无锡市新区2019~2019学年八年级上期末数学试卷含答案解析
江苏省无锡市宜兴市八年级数学上学期期末试题(含解析) 苏科版-苏科版初中八年级全册数学试题
某某省某某市宜兴市2015-2016学年八年级数学上学期期末试题一、选择题:(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.)1.如图,下列图案中,是轴对称图形的是( )A.(1)(2) B.(1)(3) C.(1)(4) D.(2)(3)2.下列实数中,是无理数的为( )A.B.C.0 D.﹣33.在△ABC中和△DEF中,已知BC=EF,∠C=∠F,增加下列条件后还不能判定△ABC≌△DEF 的是( )A.AC=DF B.AB=DE C.∠A=∠D D.∠B=∠E4.满足下列条件的△ABC不是直角三角形的是( )A.a=1、b=2,c=B.a=1、b=2,c=C.a:b:c=3:4:5 D.∠A:∠B:∠C=3:4:55.如图,直线l是一条河,P,Q是两个村庄.计划在l上的某处修建一个水泵站M,向P,Q两地供水.现有如下四种铺设方案(图中实线表示铺设的管道),则所需管道最短的是( )A.B.C.D.6.设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=( ) A.2 B.﹣2 C.4 D.﹣47.如图,在平面直角坐标系中,点P坐标为(﹣4,3),以点B(﹣1,0)为圆心,以BP 的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于( )A.﹣6和﹣5之间B.﹣5和﹣4之间C.﹣4和﹣3之间D.﹣3和﹣2之间8.在平面直角坐标系中,点A(1,1),B(3,3),动点C在x轴上,若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数为( )A.2 B.3 C.4 D.5二、填空题:(本大题共11小题,每题2分,共22分)9.16的平方根是__________.10.点A(﹣3,4)关于y轴对称的坐标为__________.11.地球上七大洲的总面积约为149 480 000km2,把这个数值精确到千万位,并用科学记数法表示为__________.12.函数中自变量x的取值X围是__________.13.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC=__________°.14.如图,锐角△ABC的高AD、BE相交于F,若BF=AC,BC=7,CD=2,则AF的长为__________.15.如图,已知△ABC中,AB=17,AC=10,BC边上的高AD=8.则△ABC的周长为__________.16.如图,直线y=kx+b与x轴交于点(2,0),若y<0时,则x的取值X围是__________.17.已知点P(a﹣1,a+5)在第二象限,且到y轴的距离为2,则点P的坐标为__________.18.函数y=kx+b(k≠0)的图象平行于直线y=3x+2,且交y轴于点(0,﹣1),则其函数表达式是__________.19.已知点A(1,5),B(3,﹣1),点M在x轴上,当AM﹣BM最大时,点M的坐标为__________.三、解答题:(本大题满分54分,解答需写必要演算步骤)20.计算:(1)计算:+﹣(2)求4x2﹣9=0中x的值.(3)求(x﹣1)3=8中x的值.21.已知某正数的两个平方根分别是a+3和2a﹣15,b的立方根是﹣2.求﹣b﹣a的算术平方根.22.如图,四边形ABCD的对角线AC与BD相交于点O,AB=AD,CB=CD.求证:(1)△ABC≌△ADC;(2)AC垂直平分BD.23.近年来,某某省实施“村村通”工程和农村医疗卫生改革,宜兴市计划在某镇的X村、李村之间建一座定点医疗站P,X、李两村座落在两相交公路内(如图所示),医疗站必须满足下列条件:①使其到两公路的距离相等;②到X、李两村的距离也相等.请你利用尺规作图确定P点的位置.(不写作法,保留作图痕迹)24.如图:图①、图②都是4×4的正方形网格,小正方形的边长均为1,每个小正方形的顶点称为格点.在①、②两个网格中分别标注了5个格点,按下列要求画图:在图①图②中以5个格点中的三个格点为顶点,各画一个成轴对称的三角形;并计算它的面积分别等于__________ 与__________.25.如图,一次函数y=(m+1)x+的图象与x轴的负半轴相交于点A,与y轴相交于点B,且△OAB面积为.(1)求m的值及点A的坐标;(2)过点B作直线BP与x轴的正半轴相交于点P,且OP=3OA,求直线BP的函数表达式.26.如图,已知Rt△ABC中,∠C=90°.沿DE折叠,使点A与点B重合,折痕为DE.(1)若DE=CE,求∠A的度数;(2)若BC=6,AC=8,求CE的长.27.甲、乙两人沿相同的路线由A地到B地匀速前进,A,B两地间的路程为20千米,他们前进的路程为s(单位:千米),甲出发后的时间为t(单位:小时),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息回答下列问题:(1)甲的速度是__________千米/小时,乙比甲晚出发__________小时;(2)分别求出甲、乙两人前进的路程s与甲出发后的时间t之间的函数关系式;(3)求甲经过多长时间被乙追上,此时两人距离B地还有多远?28.如图,直线y=﹣2x+7与x轴、y轴分别相交于点C、B,与直线y=x相交于点A.(1)求A点坐标;(2)如果在y轴上存在一点P,使△OAP是以OA为底边的等腰三角形,则P点坐标是__________;(3)在直线y=﹣2x+7上是否存在点Q,使△OAQ的面积等于6?若存在,请求出Q点的坐标,若不存在,请说明理由.2015-2016学年某某省某某市宜兴市八年级(上)期末数学试卷一、选择题:(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.)1.如图,下列图案中,是轴对称图形的是( )A.(1)(2) B.(1)(3) C.(1)(4) D.(2)(3)【考点】轴对称图形.【分析】根据轴对称图形的概念对各小题分析判断即可得解.【解答】解:(1)是轴对称图形,(2)不是轴对称图形,(3)不是轴对称图形,(4)是轴对称图形;综上所述,是轴对称图形的是(1)(4).故选C.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列实数中,是无理数的为( )A.B.C.0 D.﹣3【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、是无理数,选项正确;B、是分数,是有理数,选项错误;C、是整数,是有理数,选项错误;D、是整数,是有理数,选项错误.故选A.【点评】此题主要考查了无理数的定义,其中初中X围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.在△ABC中和△DEF中,已知BC=EF,∠C=∠F,增加下列条件后还不能判定△ABC≌△DEF 的是( )A.AC=DF B.AB=DE C.∠A=∠D D.∠B=∠E【考点】全等三角形的判定.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理进行判断即可.【解答】解:A、根据SAS即可推出△ABC≌△DEF,故本选项错误;B、不能推出△ABC≌△DEF,故本选项正确;C、根据AAS即可推出△ABC≌△DEF,故本选项错误;D、根据ASA即可推出△ABC≌△DEF,故本选项错误;故选B.【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.4.满足下列条件的△ABC不是直角三角形的是( )A.a=1、b=2,c=B.a=1、b=2,c=C.a:b:c=3:4:5 D.∠A:∠B:∠C=3:4:5【考点】勾股定理的逆定理;三角形内角和定理.【分析】根据勾股定理的逆定理对A、B、C进行逐一判断,再利用三角形内角和定理可得D 选项中最大角的度数,进而可进行判断.【解答】解:A、∵12+()2=22,∴能构成直角三角形,故本选项不符合要求;B、∵12+22=()2,∴能构成直角三角形,故本选项不符合要求;C、∵32+42=52,∴能构成直角三角形,故本选项不符合要求;D、∵180°×=5°,∴不能构成直角三角形,故本选项符合要求.故选:D.【点评】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.5.如图,直线l是一条河,P,Q是两个村庄.计划在l上的某处修建一个水泵站M,向P,Q两地供水.现有如下四种铺设方案(图中实线表示铺设的管道),则所需管道最短的是( )A.B.C.D.【考点】轴对称-最短路线问题.【分析】用对称的性质,通过等线段代换,将所求路线长转化为两定点之间的距离.【解答】解:作点P关于直线l的对称点P′,连接QP′交直线l于M.根据两点之间,线段最短,可知选项B修建的管道,则所需管道最短.故选D.【点评】本题考查了最短路径的数学问题.这类问题的解答依据是“两点之间,线段最短”.由于所给的条件的不同,解决方法和策略上又有所差别.6.设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=( ) A.2 B.﹣2 C.4 D.﹣4【考点】正比例函数的性质.【分析】直接根据正比例函数的性质和待定系数法求解即可.【解答】解:把x=m,y=4代入y=mx中,可得:m=±2,因为y的值随x值的增大而减小,所以m=﹣2,故选B【点评】本题考查了正比例函数的性质:正比例函数y=kx(k≠0)的图象为直线,当k>0,图象经过第一、三象限,y值随x的增大而增大;当k<0,图象经过第二、四象限,y值随x的增大而减小.7.如图,在平面直角坐标系中,点P坐标为(﹣4,3),以点B(﹣1,0)为圆心,以BP 的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于( )A.﹣6和﹣5之间B.﹣5和﹣4之间C.﹣4和﹣3之间D.﹣3和﹣2之间【考点】勾股定理;估算无理数的大小;坐标与图形性质.【分析】先根据勾股定理求出BP的长,由于BA=BP,得出点A的横坐标,再估算即可得出结论.【解答】解:∵点P坐标为(﹣4,3),点B(﹣1,0),∴OB=1,∴BA=BP==3,∴OA=3+1,∴点A的横坐标为﹣3﹣1,∵﹣6<﹣3﹣1<﹣5,∴∴点A的横坐标介于﹣6和﹣5之间.故选:A.【点评】本题考查了勾股定理、估算无理数的大小、坐标与图形性质,根据题意利用勾股定理求出BP的长是解答此题的关键.8.在平面直角坐标系中,点A(1,1),B(3,3),动点C在x轴上,若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数为( )A.2 B.3 C.4 D.5【考点】等腰三角形的判定;坐标与图形性质.【分析】首先根据线段的中垂线上的点到线段两端点的距离相等,求出AB的中垂线与x轴的交点,即可求出点C1的坐标;然后再求出AB的长,以点A为圆心,以AB的长为半径画弧,与x轴的交点为点C2、C3;最后判断出以点B为圆心,以AB的长为半径画弧,与x轴没有交点,据此判断出点C的个数为多少即可.【解答】解:如图,∵AB所在的直线是y=x,∴设AB的中垂线所在的直线是y=﹣x+b,∵点A(1,1),B(3,3),∴AB的中点坐标是(2,2),把x=2,y=2代入y=﹣x+b,解得b=4,∴AB的中垂线所在的直线是y=﹣x+4,∴C1(4,0)以点A为圆心,以AB的长为半径画弧,与x轴的交点为点C2、C3;AB==2,∵2<3,∴以点B为圆心,以AB的长为半径画弧,与x轴没有交点.综上,可得若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数为3.故选:B.【点评】此题主要考查了等腰三角形的性质和应用,考查了分类讨论思想的应用,要熟练掌握,解答此题的关键是要明确:①等腰三角形的两腰相等.②等腰三角形的两个底角相等.③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.二、填空题:(本大题共11小题,每题2分,共22分)9.16的平方根是±4.【考点】平方根.【专题】计算题.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a 的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10.点A(﹣3,4)关于y轴对称的坐标为(3,4).【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可直接得到答案.【解答】解:点A(﹣3,4)关于y轴对称的坐标为(3,4).故答案为:(3,4);【点评】此题主要考查了关于y轴对称点的坐标特点,关键是掌握点的坐标的变化规律.11.地球上七大洲的总面积约为149 480 000km2,把这个数值精确到千万位,并用科学记数法表示为1.5×108.【考点】科学记数法与有效数字.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将149480000用科学记数法表示为:1.4948×108≈1.5×108.故答案为:1.5×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.函数中自变量x的取值X围是x≥2.【考点】函数自变量的取值X围.【分析】根据二次根式的性质,被开方数大于等于0,就可以求解.【解答】解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.【点评】本题主要考查函数自变量的取值X围,考查的知识点为:二次根式的被开方数是非负数.13.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC=15°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据线段垂直平分线求出AD=BD,推出∠A=∠ABD=50°,根据三角形内角和定理和等腰三角形性质求出∠ABC,即可得出答案.【解答】解:∵DE垂直平分AB,∴A D=BD,∠AED=90°,∴∠A=∠ABD,∵∠ADE=40°,∴∠A=90°﹣40°=50°,∴∠ABD=∠A=50°,∵AB=AC,∴∠ABC=∠C=(180°﹣∠A)=65°,∴∠DBC=∠ABC﹣∠ABD=65°﹣50°=15°,故答案为:15.【点评】本题考查了等腰三角形的性质,线段垂直平分线性质,三角形内角和定理的应用,能正确运用定理求出各个角的度数是解此题的关键,难度适中.14.如图,锐角△ABC的高AD、BE相交于F,若BF=AC,BC=7,CD=2,则AF的长为3.【考点】全等三角形的判定与性质.【分析】先证出∠DBF=∠DAC,由AAS证明△BDF≌△ADC,得出对应边相等AD=BD=BC﹣CD=5,DF=CD=2,即可得出AF的长.【解答】解:∵AD⊥BC,BE⊥AC,∴∠BDF=∠ADC=∠BEC=90°,∴∠DBF+∠C=90°,∠DAC+∠C=90°,∴∠DBF=∠DAC,在△BDF与△ADC中,∴△BDF≌△ADC(ASA),∴AD=BD=BC﹣CD=7﹣2=5,DF=CD=2,∴AF=AD﹣DF=5﹣2=3;故答案为:3.【点评】本题考查了全等三角形的判定和性质;证明三角形的全等得出对应边相等是解此题的关键.15.如图,已知△ABC中,AB=17,AC=10,BC边上的高AD=8.则△ABC的周长为48.【考点】勾股定理.【分析】分别在两个直角三角形中求得线段BD和线段CD的长,然后求得BC的长,从而求得周长.【解答】解:在直角三角形ABD中,AB=17,AD=8,根据勾股定理,得BD=15;在直角三角形ACD中,AC=10,AD=8,根据勾股定理,得CD=6;∴BC=15+6=21,∴△ABC的周长为17+10+21=48,故答案为:48.【点评】此题考查了勾股定理及解直角三角形的知识,在解本题时应分两种情况进行讨论,易错点在于漏解,同学们思考问题一定要全面,有一定难度,本题因给出了图形,故只有一种情况.16.如图,直线y=kx+b与x轴交于点(2,0),若y<0时,则x的取值X围是x>2.【考点】一次函数与一元一次不等式.【分析】根据函数的图象直接解答即可.【解答】解:由直线y=kx+b的图象可知,当x>2时函数的图象在x轴的下方.故答案为x>2.【点评】此题考查了一次函数与不等式,利用数形结合是解题的关键.17.已知点P(a﹣1,a+5)在第二象限,且到y轴的距离为2,则点P的坐标为(﹣2,4).【考点】点的坐标.【分析】直接利用第二象限点的坐标性质结合到y轴的距离为2,得出a的值,进而得出点P的坐标.【解答】解:∵点P(a﹣1,a+5)在第二象限,且到y轴的距离为2,∴a﹣1=﹣2,解得:a=﹣1,∴a+5=4,则点P的坐标为:(﹣2,4).故答案为:(﹣2,4).【点评】此题主要考查了点的坐标,正确利用坐标性质得出a的值是解题关键.18.函数y=kx+b(k≠0)的图象平行于直线y=3x+2,且交y轴于点(0,﹣1),则其函数表达式是y=3x﹣1.【考点】两条直线相交或平行问题.【分析】根据平行直线的解析式求出k值,再把点的坐标代入解析式求出b值,即可得解.【解答】解:∵y=kx+b的图象平行于直线y=3x+2,∴k=3,又∵与y轴的交点坐标为(0,﹣1),∴b=﹣1,∴函数的表达式是y=3x﹣1.故答案为:y=3x﹣1.【点评】本题考查了两直线平行的问题,根据平行直线的解析式的k值相等求出k的值是解题的关键,也是本题的难点.19.已知点A(1,5),B(3,﹣1),点M在x轴上,当AM﹣BM最大时,点M的坐标为(,0).【考点】轴对称-最短路线问题;坐标与图形性质.【分析】作点B关于x轴的对称点B′,连接AB′并延长与x轴的交点,即为所求的M点.利用待定系数法求出直线AB′的解析式,然后求出其与x轴交点的坐标,即M点的坐标.【解答】解:如图,作点B关于x轴的对称点B′,连接AB′并延长与x轴的交点,即为所求的M点.此时AM﹣BM=AM﹣B′M=AB′.不妨在x轴上任取一个另一点M′,连接M′A、M′B、M′B′.则M′A﹣M′B=M′A﹣M′B′<AB′(三角形两边之差小于第三边).∴M′A﹣M′B<AM﹣BM,即此时AM﹣BM最大.∵B′是B(3,﹣1)关于x轴的对称点,∴B′(3,1).设直线AB′解析式为y=kx+b,把A(1,5)和B′(3,1)代入得:,解得,∴直线AB′解析式为y=﹣2x+7.令y=0,解得x=,∴M点坐标为(,0).故答案为:(,0).【点评】本题考查了轴对称﹣﹣最短路线问题、坐标与图形性质.解题时可能感觉无从下手,主要原因是平时习惯了线段之和最小的问题,突然碰到线段之差最大的问题感觉一筹莫展.其实两类问题本质上是相通的,前者是通过对称转化为“两点之间线段最短”问题,而后者(本题)是通过对称转化为“三角形两边之差小于第三边”问题.可见学习知识要活学活用,灵活变通.三、解答题:(本大题满分54分,解答需写必要演算步骤)20.计算:(1)计算:+﹣(2)求4x2﹣9=0中x的值.(3)求(x﹣1)3=8中x的值.【考点】实数的运算;平方根;立方根.【专题】计算题;实数.【分析】(1)原式利用平方根、立方根定义计算即可得到结果;(2)方程整理后,利用平方根定义开方即可求出解;(3)方程利用立方根定义开立方即可求出x的值.【解答】解:(1)原式=3+3﹣2=4;(2)方程整理得:x2=,开方得:x=±;(3)开立方得:x﹣1=2,解得:x=3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.已知某正数的两个平方根分别是a+3和2a﹣15,b的立方根是﹣2.求﹣b﹣a的算术平方根.【考点】平方根;算术平方根;立方根.【分析】根据两个平方根互为相反数进行解答即可.【解答】解:∵某正数的两个平方根分别是a+3和2a﹣15,可得:a+3+2a﹣15=0,解得:a=4,∵b的立方根是﹣2,可得:b=﹣8,把a=4,b=﹣8代入﹣b﹣a=8﹣4=4,所以﹣b﹣a的算术平方根是2.【点评】此题考查平方根问题,关键是根据两个平方根互为相反数得出a的值.22.如图,四边形ABCD的对角线AC与BD相交于点O,AB=AD,CB=CD.求证:(1)△ABC≌△ADC;(2)AC垂直平分BD.【考点】全等三角形的判定与性质;线段垂直平分线的性质;等腰三角形的性质.【专题】证明题.【分析】(1)根据SSS定理推出即可;(2)根据全等三角形的性质得出∠BAC=∠DAC,根据等腰三角形的性质得出即可.【解答】证明:(1)∵在△ABC与△ADC中,∴△ABC≌△ADC(SSS);(2)∵△ABC≌△ADC,∴∠BAC=∠DAC,又∵AB=AD,∴AC垂直平分BD.【点评】本题考查了全等三角形的性质和判定,等腰三角形的性质的应用,能求出△ABC≌△ADC是解此题的关键,注意:全等三角形的对应边相等,对应角相等.23.近年来,某某省实施“村村通”工程和农村医疗卫生改革,宜兴市计划在某镇的X村、李村之间建一座定点医疗站P,X、李两村座落在两相交公路内(如图所示),医疗站必须满足下列条件:①使其到两公路的距离相等;②到X、李两村的距离也相等.请你利用尺规作图确定P点的位置.(不写作法,保留作图痕迹)【考点】作图—应用与设计作图.【分析】医疗站到两村的距离相等,所点P在X村与李村所组成线段的垂直平分线上,医疗站到两公路的距离相等,则医疗站在公路夹角的平分线上.【解答】解:如图所示:点P即为所求作的点.【点评】本题主要考查的是作图﹣﹣应用与设计作图,掌握角平分线的性质和线段垂直平分线的性质是解题的关键.24.如图:图①、图②都是4×4的正方形网格,小正方形的边长均为1,每个小正方形的顶点称为格点.在①、②两个网格中分别标注了5个格点,按下列要求画图:在图①图②中以5个格点中的三个格点为顶点,各画一个成轴对称的三角形;并计算它的面积分别等于4 与.【考点】利用轴对称设计图案.【分析】利用轴对称图形的性质得出符合题意的三角形,再利用三角形面积求法得出答案.【解答】解:如图所示:图①的面积是:3×3﹣×1×3﹣×1×3﹣×2×2=4,图②的面积是:2×3﹣×1×2﹣×1×3﹣×1×2=.故答案为:4,.【点评】此题主要考查了利用轴对称设计图案以及三角形面积求法,正确掌握轴对称图形的性质是解题关键.25.如图,一次函数y=(m+1)x+的图象与x轴的负半轴相交于点A,与y轴相交于点B,且△OAB面积为.(1)求m的值及点A的坐标;(2)过点B作直线BP与x轴的正半轴相交于点P,且OP=3OA,求直线BP的函数表达式.【考点】两条直线相交或平行问题.【专题】计算题.【分析】(1)先利于y=(m+1)x+可求出B(0,),所以OB=,则利用三角形面积公式计算出OA=1,则A(﹣1,0);然后把点A(﹣1,0)代入y=(m+1)x+可求出m的值;(2)利用OP=3OA=3可得到点P的坐标为(3,0),然后利用待定系数法求直线BP的函数解析式.【解答】解:(1)当x=0时,y=(m+1)x+=,则B(0,),所以OB=,∵S△OAB=,∴×OA×OB=,解得OA=1,∴A(﹣1,0);把点A(﹣1,0)代入y=(m+1)x+得﹣m﹣1+=0,∴m=;(2)∵OP=3OA,∴OP=3,∴点P的坐标为(3,0),设直线BP的函数表达式为y=kx+b,把P(3,0)、B(0,)代入得,解得,∴直线BP的函数表达式为y=﹣x+.【点评】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.也考查了待定系数法求一次函数解析式.26.如图,已知Rt△ABC中,∠C=90°.沿DE折叠,使点A与点B重合,折痕为DE.(1)若DE=CE,求∠A的度数;(2)若BC=6,AC=8,求CE的长.【考点】翻折变换(折叠问题);勾股定理.【分析】(1)利用翻折变换的性质得出DE垂直平分AB,进而得出∠1=∠2=∠A即可得出答案;(2)利用勾股定理得出CE的长,即可得出CD的长.【解答】解:(1)∵折叠使点A与点B重合,折痕为DE.∴DE垂直平分AB.∴AE=BE,∴∠A=∠1,又∵DE⊥AB,∠C=90°,DE=CE,∴∠1=∠2,∴∠1=∠2=∠A.由∠A+∠1+∠2=90°,解得:∠A=30°;(2)设CE=x,则AE=BE=8﹣x.在Rt△BCE中,由勾股定理得:BC2+CE 2=BE2.即 62+x2=(8﹣x)2,解得:x=,即CE=.【点评】此题主要考查了翻折变换的性质以及勾股定理,根据已知熟练应用勾股定理得出是解题关键.27.甲、乙两人沿相同的路线由A地到B地匀速前进,A,B两地间的路程为20千米,他们前进的路程为s(单位:千米),甲出发后的时间为t(单位:小时),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息回答下列问题:(1)甲的速度是5千米/小时,乙比甲晚出发1小时;(2)分别求出甲、乙两人前进的路程s与甲出发后的时间t之间的函数关系式;(3)求甲经过多长时间被乙追上,此时两人距离B地还有多远?【考点】一次函数的应用.【分析】(1)根据速度,路程,时间三者之间的关系求得结果;(2)设乙的解析式为s=kt+b(k≠0),然后利用待定系数法求解即可;(3)联立两函数解析式,解方程组即可.【解答】解:(1)甲的速度是:20÷4=5,乙比甲晚出发1小时;故答案为:5,1;(2)设甲的解析式为:s=mt,则20=4m,∴m=5,∴甲的解析式为:s=5t,设乙的解析式为s=kt+b(k≠0),则,解得,∴乙的解析式为s=20t﹣20;(3)解得,∴甲经过h被乙追上,此时两人距离B地还有km.【点评】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,两直线交点的求法,需熟练掌握并灵活运用是解题的关键.28.如图,直线y=﹣2x+7与x轴、y轴分别相交于点C、B,与直线y=x相交于点A.(1)求A点坐标;(2)如果在y轴上存在一点P,使△OAP是以OA为底边的等腰三角形,则P点坐标是(0,);(3)在直线y=﹣2x+7上是否存在点Q,使△OAQ的面积等于6?若存在,请求出Q点的坐标,若不存在,请说明理由.【考点】一次函数综合题.【专题】压轴题;数形结合.【分析】(1)联立方程,解方程即可求得;(2)设P点坐标是(0,y),根据勾股定理列出方程,解方程即可求得;(3)分两种情况:①当Q点在线段AB上:作QD⊥y轴于点D,则QD=x,根据S△OBQ=S△OAB﹣S△OAQ 列出关于x的方程解方程求得即可;②当Q点在AC的延长线上时,作QD⊥x轴于点D,则QD=﹣y,根据S△OCQ=S△OAQ﹣S△OAC列出关于y的方程解方程求得即可.【解答】解:(1)解方程组:得:∴A点坐标是(2,3);(2)设P点坐标是(0,y),∵△OAP是以OA为底边的等腰三角形,∴OP=PA,∴22+(3﹣y)2=y2,解得y=,∴P点坐标是(0,),故答案为(0,);(3)存在;由直线y=﹣2x+7可知B(0,7),C(,0),∵S△AOC=××3=<6,S△AOB=×7×2=7>6,∴Q点有两个位置:Q在线段AB上和AC的延长线上,设点Q的坐标是(x,y),当Q点在线段AB上:作QD⊥y轴于点D,如图①,则QD=x,∴S△OBQ=S△OAB﹣S△OAQ=7﹣6=1,∴OB•QD=1,即×7x=1,∴x=,把x=代入y=﹣2x+7,得y=,∴Q的坐标是(,),当Q点在AC的延长线上时,作QD⊥x轴于点D,如图②则QD=﹣y,∴S△OCQ=S△OAQ﹣S△OAC=6﹣=,∴OC•QD=,即××(﹣y)=,∴y=﹣,把y=﹣代入y=﹣2x+7,解得x=,∴Q的坐标是(,﹣),综上所述:点Q是坐标是(,)或(,﹣).【点评】本题是一次函数的综合题,考查了交点的求法,勾股定理的应用,三角形面积的求法等,分类讨论思想的运用是解题的关键.。
八年级上期中数学试卷含答案解析 (4)
八年级(上)期中数学试卷一.选择题(本大题共10小题,每题3分,共30分.)1.下列美丽的车标中是轴对称图形的个数有()A.1个B.2个C.3个D.4个2.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为()A.5 B.6 C.7 D.253.一个等腰三角形的两边长分别是4和9,则它的周长为()A.17 B.20 C.22 D.17或224.下列结论错误的是()A.全等三角形对应边上的中线相等B.两个直角三角形中,两个锐角相等,则这两个三角形全等C.全等三角形对应边上的高相等D.两个直角三角形中,斜边和一个锐角对应相等,则这两个三角形全等5.请仔细观察用直尺和圆规作一个角等于已知角的示意图,请你根据所学的三角形全等有关的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS6.已知△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列条件不能判断△ABC 是直角三角形的是( )A .∠A :∠B :∠C=3:4:5B .a :b :c=5:12:13C .a 2=b 2﹣c 2D .∠A=∠C ﹣∠B7.在联合会上,有A 、B 、C 三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC 的( )A .三边中线的交点B .三条角平分线的交点C .三边中垂线的交点D .三边上高的交点8.如图,BD 是∠ABC 平分线,DE ⊥AB 于E ,AB=36cm ,BC=24cm ,S △ABC =144cm 2,则DE 的长是( )A .4.8cmB .4.5cmC .4cmD .2.4cm9.在如图的正方形网格上画有两条线段.现在要再画一条,使图中的三条线段组成一个轴对称图形,能满足条件的线段有( )A .2条B .3条C .4条D .5条10.如图所示,已知∠AOB=α,在射线OA 、OB 上分别取点OA 1=OB 1,连结A 1B 1,在B 1A 1、B 1B 上分别取点A 2、B 2,使B 1B 2=B 1A 2,连结A 2B 2…按此规律下去,记∠A 2B 1 B 2=θ1,∠A 3B 2B 3=θ2,…,∠A n+1B n B n+1=θn ,则θ2016﹣θ2015的值为( )A.B.C.D.二.填空题(本大题共8小题,每空3分,共24分.)11.正方形是轴对称图形,它共有条对称轴.12.△ABC是等腰三角形,若∠A=80°,则∠B= .13.直角三角形的两直角边的长分别为6cm、8cm,则斜边上高的长是cm.14.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是(填上你认为适当的一个条件即可).15.如图,长方体的底面边长分别为1cm 和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要cm.16.如图,△OAD≌△OBC,且∠O=70°,∠AEB=100°,则∠C= °.17.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是.18.已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=8,BF=5,则AC的长等于.三.解答题(本大题共7小题,共46分.解答需写出必要的文字说明或演算步骤)19.作图题:(1)如图,在图1所给方格纸中,每个小正方形边长都是1,标号为①②③的三个三角形均为格点三角形(顶点在方格顶点处),请按要求将图2中的指定图形分割成三个三角形,使它们与标号为①②③的三个三角形分别对应全等.(分割线画成实线)(2)如图3,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.①在图中画出与△ABC关于直线L成轴对称的△A′B′C′;②请直线L上找到一点P,使得PC+PB的距离之和最小.20.如图,四边形ABCD中,AB∥CD,AB=CD,A、F、E、C在同一直线上,∠ABE=∠CDF.(1)试说明:△ABE≌△CDF;(2)试说明:AF=CE.21.中菲黄岩岛争端持续,我海监船加大黄岩岛附近海域的巡航维权力度.如图,OA⊥OB,OA=36海里,OB=12海里,黄岩岛位于O点,我国海监船在点B处发现有一不明国籍的渔船,自A点出发沿着AO方向匀速驶向黄岩岛所在地点O,我国海监船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国海监船行驶的航程BC的长.22.如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点,(1)试说明:∠EAC=∠B;(2)若AD=10,BD=24,求DE的长.23.如图,△ABC中,AD是边BC上的高,CF是边AB上的中线,且DC=BF,DE⊥CF于E,问E是CF 的中点吗?试说明理由.24.探索研究.请解决下列问题:(1)已知△ABC中,∠A=90°,∠B=67.5°,请画一条直线,把这个三角形分割成两个等腰三角形.(请你选用下面给出的备用图,并把所有不同的分割方法都画出来,图不够可以自己画.只需画图,不必说明理由,但要在图中标出相等两角的度数).(2)已知等腰△ABC中,AB=AC,D为BC上一点,连接AD,若△ABD和△ACD都是等腰三角形,则∠B的度数为(请画出示意图,并标明必要的角度).25.如图,在四边形ABCD中,AD=BC=12,AB=CD,BD=15,点E从D点出发,以每秒4个单位的速度沿D→A→D匀速移动,点F从点C出发,以每秒1个单位的速度沿CB向点B作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为t秒.(1)试说明:AD∥BC;(2)在移动过程中,小明发现有△DEG与△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时的移动时间t和G点的移动距离.2015-2016学年江苏省无锡市江阴市要塞片八年级(上)期中数学试卷参考答案与试题解析一.选择题(本大题共10小题,每题3分,共30分.)1.下列美丽的车标中是轴对称图形的个数有()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:第1,2,3个图形是轴对称图形,共3个.故选C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为()A.5 B.6 C.7 D.25【考点】勾股定理.【专题】网格型.【分析】建立格点三角形,利用勾股定理求解AB的长度即可.【解答】解:如图所示:AB==5.故选:A.【点评】本题考查了勾股定理的知识,解答本题的关键是掌握格点三角形中勾股定理的应用.3.一个等腰三角形的两边长分别是4和9,则它的周长为()A.17 B.20 C.22 D.17或22【考点】等腰三角形的性质;三角形三边关系.【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:(1)若4为腰长,9为底边长,由于4+4<9,则三角形不存在;(2)若9为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为9+9+4=22.故选C.【点评】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.4.下列结论错误的是()A.全等三角形对应边上的中线相等B.两个直角三角形中,两个锐角相等,则这两个三角形全等C.全等三角形对应边上的高相等D.两个直角三角形中,斜边和一个锐角对应相等,则这两个三角形全等【考点】全等三角形的判定与性质.【分析】画出图形,根据全等三角形的性质和判定(全等三角形的判定定理有SAS,ASA,AAS,SSS)判断即可.【解答】解:A、∵△ABC≌△DEF,∴AB=DE,∠B=∠E,BC=EF,∵AM是△ABC的中线,DN是△DEF中线,∴BC=2BM,EF=2EN,∴BM=EN,在△ABM和△DEN中∴△ABM≌△DEN(SAS),∴AM=DN,正确,故本选项错误;B、如教师用得含30度的三角板和学生用的含30度的三角板就不全等,错误,故本选项正确;C、∵△ABC≌△DEF,∴AB=DE,∠B=∠E,∵AM是△ABC的高,DN是△DEF的高,∴∠AMB=∠DNE=90°,在△ABM和△DEN中∴△ABM≌△DEN,∴AM=DN,正确,故本选项错误;D、根据AAS即可推出两直角三角形全等,正确,故本选项错误;故选B.【点评】本题考查了全等三角形的性质和判定的应用,全等三角形的判定定理有SAS,ASA,AAS,SSS,直角三角形全等的判定定理除具有定理SAS,ASA,AAS,SSS外,还有HL定理..5.请仔细观察用直尺和圆规作一个角等于已知角的示意图,请你根据所学的三角形全等有关的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS【考点】作图—基本作图;全等三角形的判定与性质.【分析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,得到三角形全等,由全等得到角相等,是用的全等的性质,全等三角形的对应角相等.【解答】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D'(SSS),则△COD≌△C'O'D',即∠A'O'B'=∠AOB(全等三角形的对应角相等).故选D.【点评】本题考查了全等三角形的判定与性质;由全等得到角相等是用的全等三角形的性质,熟练掌握三角形全等的性质是正确解答本题的关键.6.已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件不能判断△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5 B.a:b:c=5:12:13C.a2=b2﹣c2D.∠A=∠C﹣∠B【考点】勾股定理的逆定理;三角形内角和定理.【分析】利用直角三角形的定义和勾股定理的逆定理逐项判断即可.【解答】解:A、∵∠A:∠B:∠C=3:4:5,且∠A+∠B+∠C=180°,可求得∠C≠90°,故△ABC不是直角三角形;B、不妨设a=5,b=12,c=13,此时a2+b2=132=c2,即a2+b2=c2,故△ABC是直角三角形;C、由条件可得到a2+c2=b2,满足勾股定理的逆定理,故△ABC是直角三角形;D、由条件∠A=∠C﹣∠B,且∠A+∠B+∠C=180°,可求得∠C=90°,故△ABC是直角三角形;故选A.【点评】本题主要考查直角三角形的判定方法,掌握判定直角三角形的方法是解题的关键,可以利用定义也可以利用勾股定理的逆定理.7.在联合会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC的()A.三边中线的交点B.三条角平分线的交点C.三边中垂线的交点 D.三边上高的交点【考点】线段垂直平分线的性质.【分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.【解答】解:∵三角形的三条垂直平分线的交点到中间的凳子的距离相等,∴凳子应放在△ABC的三条垂直平分线的交点最适当.故选:C.【点评】本题主要考查了线段垂直平分线的性质的应用;利用所学的数学知识解决实际问题是一种能力,要注意培养.想到要使凳子到三个人的距离相等是正确解答本题的关键.8.如图,BD是∠ABC平分线,DE⊥AB于E,AB=36cm,BC=24cm,S△ABC=144cm2,则DE的长是()A.4.8cm B.4.5cm C.4cm D.2.4cm【考点】角平分线的性质.【分析】过点D作DF⊥BC交BC的延长线于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC =S△ABD+S△BCD列方程求解即可.