北京四中初一数学上册期末试卷
北京四中 初一数学第一学期期末总复习周末练习
初一数学第一学期期末总复习周末练习编稿:朱晓琳审稿:梁威责编:高伟期末总复习基础达标选择题1.的相反数是().A.B.C.-2D. 22.已知a、b、c在数轴上的位置如图1所示,则下列结论正确的是( ).图1(A) b表示负数,a、c表示正数,且(B) b表示负数,a、c表示正数,且(C) b表示负数,a、c表示正数,且(D) b表示负数,a、c表示正数,且3.图2,它需再添一个面,折叠后才能围成一个正方体,下图中的黑色小正方形分别由四位同学补画,其中正确的是().图2A B C D4.图3是由下面五种基本图形中的两种拼接而成,这两种基本图形是().A.①⑤B.②④C.③⑤D.②⑤填空题5.绝对值小于3.9的整数____________.6.代数式中,不是整式的有____________,是单项式的有____________,是多项式的有____________.7.方程的解题步骤如下:①1-3(3-x)=2(2x-5),②1-9+3x=4x-10,③3x-4x=-10-1+9,④-x=-2,x=2.错误始于第____步.解答题8.化简:能力提升填空题9.图4是由9个等边三角形拼成的六边形,若已知中间的小等边三角形的边长是a,则六边形的周长是____________.解答题10.如图5,有3个面积都是的圆放在桌面上,桌面被圆覆盖的面积是,并且重叠的两块是等面积的,直线过两圆心A、B,如果直线下方被圆覆盖的面积是9,请求出的值.参考答案基础达标选择题1.A.2.C.3.C.4.D.填空题5.±3,±2,±1,0.6.,,.7.①.解答题8.原式=.能力提升填空题9.30a.解答题10.解:设两圆重叠部分的每一块面积为,则.所以9=.整理,得9=, ,可得.。
北京四中新初一期末考试数学真题2023
北京四中新初一期末考试数学真题2023**北京四中新初一期末考试数学真题2023**开卷考试,那场印象深刻的数学考试,让我对数学的兴趣更加倍增。
考试开始了,第一大题是选择题。
在考场里,我认真读题,思考后选出最合适的答案。
这一部分题目包括了各种数学知识点,如代数、几何等。
我根据自己的学习积累,有把握地选择了答案。
接下来是计算题,这是我最喜欢的部分。
我喜欢思考数字之间的关系,喜欢运用各种公式和方法求解问题。
在计算过程中,我严谨地记录每一步,以避免计算错误。
尽管有时候数字运算起来让人头疼,但我仍坚持不懈地解题,直到找到正确的答案。
第三部分是填空题。
这一部分考察了我对数学知识的掌握和应用能力。
我细心地读题、思考,然后在相应的空格里填上适当的数字或字母。
有时候,我还要通过计算或者推理来得出确切的答案。
在这一部分中,我体会到数学知识的重要性,也对自己的学习情况有了更加清晰的认识。
最后是解答题,这是最具挑战性的一部分。
解答题要求我们思考、分析问题,并提供详细的解题过程和答案。
我需要用合适的表达方式,清晰地呈现自己的思路和解题思想。
在解答问题时,我要注意逻辑性和语言表达的准确性,以确保自己的答案能够被他人理解和接受。
此次数学考试,对我来说是一次挑战,也是一次锻炼。
在解题的过程中,我学到了很多知识,提升了自己的数学能力。
我也明白了在学习数学时,需要注重平时的积累和理解。
相信通过这次考试,我能够更好地认识自己的不足,并在未来的学习中不断进步。
考试结束后,我整理好试卷,交给了老师。
心里充满了对数学的渴望和期待,希望能够用数学的智慧解决更多的问题,开启数学知识的新篇章。
总结起来,此次北京四中新初一期末考试的数学题目涵盖了选择题、计算题、填空题和解答题,每一部分都对我的数学能力提出了挑战,并给予了我成长的机会。
解题过程中,我学到了很多知识,明白了数学对于我个人发展的重要性。
我相信,通过这次考试的努力和积累,我能够在数学领域中不断进步,成为一个更好的数学家。
2014-2015学年北京四中七年级(上)期末数学复习试卷(四)_0
2014-2015学年北京四中七年级(上)期末数学复习试卷(四)一、选择题(共14小题,每小题3分,满分42分)1.(3分)将一个圆围绕它的直径所在的直线旋转180°形成的几何体是()A.圆锥B.半球C.球体D.圆柱2.(3分)如图是一个正方体的平面展开图,这个正方体是()A.B.C.D.3.(3分)如图,它们是一个物体的三视图,该物体的形状是()A.B.C.D.4.(3分)如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()A.B.C.D.5.(3分)如图是画有一条对角线的平行四边形纸片ABCD,用此纸片可以围成一个无上下底面的三棱柱纸筒,则所围成的三棱柱纸筒可能是()A.B.C.D.6.(3分)如图是一个三棱柱纸盒,在下面四个图中,只有一个是这个纸盒的展开图,那么这个展开图是()A.B.C.D.7.(3分)如图是三个大小不等的正方体拼成的几何体,其中两个较小正方体的棱长之和等于大正方体的棱长.该几何体的主视图、俯视图和左视图的面积分别是S1,S2,S3,则S1,S2,S3的大小关系是()A.S1>S2>S3B.S3>S2>S1C.S2>S3>S1D.S1>S3>S2 8.(3分)如图所示的图形是由7个完全相同的小正方体组成的立体图形,则下面四个平面图形中不是这个立体图形的三视图的是()A.B.C.D.9.(3分)过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为()A.B.C.D.10.(3分)有一个正方体的六个面上分别标有数字1、2、3、4、5、6,从三个不同的角度观察这个正方体所得到的结果如图所示,如果标有数字6的面所对面上的数字记为a,2的面所对面上数字记为b,那么a+b的值为()A.6B.7C.8D.911.(3分)按下列长度,A、B、C三点一定不在同一条直线上的是()A.AB=5.6cm,BC=4.5cm,AC=10.1cmB.AB=2.7cm,BC=3.9cm,AC=5.6cmC.AB=5cm,BC=6cm,AC=11cmD.AB=15cm,BC=5cm,AC=10cm12.(3分)9点30分这一时刻,分针与时针的夹角是()A.75°B.105°C.90°D.125°13.(3分)甲从O点出发,沿北偏西30°走了50米到达A点,乙从O点出发,沿南偏东35°方向走了80米到达B点,则∠AOB为()A.65°B.115°C.175°D.185°14.(3分)已知∠AOB=30°,又自∠AOB的顶点O引射线OC,若∠AOC:∠AOB=4:3,那么∠BOC=()A.10°B.40°C.70°D.10°或70°二、填空题(共3小题,每小题3分,满分9分)15.(3分)互余两角的差是18°,其中较大角的补角是.16.(3分)一个角的补角和这个角的余角互为补角,则这个角的一半是.17.