1960 - First Planar Integrated Circuit is Fabricated

合集下载

电子信息工程专业英语教程Lesson 1 VLSI Technology

电子信息工程专业英语教程Lesson 1 VLSI Technology

• 1971: 16-bit Microprocessors are introduced.
• 1980's: Very Large Scale Integration (VLSI), over 5000 gates per chip. • 1981: Very High Speed Integration (VHSIC), tens' of thousands of gates per chip, 1.5 micrometer chip geometries. • 1984: 0.5 micrometer chip geometries.

2015-4-21
《电子信息工程专业英语教程》
12
Miniaturization , IC, LSI, VLSI
• • LSI:Large-scale Integration大规模集成(电路) Large-scale integration ("LSI") came to refer to the creation of integrated circuits that had previously been made from multiple discrete components. VLSI:Very Large-scale Integration 超大规模集成(电 路) VLSI circuits can contain millions of transistors.
2015-4-21 《电子信息工程专业英语教程》 15
• Late 1950s: Key IC discoveries. • 1958: First silicon integrated circuit is built by Texas Instrument's Jack Kilby. • 1959: Planar process to distribute transistors on silicon, with passive oxide layers to protect junctions, is developed by Fairchild Semiconductor's Noyce and Moore. A modern version of this process is used today. • 1960's: Small Scale Integration (SSI), up to 20 gates per chip.

芯片制造-半导体工艺制程实用教程-学习笔记

芯片制造-半导体工艺制程实用教程-学习笔记

5、集成电路中器件的尺寸(特征图形尺寸-微米)和数量时 IC 发展的两个共同标志。集
同享有集成电路的专利;
4、集成电路(integrated circuit) 平面技术(planar technology) Kilby&Noyce 共
3、每个芯片中只含有一个器件的器件称为分立器件(晶体管、二极管、电容器、电阻器)
8、成本降低和性能提高这两个因素推动了固态电子在产品中的实用;据估计到 2008 年全 世界工业生产的晶体管将达到每个人 10 亿个;
9、电子工业可分为两个主要部分:半导体和系统(产品),涵盖印刷电路板制造商; 半导体产业由两个主要部分组成:一部分是制造半导体固态器件和电路的企业,生产过程 称为晶圆制造(wafer fabrication),在整个行业有三种类型的芯片供应商,一种是集设计、制 造、封装和市场销售为一体的公司;另一种是做设计和晶圆市场的公司,他们从晶圆工厂购买 芯片;还有一种是晶圆代工厂,它们可以为顾客生产多种芯片 10、固态器件的制造阶段: 材料准备-晶体生长与晶圆准备-晶圆制造(前线工艺 FEOL 和后线工艺 BEOL)-封装 二氧化硅(沙子)-含硅气体-硅反应炉-多晶硅 11、场效应管(FET);金属氧化物(MOS);氧化掩膜;平面技术;外延; 12、1963 年塑封在硅器件上的使用加速了价格下滑,绝缘场效应管(IFET),互补型 MOS (CMOS)电路; 13、接触光刻机(contact aligner)、投射光刻机、离子注入机、电子束(E-beam)机、 膜版步进式光刻机(Stepper) 14、工业控制的技术竞争:自动化、成本控制、工艺特性化与控制、人员效率 15、国家技术发展路线图(National Technology Roadmap for Semiconductor,NTRS)

集成电路的历史-北京大学 吉利久

集成电路的历史-北京大学 吉利久

产业更添辉煌——纪念集成电路发明50 周年北京大学吉利久1 成就产业50 年前,美国TI 公司(德州仪器 Texas Instruments)的Jack Kilby 演示了他发明的IC (集成电路— — Integrated Circuit );差不多在同时,美国仙童公司( Fairchild Semiconductor)的Robert Noyce 宣布了他发明的IC,这是1958 年底到1959 年初的事。

在十分重视知识产权的美国,发生了这种情况少不得要有一场官司。

几经申诉、举证,到1969 年法院裁决为同时发明,各有知识产权。

对簿公堂并没有影响IC 的发展,1965 年,Gordon Moore 就总结出3 年4 番的增长规律,这说的是IC 集成度,即芯片上的晶体管数目。

到2000年,IC 已经成就了年产值2000 亿美元的巨型产业,Kilby 因发明IC 而获得2000年诺贝尔物理学奖。

晶体管发明于1948 年,三位发明人William Shockley、John Bardeen 和Walter Brattain因此获得1956 年诺贝尔物理学奖,时隔8 年。