【解答】解:如图,过点D作DF⊥BC交BC的延长线于F,∵BD是∠ABC平分线,DE⊥AB于E,∴DE=DF ,∵S △ABC =S △ABD +S △BCD ,AB=36cm ,BC=24cm ,∴×36×DE+×24×DF=144,即18DE+12DE=144,解得DE=4.8cm .故选A .【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并根据三角形的面积列出方程是解题的关键.9.在如图的正方形网格上画有两条线段.现在要再画一条,使图中的三条线段组成一个轴对称图形,能满足条件的线段有( )A .2条B .3条C .4条D .5条【考点】利用轴对称设计图案.【分析】直接利用轴对称图形的性质分别得出符合题意的答案.【解答】解:如图所示:能满足条件的线段有4条.故选:C .【点评】此题主要考查了利用轴对称设计图案,正确利用轴对称图形的性质得出是解题关键.10.如图所示,已知∠AOB=α,在射线OA 、OB 上分别取点OA 1=OB 1,连结A 1B 1,在B 1A 1、B 1B 上分别取点A 2、B 2,使B 1B 2=B 1A 2,连结A 2B 2…按此规律下去,记∠A 2B 1 B 2=θ1,∠A 3B 2B 3=θ2,…,∠A n+1B n B n+1=θn ,则θ2016﹣θ2015的值为( )A .B .C .D .【考点】等腰三角形的性质.【专题】规律型.【分析】根据等腰三角形两底角相等用α表示出∠A 1B 1O ,再根据平角等于180°列式用α表示出θ1,再用θ1表示出θ2,并求出θ2﹣θ1,依此类推求出θ3﹣θ2,…,θ2013﹣θ2012,即可得解.【解答】解:∵OA 1=OB 1,∠AOB=α,∴∠A 1B 1O=(180°﹣α), ∴(180°﹣α)+θ1=180,整理得,θ1=, ∵B 1B 2=B 1A 2,∠A 2B 1B 2=θ1,∴∠A 2B 2B 1=(180°﹣θ1), ∴(180°﹣θ1)+θ2=180°,整理得θ2==, ∴θ2﹣θ1=﹣==,同理可求θ3==,∴θ3﹣θ2=﹣==,依此类推,θ2016﹣θ2015=.故选D.【点评】本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,分子不变的规律是解题的关键.二.填空题(本大题共8小题,每空3分,共24分.)11.正方形是轴对称图形,它共有 4 条对称轴.【考点】轴对称图形.【分析】根据对称轴的定义,直接作出图形的对称轴即可.【解答】解:∵如图所示,正方形是轴对称图形,它共有4条对称轴.故答案为:4.【点评】此题主要考查了轴对称图形的定义,根据定义得出个正多边形的对称轴条数是解决问题的关键.12.△ABC是等腰三角形,若∠A=80°,则∠B= 80°或50°或20°.【考点】等腰三角形的性质.【专题】分类讨论.【分析】此题要分三种情况进行讨论:①∠C为顶角;②∠A为顶角,∠B为底角;③∠B为顶角,∠A为底角.【解答】解:∵∠A=80°,△ABC是等腰三角形,∴分三种情况;①当∠C为顶角时,∠B=∠A=80°;②当∠A为顶角时,∠B=(180°﹣80°)÷2=50°;③当∠B为顶角时,∠B=180°﹣80°×2=20°;综上所述:∠B的度数为80°、50°、20°.故答案为:80°或50°或20°.【点评】此题主要考查了等腰三角形的性质、三角形内角和定理;熟练掌握等腰三角形的性质,关键是分三种情况讨论,不要漏解.13.直角三角形的两直角边的长分别为6cm、8cm,则斜边上高的长是 4.8 cm.【考点】勾股定理.【专题】计算题.【分析】先根据勾股定理求出直角三角形的斜边,然后从直角三角形面积的两种求法入手,代入公式后计算即可.【解答】解:∵直角三角形两直角边分别为6cm,8cm,∴斜边长为=10cm.∵直角三角形面积=×一直角边长×另一直角边长=×斜边长×斜边的高,代入题中条件,即可得:斜边高=4.8cm.故答案为:4.8.【点评】本题考查勾股定理及直角三角形面积公式的应用,看清条件即可.14.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是∠B=∠C (填上你认为适当的一个条件即可).【考点】全等三角形的判定.【专题】开放型.【分析】根据题意,易得∠AEB=∠AEC,又AE公共,所以根据全等三角形的判定方法容易寻找添加条件.【解答】解:∵∠1=∠2,∴∠AEB=∠AEC,又 AE公共,∴当∠B=∠C时,△ABE≌△ACE(AAS);或BE=CE时,△ABE≌△ACE(SAS);或∠BAE=∠CAE时,△ABE≌△ACE(ASA).【点评】此题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.如图,长方体的底面边长分别为1cm 和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要10 cm.【考点】平面展开-最短路径问题.【专题】计算题;压轴题.【分析】要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【解答】解:将长方体展开,连接A、B′,∵AA′=1+3+1+3=8(cm),A′B′=6cm,根据两点之间线段最短,AB′==10cm.故答案为:10.【点评】考查了平面展开﹣最短路径问题,本题就是把长方体的侧面展开“化立体为平面”,用勾股定理解决.16.如图,△OAD≌△OBC,且∠O=70°,∠AEB=100°,则∠C= 15 °.【考点】全等三角形的性质.【分析】根据全等三角形的性质求出∠C=∠D,根据三角形的外角性质求出∠CAE=∠O+∠D=∠O+∠C,推出∠AEB=∠C+∠CAE=∠C+∠O+∠C,代入求出即可.【解答】解:∵△OAD≌△OBC,∴∠C=∠D,∵∠CAE=∠O+∠D=∠O+∠C,∴∠AEB=∠C+∠CAE=∠C+∠O+∠C,∵∠O=70°,∠AEB=100°,∴100°=70°+2∠C,∴∠C=15°,故答案为:15.【点评】本题考查了全等三角形的性质,三角形的外角性质的应用,解此题的关键是求出∠C=∠D 和推出∠AEB=∠O+2∠C.17.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是50 .【考点】全等三角形的判定与性质;勾股定理.【专题】计算题.【分析】由AE⊥AB,EF⊥FH,BG⊥AG,可以得到∠EAF=∠ABG,而AE=AB,∠EFA=∠AGB,由此可以证明△EFA≌△ABG,所以AF=BG,AG=EF;同理证得△BGC≌△DHC,GC=DH,CH=BG,故FH=FA+AG+GC+CH=3+6+4+3=16,然后利用面积的割补法和面积公式即可求出图形的面积.【解答】解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH⇒∠FED=∠EFA=∠BGA=90°,∠EAF+∠BAG=90°,∠ABG+∠BAG=90°⇒∠EAF=∠ABG,∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG⇒△EFA≌△ABG∴AF=BG,AG=EF.同理证得△BGC≌△DHC得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16故S=(6+4)×16﹣3×4﹣6×3=50.故答案为50.【点评】本题考查的是全等三角形的判定的相关知识.作辅助线是本题的关键.18.已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=8,BF=5,则AC的长等于13 .【考点】全等三角形的判定与性质;勾股定理.【分析】根据ASA证得△AFB≌△DFB,得出AB=BD,AF=FD=AD=4,根据勾股定理求得BD,根据三角形面积公式求得AG,然后根据勾股定理即可求得.【解答】解:∵AD⊥BE,∴∠AFB=∠DFB=90°,在△AFB和△DFB中∴△AFB≌△DFB,∴AB=BD,AF=FD=AD=4,∴AB=BD===,∵BD=DC,∴BC=2,作AG⊥BC于G,=BD•AG=AD•BF,∵S△ABD∴AG===,∴DG===,∴CG=+=∴AC===13;故答案为:13.【点评】本题考查了三角形全等的判定和性质,勾股定理的应用,作出辅助线构建直角三角形是解题的关键.三.解答题(本大题共7小题,共46分.解答需写出必要的文字说明或演算步骤)19.作图题:(1)如图,在图1所给方格纸中,每个小正方形边长都是1,标号为①②③的三个三角形均为格点三角形(顶点在方格顶点处),请按要求将图2中的指定图形分割成三个三角形,使它们与标号为①②③的三个三角形分别对应全等.(分割线画成实线)(2)如图3,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.①在图中画出与△ABC关于直线L成轴对称的△A′B′C′;②请直线L上找到一点P,使得PC+PB的距离之和最小.【考点】作图-轴对称变换;轴对称-最短路线问题.【分析】(1)根据图1中三角形的边长将图2中的图形分割即可;(2)①作出各点关于直线l的对称点,再顺次连接各点即可;②连接CB′交直线l于点P,则点P即为所求点.【解答】解:(1)如图2所示;(2)①如图3所示;②如图3,点P即为所求点.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.20.如图,四边形ABCD中,AB∥CD,AB=CD,A、F、E、C在同一直线上,∠ABE=∠CDF.(1)试说明:△ABE≌△CDF;(2)试说明:AF=CE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)由平行线的性质得到∠BAE=∠DAF,又由AB=CD,∠ABE=∠CDF,即可证明△ABC≌△DEF;(2)由△ABC≌△DEF,得到AE=CF,所以AE﹣EF=CF﹣EF,即AF=CE.【解答】解:(1)∵AB∥CD,∴∠BAE=∠DAF,在△ABC和△DEF中,∴△ABC≌△DEF.(2)∵△ABC≌△DEF,∴AE=CF,∴AE﹣EF=CF﹣EF,∴AF=CE.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.21.中菲黄岩岛争端持续,我海监船加大黄岩岛附近海域的巡航维权力度.如图,OA⊥OB,OA=36海里,OB=12海里,黄岩岛位于O点,我国海监船在点B处发现有一不明国籍的渔船,自A点出发沿着AO方向匀速驶向黄岩岛所在地点O,我国海监船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国海监船行驶的航程BC的长.【考点】勾股定理的应用.【分析】(1)由题意得,我海监船与不明渔船行驶距离相等,即在OA上找到一点,使其到A点与B点的距离相等,所以连接AB,作AB的垂直平分线即可.(2)连接BC,利用第(1)题中作图,可得BC=AC.在直角三角形BOC中,利用勾股定理列出方程122+(36﹣BC)2=BC2,解方程即可.【解答】解:(1)作AB的垂直平分线与OA交于点C;(2)连接BC,由作图可得:CD为AB的中垂线,则CB=CA.由题意可得:OC=36﹣CA=36﹣CB.∵OA⊥OB,∴在Rt△BOC中,BO2+OC2=BC2,即:122+(36﹣BC)2=BC2,解得BC=20.答:我国海监船行驶的航程BC的长为20海里.【点评】本题考查了勾股定理的应用以及线段垂直平分线的性质,利用勾股定理不仅仅能求直角三角形的边长,而且它也是直角三角形中一个重要的等量关系.22.如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点,(1)试说明:∠EAC=∠B;(2)若AD=10,BD=24,求DE的长.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)由于△ACB与△ECD都是等腰直角三角形,CD=CE,CB=CA,∠B=∠CAB=45°,∠ACB=∠ECD=90°,于是∠ACE+∠ACD=∠ACD+∠BCD,根据等式性质可得∠ACE=∠BCD,利用SAS可证△ACE ≌△BCD,利用全等三角形的对应角相等即可解答;(2)根据△ACE≌△BCD,于是∠EAC=∠B=45°,AE=BD=24,易求∠EAD=90°,再利用勾股定理可求DE=26.【解答】解:(1)∵∠ACB=∠ECD=90°,∴∠ACB﹣∠ACD=∠ECD﹣∠ACD,∴∠ECA=∠DCB,∵△ACB和△ECD都是等腰三角形,∴EC=DC,AC=BC,在△ACE和△BCD中,,∴△ACE≌△BCD,∴∠EAC=∠B.(2)∵△ACE≌△BCD,∴AE=BD=24,∵∠EAC=∠B=45°∴∠EAD=∠EAC+∠CAD=90°,∴在Rt△ADE中,DE2=EA2+AD2,∴DE2=102+242,∴DE=26.【点评】本题考查了全等三角形的判定和性质、勾股定理,解题的关键是先证明△ACE≌△BCD,从而求出AE,以及∠EAD=90°.23.如图,△ABC中,AD是边BC上的高,CF是边AB上的中线,且DC=BF,DE⊥CF于E,问E是CF 的中点吗?试说明理由.【考点】直角三角形斜边上的中线;等腰三角形的判定与性质.【分析】连接DF,根据直角三角形斜边上的中线等于斜边的一半可得DF=BF=AB,然后求出CD=DF,再根据等腰三角形三线合一的性质证明即可.【解答】解:E是CF的中点,理由如下:如图,连接DF,∵AD是边BC上的高,CF是边AB上的中线,∴DF=BF=AB,∵DC=BF,∴CD=DF,∵DE⊥CF,∴E是CF的中点.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记各性质是解题的关键.24.探索研究.请解决下列问题:(1)已知△ABC中,∠A=90°,∠B=67.5°,请画一条直线,把这个三角形分割成两个等腰三角形.(请你选用下面给出的备用图,并把所有不同的分割方法都画出来,图不够可以自己画.只需画图,不必说明理由,但要在图中标出相等两角的度数).(2)已知等腰△ABC中,AB=AC,D为BC上一点,连接AD,若△ABD和△ACD都是等腰三角形,则∠B的度数为45°或36°(请画出示意图,并标明必要的角度).【考点】作图—应用与设计作图;等腰三角形的判定与性质.【分析】(1)由∠A=90°,∠B=67.5°,则∠C=22.5°,要使分割成的两个三角形为等腰三角形,必须要得出一个角为22.5°,或另一个角为67.5,因此需要把90°的角或67.5°的角得出22.5,从这两个角入手分出22.5°的角解决问题;(2)要使分成的△ABD和△ACD都是等腰三角形,首先想到等腰直角三角形,再次想到“黄金三角形”,由此得出答案即可.【解答】解:(1)如图,(2)如图,【点评】此题考查作图﹣应用与设计作图,掌握等腰三角形的性质和特殊三角形的性质是解决问题的关键.25.如图,在四边形ABCD中,AD=BC=12,AB=CD,BD=15,点E从D点出发,以每秒4个单位的速度沿D→A→D匀速移动,点F从点C出发,以每秒1个单位的速度沿CB向点B作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为t秒.(1)试说明:AD∥BC;(2)在移动过程中,小明发现有△DEG与△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时的移动时间t和G点的移动距离.【考点】四边形综合题.【分析】(1)由AD=BC=12,AB=CD,BD为公共边,所以可证得△ABD≌△CDB,所以可知∠ADB=∠CBD,所以AD∥BC;(2)设运动时间为t,设G点的移动距离为y,根据全等三角形的性质进行解答即可.【解答】(1)证明:在△ABD和△CDB中,,∴△ABD≌△CDB,∴∠ADB=∠CBD,∴AD∥BC,(2)解:设G点的移动距离为y,∵AD∥BC,∴∠EDG=∠FBG,若△DEG与△BFG全等,则有△DEG≌△BFG或△DGE≌△BFG,可得:DE=BF,DG=BG;或DE=BG,DG=BF,①当E由D到A,即0<t≤3时,有4t=12﹣t,解得:t=2.4,∵y=15﹣y,∴y=7.5,或4t=y,解得:t=1,∵12﹣t=15﹣y,∴y=4,②当F由A返回到D,即3<t≤6时,有24﹣4t=12﹣t,解得:t=4,∵y=15﹣y,∴y=7.5,或24﹣4t=y,解得:t=4.2∵12﹣t=15﹣y,y=7.2,综上可知共有三次,移动的时间分别为1秒、2.4秒、4秒、4.2秒,移动的距离分别为4、7.5、7.5、7.2.【点评】本题主要考查三角形全等的判定和性质,平行线的判定,根据全等三角形的性质列方程求解,第(2)题解题的关键是利用好三角形全等解得.。
2019学年第一学期八年级期中考试数学试卷参考答案
2019学年第一学期期中考试八年级数学参考答案 2019.11一、选择题:(本大题共6题,每题2分,满分12分)D .1 B .2 C .3 A .4 D .5 D .6二、填空题(本大题共12题,每题2分,满分24分).71≤x 33.8 3.9-π 2,0.1021==x x 231.11+>x )143)(143.(12-+++y y 43.13 x y 55.14=.1521>m 1.16± 4.17 )303,0.18-,)或((三、简答题:(每题5分,满分30分).19计算:)0(2531931>+-a aa a a a解:原式=53331aa a aa a +•-•----------(3分)=53aa a a +-----------(1分)=53aa ------------(1分).20计算:02)1()123()832)(328(-+---+解:原式=1)2619(52+--- ----------- (3分) =2670+------------ (2分).21解方程:12)32312=-x ( 解: 36)322=-x ( --------------------(1分) 632=-x 或632-=-x --------------------(2分)29=x 或23-=x --------------------(2分) ∴原方程的根为 23,2921-==x x.22解方程:0)52)(1()52(2=+--+x x x x解:0)]1(2)[52(=--+x x x --------------------(1分)0)1)(52(=++x x --------------------(1分)01,052=+=+x x --------------------(1分)25-=x 或1-=x -----------------(2分) ∴原方程的根为1,2521-=-=x x.23 解方程:x x 2222=+ 解:02222=+-x x --------------------(1分)0)2(2=-x --------------------(2分) 221==x x --------------------(2分) ∴原方程的根为221==x x.24 用配方法解方程:0181622=++x x解: 982-=+x x --------------------(1分) 1691682+-=++x x --------------------(1分)7)42=+x (--------------------(1分)或74=+x 74-=+x --------------------(2分)74 ,或74--=+-=x x ∴原方程的根为74,7421--=+-=x x.25先化简,再求值:2))(2y x y xy x ++-(,其中5,5-==y x 解:2)(y x -2)(y x + --------------------(1分) =[)(y x -)(y x +]2 --------------------(2分) =2)y x -( --------------------(1分) =222y xy x +-当5,5-==y x 时原式=5+10+5 --------------------( 3分)=20 --------------------(1分).26解:(1)01172=-++m x x --------------------(1分)m 45+=∆>0--------------------(2分)45->m --------------------(1分) (2) 当1-=m 时,--------------------(1分)11172-=++x x --------------------(1分)解得3,421-=-=x x --------------------(2分)∴原方程的根为3,421-=-=x x.72解:(1)200(1+2%)a =288 --------------------(2分)解得20=a --------------------(1分)答:a 的值20.(2)22%)1(200%)1200a a --+(=12 --------------------(3分) 解得%5.1%=a --------------------(2分)答:甲区的工作量的平均每月增长率%5.1..28 (1))16,18(D(2) 设)31,(),31,(),2,(b a B b b C a a A 则 由AB BC =,得b a a b 312-=- 得a b 49=∴)43,(a a B ∴直线OB 的解析式为x y 43=(3) )43,49(),2,(a a C a a A 170434921221249四边边=••-••-•=a a a a a a S oADC 解得舍去)(8,821-==a a ∴)6,18(C。
江苏省无锡市 八年级(上)期中数学试卷-(含答案)
八年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.的平方根是()A. 4B. 2C.D.2.若等腰三角形的一个外角为100°,则它的底角为()A. 或B.C. 或D.3.如图,与左边正方形图案属于全等的图案是()A.B.C.D.4.在3.14159、、-、、π、1.20202020…,这五个数中,无理数有()A. 0个B. 1个C. 2个D. 3个5.下列各图中,一定全等的是()A. 顶角相等的两个等腰三角形B. 有两边和一角分别相等的等腰三角形C. 各有一个角是,腰长都是3cm的两个等腰三角形D. 底边和顶角都相等的两个等腰三角形6.下列各组数中,是勾股数的是()A. 12,15,18B. 12,35,36C. ,,D. 5,12,137.若x<-1,则等于()A. B. C. 3x D.8.如图,在△ABC中,AQ=PQ,PR=PS,若PR⊥AB,PS⊥AC,垂足分别为点R、S,下列三个结论:①AS=AR;②QP∥AR;③△BPR≌△QPS,其中正确的是()A. ①②③B. ①C. ①②D. ①③9.野营活动中,小明用一张等腰三角形的铁皮代替锅,烙一块与铁皮形状、大小相同的饼,烙好一面后把饼翻身,这块饼能正好落在“锅”中.小丽有四张三角形的铁皮(如图所示),她想选择其中的一张铁皮代替锅,烙一块与所选铁皮形状、大小相同的饼,烙好一面后,将饼切一刀,然后将两小块都翻身,饼也能正好落在“锅”中.她的选择最多有()A. 1种B. 2种C. 3种D. 4种10.如图1所示为三角形纸片ABC,上有一点P.已知将A,B,C往内折至P时,出现折线,,,其中Q、R、S、T四点会分别在,,,上,如图2所示.若△ABC、四边形PTQR的面积分别为16、5,则△PRS面积为()A. 1B. 2C. 3D. 4二、填空题(本大题共8小题,共16.0分)11.若,则x2008+2008y= ______ .12.已知a、b为两个连续的整数,且<<,则a+b=______.13.如图,在△ABC中,AB=AC=32cm,DE是AB的垂直平分线,分别交AB、AC于D、E两点.△BCE的周长是53cm,则BC= ______ cm.14.△ABC中,AB=15,AC=13,BC边上的高AD=12,则BC的长为______.15.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC=______°.16.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记为a1,第2个等边三角形的边长记为a2,以此类推.若OA1=1,则a2016= ______ .17.△ABC中,AB=13,BC=20,AC=21,AD平分∠BAC,M、N分别是AD、AB上的点,则BM+MN的最小值是______.18.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为______ .三、解答题(本大题共9小题,共74.0分)19.求x的值:(1)(x-1)3=-27(2)(2x+1)2=;(3)=100.20.已知5a-1的平方根是±3,b、c均为有理数,且b、c满足等式b+c+2=c2+5,求a+b+c的算术平方根.21.如图A、B在方格纸的格点位置上.(1)若要再找一个格点C,使△ABC为等腰三角形,则这样的格点C在图中共有______ 个;(2)若要再找一个格点D,使△ABD的面积为3,则这样的格点D在图中共有______ 个;(3)若要再找一个个点E,使△ABE的三边均为无理数,则这样的格点E在图中共有______ 个.22.我们把两组邻边相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD.对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证:OE=OF.23.如图,在△ABC中,已知∠ACB=90°,CA=CB,AD⊥CE于点D,BE⊥CE于点E.(1)求证:AD=CE;(2)连接AE,若AB=5,BE=3,求四边形AEBC的周长和面积.24.两个大小不同的等腰直角三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)指出线段DC和线段BE的关系,并说明理由;(3)连接BD,试说明:△ABD的面积和△ACE的面积相等.25.如图,AD是△ABC的角平分线,DE⊥AC,垂足为点E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.(1)探索AB与BF的数量关系,说明理由.(2)若BF=1,求BC的长.26.如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒2cm,设出发的时间为t秒(1)出发1秒后,△ABP的周长=______;(2)当t=______时,△BCP是以BP为底边的等腰三角形;(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒1cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t 为何值时,直线PQ把△ABC的周长分成相等的两部分?27.已知,△ABC中,AC=BC,∠ACB=90°,D为AB的中点,若E在直线AC上任意一点,DF⊥DE,交直线BC于F点.G为EF的中点,延长CG交AB于点H.(1)若E在边AC上.①试说明DE=DF;②试说明CG=GH;(2)若AE=3,CH=5.求边AC的长.答案和解析1.【答案】D【解析】解:=4,4的平方根是±2.故选:D.先求得的值,然后根据平方根的定义求解即可.本题主要考查的是主要考查的是平方根和算术平方根的定义,求得的值是解题的关键.2.【答案】C【解析】解:∵等腰三角形的一个外角等于100°,∴等腰三角形的一个内角为80°,①当80°为顶角时,其他两角都为50°、50°,②当80°为底角时,其他两角为80°、20°,所以等腰三角形的底角可以是50°,也可以是80°.故选C.等腰三角形的一个外角等于100°,则等腰三角形的一个内角为80°,但已知没有明确此角是顶角还是底角,所以应分两种情况进行分类讨论.本题考查了等腰三角形的性质和三角形的内角和定理;在解决与等腰三角形有关的问题,由于等腰所具有的特殊性质,很多题目在已知不明确的情况下,要进行分类讨论,才能正确解题,因此,解决和等腰三角形有关的边角问题时,要仔细认真,避免出错.3.【答案】C【解析】解:能够完全重合的两个图形叫做全等形.A、B、D图案均与题干中的图形不重合,所以不属于全等的图案,C中的图案旋转180°后与题干中的图形重合.故选c.根据全等形是能够完全重合的两个图形进行分析判断,对选择项逐个与原图对比验证.本题考查的是全等形的识别,主要根据全等图形的定义做题,属于较容易的基础题.4.【答案】D【解析】解:无理数有:-,π,1.20202020…共3个.故选D.无理数就是无限不循环小数,根据定义即可判断.本题考查了无理数的定义,无理数常见的三种类型(1)开不尽的方根,如等.(2)特定结构的无限不循环小数,如0.303 003 000 300003…(两个3之间依次多一个0).(3)含有π的绝大部分数,如2π.注意:判断一个数是否为无理数,不能只看形式,要看化简结果.如是有理数,而不是无理数.5.【答案】D【解析】解:A、两个等腰三角形的腰不一定相等,所以A错误;B、有两边和一角分别相等的等腰三角形不一定全等,所以B错误;C、各有一个角是45°,腰长都是3cm的两个等腰三角形不一定全等,所以C也错误;D、正确,利用了AAS或ASA都可以.故选D此题是一道开放性题,实则还是考查学生对三角形全等的判定方法的掌握情况.此处可以运用排除法进行分析.本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.6.【答案】D【解析】解:A、不是,因为122+152≠182;B、不是,因为122+352≠362;C、不是,因为0.3,0.4,0.5不是正整数;D、是,因为52+122≠132.且5、12、13是正整数.故选D.根据勾股数的定义进行分析,从而得到答案.此题考查了勾股数,解答此题要用到勾股定理的逆定理和勾股数的定义,已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.7.【答案】D【解析】解:∵x<-1,∴2x-1<0,x+1<0,∴|2x-1|+=|2x-1|+=1-2x-1-x=-3x.故选D.将原式化为|2x-1|+,再根据x<-1判断出2x-1和x+1的大小,化简即可.主要考查了绝对值的意义和根据二次根式的意义化简.二次根式规律总结:当a≥0时,=a;当a≤0时,=-a.8.【答案】C【解析】解:如图,在RT△APR和RT△APS中,,∴RT△APR≌RT△APS(HL),∴∠AR=AS,①正确;∠BAP=∠1,∵AQ=PQ,∴∠1=∠2,∴∠BAP=∠2,∴QP∥AB,②正确,∵△BRP和△QSP中,只有一个条件PR=PS,再没有其余条件可以证明△BRP≌△QSP,故③错误.故选:C.易证RT△APR≌RT△APS,可得AS=AR,∠BAP=∠1,再根据AQ=PQ,可得∠1=∠2,即可求得QP∥AB,即可解题.本题考查了全等三角形的判定,考查了全等三角形对应边、对应角相等的性质,本题中求证RT△APR≌RT△APS是解题的关键.9.【答案】C【解析】解:如图,第一个沿直角三角形作斜边上的中线切,第二个三角形在钝角处沿20°角的另一边切,第三个三角形在60°角处沿20°角的另一边切,第四个三角形无法分成两个等腰三角形,所以,她的选择最多有3种.故选C.根据翻身后饼也能正好落在“锅”中,考虑把三角形分成两个等腰三角形即可.本题考查了全等三角形的应用,判断出翻折后正好能够重合是三角形是等腰三角形是解题的关键.10.【答案】C【解析】解:根据题意,得△BTQ的面积和△PTQ的面积相等,△CQR和△PQR的面积相等,△ASR的面积和△PSR的面积相等.又△ABC、四边形PTQR的面积分别为16、5,∴△PRS面积等于(16-5×2)÷2=3.故选C.根据折叠,知△BTQ的面积和△PTQ的面积相等,△CQR和△PQR的面积相等,△ASR的面积和△PSR的面积相等,结合已知△ABC、四边形PTQR的面积分别为16、5,即可求解.此题主要是能够根据折叠,得到重合图形的面积相等.11.【答案】2【解析】解:由,根据二次根式的意义,得解得x=1,故y=0,∴x2008+2008y=12008+20080=2.由于已知等式的两个二次根式有意义,而二次根式要求被开方数为非负数,由此列不等式组求x、y的值,接着就可以求出结果.本题考查了二次根式的意义,指数运算,属于基础题,需要熟练掌握.12.【答案】11【解析】解:∵,a、b为两个连续的整数,∴<<,∴a=5,b=6,∴a+b=11.故答案为:11.根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案.此题主要考查了无理数的大小,得出比较无理数的方法是解决问题的关键.13.【答案】21【解析】解:∵在△ABC中,AB=AC=32cm,DE是AB的垂直平分线,∴AE=EB,AE+EC=AC=32cm,∴BE+EC=32cm,∵△BCE的周长是53cm,∴BE+EC+BC=53cm,∴BC=53-BE-EC=53-32=21cm,故答案为:21.利用线段的垂直平分线的性质可得AE=EB,然后根据△BCE的周长是53cm,即可求得答案.此题考查了线段垂直平分线的性质.掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键,此题难度不大,注意掌握数形结合思想的应用.14.【答案】14或4【解析】解:(1)如图,锐角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2-AD2=152-122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得CD2=AC2-AD2=132-122=25,∴CD=5,∴BC的长为BD+DC=9+5=14;(2)钝角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2-AD2=152-122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得:CD2=AC2-AD2=132-122=25,∴CD=5,∴BC的长为DC-BD=9-5=4.故答案为14或4.分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD,CD,再由图形求出BC,在锐角三角形中,BC=BD+CD,在钝角三角形中,BC=CD-BD.本题考查了勾股定理,把三角形斜边转化到直角三角形中用勾股定理解答.15.【答案】45【解析】解:∵DE垂直平分AB,∴AE=BE,∵BE⊥AC,∴△ABE是等腰直角三角形,∴∠BAE=∠ABE=45°,又∵AB=AC,∴∠ABC=(180°-∠BAC)=(180°-45°)=67.5°,∴∠CBE=∠ABC-∠ABE=67.5°-45°=22.5°,∵AB=AC,AF⊥BC,∴BF=CF,∵EF=BC(直角三角形斜边中线等于斜边的一半),∴BF=EF=CF,∴∠BEF=∠CBE=22.5°,∴∠EFC=∠BEF+∠CBE=22.5°+22.5°=45°.故答案为:45.根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,然后求出△ABE是等腰直角三角形,根据等腰直角三角形的性质求出∠BAE=∠ABE=45°,再根据等腰三角形两底角相等求出∠ABC,然后求出∠CBE,根据等腰三角形三线合一的性质可得BF=CF,根据直角三角形斜边上的中线等于斜边的一半可得BF=EF,根据等边对等角求出∠BEF=∠CBE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.本题考查了等腰三角形三线合一的性质,等腰三角形两底角相等的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,直角三角形斜边上的中线等于斜边的一半的性质,熟记各性质并求出△ABE是等腰直角三角形是解题的关键.16.【答案】22015【解析】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴a2=2a1,a3=4a1=4,a4=8a1=8,a5=16a1,以此类推:a2016=22015.故答案是:22015根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及a2=2a1,得出a3=4a1=4,a4=8a1=8,a5=16a1…进而得出答案.此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出a3=4a1=4,a4=8a1=8,a5=16a1…进而发现规律是解题关键.17.【答案】12【解析】解:∵AD平分∠BAC,作N关于AD的对称点N′,则N′在AC上,连接MN′,则MN=MN′,过B作BE⊥AC于E,∵BM+MN=BM+MN′,∴BM+MN≥BE(垂线段最短),设AE=x,则CE=21-x,则,解得:x=5,∴BE==12,即BM+MN的最小值是12.通过作辅助线,先找出BM+MN的最小值是BE,设AE=x,根据勾股定理列方程组可求出x的值,从而得BE的长,即是BM+MN的最小值.本题考查了最短路径问题,根据角平分线的性质定理及垂线段最短,得三角形的高线BE即是最短路径.18.【答案】【解析】解:作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAD′中,,∴△BAD≌△CAD′(SAS),∴BD=CD′.∠DAD′=90°由勾股定理得DD′=,∠D′DA+∠ADC=90°由勾股定理得CD′=,∴BD=CD′=,故答案为:.根据等式的性质,可得∠BAD与∠CAD′的关系,根据SAS,可得△BAD与△CAD′的关系,根据全等三角形的性质,可得BD与CD′的关系,根据勾股定理,可得答案.本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,勾股定理,作出全等图形是解题关键.19.【答案】解:(1)由题意得x-1=3,解得:x=4;(2)由题意得:2x+1=±2,解得:x=或x=-.(3)由题意得:x-1=±100,解得:x=101,x=-99.【解析】(1)依据平方根的定义可得到x-1=3,故此可求得x的值;(2)依据平方根和算术平方根的定义可得到2x+1=±2,故此可求得x的值;(3)先依据平方根的定义得到|x-1|=100,从而可求得x的值.本题主要考查的是立方根、平方根、算术平方根的定义,熟练掌握相关知识是解题的关键.20.【答案】解:∵5a-1的平方根是±3,∴5a-1=9∴a=2,∵b+c+2=c2+5,∴c=-2,b=9,∴a+b+c=2-2+9=9,∴9的算术平方根是3.【解析】根据平方根、算术平方根,即可解答.本题考查了实数,解决本题的关键是熟记平方根、算术平方根.21.【答案】10;8;16【解析】解:(1)如图所示:AB==2,以B为顶点,BC=BA,这样的C点有2个;以A为顶点,AC=AB,这样的C点有2个;以C为顶点,CA=CB,这样的点有6个,所以使△ABC的等腰三角形,这样的格点C的个数有10个.(2)如图所示:若要再找一个格点D,使△ABD的面积为3,则这样的格点D在图中共有8个.(3)如图所示:若要再找一个个点E,使△ABE的三边均为无理数,则这样的格点E在图中共有16个,故答案为:10;8;16.(1)根据勾股定理计算出AB=2,然后分类讨论确定C点位置;(2)找到△ABD的面积为3的格点即为所求;(3)本题需根据勾股定理和图形即可找出所有满足条件的点..本题考查了勾股定理;熟练掌握勾股定理,并能进行推理计算与作图是解决问题的关键.22.