(3分)若一个角内有1条射线,图中共有个角;若一个角内有2条射线,图中共有个角;若一个角内有3条射线,图中共有个角;…若一个角内有n条射线,图中共有个角.三、解答题(共4小题,满分0分)18.作图题已知:∠AOB(如图).求作:(1)用尺规作∠AOB的角平分线OC.(2)在∠AOC内作一条射线OE.(3)用量角器在∠BOC内作∠BOF=∠AOE.求证:∠EOC=(∠BOE﹣∠AOE ).19.已知∠α的2倍与∠β的3倍互补,且∠α比∠β小20°,求∠α与∠β.20.画线段AB=10mm,延长AB至C,使BC=15mm,再反向延长线段AB至D,使DA=15mm,先依题意画出图形,并求出DC的长.21.已知:∠AOB=170°,∠AOC=70°,∠BOD=60°,求∠COD的大小.2014-2015学年北京四中七年级(上)期末数学复习试卷(四)参考答案一、选择题(共14小题,每小题3分,满分42分)1.C;2.D;3.C;4.C;5.C;6.C;7.D;8.B;9.B;10.B;11.B;12.B;13.C;14.D;二、填空题(共3小题,每小题3分,满分9分)15.126°;16.22.5°;17.3;6;10;;三、解答题(共4小题,满分0分)18.;19.;20.;21.;。
七年级上册北京第四中学数学期末试卷章末练习卷(Word版 含解析)
七年级上册北京第四中学数学期末试卷章末练习卷(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图1,已知∠MON=140°,∠AOC与∠BOC互余,OC平分∠MOB,(1)在图1中,若∠AOC=40°,则∠BOC=°,∠NOB=°.(2)在图1中,设∠AOC=α,∠NOB=β,请探究α与β之间的数量关系(必须写出推理的主要过程,但每一步后面不必写出理由);(3)在已知条件不变的前提下,当∠AOB绕着点O顺时针转动到如图2的位置,此时α与β之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出此时α与β之间的数量关系.【答案】(1)解:如图1,∵∠AOC与∠BOC互余,∴∠AOC+∠BOC=90°,∵∠AOC=40°,∴∠BOC=50°,∵OC平分∠MOB,∴∠MOC=∠BOC=50°,∴∠BOM=100°,∵∠MON=40°,∴∠BON=∠MON-∠BOM=140°-100°=40°,(2)解:β=2α-40°,理由是:如图1,∵∠AOC=α,∴∠BOC=90°-α,∵OC平分∠MOB,∴∠MOB=2∠BOC=2(90°-α)=180°-2α,又∵∠MON=∠BOM+∠BON,∴140°=180°-2α+β,即β=2α-40°;(3)解:不成立,此时此时α与β之间的数量关系为:2α+β=40°,理由是:如图2,∵∠AOC=α,∠NOB=β,∴∠BOC=90°-α,∵OC平分∠MOB,∴∠MOB=2∠BOC=2(90°-α)=180°-2α,∵∠BOM=∠MON+∠BON,∴180°-2α=140°+β,即2α+β=40°,答:不成立,此时此时α与β之间的数量关系为:2α+β=40.【解析】【分析】(1)先根据余角的定义计算∠BOC=50°,再由角平分线的定义计算∠BOM=100°,根据角的差可得∠BON的度数;(2)同理先计算∠MOB=2∠BOC=2(90°-α)=180°-2α,再根据∠BON=∠MON-∠BOM列等式即可;(3)同理可得∠MOB=180°-2α,再根据∠BON+∠MON=∠BOM列等式即可.2.已知:线段AB=30cm.(1)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,同时点Q沿线段BA自B点向A点以4厘米/秒运动,经过几秒,点P、Q两点能相遇?(2)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,点P出发3秒后,点Q沿线段BA自B点向A点以4厘米/秒运动,问再经过几秒后点P、Q两点相距6cm?(3)如图2,AO=4cm,PO=2cm,∠POB=60°,点P绕着点O以60度/秒的速度逆时针旋转一周停止,同时点Q沿直线BA自B点向A点运动,假若P、Q两点能相遇,直接写出点Q运动的速度.【答案】(1)解:30÷(2+4)=5(秒),答:经过5秒,点P、Q两点能相遇.(2)解:设再经过x秒后点P、Q两点相距6cm.当点P在点Q左边时,2(x+3)+4x+6=30解得x=3;当点P在点Q右边时,2(x+3)+4x-6=30解得x=5,所以再经过3或5秒后点P、Q两点相距6cm;(3)解:设点Q运动的速度为每秒xcm.当P、Q两点在点O左边相遇时,120÷60x=30-2,解得x=14;当P、Q两点在点O右边相遇时,240÷60x=30-6,解得x=6,所以若P、Q两点能相遇点Q运动的速度为每秒14cm或6cm.【解析】【分析】(1)根据点P、Q运动路程和等于AB求解;(2)分点P在点Q左右两边两种可能来解答;(3)分情况讨论,P、Q在点O左右两边相遇来解答.3.科学实验证明,平面镜反射光线的规律是:射到平面镜上的光线和反射出的光线与平面镜所夹的角相等.(1)如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b镜反射出去,若b镜反射出的光线n平行于m,且∠1=30 ,则∠2=________,∠3=________;(2)在(1)中,若∠1=70 ,则∠3=________;若∠1=a,则∠3=________;(3)由(1)(2)请你猜想:当∠3=________时,任何射到平面镜a上的光线m经过平面镜a和b的两次反射后,入射光线m与反射光线n总是平行的?请说明理由.(提示:三角形的内角和等于180 )【答案】(1)60°;90°(2)90°;90°(3)90°【解析】【解答】(1)∵入射角与反射角相等,即∠1=∠4,∠5=∠2,根据邻补角的定义可得根据m∥n,所以所以根据三角形内角和为所以故答案为:( 2 )由(1)可得∠3的度数都是( 3 )理由:因为所以又由题意知∠1=∠4,∠5=∠2,所以由同旁内角互补,两直线平行,可知:m∥n.【分析】(1)由入射角等于反射角可得∠1=∠4,∠5=∠2;由邻补角的定义可求得∠6的度数;于是由两直线平行,同旁内角互补可得∠6+∠7=则∠7的度数可求解,由图知∠5+∠7+∠2=所以∠5和∠2的度数可求解;再根据三角形的内角和等于可求得∠3的度数;(2)由(1)可知∠3=;(3)由(1)和(2)可得∠3=4.如图,在数轴上有两点A、B,点A表示的数是8,点B在点A的左侧,且AB=14,动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数:________ ;点P表示的数用含t的代数式表示为________ .