而IC 的发明获奖是在40 多年之后。

漫长的考验,使得IC 的另一位发明人Noyce 没能等到这份殊荣,他于1990 年6 月3 日去世。

如果颁奖再晚几年,Kilby 也可能享受不到了,他是2005 年6 月20 日去世的。

两项发明获奖的评审周期相差如此悬殊,其原因是它们有着不尽相同的辉煌方面。

晶体管的发明,把研究、掌握电子在真空中运动的电子管时代,推进到研究、掌握电子在固体中运动的晶体管时代。

尽管在1956 年,晶体管在与电子管的优劣比拚中尚未获胜,半导体产业也还不及电子管产业强大,但就开创固体电子器件的划时代意义而言,已是“奖有所值”了。

IC 发明获奖凭借的是两方面成就:物理成就和产业成就。

IC 发明的物理成就在于解决半导体芯片上的器件隔离问题。

introductiontomicro-fabricationtechnology

introductiontomicro-fabricationtechnology

1An Introduction toMicro-fabrication Technology●Fundamental importance of MF technology●History: key inventions enabling the technology ●Essential features of the MF technology ●Technology development trendProf. Mingxiang WANG2It’s a Silicon EraWe are at the beginning of the silicon Era!The Information Age•Revolutionary development of microelectronics •Great social-economic impact by the development:–3C : Computer, Communication, Consumer electronics –Automation, Robotics…•Significant change in economic structures:• a new industry: IT industry •Internet: information highway–“www ”: World wide network of information–“Highway ”: optical-fiber cable, wireless, and others –“Cars ”: Multimedia system –Computer, mobile phone, TV, FAX …–All kinds of audio/video information transferred and provided•All based on “the Magic Si chips ” everywhere3Si Technology & Information Age•Microelectronics industry: the basis of the information age •Si based transistors are basic information carriers•Si/Semiconductor based micro-fabrication technology is the material/technology basis of the information ageInformation TechnologyComputer Multimedia CommunicationOptoelectronics ……Semiconductor Microelectronics4Historical milestones:key inventions enablingthe IC micro-fabrication technology •1st transistor 1947•1st junction transistor 1949•1st integrated circuit 1958•1st monolithic integrated circuit 1959•Invention of the planar process 1960•1st silicon MOSFET 19605Invention of Transistor•1947.12.23: Invention of pointcontact transistor by Bardeen &Brattain–1st paper on Transistor: “Thetransistor, a semiconductortriode”, Phys. Rev. 74, 230,1948–By Webster’s:Transistor = transfer + resistortransferring electrical signalacross a resistor6How does the 1st transistor works? John Bardeen, Nobel lecture, Dec.11, 1956 Semiconductor research leading to the pointcontact transistor7First transistor & its inventors 1947, John Bardeen, Walter Brattain & William Shockley,Bell lab (1956 Nobel Prize winner in Physics)8 Shockley developed basic theory of transistor (1948-1952)First PN Junction TransistorWilliam Shockley Gordon Teal Morgan SparksGordon Teal and Morgan Sparks made the first junction transistor in 1949,the construction of which eliminated many of the reliability problems of the point contact transistor.99/21/2013•1958.9.12 1st IC---“Solid Circuit” by J. Kilby of TI –Flip-flop phase shift oscillator–On Ge substrate–Mesa structure with 1 BJT, 3R, and 1C–Etching by black wax protection–Wire bond interconnect2000 Nobel Prize in Physics on Integrated Circuits (shared with Afilov and Kroemer )First Integrated Circuit101st monolithic IC by R.N. Noyce 1959 (Fairchild) –First micro-chip –On Si substrate–Flip-flop circuit with 6devices by Al interconnect –Based on Si BJT which is first made in 1954 (TI)First monolithic IC11Invention of Planar Process•1958-1960 b asic IC process developed: oxidation (Atalla; bell Lab), pn junction isolation (K. Levovec), Al film evaporation…•1960Si planar process inventedInventor :Jean Hoerni --Fairchild1213First MOS Transistors1st MOSFET Bell lab 1960•1959-63: MOS devices–1959: MOS capacitor (J. Moll; Stanford)–1960: Kahng & Atalla(Bell lab), structure same as modern MOSFETs –1960-63: research on Si surface & MOS devices (Sah, Deal, Grove…)–1963: concept of CMOS (Wanlass, Sah; Fairchild)14Modern Micro-Processor Unit1st CPU, 2300T Intel 4004, 1971, 8umIntel dual-core MPU, 410MT ,Nov. 2007, 45nm15Flowchart of IC fabrication16Essential Featuresof Micro-fabrication Technology●Extremely capital intensiveHeavy capital Investment for clean rooms & Fab equipments ●Batch Process:>100 Billion Transistors per wafer ●Outstanding Manufacturability : Yield>95% per lot●Extremely cheap productsContinuously lower price per function ●Technology widely extendable17Capital intensive●Heavy capital investment for -clean rooms -fab equipments-materials used in a fab: rigorous requirements ●Estimated cost for a fab-Intel’s Fab22 in Arizona (8-inch, 0.13μm, copper based) opened in October 2001 cost 2 billion USD (cost of 2 Tsing Ma Bridges!)-Cost for a new 12-inch 45-65nm generation fab cost about 10 billion USD->70% cost used for equipments●NOT affordable by most countries!18300mm Global Fab LandscapeUnited States IBM Bldg 323Infineon Richmond Intel D1C Intel D1D Intel F11x Intel F12C Micron MTC TI DMOS 6TI DMOS 7JapanElpida Fab 1Elpida Fab 2Renesas/ Trecenti Toshiba OitaSony Kumamoto Sony Fab 2 Nagasaki Toshiba Yokkaichi City NEC Elec Yamagata TaiwanPowerchip Fab 1ProMOS Fab 2TSMC Fab 12A & B UMC Fab 12AInotera (Nanya + Infineon)Powerchip Fab 1Powerchip Fab 2TSMC Fab 14SingaporeUMC SingaporeEuropeAMD Fab 36Infineon SC300Intel Fab 24Crolles2 (TD)(STM, Philips, Moto)STM CataniaKoreaSamsung Line 12Samsung Line 13Samsung Line 14Sources: Silicon Strategies, EE Times, Nikkei Microelectronics, Industry MeetingsChinaSMIC Fab 419Toshiba Oita Works 300 mm Fab TSMC300 mm Super clean room in Tsukuba,SeleteIntel fabFab20NikonArF Scanner l = 193nm 2004Contact mask aligner 1970’sMainstream photo-lithography21Single Crystal Silicon300mm and 400mm Silicon Ingots w/o a single defects22When do we start planning for nextwafer size transition?9 yrs + 2 yrs delay*9 yrs + 6 yrs delay? 9 yrs + ?yrs delay675mm/2025?450mm/2015?300mm/2001200mm/1990 (125/150mm -1981)We are hereWhen does this happen?23Batch process●Requirement of cost recoveryhave to produce >10,000 wafers per month to recover the cost of 12-inch fab investment●Batch process->100 Billion transistors per wafer fabricated in parallel-sometimes ~20 wafers per lot processed in parallel -extremely productive●The essential feature of the planar process ●Ensure that fabricated products are cheap24Intel 300 mm75 mm, 100 mm, 50 mmWafers25Outstanding Manufacturability●Yield >95%per lot to earn money -evaluated by chip function●About 108(0.1 billion) transistors per ULSI chip, which would FAIL if only one transistor, one metal line, one contact or one other component fails!●What’s the yield at transistor/component level to achieve 95% yield at chip level?●Reliability: lifetime >10yrs●What’s other technologies could have such ability? -yield, batch process, micro/nano-fabrication, …26Modern MPU Chip1st CPU, 2300T Intel 4004, 1971, 8um Intel dual-core MPU, 410MT ,Nov. 2007, 45nm27Inside the chips28Electron Micrograph on MOS interface29Continuously cheaper products●Moore’s law means exponential decay of the price per function●What’s the price of a “car” if Moore’s law also holds?●The continuous price reduction is a tremendous competitiveness over traditional technology●Cheap product means the tremendous impact of the new technology is affordable to everyone!●A simple and strong reason why Silicon Era becomes the reality30Technology extendable●It’s more than an IC technology!●It’s more than just 3Cs,the micro-fabrication technology is widelyextendable to address almost all issues in our life ●Solar cells, photo-voltaic industry, energy harvest ●LED lightings●Flat panel displays, Thin film electronics ●MEMS devices: Sensors and Actuators ●Bio-chips, Health care…●It’s another strong reason why we are in Silicon Era!31Other applications of micro-fabrication(Source: University of Florida)32MEMS devices: an extension of Siplanar processEtched profiles of MEMS structures33Technology Development Trends ●Moore’s Law:would continues for another 30yrs ●More than Moore (MtM):●Micro-Systems: SoC, SiPMoore’s Law•Double the number of transistor every 18-24 months •Exponential growth ofsemiconductor technology & industry (A common law at early stage for a new industry under rapid development)•Govern the trend since 1960 and would continue in the next 20-30 yrs •An economics law of technology and market expansionFirst proposed in 1965by Gordon Moore ,co-founder of Intel3435New Generations under Moore’s Law●A new generationper 18-24 months ●X0.7 Min. feature size scaling ●X2 increase in transistor density ●X1.5 faster device switching speed ●Reduced chip power●Reduced chip cost●Increased functionality3619001950196019702000Vacuum Tube Transistor IC LSI VLSI 10 cm cm mm 10 m m 100 nm In 100 yrs, the feature size reduced by 106times Technology driver: BJT —CMOS —DRAM/CPU —Flash —Communication10-1m10-2m10-3m10-5m10-7mDownsizing of the components has been the driving force for circuit evolution37Transistor Scaling38Device feature sizeIntel 90nm Tech. Node Transistor Smallest species: VirusIn another 30yrs, device feature size wouldapproach molecular size <1nm (could be a limit), before which Moore’s law still continues.The Paradox of Moore’s Law●As transistors grow smaller, opportunities grow largerAs the basic element of information,and the basis ofthe information society ,IC &related micro-fabrication technology have been deeply involving into all hi-tech fields.3940More than Moore’s Law●More than Moore (MtM) Law:●System level Integration: SoC, SiP , it is the system that matters !●Micro-fabrication technology follows the trend of SoC and SiP, under Moore’s law as well as under More than Morre’s Law .9/21/2013414344。