【答案】证明:∵在△ABD和△CBD中,,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD,∴BD平分∠ABC.又∵OE⊥AB,OF⊥CB,∴OE=OF.【解析】本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.欲证明OE=OF,只需推知BD平分∠ABC,所以通过全等三角形△ABD≌△CBD(SSS)的对应角相等得到∠ABD=∠CBD,问题就迎刃而解了.23.【答案】(1)证明:∵BE⊥CE,AD⊥CE,∠ACB=90°,∴,∠ADE=∠ADC=∠E=90°=∠ACB,∠ACD+∠BCE=90°,∠CBE+∠BCE=90°,∴∠CBE=∠ACD,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴AD=CE;(2)解:连接AE,如图所示:∵∠ACB=90°,CA=CB,∴CA=CB=AB=5,∴AD=CE===4,∵△ACD≌△CBE,∴CD=BE=3,∴DE=CE-CD=1,∴AE===,∴四边形AEBC的周长=AE+BE+BC+AC=+3+5+5=13+;四边形AEBC的面积=△ACE的面积+△BCE的面积=×4×4+×4×3=14.【解析】(1)证出∠CBE=∠ACD,由AAS证明△ACD≌△CBE,得出对应边相等即可;(2)连接AE,由勾股定理和等腰直角三角形的性质得出CA=CB=AB=5,由勾股定理求出AD=CE=4,由全等三角形的性质得出CD=BE=3,求出DE=CE-CD=1,再由勾股定理求出AE即可得出四边形AEBC的周长,四边形AEBC的面积=△ACE的面积+△BCE的面积,代入计算即可.本题考查了全等三角形的判定与性质、等腰直角三角形的性质、勾股定理;熟练掌握等腰直角三角形的性质,证明三角形全等得出对应边相等是解决问题的关键.24.【答案】解:(1)图2中△ABE≌△ACD,证明如下:∵△ABC与△AED均为等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°,∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD∵在△ABE和△ACD中,∴△ABE≌△ACD;(2)DC=BE,CD⊥BE,理由:∵△ABE≌△ACD,∴CD=BE,∠ACD=∠B=45°,∵∠ACB=45°,∴∠DCB=90°,∴CD⊥BE;(3)过A作AH⊥BC于H,∵△ABC是等腰直角三角形,∴AH=BC,∴S△BCD=BC•CD=AH•BE,S△ABE=BE•AH,∴S△BCD=2S△ABE,∵△ABE≌△ACD,∴S△ABD+S△ABC=S△ABE=S△ABC+S△ACE,即S△ABD=S△ACE.【解析】(1)根据等腰直角三角形的性质得出AB=AC,AE=AD,∠BAC=∠EAD=90°,求出∠BAE=∠CAD,根据SAS证△ABE≌△ACD即可;(2)根据全等三角形的性质即可得到结论;(3)过A作AH⊥BC于H,根据三角形面积的和差即可得到结论.本题考查了等腰直角三角形性质,全等三角形的判定和性质,三角形面积的计算,主要考查学生的计算能力和推理能力.25.【答案】解:(1)结论:AB=3BF.理由:∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD平分∠BAC,∴DC=BD,在△CDE与△DBF中,,∴△CDE≌△DBF(ASA),∴DE=DF,CE=BF,∵AE=2BF,∴AC=3BF,∴AB=3BF.(2)∵AC=AB,CD=BD,DE⊥AC,∴AD⊥BC,∴∠CDA=∠CED=90°,∵∠C=∠C,∴△CED∽△CDA,∴CD2=CE•CA,∵CE=BF=1,AC=3BF=3,∴CD2=3,∴CD=,∴BC=2CD=2.【解析】(1)首先证明AC=AB,再证明△CDE≌△DBF,推出DE=DF,CE=BF,由题意AE=2BF,AC=AB=3BF.(2)只要证明△CED∽△CDA,得CD2=CE•CA,由此即可解决问题.本题考查了全等三角形的判定和性质,等腰三角形的性质,平行线的性质,勾股定理等知识,掌握等腰三角形的性质三线合一是解题的关键.26.【答案】(7+)cm,;1.5s或2.7s【解析】解:(1)如图1所示:由∠C=90°,AB=5cm,BC=3cm,∴AC===4(cm),动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,∴出发2秒后,则CP=2cm,∴AP=2cm,∵∠C=90°,∴PB==(cm),∴△ABP的周长为:AP+PB+AB=2+5+=7+(cm),故答案为:(7+)cm,(2)分两种情况:①如图2所示:当点P在边AC上时,CP=BC=3cm,3÷2=1.5(s),此时用的时间为1.5s,△BCP是以BP为底边的等腰三角形;②如图3所示:当点P在边AB上时,CP=BC=3cm,过C作斜边AB的高CD,则CD==2.4(cm),在Rt△PCD中,PD===1.8(cm),∴BP=2PD=3.6cm,所以P运动的路程为9-3.6=5.4(cm),则用的时间为5.4÷2=2.7(s),△BCP为等腰三角形;综上所述:当t=1.5s或2.7s 时,△BCP是以BP为底边的等腰三角形;故答案为:1.5s或2.7s;(3)分两种情况:①如图6所示:当P点在AC上,Q在BC上,则PC=2t,CQ=t,∵直线PQ把△ABC的周长分成相等的两部分,∴2t+t=4-2t+3-t+5,解得:t=2;②如图7所示:当P点在BC上,Q在AB上,则BQ=t-3,BQ=2t-9∴AQ=5-(t-3)=8-t,CQ=3-(2t-9)=12-2t,∵直线PQ把△ABC的周长分成相等的两部分,∴4+8-t+12-2t=t-3+2t-9,解得:t=6,综上所述:当t为2s或6s时,直线PQ把△ABC的周长分成相等的两部分.(1)根据速度为每秒2cm,求出出发2秒后CP的长,然后就知AP的长,利用勾股定理求得PB的长,最后即可求得周长.(2)由勾股定理得AC=4cm,有两种情况,①当点P在边AC上时;②当点P 在边AB上时;求出点P运动的路程,即可得出结果;.(3)分类讨论:当P点在AC上,Q在BC上,则PC=2t,CQ=t,根据题意得出方程,解方程即可;当P点在BC上,Q在AB上,则BQ=t-3,BQ=2t-9;根据题意得出方程,解方程即可.此题考查了勾股定理、等腰三角形的判定与性质以及三角形面积的计算;此题涉及到了动点,有一定难度,熟练掌握等腰三角形的判定与性质和勾股定理,进行分类讨论是解决问题的关键.27.【答案】解:(1)①连接CD,∵∠ACB=90°,D为AB的中点,AC=BC,∴CD=AD=BD,又∵AC=BC,∴CD⊥AB,∴∠EDA+∠EDC=90°,∠DCF=∠DAE=45°,∵DF⊥DE,∴∠EDF=∠EDC+∠CDF=90°,∴∠ADE=∠CDF,在△ADE和△CDF中∴△ADE≌△CDF,∴DE=DF.②连接DG,∵∠ACB=90°,G为EF的中点,∴CG=EG=FG,∵∠EDF=90°,G为EF的中点,∴DG=EG=FG,∴CG=DG,∴∠GCD=∠CDG又∵CD⊥AB,∴∠CDH=90°,∴∠GHD+∠GCD=90°,∠HDG+∠GDC=90°,∴∠GHD=∠HDG,∴GH=GD,∴CG=GH.(2)如图,当E在线段AC上时,∵CG=GH=EG=GF,∴CH=EF=5,∵△ADE≌△CDF,∴AE=CF=3,∴在Rt△ECF中,由勾股定理得:,∴AC=AE+EC=3+4=7;如图,当E在线段CA延长线时,AC=EC-AE=4-3=1,综合上述AC=7或1.【解析】(1)①连接CD,推出CD=AD,∠CDF=∠ADE,∠A=∠DCB,证△ADE≌△CDF 即可;②连接DG,根据直角三角形斜边上中线求出CG=EG=GF=DG,推出∠GCD=∠GDC,推出∠GDH=∠GHD,推出DG=GH即可;(2)求出EF=5,根据勾股定理求出EC,即可得出答案.本题考查了等腰三角形性质和判定,直角三角形斜边上的中线,全等三角形的性质和判定的应用,主要考查学生综合运用定理进行推理的能力,有一定的难度.。
2019-2020学年江苏省无锡市八年级(上)期末数学试卷
2019-2020学年江苏省无锡市八年级(上)期末数学试卷2019-2020学年江苏省无锡市八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分共30分。
在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)1.给出下列一组数:$\pi$,$-0.3$,$2$,$0.xxxxxxxx85 \cdots$(两个5之间依次多1个8),其中,无理数有()。
A。
2个 B。
3个 C。
4个 D。
5个2.若点M在第二象限,且点M到x轴的距离为1,到y 轴的距离为2,则点M的坐标为()。
A。
$(2,-1)$ B。
$(1,-2)$ C。
$(-2,1)$ D。
$(-1,2)$3.下列平面图形中,不是轴对称图形为()。
A。
B。
C。
D。
4.下列各组数中,不能作为直角三角形三边长度的是()。
A。
3,4,5 B。
6,7,8 C。
6,8,10 D。
7,24,255.给出下列4个说法:①只有正数才有平方根;②2是4的平方根;③平方根等于它本身的数只有1;④27的立方根是$\pm 3$。
其中,正确的有()。
A。
①② B。
①②③ C。
②③ D。
②③④6.若点$(4,y_1)$,$(-2,y_2)$都在函数$y=-x+b$的图象上,则$y_1$与$y_2$的大小关系是()。
A。
$y_1>y_2$ B。
$y_1<y_2$ C。
$y_1=y_2$ D。
无法确定7.已知一次函数$y=kx-k$,若函数值$y$随着自变量$x$值的增大而增大,则该函数的图象经过()。
A。
第一、二、三象限 B。
第一、二、四象限 C。
第二、三、四象限 D。
第一、三、四象限8.如图,在$\triangle ABC$中,且$CD=AB$,若$\angle B=32^\circ$,$AB=AC$,$D$为边$BA$的延长线上一点,则$\angle D$等()。
A。
$48^\circ$ B。
$58^\circ$ C。
2018-2019学年江苏省无锡市八年级(上)期末数学试卷解析版
2018-2019学年江苏省无锡市八年级(上)期末数学试卷一、选择题1.(3分)的值是()A.4B.2C.±4D.±22.(3分)若2x﹣5没有平方根,则x的取值范围为()A.x B.x C.x D.x3.(3分)把29500精确到1000的近似数是()A.2.95×103B.2.95×104C.2.9×104D.3.0×1044.(3分)下列图案中的轴对称图形是()A.B.C.D.5.(3分)等腰三角形的两边长分别为5和11,则这个三角形的周长为()A.16B.27C.16或27D.21或276.(3分)以下各组数为边长的三角形,其中构成直角三角形的一组是()A.4、5、6B.3、5、6C.D.2,7.(3分)在平面直角坐标系中,点(﹣3,4)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限8.(3分)下列函数中,y是x的正比例函数的是()A.y=﹣B.y=﹣2x﹣2C.y=2(x﹣2)D.y=9.(3分)给出下列4个命题:①两边及其中一边上的中线对应相等的两个三角形全等;②两边及其中一边上的高对应相等的两个三角形全等;③两边及一角对应相等的两个三角形全等;④有两角及其中一角的角平分线对应相等的两个三角形全等.其中正确的个数有()A.1个B.2个C.3个D.4个10.(3分)如图,在四边形ABCD中,对角线AC⊥BD,垂足为点O,且∠OAB=45°,OC=2OA=8,∠OCB=∠ODA,则四边形ABCD的面积为()A.32B.36C.42D.48二、填空题11.(3分)27的立方根为.12.(3分)若某个正数的两个平方根是a﹣3与a+5,则a=.13.(3分)如果等腰三角形的一个外角为80°,那么它的底角为度.14.(3分)如果正比例函数y=3x的图象沿y轴方向向下平移2个单位,则所得图象所对应的函数表达式是.15.(3分)如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=105°,则∠ADC=°.16.(3分)如图,已知一次函数y1=x+b与一次函数y2=mx﹣n的图象相交于点P(﹣2,1),则关于不等式x+b ≥mx﹣n的解集为.17.(3分)如图,在平面直角坐标系中,以A(2,0),B(0,t)为顶点作等腰直角△ABC(其中∠ABC=90°,且点C落在第一象限内),则点C关于y轴的对称点C’的坐标为.(用t的代数式表示)18.(3分)在平面直角坐标系中,坐标原点O到一次函数y=kx﹣2k+1图象的距离的最大值为.三、计算题19.(8分)(1)计算﹣()﹣1+20090(2)求(x+1)2﹣49=0中x的值20.(8分)如图,点B、F、C、E在同一直线上,且BF=CE,∠B=∠E,AC,DF相交于点O,且OF=OC,求证:(1)△ABC≌△DEF;(2)OA=OD.21.(6分)如图,已知△ABC(AC<AB<BC),请用无刻度的直尺和圆规,完成下列作图(不要求写作法,保留作图痕迹);(1)在AB边上寻找一点M,使得点M到AC、BC的距离相等;(2)在BC边上寻找一点N,使得NA+NB=BC.22.(8分)如图,点B、C、D在一直线上,△ABC和△ADE都是等边三角形(1)请找出图中的全等三角形,并说明理由;(2)求证:EF∥AC.23.(8分)如图,在平面直角坐标系中,△ABC的顶点分别为A(﹣8,0)、B(6,0)、C(0,6),点D是OC中点,连接BD并延长交AC于点E,求四边形AODE的面积.24.(8分)某农户以1500元/亩的单价承包了15亩地种植板栗,每亩种植80株优质板栗嫁接苗,购买嫁接苗,购买价格为5元/株,且每亩地的管理费用为800元,一年下来喜获丰收平均每亩板栗产量为600kg,已知当地板栗的批发和;零售价格分别如下表所示:通过市场调研发现,批发与零售的总销量只能达到总产量的70%,其中零售量不高于总销售量的40%,经多方协调当地食品加工厂承诺以7元/kg的价格收购该农户余下的板栗,设板栗全部售出后的总利润为y元,其中零售xkg.(1)求y与x之间的函数关系;(2)求该农户所收获的最大利润.(总利润=总销售额﹣总承包费用﹣购买板栗苗的费用﹣总管理费用)25.(10分)如图,四边形ABCD中,∠ABC=∠ADC=45°,将△BCD绕点C顺时针旋转一定角度后,点B的对应点恰好与点A重合,得到△ACE.(1)求证:AE⊥BD;(2)若AD=2,CD=3,试求出四边形ABCD的对角线BD的长.26.(10分)如图,已知一次函数y=﹣x+b的图象与x轴交于A(﹣6,0)与y轴相交于点B,动点P从A出发,沿x轴向x轴的正方向运动.(1)求b的值,并求出△P AB为等腰三角形时点P的坐标;(2)在点P出发的同时,动点Q也从点A出发,以每秒个单位的速度,沿射线AB运动,运动时间为t(s)①求点Q的坐标;(用含t的表达式表示)②若点P的运动速度为每秒k个单位,请直接写出当△APQ为等腰三角形时k的值.2018-2019学年江苏省无锡市八年级(上)期末数学试卷参考答案与试题解析一、选择题1.【解答】解:∵42=16,∴16的算术平方根是4,即=4,故选:A.2.【解答】解:由题意知2x﹣5<0,解得x<,故选:D.3.【解答】解:把29500精确到1000的近似数是3.0×104.故选:D.4.【解答】解:A、不是轴对称图形,本选项错误;B、不是轴对称图形,本选项错误;C、是轴对称图形,本选项正确;D、不是轴对称图形,本选项错误.故选:C.5.【解答】解:①11是腰长时,三角形的三边分别为11、11、5,能组成三角形,周长=11+11+5=27;②11是底边时,三角形的三边分别为11、5、5,∵5+5=10<11,∴不能组成三角形,综上所述,三角形的周长为27.故选:B.6.【解答】解:A、52+42≠62,故不是直角三角形,故不正确;B、52+32≠62,故不是直角三角形,故不正确;C、()2+()2=()2,故是直角三角形,故正确;D、22+()2≠()2,故不是直角三角形,故不正确.故选:C.7.【解答】解:点(﹣3,4)所在的象限是第二象限,故选:B.8.【解答】解:A、该函数是正比例函数,故本选项正确.B、该函数是一次函数,故本选项错误.C、该函数是一次函数,故本选项错误.D、该函数是反比例函数,故本选项错误.故选:A.9.【解答】解:①两边及其中一边上的中线对应相等的两个三角形全等,正确;②两边及其中一边上的高对应相等的两个三角形不一定全等,错误;③两边及一角对应相等的两个三角形全等,如SSA不能判定全等,错误;④有两角及其中一角的角平分线对应相等的两个三角形全等,正确;故选:B.10.【解答】解:在OC上截取OE=OD,连接BE,如图所示:∵OC=2OA=8,∴OA=4,∵AC⊥BD,∠OAB=45°,∴∠AOD=∠BOE=90°,△OAB是等腰直角三角形,∴OB=OA=4,∴AC=OA+OC=12,在△AOD和△BOE中,,∴△AOD≌△BOE(SAS),∴∠ODA=∠OEB,∵∠OCB=∠ODA,∵∠OEB=∠OCB+∠EBC,∴∠OCB=∠ECB,∴BE=CE,设BE=CE=x,则OE=8﹣x,在Rt△OBE中,由勾股定理得:42+(8﹣x)2=x2,解得:x=5,∴CE=5,OD=OE=3,∴BD=OB+OD=4+3=7,∵AC⊥BD,∴四边形ABCD的面积=AC×BD=×12×7=42;故选:C.二、填空题11.【解答】解:∵33=27,∴27的立方根是3,故答案为:3.12.【解答】解:由题意知a﹣3+a+5=0,解得:a=﹣1,故答案为:﹣1.13.【解答】解:∵等腰三角形的一个外角为80°,∴相邻角为180°﹣80°=100°,∵三角形的底角不能为钝角,∴100°角为顶角,∴底角为:(180°﹣100°)÷2=40°.故答案为:40.14.【解答】解:将函数y=3x的图象沿y轴向下平移2个单位长度后,所得图象对应的函数关系式为:y=3x﹣2.故答案为:y=3x﹣2.15.【解答】解:∵AC=AD=DB,设∠ADC=α,∴∠B=∠BAD=,∵∠BAC=105°,∴∠DAC=105°﹣,在△ADC中,∵∠ADC+∠C+∠DAC=180°,∴2α+105°﹣=180°,解得:α=50°.故答案为:50.16.【解答】解:∵一次函数y1=x+b与一次函数y2=mx﹣n的图象相交于点P(﹣2,1),∴不等式x+b≥mx﹣n的解集是x≥﹣2.故答案为:x≥﹣2.17.【解答】解:过C作CE⊥y轴于E,并作C关于y轴的对称点C',∵A(2,0),B(0,t),∴OA=2,OB=t,∵△ABC是等腰直角三角形,∴AB=BC,∠ABC=90°,∴∠ABO+∠CBE=90°,∵∠CBE+∠BCE=90°,∴∠ABO=∠BCE,∵∠AOB=∠BEC,∴△AOB≌△BEC(AAS),∴AO=BE=2,OB=CE=t,∴C(t,t+2),∴C'(﹣t,t+2),故答案为:(﹣t,t+2).18.【解答】解:y=kx﹣2k+1=k(x﹣2)+1,即该一次函数经过定点(2,1),设该定点为P,则P(2,1),当直线OP与直线y=kx﹣2k+1垂直时,坐标原点O到一次函数y=kx﹣2k+1的距离最大,如下图所示:最大距离为:=,故答案为:.三、计算题19.【解答】解:(1)原式=﹣2﹣2+1=﹣3;(2)(x+1)2﹣49=0则x+1=±7,解得:x=6或﹣8.20.【解答】证明:(1)∵BF=CE,∴BF+FC=CE+FC,即BC=EF,∵OF=OC,∴∠OCF=∠OFC,在△ABC与△DEF中,∴△ABC≌△DEF(ASA);(2)∵△ABC≌△DEF,∴AC=DF,∵OF=OC,∴AC﹣OC=DF﹣OF,即OA=OD.21.【解答】解:(1)如图所示:(2)如图所示:22.【解答】解:(1)△ACD≌△ABE,理由如下:∵△ABC,△ADE为等边三角形,∴AB=AC,AE=AD,∠BAC=∠DAE=60°,∴∠BAC+∠BAD=∠DAE+∠BAD,即∠CAD=∠BAE,在△ACD与△ABE中,∴△ACD≌△ABE(SAS),(2)∵△ACD≌△ABE,∴∠ABE=∠C=60°,∴∠ABE=∠BAC,∴EB∥AC.23.【解答】解:∵D是OC中点,C(0,6),∴D(0,3),设直线AC的解析式为:y=kx+b,∵A(﹣8,0)、C(0,6),∴,∴,∴直线AC的解析式为:y=x+6,直线BD的解析式为:y=mx+n,∵B(6,0)、D(0,2),∴,∴,∴直线BD的解析式为:y=﹣x+3;解得,,∴E(﹣,),∴S四边形AODE=S△ABE﹣S△OBD=×14×﹣×6×3=.24.【解答】解:(1)由题意得y=14x+10(600×15×70%﹣x)+7×600×15×30%﹣(1500+800+80×5)×15整理得y=4x+41400故y与x之间的函数关系式为y=4x+41400(2)∵零售量不高于总销售量的40%∴x≤600×15×70%×40%即:x≤2520又∵4>0,∴对于y=4x+41400而言,y随着x的增大而增大,∴当x取最大值2520时,y得最大值为51480答:该农户所收获的最大利润为51480元.25.【解答】解:(1)如图,设AC与BD的交点为点M,BD与AE的交点为点N,∵旋转∴AC=BC,∠DBC=∠CAE又∵∠ABC=45°,∴∠ABC=∠BAC=45°,∴∠ACB=90°,∵∠DBC+∠BMC=90°∴∠AMN+∠CAE=90°∴∠AND=90°∴AE⊥BD,(2)如图,连接DE,∵旋转∴CD=CE=3,BD=AE,∠DCE=∠ACB=90°∴DE==3,∠CDE=45°∵∠ADC=45°∴∠ADE=90°∴EA==∴BD=26.【解答】解:(1)把A(﹣6,0)代入y=﹣x+b得,b=﹣2,∴B(0,﹣2),AO=6,OB=2,AB===2,∵△P AB为等腰三角形,∴当AP=AB时,AP=2,∴P(2﹣6,0);当BP=BA时,OP=OA=6,∴P(6,0);当P A=PB时,设OP=x,则P A=PB=6﹣x,在Rt△OPB中,∵OP2+OB2=PB2,∴x2+22=(6﹣x)2,解得:x=,∴P(﹣,0);综上所述,当△P AB为等腰三角形时点P的坐标为(2﹣6,0)或(6,0)或(﹣,0);(2)①∵点Q在直线y=﹣x+b上,∴设Q(a,﹣a﹣2),作QH⊥x轴于H,则QH=a+2,AH=6+a,∴AQ==(a+2),∵AQ=t,∴t=a+2,∴a=3t﹣6,∴Q(3t﹣6,﹣t);②由题意得,AQ=t,AP=kt,∵△APQ为等腰三角形,∴当AP=AQ时,t=kt,∴k=,当AQ=PQ时,即AH=AP,∴3t=kt,∴k=6;当P A=PQ时,在Rt△PQH中,∵HP2+HQ2=PQ2,∴(3t﹣kt)2+t2=(kt)2,∴k=,综上所述,当△APQ为等腰三角形时k的值为或6或.。
2018-2019学年 八年级(上)期末数学试卷(有答案和解析)
2018-2019学年八年级(上)期末数学试卷一、选择题(每题3分,共30分)1.如图所示的图案是我国几家银行标志,其中不是轴对称图形的是()A.B.C.D.2.下列运算中,正确的是()A.a2•a4=a8B.a10÷a5=a2C.(a5)2=a10D.(2a)4=8a43.下列变形属于因式分解的是()A.4x+x=5x B.(x+2)2=x2+4x+4C.x2+x+1=x(x+1)+1D.x2﹣3x=x(x﹣3)4.石墨烯目前是世界上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为()A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10D.3.4×10﹣115.已知图中的两个三角形全等,图中的字母表示三角形的边长,则∠1等于()A.72°B.60°C.50°D.58°6.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.13B.16C.8D.107.下列各式成立的是()A.B.(﹣a﹣b)2=(a+b)2C.(a﹣b)2=a2﹣b2D.(a+b)2﹣(a﹣b)2=2ab8.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF9.下列三角形:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.①②③④B.①②④C.①③D.②③④10.已知x=3y+5,且x2﹣7xy+9y2=24,则x2y﹣3xy2的值为()A.0B.1C.5D.12二、填空题(本大题共6小题,每小题3分,共18分)11.因式分解:2a2﹣8=.12.若代数式有意义,则实数x的取值范围是.13.一个n边形的内角和是540°,那么n=.14.如图,Rt△ABC中,∠C=90°,AD为△ABC的角平分线,与BC相交于点D,若CD=4,AB =15,则△ABD的面积是.15.如图,在△ABC中,AB=AC,点D在AC上,过点D作DF⊥BC于点F,且BD=BC=AD,则∠CDF的度数为.16.如图,△ABC角平分线AE、CF交于点P,BD是△ABC的高,点H在AC上,AF=AH,下列结论:①∠APC=90°+ABC;②PH平分∠APC;③若BC>AB,连接BP,则∠DBP=∠BAC﹣∠BCA;④若PH∥BD,则△ABC为等腰三角形,其中正确的结论有(填序号).三、解答题17.(10分)计算(1)(2﹣)0﹣()﹣2(2)(﹣3a2)3÷6a+a2•a318.(10分)计算(1)(x+1)2﹣(x+1)(x﹣1)(2)﹣x﹣219.(10分)如图,D、C、F、B四点在一条直线上,AB=DE,AC⊥BD,EF⊥BD,垂足分别为点C、点F,CD=BF.求证:(1)△ABC≌△EDF;(2)AB∥DE.20.(10分)如图,已知A(﹣2,4),B(4,2),C(2,﹣1)(1)作△ABC关于x轴的对称图形△A1B1C1,写出点C关于x轴的对称点C1的坐标;(2)P为x轴上一点,请在图中找出使△PAB的周长最小时的点P并直接写出此时点P的坐标(保留作图痕迹).21.(12分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同.(1)现在平均每天生产多少台机器;(2)生产3000台机器,现在比原计划提前几天完成.22.(10分)已知代数式.(1)先化简,再求当x=3时,原代数式的值;(2)原代数式的值能等于﹣1吗?为什么?23.(12分)如图,已知△ABC中AB=AC,在AC上有一点D,连接BD,并延长至点E,使AE =AB.(1)画图:作∠EAC的平分线AF,AF交DE于点F(用尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,连接CF,求证:∠ABE=∠ACF;(3)若AC=8,∠E=15°,求三角形ABE的面积.24.(14分)因式分解是把多项式变形为几个整式乘积的形式的过程.(1)设有多项式x2+2x﹣m分解后有一个因式是x+4,求m的值.(2)若有甲、乙两个等容积的长方体容器,甲容器长为x﹣1,宽为x﹣2.体积为x4﹣x3+ax2+bx ﹣6,(x为整数),乙容器的底面是正方形.①求出a,b的值;②分别求出甲、乙两容器的高.(用含x的代数式表示)25.(14分)在Rt△ABC中,∠B=90°,AB=8,CB=5,动点M从C点开始沿CB运动,动点N从B点开始沿BA运动,同时出发,两点均以1个单位/秒的速度匀速运动(当M运动到B点即同时停止),运动时间为t秒.(1)AN=;CM=.(用含t的代数式表示)(2)连接CN,AM交于点P.①当t为何值时,△CPM和△APN的面积相等?请说明理由.②当t=3时,试求∠APN的度数.2018-2019学年八年级(上)期末数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意.故选:B.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【分析】根据同底数幂的乘除法则,及幂的乘方法则,结合各选项进行判断即可.【解答】解:A、a2•a4=a6,计算错误,故本选项错误;B、a10÷a5=a5,计算错误,故本选项错误;C、(a5)2=a10,计算正确,故本选项正确;D、(2a)4=16a4,计算错误,故本选项错误;故选:C.【点评】本题考查了同底数幂的乘除运算及幂的乘方的运算,属于基础题,掌握运算法则是关键.3.【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,结合选项进行判断即可.【解答】解:A、是整式的计算,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、符合因式分解的定义,故本选项正确.故选:D.【点评】本题考查了因式分解的意义,属于基础题,掌握因式分解的定义是关键.4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 000 34=3.4×10﹣10;故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.【分析】根据全等三角形的性质即可求出答案.【解答】解:由于两个三角形全等,∴∠1=180﹣50°﹣72°=58°,故选:D.【点评】本题考查了全等三角形的性质,属于基础题型.解答本题的关键是熟练运用全等三角形的性质6.【分析】由于△ABC是等腰三角形,底边BC=5,周长为21,由此求出AC=AB=8,又DE是AB的垂直平分线,根据线段的垂直平分线的性质得到AE=BE,由此得到△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB,然后利用已知条件即可求出结果.【解答】解:∵△ABC是等腰三角形,底边BC=5,周长为21,∴AC=AB=8,又∵DE是AB的垂直平分线,∴AE=BE,∴△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB=13,∴△BEC的周长为13.故选:A.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.7.【分析】根据完全平方公式和分式的化简判断即可.【解答】解:A、,错误;B、(﹣a﹣b)2=(a+b)2,正确;C、(a﹣b)2=a2﹣2ab+b2,错误;D、(a+b)2﹣(a﹣b)2=4ab,错误;故选:B.【点评】此题考查完全平方公式,关键是根据完全平方公式和分式的化简判断.8.【分析】根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.【解答】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选:D.【点评】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL是解题的关键.9.【分析】根据等边三角形的判定判断,三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.【解答】解:①两个角为60度,则第三个角也是60度,则其是等边三角形;②有一个角等于60°的等腰三角形是等边三角形;③三个外角相等,则三个内角相等,则其是等边三角形;④根据等边三角形的性质,可得该等腰三角形的腰与底边相等,则三角形三边相等.所以都正确.故选:A.【点评】此题主要考查等边三角形的判定,三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.10.【分析】依据x﹣3y=5两边平方,可得x2﹣6xy+9y2=25,再根据x2﹣7xy+9y2=24,即可得到xy的值,进而得出x2y﹣3xy2的值.【解答】解:∵x=3y+5,∴x﹣3y=5,两边平方,可得x2﹣6xy+9y2=25,又∵x2﹣7xy+9y2=24,两式相减,可得xy=1,∴x2y﹣3xy2=xy(x﹣3y)=1×5=5,故选:C.【点评】本题主要考查了完全平方公式的运用,应用完全平方公式时,要注意:公式中的a,b 可是单项式,也可以是多项式;对形如两数和(或差)的平方的计算,都可以用这个公式.二、填空题(本大题共6小题,每小题3分,共18分)11.【分析】首先提取公因式2,进而利用平方差公式分解因式即可.【解答】解:2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.12.【分析】根据分式有意义的条件可得x﹣3≠0,再解即可.【解答】解:由题意得:x﹣3≠0,解得:x≠3,故答案为:x≠3.【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.13.【分析】根据n边形的内角和为(n﹣2)•180°得到(n﹣2)•180°=540°,然后解方程即可.【解答】解:设这个多边形的边数为n,由题意,得(n﹣2)•180°=540°,解得n=5.故答案为:5.【点评】本题考查了多边的内角和定理:n边形的内角和为(n﹣2)•180°.14.【分析】作DE⊥AB于E,根据角平分线的性质求出DE,根据三角形的面积公式计算即可.【解答】解:作DE⊥AB于E,∵AD是△ABC的角平分线,∠C=90°,DE⊥AB,∴DE=CD=4,∴△ABD的面积=,故答案为:30【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.15.【分析】设∠A=α,可得∠ABD=α,∠C=∠BDC=2α,∠ABC=2α,再根据△ABC中,∠A+∠ABC+∠C=180°,即可得到∠C的度数,再根据DF⊥BC,即可得出∠CDF的度数.【解答】解:∵AB=AC,BD=BC=AD,∴∠ACB=∠ABC,∠A=∠ABD,∠C=∠BDC,设∠A=α,则∠ABD=α,∠C=∠BDC=2α,∠ABC=2α,∵△ABC中,∠A+∠ABC+∠C=180°,∴α+2α+2α=180°,∴α=36°,∴∠C=72°,又∵DF⊥BC,∴Rt△CDF中,∠CDF=90°﹣72°=18°,故答案为:18°.【点评】本题主要考查了等腰三角形的性质以及三角形内角和定理的运用,解题时注意:等腰三角形的两个底角相等.16.【分析】①利用三角形的内角和定理以及角平分线的定义即可判断.②利用反证法进行判断.③根据∠DBP=∠DBC﹣∠PBC=90°﹣∠ACB﹣(180°﹣∠BAC﹣∠ACB)=(∠BAC﹣∠ACB),由此即可判断.④利用全等三角形的性质证明CA=CB即可判断.【解答】解:∵△ABC角平分线AE、CF交于点P,∴∠CAP=∠BAC,∠ACP=∠ACB,∴∠APC=180°﹣(∠CAP+∠ACP)=180°﹣(∠BAC+∠ACB)=180°﹣(180°﹣∠ABC)=90°+∠ABC,故①正确,∵PA=PA,∠PAF=∠PAH,AF=AH,∴△PAF≌△PAH(SAS),∴∠APF=∠APH,若PH是∠APC的平分线,则∠APF=60°,显然不可能,故②错误,∵∠DBP=∠DBC﹣∠PBC=90°﹣∠ACB﹣(180°﹣∠BAC﹣∠ACB)=(∠BAC﹣∠ACB),故③错误,∵BD⊥AC,PH∥BD,∴PH⊥AC,∴∠PHA=∠PFA=90°,∵∠ACF=∠BCF,CF=CF,∠CFA=∠CFB=90°,∴△CFA≌△CFB(ASA),∴CA=CB,故④正确,故答案为①④.【点评】本题考查全等三角形的判定和性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题17.【分析】(1)直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案;(2)直接利用积的乘方运算法则以及整式的乘除运算法则计算得出答案.【解答】解:(1)原式=1﹣4=﹣3;(2)原式=﹣27a6÷6a+a2•a3=﹣a5+a5=﹣3a5.【点评】此题主要考查了整式的乘除运算,正确掌握相关运算法则是解题关键.18.【分析】(1)先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可得;(2)根据分式的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=x2+2x+1﹣(x2﹣1)=x2+2x+1﹣x2+1=2x+2;(2)原式=﹣=﹣=.【点评】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减混合运算顺序和运算法则及完全平方公式、平方差公式.19.【分析】(1)由垂直的定义,结合题目已知条件可利用HL证得结论;(2)由(1)中结论可得到∠D=∠B,则可证得结论.【解答】证明:(1)∵AC⊥BD,EF⊥BD,∴△ABC和△EDF为直角三角形,∵CD=BF,∴CF+BF=CF+CD,即BC=DF,在Rt△ABC和Rt△EDF中,∴Rt△ABC≌Rt△EDF(HL);(2)由(1)可知△ABC≌△EDF,∴∠B=∠D,∴AB∥DE.【点评】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和性质(即对应边相等、对应角相等)是解题的关键.20.【分析】(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;(2)连接AB1,交x轴于点P,根据图形可得点P的坐标.【解答】解:(1)如图1所示,△A1B1C1即为所求;C1的坐标为(2,1).(2)如图所示,连接AB1,交x轴于点P,点P的坐标为(2,0).【点评】本题主要考查作图﹣轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质.21.【分析】(1)设原计划平均每天生产x台机器,则现在平均每天生产(x+50)台机器,根据工作时间=工作总量÷工作效率结合现在生产600台机器所需要时间与原计划生产450台机器所需时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)由提前完成的天数=工作总量÷原计划工作效率﹣工作总量÷现在工作效率,即可得出结论.【解答】解:(1)设原计划平均每天生产x台机器,则现在平均每天生产(x+50)台机器,依题意,得:=,解得:x=150,经检验,x=150是原方程的解,且符合题意,∴x+50=200.答:现在平均每天生产200台机器.(2)﹣=20﹣15=5(天).答:现在比原计划提前5天完成.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)根据题意得出=﹣1,解之求得x的值,再根据分式有意义的条件即可作出判断.【解答】解:(1)原式=[﹣]•=(﹣)•=•=,当x=3时,原式==2;(2)若原代数式的值等于﹣1,则=﹣1,解得x=0,而x=0时,原分式无意义,所以原代数式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则及分式有意义的条件.23.【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AC、AE相交,然后以这两点为圆心,以大于它们长度为半径画弧,两弧相交于一点,过点A与这一点作出射线与BE的交点即为所求的点F;(2)求出AE=AC,根据角平分线的定义可得∠EAF=∠CAF,再利用“边角边”证明△AEF和△ACF全等,根据全等三角形对应角相等可得∠ABE=∠ACF;(3)作高线EG,根据三角形的外角性质得∠EAG=30°,根据直角三角形的性质可得高线EG =4,根据三角形面积公式可得结论.【解答】(1)解:如图所示;(2)证明:∵AB=AC,AE=AB,∴AE=AC,∵AF是∠EAC的平分线,∴∠EAF=∠CAF,在△AEF和△ACF中,,∴△AEF≌△ACF(SAS),∴∠E=∠ACF,∵AB=AE,∴∠ABE=∠E,∴∠ABE=∠ACF.(3)解:如图,过E作EG⊥AB,交BA的延长线于G,∵AB=AC=AE=8,∴∠ABE=∠AEB=15°,∴∠GAE=∠ABE+∠AEB=30°,∴EG=AE=4,∴三角形ABE的面积===16.【点评】本题考查了全等三角形的判断与性质,等腰三角形的性质,角平分线的作法,确定出全等三角形的条件是解题的关键.24.【分析】(1)根据分解因式的定义,假设未知数,进行求解;(2)同上一问,假设未知数,进行求解;然后对体积的表达式进行因式分解,得到乙容器的高;【解答】解:(1)设原式分解后的另一个因式为x+n,则有:x2+2x﹣m=(x +4)(x +n )=x 2+(4+n )x +4n∴4+n =2可得n =﹣24n =﹣m 可得m =8综上所述:m =8(2)①设甲容器的高为x 2+mx ﹣3,则有:(x ﹣1)(x ﹣2)(x 2+mx ﹣3)=x 4﹣x 3+ax 2+bx ﹣6 ∴x •(﹣2)•x 2+(﹣1)•x •x 2+x •x •mx =﹣2x 3﹣x 3+mx 3=(m ﹣3)x 3=﹣x 3从而得m ﹣3=﹣1m =2原甲容器的体积=(x ﹣1)(x ﹣2)(x 2+2x ﹣3)=x 4﹣x 3﹣9x 2+13x ﹣6从而得a =﹣9,b =13②由乙容器的底面为正方形可得:x 4﹣x 3﹣9x 2+13x ﹣6=(x ﹣1)(x ﹣2)(x 2+2x ﹣3)=(x ﹣1)(x ﹣2)(x +3)(x ﹣1)=(x ﹣1)2(x 2+x ﹣6)故答案为:甲容器的高为x 2+2x ﹣3,乙容器的高为x 2+x ﹣6【点评】该题通过设置未知数,运用多项式乘多项式的方法求解未知数的值.25.【分析】(1)根据路程=速度×时间,可用含t 的代数式表示BN ,CM 的长,即可用含t 的代数式表示AN 的长;(2)①由题意可得S △ABM =S △BNC ,根据三角形面积公式可求t 的值;②过点P 作PF ⊥BC ,PG ⊥AB ,过点A 作AE ⊥CN ,交CN 的延长线于点E ,连接BP ,可证四边形PGBF 是矩形,可得PF =BG ,根据三角形的面积公式,可得方程组,求出PG ,PF 的长,根据勾股定理可求PN 的长,通过证△ANE ∽△CNB ,可求AE ,NE 的长,即可求∠APN 的度数.【解答】解:(1)∵M ,N 两点均以1个单位/秒的速度匀速运动,∴CM =BN =t ,∴AN =8﹣t ,故答案为:8﹣t ,t ;(2)①若△CPM 和△APN 的面积相等∴S △CPM +S 四边形BMPN =S △APN +S 四边形BMPN ,∴S △ABM =S △BNC ,∴=∴8×(5﹣t )=5t∴t =∴当t =时,△CPM 和△APN 的面积相等;②如图,过点P 作PF ⊥BC ,PG ⊥AB ,过点A 作AE ⊥CN ,交CN 的延长线于点E ,连接BP ,∵PG ⊥AB ,PF ⊥BC ,∠B =90°,∴四边形PGBF 是矩形,∴PF =BG ,∵t =3,∴CM =3=BN ,∴BM =2,AN =5,∵S △ABM =S △ABP +S △BPM ,∴∴16=8PG +2PF ①∵S △BCN =S △BCP +S △BPN ,∴×5×3=∴15=3PG +5PF ②由①②组成方程组解得:PG =,PF =,∴BG =∴NG =BN ﹣BG =3﹣=在Rt△PGN中,PN==,在Rt△BCN中,CN==∵∠B=∠E=90°,∠ANE=∠BNC∴△ANE∽△CNB∴∴∴AE=,NE=∵PE=EN+PN∴PE=+=∴AE=PE,且AE⊥PE∴∠APN=45°【点评】本题是三角形综合题,考查了三角形的面积公式,勾股定理,矩形的判定,相似三角形的判定和性质等知识,本题的关键是求出PN的长.。
