1、 试用配方法说明322+-x x 的值恒大于0。

例2、 已知x 、y 为实数,求代数式7422
2+-++y x y x 的最小值。

例3、 已知,x、y y x y x 013642
2=+-++为实数,求y x 的值。

★★1、试用配方法说明47102-+-x x 的值恒小于0。

★★2、已知041122=---+
x x x
x ,则=+x x 1 .
★★★3、若912322-+--=x x t ,则t 的最大值为 ,最小值为 。

★★★4、如果4122411-++-=--+
+b a c b a ,那么c b a 32-+的值为 。

例1、 已知0232=+-x x ,求代数式()1
1123-+--x x x 的值。

例2、 如果012=-+x x ,那么代数式7223-+x x 的值。

例3、 已知a 是一元二次方程0132
=+-x x 的一根,求1152223++--a a a a 的值。

例1、若关于x 的方程0122
=-+x k x 有两个不相等的实数根,则k 的取值范围是 。

例2、关于x 的方程()0212
=++-m mx x m 有实数根,则m 的取值范围是( )
A.10≠≥且m m
B.0≥m
C.1≠m
D.1>m
例3、已知关于x 的方程()0222
=++-k x k x (1)求证:无论k 取何值时,方程总有实数根;
(2)若等腰∆ABC 的一边长为1,另两边长恰好是方程的两个根,求∆ABC 的周长。

例4、已知二次三项式2)6(92
-++-m x m x 是一个完全平方式,试求m 的值.
例5、m 为何值时,方程组⎩⎨⎧=+=+.
3,6222y mx y x
有两个不同的实数解?有两个相同的实数解?
★1、当k 时,关于x 的二次三项式92++kx x 是完全平方式。

★2、当k 取何值时,多项式k x x 2432+-是一个完全平方式?这个完全平方式是什么?
★3、已知方程022=+-mx mx 有两个不相等的实数根,则m 的值是 .
★★4、k 为何值时,方程组⎩
⎨⎧=+--+=.0124,22y x y kx y (1)有两组相等的实数解,并求此解;
(2)有两组不相等的实数解;
(3)没有实数解.
例1、关于x 的方程()03212
=-++mx x m ⑵ 两个实数根,则m 为 ,
⑵只有一个根,则m 为 。

例2、不解方程,判断关于x 的方程()322
2-=+--k k x x 根的情况。

例3、如果关于x 的方程022=++kx x 及方程022=--k x x 均有实数根,问这两方程
是否有相同的根?若有,请求出这相同的根及k 的值;若没有,请说明理由。

【例2】求证:无论m 取何值,方程03)7(92
=-++-m x m x 都有两个不相等的实根。

【例3】当m 为什么值时,关于x 的方程01)1(2)4(2
2=+++-x m x m 有实根。

四、已知关于x 的方程022=-+-n m mx x 的根的判别式为零,方程的一个根为1,求m 、
n 的值。

五、已知关于x 的方程02)12(22=++++m x m x 有两个不等实根,试判断直线
x m y )32(-=74+-m 能否通过A (-2,4)
,并说明理由。

相关文档
最新文档