IC技术发展史

IC技术发展史

IBM在为NASA开发的360/95系统上使用了一种16位的双极型存储器。 1966 - 第一块双极型的逻辑
摩托罗拉(Motorola)推出了第一块具有3个输入的发射极耦合逻辑(Emitter-Coupled-Logic - ECL)的门集成电路。 1966 - 发明单晶体管动态存储器(DRAM)单元
1959 - 平面技术(Planar technology)问世
Kilby的发明存在严重的缺陷:电路的元件依赖于金丝连接,这种连线上的困难阻碍了该技术用于大规模电路的可能。直到1958年后期仙童(Fairchild)公司瑞士出生的物理学家Jean Hoerni开发出一种在硅上制造PN结的结构,并在结上覆盖了一层薄的硅氧化层作绝缘层,在硅二极管上蚀刻小孔用于连接PN结。Sprague Electric捷克出生的物理学家Kurt Lehovec开发出使用PN结隔离元件的技术,这个问题才得以解决:1959年,也是仙童公司雇员的Robert Noyce产生了组合Hoerni's and Lehovec's工艺并通过在电路上方蒸镀薄金属层连接电路元件来制造集成电路的想法。平面工艺开始了复杂集成电路时代并沿用到今天。
1945 - 三极管(Transistor)发明
1945年,Bell Labs建立了一个研究小组探索半导体替代真空管。该小组由William Shockley领导,成员包括John Bardeen、Walter Brattain等人。1947年Bardeen和Brattain成功使用一个电接触型的“可变电阻”-即今天被称为三极管“Transistor”的器件得到放大倍数为100的放大电路,稍候还演示了振荡器。1948年,Bardeen和Brattain提交了一份专利申请并在1950年被授予 Bell Labs - 这就是美国专利US2,524,035, "Three Electrode Circuit Element Utilizing Semiconductive Materials".

电子封装可靠性简介上

电子封装可靠性简介上
1. Basic understanding of atomic diffusion and diffusion related phenomena in thin films.
2. Kinetic theory of microstructure change and phase change in thin films under various driving forces. Irreversible processes will be covered.
• Kilby demonstrated 1st integrated circuit on September 12, 1958, and filed for patent in February 1959.
• Awarded Nobel Prize for Physics 2000
Figure from Jack Kilby’s US Patent 11
Electronic Thin-Film Reliability
Yingxia Liu School of Materials Science and Engineering, BIT
email: yingxia.liu@
1
The objectives of this course are to offer
1st Planar Integrated Circuit (Robert Noyce) 1961 It is thin film interconnect! (at Fairchild)
12
13
14
15
Figure from Gordon Moore’s 1965 & 1975 Paper, projecting future direction of integrated circuit

PLC平面集成波导工艺及设备

PLC平面集成波导工艺及设备

平面集成光路Planar Lightwave Circuit / Planar Integrated Circuit工艺简介PLC工艺概述(a)-(e)硅基波导制作工艺流程图。

(a)PECVD长膜(b)光刻(c)显影(d)ICP刻蚀(e)长上包层。

一些常见的平面集成光通信器件工艺流程简介一.薄膜沉积以氧化硅(Silica)为基础的光波导器件为例,下包层(buffer)、芯层(core)以及上包层(cladding)一般由SiO2、Ge-SiO2以及SiO2(可掺B,P以进一步减小损耗消除应力双折射)构成。