江苏省无锡市新区八年级数学上学期期中试题(含解析) 苏科版-苏科版初中八年级全册数学试题
某某省某某市新区2015-2016学年八年级数学上学期期中试题一、选择题(本大题共8小题,每小题3分,共24分.)1.如图,下列图案是我国几家银行的标志,其中轴对称图形有( )A.1个B.2个C.3个D.4个2.在下列各组条件中,不能说明△ABC≌△DEF的是( )A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF3.下列语句中正确的有( )句①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④两个轴对称图形的对应点一定在对称轴的两侧.A.1 B.2 C.3 D.44.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( )A.△ABC 的三条中线的交点B.△ABC 三边的中垂线的交点C.△ABC 三条角平分线的交点D.△ABC 三条高所在直线的交点5.等腰三角形的一个角是80°,则它顶角的度数是( )A.80° B.80°或20°C.80°或50°D.20°6.若一个直角三角形的两边长分别为3和4,则它的第三边的平方为( )A.25 B.7 C.25或16 D.25或77.在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分∠ADC,如图,则下列说法正确的有几个,大家一起热烈地讨论交流,小英第一个得出正确答案,是( )(1)AE平分∠DAB;(2)△EBA≌△DCE;(3)AB+CD=AD;(4)AE⊥DE;(5)AB∥CD.A.1个B.2个C.3个D.4个8.如图,在第1个△ABA1中,∠B=52°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C;在A2C上取一点D,延长A1A2到A3,使得A2A3=A2D;…,按此作法进行下去,第2014个三角形的底角的度数为( )A.B.C.D.二、填空题(本大题共11小题,每题2分,共22分)9.若等腰三角形的两条边长分别为7cm和14cm,则它的周长为__________cm.10.直角三角形两条直角边的长分别为5、12,则斜边长为__________,斜边上的高为__________.11.在△ABC中,∠A=50°,当∠B的度数=__________时,△ABC是等腰三角形.12.如图,AB∥DC,请你添加一个条件使得△ABD≌△CDB,可添条件是__________.(添一个即可)13.如图,△OAD≌△OBC,且∠O=70°,∠AEB=100°,则∠C=__________°.14.如图,已知△ABC中,AB=AC,AB边上的垂直平分线DE交AC于点E,D为垂足,若∠ABE:∠EBC=2:1,则∠A=__________.15.如图,一块长方体砖宽AN=5cm,长ND=10cm,CD上的点B距地面的高BD=8cm,地面上A处的一只蚂蚁到B处吃食,需要爬行的最短路径是__________cm.16.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为__________.17.△ABC的周长为60,∠A和∠B的平分线相交于点P,若点P到边AB的距离为10,则△ABC 的面积为__________.18.如图,E为正方形ABCD边AB上一点,BE=3AE=3,P为对角线BD上一个动点,则PA+PE 的最小值是__________.19.如图:已知在Rt△ABC中,∠C=90°,∠A=30°,在直线AC上找点P,使△ABP是等腰三角形,则∠APB的度数为__________.三、解答题(本大题共7小题,共54分)20.如图,方格纸上画有AB、CD两条线段,请你在图中添上一条线段,使图中的3条线段组成一个轴对称图形.(不写作法).21.如图,校园有两条路OA、OB,在交叉路口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置P,简要说明理由.22.如图,五边形ABCDE中,BC=DE,AE=DC,∠C=∠E,DM⊥AB于M,试说明M是AB中点.23.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,(1)求证:AD平分∠BAC;(2)已知AC=20,BE=4,求AB的长.24.如图:E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE,过D作DG∥AC交BC于G.求证:(1)△GDF≌△CEF;(2)△ABC是等腰三角形.25.把一X长方形纸片按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB=3cm,BC=5cm,求:(1)DF的长;(2)重叠部分△DEF的面积.26.已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系是__________,QE与QF的数量关系式__________;(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.2015-2016学年某某省某某市新区八年级(上)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分.)1.如图,下列图案是我国几家银行的标志,其中轴对称图形有( )A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此可知只有第三个图形不是轴对称图形.【解答】解:根据轴对称图形的定义:第一个图形和第二个图形有2条对称轴,是轴对称图形,符合题意;第三个图形找不到对称轴,则不是轴对称图形,不符合题意.第四个图形有1条对称轴,是轴对称图形,符合题意;轴对称图形共有3个.故选:C.【点评】本题考查了轴对称与轴对称图形的概念.轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.在下列各组条件中,不能说明△ABC≌△DEF的是( )A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF【考点】全等三角形的判定.【分析】根据题目所给的条件结合判定三角形全等的判定定理分别进行分析即可.【解答】解:A、AB=DE,∠B=∠E,∠C=∠F,可以利用AAS定理证明△ABC≌△DEF,故此选项不合题意;B、AC=DF,BC=EF,∠A=∠D不能证明△ABC≌△DEF,故此选项符合题意;C、AB=DE,∠A=∠D,∠B=∠E,可以利用ASA定理证明△ABC≌△DEF,故此选项不合题意;D、AB=DE,BC=EF,AC=DF可以利用SSS定理证明△ABC≌△DEF,故此选项不合题意;故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3.下列语句中正确的有( )句①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④两个轴对称图形的对应点一定在对称轴的两侧.A.1 B.2 C.3 D.4【考点】轴对称的性质.【分析】认真阅读4个小问题提供的已知条件,根据轴对称的性质,对题中条件进行一一分析,得到正确选项.【解答】解:①关于一条直线对称的两个图形一定能重合,正确;②两个能重合的图形全等,但不一定关于某条直线对称,错误;③一个轴对称图形不一定只有一条对称轴,正确;④两个轴对称图形的对应点不一定在对称轴的两侧,还可以在对称轴上,错误.故选B.【点评】本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,找着每个问题的正误的具体原因是正确解答本题的关键.4.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( )A.△ABC 的三条中线的交点B.△ABC 三边的中垂线的交点C.△ABC 三条角平分线的交点D.△ABC 三条高所在直线的交点【考点】三角形的内切圆与内心.【分析】由于凉亭到草坪三条边的距离相等,所以根据角平分线上的点到边的距离相等,可知是△ABC三条角平分线的交点.由此即可确定凉亭位置.【解答】解:∵凉亭到草坪三条边的距离相等,∴凉亭选择△ABC三条角平分线的交点.故选C.【点评】此题主要考查了线段的垂直平分线的性质在实际生活中的应用.主要利用了到线段的两个端点的距离相等的点在这条线段的垂直平分线上.5.等腰三角形的一个角是80°,则它顶角的度数是( )A.80° B.80°或20°C.80°或50°D.20°【考点】等腰三角形的性质.【专题】分类讨论.【分析】分80°角是顶角与底角两种情况讨论求解.【解答】解:①80°角是顶角时,三角形的顶角为80°,②80°角是底角时,顶角为180°﹣80°×2=20°,综上所述,该等腰三角形顶角的度数为80°或20°.故选:B.【点评】本题考查了等腰三角形两底角相等的性质,难点在于要分情况讨论求解.6.若一个直角三角形的两边长分别为3和4,则它的第三边的平方为( )A.25 B.7 C.25或16 D.25或7【考点】勾股定理.【分析】分两种情况:①当3和4为两条直角边长时;②当4为斜边长时;由勾股定理求出第三边长的平方即可.【解答】解:分两种情况:①当3和4为两条直角边长时,由勾股定理得:第三边长的平方=斜边长的平方=32+42=25;②当4为斜边长时,第三边长的平方=42﹣32=7;综上所述:第三边长的平方是7或25;故选:D.【点评】本题考查了勾股定理;熟练掌握勾股定理是解决问题的关键,注意分清斜边和直角边长.7.在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分∠ADC,如图,则下列说法正确的有几个,大家一起热烈地讨论交流,小英第一个得出正确答案,是( )(1)AE平分∠DAB;(2)△EBA≌△DCE;(3)AB+CD=AD;(4)AE⊥DE;(5)AB∥CD.A.1个B.2个C.3个D.4个【考点】全等三角形的判定与性质;平行线的性质.【分析】此题可以通过作辅助线来得解,取AD的中点F,连接EF.根据平行线的性质可证得(1)(4)(5),根据梯形中位线定理可证得(3)正确.根据全等三角形全等的判定可证得(2)的正误,即可得解.【解答】解:如图:取AD的中点F,连接EF.∵∠B=∠C=90°,∴AB∥CD;[结论(5)]∵E是BC的中点,F是AD的中点,∴EF∥AB∥CD,2EF=AB+CD(梯形中位线定理)①;∴∠CDE=∠DEF(两直线平等,内错角相等),∵DE平分∠ADC,∴∠CDE=∠FDE=∠DEF,∴DF=EF;∵F是AD的中点,∴DF=AF,∴AF=DF=EF②,由①得AF+DF=AB+CD,即AD=AB+CD;[结论(3)]由②得∠FAE=∠FEA,由AB∥EF可得∠EAB=∠FEA,∴∠FAE=∠EAB,即EA平分∠DAB;[结论(1)]由结论(1)和DE平分∠ADC,且DC∥AB,可得∠EDA+∠DAE=90°,则∠DEA=90°,即AE⊥DE;[结论(4)].由以上结论及三角形全等的判定方法,无法证明△EBA≌△DCE.正确的结论有4个,故选D.【点评】本题考查了平行线的判定及性质、梯形中位线定理、等腰三角形的性质、全等三角形的判定等知识点,是一道难度较大的综合题型.8.如图,在第1个△ABA1中,∠B=52°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C;在A2C上取一点D,延长A1A2到A3,使得A2A3=A2D;…,按此作法进行下去,第2014个三角形的底角的度数为( )A.B.C.D.【考点】等腰三角形的性质.【专题】规律型.【分析】先根据等腰三角形的性质求出第1个三角形的底角即∠BA1A的度数,再根据三角形外角的性质及等腰三角形的性质分别求出第2、3、4个三角形的底角即∠CA2A1,∠DA3A2及∠EA4A3的度数,找出规律即可得出第2014个三角形的底角的度数.【解答】解:∵在△ABA1中,∠B=52°,AB=A1B,∴∠BA1A==,∵A1A2=A1C,∠B A1A是△A1A2C的外角,∴∠CA2A1=∠BA1A=;同理可得,∠DA3A2=,∠EA4A3=,∴第2014个三角形的底角的度数为.故选C.【点评】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA2A1,∠DA3A2及∠EA4A3的度数,进而找出规律是解答此题的关键.二、填空题(本大题共11小题,每题2分,共22分)9.若等腰三角形的两条边长分别为7cm和14cm,则它的周长为35cm.【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两条边长为7cm和14cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:①14cm为腰,7cm为底,此时周长为14+14+7=35cm;②14cm为底,7cm为腰,则两边和等于第三边无法构成三角形,故舍去.故其周长是35cm.故答案为:35.【点评】此题主要考查学生对等腰三角形的性质及三角形的三边关系的掌握情况.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.10.直角三角形两条直角边的长分别为5、12,则斜边长为13,斜边上的高为.【考点】勾股定理.【分析】可先用勾股定理求出斜边长,然后再根据直角三角形面积的两种公式求解即可.【解答】解:由勾股定理可得:AB2=52+122,则AB=13,直角三角形面积S=×5×12=×13×CD,可得:斜边的高CD=.故答案为:13,.【点评】本题考查勾股定理及直角三角形面积公式的综合运用,解答本题的关键是熟练掌握勾股定理,此题难度不大.11.在△ABC中,∠A=50°,当∠B的度数=50°或65°或80°时,△ABC是等腰三角形.【考点】等腰三角形的判定;三角形内角和定理.【专题】分类讨论.【分析】由已知条件,根据题意,分两种情况讨论:①∠A是顶角;②∠A是底角,③∠A=∠C=50°,利用三角形的内角和进行求解.【解答】解:①∠A是顶角,∠B=(180°﹣∠A)÷2=65°;②∠A是底角,∠B=∠A=50°.③∠A是底角,∠A=∠C=50°,则∠B=180°﹣50°×2=80°,∴当∠B的度数为50°或65°或80°时,△ABC是等腰三角形.故答案为:50°或65°或80°.【点评】本题考查了等腰三角形的判定及三角形的内角和定理;分情况讨论是正确解答本题的关键.12.如图,AB∥DC,请你添加一个条件使得△ABD≌△CDB,可添条件是AB=CD等(答案不唯一).(添一个即可)【考点】全等三角形的判定.【专题】开放型.【分析】由已知二线平行,得到一对角对应相等,图形中又有公共边,具备了一组边和一组角对应相等,还缺少边或角对应相等的条件,结合判定方法及图形进行选择即可.【解答】解:∵AB∥DC,∴∠ABD=∠CDB,又BD=BD,①若添加AB=CD,利用SAS可证两三角形全等;②若添加AD∥BC,利用ASA可证两三角形全等.(答案不唯一)故填AB=CD等(答案不唯一)【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.13.如图,△OAD≌△OBC,且∠O=70°,∠AEB=100°,则∠C=15°.【考点】全等三角形的性质.【分析】根据全等三角形的性质求出∠C=∠D,根据三角形的外角性质求出∠CAE=∠O+∠D=∠O+∠C,推出∠AEB=∠C+∠CAE=∠C+∠O+∠C,代入求出即可.【解答】解:∵△OAD≌△OBC,∴∠C=∠D,∵∠CAE=∠O+∠D=∠O+∠C,∴∠AEB=∠C+∠CAE=∠C+∠O+∠C,∵∠O=70°,∠AEB=100°,∴100°=70°+2∠C,∴∠C=15°,故答案为:15.【点评】本题考查了全等三角形的性质,三角形的外角性质的应用,解此题的关键是求出∠C=∠D和推出∠AEB=∠O+2∠C.14.如图,已知△ABC中,AB=AC,AB边上的垂直平分线DE交AC于点E,D为垂足,若∠ABE:∠EBC=2:1,则∠A=45°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】利用线段垂直平分线的性质可求得∠A=∠ABE,结合等腰三角形可求得∠C=∠ABC,结合条件可得到∠A和∠C的关系,在△ABC中利用三角形内角和可求得∠A.【解答】解:∵AB=AC,∴∠ABC=∠C,∵E在线段AB的垂直平分线上,∴EA=EB,∴∠ABE=∠A=2∠EBC,∴∠ABC=∠ABE+∠EBC=∠A+∠A,∵∠A+∠ABC+∠C=180°,∴∠A+2(∠A+∠A)=180°,∴∠A=45°,故答案为:45°.【点评】本题主要考查线段垂直平分线的性质及等腰三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.注意三角形内角和定理的应用.15.如图,一块长方体砖宽AN=5cm,长ND=10cm,CD上的点B距地面的高BD=8cm,地面上A处的一只蚂蚁到B处吃食,需要爬行的最短路径是17cm.【考点】平面展开-最短路径问题.【分析】要求不在同一平面内的两点间的最短距离,首先要把两点所在的两个平面展开到一个平面内,然后根据题意确定数据,再根据勾股定理即可求解.【解答】解:①如图1所示,连接AB,则AB的长即为A处到B处的最短路程.在Rt△ABD中,∵AD=AN+DN=5+10=15cm,BD=8cm,∴AB===17(cm).②如图2所示,AB===(cm),∵>17,∴需要爬行的最短路径是17cm.故答案为:17.【点评】本题的是平面展开﹣最短路径问题,解答此类问题时要先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.16.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为4.【考点】全等三角形的判定与性质.【专题】常规题型.【分析】易证BD=AD,即可证明△BDF≌△ADC,即可求得DF=CD.【解答】解:∵∠ABC=45°,AD⊥BC,∴BD=AD,∵∠CAD+∠AFE=90°,∠CAD+∠C=90°,∠AFE=∠BFD,∴∠AFE=∠C,在△BDF和△ADC中,,∴△BDF≌△ADC(ASA),∴DF=CD=4,故答案为4.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质.17.△ABC的周长为60,∠A和∠B的平分线相交于点P,若点P到边AB的距离为10,则△ABC 的面积为300.【考点】角平分线的性质.【分析】作出图形,过点P作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,根据角平分线上的点到角的两边的距离相等可得PD=PE=PF,然后根据三角形的面积公式列式进行计算即可得解.【解答】解:如图,过点P作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,∵∠A和∠B的平分线相交于点P,∴PD=PE=PF=10,∵△ABC的周长为60,∴△ABC的面积=AB•PD+BC•PE+AC•PF=PD(AB+BC+AC)=×10×60=300.故答案为:300.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,三角形的面积,作辅助线,得到点P到三边的距离相等是解题的关键.18.如图,E为正方形ABCD边AB上一点,BE=3AE=3,P为对角线BD上一个动点,则PA+PE 的最小值是5.【考点】轴对称-最短路线问题.【专题】动点型.【分析】连接EC,则EC的长就是PA+PE的最小值.【解答】解:连接EC.∵BE=3AE=3,∴AB=4,则BC=AB=4,在直角△BCE中,CE===5.故答案是:5.【点评】本题考查了轴对称,理解EC的长是PA+PE的最小值是关键.19.如图:已知在Rt△ABC中,∠C=90°,∠A=30°,在直线AC上找点P,使△ABP是等腰三角形,则∠APB的度数为15°、30°、75°、120°.【考点】等腰三角形的判定.【分析】分别根据当AB=BP1时,当AB=AP3时,当AB=AP2时,当AP4=BP4时,求出答案即可.【解答】解:∵在Rt△ABC中,∠C=90°,∠A=30°,∴当AB=BP1时,∠BAP1=∠BP1A=30°,当AB=AP3时,∠ABP3=∠AP3B=∠BAC=×30°=15°,当AB=AP2时,∠ABP2=∠AP2B=×(180°﹣30°)=75°,当AP4=BP4时,∠BAP4=∠ABP4,∴∠AP4B=180°﹣30°×2=120°,∴∠APB的度数为:15°、30°、75°、120°.故答案为:15°、30°、75°、120°.【点评】此题主要考查了等腰三角形的判定,利用分类讨论得出是解题关键.三、解答题(本大题共7小题,共54分)20.如图,方格纸上画有AB、CD两条线段,请你在图中添上一条线段,使图中的3条线段组成一个轴对称图形.(不写作法).【考点】利用轴对称设计图案.【分析】直接利用轴对称图形的性质分别判定得出答案.【解答】解:如图所示:线段AE,EF即为所求.【点评】此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的性质是解题关键.21.如图,校园有两条路OA、OB,在交叉路口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置P,简要说明理由.【考点】作图—应用与设计作图.【专题】作图题.【分析】到C和D的距离相等,应在线段CD的垂直平分线上;到路AO、OB的距离相等,应在路OA、OB夹角的平分线上,那么灯柱的位置应为这两条直线的交点.【解答】解:灯柱的位置P在∠AOB的平分线OE和CD的垂直平分线的交点上.∵P在∠AOB的平分线上,∴到两条路的距离一样远;∵P在线段CD的垂直平分线上,∴P到C和D的距离相等,符合题意.【点评】考查学生对角平分线及线段垂直平分线的理解;用到的知识点为:与一条线段两个端点距离相等的点,则这条线段的垂直平分线上;到一个角两边距离相等的点,在这个角的平分线上.22.如图,五边形ABCDE中,BC=DE,AE=DC,∠C=∠E,DM⊥AB于M,试说明M是AB中点.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】连接AD、BD.易证△ADE≌△DBC,再根据全等三角形的性质可得AD=DB,即△ABD 是等腰三角形,而DM⊥AB,利用等腰三角形三线合一定理可得M是AB中点.【解答】证明:连接AD、BD,∵,∴△ADE≌△DBC(SAS),∴AD=BD,又∵DM⊥AB,∴M是AB的中点.【点评】本题考查了全等三角形的判定和性质及等腰三角形三线合一定理;作出辅助线是正确解答本题的关键.23.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,(1)求证:AD平分∠BAC;(2)已知AC=20,BE=4,求AB的长.【考点】全等三角形的判定与性质;角平分线的性质.【分析】(1)求出∠E=∠DFC=90°,根据全等三角形的判定定理得出Rt△BED≌Rt△CFD,推出DE=DF,根据角平分线性质得出即可;(2)根据全等三角形的性质得出AE=AF,BE=CF,即可求出答案.【解答】(1)证明:∵DE⊥AB,DF⊥AC,∴∠E=∠DFC=90°,∴在Rt△BED和Rt△CFD中∴Rt△BED≌Rt△CFD(HL),∴DE=DF,∵DE⊥AB,DF⊥AC,∴AD平分∠BAC;(2)解:∵Rt△BED≌Rt△CFD,∴AE=AF,CF=BE=4,∵AC=20,∴AE=AF=20﹣4=16,∴AB=AE﹣BE=16﹣4=12.【点评】本题考查了全等三角形的性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等.24.如图:E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE,过D作DG∥AC交BC于G.求证:(1)△GDF≌△CEF;(2)△ABC是等腰三角形.【考点】全等三角形的判定与性质;平行线的性质;等腰三角形的判定与性质.【专题】证明题.【分析】(1)利用平行线的性质得出∠GDF=∠CEF进而利用ASA得出△GDF≌△CEF;(2)利用全等三角形的性质以及等腰三角形的判定得出即可.【解答】证明:(1)∵DG∥AC∴∠GDF=∠CEF(两直线平行,内错角相等),在△GDF和△CEF中,∴△GDF≌△CEF(ASA);(2)由(1)△GDF≌△CEF得DG=CE又∵BD=CE,∴BD=DG,∴∠DBG=∠DGB,∵DG∥AC,∴∠DGB=∠ACB,∴∠ABC=∠ACB,∴△ABC是等腰三角形.【点评】本题考查了全等三角形的判定与性质以及等腰三角形的判定,比较简单,判定两三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,需要熟练掌握.25.把一X长方形纸片按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB=3cm,BC=5cm,求:(1)DF的长;(2)重叠部分△DEF的面积.【考点】翻折变换(折叠问题).【分析】(1)根据折叠的性质知:BF=DF,用DF表示出FC,在Rt△DCF中,利用勾股定理可求得DF的长;(2)作FH⊥AD于点H,求得FH,由折叠的性质和平行线的性质证得∠EFD=∠DEF,得出DE=DF,进一步利用三角形的面积计算公式即可求解.【解答】解:(1)设DF=x,由折叠可知BF=DF=x,∴FC=BC﹣BF=5﹣x,∵四边形ABCD为长方形,∴DC=AB=3,∠C=90°,AD∥BC,在Rt△DCF中,∠C=90°,DF2=DC2+FC2x2=32+(5﹣x)2x=3.4,∴DF=3.4Ccm;(2)作FH⊥AD于点H,则FH=AB=3,由折叠可知,∠EFB=∠EFD,∵AD∥BC,∴∠DEF=∠EFB,∴∠EFD=∠DEF,∴ED=DF=3.4,S△DEF=×DE×FH=×3.4×3=5.1.【点评】此题主要考查了翻折变换的性质,勾股定理等运用,矩形的性质,三角形的面积,掌握折叠的性质得出对应的线段和角相等是解决问题的关键.26.已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系是AE∥BF,QE与QF的数量关系式QE=QF;(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.【考点】全等三角形的判定与性质;直角三角形斜边上的中线.【专题】压轴题.【分析】(1)证△BFQ≌△AEQ即可;(2)证△FBQ≌△DAQ,推出QF=QD,根据直角三角形斜边上中线性质求出即可;(3)证△AEQ≌△BDQ,推出DQ=QE,根据直角三角形斜边上中线性质求出即可.【解答】解:(1)AE∥BF,QE=QF,理由是:如图1,∵Q为AB中点,∴AQ=BQ,∵BF⊥CP,AE⊥CP,∴BF∥AE,∠BFQ=∠AEQ=90°,在△BFQ和△AEQ中∴△BFQ≌△AEQ(AAS),∴QE=QF,故答案为:AE∥BF;QE=QF.(2)QE=QF,证明:如图2,延长FQ交AE于D,∵Q为AB中点,∴AQ=BQ,∵BF⊥CP,AE⊥CP,∴BF∥AE,∴∠QAD=∠FBQ,在△FBQ和△DAQ中∴△FBQ≌△DAQ(ASA),∴QF=QD,∵AE⊥CP,∴EQ是直角三角形DEF斜边上的中线,∴QE=QF=Q D,即QE=QF.(3)(2)中的结论仍然成立,证明:如图3,延长EQ、FB交于D,∵Q为AB中点,∴AQ=BQ,∵BF⊥CP,AE⊥CP,∴BF∥AE,∴∠1=∠D,在△AQE和△BQD中,,∴△AQE≌△BQD(AAS),∴QE=QD,∵BF⊥CP,∴FQ是斜边DE上的中线,∴QE=QF.【点评】本题考查了全等三角形的性质和判定,直角三角形斜边上中线性质的应用,注意:①全等三角形的判定定理有SAS,ASA,AAS,SSS,②全等三角形的性质是:全等三角形的对应边相等,对应角相等.。
2019-2020学年江苏省无锡市七年级(上)期末数学试卷 (解析版)
2019-2020学年江苏省无锡市七年级(上)期末数学试卷一、选择题(共10小题).1.(3分)3-的相反数是( )A .3-B .13-C .3D .132.有理数a 、b 在数轴上的对应点的位置如图所示,则化简||a b +的结果正确的是( )A .a b +B .a b -C .a b -+D .a b --3.(3分)已知32x y -与23n y x 是同类项,则n 的值为( )A .2B .3C .5D .2或34.(3分)下列计算正确的是( )A .43a a -=B .223n n n +=C .23m m m -=-D .32a a a -+=-5.(3分)下列方程为一元一次方程的是( )A .34x --=B .232x x +=+C .112x -=D .232y x -=6.(3分)下列说法错误的是( )A .两点之间线段最短B .对顶角相等C .同角的补角相等D .过一点有且只有一条直线与已知直线平行7.(3分)长方形纸板绕它的一条边旋转一周形成的几何体为( )A .圆柱B .棱柱C .圆锥D .球8.(3分)已知点A ,B ,C 为平面内三点,给出下列条件:①AC BC =;②2AB BC =;③12AC BC AB ==.选择其中一个条件就能得到“点C 是线段AB 中点”的是( ) A .① B .③ C .①或③ D .①或②或③9.(3分)《九章算术》记载了这样一道题:“以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺,问绳长井深各几何?”题意是:用绳子测量水井深度,如果将绳子折成三等份,那么每等份井外余绳四尺:如果将绳子折成四等份,那么每等份井外余绳一尺.问绳长和井深各多少尺?假设井深为x 尺,则符合题意的方程应为( )A .114134x x -=-B .3441x x +=+C .114134x x +=+D .3(4)4(1)x x +=+10.(3分)甲、乙两店分别购进一批无线耳机,每副耳机的进价甲店比乙店便宜10%,乙店的标价比甲店的标价高5.4元,这样甲乙两店的利润率分别为20%和17%,则乙店每副耳机的进价为( )A .56元B .60元C .72元D .80元二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置)11.(2分)今年无锡马拉松比赛有33200名选手参加,这个数字用科学记数法表示为 .12.(2分)多项式22x y xy -的次数是 .13.(2分)写出一个解为1的一元一次方程 .14.(2分)已知α∠与β∠互为余角,3824α'∠=︒,则β∠= .15.(2分)若代数式22x x -的值为5,则代数式2363x x --的值为 .16.(2分)如图,已知OC OA ⊥,OD OB ⊥.若148AOB ∠=︒,则COD ∠= .17.(2分)如图,两根木条的长度分别为6cm 和10cm ,在它们的中点处各打一个小孔M 、N (小孔大小忽略不计).将这两根木条的一端重合并放置在同一条直线上,则两小孔间的距离MN = cm .18.(2分)长方体纸盒的长、宽、高分别是10cm ,8cm ,5cm ,若将它沿棱剪开,展成一个平面图形那么这个平面图形的周长的最小值是 cm .三、解答题(本大题共8小题,共64分.请在答题卡指定区城内作答,解答时应写出文字说明、证明过程或演算步骤)19.(8分)计算:(1)112|3|(22)2⨯+---; (2)20202(1)29(3)--+÷-.20.(8分)解方程:(1)4(1)3x x +=-;(2)3123x x +-= 21.(6分)先化简,再求值:22222[2()1](4)a b ab a b ab ----.其中12a =,4b =-. 22.(8分)如图,P 是AOB ∠的边OB 上的一点.(1)过点P 画OB 的垂线,交OA 于点C ;过点P 画OA 的垂线,垂足为D ;(2)点C 到直线OB 的距离是哪一条垂线段的长度?(3)请直接写出线段PC 、PD 、OC 的大小关系.(用“<”号连接)23.(6分)由10个完全相同的小正方体搭成的物体如图所示.(1)请在下面的方格图中画出该物体的主视图和左视图;(2)如果再添加若干个相同的小正方体之后,所得到的新物体的主视图和左视图跟原来的相同,那么这样的小正方体最多还可以添加 个.24.(8分)我们规定,如果两个角的差是一个直角,那么这两个角互为足角.其中的一个角叫做另一个角的足角.(1)如图,直线经过点O,OE平分COB∠,OF OE⊥.请直接写出图中BOF∠的足角;(2)如果一个角的足角等于这个角的补角的23,求这个角的度数.25.(10分)小明和父母打算去某火锅店吃火锅,该店在网上出售“25元抵50元的全场通用代金券”(即面值50元的代金券实付25元就能获得),店家规定代金券等同现金使用,一次消费最多可用3张代金券,而且使用代金券的金额不能超过应付总金额.(1)如果小明一家应付总金额为145元,那么用代金券方式买单,他们最多可以优惠多少元;(2)小明一家来到火锅店后,发现店家现场还有一个优惠方式:除锅底不打折外,其余菜品全部6折.小明一家点了一份50元的锅底和其他菜品,用餐完毕后,聪明的小明对比两种优惠,选择了现场优惠方式买单,这样比用代金券方式买单还能少付15元.问小明一家实际付了多少元?26.(10分)如图1,在33⨯的九个格子中填入9个数字,当每行、每列及每条对角线的3个数字之和都相等时,我们把这张图称之为九宫归位图:(1)若2-、1-、0、1、2、3、4、5、6,这9个数也能构成九宫归位图,则此时每行、每列及每条对角线的3个数字之和都为;(2)如图2.在这张九宫归位图中,只填入了3个数,请将剩余的6个数直接填入表2中;(用含a的代数式分别表示这6个数);(3)如图3,在这张九宫归位图中,只填入了2个数,请你求出右上角“?”所表示的数值.参考答案一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请用2B 铅笔把答题卡上相应的选项标号涂黑.1.(3分)3-的相反数是( )A .3-B .13-C .3D .13解:3-的相反数是3,故选:C .2.(3分)有理数a 、b 在数轴上的对应点的位置如图所示,则化简||a b +的结果正确的是( )A .a b +B .a b -C .a b -+D .a b --解:由数轴可得:0a b <<,||||a b >||a b a b ∴+=--故选:D .3.(3分)已知32x y -与23n y x 是同类项,则n 的值为( )A .2B .3C .5D .2或3解:32x y -与23n y x 是同类项,3n ∴=,故选:B .4.(3分)下列计算正确的是( )A .43a a -=B .223n n n +=C .23m m m -=-D .32a a a -+=- 解:A 、结果是3a ,故本选项错误;B 、结果是3n ,故本选项错误;C 、结果是m -,故本选项正确;D 、结果是2a ,故本选项错误;故选:C .5.(3分)下列方程为一元一次方程的是( )A .34x --=B .232x x +=+C .112x -=D .232y x -= 解:B 是二次的,C 不是整式方程,D 含有两个未知数,它们都不符合一元一次方程的定义.只有A 符合一元一次方程的定义.故选:A .6.(3分)下列说法错误的是( )A .两点之间线段最短B .对顶角相等C .同角的补角相等D .过一点有且只有一条直线与已知直线平行解:A 、两点之间线段最短,说法正确.B 、对顶角相等,说法正确.C 、同角的补角相等,说法正确D 、过直线外一点有且只有一条直线与已知直线平行,说法错误.故选:D .7.(3分)长方形纸板绕它的一条边旋转一周形成的几何体为( )A .圆柱B .棱柱C .圆锥D .球解:将长方形纸板绕它的一条边旋转,可得下面的几何体,故选:A .8.(3分)已知点A ,B ,C 为平面内三点,给出下列条件:①AC BC =;②2AB BC =;③12AC BC AB ==.