(2)动点Q从点B出发沿数轴向左匀速运动,速度是点P速度的一半,动点P、Q同时出发,问点P运动多少秒后与点Q的距离为2个单位?(3)若点M为线段AP的中点,点N为线段BP的中点,在点P的运动过程中,线段MN 的长度是否会发生变化?若变化,请说明理由;若不变,求出线段MN的长.【答案】(1)点B表示的数-6;点P表示的数8-4t(2)解:设点P运动x秒时,点P与点Q的距离是2个单位长度,则AP=4x,BQ=2x,如图1时,AP+2=14+BQ,即4x+2=14+2x,解得:x=6,如图2时,AP=14+BQ+2,即4x=14+2x+2,解得:x=8,综上,当点P运动6秒或8秒后与点Q的距离为2个单位(3)解:线段MN的长度不发生变化,都等于7;理由如下:∵①当点P在点A、B两点之间运动时:MN=MP+NP= AP+ BP= (AP+BP)= AB= ×14=7,②当点P运动到点B的左侧时:MN=MP-NP= AP- BP= (AP-BP)= AB=7,∴线段MN的长度不发生变化,其值为7.【解析】【解答】解:(1)∵点A表示的数为8,B在A点左边,AB=14,∴点B表示的数是8-14=-6,∵动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,∴点P表示的数是8-4t.故答案为:-6,8-4t;【分析】(1)根据题意由点A表示的数为8,B在A点左边,AB=14,得到点B表示的数,求出动点P表示的数的代数式;(2)由点P与点Q的距离是2个单位长度,得到AP+2=14+BQ和AP=14+BQ+2,求出点P运的时间;(3)当点P在点A、B两点之间运动时,MN=MP+NP,再由中点定义求出MN的值,当点P运动到点B的左侧时,MN=MP-NP,再由中点定义求出MN的值.5.已知点O为直线AB上一点,将直角三角板MON的直角顶点放在点O处,并在∠MON 内部作射线OC.(1)如图1,三角板的一边ON与射线OB重合,且∠AOC=150°.若以点O为观察中心,射线OM表示正北方向,求射线OC表示的方向;(2)如图2,将三角板放置到如图位置,使OC恰好平分∠MOB,且∠BON=2∠NOC,求∠AOM的度数;(3)若仍将三角板按照如图2的方式放置,仅满足OC平分∠MOB,试猜想∠AOM与∠NOC之间的数量关系,并说明理由.【答案】(1)解:∵∠MOC=∠AOC﹣∠AOM=150°﹣90°=60°,∴射线OC表示的方向为北偏东60°(2)解:∵∠BON=2∠NOC,OC平分∠MOB,∴∠MOC=∠BOC=3∠NOC,∵∠MOC+∠NOC=∠MON=90°,∴3∠NOC+∠NOC=90°,∴4∠NOC=90°,∴∠BON=2∠NOC=45°,∴∠AOM=180°﹣∠MON﹣∠BON=180°﹣90°﹣45°=45°(3)解:∠AOM=2∠NOC.令∠NOC为β,∠AOM为γ,∠MOC=90°﹣β,∵∠AOM+∠MOC+∠BOC=180°,∴γ+90°﹣β+90°﹣β=180°,∴γ﹣2β=0,即γ=2β,∴∠AOM=2∠NOC【解析】【分析】(1)根据∠MOC=∠AOC﹣∠AOM代入数据计算,即得出射线OC表示的方向;(2)根据角的倍分关系以及角平分线的定义即可求解;(3)令∠NOC为β,∠AOM为γ,∠MOC=90°﹣β,根据∠AOM+∠MOC+∠BOC=180°即可得到∠AOM与∠NOC满足的数量关系.6.将一副直角三角尺按如图所示的方式叠放在一起(其中∠A=60°,∠D=30°,∠E=∠B =45°,直角顶点C保持重合).(1)①若∠DCE=45°,则∠ACB的度数为________.②若∠ACB=140°,则∠DCE的度数为________.(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由.(3)将三角尺BCE绕着点C顺时针转动,当∠ACE<180°,且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE角度所有可能的值(并写明此时哪两条边平行,但不必说明理由);若不存在,请说明理由.【答案】(1)135°;40°(2)∠ACB+∠DCE=180°.理由如下:∵∠ACB=∠ACD+∠DCB=90°+∠DCB,∴∠ACB+∠DCE=90°+∠DCB+∠DCE=90°+∠ECB=90°+90°=180°.(3)(3)存在.当∠ACE=30°时,AD∥BC;当∠ACE=45°时,AC∥BE;当∠ACE=120°时,AD∥CE;当∠ACE=135°时,CD∥BE;当∠ACE=165°时,AD∥BE.【解析】【解答】(1)①∵∠ECB=90°,∠DCE=45°,∴∠DCB=90°-45°=45°,∴∠ACB=∠ACD+∠DCB=90°+45°=135°.②∵∠ACB=140°,∠ACD=90°,∴∠DCB=140°-90°=50°,∴∠DCE=90°-50°=40°.【分析】(1)①根据角的和差,由∠DCB=∠BCE-∠DCE,即可算出∠DCB的度数,进而根据∠ACB=∠ACD+∠DCB即可算出答案;②根据角的和差,由∠DCB=∠ACB-∠ACD算出∠DCB的度数,再根据∠DCE=∠ECB-∠DCB即可算出答案;(2)∠ACB+∠DCE=180°.理由如下:根据角的和差得出∠ACB=∠ACD+∠DCB=90°+∠DCB ,故由∠ACB+∠DCE=90°+∠DCB+∠DCE =90°+∠ECB 即可算出答案;(3)存在.当∠ACE=30°时,根据内错角相等二直线平行得出AD∥BC;当∠ACE=45°时,内错角相等二直线平行得出AC∥BE;当∠ACE=120°时,根据同旁内角互补,二直线平行得出AD∥CE;当∠ACE=135°时,根据内错角相等二直线平行得出CD∥BE;当∠ACE =165°时,根据同旁内角互补,二直线平行得出AD∥BE.7.(探究)如图①,∠AFH和∠CHF的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.(1)若∠AFH=60°,∠CHF=50°,求∠EOF与∠FOH的度数.(2)若∠AFH+∠CHF=100°,求∠FOH的度数.(3)如图②,∠AFH和∠CHI的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.若∠AFH+∠CHF=α,直接写出∠FOH的度数.(用含a的代数式表示) 【答案】(1)解:∵∠AFH=60°,OF平分∠AFH,∴∠OFH=30°,又∵EG∥FH,∴∠EOF=∠OFH=30°(两直线平行内错角相等);∵∠CHF=50°,OH平分∠CHF,∴∠FHO=25°,∴△FOH中,∠FOH=180°﹣∠OFH﹣∠OHF=125°(三角形的内角和定理);故答案为:30,125;(2)解:∵FO平分∠AFH,HO平分∠CHF,∴∠OFH=∠AFH,∠OHF=∠CHF.