薄膜的生长常用的办法之一即为等离子体化学气相沉积(PECVD)。

此外,通常需要对沉积所得的薄膜进行高温退火以消除氢键,使之达到与热氧化薄膜同等的光学特性(低损耗)。

所需设备:PECVD退火炉二.光刻通过光刻把掩膜(mask )或设计好的图形文件(用于电子束光刻)转移到光刻胶上。

对于某些需要深刻蚀的场合,光刻胶的选择比如果不足,需要进一步加上更坚固的掩膜(hard mask ),比如金属等。

此时需要电子束蒸发台或溅射系统等设备。

所需设备:光刻机(或电子束光刻)金属蒸发台(或溅射)Ebeam Lithography SystemKTH Albanova Nano-Fab-Lab三.图形转移光刻之后还需要通过干法刻蚀(常用的如ICP)把设计的图形最终转移到器件材料(SiO2)上。

所需设备:ICP四.上包层沉积刻蚀后的样品需要先去除残余光刻胶,可使用氧气等离子体刻蚀系统。

上包层同样可使用PECVD生长。

所需设备:O2 PlasmaPECVD五.性能测试性能测试主要分两部分:对生长薄膜的测定和对最终芯片频谱相应的测试。

对PECVD沉积的薄膜需要测量其生长速率(厚度)、折射率和损耗,对芯片需测量其不同偏振状态下的频谱特性。

所需设备:椭偏仪棱镜耦合仪台阶仪干涉测量仪可调激光器光谱分析仪Summary of the equipments mentioned above1. Lithography:a.mask aligner:Karl Suss mask aligner 200万b.e-beam lithography:Raith E-line system 1000万c.DUV:ASML PAS5500/750 stepper/scanner >1000万 (optional)2. Deposition:等离子体化学气相沉积PECVD: STS 400万电子束蒸发台ebeam evaporator: 200万3. Pattern transfer反应离子刻蚀ICP-RIE: STS Advanced Oxide Etcher 600万4. Other facilities: 600万匀胶机:湿式工作台(Wet bench):氧气等离子体(O2 Plasma)去胶设备:退火炉:尾气处理设备:去离子水制备系统:椭偏仪:棱镜耦合仪:台阶仪:干涉测量仪:可调激光器:光谱分析仪:气体、气柜及危险气体监控系统:芯片光学性能测量所需各种光学元件:Total: 3000万。

中科院 微电子机械系统设计(MEMS)课件

中科院 微电子机械系统设计(MEMS)课件

10 nm < L < 1 µm Nano electromechanical systems … NEMS
Batch Fabrication Technology
Planar integrated circuit technology 1958 1. Thin-film deposition and etching 2. Modification of the top few µm of the substrate 3. Lateral dimensions defined by photolithography, a process derived from offset printing Result: CMOS integrated circuits became the ultimate “enabling technology” by circa 1980 Moore’s Law Density (and performance, broadly defined) of digital integrated circuits increases by a factor of two every year.
Lecture Outline
Today’s Lecture
What is MEMS Historical tour of MEMS MEMS and nanotechnology
MEMS Defined
Micro ElectroMechanical Systems
What is MEMS
MEMS involve both electronic and non-electronic elements
Dimensional Ranges

清华大学 集成电路设计实践 ic1-background

清华大学 集成电路设计实践 ic1-background

集成电路的进展内容简介ƒ ƒ ƒ ƒ ƒ集成电路的应用领域 集成电路的制造过程 制 从CPU的发展看IC的进展 从行业的发展看IC C的进展 从ISSCC SSCC看IC C的发展方向2010-3-2清华大学微电子学研究所2集成电路的应用领域Communications Computer & Storage gWireless Cellular Basestations Wireless LANNetworking Switches RoutersWireline Optical Metro AccessComputer Servers Mainframe WorkstationsStorage RAID SANOffice AutomationCopiers Printers MFPConsumerIndustrialEntertainment Broadband Audio/Video Video DisplayBroadcast Studio Satellite BroadcastingInstrumentation st u e tat o Medical Test Equipment ManufacturingSecurity/ Energy M E Mgmt. tAuto Navigation EntertainmentMilitary ta y Secure Comm. Radar Guidance & ControlCard Readers Control Systems ATM3中国大陆地区2008 年集成电路设计产 业的有关情况根据商务部统计信息: 2007年集成电路及微电子组件进口金 额高达1277亿美元;是原油进口额的1.6 倍2008年1-10月 集成电路进口:1119亿美元 集成电路进 成品油:278亿美元 原油:1167亿美元 特殊时间:石油价格飞涨ƒ2008年大陆地区集成电路设计全行 业销售总额为345亿元,同比增长 23.5%需求大、本地企业小、不断发展集成电路的制造过程-晶圆Single dieWafer6” (15cm) 17000 mm2 8” (20cm) 31000 mm2 12” (30cm) 70000 mm2From 2010-3-2 清华大学微电子学研究所 5集成电路的制造过程-封装Wire BondingSubstrate Die PadLead Frame2010-3-2清华大学微电子学研究所6集成电路的制造过程-芯片2010-3-2清华大学微电子学研究所7集成电路的制造过程-成本 NRE(NonRecurring Engineering) Cost is Increasing0.35um 40k$ 0.25um 80k$ 0.18um 160K$ 0.13um 250K$ 90nm 900K$2010-3-2 清华大学微电子学研究所 8内容简介ƒ ƒ ƒ ƒ ƒ集成电路的应用领域 集成电路的制造过程 从CPU的发展看IC的进展 从行业的发展看IC的进展 从ISSCC看IC的发展方向2010-3-2清华大学微电子学研究所9摩尔定律Intel的创始人戈登摩尔(Gordon Moore) •“集成电路所包含的晶体管每18个月就会翻一番” 个月就会翻 番”2010-3-2清华大学微电子学研究所10PDP1(1960)PDP-1(1960)The PDP-1 sold for $120,000.MIT wrote the firstvideo game, Spaceg pWar! for it.A total of 50 wereA total of50werebuilt.INTEL CPUINTEL CPU的发展i4004 1971年11月15日,成立3年的Intel公司推出了世界上第一个微处理器(4004CPU),4位微处理器,10微米的工艺,16针DIP封装,尺寸为3*4mm,共有2300个晶体工艺封装尺寸为3*4共有管,工作频率为108KHz,每秒运算6万次。