选择其中一个条件就能得到“点C 是线段AB 中点”的是( ) A .① B .③ C .①或③ D .①或②或③解:①点C在线段AB上,且AC BC=,则C是线段AB中点故①不符合题意;②2AB BC=,C不一定是线段AB中点故②不符合题意;③12AC BC AB==,则C是线段AB中点,故③符合题意.故选:B.9.(3分)《九章算术》记载了这样一道题:“以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺,问绳长井深各几何?”题意是:用绳子测量水井深度,如果将绳子折成三等份,那么每等份井外余绳四尺:如果将绳子折成四等份,那么每等份井外余绳一尺.问绳长和井深各多少尺?假设井深为x尺,则符合题意的方程应为()A.114134x x-=-B.3441x x+=+C.114134x x+=+D.3(4)4(1)x x+=+解:设井深为x尺,依题意,得:3(4)4(1)x x+=+.故选:D.10.(3分)甲、乙两店分别购进一批无线耳机,每副耳机的进价甲店比乙店便宜10%,乙店的标价比甲店的标价高5.4元,这样甲乙两店的利润率分别为20%和17%,则乙店每副耳机的进价为()A.56元B.60元C.72元D.80元解:设乙店每副耳机的进价为x元,则甲店每副耳机的进价为0.9x元,依题意有(117%)(120%)0.9 5.4x x+-+⨯=,解得60x=.故乙店每副耳机的进价为60元.故选:B.二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置)11.(2分)今年无锡马拉松比赛有33200名选手参加,这个数字用科学记数法表示为43.3210⨯.解:33200这个数字用科学记数法表示为43.3210⨯.故答案为:43.3210⨯.12.(2分)多项式22x y xy -的次数是 3 . 解:多项式22x y xy -的次数为:3.故答案为:3.13.(2分)写出一个解为1的一元一次方程 10x -= .解:设1a =,则方程可化为:0x b +=;把1x =代入上式得到:10b +=,解得1b =-;所以,方程是:10x -=.14.(2分)已知α∠与β∠互为余角,3824α'∠=︒,则β∠= 5136︒'(或51.6)︒ . 解:α∠与β∠互为余角,3824α'∠=︒,9038245136β'∴∠=︒-︒=︒'(或51.6)︒.故答案为:5136︒'(或51.6)︒.15.(2分)若代数式22x x -的值为5,则代数式2363x x --的值为 12 .解:2363x x --23(2)3x x =--225x x -=,∴原式353=⨯-12=.故答案为:1216.(2分)如图,已知OC OA ⊥,OD OB ⊥.若148AOB ∠=︒,则COD ∠= 32︒ .解:OC OA ⊥,OD OB ⊥,90AOC BOD ∴∠=∠=︒,148AOB ∠=︒,1489058AOD ∴∠=︒-︒=︒,905832DOC AOC AOD ∴∠=∠-∠=︒-︒=︒.故答案为:32︒.17.(2分)如图,两根木条的长度分别为6cm 和10cm ,在它们的中点处各打一个小孔M 、N (小孔大小忽略不计).将这两根木条的一端重合并放置在同一条直线上,则两小孔间的距离MN = 8cm 或2 cm .解:本题有两种情形:(1)当A 、C (或B 、)D 重合,且剩余两端点在重合点同侧时,1122MN CN AM CD AB =-=-, 532=-=(厘米);(2)当B 、C (或A 、)C 重合,且剩余两端点在重合点两侧时,1122MN CN BM CD AB =+=+, 538=+=(厘米). 故两根木条的小圆孔之间的距离MN 是2cm 或8cm ,故答案为:2cm 或8cm .18.(2分)长方体纸盒的长、宽、高分别是10cm ,8cm ,5cm ,若将它沿棱剪开,展成一个平面图形那么这个平面图形的周长的最小值是 92 cm .解:如图所示:这个平面图形的周长的最小值是:588410292()cm ⨯+⨯+⨯=.故答案为:92三、解答题(本大题共8小题,共64分.请在答题卡指定区城内作答,解答时应写出文字说明、证明过程或演算步骤)19.(8分)计算:(1)112|3|(22)2⨯+---; (2)20202(1)29(3)--+÷-.解:(1)112|3|(22)2⨯+--- 6322=++31=(2)20202(1)29(3)--+÷-143=--6=-20.(8分)解方程:(1)4(1)3x x +=-;(2)3123x x +-= 解:(1)去括号得:443x x +=-,移项合并得:51x =-, 解得:15x =-; (2)去分母得:32(3)6x x -+=,去括号得:3266x x --=,移项合并得:12x =.21.(6分)先化简,再求值:22222[2()1](4)a b ab a b ab ----.其中12a =,4b =-. 解:原式22222442432a b ab a b ab a b =---+=-. 当12a =,4b =-时,原式213()(4)23252=⨯⨯--=--=-. 22.(8分)如图,P 是AOB ∠的边OB 上的一点.(1)过点P画OB的垂线,交OA于点C;过点P画OA的垂线,垂足为D;(2)点C到直线OB的距离是哪一条垂线段的长度?(3)请直接写出线段PC、PD、OC的大小关系.(用“<”号连接)解:(1)如图所示,PC,PD即为所求;(2)点C到直线OB的距离是线段PC的长.(3)线段PC、PD、OC的大小关系为:PD PC OC<<.23.(6分)由10个完全相同的小正方体搭成的物体如图所示.(1)请在下面的方格图中画出该物体的主视图和左视图;(2)如果再添加若干个相同的小正方体之后,所得到的新物体的主视图和左视图跟原来的相同,那么这样的小正方体最多还可以添加4个.解:(1)如图2所示:(2)如果再添加若干个相同的小正方体之后,所得到的新物体的主视图和左视图跟原来的相同,那么这样的小正方体最多还可以添加4个.故答案为:4.24.(8分)我们规定,如果两个角的差是一个直角,那么这两个角互为足角.其中的一个角叫做另一个角的足角.(1)如图,直线经过点O ,OE 平分COB ∠,OF OE ⊥.请直接写出图中BOF ∠的足角;(2)如果一个角的足角等于这个角的补角的23,求这个角的度数. 【解答】解(1)OE 平分COB ∠,BOE COE ∴∠=∠,OF OE ⊥,90BOF BOE ∴∠-∠=︒,90BOF COE ∠-∠=︒,BOF ∴∠的足角是COE ∠、BOE ∠.(2)设这个角的度数为x ︒,当090x <<时,290(180)3x x +=- 解得:18x =.当90180x <<时,290(180)3x x -=- 解得:126x =.∴这个角的度数为18︒或126︒.25.(10分)小明和父母打算去某火锅店吃火锅,该店在网上出售“25元抵50元的全场通用代金券”(即面值50元的代金券实付25元就能获得),店家规定代金券等同现金使用,一次消费最多可用3张代金券,而且使用代金券的金额不能超过应付总金额.(1)如果小明一家应付总金额为145元,那么用代金券方式买单,他们最多可以优惠多少元;(2)小明一家来到火锅店后,发现店家现场还有一个优惠方式:除锅底不打折外,其余菜品全部6折.小明一家点了一份50元的锅底和其他菜品,用餐完毕后,聪明的小明对比两种优惠,选择了现场优惠方式买单,这样比用代金券方式买单还能少付15元.问小明一家实际付了多少元?解:(1)145150<.最多购买并使用两张代金券,∴最多优惠50元.(2)设小明一家应付总金额为x 元,当50100x <时,由题意得,25[50(50)0.6]15x x --+-⨯=.解得:150x =(舍去).当100150x <时,由题意得,50[50(50)0.6]15x x --+-⨯=.解得:212.5x =(舍去).当150x 时,由题意得,75[50(50)0.6]15x x --+-⨯=.解得:275x =,2757515185--=(元).答:小明一家实际付了185元.26.(10分)如图1,在33⨯的九个格子中填入9个数字,当每行、每列及每条对角线的3个数字之和都相等时,我们把这张图称之为九宫归位图:(1)若2-、1-、0、1、2、3、4、5、6,这9个数也能构成九宫归位图,则此时每行、每列及每条对角线的3个数字之和都为6;(2)如图2.在这张九宫归位图中,只填入了3个数,请将剩余的6个数直接填入表2中;(用含a的代数式分别表示这6个数);(3)如图3,在这张九宫归位图中,只填入了2个数,请你求出右上角“?”所表示的数值.解:(1)2266-++=.(2)如图2所示:(3)右上角“?”所表示的数值为1.如图3,设右上角“?”所表示的数值为x,设空格中相应位置的数为m、n、p、q,由题意可得2++=++=-+=+++,m n x x p q m a p n g a可得2+++++=-+++++,m n x x p q m a p n q a即22x=,解得1x=.故右上角“?”所表示的数值为1.故答案为:6.。
2019-2020学年江苏省无锡市八年级(下)期末数学试卷 (解析版)
2019-2020学年江苏省无锡市八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分.)1.(3分)要使二次根式有意义,则实数x的取值范围是()A.x>0B.x>5C.x≥0D.x≥52.(3分)下列事件中属于必然事件()A.射击一次,中靶B.明天会下雨C.太阳从东边升起D.公鸡下蛋3.(3分)下列平面图形中是中心对称图形的为()A.B.C.D.4.(3分)下列性质中,菱形具有而平行四边形不一定具有()A.对角线互相平分B.两组对角相等C.对角线互相垂直D.两组对边平行5.(3分)若点(2,y1)(4,y2)都在函数y=﹣的图象上,则y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.无法确定6.(3分)为了解某市6万名八年级学生每天做家庭作业所用的时间,从该市八年级学生中抽取1000名学生进行调查,下列说法正确的是()A.6万名八年级学生是总体B.其中的每名八年级学生每天做家庭作业所用的时间是个体C.所调查的1000名学生是总体的一个样本D.样本容量是1000名学生7.(3分)分式﹣可变形为()A.﹣B.C.﹣D.8.(3分)一次函数y=kx﹣k与反比例函数y=在同一直角坐标系中的图象可能是()A.B.C.D.9.(3分)如图,一次函数y=﹣x+3的图象与x轴、y轴分别交于点A、B,点C在x轴上,点D为平面内一点,且四边形ABCD为矩形,则点D的坐标为()A.(2,﹣3)B.(4,3)C.(﹣4,﹣)D.(,﹣3)10.(3分)如图,平面直角坐标系中,已知A(2,0),B(4,0),p为y轴正半轴上一个动点,将线段P A绕点P逆时针旋转90°,点A的对应点为Q,则线段BQ的最小值是()A.3B.5C.D.2二、填空题(共8小题,每小题3分,满分24分)11.(3分)若分式的值为0,则x的值为.12.(3分)我们把一个样本的40个数据分成4组,其中第1、2、3组的频数分别为6、12、14,则第4组的频率为.13.(3分)若1<x<3,则化简+|x﹣3|=.14.(3分)矩形ABCD中,AB=3,AD=4,M、N分别为BC、CD的中点,则MN的长为.15.(3分)如图,在平行四边形ABCD中,AB=5,AD=6,将▱ABCD沿AE翻折后,点B 恰好与点C重合,则折痕AE的长为.16.(3分)如图,在△ABC中,已知AB=AC,∠C═50°,将△ABC绕点B按逆时针方向旋转一定的角度后得到△DBE,若DE恰好经过点A,设BE与AC相交于点F,则∠AFB的度数为.17.(3分)如图,一次函数y=k1x+b与反比例函数y=的图象交于A、B两点,其横坐标分别为1和5,则关于x的不等式k1x+b﹣<0的解集是.18.(3分)如图,在矩形ABCD中,AB=5,E为边CD上一点,DE=2,将△BCE沿BE 折叠,点C落在F处,设BF交AD于点M,若∠MEB=45°,则BC的长为.三、解答题(共8小题,满分66分)19.(8分)(1)﹣+;(2)(2﹣)(2)﹣()2.20.(8分)(1)计算:+;(2)解方程:﹣5=.21.(6分)先化简,再求值:,其中a=﹣2,b=1.22.(8分)如图,已知△OAB中,OA=OB,分别延长AO、BO到点C、D.使得OC=AO,OD=BO,连接AD、DC、CB.(1)求证:四边形ABCD是矩形;(2)以OA、OB为一组邻边作▱AOBE,连接CE,若CE⊥BD,求∠AOB的度数.23.(6分)某地教研部门为了了解本地区学生在“停课不停学”在线学习期间的学习情况,进行了如下调查:要求每名学生在“优秀”、“良好”、“一般”和“较差”这四个选项中选择一项进行自我评价.调查组随机抽取了若干名学生的调查问卷进行统计并绘制了如下两幅不完整的统计图.请根据图中所给信息,解答下列问题:(1)在这次调查中,一共抽查了名学生;(2)在扇形统计图中,“良好”所对应的圆心角的度数为;(3)请将条形统计图补充完整.24.(10分)大浮杨梅是我市特色水果,古称“吴越佳果”.某水果店第一次用540元购进一批大浮杨梅,由于销售状况良好,该店又用1710元购进一批大浮杨梅,所购数量是第一次购进数量的3倍,但进货价每千克多了1元.(1)第一次所购大浮杨梅的进货价是每千克多少元?(2)该店以每千克30元销售这些大浮杨梅,在销售中,第一次购进的大浮杨梅有10%的损耗,第二次购进的大浮杨梅有15%的损耗.问:该水果店售完这两批杨梅共可获利多少元?25.(10分)如图,已知点A(2,4)、B(4,a)都在反比例函数y=的图象上.(1)求k和a的值;(2)以AB为一边在第一象限内作▱ABCD,若点C的横坐标为8,且▱ABCD的面积为10,求点D的坐标.26.(10分)如图,已知正方形ABCD的边长为6cm,E为边AB上一点且AE长为1cm,动点P从点B出发以每秒1cm的速度沿射线BC方向运动.把△EBP沿EP折叠,点B落在点B'处.设运动时间为t秒.(1)当t=时,∠B'PC为直角;(2)是否存在某一时刻t,使得点B'到直线AD的距离为3?若存在,请求出所有符合题意的t的值;若不存在,请说明理由.2019-2020学年江苏省无锡市八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.)1.(3分)要使二次根式有意义,则实数x的取值范围是()A.x>0B.x>5C.x≥0D.x≥5【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:∵二次根式有意义,∴x﹣5≥0,解得:x≥5.故选:D.2.(3分)下列事件中属于必然事件()A.射击一次,中靶B.明天会下雨C.太阳从东边升起D.公鸡下蛋【分析】直接利用随机事件以及必然事件、不可能事件的定义分别分析得出答案.【解答】解:A、射击一次,中靶,属于随机事件,不合题意;B、明天会下雨,属于随机事件,不合题意;C、太阳从东边升起,属于必然事件,符合题意;D、公鸡下蛋,属于不可能事件,不合题意;故选:C.3.(3分)下列平面图形中是中心对称图形的为()A.B.C.D.【分析】根据中心对称图形的定义判断即可.【解答】解:A、是中心对称图形,符合题意;B、不是中心对称图形,不合题意;C、不是中心对称图形,不合题意;D、不是中心对称图形,不合题意;故选:A.4.(3分)下列性质中,菱形具有而平行四边形不一定具有()A.对角线互相平分B.两组对角相等C.对角线互相垂直D.两组对边平行【分析】根据平行四边形的性质和菱形的性质对各选项进行判断即可.【解答】解:A、菱形、平行四边形的对角线互相平分,故A选项不符合题意;B、菱形、平行四边形的两组对角分别相等,故B选项不符合题意;C、菱形的对角线互相垂直平分,平行四边形的对角线互相平分,故C选项符合题意;D、菱形、平行四边形的两组对边分别平行,故D选项不符合题意;故选:C.5.(3分)若点(2,y1)(4,y2)都在函数y=﹣的图象上,则y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.无法确定【分析】根据函数的解析式和反比例函数的性质得出函数y=﹣的图象,在每个象限内,y随x的增大而增大,再比较即可.【解答】解:∵y=﹣中年k=﹣3<0,∴函数y=﹣的图象,在每个象限内,y随x的增大而增大,∵点(2,y1)(4,y2)都在函数y=﹣的图象上,2<4,∴y1<y2,故选:B.6.(3分)为了解某市6万名八年级学生每天做家庭作业所用的时间,从该市八年级学生中抽取1000名学生进行调查,下列说法正确的是()A.6万名八年级学生是总体B.其中的每名八年级学生每天做家庭作业所用的时间是个体C.所调查的1000名学生是总体的一个样本D.样本容量是1000名学生【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:A、该校八年级全体学生每天做家庭作业所用的时间是总体,故A不符合题意;B、其中的每名八年级学生每天做家庭作业所用的时间是个体,故B符合题意;C、从中抽取的1000名学生每天做家庭作业所用的时间是总体的一个样本,故C不符合题意;D、样本容量是1000,故D不符合题意;故选:B.7.(3分)分式﹣可变形为()A.﹣B.C.﹣D.【分析】先提取﹣1,再根据分式的符号变化规律得出即可.【解答】解:﹣=﹣=,故选:D.8.(3分)一次函数y=kx﹣k与反比例函数y=在同一直角坐标系中的图象可能是()A.B.C.D.【分析】分k>0及k<0两种情况考虑,根据一次函数图象与系数的关系、反比例函数的图象对照四个选项即可得出结论.【解答】解:当k>0时,一次函数y=kx﹣k的图象过一、三、四象限,反比例函数y=的图象在一、三象限,当k<0时,一次函数y=kx﹣k的图象过一、二、四象限,反比例函数y=的图象在二、四象限,∴A、C、D不符合题意,B符合题意;故选:B.9.(3分)如图,一次函数y=﹣x+3的图象与x轴、y轴分别交于点A、B,点C在x轴上,点D为平面内一点,且四边形ABCD为矩形,则点D的坐标为()A.(2,﹣3)B.(4,3)C.(﹣4,﹣)D.(,﹣3)【分析】利用一次函数图象上点的坐标特征可求出点A,B的坐标,进而可得出OA,OB 的长,由四边形ABCD为矩形可得出∠ABC=90°,结合同角的余角相等可得出∠OBC =∠OAB,结合∠BOC=∠AOB=90°可得出△BOC∽△AOB,利用相似三角形的性质可求出OC的长,进而可得出点C的坐标,再利用矩形的性质(对角线互相平分),即可求出点D的坐标.【解答】解:当x=0时,y=﹣×0+3=3,∴点B的坐标为(0,3),OB=3;当y=0时,﹣x+3=0,解得:x=4,∴点A的坐标为(4,0),OA=4.∵四边形ABCD为矩形,∴∠ABC=90°.∵∠OAB+∠OBA=90°,∠OBA+∠OBC=90°,∴∠OBC=∠OAB,又∵∠BOC=∠AOB=90°,∴△BOC∽△AOB,∴=,即=,∴OC=,∴点C的坐标为(﹣,0).又∵四边形ABCD为矩形,A(4,0),B(0,3),C(﹣,0),∴点D的坐标为(4﹣﹣0,0+0﹣3),即(,﹣3).故选:D.10.(3分)如图,平面直角坐标系中,已知A(2,0),B(4,0),p为y轴正半轴上一个动点,将线段P A绕点P逆时针旋转90°,点A的对应点为Q,则线段BQ的最小值是()A.3B.5C.D.2【分析】设P(0,m),则OP=m,通过证得△AOP≌△PMQ求得Q的坐标,然后根据勾股定理得到BQ=,即可求得当m=1时,BQ有最小值3.【解答】解:∵A(2,0),∴OA=2,设P(0,m),则OP=m,作QM⊥y轴于M,∵∠APQ=90°,∴∠OAP+∠APO=∠APO+∠QPM,∴∠OAP=∠QPM,∵∠AOP=∠PMQ=90°,P A=PQ,∴△AOP≌△PMQ(AAS),∴MQ=OP=m,PM=OA=2,∴Q(m,m+2),∵B(4,0),∴BQ==,∴当m=1时,BQ有最小值3,故选:A.二、填空题(共8小题,每小题3分,满分24分)11.(3分)若分式的值为0,则x的值为﹣3.【分析】分式的值为零,分子等于零,且分母不等于零.【解答】解:由题意,知x+3=0且x﹣1≠0.解得x=﹣3.故答案是:﹣3.12.(3分)我们把一个样本的40个数据分成4组,其中第1、2、3组的频数分别为6、12、14,则第4组的频率为0.2.【分析】首先计算出第4组的频数,然后再计算出第4组的频率即可.【解答】解:第4组的频数为:40﹣6﹣12﹣14=8,频率为:=0.2,故答案为:0.2.13.(3分)若1<x<3,则化简+|x﹣3|=2.【分析】直接利用二次根式的性质结合绝对值的性质化简得出答案.【解答】解:∵1<x<3,∴+|x﹣3|=x﹣1+3﹣x=2.故答案为:2.14.(3分)矩形ABCD中,AB=3,AD=4,M、N分别为BC、CD的中点,则MN的长为2.5.【分析】连接BD,由矩形的性质得CD=AB=3,BC=AD=4,∠C=90°,由勾股定理得BD=5,证MN是△BCD的中位线,由三角形中位线定理即可得出答案.【解答】解:连接BD,如图:∵四边形ABCD是矩形,∴CD=AB=3,BC=AD=4,∠C=90°,∴BD===5,∵M、N分别为BC、CD的中点,∴MN是△BCD的中位线,∴MN=BD=2.5;故答案为:2.5.15.(3分)如图,在平行四边形ABCD中,AB=5,AD=6,将▱ABCD沿AE翻折后,点B 恰好与点C重合,则折痕AE的长为4.【分析】由点B恰好与点C重合,可知AE垂直平分BC,根据勾股定理计算AE的长即可.【解答】解:∵翻折后点B恰好与点C重合,∴AE⊥BC,BE=CE,∵BC=AD=6,∴BE=3,∴AE=.故答案为:4.16.(3分)如图,在△ABC中,已知AB=AC,∠C═50°,将△ABC绕点B按逆时针方向旋转一定的角度后得到△DBE,若DE恰好经过点A,设BE与AC相交于点F,则∠AFB的度数为70°.【分析】直接利用等腰三角形的性质结合旋转的性质得出∠BAD=∠CBE=20°,进而利用三角形的外角得出答案.【解答】解:∵AB=AC,∠C═50°,∴∠ABC=∠C=50°,∠BAC=80°,∵将△ABC绕点B按逆时针方向旋转一定的角度后得到△DBE,DE恰好经过点A,∴BD=AB,∴∠D=∠BAD=∠BAC=80°,∴∠BAD=∠CBE=20°,∴∠AFB=∠CBF+∠C=20°+50°=70°.故答案为:70°.17.(3分)如图,一次函数y=k1x+b与反比例函数y=的图象交于A、B两点,其横坐标分别为1和5,则关于x的不等式k1x+b﹣<0的解集是x<0或1<x<5.【分析】根据k1x+b﹣<0,则反比例函数大于一次函数,进而结合图象得出答案.【解答】解:如图所示:关于x的不等式k1x+b﹣<0的解集是:x<0或1<x<5.故答案为:x<0或1<x<5.18.(3分)如图,在矩形ABCD中,AB=5,E为边CD上一点,DE=2,将△BCE沿BE 折叠,点C落在F处,设BF交AD于点M,若∠MEB=45°,则BC的长为15.【分析】过M点作MN⊥BE,交BC于点N,设BC=x,根据折叠的性质,结合矩形的性质,通过证明△EMD≌△NEC可表示AM=x﹣3,BM=x﹣2,再根据勾股定理列式计算即可求解.【解答】解:过M点作MN⊥BE,交BC于点N,由折叠可知:△MNE和△BMN均为等腰三角形,∴BM=BN,ME=NE,∵∠MEB=45°,∴∠MEN=90°,∴∠MED+∠NEC=90°,在矩形ABCD中,∠D=∠C=90°,CD=AB=5,∴∠MED+∠EMD=90°,∴∠EMD=∠NEC,∴△EMD≌△NEC,∴DE=CN,MD=EC,∵DE=2,∴CN=2,MD=EC=3,设BC=x,则AD=x,∴AM=x﹣3,BM=BN=x﹣2,在Rt△ABM中,AB2+AM2=BM2,即52+(x﹣3)2=(x﹣2)2,解得x=15,故BC的长为15.三、解答题(共8小题,满分66分)19.(8分)(1)﹣+;(2)(2﹣)(2)﹣()2.【分析】(1)直接化简二次根式进而合并得出答案;(2)直接利用乘法公式进而计算得出答案.【解答】解:(1)原式=5﹣3+=2+2=4;(2)原式=(2)2﹣()2﹣2=8﹣3﹣2=3.20.(8分)(1)计算:+;(2)解方程:﹣5=.【分析】(1)先通分,再因式分解,约分后即可求解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)+=+==;(2)﹣5=,去分母得:4+x﹣5﹣(x﹣1)=2x,解得:x=,经检验,x=是分式方程的解.21.(6分)先化简,再求值:,其中a=﹣2,b=1.【分析】首先算括号里面的加法(通分),再算除法,把除法变成乘法(除以一个数等于乘以它的倒数)再把分式的分子、分母分解因式约分,化成最简分式即可.【解答】解:,=,=,=,当a=﹣2,b=1时,原式=.22.(8分)如图,已知△OAB中,OA=OB,分别延长AO、BO到点C、D.使得OC=AO,OD=BO,连接AD、DC、CB.(1)求证:四边形ABCD是矩形;(2)以OA、OB为一组邻边作▱AOBE,连接CE,若CE⊥BD,求∠AOB的度数.【分析】(1)根据已知条件推出四边形ABCD是平行四边形,求得AO=AC,BO=BD,等量代换得到AC=BD,于是得到四边形ABCD是矩形;(2)连接OE,设EC与BD交于F,根据垂直的定义得到∠CFD=90°,根据平行四边形的性质得到AE∥BO,根据直角三角形的性质得到EO=AO,推出△AEO是等边三角形,于是得到结论.【解答】(1)证明:∵OC=AO,OD=BO,∴四边形ABCD是平行四边形,∴AO=AC,BO=BD,∵AO=BO,∴AC=BD,∴四边形ABCD是矩形;(2)解:连接OE,设EC与BD交于F,∵EC⊥BD,∴∠CFD=90°,∵四边形AEBO是平行四边形,∴AE∥BO,∴∠AEC=∠CFD=90°,即△AEC是直角三角形,∵EO是Rt△AEC中AC边上的中线,∴EO=AO,∵四边形AEBO是平行四边形,∴OB=AE,∵OA=OB,∴AE=OA=OE,∴△AEO是等边三角形,∴∠OAE=60°,∵∠OAE+∠AOB=180°,∴∠AOB=120°.23.(6分)某地教研部门为了了解本地区学生在“停课不停学”在线学习期间的学习情况,进行了如下调查:要求每名学生在“优秀”、“良好”、“一般”和“较差”这四个选项中选择一项进行自我评价.调查组随机抽取了若干名学生的调查问卷进行统计并绘制了如下两幅不完整的统计图.请根据图中所给信息,解答下列问题:(1)在这次调查中,一共抽查了580名学生;(2)在扇形统计图中,“良好”所对应的圆心角的度数为108°;(3)请将条形统计图补充完整.【分析】(1)由“优秀”的人数及其所占百分比可得调查的总人数;(2)由360°乘以学习效果“良好”的学生人数所占的比例即可;(3)求出“一般”的学生人数为82名,从而补全条形统计图.【解答】解:(1)这次活动共抽查的学生人数为232÷40%=580(名);故答案为:580;(2)在扇形统计图中,“良好”所对应的圆心角的度数为360°×=108°;故答案为:108°;(3)“一般”的学生人数为580﹣92﹣174﹣232=82(名),将条形统计图补充完整如图:24.(10分)大浮杨梅是我市特色水果,古称“吴越佳果”.某水果店第一次用540元购进一批大浮杨梅,由于销售状况良好,该店又用1710元购进一批大浮杨梅,所购数量是第一次购进数量的3倍,但进货价每千克多了1元.(1)第一次所购大浮杨梅的进货价是每千克多少元?(2)该店以每千克30元销售这些大浮杨梅,在销售中,第一次购进的大浮杨梅有10%的损耗,第二次购进的大浮杨梅有15%的损耗.问:该水果店售完这两批杨梅共可获利多少元?【分析】(1)设第一次所购大浮杨梅的进货价是每千克x元,由题意得等量关系:第一次购进大浮杨梅数量×3=第二次购进大浮杨梅数量,根据等量关系,列出方程,再解即可;(2)首先计算出两次购进大浮杨梅的数量,然后再计算卖完后的总收入,然后再减去两次的总进价即可.【解答】解:(1)设第一次所购大浮杨梅的进货价是每千克x元,由题意得:×3=,解得:x=18,经检验:x=18是原分式方程的解,且符合题意,答:第一次所购大浮杨梅的进货价是每千克18元;(2)540÷18=30,30×3=90,30×(30×90%+90×85%)﹣540﹣1710=855(元),答:该水果店售完这两批杨梅共可获利855元.25.(10分)如图,已知点A(2,4)、B(4,a)都在反比例函数y=的图象上.(1)求k和a的值;(2)以AB为一边在第一象限内作▱ABCD,若点C的横坐标为8,且▱ABCD的面积为10,求点D的坐标.【分析】(1)把点A坐标代入反比例函数y=求得k的值,将点B坐标代入反比例函数的解析式求出a的值即可;(2)由题意得点D的横坐标为6,设D(6,m),连接BD,过A作EF∥y轴,作DE ⊥EF,BF⊥EF,则E(2,m),F(2,2),由S梯形DEFB﹣S△DEA﹣S△AFB=S△ABD得出方程,解方程即可.【解答】解:(1)∵点A(2,4)在反比例函数y=的图象上,∴k=2×4=8,∵B(4,a)在反比例函数y=的图象上,∴a==2;(2)∵A(2,4),B(4,2),点C的横坐标为8,∴点D的横坐标为6,设D(6,m),连接BD,过A作EF∥y轴,作DE⊥EF,BF⊥EF,如图所示:则E(2,m),F(2,2),∵▱ABCD的面积为10,∴S△ABD=×10=5,∵S梯形DEFB﹣S△DEA﹣S△AFB=S△ABD,或S梯形DEFB+S△DEA﹣S△AFB=S△ABD,∴(2+4)(m﹣2)﹣×4×(m﹣4)﹣×2×2=5,或(2+4)(m﹣2)+×4×(4﹣m)﹣×2×2=5,解得:m=5,∴点D的坐标为:(6,5).26.(10分)如图,已知正方形ABCD的边长为6cm,E为边AB上一点且AE长为1cm,动点P从点B出发以每秒1cm的速度沿射线BC方向运动.把△EBP沿EP折叠,点B落在点B'处.设运动时间为t秒.(1)当t=5时,∠B'PC为直角;(2)是否存在某一时刻t,使得点B'到直线AD的距离为3?若存在,请求出所有符合题意的t的值;若不存在,请说明理由.【分析】(1)根据当∠B'PC=90°时,∠BPB'=90°,即可得到△BEP为等腰直角三角形,进而得到BP=BE=5cm,再根据点P从点B出发以每秒1cm的速度沿射线BC方向运动,即可得到t的值;(2)过B'作MN∥AB,交AD,BC于点M,N,过E作EH∥AD,交MN于H,进而得出四边形ABNM是矩形,四边形AEHM是矩形.再分两种情况进行讨论:①如图1,若点B'在AD下方;②如图2,若点B'在AD上方,分别根据Rt△PB'N中,B'P2=PN2+B'N2,即可得到t的值为秒或15秒.【解答】解:(1)∵正方形ABCD的边长为6cm,E为边AB上一点且AE长为1cm,∴BE=5cm,当∠B'PC=90°时,∠BPB'=90°,∴由折叠可得,∠BPE=∠BPB'=45°,又∵∠B=90°,∴∠BEP=45°,∴BP=BE=5cm,∵点P从点B出发以每秒1cm的速度沿射线BC方向运动,∴t=5÷1=5(秒),故答案为:5;(2)存在,过B'作MN∥AB,交AD,BC于点M,N,过E作EH∥AD,交MN于H,∵AD∥BC,MN∥AB,∴四边形ABNM是平行四边形,又∵∠A=90°,∴四边形ABNM是矩形,同理可得:四边形AEHM是矩形.①如图1,若点B'在AD下方,则B'M=3cm,B'N=3cm,∵MH=AE=1cm,∴B'H=2cm,由折叠可得,EB'=EB=5cm,∴Rt△EB'H中,EH==(cm),∴BN=AM=EH=cm,∵BP=t,∴PB'=t,PN=﹣t,∵Rt△PB'N中,B'P2=PN2+B'N2,∴t2=(﹣t)2+32,解得t=.②如图2,若点B'在AD上方,则B'M=3cm,B'N=9cm,同理可得,EH=3cm,∵BP=t,∴B'P=t,PN=t﹣3,∵Rt△PB'N中,B'P2=PN2+B'N2,∴t2=(t﹣3)2+92,解得t=15.综上所述,t的值为秒或15秒.。
最新2018-2019学年苏教版数学八年级上册期末模拟检测卷及答案解析-精品试卷
苏教版八年级第一学期期末模拟考试数学试题一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列各数中,无理数是()A.πB.C.D.2.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.检查一枚用于发射卫星的运载火箭的各零部件C.考察人们保护海洋的意识D.了解全国九年级学生的身高现状3.下列各点中,位于平面直角坐标系第四象限的点是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)4.下列图形中,对称轴的条数最多的图形是()A.线段B.角C.等腰三角形D.正方形5.在平面直角坐标系中,一次函数y=2x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.只一个质地均匀的正六面体骰子,落地时面朝上的点数是6二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)7.4的平方根是.8.平面直角坐标系中,将点A(1,﹣2)向上平移1个单位长度后与点B重合,则点B 的坐标是(,).9.任意掷一枚质地均匀的骰子,比较下列事件发生的可能性大小,将它们的序号按从小到大排列为.①面朝上的点数小于2;②面朝上的点数大于2;③面朝上的点数是奇数.10.某校男生、女生以及教师人数的扇形统计图如图所示,若该校师生的总人数为1500人,结合图中信息,可得该校教师人数为人.11.比较大小:1(填“>”、“<”或“=”).12.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是.13.如图,在平面直角坐标系中,函数y=﹣2x与y=kx+b的图象交于点P(m,2),则不等式kx+b>﹣2x的解集为.14.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为.15.如图,D为等边△ABC的边AB上一点,且DE⊥BC,EF⊥AC,FD⊥AB,垂足分别为点E、F、D.若AB=6,则BE= .16.甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是(填序号).三、解答题(本大题共10小题,共68分)17.(4分)计算:.18.(6分)某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是,并补全频数分布直方图;(2)C组学生的频率为,在扇形统计图中D组的圆心角是度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?19.(6分)如图:点C、D在AB上,且AC=BD,AE=FB,AE∥BF.求证:DE∥CF.20.(6分)如图,Rt△ABC中,∠ACB=90°.(1)作∠BAC的角平分线交BC于点D(要求:用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=10cm,△ADB的面积为15cm2,求CD的长.21.(7分)已知平移一次函数y=2x﹣4的图象过点(﹣2,1)后的图象为l1.(1)求图象l1对应的函数表达式,并画出图象l1;(2)求一次函数y=﹣2x+4的图象l2与l1及x轴所围成的三角形的面积.22.(8分)如图(1)所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地.如图(2)是汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a= km,AB两地的距离为km;(2)求线段PM、MN所表示的y与x之间的函数表达式;(3)求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?23.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.24.(7分)如图,△ABC中,AB=AC,D、E分别是AB及AC延长线上的点,且BD=CE,连接DE交BC于点O.过点D作DH⊥BC,过E作EK⊥BC,垂足分别为H、K.(1)求证:DH=EK;(2)求证:DO=EO.25.(7分)某工厂每天生产A、B两种款式的布制环保购物袋共4500个.已知A种购物袋成本2元/个,售价2.3元/个;B种购物袋成本3元/个,售价3.5元/个.设该厂每天生产A种购物袋x个,购物袋全部售出后共可获利y元.(1)求出y与x的函数表达式;(2)如果该厂每天最多投入成本10000元,那么该厂每天生产的购物袋全部售出后最多能获利多少元?26.(10分)(1)如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB.求证:CA+AD=BC.小明为解决上面的问题作了如下思考:作△ADC关于直线CD的对称图形△A′DC,∵CD平分∠ACB,∴A′点落在CB上,且CA′=CA,A′D=AD.因此,要证的问题转化为只要证A′D=A′B.请根据小明的思考写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,求AB的长.参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列各数中,无理数是()A.πB.C.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数就是无限不循环小数,π是无理数,故选:A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.检查一枚用于发射卫星的运载火箭的各零部件C.考察人们保护海洋的意识D.了解全国九年级学生的身高现状【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解一批圆珠笔的寿命,调查具有破坏性,适合抽样调查,故A错误;B、检查一枚用于发射卫星的运载火箭的各零部件是精确度要求高的调查,适合普查,故B正确;C、考察人们保护海洋的意识,调查范围广适合抽样调查,故C错误;D、了解全国九年级学生的身高现状,调查范围广适合抽样调查,故D错误;故选:B.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.下列各点中,位于平面直角坐标系第四象限的点是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)【分析】根据各象限内点的坐标特征对各选项分析判断利用排除法求解.【解答】解:A、(1,2)在第一象限,故本选项错误;B、(﹣1,2)在第二象限,故本选项错误;C、(1,﹣2)在第四象限,故本选项正确;D、(﹣1,﹣2)在第三象限,故本选项错误.故选:C.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.下列图形中,对称轴的条数最多的图形是()A.线段B.角C.等腰三角形D.正方形【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、线段有2条对称轴,故此选项错误;B、角有1条对称轴,故此选项错误;C、等腰三角形有1条或3条对称轴,故此选项错误;D、正方形有4条对称轴,故此选项正确;故选:D.【点评】此题主要考查了轴对称图形,关键是正确确定对称轴.5.在平面直角坐标系中,一次函数y=2x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据一次函数的性质可知一次函数y=2x﹣3的图象经过哪几个象限,不经过哪个象限,从而可以解答本题.【解答】解:∵y=2x﹣3,∴该函数的图象经过第一、三、四象限,不经过第二象限,故选:B.【点评】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.6.