∵∠AFH+∠CHF=100°,∴∠OFH+∠OHF=(∠AFH+∠CHF)= ×100°=50°.∵EG∥FH,∴∠EOF=∠OFH,∠GOH=∠OHF(两直线平行内错角相等).∴∠EOF+∠GOH=∠OFH+∠OHF=50°.∵∠EOF+∠GOH+∠FOH=180°(三角形的内角和定理),∴∠FOH=180°﹣(∠EOF+∠GOH)=180°﹣50°=130°.(3)解:∵∠AFH和∠CHI的平分线交于点O,∴∠OFH=∠AFH,∠OHI=∠CHI,∴∠FOH=∠OHI﹣∠OFH=(∠CHI﹣∠AFH)=(180°﹣∠CHF﹣∠AFH)=(180°﹣α)=90°﹣α.【解析】【分析】(1)先根据角平分线的定义求出∠OFH ,∠FHO的度数,再根据三角形的内角和定理求出∠FOH的度数;(2)先根据角平分线的定义求出∠OFH+∠FHO的度数,再根据三角形的内角和定理求出∠FOH的度数;(3)先根据角平分线的定义求出∠OFH=∠AFH,∠OHI=∠CHI=(180°-∠CHF),再根据两直线平行内错角相等得∠FOH=∠OHI﹣∠OFH即可。
2014-2015学年北京四中七年级(上)期末数学复习试卷(三)_0
2014-2015学年北京四中七年级(上)期末数学复习试卷(三)一、选择题1.(3分)若x=4是方程=4的解,则a等于()A.0B.C.﹣3D.﹣22.(3分)下列变形正确的是()A.4x﹣5=3x+2变形得4x﹣3x=﹣2+5B.﹣3x=2变形得C.3(x﹣1)=2(x+3)变形得3x﹣1=2x+6D.变形得4x﹣6=3x+183.(3分)某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折4.(3分)今年哥哥的年龄是妹妹年龄的2倍,4年前哥哥的年龄是妹妹年龄的3倍,若设妹妹今年x岁,可列方程为()A.2x﹣4=3(x﹣4)B.2x=3(x﹣4)C.2x+4=3(x﹣4)D.2x+4=3x5.(3分)一个两位数的个位数字与十位数字都是x,如果将个位数字与十位数字分别加2和1,所得的新数比原数大12,则可列的方程是()A.2x+3=12B.10x+2+3=12C.(10x+x)﹣10(x+1)﹣(x+2)=12D.10(x+1)+(x+2)=10x+x+126.(3分)一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程()A.x﹣1=(26﹣x)+2B.x﹣1=(13﹣x)+2C.x+1=(26﹣x)﹣2D.x+1=(13﹣x)﹣27.(3分)一件工作甲独做要a天完成,乙独做要b天完成,如果两人合作3天完成此工作的()A.3(a+b)B.3(a﹣b)C.D.8.(3分)某个体商贩在一次买卖中,同时卖出两件上衣,售价都是135元,若按成本计,其中一件盈利25%,另一件亏本25%,在这次买卖中他()A.不赚不赔B.赚9元C.赔18元D.赚18元二、填空题(共5小题,每小题3分,满分15分)9.(3分)在方程①;②2x﹣3=1;③(x+1)(x+2)=12;④;⑤;⑥2[3x﹣(x﹣3)]﹣3=11中,x=2是其解的方程有.(填序号)10.(3分)如果表示ad﹣bc,若=﹣4,则x的值为.11.(3分)已知a≠0,则关于x的方程3ab﹣(a+b)x=(a﹣b)x的解为.12.(3分)已知关于x的方程ax+3=2x﹣b有无数个解,则(a+b)2006=.13.(3分)某地居民生活用电基本价格为0.50元/度.规定每月基本用电量为a 度,超过部分电量的毎度电价比基本用电量的毎度电价增加20%收费,某用户在5月份用电100度,共交电费56元,则a=度.三、解答题(共6小题,满分0分)14.解方程:(1)bx﹣1=x+a2(2)(3)(4)(5)(6)4{3[2(x+1)﹣8]﹣20}﹣7=1(7).15.解关于x的方程:.16.某件商品的价格是按获利润25%计算出的,后因库存积压和急需加收资金,决定降价出售,如果每件商品仍能获得10%的利润,试问应按现售价的几折出售?(减价到原标价的百分之几就叫做几折,例如标价一元的商品售价七角五分,叫做“七五折”)17.某公司销售一种进价21元的电子产品,按标价的九折销售,仍可获利20%,则该公司销售这种电子产品时的标价是多少元?18.(应用题)某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售利润最多,你选择哪一种进货方案?19.某开发公司生产了若干件某种新产品需要精加工后才能投放市场,现有甲、乙两个加工厂都想加工这批产品.已知甲、乙两个工厂每天分别能加工这种产品16件和24件,且知单独加工这批产品甲厂比乙厂要多用20天.又知若由甲厂单独做,公司需付甲厂每天费用80元;若由乙厂单独做,公司需付乙厂每天费用120元.(1)求这批新产品共有多少件?(2)若公司董事会制定了如下方案:可以由每个厂家单独完成;也可以由两个厂家同时合作完成,但在加工过程中,公司需派一名工程师到厂进行技术指导,并由公司为其提供每天5元的午餐补助费,请你帮助公司选择一种既省时又省钱的加工方案,并通过计算说明理由.2014-2015学年北京四中七年级(上)期末数学复习试卷(三)参考答案一、选择题1.D;2.D;3.B;4.A;5.D;6.B;7.C;8.C;二、填空题(共5小题,每小题3分,满分15分)9.②③⑤⑥;10.2;11.x=;12.1;13.40;三、解答题(共6小题,满分0分)14.;15.;16.;17.;18.;19.;。
北京市北京四中七年级上册数学期末试卷(含答案)
北京市北京四中七年级上册数学期末试卷(含答案)一、选择题1.购买单价为a 元的物品10个,付出b 元(b >10a ),应找回( )A .(b ﹣a )元B .(b ﹣10)元C .(10a ﹣b )元D .(b ﹣10a )元 2.已知max {}2,,x x x 表示取三个数中最大的那个数,例如:当x =9时,max {}{}22,,max 9,9,9x x x ==81.当max {}21,,2x x x =时,则x 的值为( ) A .14- B .116 C .14 D .123.当x 取2时,代数式(1)2x x -的值是( ) A .0 B .1C .2D .3 4.如图,直线AB ⊥直线CD ,垂足为O ,直线EF 经过点O ,若35BOE ∠=,则FOD ∠=( )A .35°B .45°C .55°D .125°5.球从空中落到地面所用的时间t (秒)和球的起始高度h (米)之间有关系式5h t =,若球的起始高度为102米,则球落地所用时间与下列最接近的是( ) A .3秒B .4秒C .5秒D .6秒 6.