物联网工程英语

物联网工程英语

物联网专业英语复习第一部分单词或词组英译中(10空,共10分)汉语中译英(10空,共10分)第一单元单词actuator 执行器Cyber-Physical System (CPS)信息物理融合系统Cyberspace 网络空间device processing power 设备处理能力fibre-based network 基于光纤的网络Global Positioning System (GPS) 全球定位系统Internet of Things (IoT) 物联网Machine to Machine (M2M) 机器对机器nano-technology 纳米技术quick response (QR)-code reader QR 码阅读器radio frequency identification (RFID)无线射频识别技术RFID scanner RFID扫描仪Sensor 传感器shrinking thing 微小的物体storage capacity 存储空间tag 标签middleware中间件中间设备paradigm 范例、概念ubiquitous 普遍存在的gateway device 网关设备logistics 物流in the scenario of … 在…背景下from the point view of … 从…角度convergence 收敛、集合pervasive 普遍存在的domotics 家庭自动化e-health 电子医疗in the context 在…方面with reference to 关于,根据第二单元单词3rd-Generation (3G)第三代移动通信技术bluetooth蓝牙cloud computing云计算database数据库embedded software嵌入式软件enterprise local area network企业局域网EPC Global一个组织(产品电子代码)Fibre to the x (FTTx)光纤入户=Identity authentication身份认证implant microchip植入芯片infrared sensor红外传感器infrared technology红外技术intelligent processing智能处理IPv6一种互联网协议Japanese Ubiquitous ID日本泛在标识Location Based Service (LBS)基于位置的服务logistics management物流管理serviced-oriented面向服务的Telecommunications Management Network (TMN)电信管理网络application layer应用层business layer商业服务层perception layer感知层processing layer处理层transport layer传输层ubiquitous computing普适计算Wireless Fidelity (WiFi)一种无线局域网络技术ZigBee一种低功耗个域网协议deployment调度、部署intervention介入unprecedented空前的refinement精炼、提炼concrete具体的attribute特征、属性conform to符合、遵照e-commerce电子商务assign分配、指定、赋值diverse多种多样的connotation内涵enterprise企业、事业、进取心appropriateness适当、合适immense巨大的、无穷的magnitude大小、量级representative典型的、代表module模块literacy读写能力、文化素养ultra mobile broadband (UMB)超移动宽带mass大规模的,集中的chip芯片integrated综合的、集成的precision精度、精确、精确度reliability可靠性sensitive敏感的、易受伤害的semiconductor半导体silicon硅、硅元素thermocouple热电偶hall门厅、走廊、会堂、食堂programmable可编程的biological sensor生物传感器chemical sensor化学传感器electric current电流electrode potential电极电位integrated circuit集成电路sensor/transducer technology传感器技术sensing element敏感元件transforming circuit转换电路overload capacity过载能力physical sensor物理传感器intelligent sensor智能传感器displacement sensor位移传感器angular displacement sensor角位移传感器pressure sensor压力传感器torque sensor扭矩传感器temperature sensor温度传感器quantity量、数量voltage电压pulse脉冲acquisition获取eliminate消灭、消除volume体积breakthrough突破superconductivity超导电性magnetic磁的inferior in在…方面低劣craft工艺、手艺、太空船quantum量子interference干涉antibody抗体antigen抗原immunity免疫inspect检查、视察organism有机体、生物体hepatitis肝炎high polymer高分子聚合物thin film薄膜ceramic陶瓷adsorption吸附hydrone水分子dielectric medium电解质humidity湿度plasma等离子体polystyrene聚苯乙烯intermediary媒介物polarization极化、偏振corrosion腐蚀tele-measure遥测oxidation氧化lithography光刻diffusion扩散deposition沉淀planar process平面工艺anisotropic各项异性evaporation蒸镀sputter film溅射薄膜resonant pressure sensor谐振压力传感器sophisticated富有经验的etch蚀刻diaphragm膜片beam横梁、照射Wheatstone Bridge惠斯通电桥piezo-resistance压阻gauge计量器ion离子petroleum石油lag落后barcode条码encode编码graphic图形one-dimensional barcode一维码two-dimensional barcode二维码capacity容量disposal处理、安排algorithm算法barcode reader条码阅读器facsimile传真、复写transcript成绩单authenticate认证、鉴定photocopy复印件asymmetric非对称的cryptographic加密的tamper篡改merchandise商品track跟踪personalized个人化的reflectivity反射率recognition识别agency代理commodity商品portable便携式的execute执行impair损害pantry食品柜distinguish区分individual个人的,个别的encrypt把…加密issuing authority发行机关biometric生物识别iris minutiae虹膜特征trigger switch触发开关establish建立dynamic动态的grasp抓住exchange交换retrieve重新获取capture拍摄duplicate复制forge伪造signature签名第六单元synchronous同步的asynchronous异步的barrier障碍物proliferation扩散router路由器restriction限制seismic地震的scenario方案;情节scalability可扩展的spatially空间地topology拓扑latency延迟facilitate促进release发布thermal热的intrusion入侵coordinator协调器node节点surveillance监督base station基站access point接入点,访问点ad hoc无线自组织网络data-link layer数据链路层network topology网络拓扑peer-to-peer点对点power consumption能耗resource constraints资源受限solar panels太阳能电池版plant equipment工厂设备energy efficient高效能end device终端设备Institute of Electrical and Electronics Engineers, IEEE美国电气与电子工程师学会Micro-Electro-Mechanical Systems, MEMS微机电系统Personal Area Network, PAN个域网Wireless Sensor Network, WSN 无线传感网络缩写词展开完整形式(10空,共10分);IoT(Internet of Things)物联网RFID(Radio Frequency Identification)无线射频识别QR-code(Quick Response Code)快速响应码GPS(Global Positioning System)全球定位系统CPS(Cyber Physical System)信息物理融合系统M2M(Machine to Machine)机器对机器HTTP(Hypertext Transfer Protocol)超文本传输协议SOAP(Simple Object Access Protocol)简单对象访问协议EPC(Electronic Product Code)电子产品码WLAN(Wireless Local Area Network)无线局域网LBS(Local Based Service)基于位置的服务GSM(Global System for Mobile Communications)全球移动通信系统DNS(Domain Name Server)域名服务器HTML(Hypertext Makeup Protocol)超文本标记语言CPU(Central Processing Unit)中央处理器单元EPROM(Erasable Programmable Read Only Memory)可擦除可编程只读存储器UHF(Ultra High Frequency)超高频第二部分完型填空(4大题,每题5空,共20分)第三部分阅读理解(2大题,每题5空,共20分)第四部分:句子翻译(5题,每题6分,共30分)(2、5、7、11可能不考,不是作业本上的)1、The main strength of the IoT idea is the high impact it will have on several aspects of everyday-life and behavior of potential users. From the point of view of a private user, the most obvious effects of the IoT introduction will be visible in both working and domestic fields. In this context, domotics, assisted living, e-health, enhanced learning are only a few examples of possibleapplication scenarios in which the new paradigm will play a leading role in the near future.物联网理念的主要强大之处在于,它对潜在用户的日常生活和行为的方方面面产生很大影响。