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.只一个质地均匀的正六面体骰子,落地时面朝上的点数是6【分析】根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.【解答】解:A、从一装有2个白球和1个红球的袋子中任取一球,取到白球的概率是≈0.67>0.16,故此选项错误;B、从一副扑克牌中任意抽取一张,这张牌是“红色的概率=≈0.24>0.16,故此选项错误;C、掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率==0.5>0.16,故此选项错误;D、掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率=≈0.16故此选项正确,故选:D.【点评】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)7.4的平方根是±2 .【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.8.平面直角坐标系中,将点A(1,﹣2)向上平移1个单位长度后与点B重合,则点B 的坐标是( 1 ,﹣1 ).【分析】让横坐标不变,纵坐标加1可得到所求点的坐标.【解答】解:∵﹣2+1=﹣1,∴点B的坐标是(1,﹣1),故答案为:1,﹣1.【点评】本题考查了坐标与图形变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.9.任意掷一枚质地均匀的骰子,比较下列事件发生的可能性大小,将它们的序号按从小到大排列为①③②.①面朝上的点数小于2;②面朝上的点数大于2;③面朝上的点数是奇数.【分析】根据概率公式分别求出每种情况发生的概率,然后比较出它们的大小即可.【解答】解:任意掷一枚质地均匀的骰子,共有6种等可能结果,其中①面朝上的点数小于2的有1种结果,其概率为;②面朝上的点数大于2的有4种结果,其概率为=;③面朝上的点数是奇数的有3种结果,其概率为=;所以按事件发生的可能性大小,按从小到大排列为①③②,故答案为:①③②.【点评】此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.10.某校男生、女生以及教师人数的扇形统计图如图所示,若该校师生的总人数为1500人,结合图中信息,可得该校教师人数为120 人.【分析】用学校总人数乘以教师所占的百分比,计算即可得解.【解答】解:1500×(1﹣48%﹣44%)=1500×8%=120.故答案为:120.【点评】本题考查的是扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.11.比较大小:>1(填“>”、“<”或“=”).【分析】直接估计出的取值范围,进而得出答案.【解答】解:∵2<<3,∴1<﹣1<2,故>1.故答案为:>.【点评】此题主要考查了实数大小比较,正确得出的取值范围是解题关键.12.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是a>b .【分析】根据一次函数的一次项系数结合一次函数的性质,即可得出该一次函数的单调性,由此即可得出结论.【解答】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y随着x的增大而减小,∵1<2,∴a>b.故答案为:a>b.【点评】本题考查了一次函数的性质,解题的关键是找出该一次函数单调递减.本题属于基础题,难度不大,解决该题型题目时,根据一次函数的解析式结合一次函数的性质,找出该函数的单调性是关键.13.如图,在平面直角坐标系中,函数y=﹣2x与y=kx+b的图象交于点P(m,2),则不等式kx+b>﹣2x的解集为x>﹣1 .【分析】先利用正比例函数解析式确定P点坐标,然后观察函数图象得到,当x>﹣1时,直线y=﹣2x都在直线y=kx+b的下方,于是可得到不等式kx+b>﹣2x的解集.【解答】解:当y=2时,﹣2x=2,x=﹣1,由图象得:不等式kx+b>﹣2x的解集为:x>﹣1,故答案为:x>﹣1.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)﹣2x的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在﹣2x上(或下)方部分所有的点的横坐标所构成的集合.14.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为.【分析】根据线段的垂直平分线的性质得到DB=DC=2,根据角平分线的性质得到DE=AD=1,根据勾股定理计算即可.【解答】解:∵DE是BC的垂直平分线,∴DB=DC=2,∵BD是∠ABC的平分线,∠A=90°,DE⊥BC,∴DE=AD=1,∴BE==,故答案为:.【点评】本题考查的是线段的垂直平分线的性质、角平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.15.如图,D为等边△ABC的边AB上一点,且DE⊥BC,EF⊥AC,FD⊥AB,垂足分别为点E、F、D.若AB=6,则BE= 2 .【分析】求出∠BDE=∠FEC=∠AFD=30°,求出∠DEF=∠DFE=∠EDF=60°,推出DF=DE=EF,即可得出等边三角形DEF,根据全等三角形性质推出三个三角形全等即可.求出AB=3BE,即可解答.【解答】解:∵△ABC是等边三角形,∴AB=AC=BC,∠B=∠C=∠A=60°,∵DE⊥BC、EF⊥AC、FD⊥AB,∴∠DEB=∠EFC=∠FDA=90°,∴∠BDE=∠FEC=∠AFD=30°,∴∠DEF=∠DFE=∠EDF=180°﹣90°﹣30°=60°,∴DF=DE=EF,∴△DEF是等边三角形,在△ADF、△BED、△CFE中∴△ADF≌△BED≌△CFE,∴AD=BE=CF,∵∠DEB=90°,∠BDE=30°,∴BD=2BE,∴AB=3BE,∴BE=AB=2.故答案为:2.【点评】本题考查了等边三角形性质,含30度角的直角三角形性质,解决本题的关键是熟记含30度角的直角三角形性质.16.甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是①②③(填序号).【分析】根据甲步行720米,需要9分钟,进而得出甲的运动速度,利用图形得出乙的运动时间以及运动距离,进而分别判断得出答案.【解答】解:由图象得出甲步行720米,需要9分钟,所以甲的运动速度为:720÷9=80(m/分),当第15分钟时,乙运动15﹣9=6(分钟),运动距离为:15×80=1200(m),∴乙的运动速度为:1200÷6=200(m/分),∴200÷80=2.5,(故②正确);当第19分钟以后两人之间距离越来越近,说明乙已经到达终点,则乙先到达青少年宫,(故①正确);此时乙运动19﹣9=10(分钟),运动总距离为:10×200=2000(m),∴甲运动时间为:2000÷80=25(分钟),故a的值为25,(故④错误);∵甲19分钟运动距离为:19×80=1520(m),∴b=2000﹣1520=480,(故③正确).故正确的有:①②③.故答案为:①②③.【点评】此题主要考查了一次函数的应用,利用数形结合得出乙的运动速度是解题关键.三、解答题(本大题共10小题,共68分)17.(4分)计算:.【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:=﹣2﹣2+1=﹣3【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.(6分)某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是50 ,并补全频数分布直方图;(2)C组学生的频率为0.32 ,在扇形统计图中D组的圆心角是72 度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?【分析】(1)根据A组的百分比和频数得出样本容量,并计算出B组的频数补全频数分布直方图即可;(2)由图表得出C组学生的频率,并计算出D组的圆心角即可;(3)根据样本估计总体即可.【解答】解:(1)这次抽样调查的样本容量是4÷8%=50,B组的频数=50﹣4﹣16﹣10﹣8=12,补全频数分布直方图,如图:(2)C组学生的频率是0.32;D组的圆心角=;(3)样本中体重超过60kg的学生是10+8=18人,该校初三年级体重超过60kg的学生=人,故答案为:(1)50;(2)0.32;72.【点评】此题考查频数分布直方图,关键是根据频数分布直方图得出信息进行计算.19.(6分)如图:点C、D在AB上,且AC=BD,AE=FB,AE∥BF.求证:DE∥CF.【分析】欲证明DE∥CF,只要证明∠ADE=∠BCF,只要证明△AED≌△BFC即可;【解答】证明:∵AE∥BF,∴∠A=∠B,∵AC=BD,∴AC+BD=BD+CD,即:AD=BC,在△AED和△BFC中,∴△AED≌△BFC(SAS),∴∠ADE=∠BCF,∴DE∥CF.【点评】本题考查全等三角形的判定和性质、平行线的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.20.(6分)如图,Rt△ABC中,∠ACB=90°.(1)作∠BAC的角平分线交BC于点D(要求:用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=10cm,△ADB的面积为15cm2,求CD的长.【分析】(1)根据角平分线的尺规作图即可得;(2)作DE⊥AB,由△ADB的面积为15cm2求得DE=3cm,再根据角平分线的性质可得.【解答】解:(1)如图所示,AD即为所求;(2)过D作DE⊥AB,E为垂足,由△ADB的面积为15cm2,得AB•ED=15,解得:ED=3cm,∵AD平分∠BAC,DE⊥AB,∠ACB=90°∴CD=ED=3cm.【点评】本题主要考查作图﹣基本作图,解题的关键是熟练掌握角平分线的尺规作图及角平分线的性质.21.(7分)已知平移一次函数y=2x﹣4的图象过点(﹣2,1)后的图象为l1.(1)求图象l1对应的函数表达式,并画出图象l1;(2)求一次函数y=﹣2x+4的图象l2与l1及x轴所围成的三角形的面积.【分析】(1)根据平行一次函数的定义可知:k=2,再利用待定系数法求出b的值即可;(2)过点A作AD⊥x轴于D点,利用三角形面积公式解答即可.【解答】解:(1)由已知可设l1对应的函数表达式为y=2x+b,把x=﹣2,y=1代入表达式解得:b=5,∴l1对应的函数表达式为y=2x+5,画图如下:,(2)设l1与l2的交点为A,过点A作AD⊥x轴于D点,由题意得,解得即A(,),则AD=,设l1、l2分别交x轴的于点B、C,由y=﹣2x+4=0,解x=2,即C(2,0)由y=2x+5=0解得,即B(,0)∴BC=,∴即l2与l1及x轴所围成的三角形的面积为.【点评】本题考查了函数的平移和两条直线的平行问题;同时还要熟练掌握若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.22.(8分)如图(1)所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地.如图(2)是汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a= 240 km,AB两地的距离为390 km;(2)求线段PM、MN所表示的y与x之间的函数表达式;(3)求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?【分析】(1)根据图象中的数据即可得到A,B两地的距离;(2)根据函数图象中的数据即可得到两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(3)根据题意可以分相遇前和相遇后两种情况进行解答.【解答】解:(1)由题意和图象可得,a=千米,A,B两地相距:150+240=390千米,故答案为:240,390(2)由图象可得,A与C之间的距离为150km汽车的速度,PM所表示的函数关系式为:y1=150﹣60xMN所表示的函数关系式为:y2=60x﹣150(3)由y1=60得 150﹣60x=60,解得:x=1.5由y2=60得 60x﹣150=60,解得:x=3.5由图象可知当行驶时间满足:1.5h≤x≤3.5h,小汽车离车站C的路程不超过60千米【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想和函数的思想解答.23.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.【分析】欲证明AO垂直平分BC,只要证明AB=AC,BO=CO即可;【解答】证明:∵BD⊥AC,CE⊥AB,∴∠BEC=∠BDC=90°,在Rt△BEC和Rt△CDB中,∴Rt△BEC≌Rt△CDB (HL),∴∠ABC=∠ACB,∠ECB=∠DBC,∴AB=AC,BO=OC,∴点A、O在BC的垂直平分线上,∴AO垂直平分BC.【点评】本题考查全等三角形的判定和性质、线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.24.(7分)如图,△ABC中,AB=AC,D、E分别是AB及AC延长线上的点,且BD=CE,连接DE交BC于点O.过点D作DH⊥BC,过E作EK⊥BC,垂足分别为H、K.(1)求证:DH=EK;(2)求证:DO=EO.【分析】(1)只要证明△BDH≌△CEK,即可解决问题;(2)只要证明△DHO≌△EKO即可解决问题;【解答】解:(1)∵DH⊥BC,EK⊥BC,∴∠DHB=∠K=90°,∵AB=AC,∴∠B=∠ACB,又∵∠ACB=∠ECK,∴∠B=∠ECK,在△BDH和△CEK中∵∠ACB=∠ECK,∠B=∠ECK,BD=CE∴△BDH≌△CEK(AAS).∴DH=EK.(2)∵DH⊥AC,EK⊥BC,∴∠DHO=∠K=90°,由(1)得EK=DH,在△DHO和△EKO中,∵∠DHO=∠K,∠DOH=∠EOK,DH=EK∴△DHO≌△EKO(AAS),∴DO=EO.【点评】本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25.(7分)某工厂每天生产A、B两种款式的布制环保购物袋共4500个.已知A种购物袋成本2元/个,售价2.3元/个;B种购物袋成本3元/个,售价3.5元/个.设该厂每天生产A种购物袋x个,购物袋全部售出后共可获利y元.(1)求出y与x的函数表达式;(2)如果该厂每天最多投入成本10000元,那么该厂每天生产的购物袋全部售出后最多能获利多少元?【分析】(1)根据总成本y=A种购物袋x个的成本+B种购物袋x个的成本即可得到答案.(2)列出不等式,根据函数的增减性解决.【解答】解:(1)根据题意得:y=(2.3﹣2)x+(3.5﹣3)(4500﹣x)=﹣0.2x+2250即y与x的函数表达式为:y=﹣0.2x+2550,(2)根据题意得:﹣x+13500≤10000,解得:x≥3500元,∵k=﹣0.2<0,∴y随x增大而减小,∴当x=3500时,y取得最大值,最大值y=﹣0.2×3500+2250=1550,答:该厂每天最多获利1550元.【点评】本题考查了销售量、成本、售价、利润之间的关系,正确理解这些量之间的关系是解决问题的关键,学会用函数的增减性解决实际问题.26.(10分)(1)如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB.求证:CA+AD=BC.小明为解决上面的问题作了如下思考:作△ADC关于直线CD的对称图形△A′DC,∵CD平分∠ACB,∴A′点落在CB上,且CA′=CA,A′D=AD.因此,要证的问题转化为只要证A′D=A′B.请根据小明的思考写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,求AB的长.【分析】(1)作△ADC关于CD的对称图形△A′DC,再证明AD=BA′即可;(2)如图,作△ADC关于AC的对称图形△A′DC.过点C作CE⊥AB于点E,则D′E=BE.设D′E=BE=x.在Rt△CEB中,CE2=CB2﹣BE2=102﹣x2,在Rt△CEA中,CE2=AC2﹣AE2=172﹣(9+x)2.由此构建方程即可解决问题;【解答】(1)证明:作△ADC关于CD的对称图形△A′DC,∴A′D=AD,C A′=CA,∠CA′D=∠A=60°,∵CD平分∠ACB,∴A′点落在CB上∵∠ACB=90°,∴∠B=90°﹣∠A=30°,∵CD平分∠ACB,∴∠ACD=45°在△ACD中,∠ADC=180°﹣∠A﹣∠A CD=75°∴∠A′DC=∠ADC=75°,∴∠A′DB=180°﹣∠ADC﹣∠A′DC=30°,∴∠A′DB=∠B,∴A′D=A′B,∴CA+AD=CA′+A′D=C A′+A′B=CB.(2)如图,作△ADC关于AC的对称图形△A′DC.∴D′A=DA=9,D′C=DC=10,∵AC平分∠BAD,∴D′点落在AB上,∵BC=10,∴D′C=BC,过点C作CE⊥AB于点E,则D′E=BE.设D′E=BE=x.在Rt△CEB中,CE2=CB2﹣BE2=102﹣x2,在Rt△CEA中,CE2=AC2﹣AE2=172﹣(9+x)2.∴102﹣x2=172﹣(9+x)2,解得:x=6,∴AB=AD′+D′E+EB=9+6+6=21.【点评】本题考查全等三角形的判定和性质、直角三角形30度角性质、轴对称、勾股定理、一元二次方程等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用方程的思想思考问题,属于中考常考题型.。
人教版2019-2020学年度第一学期期末测试八年级数学试卷及答案
13.如图,在△ABC 中,∠B=63º,∠C=45º,DE⊥AC 于 E,DF⊥AB 于 F,那么
∠EDF=___________.
A
B
B
F
E
C
P
M P
B
D
CO
第13题图
D 第14题图
AO
N
A
第16题图
14.如图,OP 平分∠AOB,∠AOP=15º,PC∥OA,PD⊥OA 于 D,PC=10,则 PD=_________.
24. (9 分) 已知:△ABC 是边长为 3 的等边三角形,以 BC 为底边作一个顶角为 120º 等腰△BDC.点 M、点 N 分别是 AB 边与 AC 边上的点,并且满足∠MDN=60º. (1)如图 1,当点 D 在△ABC 外部时,求证:BM+CN=MN; (2)在(1)的条件下求△AMN 的周长; (3)当点 D 在△ABC 内部时,其它条件不变,请在图 2 中补全图形,
同理 ∠ABD=90º
∴∠DCE=180º-∠ACD=180º-90º=90º
∴∠DBM=∠DCE
……………………………………1 分
∴在△DBM 和△DCE 中
DB DC DBM DCE BM CE
∴△DBM≌△DCE
……………………………………2 分
∴DM=DE,∠BDM=∠CDE
∵∠BDC=∠BDM+∠MDN+∠DNC=120º
∴OH=AH= 1 OA 1 8 4 ,∠HCO= 1 ACO 1 90 45
111
(2)将△A B C 沿 x 轴方向向左平移 3 个单位后得到△A B C ,画出图形,并写出 A ,B ,C 的坐标.
111
2018-2019学年八年级上期末数学试卷(含答案解析)(可编辑修改word版)
2018-2019 学年八年级(上)期末数学试卷一、选择题:(本大题共8 小题,每小题3 分,共24 分,每小题只有一个选项是正确的,请把你认为正确的选项代号填写在括号里,)1.4的平方根是()A.±2 B.2 C.±D.2.下列图形中,不是轴对称图形的是()A.B.C.D.3.下列各组数中,可以构成直角三角形的是()A.2,3,5 B.3,4,5 C.5,6,7 D.6,7,84.点A(﹣3,2)关于x 轴的对称点A′的坐标为()A.(﹣3,﹣2)B.(3,2)C.(3,﹣2)D.(2,﹣3)5.一次函数y=x+1 不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.下列各式中,正确的是()A.=±2 B.=3 C.=﹣3 D.=﹣3 7.如图所示,有一块直角三角形纸片,∠C=90°,AC=8cm,BC=6cm,将斜边AB 翻折,使点B 落在直角边AC 的延长线上的点E 处,折痕为AD,则CE 的长为()A.1cm B.2cm C.3cm D.4cm8.如图,在△ABC 中,OB 和OC 分别平分∠ABC 和∠ACB,过O 作DE∥BC,分别交AB、AC于点D、E,若DE=5,BD=3,则线段CE 的长为()A.3 B.1 C.2 D.4二、填空题:(共8 小题,每题3 分,共24 分。
将结果直接填写在横线上.)9.一个等腰三角形的两边长分别为5 和2,则这个三角形的周长为.10.把无理数,,﹣表示在数轴上,在这三个无理数中,被墨迹(如图所示)覆盖住的无理数是.1.函数y=kx 的图象过点(﹣1,2),那么k= .12.取=1.4142135623731…的近似值,若要求精确到0.01,则= .13.如图,AB 垂直平分CD,AD=4,BC=2,则四边形ACBD 的周长是.14.将函数y=2x 的图象向下平移3 个单位,则得到的图象相应的函数表达式为.15.已知点A(1,y1)、B(2,y2)都在直线y=﹣2x+3 上,则y1与y2的大小关系是.16.如图,在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A、B 分别在x、y轴的正半轴上,OA=3,OB=4,D 为OB 边的中点,E 是OA 边上的一个动点,当△CDE 的周长最小时,E 点坐标为.三、解答题(共10 小题,共102 分。
2019--2020学年江苏省八年级上册数学(苏科版)期末考试《勾股定理》试题分类——解答题(2)
2019--2020学年江苏省八年级上册数学(苏科版)期末考试《勾股定理》试题分类——解答题(2)1.如图,在四边形ABCD中,AB=BC=3,CD,DA=5,∠B=90°,求∠BCD的度数.2.如图,已知某开发区有一块四边形空地ABCD,现计划在该空地上种植草皮,经测量∠ADC=90°,CD =6m,AD=8m,BC=24m,AB=26m,若每平方米草皮需200元,则在该空地上种植草皮共需多少钱?3.如图1,一架云梯斜靠在一竖直的墙上,云梯的顶端距地面15米,梯子的长度比梯子底端离墙的距离大5米.(1)这个云梯的底端离墙多远?(2)如图2,如果梯子的顶端下滑了8m,那么梯子的底部在水平方向滑动了多少米?4.如图,在等腰△ABC中,AB=AC,BC=5.点D为AC上一点,且BD=4,CD=3.(1)求证:BD⊥AC;(2)求AB的长.5.《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB =90°,AC+AB=10,BC=3,求AC的长.6.一个零件的形状如图所示,工人师傅按规定做得∠B=90°,AB=3,BC=4,CD=12,AD=13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?7.已知:如图,在△ABC中,CD⊥AB,垂足为点D,AC=20,BC=15,DB=9.(1)求CD的长.(2)求AB的长.8.如图,四边形ABCD中,AB=10,BC=13,CD=12,AD=5,AD⊥CD,求四边形ABCD的面积.9.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE.10.已知△ABC中,∠A=90°,AB=AC,D为BC的中点.(1)如图,若E、F分别是AB、AC上的点,且BE=AF.求证:△DEF为等腰直角三角形;(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么△DEF是否仍为等腰直角三角形?证明你的结论.11.已知某校有一块四边形空地ABCD如图,现计划在该空地上种草皮,经测量∠A=90°,AB=3m,BC =12m,CD=13m,DA=4m.若种每平方米草皮需100元,问需投入多少元?12.如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13米,此人以0.5米每秒的速度收绳,10秒后船移动到点D的位置,问船向岸边移动了多少米?(假设绳子是直的,结果保留根号)13.如图,正方形网格中的每个小正方形的边长都是1,每个顶点叫做格点.(1)在图(1)中以格点为顶点画一个面积为10的正方形;(2)在图(2)中以格点为顶点画一个三角形,使三角形三边长分别为2,,;这个三角形的面积为.14.如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)当t=2秒时,求PQ的长;(2)求出发时间为几秒时,△PQB是等腰三角形?(3)若Q沿B→C→A方向运动,则当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.15.如图,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.16.如图,∠ABC=90°,AB=6cm,AD=24cm,BC+CD=34cm,C是直线l上一动点,请你探索当C离B多远时,△ACD是一个以CD为斜边的直角三角形?17.如图,某住宅小区在施工过程中留下了一块空地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问用该草坪铺满这块空地共需花费多少元?18.如图,笔直的公路上A、B两点相距25km,C、D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E 的距离相等,则收购站E应建在离A点多远处?19.如图,四边形ABCD中,AB=4cm,BC=3cm,CD=12cm,DA=13cm,且∠ABC=90°,求四边形ABCD的面积.20.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.21.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;(3)在图3中,画一个正方形,使它的面积是10.22.“中华人民共和国道路交通管理条例”规定:小汽车在城市街道上的行驶速度不得超过70千米/时.一辆“小汽车”在一条城市街路上直道行驶,某一时刻刚好行驶到路对面“车速检测仪A”正前方50米C 处,过了6秒后,测得“小汽车”位置B与“车速检测仪A”之间的距离为130米,这辆“小汽车”超速了吗?请说明理由.23.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)2019--2020学年江苏省八年级上册数学(苏科版)期末考试《勾股定理》试题分类——解答题(2)参考答案与试题解析一.解答题(共23小题)1.【答案】见试题解答内容【解答】解:∵在Rt△ABC中,AB=BC=3,∠B=90°,∴由勾股定理得:AC2=AB2+BC2=32+32=18,∵CD,DA=5,∴CD2+AC2=DA2,∴∠ACD=90°,∵在Rt△ABC中,AB=BC,∴∠BAC=∠ACB=45°,∴∠BCD=∠ACB+∠ACD=45°+90°=135°.2.【答案】见试题解答内容【解答】解:连接AC,在Rt△ACD中,AC2=CD2+AD2=62+82=102,在△ABC中,AB2=262,BC2=242,而102+242=262,即AC2+BC2=AB2,∴∠ACB=90°,S四边形ABCD=S△ACB﹣S△ACD•AC•BCAD•CD,10×248×6=96.所以需费用96×200=19200(元).3.【答案】见试题解答内容【解答】解:(1)根据题意可得OA=15米,AB﹣OB=5米,由勾股定理OA2+OB2=AB2,可得:152+OB2=(5+OB)2解得:OB=20,答:这个云梯的底端离墙20米远;(2)由(1)可得:AB=20+5=25米,根据题意可得:CO=7米,CD=AB=25米,由勾股定理OC2+OD2=CD2,可得:,∴BD=24﹣20=4米,答:梯子的底部在水平方向滑动了4米.4.【答案】见试题解答内容【解答】(1)证明:∵CD=3,BC=5,BD=4,∴CD2+BD2=9+16=25=BC2,∴△BCD是直角三角形,∴BD⊥AC;(2)解:设AD=x,则AC=x+3.∵AB=AC,∴AB=x+3.∵∠BDC=90°,∴∠ADB=90°,∴AB2=AD2+BD2,即(x+3)2=x2+42,解得:x,∴AB3.5.【答案】见试题解答内容【解答】解:设AC=x,∵AC+AB=10,∴AB=10﹣x.∵在Rt△ABC中,∠ACB=90°,∴AC2+BC2=AB2,即x2+32=(10﹣x)2.解得:x=4.55,即AC=4.55.6.【答案】见试题解答内容【解答】解:∵42+32=52,52+122=132,即AB2+BC2=AC2,故∠B=90°,同理,∠ACD=90°,∴S四边形ABCD=S△ABC+S△ACD3×45×12=6+30=36.答:这块钢板的面积等于36.7.【答案】见试题解答内容【解答】解:(1)∵CD⊥AB,∴∠CDB=∠CDA=90°,在Rt△BCD中,∵BC=15,DB=9,∴CD12;(2)在Rt△ACD中,∵AC=20,CD=12,∴AD16,则AB=AD+DB=16+9=25.8.【答案】见试题解答内容【解答】解:连接AC,过点C作CE⊥AB于点E.∵AD⊥CD,∴∠D=90°.在Rt△ACD中,AD=5,CD=12,AC13.∵BC=13,∴AC=BC.∵CE⊥AB,AB=10,∴AE=BEAB10=5.在Rt△CAE中,CE12.∴S四边形ABCD=S△DAC+S△ABC5×1210×12=30+60=90.9.【答案】见试题解答内容【解答】(1)△ABE≌△ACD.证明:∵△ABC与△AED均为等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°.∴∠BAC+∠CAE=∠EAD+∠CAE.即∠BAE=∠CAD,在△ABE与△ACD中,,∴△ABE≌△ACD;(2)证明∵△ABE≌△ACD,∴∠ACD=∠ABE=45°,又∵∠ACB=45°,∴∠BCD=∠ACB+∠ACD=90°,∴DC⊥BE.10.【答案】见试题解答内容【解答】解:(1)证明:连接AD∵AB=AC,∠A=90°,D为BC中点∴ADBD=CD且AD平分∠BAC∴∠BAD=∠CAD=45°在△BDE和△ADF中,,∴△BDE≌△ADF(SAS)∴DE=DF,∠BDE=∠ADF∵∠BDE+∠ADE=90°∴∠ADF+∠ADE=90°即:∠EDF=90°∴△EDF为等腰直角三角形.(2)解:仍为等腰直角三角形.理由:∵△AFD≌△BED∴DF=DE,∠ADF=∠BDE∵∠ADF+∠FDB=90°∴∠BDE+∠FDB=90°即:∠EDF=90°∴△EDF为等腰直角三角形.11.【答案】见试题解答内容【解答】解:∵∠A=90°,AB=3m,DA=4m,∴DB5(m),∵BC=12m,CD=13m,∴BD2+BC2=DC2,∴△DBC是直角三角形,∴S△ABD+S△DBC3×45×12=36(m2),∴需投入总资金为:100×36=3600(元).12.【答案】见试题解答内容【解答】解:在Rt△ABC中:∵∠CAB=90°,BC=13米,AC=5米,∴AB12(米),∵此人以0.5米每秒的速度收绳,10秒后船移动到点D的位置,∴CD=13﹣0.5×10=8(米),∴AD(米),∴BD=AB﹣AD=12(米),答:船向岸边移动了(12)米.13.【答案】见试题解答内容【解答】解:(1)面积为10的正方形的边长为,∵,∴如图1所示的四边形即为所求;(2)∵,,∴如图2所示的三角形即为所求这个三角形的面积2×2=2;故答案为:2.14.【答案】见试题解答内容【解答】(1)解:(1)BQ=2×2=4cm,BP=AB﹣AP=8﹣2×1=6cm,∵∠B=90°,PQ2(cm);(2)解:根据题意得:BQ=BP,即2t=8﹣t,解得:t;即出发时间为秒时,△PQB是等腰三角形;(3)解:分三种情况:①当CQ=BQ时,如图1所示:则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°,∠A+∠C=90°,∴∠A=∠ABQ∴BQ=AQ,∴CQ=AQ=5,∴BC+CQ=11,∴t=11÷2=5.5秒.②当CQ=BC时,如图2所示:则BC+CQ=12∴t=12÷2=6秒.③当BC=BQ时,如图3所示:过B点作BE⊥AC于点E,则BE4.8(cm)∴CE3.6cm,∴CQ=2CE=7.2cm,∴BC+CQ=13.2cm,∴t=13.2÷2=6.6秒.由上可知,当t为5.5秒或6秒或6.6秒时,△BCQ为等腰三角形.15.【答案】见试题解答内容【解答】解:(1)∵BQ=2×2=4(cm),BP=AB﹣AP=16﹣2×1=14(cm),∠B=90°,∴PQ(cm);(2)BQ=2t,BP=16﹣t,根据题意得:2t=16﹣t,解得:t,即出发秒钟后,△PQB能形成等腰三角形;(3)①当CQ=BQ时,如图1所示,则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°.∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=10,∴BC+CQ=22,∴t=22÷2=11秒.②当CQ=BC时,如图2所示,则BC+CQ=24,∴t=24÷2=12秒.③当BC=BQ时,如图3所示,过B点作BE⊥AC于点E,则BE,∴CE,∴CQ=2CE=14.4,∴BC+CQ=26.4,∴t=26.4÷2=13.2秒.综上所述:当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形.16.【答案】见试题解答内容【解答】解:设BC=xcm时,三角形ACD是以DC为斜边的直角三角形,∵BC+CD=34,∴CD=34﹣x,在Rt△ABC中,AC2=AB2+BC2=36+x2,在Rt△ACD中,AC2=CD2﹣AD2=(34﹣x)2﹣576,∴36+x2=(34﹣x)2﹣576,∴当C离点B8cm时,△ACD是以DC为斜边的直角三角形.17.【答案】见试题解答内容【解答】解:连结AC,在Rt△ACD中,∠ADC=90°,AD=4米,CD=3米,由勾股定理得:AC5(米),∵AC2+BC2=52+122=169,AB2=132=169,∴AC2+BC2=AB2,∴∠ACB=90°,该区域面积S=S△ACB﹣S△ADC5×123×4=24(平方米),即铺满这块空地共需花费=24×100=2400元.18.【答案】见试题解答内容【解答】解:∵使得C,D两村到E站的距离相等.∴DE=CE,∵DA⊥AB于A,CB⊥AB于B,∴∠A=∠B=90°,∴AE2+AD2=DE2,BE2+BC2=EC2,∴AE2+AD2=BE2+BC2,设AE=x,则BE=AB﹣AE=(25﹣x),∵DA=15km,CB=10km,∴x2+152=(25﹣x)2+102,解得:x=10,∴AE=10km,∴收购站E应建在离A点10km处.19.【答案】见试题解答内容【解答】解:连接AC,∵∠ABC=90°,AB=4cm,BC=3cm,∵CD=12cm,DA=13cm,AC2+CD2=52+122=169=132=DA2,∴△ADC为直角三角形,∴S四边形ABCD=S△ACD﹣S△ABCAC×CDAB×BC5×124×3=30﹣6=24.故四边形ABCD的面积为24cm2.20.【答案】见试题解答内容【解答】解:(1)如图①所示:(2)如图②③所示.21.【答案】见试题解答内容【解答】解:(1)三边分别为:3、4、5 (如图1);(2)三边分别为:、2、(如图2);(3)画一个边长为的正方形(如图3).22.【答案】见试题解答内容【解答】解:由题意知,AB=130米,AC=50米,且在Rt△ABC中,AB是斜边,根据勾股定理AB2=BC2+AC2,可以求得:BC=120米=0.12千米,且6秒时,所以速度为72千米/时,故该小汽车超速.答:该小汽车超速了,平均速度大于70千米/时.23.【答案】见试题解答内容【解答】解:在Rt△ABC中,AC=30m,AB=50m;据勾股定理可得:(m)∴小汽车的速度为v20(m/s)=20×3.6(km/h)=72(km/h);∵72(km/h)>70(km/h);∴这辆小汽车超速行驶.答:这辆小汽车超速了.。
无锡市锡山区2021-2022学年八年级上学期期末考试数学试卷(含答案)