已知线段AB 的长为4,点C 为AB 的中点,则线段AC 的长为( ) A .1B .2C .3D .4 7.一周时间有604800秒,604800用科学记数法表示为( ) A .2604810⨯ B .56.04810⨯ C .66.04810⨯ D .60.604810⨯ 8.A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( )A .1601603045x x -= B .1601601452x x -= C .1601601542x x -= D .1601603045x x+=9.按一定规律排列的单项式:x3,-x5,x7,-x9,x11,……第n个单项式是( ) A.(-1)n-1x2n-1B.(-1)n x2n-1C.(-1)n-1x2n+1D.(-1)n x2n+110.解方程121123x x+--=时,去分母得()A.2(x+1)=3(2x﹣1)=6 B.3(x+1)﹣2(2x﹣1)=1C.3(x+1)﹣2(2x﹣1)=6 D.3(x+1)﹣2×2x﹣1=611.下列调查中,最适合采用全面调查(普查)的是( )A.对广州市某校七(1)班同学的视力情况的调查B.对广州市市民知晓“礼让行人”交通新规情况的调查C.对广州市中学生观看电影《厉害了,我的国》情况的调查D.对广州市中学生每周课外阅读时间情况的调查12.图中是几何体的主视图与左视图, 其中正确的是( )A.B.C.D.二、填空题13.单项式2x m y3与﹣5y n x是同类项,则m﹣n的值是_____.14.如图所示是计算机程序设计,若开始输入的数为-1,则最后输出的结果是______.15.多项式2x3﹣x2y2﹣1是_____次_____项式.16.因原材料涨价,某厂决定对产品进行提价,现有三种方案:方案一,第一次提价10%,第二次提价30%;方案二,第一次提价30%,第二次提价10%;方案三,第一、二次提价均为20%.三种方案提价最多的是方案_____________.17.小明妈妈想检测小明学习“列方程解应用题”的效果,给了小明37个苹果,要小明把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加2个,第三堆减少三个,第四堆减少一半后,这4堆苹果的个数相同,那么这四堆苹果中个数最多的一堆为_____个.18.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________;19.学校某兴趣活动小组现有男生30人,女生8人,还要录取女生多少人,才能使女生人数占该活动小组总人数的三分之一?设还要录取女生x人,依题意列方程得_____.20.五边形从某一个顶点出发可以引_____条对角线.21.计算7a2b﹣5ba2=_____.22.若2a +1与212a +互为相反数,则a =_____. 23.已知代数式235x -与233x -互为相反数,则x 的值是_______. 24.中国始有历法大约在四千年前每页显示一日信息的叫日历,每页显示一个月信息的叫月历,每页显示全年信息的叫年历如图是2019年1月份的月历,用一个方框圈出任意22⨯的4个数,设方框左上角第一个数是x ,则这四个数的和为______(用含x 的式子表示)三、压轴题25.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .(1)请你在图②的数轴上表示出P ,Q 两点的位置;(2)若将图②中的点P 向左移动x cm ,点Q 向右移动3x cm ,则移动后点P 、点Q 表示的数分别为多少?并求此时线段PQ 的长.(用含x 的代数式表示);(3)若P 、Q 两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t (秒),当t 为多少时PQ=2cm ?26.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小;(2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.27.已知∠AOB =110°,∠COD =40°,OE 平分∠AOC ,OF 平分∠BOD .(1)如图1,当OB 、OC 重合时,求∠AOE ﹣∠BOF 的值;(2)如图2,当∠COD 从图1所示位置绕点O 以每秒3°的速度顺时针旋转t 秒(0<t <10),在旋转过程中∠AOE ﹣∠BOF 的值是否会因t 的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF =14°时,t = 秒.28.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______. (3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分.(5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.29.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线.(1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.30.如图,直线l 上有A 、B 两点,点O 是线段AB 上的一点,且OA =10cm ,OB =5cm . (1)若点C 是线段 AB 的中点,求线段CO 的长.(2)若动点 P 、Q 分别从 A 、B 同时出发,向右运动,点P 的速度为4c m/s ,点Q 的速度为3c m/s ,设运动时间为 x 秒,①当 x =__________秒时,PQ =1cm ;②若点M 从点O 以7c m/s 的速度与P 、Q 两点同时向右运动,是否存在常数m ,使得4PM +3OQ ﹣mOM 为定值,若存在请求出m 值以及这个定值;若不存在,请说明理由.(3)若有两条射线 OC 、OD 均从射线OA 同时绕点O 顺时针方向旋转,OC 旋转的速度为6度/秒,OD 旋转的速度为2度/秒.当OC 与OD 第一次重合时,OC 、OD 同时停止旋转,设旋转时间为t 秒,当t 为何值时,射线 OC ⊥OD ?31.如图,数轴上有A 、B 、C 三个点,它们表示的数分别是25-、10-、10.(1)填空:AB = ,BC = ;(2)现有动点M 、N 都从A 点出发,点M 以每秒2个单位长度的速度向右移动,当点M 移动到B 点时,点N 才从A 点出发,并以每秒3个单位长度的速度向右移动,求点N 移动多少时间,点N 追上点M ?