英语作文-集成电路设计行业中的行业热点与前沿技术

英语作文-集成电路设计行业中的行业热点与前沿技术

英语作文-集成电路设计行业中的行业热点与前沿技术The integrated circuit (IC) design industry stands at the forefront of technological innovation, constantly pushing the boundaries of what's possible in electronics. This field is marked by a relentless pursuit of miniaturization and efficiency, driven by the insatiable demand for faster, smaller, and more powerful electronic devices.One of the hottest topics in IC design is the development of FinFET technology. FinFETs, with their distinctive fin-shaped channels, offer significant advantages over traditional planar transistors, including reduced leakage current and lower power consumption. This technology has become the standard in advanced semiconductor fabrication, enabling the production of chips with transistor nodes as small as 5 nanometers.Another cutting-edge area is the use of Extreme Ultraviolet (EUV) lithography. EUV lithography represents a monumental leap in patterning technology, allowing for the creation of incredibly fine features on silicon wafers. This technique is crucial for the next generation of microprocessors and memory chips, where precision and scale are paramount.The rise of quantum computing also presents exciting opportunities for IC design. Quantum computers operate on quantum bits, or qubits, which can represent both 0 and 1 simultaneously. Designing chips that can harness the power of quantum mechanics could revolutionize fields like cryptography, materials science, and drug discovery.In addition to these technological advancements, the IC design industry is also exploring new materials. Graphene and other 2D materials are being investigated for their exceptional electrical, thermal, and mechanical properties. These materials could lead to the creation of transistors that are not only faster but also more energy-efficient than their silicon counterparts.Moreover, the industry is focusing on System on a Chip (SoC) designs that integrate all components of a computer or other electronic system onto a single chip. SoCs offer numerous benefits, including reduced power consumption, smaller size, and lower costs. They are particularly important for mobile devices and the burgeoning field of the Internet of Things (IoT).In the realm of memory technology, 3D NAND flash is a significant innovation. By stacking memory cells vertically, 3D NAND provides higher density storage solutions, which is essential for the ever-growing data storage needs of the modern world.The IC design industry is also making strides in artificial intelligence (AI). AI-specific processors, such as neural network accelerators, are being developed to handle the complex computations required for machine learning algorithms. These specialized chips are designed to process AI tasks more efficiently than general-purpose processors, enabling more advanced AI applications.In conclusion, the IC design industry is a dynamic and rapidly evolving field, characterized by its commitment to innovation and excellence. From FinFETs to quantum computing, from new materials to AI processors, the industry continues to redefine the limits of technology, shaping the future of electronics and the world at large. The progress made in this field not only enhances our everyday devices but also paves the way for breakthroughs in various scientific and engineering disciplines. As we look to the future, it is clear that the IC design industry will remain at the epicenter of technological advancement, driving progress and inspiring innovation for years to come.。

微电子技术发展历程

微电子技术发展历程

微电子技术发展历程-从基础研究到产业化1.引言诺贝尔奖委员会在2007年的诺贝尔奖授奖公告[1]指出:“巨磁电阻效应的发现打开了一扇通向技术新世界的大门,在这里,将同时利用电子的电荷自旋特性。

新兴的纳米技术是发现巨磁电阻的前提条件,而自旋电子学反过来成为促进纳米技术迅速发展的动力。

这为研究领域树立了一个异常清晰的例子:基础研究和新技术是如果交互作用和互相支持的。

”实际上,在现代科学研究和技术发展历程中,基础研究和新技术交互作用和互相支持的历史事例是非常多的。

本文简要介绍集成电路、硬盘技术及扫描电子显微镜的发展等三个例子,探讨基础研究和新技术发展的相互关系,希望能给读者一些启迪和思考。

2.集成电路技术的发展简介1880年,爱迪生意外地发现在灯泡里加入一支电极,而将它连接到钨丝的电源去,被加热后的钨丝会向电极放电产生电流,这个物理现象被称为“爱迪生效应”。