锡山区2021秋学期期末考试试卷八年级数学 2022年1月本次考试分试卷..和答卷..两部分,所有答案一律写在答卷上.考试时间为120分钟,试卷满分为150分. 一、选择题(本大题共10题,每题3分,共30分.)1.如图所示的冬奥会图标中,是轴对称图形的是( )A .B .C .D .2.下列各数中是无理数的是( )A .-1B .16C .23D . 33.如图,已知BC =BD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ABD 的是( )A .AC =ADB .∠ABC =∠ABD C .∠C =∠D =90° D .∠CAB =∠DAB(第3题图) (第5题图) (第6题图) 4.当k <0时,一次函数y =kx +2的图像大致是( )A .B .C .D .5.在大型爱国主义电影《长津湖》中,我军缴获了敌人防御工程的坐标地图碎片(如图),若一号暗堡坐标为(4,2),四号暗堡坐标为(-2,4),指挥部坐标为(0,0),则敌人指挥部可能在( ) A .A 处 B .B 处 C .C 处 D .D 处6.如图,在△ABC 中,AB 的垂直平分线交AB 于点E ,交BC 于点D ,若△ABC 的周长为19cm ,AE =3cm ,则△ACD 的周长为( ) A .22cm B .19cmC .13cmD .7cm7.如图,在△ABC 中,∠ABC =45°,F 是高AD 和BE 的交点,AC =5,BD =2,则线段DF 的长度为( ) A .2B . 3C . 2D .1ECFBDA(第7题图) (第9题图) (第10题图) 8.在画一次函数y =kx +b 的图像时,列表如下:x … 1 2 3 4 … y…-1-4-7-10…则下列结论中正确的是( )A .一次函数y =kx +b 的图像与y 轴的交点是(0,2)B .y 随x 的增大而增大C .方程kx +b =2的解是x =-4D .一次函数y =kx +b 的图像经过第二、三、四象限 9.如图,已知钓鱼竿AC 的长为10m ,露在水面上的鱼线BC 长为6m ,某钓鱼者想看看鱼钩上的情况,把鱼竿AC 转动到AC ′的位置,此时露在水面上的鱼线B ′C ′为8m ,则BB ′的长为( ) A .1m B .2m C .3m D .4m10.如图,在等腰△ABC 中,AB =AC =5,BC =6,O 是△ABC 外一点,O 到三边的垂线段分别为OD ,OE ,OF ,且OD :OE :OF =1:4:4,则AO 的长度为( ) A .5B .6C .407D .8017二、填空题(本大题共8题,每空3分,共30分.)11.一个三角形的三边为2、4、x ,另一个三角形的三边为y 、2、5,若这两个三角形全等,则x +y=__________.12.在平面直角坐标系中,将点M (3,-2)向下平移4个单位得到点N ,则点N 的坐标为__________. 13.在Rt △ABC 中,斜边BC =3,则AB 2+BC 2+AC 2的值为__________.14.如图,点A 表示的数为3,过点A 作AB ⊥OA 于点A ,且AB =2,以点O 为圆心,OB 长为半径作弧,弧与数轴的交点C 表示的数是__________.(第14题图) (第15题图) (第16题图) 15.如图,已知△ABC 的周长是10,∠B 和∠C 的平分线交于P 点,过P 点作BC 的垂线交BC 于点D ,且PD =2,则△ABC 的面积是__________.16.如图,直线y =kx +b 经过点A (-3,2),B (1,0),则关于x 的不等式kx +b <2的解集为__________.17.在Rt△ABC中,∠ACB=90°,AC=6,BC=8.(1)如图1,D、E分别是AB和CB边上的点,把△BDE沿直线DE折叠,若点B落在AC边上的点F处,则CE的最小值是__________;(2)如图2,CG是AB边上的中线,将△ACG沿CG翻折后得到△HCG,连接BH,则BH的长为__________.图1图218.在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点叫做整点.已知点A(0,4),点B 是x轴正半轴上的点,且点B的横坐标为n(n为正整数),记△AOB内部(不包括边界)的整点个数为m.当n=12时,m的值为__________;当n=2022时,m的值为__________.三、解答题(本大题共10题,共90分.)19.(本题满分8分)求下列各式中的x:(1)9x2-16=0;(2)(x+1)3=-27.20.(本题满分8分)计算:(1)(-1)2+16-38; (2)-22×14+|-9|×(-1)2022.21.(本题满分8分)如图,在△ABC 中,AB =AC ,点D 、E 分别在AB 、AC 上,BD =CE ,BE 、CD 相交于点O . (1)求证:△DBC ≌△ECB ; (2)求证:OB =O C .22.(本题满分8分)已知a ,b 都是实数,设点P (a ,b ),若满足3a =2b +5,则称点P 为“新奇点”. (1)判断点A (3,2)是否为“新奇点”,并说明理由;(2)若点M (m -1,3m +2)是“新奇点”,请判断点M 在第几象限,并说明理由.23.(本题满分8分)如图,直线y =43x +4与x 轴、y 轴分别相交于点A 、B ,设M 是OB 上一点,若将△ABM 沿AM 折叠,使点B 恰好落在x 轴上的点B ′处. (1)求:点B ′的坐标;(2)求:直线AM 所对应的函数关系式.24.(本题满分8分)在△ABC 中,AB =AC ,CD ⊥AB 于D . (1)若∠A =40°,求∠DCB 的度数; (2)若BC =15,CD =12,求AC 的长.DBAxy OAMB B ′25.(本题满分8分)如图,在△ABC中,∠ACB=90°.(1)在斜边AB上找一点P,使点P到AC的距离等于BP的长.请用无刻度直尺和圆规作出点P(不写画法,保留作图痕迹);(2)若BC=4.5,AB=7.5,则AC的长为__________,(1)中BP的长为__________.BAC26.(本题满分10分)某超市在冬至这天,购进了大量羊腿和羊排.顾客甲买了4斤羊腿,3斤羊排,一共花了272元;顾客乙买了2斤羊腿,1斤羊排,一共花了116元.(1)羊腿和羊排的售价分别是每斤多少元?(2)第二天进货时,超市老板根据前一天的销售情况,决定购进羊腿和羊排共180斤,且羊腿的重量不少于120斤,若在售价不变的情况下,每斤羊腿可盈利6元,而羊排的利润率为25%,问超市老板应该如何进货才能使得这批羊肉卖完时获利最大?最大利润是多少?27.(本题满分12分)已知:如图,△ABC、△CDE都是等边三角形,AD、BE相交于点O,点M、N分别是线段AD、BE的中点.(1)求∠DOE的度数;(2)试判断△MNC的形状,并说明理由;(3)连接OC,求证:OC是∠AOE的平分线.28.(本题满分12分)某兴趣小组利用计算机进行电子虫运动实验.如图1,在相距100个单位长度的线段AB 上,电子虫甲从端点A 出发,匀速往返于端点A 、B 之间,电子虫乙同时从端点B 出发,设定不低于甲的速度匀速往返于端点B 、A 之间.他们到达端点后立即转身折返,用时忽略不计.兴趣小组成员重点探究了甲、乙迎面相遇的情况,这里的“迎面相遇”包括面对面相遇、在端点处相遇这两种.设甲、乙第一次迎面相遇时,相遇地点与点A 之间的距离为x 个单位长度,他们第二次迎面相遇时,相遇地点与点A 之间的距离为y 个单位长度. 【观察】请直接写出:当x =20时,y 的值为__________;当x =40时,y 的值为__________;【发现】兴趣小组成员发现了y 与x 的函数关系,并画出了部分函数图像(如图2中的线段OM ,但不包括点O ,因此点O 用空心画出) ①请直接写出:a =________;②分别求出各部分图像对应的函数解析式,并在图2中补全函数图像,标出关键点的坐标;【拓展】设甲、乙第一次迎面相遇时,相遇地点与点A 之间的距离为x 个单位长度,他们第三次迎面相遇时,相遇地点与点A 之间的距离为z 个单位长度.若z 不超过40,则x 的取值范围是________________(直接写出结果).xy OMa 100八年级数学参考答案2022年1月本次考试分试卷..和答卷..两部分,所有答案一律写在答卷上.考试时间为120分钟,试卷满分为150分.一、选择题(本大题共10题,每题3分,共30分.)1.C;2.D;3.D;4.C;5.B;6.C;7.D;8.A;9.B;10.D;二、填空题(本大题共8题,每空3分,共30分.)11. 9; 12.(3,-6) ; 13. 18; 14.13; 15. 10; 16.x >-3; 17.(1)74;(2)145;18. 15;3031;三、解答题(本大题共10题,共90分.)19.(本题满分8分)(1)9x 2=16,x 2=169,x =±43;…………………………4分(2)x +1=-3,x =-4.…………………………8分20.(本题满分8分)(1)原式=1+4-2=3;…………………………4分(2)原式=-4×12+3×1=-2+3=1.…………………………8分21.(本题满分8分)(1)证明:∵AB =AC ,∴∠ECB =∠DBC ,在△DBC 与△ECB 中,⎩⎪⎨⎪⎧BD =CE∠DBC =BC =CB ∠ECB ,∴△DBC ≌△ECB (SAS );…………………………5分 (2)证明:由(1)知△DBC ≌△ECB , ∴∠DCB =∠EBC ,∴OB =O C .…………………………8分22.(本题满分8分)(1)点A (3,2)是“新奇点”. ………………1分 理由:当A (3,2)时,⎩⎨⎧a =3b =2,此时3a =9,2b +5=9,满足3a =2b +5.∴点A (3,2)是“新奇点”;………………3分 (2)点M 在第三象限,………………4分理由如下:∵点M (m -1,3m +2)是“新奇点”,∴a =m -1,b =3m +2,………………5分 代入3a =2b +5中,得3(m -1)=2(3m +2)+5,解得m =-4,………………7分此时m -1=-5,3m +2=-10,∴点M (-5,-10)在第三象限.………………8分23.(本题满分8分)(1)由直线y =43x +4,易得A (-3,0),B (0,4),………………2分∴OA =3,OB =4,AB =OA 2+OB 2=32+42=5,………………3分 ∴AB ′=AB =5,OB ′=5-3=2,∴B ′的坐标为(2,0).………………4分 (2)设OM =m ,则B ′M =BM =4-m ,在Rt △OMB ′中,m 2+42=(4-m )2, 解得m =32,………………6分∴M 的坐标为(0,32),………………7分设直线AM 的解析式为y =kx +b ,则⎩⎪⎨⎪⎧-3k +b =0b =32,解得⎩⎪⎨⎪⎧k =12b =3,∴直线AM 所对应的函数关系式为y =12x +32.………………8分24.(本题满分8分)(1)∵AB =AC ,∴∠B =∠ACB , ∵∠A =40°,∴∠B =∠ACB =70°, ∵CD ⊥AB ,∴∠BDC =90°.∴∠DCB =90°-∠B =20°;………………3分 (2)在Rt △BCD 中,BD =BC 2-CD 2=152-122=9,………………4分设AC =AB =x ,则AD =x -9,∵在Rt △ACD 中,AD 2+CD 2=AC 2,∴(x -9)2+122=x 2,………………6分 解得x =22518=12.5,………………7分∴AC =12.5.………………8分25.(本题满分8分)(1)作∠ABC 的平分线交AC 于点Q ,…………………………2分 作线段BQ 的垂直平分线交AB 于点P ;…………………………4分说明:过Q 作AC 的垂线或过Q 作BC 的平行线得到点P 等其它方法均可.(2)求得AC 的长为6,…………………………6分过Q 作QH ⊥AB ,垂足为H ,可以求得BP 的长为4516.…………………………8分26.(本题满分10分)(1)设羊腿的售价每斤为a 元,羊排的售价每斤为b 元,根据题意,得⎩⎨⎧4a +3b =2722a +b =116,………………2分解得 ⎩⎨⎧a =38b =40,………………3分答:羊腿和羊排的售价分别是38元,40元;………………4分(2)每斤羊排的进价为:40÷(1+25%)=32(元),每斤羊排的利润为:32×25%=8(元),…5分 设购进羊腿x 斤,这批羊肉卖完时总获利为w 元, 根据题意得:x ≥120,………………6分w =6x +8(180-x )=-2x +1440,………………8分 ∵-2<0,∴w 随x 的增大而减小,∴当x =120时,w 取得最大值,且w 最大=-2×120+1440=1200,………………9分 此时180-120=60(斤).………………10分答:超市老板应该购进120斤羊腿,60斤羊排,才能使得这批羊肉卖完时获利最大为1200元.27.(本题满分12分)(1)∵△ABC 、△CDE 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACB +∠BCD =∠DCE +∠BCD ,∴∠ACD =∠BCE ,在△ACD 和△BCE 中,⎩⎪⎨⎪⎧AC =BC∠ACD =∠BCE CD =CE, ∴△ACD ≌△BCE ,………………2分∴AD =BE ,∠ADC =∠BEC ,∵等边三角形DCE ,∴∠CED =∠CDE =60°,∴∠ADE +∠BED =∠ADC +∠CDE +∠BED ,=∠ADC +60°+∠BED ,=∠CED +60°,=60°+60°,=120°,∴∠DOE =180°-(∠ADE +∠BED )=60°.………………4分答:∠DOE 的度数是60°.(2)△MNC 是等边三角形;………………5分证明:∵△ACD ≌△BCE ,∴∠CAD =∠CBE ,AD =BE ,AC =BC又∵点M 、N 分别是线段AD 、BE 的中点,∴AM =12AD ,BN =12BE , ∴AM =BN ,在△ACM 和△BCN 中,⎩⎪⎨⎪⎧AC =BC∠CAM =∠CBN AM =BN, ∴△ACM ≌△BCN ,∴CM =CN ,………………7分∠ACM =∠BCN ,又∠ACB =60°,∴∠ACM +∠MCB =60°,∴∠BCN +∠MCB =60°,∴∠MCN =60°,∴△MNC 是等边三角形.………………9分(3)过C 作CG ⊥AD ,垂足为G ;过C 作CH ⊥AD ,垂足为H .………………10分G H∵△ACD ≌△BCE ,∴AD =BE ,由S △ACD =S △BCE ,得12⋅AD ⋅CG =12⋅BE ⋅CH ,∴CG =CH ,又∵CG ⊥AD ,CH ⊥AD ,∴OC 是∠AOE 的平分线.………………12分28.(本题满分12分)【观察】当x =20时,y =60;………………1分当x =40时,y =80;………………3分【发现】①1003;………………5分②当0<x ≤1003时,点M (1003,100)在线段OM 上,∴线段OM 的表达式为y =3x ;………………6分说明:也可根据实际背景得出.当1003<x ≤50时,此时第二次相遇地点是甲在到点B 返回向点A 时, 设甲的速度为v ,则乙的速度为100-x x v ,根据题意知,x +y =100-x x (100-x +100-y ),∴y =-3x +200;………………8分综上:y =⎩⎨⎧3x (0<x ≤1003)-3x +200 (1003<x ≤50);补全图形:如图2所示中线段MN ,要标出N (50,50);………………9分【拓展】0<x ≤8或32≤x ≤48.………………12分xyO Ma 100 N50 50。
2022-2023学年江苏省无锡市天一中学八年级上学期阶段性测试数学试卷带讲解
初二数学阶段性测试(满分130分考试时间120分钟)一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一个是正确的,请将正确的选项编号填写在答卷纸相应的位置处)1.在平面直角坐标系中,点M (2,-1)在()A.第一象限 B.第二象限C.第三象限D.第四象限D【分析】根据各象限内点的坐标特点及M 的坐标,即可判定.【详解】解:20> ,10-<,∴点M 在第四象限,故选:D .【点睛】本题考查了各象限内点的坐标特点,熟记各象限内点的坐标的符号是解决本题的关键.2.一次函数4y x =-的图像与x 轴的交点坐标是()A.()04,B.()40-, C.()40,D.(()04-,C【分析】令0y =,求出对应函数值,即可确定与x 轴的交点的坐标.【详解】解:∵当0y =时,04x =-,解得:4x =,∴一次函数4y x =-的图像与x 轴的交点坐标是()40,.故选:C .【点睛】本题主要考查了一次函数图像与坐标轴的交点问题,掌握坐标轴上的点的坐标特征是解答本题的关键..3.在平面直角坐标系中,点()13-,关于x 轴对称的点的坐标为()A.()13-,B.()13, C.()13--, D.()3,1-B【分析】根据关于x 轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点()13-,关于x 轴对称的点的坐标为()13,,故选:B .【点睛】本题考查了坐标与图形变化—轴对称,关键是掌握关于x 轴对称的点的坐标的变化规律.4.若点P 在一次函数23y x =-+的图象上,则点P 一定不在()A.第一象限B.第二象限C.第三象限D.第四象限C【分析】根据一次函数图象的性质,确定一次函数图象经过的象限,即可判断点P 一定不在哪个象限.【详解】解:一次函数23y x =-+的图象经过第一、二、四象限,点P 在一次函数23y x =-+的图象上,则点P 一定不在第三象限.故选:C .【点睛】本题考查了一次函数图象的性质,解题关键是确定一次函数图象所经过的象限.5.若y =(m ﹣2)x+(m 2﹣4)是正比例函数,则m 的取值是()A.2B.﹣2C.±2D.任意实数B【分析】正比例函数的一般式y=kx ,k≠0,所以使m 2-4=0,m-2≠0即可得解.【详解】由正比例函数的定义可得:m 2-4=0,且m-2≠0,解得,m=-2;故选B.6.点A (12,y -)和B (21,y -)都在直线2y x b =-+上,则1y 和2y 的大小关系是()A.12y y > B.12y y < C.12y y = D.无法确定A【分析】利用一次函数的增减性判定即可.【详解】解:∵直线2y x b =-+的20k =-<,∴y 随x 的增大而减小,∵21-<-,∴12y y >,故选:A .【点睛】此题考查了一次函数的增减性,对于一次函数()0y kx b k =+≠,当0k >时,y 随x 的增大而增大,当0k <时,y 随x 的增大而减小.7.一次函数y=kx+b 的图象如图所示,当y >3时,x 的取值范围是()A.x 0<B.x 0>C.x 2<D.x 2>.A【分析】根据题意在函数图像中寻找3y >时函数图像所在的位置,发现此时函数图像对应的x 范围是小于零,从而得出答案【详解】解:∵由函数图象可知,当x <0时函数图象在3的上方,∴当y >3时,x <0.故选A .【点睛】本题考查的是一次函数的图象,能利用数形结合求出x 的取值范围是解答此题的关键.8.均匀的向一个容器内注水,在注水过程中,水面高度h 与时间t 的函数关系如图所示,则该容器是下列中的()A. B. C. D.D【分析】由函数图象可得容器形状不是均匀物体,由图象及容积可求解.【详解】根据图象折线可知是正比例函数和一次函数的函数关系的大致图象;切斜程度(即斜率)可以反映水面升高的速度;因为D 几何体下面的圆柱体的底圆面积比上面圆柱体的底圆面积小,所以在均匀注水的前提下是先快后慢;故选D.【点睛】此题主要考查了函数图象,解决本题的关键是根据用的时间长短来判断相应的函数图象.9.在同一平面直角坐标系中,一次函数2y ax a =+与2y a x a =+的图像可能是()A. B.C. D.D【分析】分为0a >和a<0两种情况,利用一次函数图像的性质进行判断即可.【详解】解:当1x =时,两个函数的函数值:2y a a =+,即两个图像都过点()21,a a+,故选项A 、C 不符合题意;当0a >时,20a >,一次函数2y ax a =+经过一、二、三象限,一次函数2y a x a =+经过一、二、三象限,都与y 轴正半轴有交点,故选项B 不符合题意;当a<0时,20a >,一次函数2y ax a =+经过一、二、四象限,与y 轴正半轴有交点,一次函数2y a x a =+经过一、三、四象限,与y 轴负半轴有交点,故选项D 符合题意.故选:D .【点睛】本题主要考查了一次函数的图像性质.理解和掌握它的性质是解题的关键.一次函数y kx b =+的图像有四种情况:①当0k >,0b >时,函数y kx b =+的图像经过第一、二、三象限;②当0k >,0b <时,函数y kx b =+的图像经过第一、三、四象限;③当0k <,0b >时,函数y kx b =+的图像经过第一、二、四象限;④当0k <,0b <时,函数y kx b =+的图像经过第二、三、四象限.10.甲、乙两车从A 城出发匀速行驶至B 城,在整个行驶过程中,甲、乙两车离开A 城的距离y (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示,则下列结论:①A ,B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距40千米时,32t =或72t =,其中正确的结论有()A.1个B.2个C.3个D.4个B【分析】由函数图象所给数据可求得甲、乙两车离开A 城的距离y 与时间t 的关系式,可求得两函数图象的交点,进而判断,再令两函数解析式的差为40,可求得t ,可得出答案.【详解】解:由函数图象可知A 、B 两城市之间的距离为300km ,故①正确;设甲车离开A 城的距离y 与t 的关系式为y 甲=kt ,把(5,300)代入可求得k =60,∴y 甲=60t ,把y =150代入y 甲=60t ,可得:t =2.5,设乙车离开A 城的距离y 与t 的关系式为y 乙=mt+n ,把(1,0)和(2.5,150)代入可得:2.5150m n m n +=⎧⎨+=⎩,解得100100m n =⎧⎨=-⎩,∴y 乙=100t ﹣100,把y =300代入y 乙=100t ﹣100,可得:t =4,5﹣4=1,∴乙车比甲车晚出发1小时,却早到1小时,故②正确;令y 甲=y 乙可得:60t =100t ﹣100,解得t =2.5,即甲、乙两直线的交点横坐标为t =2.5,此时距乙车出发时间为1.5小时,即乙车出发1.5小时后追上甲车,故③错误;令|y 甲﹣y 乙|=40,可得|60t ﹣100t+100|=40,即|100﹣40t|=40,当100﹣40t =40时,可解得32t =,当100﹣40t =﹣40时,可解得72t =,又当23t =时,y 甲=40,此时乙还没出发,当133t =时,乙到达B 城,y 甲=260;综上可知当t 的值为32或72或23或133时,两车相距40千米,故④不完全正确;故选:B .【点睛】本题主要考查一次函数的应用,理解一次函数图象表达的意义,学会构建一次函数,利用方程组求两个函数的交点坐标是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,只需把答案填写在答卷纸的相应位置处)11.点P (2,﹣5)到y 轴的距离为_____.2【分析】根据到y 轴的距离为点的横坐标的绝对值求解即可.【详解】解:点P (2,﹣5)到y 轴的距离为:22=,故答案为:2.【点睛】此题考查了点的坐标,关键是掌握点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值.12.在一次函数y=(2-k )x +1中,y 随x 的增大而增大,则k 的取值范围为___.k <2.【详解】∵在一次函数y =(2-k )x +1中,y 随x 的增大而增大,∴2-k >0,解得k <2.故答案为:k <2.【点睛】本题考查了一次函数图象与系数的关系,即当一次项系数大于0时,y 随x 的增大而增大.13.若点(m ,n )在函数y =3x +2的图象上,则3m -n 的值是__________.-2.【详解】解:∵点(m ,n )在函数y =3x +2的图象上,∴n =3m +2,∴3m -n =-2,【点睛】一次函数图象上点的坐标特征.14.直线y =2x -4与两坐标轴围成的三角形面积为___________________.4【分析】画出一次函数的图象,再求解一次函数与坐标轴的交点,A B 的坐标,再利用三角形的面积公式进行计算即可.【详解】解:如图,令0,x =则4,y =-令0,y =则240,x -=解得2,x =()()2,0,0,4,A B \-1244,2AOB S \=创=V 故答案为:4【点睛】本题考查的是一次函数与坐标轴的交点坐标,一次函数与坐标轴围成的三角形的面积,利用数形结合的方法解题是解本题的关键.15.一次函数y =kx +b 与y =2x +1平行,且经过点(﹣3,4),则表达式为:_____.y =2x +10【详解】解:已知一次函数y =kx +b 与y =2x +1平行,可得k =2,又因函数经过点(-3,4),代入得4=-6+b ,解得:b =10,所以函数的表达式为y =2x +10.故答案为:y =2x +10.16.如图,已知函数y ax b =+和y kx =的图象交于点P ,则根据图象可得,关于x ,y 的二元一次方程组y ax by kx =+⎧⎨=⎩的解是______.42x y =-⎧⎨=-⎩【分析】根据函数图象可以得到两个函数交点坐标,从而可以得到两个函数联立的二元一次方程组的解.【详解】解:根据函数图可知:函数y ax b =+和y kx =的图象交于点P 的坐标是()4,2--,所以y ax b y kx =+⎧⎨=⎩的解为42x y =-⎧⎨=-⎩,故答案是:42x y =-⎧⎨=-⎩.【点睛】本题主要考查一次函数与二元一次方程组,解题的关键是明确题意,利用数形结合的思想解答问题.17.如图,一次函数6y x =+与坐标轴分别交于A 、B 两点,点P 、C 分别是线段AB ,OB 上的点,且45OPC ∠=︒,PC PO =,则点P 的坐标为_____.(32,632--##()32326--,【分析】根据45OPC ∠=︒,PC PO =,证明BPC AOP ∠=∠,从而证明BPC AOP ≌ ,得到6PB AO ==,过点P 作PD y ⊥轴,求得PD ,BD ,DO ,根据点所在象限即可确定点P 的坐标.【详解】解:∵一次函数6y x =+的图像与坐标轴分别交于A ,B 两点,∴()6,0A -,()0,6B ,∴OA OB =,∴45PAO CBP ∠=∠=︒,∵45OPC ∠=︒,PC PO =,∴67.5PCO COP ∠=∠=︒,∴22.5BPC AOP ∠=∠=︒,∴BPC AOP ≌ ,∴6PB AO ==,过点P 作PD y ⊥轴,垂足为D ,∵90PDB ∠=︒,∴90904545BPD PBD ∠=︒-∠=︒-︒=︒,∴PBD BPD ∠=∠,∴PD BD =,∵2222636PD BD PB +===,∴PD BD ===∴6DO OB BD =-=-,∵点P 在第二象限,∴点(P --,故答案为:(--.【点睛】本题考查了一次函数与坐标轴的交点,三角形全等的判定和性质,等腰三角形的性质,勾股定理,坐标与象限和线段之间的关系,熟练掌握一次函数与坐标轴的交点确定,灵活运用三角形全等的判定和性质是解题的关键.18.如图,点A 1(2,2)在直线y =x 上,过点A 1作A 1B 1∥y 轴交直线y =12x 于点B 1,以点A 1为直角顶点,A 1B 1为直角边在A 1B 1的右侧作等腰直角△A 1B 1C 1,再过点C 1作A 2B 2∥y 轴,分别交直线y =x 和y =12x 于A 2,B 2两点,以点A 2为直角顶点,A 2B 2为直角边在A 2B 2的右侧作等腰直角△A 2B 2C 2…,按此规律进行下去,则等腰直角△A n B n C n 的面积为_____.(用含正整数n 的代数式表示)222132n n --【分析】【详解】解:∵点A 1(2,2),A 1B 1∥y 轴交直线y =12x 于点B 1,∴B 1(2,1)∴A 1B 1=2﹣1=1,即△A 1B 1C 1面积=12×12=12;∵A 1C 1=A 1B 1=1,∴A 2(3,3),又∵A 2B 2∥y 轴,交直线y =12x 于点B 2,∴B 2(3,32),∴A 2B 2=3﹣32=32,即△A 2B 2C 2面积=12×(32)2=98;以此类推,A 3B 3=94,即△A 3B 3C 3面积=12×(94)2=8132;A 4B 4=278,即△A 4B 4C 4面积=12×(278)2=729128;…∴A n B n =(32)n ﹣1,即△A n B n C n 的面积=12×[(32)n ﹣1]2=222132n n --.三、解答题(本大题共8小题,共76分.请在答卷纸上指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.如图,在平面直角坐标系中,已知ABC 的三个顶点A B C 、、的坐标分别为(5,1)--、(3,4)--、(1,3)--.(1)_______ABC S = ;(2)画出ABC 关于y 轴对称的111A B C △;(3)已知点P 在y 轴上,且PA PC =,则点P 的坐标是.(4)若x 轴上存在点Q ,使QAC △的周长最小,则点Q 的坐标是.(1)4(2)见解析(3)(0)4,(4)()4,0-【分析】(1)利用割补思想,梯形面积减去两个直角三角形面积即可求得;(2)画出A B C 、、三点关于y 轴的对称点,并依次连接即可;(3)设(0,)P a ,由勾股定理可分别表示出PA 、PC ,由PA PC =建立方程并解方程即可求得点P 的坐标;(4)因AC 长为定值,只需QA QC +最小即可,利用对称性,作点A 关于x 轴的对称点E ,连接CE 与x 轴的交点即为求作的点Q ,求出直线CE 的解析式,再求得直线CE 与x 轴的交点即可.【小问1详解】解:111(13)432214222ABC S =+⨯-⨯⨯-⨯⨯= ,故答案为:4;【小问2详解】如图所示,111A B C △即为所求;【小问3详解】设(0,)P a ,由勾股定理得2225(1)PA a =++、221(3)PC a =++,PA PC = ,2225(1)1(3)a a ∴++=++,解得:4a =(04)P ∴,;故答案为:(0)4,;【小问4详解】因AC 长为定值,QA QC +最小时QAC △的周长最小,作点A 关于x 轴的对称点E ,连接CE 与x 轴的交点即为求作的点Q ,连接AQ ,如图,QA EQ = ,QA QC EQ QC CE ∴+=+≥,即当C 、Q 、E 三点在同一直线上时,QA QC +最小;A 、E 关于x 轴对称,(5,1)E ∴-,设直线CE 的解析式为y kx b =+,把C 、E 两点坐标代入得:513k b k b -+=⎧⎨-+=-⎩,解得:14k b =-⎧⎨=-⎩,则直线CE 的解析式为4y x =--,令40y x =--=,得4x =-,∴直线CE 与x 轴的交点为(4,0)-.即Q 点坐标为()4,0-.故答案为:()4,0-.【点睛】本题考查了坐标与图形,作轴对称图形,两点间线段最短,求一次函数解析式,勾股定理等知识,有一定的综合性,善于应用函数思想、方程思想解决问题是关键.20.如图,是一个“函数求值机”的示意图,其中y 是x 的函数.下面表格中,是通过该“函数求值机”得到的几组x 与y 的对应值.输人x…6-4-2-02…输出y …2218141016…根据以上信息,解答下列问题:(1)当输入的x 值为3时,输出的y 值为__________;(2)求k ,b 的值;(3)当输出的y 值为20时,求输入的x 值.(1)24(2)2k =-,b =10(3)5-或52【分析】(1)根据题意可直接进行求解;(2)当0x =时,10y =和当2x =-时,14y =代入求解即可;(3)分当1x <时,20y =和当1x ≥时,20y =进行分类求解即可.【小问1详解】解:由题意得:当3x =时,则8324y =⨯=,故答案为:24;【小问2详解】解:由表格得:10214b k b =⎧⎨-+=⎩,解得:210k b =-⎧⎨=⎩;【小问3详解】解:由(2)可知:210y x =-+,∴①当1x <时,20y =,则有21020x -+=,解得:5x =-;②当1x ≥时,20y =,则有820x =,解得:52x =;综上所述:输入x 的值为5-或52.【点睛】本题主要考查一次函数求值,待定系数法求一次函数解析式,熟练掌握待定系数法是解题的关键.21.已知3y -与42x -成正比例,且1x =时,1y =-.(1)求y 与x 的函数关系式.(2)如果y 的取值范围为35y ≤≤时,求x 的取值范围.(1)87y x =-+(2)1142x ≤≤【分析】(1)首先设()342y k x -=-,再把1x =,1y =-代入可得关于k 的方程,再解出k 的值可得答案;(2)根据y 的取值范围,结合一次函数解析式,利用等量代换可得关于x 的不等式组,再解不等式即可.【小问1详解】设()342y k x -=-,∵当1x =时,1y =-,∴()1342k --=-,解得:2k =-,∴y 与x 的函数关系式为()3242y x -=--,即87y x =-+;【小问2详解】∵35y ≤≤,∴3875x ≤-+≤,解得:1142x ≤≤【点睛】此题主要考查了待定系数法求一次函数解析式,以及求函数值,关键掌握待定系数法求一次函数解析式一般步骤:(1)先设出函数的一般形式,如求一次函数的解析式时,先设y kx b =+;(2)将自变量x 的值及与它对应的函数值y 的值代入所设的解析式,得到关于待定系数的方程或方程组;(3)解方程或方程组,求出待定系数的值,进而写出函数解析式.22.某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准.该市的用户每月应交水费y (元)是用水量x (立方米)的函数,其图象如图所示.(1)求当x >18时,y 关于x 的函数表达式;(2)若小敏家某月交水费81元,则这个月用水量为_______立方米.(1)39y x -=(x >18)(2)30【分析】(1)利用待定系数法求y 关于x 的函数表达式;(2)将81y =代入表达式即可求出用水量.【小问1详解】设函数解析式为(18)y kx b x =+>,∵直线经过点(18,45),(28,75),∴18452875k b k b +=⎧⎨+=⎩,解得39k b =⎧⎨=-⎩,∴函数的解析式为()3918y x x =->;【小问2详解】由8145>,得用水量超过18立方米,当81y =,3981x -=,解得30x =.所以这个月用水量为30立方米.故答案为:30.【点睛】本题主要考查了一次函数的实际应用,利用待定系数法求出函数解析式是解题的关键.23.如图,在直角坐标系中,一次函数3y kx =+的图象与y 轴相交于点B ,与正比例函数2y x =的图象相交于点C ,点C 的纵坐标为2.(1)点C 的坐标是________;(2)不等式32kx x +≤的解集是____________;(3)若点D 在y 轴上,且满足3ACD S = ,求点D 的坐标.(1)(1,2)(2)1x ≥(3)(0,6),(0,0)【分析】对于(1),先将2y =代入2y x =,求出点C 的坐标;对于(2),观察图像可知从点C 向右函数2y x =的图像在一次函数3y kx =+上方,即可得出自变量取值范围;对于(3),先分别求出点A ,B 的坐标,再分两种情况,根据111ACD ABD BCD S S S =- 和122ACD AOC AOD OCD S S S S =+- 求出坐标即可.【小问1详解】根据题意,将2y =代入2y x =,得22x =,解得1x =,所以点C 的坐标是(12),;故答案为:(12),;【小问2详解】观察图像可知当>2x 时,32kx x +<;故答案为:>2x ;【小问3详解】将点(1,2)代入3y kx =+,得32k +=,解得1k =-,所以一次函数关系式为3y x =-+.当0x =时,3y =,点(03)B ,;当0y =时,3x =,点(30)A ,.如图,当点D 在直线AB 上方时,设点D m 1(0),,11111(3)3(3)1322ACD ABD BCD S S S m m =-=-⨯--⨯= ,解得6m =,所以点1(06)D ,;如图,当点D 在直线AB 上方时,设点2(0,)D m ,12211123()3()13222ACD AOC AOD OCD S S S S m m =+-=⨯⨯+-⨯-⨯-⨯= ,解得0m =,所以点2(0,0)D ,此时与原点重合.所以点D 的坐标是(06),或(00),.【点睛】这是一道关于一次函数的综合问题,考查了一次函数的交点问题,一次函数与一元一次不等式,求三角形的面积等,应用割补法表示出不规则三角形的面积是解题的关键.24.某汽车运输公司推出商务车和轿车对外租赁业务.每辆商务车可载客6人,每辆轿车可载客4人.(1)单程租赁2辆商务车和3辆轿车共需付租金1320元,单程租赁1辆商务车和7辆轿车共需付租金1980元,求一辆轿车的单程租金为多少元?(2)某公司准备组织34名职工到外地参加业务培训,拟单程租用车辆前往.在不超载的情况下,怎样设计租车方案才能使所付租金最少?(1)租用一辆轿车的租金为240元(2)租用商务车5辆和轿车1辆时,所付租金最少为1740元【分析】(1)设一辆商务车的单程租金为x 元,一辆轿车的单程租金为y 元,根据“单程租赁2辆商务车和3辆轿车共需付租金1320元,单程租赁1辆商务车和7辆轿车共需付租金1980元,”列二元一次方程组求解即可;(2)方法1:①求出只租用商务车时的租金,②求只租用轿车时的租金;③求出回合租用时的租金,比较即可得解.方法2:设租用商务车m 辆,租用轿车n 辆,租金为W 元.有6434300240m n W m n+=⎧⎨=+⎩,进而求解得173m ≤,分类讨论求解即可得解.【小问1详解】解:设一辆商务车的单程租金为x 元,一辆轿车的单程租金为y 元,则23132071980x y x y +=⎧⎨+=⎩,解得300240y y =⎧⎨=⎩,∴一辆轿车的单程租金为240元;【小问2详解】解:方法1:①若只租用商务车,∵342563=,∴只租用商务车应租6辆,所付租金为30061800⨯=(元);②若只租用轿车,∵348.54=,∴只租用轿车应租9辆,所付租金为24092160⨯=(元);③若混和租用两种车,设租用商务车m 辆,租用轿车n 辆,租金为W 元.由题意,得6434300240m n W m n+=⎧⎨=+⎩由6434m n +=,得4634n m =-+,∴30060(634)602040W m m m =+-+=-+,∵63440m n -+=≥,∴173m ≤,∴15m ≤≤,且m 为整数,∵W 随m 的增大而减小,∴当5m =时,W 有最小值1740,此时1n =,综上,租用商务车5辆和轿车1辆时,所付租金最少为1740元.方法2:设租用商务车m 辆,租用轿车n 辆,租金为W 元.由题意,得6434300240m n W m n+=⎧⎨=+⎩由6434m n +=,得46340n m =-+≥,∴173m ≤,∵m 为整数,∴m 只能取0,1,2,3,4,5,故租车方案有:不租商务车,则需租9辆轿车,所需租金为92402160⨯=(元);租1商务车,则需租7辆轿车,所需租金为130072401980⨯+⨯=(元);租2商务车,则需租6辆轿车,所需租金为230062402040⨯+⨯=(元);租3商务车,则需租4辆轿车,所需租金为330042401860⨯+⨯=(元);租4商务车,则需租3辆轿车,所需租金430032401920⨯+⨯=(元);租5商务车,则需租1辆轿车,所需租金为530012401740⨯+⨯=(元);由此可见,最佳租车方案是租用商务车5辆和轿车1辆,此时所付租金最少,为1740元.【点睛】此题主要考查了二元一次方程组的应用以及一次函数的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.25.(1)操作思考:如图1,在平面直角坐标系中,等腰Rt ACB 的直角顶点C 在原点,将其绕着点O 旋转,若顶点A 恰好落在点()1,2处.则:①OA 的长为;②点B 的坐标为.(直接写结果)(2)感悟应用:如图2,在平面直角坐标系中,将等腰Rt ACB 如图放置,直角顶点()1,0C -,点()0,4A ,试求直线AB 的函数表达式.(3)拓展研究:若点Q 是直线22y x =+上且位于第三象限图象上的一个动点,点M 是y 轴上的一个动点,点B 是函数2y x =-+与x 轴的交点,当以点B 、M 、Q 为顶点的三角形为等腰直角三角形时,请直接写出相应的点M 的坐标.(1,()2,1-;(2)345y x =+;(3)()0,4,()0,6-,40,3⎛⎫ ⎪⎝⎭【分析】(1)根据勾股定理可得OA 长,由对应边相等可得B 点坐标;(2)通过证明BHC COA △≌△得出点B 坐标,用待定系数法求直线AB 的函数表达式;(3)分别以B 、M 、Q 为顶角的顶点,设(),22Q n n +,()0,M m ,利用(2)的全等思想表示相应线段的长度,列出方程求解即可.【详解】1)如图1,作AF x ⊥轴于F ,BE x ⊥轴于E .由A 点坐标可知2,1AF CF ==,在Rt ACF 中,根据勾股定理可得OA ==ACB ∆ 为等腰直角三角形,∴90ACB ︒∠=,AC BC =,∵AF x ⊥轴于F ,BE x ⊥轴于E ,∴90AFC BEC ︒∠=∠=,又90CAF ACF ︒∠+∠= ,90BCE ACF ︒∠+∠=,∴CAF BCE ∠=∠,∴ACF CBE ≌,∴1BE CF ==,2CE AF ==所以B 点坐标为:()2,1-(2)如图,过点B 作BH x ⊥轴.∵ACB △为等腰直角三角形∴90ACB ︒∠=,AC BC = BH x ⊥轴∴90AOC BHC ︒∠=∠=又∵90CAO ACO ︒∠+∠=,90BCH ACO ︒∠+∠=∴CAO BCH∠=∠∴BHC COA △≌△,∴4HC OA ==,1BH CO ==,415OH HC CO =+=+=∴()5,1B -,设直线AB 的表达式为y kx b=+将()0,4A 和()5,1B -代入,得451b k b =⎧⎨-+=⎩,解得354k b ⎧=⎪⎨⎪=⎩,∴直线AB 的函数表达式为:345y x =+.