(3)若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC -AB 的值是否随着时间的变化而改变?请说明理由.32.已知:如图,点A 、B 分别是∠MON 的边OM 、ON 上两点,OC 平分∠MON ,在∠CON 的内部取一点P (点A 、P 、B 三点不在同一直线上),连接PA 、PB .(1)探索∠APB 与∠MON 、∠PAO 、∠PBO 之间的数量关系,并证明你的结论; (2)设∠OAP=x°,∠OBP=y°,若∠APB 的平分线PQ 交OC 于点Q ,求∠OQP 的度数(用含有x 、y 的代数式表示).【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据题意知:花了10a 元,剩下(b ﹣10a )元.【详解】购买单价为a 元的物品10个,付出b 元(b >10a ),应找回(b ﹣10a )元.故选D .【点睛】本题考查了列代数式,能读懂题意是解答此题的关键.2.C解析:C【解析】【分析】利用max {}2,,x x x 的定义分情况讨论即可求解. 【详解】解:当max{}21,,2x x x =时,x ≥0 x 12,解得:x =14x >x >x 2,符合题意; ②x 2=12,解得:x =22x x >x 2,不合题意; ③x =12x x >x 2,不合题意; 故只有x =14时,max {}21,,2x x x =. 故选:C .此题主要考查了新定义,正确理解题意分类讨论是解题关键.3.B解析:B【解析】【分析】把x 等于2代入代数式即可得出答案.【详解】解:根据题意可得:把2x =代入(1)2x x -中得: (1)21==122x x -⨯, 故答案为:B.【点睛】本题考查的是代入求值问题,解题关键就是把x 的值代入进去即可.4.C解析:C【解析】【分析】根据对顶角相等可得:BOE AOF ∠=∠,进而可得FOD ∠的度数.【详解】解:根据题意可得:BOE AOF ∠=∠,903555FOD AOD AOF ∴∠=∠-∠=-=.故答案为:C.【点睛】本题考查的是对顶角和互余的知识,解题关键在于等量代换.5.C解析:C【解析】【分析】根据题意直接把高度为102代入即可求出答案.【详解】由题意得,当h=102时,24.5=20.25 25=25 且20.25<20.4<25∴∴与t 最接近的整数是5.故选C.【点睛】本题考查的是估算问题,解题关键是针对其范围的估算.6.B解析:B【解析】【分析】根据线段中点的性质,可得AC 的长.【详解】解:由线段中点的性质,得AC =12AB =2. 故选B .【点睛】本题考查了两点间的距离,利用了线段中点的性质.7.B解析:B【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】604800的小数点向左移动5位得到6.048,所以数字604800用科学记数法表示为56.04810⨯,故选B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数,表示时关键要正确确定a 的值以及n 的值.8.B解析:B【解析】【分析】甲车平均速度为4x 千米/小时,则乙车平均速度为5x 千米/小时,根据两车同时从A 地出发到B 地,乙车比甲车早到30分钟,列出方程即可得.【详解】甲车平均速度为4x 千米/小时,则乙车平均速度为5x 千米/小时,由题意得1604x -1605x =12, 故选B.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.9.C解析:C【解析】【分析】观察可知奇数项为正,偶数项为负,除符号外,底数均为x ,指数比所在项序数的2倍多1,由此即可得.【详解】观察可知,奇数项系数为正,偶数项系数为负,∴可以用1(1)n --或1(1)n +-,(n 为大于等于1的整数)来控制正负,指数为从第3开始的奇数,所以指数部分规律为21n ,∴第n 个单项式是 (-1)n -1x 2n +1 ,故选C.【点睛】本题考查了规律题——数字的变化类,正确分析出哪些不变,哪些变,是按什么规律发生变化的是解题的关键.10.C解析:C【解析】【分析】方程两边都乘以分母的最小公倍数即可.【详解】解:方程两边同时乘以6,得:3(1)2(21)6x x +--=,故选:C .【点睛】本题主要考查了解一元一次方程的去分母,需要注意,不能漏乘,没有分母的也要乘以分母的最小公倍数.11.A解析:A【解析】【分析】根据普查得到的结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断即可.【详解】A. 对广州市某校七(1)班同学的视力情况的调查,适合全面调查,符合题意;B. 对广州市市民知晓“礼让行人”交通新规情况的调查,适合抽样调查,故不符合题意;C. 对广州市中学生观看电影《厉害了,我的国》情况的调查,适合抽样调查,故不符合题意;D. 对广州市中学生每周课外阅读时间情况的调查,适合抽样调查,故不符合题意,故选A.【点睛】本题考查的是抽样调查与全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大的调查,应选用抽样调查,对于精确度要求高的调查,事关重大的调查往往先用普查的方式.12.D解析:D【解析】【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图.根据图中正方体摆放的位置判定则可.【详解】解:从正面看,左边1列,中间2列,右边1列;从左边看,只有竖直2列,故选D.【点睛】本题考查简单组合体的三视图.本题考查了空间想象能力及几何体的主视图与左视图.二、填空题13.-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2xmy3与﹣5ynx是同类项,∴m=1,n=3,∴m﹣n=1﹣3=﹣2.故答案解析:-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2x m y3与﹣5y n x是同类项,∴m=1,n=3,∴m ﹣n =1﹣3=﹣2.故答案为:﹣2.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的概念是解题的关键.14.-5【解析】【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果,此时就需要将结果返回重新计算,直到结果,才能输出结果.【详解】解:根据如图所示:当输入的是的时候,,此时结果解析:-5【解析】【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果1>-,此时就需要将结果返回重新计算,直到结果1<-,才能输出结果.