1904年,曾担任伦敦的爱迪生电灯公司顾问的英国科学家J.A.Fleming发明了用于无线电信中检波器的真空二极管,这个重大发明的基础就是“爱迪生效应”。

Fleming将发明了的二极真空管取名Bulb,或称Valve。

1946年2月14日,公认的世界上第一台电子计算机ENIAC在美国宾夕法尼亚大学诞生。

这部机器使用了18800个真空管,长50英尺,宽30英尺,占地1500平方英尺,重达30吨。

它的计算速度为每秒5000次的加法运算。

机器被安装在一排2.75米高的金属柜里,占地面积为170平方米左右,总重量达到30吨。

它的耗电量超过174千瓦,电子管平均每隔7分钟就要被烧坏一只。

ENIAC标志着电子计算机的创世,人类社会从此大步迈进了计算机时代的门槛。

1947年12月,美国Bell实验室的Shockley、Bardeen和Brattain等人发明了晶体三极管[2]。

晶体管相较于真空管具有显著的优越性能,因此晶体管促进并带来了“固态革命”,进而推动了全球范围内的半导体电子工业。

半导体发展简介

半导体发展简介
8
1964年,仙童半导体公司创始人之一摩尔博士,以三页纸的短小篇幅,发表了一个奇特的 定律。摩尔天才地预言说道,集成电路上能被集成的晶体管数目,将会以每 18个月翻一 番的速度稳定增长,并在今后数十年内保持着这种势头。摩尔所作的这个预言,因后来集 成电路的发展而得以证明,并在较长时期保持了它的有效性,被人誉为“摩尔定律”,成 为新兴电子电脑产业的“第一定律”。 60 年代的仙童半导体公司进入了它的黄金时期。 到1967年,公司营业额已接近 2 亿美元, 在当时可以说是天文数字。然而,也就是在这一时期,仙童公司也开始孕育着危机。母公 司总经理不断把利润转移到东海岸,去支持费尔柴尔德摄影器材公司的盈利水平。
TTL IC (Transistor-Transistor
Logic)
CMOS/MOS
1969年 LSI 103 -104
1969年 1971年
阿姆斯特朗在月球登陆 英特尔公司 (intel Com.) 微处理机 (Microcomputer 4004)
电子设备集成化 Information Age
P-N结 太阳能电池
作者/发明者
Braun
Round
Bardeen, Brattain, Shockley Ebers
Chapin, Fuller, Pearson
16
公元 1957 1958 1960 1962 1963 1963 1966 1967 1970 1974 1980 1994 2001
将大量的分立器件, 如晶体管、 电阻、电容等 ,在一块芯片 上制作出来并由导线相连以 完成某些电路功能。
7
集成电路的发明过程 – 别忘了Noyce
在Jack Kilby发明集成电路的同时,当时工作于Fairchild Semiconductor (co-founder of Intel) 的 Robert Noyce 也意识到可以在单个芯片上制作电路,他在听说 Kilby已申请了类似的专利后,于1959年1月也提出了更为 详细的专利申请。并早于Kilby 一年获得专利批准。

微电子技术发展历程

微电子技术发展历程

微电子技术发展历程微电子技术发展历程--从基础研究到产业化从基础研究到产业化1.引言.引言诺贝尔奖委员会在2007年的诺贝尔奖授奖公告年的诺贝尔奖授奖公告[1][1][1]指出:“巨磁电阻效应的发指出:“巨磁电阻效应的发现打开了一扇通向技术新世界的大门,在这里,将同时利用电子的电荷自旋特性。

新兴的纳米技术是发现巨磁电阻的前提条件,而自旋电子学反过来成为促进纳米技术迅速发展的动力。

这为研究领域树立了一个异常清晰的例子:基础研究和新技术是如果交互作用和互相支持的。

”实际上,在现代科学研究和技术发展历程中,基础研究和新技术交互作用和互相支持的历史事例是非常多的。

本文简要介绍集成电路、硬盘技术及扫描电子显微镜的发展等三个例子,探讨基础研究和新技术发展的相互关系,希望能给读者一些启迪和思考。

2.集成电路技术的发展简介.集成电路技术的发展简介1880年,爱迪生意外地发现在灯泡里加入一支电极,而将它连接到钨丝的电源去,被加热后的钨丝会向电极放电产生电流,这个物理现象被称为“爱迪生效应”。

应”。

1904年,曾担任伦敦的爱迪生电灯公司顾问的英国科学家J.A.Fleming 发明了用于无线电信中检波器的真空二极管,这个重大发明的基础就是“爱迪生效应”。

应”。

Fleming Fleming 将发明了的二极真空管取名Bulb Bulb,或称,或称Valve Valve。

1946年2月14日,公认的世界上第一台电子计算机ENIAC 在美国宾夕法尼亚大学诞生。

这部机器使用了18800个真空管,长50英尺,宽30英尺,英尺, 占地1500平方英尺,重达30吨。

它的计算速度为每秒5000次的加法运算。

机器被安装在一排2.75米高的金属柜里,占地面积为170平方米左右,总重量达平方米左右,总重量达 到30吨。

它的耗电量超过174千瓦,电子管平均每隔7分钟就要被烧坏一只。

ENIAC 标志着电子计算机的创世,人类社会从此大步迈进了计算机时代的门槛。

电子科技一级学科介绍

电子科技一级学科介绍

600

500

400

300

200
100
0 1997 1999 2001 2003 2006 2009
芯片面积
2.5

2

Vdd(v)

1.5
Vdd

1
0.5
0
1997 1999 2001 2003 2006 2009
31
10

9 8

7
金属层数

6 5
线
4
金属层数

3 2

1
0
1997 1999 2001 2003 2006 2009
lBrattain设计了实验。
l1947年12月23日,第一次观测到了具有放大作用的晶 体管
l次年1月肖克莱提出结型晶体管理论,并于1952年制
备出结型锗晶体管。
9

塑料楔 集




0.005cm 的间距

蒸金箔
金属 基极
世界上第一只Ge点接触型PNP晶体管 10
11
1956年诺贝尔物理学奖:
1948: Shockley, Bardeen, Brattain – BJT
1960: Kahng, Atalla – Si MOSFET
1962: Wanlass, Sah, Moore – CMOS
1964: Fairchild / RCA – 1st commercial MOSFETs
1968: Noyce & Moore found Intel 1971: 1st microprocessor, intel4004