(3)由B 是函数2y x =-+与x 轴的交点,可知()2,0B ,点Q 是直线22y x =+上且位于第三象限图象上的一个动点,点M 是y 轴上的一个动点,设(),22Q n n +,()0,M m 以点B 为顶角,即:BM BQ =,过B 作NP y 轴,且QP NP ⊥,MN NP ⊥,由(2)类比可得:PQ BN =,MN BP =,2222n n m +=-⎧⎨-=⎩,解得:42m n =⎧⎨=-⎩故:()0,4M 以点Q 为顶角,即:QM QB =,过Q 作NP y 轴,交x 轴于P 且MN NP ⊥,由(2)类比可得:PQ MN =,QN BP =,22222n n n m n +=⎧⎨+-=-⎩,解得:62m n =-⎧⎨=-⎩故:()0,6M -以点M 为顶角,即:BM MQ =,过M 作NP x ∥,且QP NP ⊥,BN NP ⊥,由(2)类比可得:PQ MN =,MP BN =,()222m n m n ⎧-+=⎨=-⎩,解得:4343m n ⎧=⎪⎪⎨⎪=-⎪⎩故:40,3M ⎛⎫ ⎪⎝⎭【点睛】本题是一次函数与三角形的综合,主要考查了一次函数解析式、全等三角形的证明及性质,灵活运用全等的性质求点的坐标是解题的关键.26.某校的甲、乙两位老师同住一小区,该小区与学校相距2800米.甲从小区步行去学校,出发11分钟后乙再出发,乙从小区先骑公共自行车,途经学校又骑行若干米到达还车点后,立即步行走回学校.已知乙步行的速度比甲步行的速度每分钟慢20米.设甲步行的时间为x (分),图1中线段OA 和折线B C D --分别表示甲、乙离开小区的路程y (米)与甲步行时间x (分)的函数关系的图像;图2表示甲、乙两人之间的距离S (米)与甲步行时间x (分)的函数关系的图像(不完整).根据图1和图2中所给信息,解答下列问题:(1)甲步行的速度米/分,乙出发时甲离开小区的路程米;(2)求乙骑自行车的速度和乙到达还车点时甲、乙两人之间的距离;(3)当3035x ≤≤时,①请直接写出....S 关于x 的函数表达式;②在图2中,画出当3035x ≤≤时S 关于x 的函数的大致图像.(1)80米/分,880米(2)乙骑自行车的速度是160米/分,乙到达还车点时甲、乙两人之间的距离是640米(3)①当3034x ≤≤时,4840140s x =-,当3435x <≤时,802800s x =-+;②图见解析【分析】(1)根据函数图像中的数据可以求得甲步行的速度和乙出发时甲离开小区的路程;(2)根据函数图像中的数据可以求得OA 的函数解析式,然后将22x =代入OA 的函数解析式,即可求得点E 的纵坐标,进而可以求得乙骑自行车的速度和乙到达还车点时甲、乙两人之间的距离;(3)①根据题意可以求得乙到达学校的时间,从而用待定系数法分两种情况求解解析式;②描出①中两个函数解析式的分界点,再补全函数图像即可.【小问1详解】解:由图可得,甲步行的速度为:28003580÷=(米/分),乙出发时甲离开小区的路程是1180880⨯=(米),【小问2详解】设直线OA 的解析式为y kx =,则352800k =,得80k =,∴直线OA 的解析式为80y x =,当22x =时,80221760y =⨯=,∴乙骑自行车的速度为:()176********÷-=(米/分),∵乙骑自行车的时间为:301119-=(分钟),∴乙骑自行车的路程为:160193040⨯=(米),当30x =时,甲走过的路程为:80302400⨯=(米),∴乙到达还车点时,甲乙两人之间的距离为:30402400640-=(米),答:乙骑自行车的速度是160米/分,乙到达还车点时甲、乙两人之间的距离是640米;【小问3详解】①乙步行的速度为:802060-=(米/分),乙到达学校用的时间为:()19304028006019423+-÷=+=(分),此时甲还要1分钟到学校,即甲离学校80米,∴当3035x ≤≤时,分两种情况如下:当3034x ≤≤时,设s mx n =+,将()30,640,()34,80代入得:306403480m n m n +=⎧⎨+=⎩,解得1404840m n =-⎧⎨=⎩,∴1404840s x =-+;当3435x <≤时,设s px q =+,将()34,80,()35,0代入得:3480350p q p q +=⎧⎨+=⎩,解得:802800p q =-⎧⎨=⎩,∴802800s x =-+,∴()()140484030348028003435x x s x x ⎧-+≤≤⎪=⎨-+<≤⎪⎩.②补全函数图形如下:【点睛】本题考查从函数图像中获取信息,一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.27.如图,一次函数的图象与x 轴负半轴交于点A ,与y 轴正半轴交于点B ,点D 在x 轴上.如果将直线AB 沿直线BD 翻折,使得点A 的对应点C 落在y 轴上,那么直线BD 称为直线AB 的“伴随直线”.已知点B 的坐标为()0,6,10BC =.(1)若点C 在y 轴负半轴上,求直线AB 的“伴随直线”BD 的函数表达式;(2)已知在(1)的条件下,存在第二象限内的点E ,使得BOD 与以B 、D 、E 为顶点的三角形全等,试求出点E 的坐标;(3)直线AB 的“伴随直线”BD 上是否存在点F (异于点D ),使得ABD ABF S S =△△?若存在,直接写出点F 的坐标;若不存在,请说明理由.(1)26y x =+(2)2412,55⎛⎫- ⎪⎝⎭或()3,6-(3)存在,()12,12-或()3,12【分析】(1)由对称性可得10AB =,4OC =,如图,由1122ABD S AD OB AB DT =⋅=⋅△求出()3,0D ,用待定系数法即可求BD 的解析式;(2)分两种情况:当E 点与O 点关于直线BD 对称时,OBD EDB △≌△,求出直线BA 的解析式为364y x =+,设3,64E t t ⎛⎫+ ⎪⎝⎭,再由3DE ==,即可求2412,55E ⎛⎫- ⎪⎝⎭;②当BE y ⊥轴,DE x ⊥轴时,OBD EDB △≌△此时四边形BOCE 是矩形,则()3,6E -;(3)当C 点在y 轴正半轴上时,当F 点与D 点关于B 点对称时,BF BD =,设(),26F m m +,再由BD BF ===,即可求F 点坐标;同理,当C 点在y 轴正半轴上时,求F 点坐标.【小问1详解】解:∵直线AB 沿直线BD 翻折点A 对应点C 落在y 轴上,∴直线BD 为ABO ∠的平分线所在直线,如图所示,过点D 作线段,DT AB ⊥于点T .设点(),0D d -,则∴OD DT d ==,由对称性可知,10AB BC ==,∵点B 坐标为()0,6,∴6OB =∴在Rt AOB 中,8OA ==∴8AD AO OD d =-=-,∵1122ABD S AD OB AB DT =⋅=⋅△∴()11861022d d -⨯=⨯解得:3d =∴()3,0D -,设直线BD 的解析式为()60y kx k =+≠,∴360k -+=,∴2k =,∴26y x =+;【小问2详解】当E 点与O 点关于直线BD 对称时,OBD EDB △≌△,∴E 点在直线AB 上,∵()3,0D -,()8,0A -,∴5AD =,∵3OD =,∴3DE =,设直线AB 的解析式为11y k x b =+,∴111806k b b +=⎧⎨=⎩,解得:11346k b ⎧=⎪⎨⎪=⎩∴364y x =+,设3,64E t t ⎛⎫+ ⎪⎝⎭,再由3DE ==,解得:245t =-∴2412,55E ⎛⎫-⎪⎝⎭,当BE y ⊥轴,DE x ⊥轴时,OBD EDB△≌△此时四边形BOCE 是矩形,∴()3,6E -综上所述:E 点坐标为2412,55⎛⎫- ⎪⎝⎭或()3,6-【小问3详解】当C 点在y 轴负半轴时当F 点与D 点关于B 点对称时,BF BD =,∴ABD ABF S S =△△,∵F 点在直线BD 上,设(),26F m m +,∵2235BD OB OD =+=,∴()22352BF m m ==+,∴3m =±,∴()3,0F -(舍去)或()3,12F 故F 的坐标为()3,12当C 点在y 轴正半轴时∵点()0,6B ,10BC =,∴()0,16C ∴16OC =,∴6OB =,由对称性可知,10AB BC ==,∴8OA =,∵BD AC ⊥,∴90OAC OCA ∠+∠=︒,90ADN NAD ∠+∠=︒,∵CAO DAN ∠=∠,∴ADN OCA ∠=∠,∴tan AO OB OCA CO OD∠==,∴8616OD =,∴12OD =,∴()12,0D 设直线BD 的解析式为:22y k x b =+,∴2226120b k b =⎧⎨+=⎩解得:22126k b ⎧=-⎪⎨⎪=⎩∴162y x =-+,∵F 点在直线BD 上,设1,62F m m ⎛⎫-+ ⎪⎝⎭,∵=BD ,∴BF ==∴12m =±,∴()12,0F (舍去)或()12,12F -故F 的坐标为()12,12-【点睛】本题是一次函数的综合题,解题的关键是熟练掌握一次函数的图象及性质,轴对称的性质,数形结合.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省无锡市新区2019~2019学年度八年级上学期期末数学试卷一、选择题(每题3分,共24分)1.下面图案中是轴对称图形的有()A.1个B.2个C.3个D.4个2.在Rt△ABC中,∠C=90°,周长为60,斜边与一条直角边之比为13:5,则这个三角形三边长分别是()A.25、23、12 B.13、12、5 C.10、8、6 D.26、24、103.已知点P在第四象限,且到x轴的距离为2,则点P的坐标为()A.(4,﹣2)B.(﹣4,2)C.(﹣2,4)D.(2,﹣4)4.点(x1,y1)、(x2,y2)在直线y=﹣x+b上,若x1<x2,则y1与y2大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法确定5.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为()A.7 B.11 C.7或11 D.7或106.在无锡全民健身越野赛中,甲、乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.下列四种说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.正确的有()A.①②③④B.①②③ C.①②④ D.②③④7.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A.50 B.62 C.65 D.688.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对二、填空题(每空2分,共24分)9.16的算术平方根是.函数y=中自变量x的取值范围是.10.等腰三角形的一个角为40°,则它的底角为.11.3184900精确到十万位的近似值是.12.若一次函数y=(m+1)x+m 2﹣l是正比例函数.则m的值是;若一次函数y=(m+1)x+m2﹣1的图象上有两个点(x1,y1),(x2,y2),当x1>x2时,y1<y2,则m的取值范围是.13.当b为时,直线y=2x+b与直线y=3x﹣4的交点在x轴上.14.已知直线AB经过点A(0,5),B(2,0),若将这条直线向左平移,恰好过坐标原点,则平移后的直线解析式为.15.如图,∠1=∠2,要使△ABD≌△ACD,需添加的一个条件是(只添一个条件即可).16.如图,已知Rt△ABC中,∠C=90°,AC=4cm,BC=3cm,现将△ABC进行折叠,使顶点A、B 重合,则折痕DE=cm.17.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积为50和39,则△EDF的面积为.18.如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=1,CN=3,则MN的长为.三、解答题19.计算题:(1)已知:(x+5)2=16,求x;(2)计算:.20.如图,在平面直角坐标系xOy中,点A(1,3),点B(5,1).(1)只用直尺(无刻度)和圆规,求作一个点P,使点P同时满足下列两个条件:①点P到A,B 两点的距离相等;②点P到∠xOy的两边的距离相等.(要求保留作图痕迹,不必写出作法)(2)在(1)作出点P后,点P的坐标为.21.如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=,DB=2,求BE的长.22.如图,在△ABC中,BC=AC,∠ACB=90°,D是AC上一点,AE⊥BD交BD的延长线于点E,且AE=BD,求证:BD是∠ABC的角平分线.23.南方A市欲将一批容易变质的水果运往B市销售,若有飞机、火车、汽车三种运输方式,现只选择其中一种,这三种运输方式的主要参考数据见如表.运输工具途中速度/(km/h)途中费用/(元/km)装卸费用/元装卸时间/h飞机200 16 1000 2火车100 4 2000 4汽车50 8 1000 2若这批水果在运输(包括装卸)过程中的损耗为200元/h,记A、B两市间的距离为x km.(1)如果用W1,W2,W3分别表示使用飞机、火车、汽车运输时的总支出费用(包括损耗),求W1,W2,W3与x间的关系式.(2)当x=250时,应采用哪种运输方式,才使运输时的总支出费用最小?24.如图,在Rt△ABC中,∠ACB=90°,BC=30cm,AC=40cm,点D在线段AB上从点B出发,以2cm/s的速度向终点A运动,设点D的运动时间为t0.(1)AB=cm,AB边上的高为cm;(2)点D在运动过程中,当△BCD为等腰三角形时,求t的值.25.如图,已知函数y=x+1的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,﹣1),与x轴以及y=x+1的图象分别交于点C、D,且点D的坐标为(1,n),(1)则n=,k=,b=;(2)函数y=kx+b的函数值大于函数y=x+1的函数值,则x的取值范围是(3)求四边形AOCD的面积;(4)在x轴上是否存在点P,使得以点P,C,D为顶点的三角形是直角三角形?若存在求出点P 的坐标;若不存在,请说明理由.26.在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC (即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为:;(2)若△DEF三边的长分别为、、,请在图1的正方形网格中画出相应的△DEF,并利用构图法求出它的面积;(3)如图2,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13,10,17,且△PQR、△BCR、△DEQ、△AFP的面积相等,求六边形花坛ABCDEF的面积.江苏省无锡市新区2019~2019学年度八年级上学期期末数学试卷参考答案与试题解析一、选择题(每题3分,共24分)1.下面图案中是轴对称图形的有()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的概念:关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:第1,2个图形沿某条直线折叠后直线两旁的部分能够完全重合,是轴对称图形,故轴对称图形一共有2个.故选:B.【点评】此题主要考查了轴对称图形,轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.在Rt△ABC中,∠C=90°,周长为60,斜边与一条直角边之比为13:5,则这个三角形三边长分别是()A.25、23、12 B.13、12、5 C.10、8、6 D.26、24、10【考点】勾股定理.【分析】由斜边与一直角边比是13:5,设斜边是13k,则直角边是5k,根据勾股定理,得另一条直角边是12k,根据题意,求得三边的长即可.【解答】解:设斜边是13k,直角边是5k,根据勾股定理,得另一条直角边是12k.∵周长为60,∴13k+5k+12k=60,解得:k=2.∴三边分别是26,24,10.故选D.【点评】本题考查的是勾股定理,用一个未知数表示出三边,根据已知条件列方程即可,要求能熟练运用勾股定理.3.已知点P在第四象限,且到x轴的距离为2,则点P的坐标为()A.(4,﹣2)B.(﹣4,2)C.(﹣2,4)D.(2,﹣4)【考点】点的坐标.【分析】根据第四象限的横坐标大于零,纵坐标小于零,可得答案.【解答】解:由点P在第四象限,且到x轴的距离为2,则点P的横坐标为2,纵坐标小于零,故D正确.故选:D.【点评】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.点(x1,y1)、(x2,y2)在直线y=﹣x+b上,若x1<x2,则y1与y2大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法确定【考点】一次函数图象上点的坐标特征.【专题】探究型.【分析】先根据一次函数的解析式判断出函数的增减性,再根据x1<x2,则可得出y1与y2大小关系.【解答】解:∵直线y=﹣x+b中k=﹣1<0,∴y随x的增大而减小,∵x1<x2,∴y1>y2.故选C.【点评】本题考查的是一次函数图象上点的坐标特征,先根据题意判断出一次函数的增减性是解答此题的关键.5.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为()A.7 B.11 C.7或11 D.7或10【考点】等腰三角形的性质;三角形三边关系.【专题】分类讨论.【分析】题中给出了周长关系,要求底边长,首先应先想到等腰三角形的两腰相等,寻找问题中的等量关系,列方程求解,然后结合三角形三边关系验证答案.【解答】解:设等腰三角形的底边长为x,腰长为y,则根据题意,得①或②解方程组①得:,根据三角形三边关系定理,此时能组成三角形;解方程组②得:,根据三角形三边关系定理此时能组成三角形,即等腰三角形的底边长是11或7;故选C.【点评】本题考查等腰三角形的性质及相关计算.学生在解决本题时,有的同学会审题错误,以为15,12中包含着中线BD的长,从而无法解决问题,有的同学会忽略掉等腰三角形的分情况讨论而漏掉其中一种情况;注意:求出的结果要看看是否符合三角形的三边关系定理.故解决本题最好先画出图形再作答.6.在无锡全民健身越野赛中,甲、乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.下列四种说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.正确的有()A.①②③④B.①②③ C.①②④ D.②③④【考点】一次函数的应用.【分析】由图象可知起跑后1小时内,甲在乙的前面;在跑了1小时时,乙追上甲,此时都跑了10千米;乙比甲先到达终点;求得乙跑的直线的解析式,即可求得两人跑的距离,则可求得答案.【解答】解:根据图象得:起跑后1小时内,甲在乙的前面;故①正确;在跑了1小时时,乙追上甲,此时都跑了10千米,故②正确;乙比甲先到达终点,故③错误;设乙跑的直线解析式为:y=kx,将点(1,10)代入得:k=10,∴解析式为:y=10x,∴当x=2时,y=20,∴两人都跑了20千米,故④正确.所以①②④三项正确.故选:C.【点评】此题考查了函数图形的意义.解题的关键是根据题意理解各段函数图象的实际意义,正确理解函数图象横纵坐标表示的意义,理解问题的过程.7.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A.50 B.62 C.65 D.68【考点】全等三角形的判定与性质.【专题】压轴题.【分析】由AE⊥AB,EF⊥FH,BG⊥AG,可以得到∠EAF=∠ABG,而AE=AB,∠EFA=∠AGB,由此可以证明△EFA≌△ABG,所以AF=BG,AG=EF;同理证得△BGC≌△DHC,GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16,然后利用面积的割补法和面积公式即可求出图形的面积.【解答】解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH?∠EAB=∠EFA=∠BGA=90°,∠EAF+∠BAG=90°,∠ABG+∠BAG=90°?∠EAF=∠ABG,∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG?△EFA≌△ABG∴AF=BG,AG=EF.同理证得△BGC≌△DHC得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16故S=(6+4)×16﹣3×4﹣6×3=50.故选A.【点评】本题考查的是全等三角形的判定的相关知识,是2019届中考常见题型.8.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对【考点】全等三角形的判定;线段垂直平分线的性质;等腰三角形的性质.【专题】压轴题.【分析】根据已知条件“AB=AC,D为BC中点”,得出△ABD≌△ACD,然后再由AC的垂直平分线分别交AC、AD、AB于点E、O、F,推出△AOE≌△EOC,从而根据“SSS”或“SAS”找到更多的全等三角形,要由易到难,不重不漏.【解答】解:∵AB=AC,D为BC中点,∴CD=BD,∠BDO=∠CDO=90°,在△ABD和△ACD中,,∴△ABD≌△ACD;∵EF垂直平分AC,∴OA=OC,AE=CE,在△AOE和△COE中,,∴△AOE≌△COE;在△BOD和△COD中,,∴△BOD≌△COD;在△AOC和△AOB中,,∴△AOC≌△AOB;故选:D.【点评】本题考查的是全等三角形的判定方法;这是一道考试常见题,易错点是漏掉△ABO≌△ACO,此类题可以先根据直观判断得出可能全等的所有三角形,然后从已知条件入手,分析推理,对结论一个个进行论证.二、填空题(每空2分,共24分)9.16的算术平方根是4.函数y=中自变量x的取值范围是x≥3.【考点】函数自变量的取值范围;算术平方根;二次根式有意义的条件.【分析】根据算术平方根的定义,以及二次根式有意义的条件是被开方数是非负数即可求解.【解答】解:∵42=16∴16的算术平方根是4;根据题意得:x﹣3≥0解得:x≥3.故答案是:4和x≥3.【点评】本题主要考查了算术平方根的定义以及二次根式有意义的条件,都是需要熟记的内容.10.等腰三角形的一个角为40°,则它的底角为40°或70°.【考点】等腰三角形的性质.【分析】由于不明确40°的角是等腰三角形的底角还是顶角,故应分40°的角是顶角和底角两种情况讨论.【解答】解:当40°的角为等腰三角形的顶角时,底角的度数==70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故答案为:40°或70°.【点评】此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,由于不明确40°的角是等腰三角形的底角还是顶角,所以要采用分类讨论的思想.11.3184900精确到十万位的近似值是 3.2×106.【考点】近似数和有效数字.【分析】首先利用科学记数法表示,然后对十万位后的数进行四舍五入即可.【解答】解:3184900=3.1849×106≈3.2×106.故答案是: 3.2×106.【点评】本题考查了近似数,注意精确到十位或十位以前的数位时,要先用科学记数法表示出这个数,这是经常考查的内容.12.若一次函数y=(m+1)x+m2﹣l是正比例函数.则m的值是1;若一次函数y=(m+1)x+m2﹣1的图象上有两个点(x1,y1),(x2,y2),当x1>x2时,y1<y2,则m的取值范围是m<﹣1.【考点】一次函数图象上点的坐标特征;正比例函数的定义.【专题】推理填空题.【分析】根据一次函数如果是正比例函数,则k≠0,b=0;一次函数中当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小,从而可以解答本题.【解答】解:∵若一次函数y=(m+1)x+m2﹣l是正比例函数,∴解得,m=1;∵若一次函数y=(m+1)x+m2﹣1的图象上有两个点(x1,y1),(x2,y2),当x1>x2时,y1<y2,∴m+1<0,得m<﹣1;故答案为:1;m<﹣1.【点评】本题考查一次函数图象上点的坐标特征、正比例函数的定义,解题的关键是明确正比例函数的性质和一次函数的性质.13.当b为时,直线y=2x+b与直线y=3x﹣4的交点在x轴上.【考点】两条直线相交或平行问题.【专题】计算题.【分析】把y=0代入y=3x﹣4求出x,得出交点坐标,再把交点坐标代入y=2x+b即可求出b.【解答】解:把y=0代入y=3x﹣4得:0=3x﹣4,解得:x=,即(,0),∵直线y=2x+b与直线y=3x﹣4的交点在x轴上,∴直线y=2x+b与直线y=3x﹣4的交点坐标是(,0),把(,0)代入y=2x+b得:0=2×+b,解得:b=﹣,故答案为:﹣.【点评】本题考查一次函数的基本性质,与数轴结合,掌握好基本性质即可.14.已知直线AB经过点A(0,5),B(2,0),若将这条直线向左平移,恰好过坐标原点,则平移后的直线解析式为y=﹣x.【考点】一次函数图象与几何变换;待定系数法求一次函数解析式.【专题】待定系数法.【分析】先根据待定系数法求出函数解析式,然后再根据平移时k的值不变,只有b发生变化计算平移后的函数解析式.【解答】解:可设原直线解析式为y=kx+b,则点A(0,5),B(2,0)适合这个解析式,则b=5,2k+b=0.解得k=﹣2.5.平移不改变k的值,∴y=﹣x.【点评】本题考查用待定系数法求函数解析式,注意细心运算.15.如图,∠1=∠2,要使△ABD≌△ACD,需添加的一个条件是CD=BD(只添一个条件即可).【考点】全等三角形的判定.【分析】由已知条件具备一角一边分别对应相等,还缺少一个条件,可添加DB=DC,利用SAS判定其全等.【解答】解:需添加的一个条件是:CD=BD,理由:∵∠1=∠2,∴∠ADC=∠ADB,在△ABD和△ACD中,,∴△ABD≌△ACD(SAS).故答案为:CD=BD.【点评】本题考查了三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.16.如图,已知Rt△ABC中,∠C=90°,AC=4cm,BC=3cm,现将△ABC进行折叠,使顶点A、B 重合,则折痕DE= 1.875cm.【考点】翻折变换(折叠问题);勾股定理;轴对称的性质;相似三角形的判定与性质.【专题】压轴题.【分析】根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.【解答】解:在直角△ABC中AB===5cm.则AE=AB÷2=2.5cm.设DE=x,易得△ADE∽△ABC,故有=;∴=;解可得x=1.875.故答案为: 1.875.【点评】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.17.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积为50和39,则△EDF的面积为 5.5.【考点】面积及等积变换.【专题】数形结合.【分析】作DM=DE交AC于M,作DN⊥AC,利用角平分线的性质得到DN=DF,将三角形EDF 的面积转化为三角形DNM的面积来求.【解答】解:作DM=DE交AC于M,作DN⊥AC,∵DE=DG,DM=DE,∴DM=DG,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DN,∴△DEF≌△DNM(HL),∵△ADG和△AED的面积分别为50和39,∴S△MDG=S△ADG﹣S△ADM=50﹣39=11,S△DNM=S△DEF=S△MDG==5.5故答案为: 5.5.【点评】本题考查了角平分线的性质及全等三角形的判定及性质,解题的关键是正确地作出辅助线,将所求的三角形的面积转化为另外的三角形的面积来求.18.如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=1,CN=3,则MN的长为.【考点】旋转的性质;全等三角形的判定与性质;等腰直角三角形.【分析】将△ABM逆时针旋转90°得到△ACF,连接NF,由条件可以得出△NCF为直角三角形,利用勾股定理就可以求出NF,通过证明三角形全等就可以MN=NF,求出NF即可.【解答】解:将△AMB逆时针旋转90°到△ACF,连接NF,∴CF=BM,AF=AM,∠B=∠ACF.∠2=∠3,∵△ABC是等腰直角三角形,AB=AC,∴∠B=∠ACB=45°,∠BAC=90°,∵∠MAN=45°,∴∠NAF=∠1+∠3=∠1+∠2=90°﹣45°=45°=∠NAF,在△MAN和△FAN中∴△MAN≌△FAN,∴MN=NF,∵∠ACF=∠B=45°,∠ACB=45°,∴∠FCN=90°,∵CF=BM=1,CN=3,∴在Rt△CFN中,由勾股定理得:MN=NF==,故答案为:.【点评】本题考查了旋转的性质的运用,勾股定理的运用,全等三角形的判定与性质,能正确作出辅助线是解此题的关键,难度适中.三、解答题19.计算题:(1)已知:(x+5)2=16,求x;(2)计算:.【考点】实数的运算;平方根;负整数指数幂.【专题】计算题;实数.【分析】(1)方程利用平方根定义开方即可求出x的值;(2)原式第一项利用负整数指数幂法则计算,第二项利用算术平方根定义计算,第三项利用立方根定义计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.【解答】解:(1)开方得:x+5=4或x+5=﹣4,解得:x=﹣1或x=﹣9;(2)原式=4+5+3﹣3+=9+.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.如图,在平面直角坐标系xOy中,点A(1,3),点B(5,1).(1)只用直尺(无刻度)和圆规,求作一个点P,使点P同时满足下列两个条件:①点P到A,B 两点的距离相等;②点P到∠xOy的两边的距离相等.(要求保留作图痕迹,不必写出作法)(2)在(1)作出点P后,点P的坐标为(4,4).【考点】作图—复杂作图;坐标与图形性质;角平分线的性质;线段垂直平分线的性质.【分析】(1)利用AB中垂线与∠XOY平分线的交点即为P点;(2)结合点A(1,3),点B(5,1),再利用(1)中条件进而得出P点坐标.【解答】解:(1)如图所示:P点即为所求;(2)如图所示:P(4,4).故答案为:(4,4).【点评】此题主要考查了复杂作图,利用线段垂直平分线以及角平分线的性质分析是解题关键.21.如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=,DB=2,求BE的长.【考点】翻折变换(折叠问题).【分析】(1)由矩形的性质可知AB=DC,∠A=∠C=90°,由翻折的性质可知∠AB=BF,∠A=∠F=90°,于是可得到∠F=∠C,BF=DC,然后依据AAS可证明△DCE≌△BFE;(2)先依据勾股定理求得BC的长,由全等三角形的性质可知BE=DE,最后再△EDC中依据勾股定理可求得ED的长,从而得到BE的长.【解答】(1)∵四边形ABCD为矩形,∴AB=CD,∠A=∠C=90°∵由翻折的性质可知∠F=∠A,BF=AB,∴BF=DC,∠F=∠C.在△DCE与△BEF中,∴△DCE≌△BFE.(2)在Rt△BDC中,由勾股定理得:BC==3.∵△DCE≌△BFE,∴BE=DE.设BE=DE=x,则EC=3﹣x.在Rt△CDE中,CE2+CD2=DE2,即(3﹣x)2+()2=x2.解得:x=2.∴BE=2.【点评】本题主要考查的是翻折的性质、勾股定理的应用、矩形的性质,依据勾股定理列出关于x 的方程是解题的关键.22.如图,在△ABC中,BC=AC,∠ACB=90°,D是AC上一点,AE⊥BD交BD的延长线于点E,且AE=BD,求证:BD是∠ABC的角平分线.【考点】线段垂直平分线的性质;全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】延长AE、BC交于点F.根据同角的余角相等,得∠DBC=∠FAC;在△BCD和△ACF中,根据ASA证明全等,得AF=BD,从而AE=EF,根据线段垂直平分线的性质,得AB=BF,再根据等腰三角形的三线合一即可证明.【解答】证明:延长AE、BC交于点F.∵AE⊥BE,∴∠BEF=90°,又∠ACF=∠ACB=90°,∴∠DBC+∠AFC=∠FAC+∠AFC=90°,∴∠DBC=∠FAC,在△ACF和△BCD中,∴△ACF≌△BCD(ASA),∴AF=BD.又AE=BD,∴AE=EF,即点E是AF的中点.∴AB=BF,∴BD是∠ABC的角平分线.【点评】此题综合运用了全等三角形的判定以及性质、线段垂直平分线的性质以及等腰三角形的性质.23.南方A市欲将一批容易变质的水果运往B市销售,若有飞机、火车、汽车三种运输方式,现只选择其中一种,这三种运输方式的主要参考数据见如表.运输工具途中速度/(km/h)途中费用/(元/km)装卸费用/元装卸时间/h飞机200 16 1000 2火车100 4 2000 4汽车50 8 1000 2若这批水果在运输(包括装卸)过程中的损耗为200元/h,记A、B两市间的距离为x km.(1)如果用W1,W2,W3分别表示使用飞机、火车、汽车运输时的总支出费用(包括损耗),求W1,W2,W3与x间的关系式.(2)当x=250时,应采用哪种运输方式,才使运输时的总支出费用最小?【考点】一次函数的应用.【专题】应用题.【分析】(1)每种运输工具总支出费用=途中所需费用(含装卸费用)+损耗费用;(2)将x=250代入,即可判断哪种运输方式合适.【解答】解:(1)W1=16x+1000+(+2)×200=17x+1400;W2=4x+2000+(+4)×200=6x+2800;W3=8x+1000+(+2)×200=12x+1400;(2)当x=250时,W1=5650元,W2=4300元,W3=4400元.答:应采用火车运输,使总支出的费用最小.【点评】本题考查了一次函数的应用,关键是根据题意列出函数关系式,难度一般.24.如图,在Rt△ABC中,∠ACB=90°,BC=30cm,AC=40cm,点D在线段AB上从点B出发,以2cm/s的速度向终点A运动,设点D的运动时间为t0.(1)AB=50cm,AB边上的高为24cm;(2)点D在运动过程中,当△BCD为等腰三角形时,求t的值.【考点】勾股定理.【专题】动点型.【分析】(1)在Rt△ABC中,由勾股定理即可求出AB;由直角三角形的面积即可求出斜边上的高;(2)分三种情况:①当BD=BC=30cm时,得出2t=30,即可得出结果;②当CD=CB=30cm时,作CE⊥AB于E,则BE=DE=BD=t,由(1)得出CE=24,由勾股定理求出BE,即可得出结果;③当DB=DC时,∠BCD=∠B,证明DA=DC,得出AD=DB=AB,即可得出结果.【解答】解:(1)∵在Rt△ABC中,∠ACB=90°,BC=30cm,AC=40cm,∴AB===50(cm);作AB边上的高CE,如图1所示:∵Rt△ABC的面积=AB?CE=AC?BC,∴CE===24(cm);故答案为:50,24;(2)分三种情况:①当BD=BC=30cm时,2t=30,∴t=15(s);②当CD=CB=30cm时,作CE⊥AB于E,如图2所示:则BE=DE=BD=t,由(1)得:CE=24,在Rt△BCE中,由勾股定理得:BE===18(cm),∴t=18s;③当DB=DC时,∠BCD=∠B,∵∠A=90°﹣∠B,∠ACD=90°﹣∠BCD,∴∠ACD=∠A,∴DA=DC,∴AD=DB=AB=25(cm),∴2t=25,∴t=12.5(s);综上所述:t的值为15s或18s或12.5s.【点评】本题考查了勾股定理、等腰三角形的判定与性质、三角形面积的计算;本题综合性强,有一定难度,特别是(2)中,需要进行分类讨论,运用勾股定理和等腰三角形的性质才能得出结果.25.如图,已知函数y=x+1的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,﹣1),与x轴以及y=x+1的图象分别交于点C、D,且点D的坐标为(1,n),(1)则n=2,k=3,b=﹣1;(2)函数y=kx+b的函数值大于函数y=x+1的函数值,则x的取值范围是x>1(3)求四边形AOCD的面积;(4)在x轴上是否存在点P,使得以点P,C,D为顶点的三角形是直角三角形?若存在求出点P 的坐标;若不存在,请说明理由.【考点】一次函数综合题.【专题】综合题;一次函数及其应用.【分析】(1)对于直线y=x+1,令x=0求出y的值,确定出A的坐标,把B坐标代入y=kx+b中求出b的值,再将D坐标代入y=x+1求出n的值,进而将D坐标代入求出k的值即可;(2)由两一次函数解析式,结合图象确定出x的范围即可;(3)过D作DE垂直于x轴,如图1所示,四边形AOCD面积等于梯形AOED面积减去三角形CDE 面积,求出即可;(4)在x轴上存在点P,使得以点P,C,D为顶点的三角形是直角三角形,理由为:分两种情况考虑:①DP′⊥DC;②DP⊥CP,分别求出P坐标即可.【解答】解:(1)对于直线y=x+1,令x=0,得到y=1,即A(0,1),把B(0,﹣1)代入y=kx+b中,得:b=﹣1,把D(1,n)代入y=x+1得:n=2,即D(1,2),把D坐标代入y=kx﹣1中得:2=k﹣1,即k=3,故答案为:2,3,﹣1;(2)∵一次函数y=x+1与y=3x﹣1交于D(1,2),∴由图象得:函数y=kx+b的函数值大于函数y=x+1的函数值时x的取值范围是x>1;故答案为:x>1;(3)过D作DE⊥x轴,垂足为E,如图1所示,则S四边形AOCD=S梯形AOED﹣S△CDE=(AO+DE)?OE﹣CE?DE=×(1+2)×1﹣××2=﹣=;(4)在x轴上存在点P,使得以点P,C,D为顶点的三角形是直角三角形,理由为:如图2所示,分两种情况考虑:①当P′D⊥DC时,可得k P′D?k DC=﹣1,∵直线DC斜率为3,∴直线P′D斜率为﹣,∵D(1,2),∴直线P′D解析式为y﹣2=﹣(x﹣1),令y=0,得到x=7,即P′(7,0);②当DP⊥CP时,由D横坐标为1,得到P横坐标为1,∵P在x轴上,∴P的坐标为(1,0).【点评】此题属于一次函数综合题,涉及的知识有:一次函数与坐标轴的交点,直角三角形的性质,坐标与图形性质,待定系数法确定一次函数解析式,利用了数形结合的思想,熟练掌握一次函数的性质是解本题的关键.26.在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC (即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为:;(2)若△DEF三边的长分别为、、,请在图1的正方形网格中画出相应的△DEF,并利用构图法求出它的面积;(3)如图2,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13,10,17,且△PQR、△BCR、△DEQ、△AFP的面积相等,求六边形花坛ABCDEF的面积.【考点】作图—应用与设计作图.【专题】网格型.【分析】(1)画出格子后可以根据格子的面积很容易的算出三角形的面积,大矩形的面积减去矩形内除去所求三角形的面积即可.(2)构造时取(1,3)(2,2)(1,4)即可.(3)根据PRQ的长度取(1,3)(1,4)(2,3)在网格中画图,求出其面积.【解答】解:(1)根据格子的数可以知道面积为S=3×3﹣=;(2)画图为计算出正确结果S△DEF=2×4﹣(1×2+1×4+2×2)=3;(3)利用构图法计算出S△PQR=,△PQR、△BCR、△DEQ、△AFP的面积相等,计算出六边形花坛ABCDEF的面积为S正方形PRBA+S正方形RQDC+S正方形QPFE+4S△PQR=13+10+17+4×=62.【点评】本题是一种简单的求解三角形面积的算法,可以求出任意三角形的面积,方便省时.。