【详解】解:根据如图所示:当输入的是1-的时候,1(3)21-⨯--=,此时结果1>-需要将结果返回,即:1(3)25⨯--=-,此时结果1<-,直接输出即可,故答案为:5-.【点睛】本题考查程序设计题,解题关键在于数的比较大小和读懂题意.15.四 三【解析】【分析】找到多项式中的单项式的最高次数即为多项式的最高次数,有几个单项式即为几项式.【详解】解:次数最高的项为﹣x2y2,次数为4,一共有3个项,所以多项式2解析:四 三【解析】【分析】找到多项式中的单项式的最高次数即为多项式的最高次数,有几个单项式即为几项式.【详解】解:次数最高的项为﹣x 2y 2,次数为4,一共有3个项,所以多项式2x 3﹣x 2y 2﹣1是四次三项式.故答案为:四,三.【点睛】此题主要考查了多项式的定义.解题的关键是理解多项式的定义,用到的知识点为:多项式的次数由组成多项式的单项式的最高次数决定;组成多项式的单项式叫做多项式的项,有几项就是几项式.16.三【解析】【分析】由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为x ,两次提价后方案一:;方案二:;方案三:.综上可知三种方案提价最多的是方解析:三【解析】【分析】由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为x ,两次提价后方案一:(110%)(130%) 1.43x x ++=;方案二:(130%)(110%) 1.43x x ++=;方案三:(120%)(120%) 1.44x x ++=.综上可知三种方案提价最多的是方案三.故填:三.【点睛】本题考查列代数式,根据题意列出代数式并化简代数式比较大小即可.17.16【解析】【分析】本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.【详解】设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,a+b+c+解析:16【解析】【分析】本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.【详解】设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,a+b+c+d=37①;2a=b+2=c-3=2d ②; 第二个方程所有字母都用a 来表示可得b=2a-2,c=2a+3,d=4a ,代入第一个方程得a=4, ∴b=6,c=11,d=16,∴这四堆苹果中个数最多的一堆为16.故答案为16.【点睛】本题需注意未知数较多时,要把未知的四个量用一个量来表示,化多元为一元.18.两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直解析:两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.故答案为:两点确定一条直线.【点睛】考核知识点:两点确定一条直线.理解课本基本公理即可.19.8+x =(30+8+x ).【解析】【分析】设还要录取女生人,则女生总人数为人,数学活动小组总人数为人,根据女生人数占数学活动小组总人数的列方程.【详解】解:设还要录取女生人,根据题意得:解析:8+x =13(30+8+x ). 【解析】【分析】设还要录取女生x 人,则女生总人数为8x +人,数学活动小组总人数为308x ++人,根据女生人数占数学活动小组总人数的13列方程. 【详解】解:设还要录取女生x 人,根据题意得:18(308)3x x +=++. 故答案为:18(308)3x x +=++. 【点睛】此题考查了由实际问题抽象出一元一次方程,关键是准确表示还要录取后女生的人数及总人数.20.2【解析】【分析】从n 边形的一个顶点出发有(n −3)条对角线,代入求出即可.【详解】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为2.【点睛】本题考查了多边形的对角线,熟记解析:2【解析】【分析】从n 边形的一个顶点出发有(n−3)条对角线,代入求出即可.【详解】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为2.【点睛】本题考查了多边形的对角线,熟记知识点(从n边形的一个顶点出发有(n−3)条对角线)是解此题的关键.21.2a2b【解析】【分析】根据合并同类项法则化简即可.【详解】故答案为:【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.解析:2a2b【解析】【分析】根据合并同类项法则化简即可.【详解】()2222﹣﹣.7a b5ba=75a b=2a b2a b故答案为:2【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.22.﹣1【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到a的值.【详解】根据题意得:去分母得:a+2+2a+1=0,移项合并得:3a=﹣3,解得:a=﹣1,故答案为:解析:﹣1【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到a的值.【详解】根据题意得:a2a110 22+++=去分母得:a+2+2a+1=0,移项合并得:3a=﹣3,解得:a=﹣1,故答案为:﹣1【点睛】本题考查了解一元一次方程的应用、解一元一次方程,掌握解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1,是解题的关键,此外还需注意移项要变号.23.【解析】【分析】根据互为相反数的两个数之和为0,建立方程求解即可.【详解】∵与互为相反数∴解得:【点睛】本题考查了相反数的性质和解一元一次方程,熟记相反数的性质建立方程是解题的关键解析:27 8【解析】【分析】根据互为相反数的两个数之和为0,建立方程求解即可.【详解】∵235x-与233x-互为相反数∴23230 53-⎛⎫+-=⎪⎝⎭xx解得:278 x=【点睛】本题考查了相反数的性质和解一元一次方程,熟记相反数的性质建立方程是解题的关键.24.【解析】【分析】首先根据题意分别列出四个数的关系,然后即可求得其和.【详解】由题意,得故答案为.【点睛】此题主要考查整式的加减,解题关键理解题意找出这四个数的关系式. 解析:416x +【解析】【分析】首先根据题意分别列出四个数的关系,然后即可求得其和.【详解】由题意,得()()()1771416x x x x x +++++++=+故答案为416x +.