酒类资料-芯片封装 精品

酒类资料-芯片封装 精品
湖南工业大学 计算机与通信学院
前沿讲座
Lecture 1 集成电路封装技术-多芯片封装
陈卫兵
Spring 2012
Outline
芯片封装发展史 芯片封装 LED封装
前沿讲座
Slide 2
芯片封装发展史
The transistor invented at Bell lab. in 1947
Board VDD
Board GND
前沿讲座
Slide 19
芯片封装(热耗散)
60 W light bulb has surface area of 120 cm2 Itanium 2 die dissipates 130 W over 4 cm2
– Chips have enormous power densities – Cooling is a serious challenge Package spreads heat to larger surface area – Heat sinks may increase surface area further – Fans increase airflow rate over surface area – Liquid cooling used in extreme cases ($$$)
前沿讲座
Slide 11
芯片封装(邦定)
Two methods
前沿讲座
Slide 12
芯片封装(结构形式)
过孔和表面贴装形式
前沿讲座
Slide 13
芯片封装(高级模式)
Bond wires contribute parasitic inductance Fancy packages have many signal, power layers

02-知识点1-4 集成电路发展史课件

02-知识点1-4 集成电路发展史课件
集成电路设计基

华中科技大学
武汉国际微电子学院
1.3 集成电路 - 发展史
雷鑑铭
集成电路发展历程
集成电路规模
SoC——NoC——LoC
ENIAC– – 第一台电计算机
晶体管革命
晶体管革命
锗多晶材料制备的点接触晶体管
世界上第一个点接触型晶体管
1947年圣诞前夕,贝尔实验室的科 学家肖克利(William Shockley)和 他的两助手布拉顿(Water Brattain 、 巴丁(John bardeen)在贝尔实验 室工作时发明了世界上第一个点接 触型晶体管
2002年1月:英特尔奔腾4处理器推出,高性能桌面台式电脑由此可实现每秒钟22亿个 周பைடு நூலகம்运算。它采用英特尔0.13微米制程技术生产,含有5500万个晶体管。
2003年3月12日:针对笔记本的英特尔迅驰移动技术平台诞生,包括了英特尔最新的移 动处理器“英特尔奔腾M处理器”。该处理器基于全新的移动优化微体系架构,采用英 特尔0.13微米制程技术生产,包含7700万个晶体管。
第一个单片集成运算放大器
1963年,26岁工程师Robert Wildlar在仙童半导体公司(Fairchild Semiconductor)设计了第一块单片集成运算放大器,即µA702。
Intel 4004 微处理器
1971年 1000颗晶体管 1MHz工作频率 全定制人工设计
电路规模:2300个晶体管 生产工艺:10um 最快速度:108KHz
2005年5月26日:英特尔第一个主流双核处理器“英特尔奔腾D处理器”诞生,含有 2.3亿个晶体管,采用英特尔领先的90纳米制程技术生产。
Intel Pentium 发展历程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1960 - First Planar Integrated Circuit is Fabricated
Jay Last leads development of the first commercial IC based on Hoerni’s planar process and Noyce’s monolithic approach.
Jay Last with Gordon Moore in background
Credit: Fairchild Camera & Instrument Corporation
∙∙


In August 1959 Fairchild Semiconductor Director of R&D, Robert
Noyce asked co-founder Jay Last to begin development of an
integrated circuit based on Hoerni’s planar process (1959 Milestone)
and Noyce’s patent. (1959 Milestone) After building a multi-chip
flip-flop with discrete transistors to demonstrate the concept at Wescon, Last assembled a team including Sam Fok, Isy Haas, Lionel Kattner, and James Nall. Based on characterization data prepared by Don Farina, Robert Norman of the applications department designed a flip-flop with four-transistors and five resistors using a modified Direct Coupled Transistor Logic (DCTL) circuit as most compatible with early planar processing capabilities.
Integrating multiple interconnected devices on one chip posed many new engineering challenges. The first working monolithic devices produced on May 26 1960 used physical isolation to achieve electrical separation between components. Deep channels were etched from the rear of the silicon wafer and filled with non-conducting epoxy. The preferred production method, p-n junction electrical isolation using a boron diffusion technique developed by Haas and Kattner, yielded working circuits on September 27, 1960.
Fairchild presented advanced information at engineering conferences and provided prototype samples to customers in 1960. Under the trade name µLogic (Micrologic), the type "F" flip-flop function was announced to the public in March 1961 via a press conference at the IRE Show in New York and a photograph in LIFE magazine. Five additional circuits, including the type "G" gate function (1962 Milestone), a half adder, and a half shift register, were introduced in October.
Contemporary Documents
Norman, R. Last, J. Haas, I. "Solid-state Micrologic Elements," Solid-State Circuits Conference. Digest of Technical Papers. 1960 IEEE Internationa l Volume: III, (Feb 1960) pp. 82- 83 Farina, Donald; Nall, James; Anderson, Richard. "Application of Micrologic Elements" Paper presented at the National Electronics Conference October 10-12, 1960. Reprinted as Fairchild Semiconductor Technical Paper TP-11/3. March 1963.
Oral History transcripts online at the Computer History Museum
Last, Jay (Shockley, Fairchild, Amelco), an oral history (2007-04-25) Fairchild Micrologic oral history panel - Haas, Kattner, Last, Norman (2007-10-6)
Kattner, Lionel (Fairchild, Signetics), an oral history (2007-11-20) More Information
Moore, G. E. "The Role of Fairchild in Silicon Technology" Proceedings of the IEEE Vol. 86, Issue 1 (1998) pp. 53-62.
Lécuyer, Christophe Making Silicon Valley: Innovation and the Growth of High Tech 1930-1970. (Cambridge: The MIT Press, 2006) p. 158.
Augarten, Stan "Putting the Planar Process to Good Use," State Of The Art: A Photographic History of the Integrated Circuit.(New Haven & New York: Ticknor and Fields, 1983) pp. 10, also “Resistor - Transistor Logic,” p. 14.
Berlin, L. The Man behind the Microchip. (Oxford University Press, Inc., 2005) pp. 135
Lécuyer,Christophe and Brock, David C. Makers of the Microchip: A Documentary History of Fairchild Semiconductor The MIT Press (September 30, 2010)。

相关文档
最新文档