【点睛】此题主要考查整式的加减,解题关键理解题意找出这四个数的关系式.三、压轴题25.(1)见详解;(2)2x --,53x +,47x +;(3)当运动时间为5秒或9秒时,PQ=2cm.【解析】【分析】(1)根据数轴的特点,所以可以求出点P ,Q 的位置;(2)根据向左移动用减法,向右移动用加法,即可得到答案;(3)根据题意,可分为两种情况进行分析:①点P 在点Q 的左边时;②点P 在点Q 的右边时;分别进行列式计算,即可得到答案.【详解】解:(1)如图所示:.(2)由(1)可知,点P 为2-,点Q 为5;∴移动后的点P 为:2x --;移动后的点Q 为:53x +;∴线段PQ 的长为:53(2)47x x x +---=+;(3)根据题意可知,当PQ=2cm 时可分为两种情况:①当点P 在点Q 的左边时,有(21)72t -=-,解得:5t =;②点P 在点Q 的右边时,有(21)72t -=+,解得:9t =;综上所述,当运动时间为5秒或9秒时,PQ=2cm.【点睛】本题要是把方程和数轴结合起来,既要根据条件列出方程,又要把握数轴的特点.解题的关键是熟练掌握数轴上的动点运动问题,注意分类讨论进行解题.26.(1)80°;(2)140°【解析】【分析】(1)根据角平分线的定义得∠BOM=12∠AOB ,∠BON=12∠BOD ,再根据角的和差得∠AOD=∠AOB+∠BOD ,∠MON=∠BOM+∠BON ,结合三式求解;(2)根据角平分线的定义∠MOC=12∠AOC ,∠BON=12∠BOD ,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC ,∠MON=∠MOC+∠BON-∠BOC 结合三式求解.【详解】解:(1)∵OM 平分∠AOB ,ON 平分∠BOD ,∴∠BOM=12∠AOB ,∠BON=12∠BOD , ∴∠MON=∠BOM+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD). ∵∠AOD=∠AOB+∠BOD=α=160°,∴∠MON=12×160°=80°; (2)∵OM 平分∠AOC ,ON 平分∠BOD ,∴∠MOC=12∠AOC ,∠BON=12∠BOD , ∵∠MON=∠MOC+∠BON-∠BOC ,∴∠MON=12∠AOC+12∠BOD -∠BOC=12(∠AOC+∠BOD )-∠BOC. ∵∠AOD=∠AOB+∠BOD ,∠AOC=∠AOB+∠BOC,∴∠MON=12(∠AOB+∠BOC+∠BOD )-∠BOC=12(∠AOD+∠BOC )-∠BOC , ∵∠AOD=α,∠MON=60°,∠BOC=20°,∴60°=12(α+20°)-20°,【点睛】本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键.27.(1)35°;(2)∠AOE ﹣∠BOF 的值是定值,理由详见解析;(3)4.【解析】【分析】(1)首先根据角平分线的定义求得∠AOE 和∠BOF 的度数,然后根据∠AOE ﹣∠BOF 求解;(2)首先由题意得∠BOC =3t°,再根据角平分线的定义得∠AOC =∠AOB+3t°,∠BOD =∠COD+3t°,然后由角平分线的定义解答即可;(3)根据题意得∠BOF =(3t+14)°,故3314202t t +=+,解方程即可求出t 的值. 【详解】解:(1)∵OE 平分∠AOC ,OF 平分∠BOD , ∴11AOE AOC 11022︒∠=∠=⨯=55°,11AOF BOD 402022︒︒∠=∠=⨯=, ∴∠AOE ﹣∠BOF =55°﹣20°=35°;(2)∠AOE ﹣∠BOF 的值是定值由题意∠BOC =3t°,则∠AOC =∠AOB+3t°=110°+3t°,∠BOD =∠COD+3t°=40°+3t°,∵OE 平分∠AOC ,OF 平分∠BOD ,()11AOE AOC 1103t =22︒︒∴∠=∠=⨯+3552t ︒︒+ ∴()113BOF BOD 403t 20t 222︒︒︒︒∠=∠=+=+, ∴33AOE BOF 55t 20t 3522︒︒︒︒︒⎛⎫⎛⎫∠-∠=+-+= ⎪ ⎪⎝⎭⎝⎭, ∴∠AOE ﹣∠BOF 的值是定值,定值为35°;(3)根据题意得∠BOF =(3t+14)°, ∴3314202t t +=+, 解得4t =.故答案为4.【点睛】本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键.28.(1)23+(-3)3+43,73+(-5)3+(-6)3;(2)100;(3)25032;(4)9.38;(5)0;(6)24或40【解析】(1)把45分解为2、-3、4三个整数的立方和,2分解为7、-5、-6三个整数的立方和即可的答案;(2)按照新运算法则,根据有理数混合运算法则计算即可得答案;(3)根据差倒数的定义计算出前几项的值,得出规律,计算即可得答案;(4)根据精确到十分位得9.4分可知平均分在9.35到9.44之间,可求出总分的取值范围,根据裁判打分是整数即可求出8个裁判给出的总分,再计算出平均分,精确到百分位即可;(5)由1+2-3=0,连续4个自然数通过加减运算可得0,列式计算即可得答案;(6)根据题意得要使甲和乙、甲和丙的距离相等就可以得出甲在乙、丙之间,设x 分钟后甲和乙、甲和丙的距离相等,就有甲走的路程-乙走的路程-400=丙走的路程+800-甲走的路程建立方程求出其解,就可以得出结论.当乙追上丙时,甲和乙、丙的距离相等,求出乙追上丙的时间即可.综上即可的答案.【详解】(1)45=23+(-3)3+43,2=73+(-5)3+(-6)3,故答案为23+(-3)3+43,73+(-5)3+(-6)3(2)∵2a b a ab ⊗=-,∴()()532-⊗⊗-=⎡⎤⎣⎦(-5)⊗[32-3×(-2)]=(-5)⊗15=(-5)2-(-5)×15=100.(3)∵a 1=2,∴a 2=1112=--, a 3=11(1)--=12, 412112a ==-a 5=-1…… ∴从a 1开始,每3个数一循环,∵2500÷3=833……1,∴a 2500=a 1=2,∴122500a a a ++⋅⋅⋅+=833×(2-1+12)+2=25032. (4)∵10个裁判打分,去掉一个最高分,再去掉一个最低分,∴平均分为中间8个分数的平均分,∵平均分精确到十分位的为9.4,∴平均分在9.35至9.44之间,9.35×8=74.8,9.44×8=75.52,∴8个裁判所给的总分在74.8至75.52之间,∵打分都是整数,∴总分也是整数,∴总分为75,∴平均分为75÷8=9.375,∴精确到百分位是9.38.故答案为9.38(5)2019÷4=504……3,∵1+2-3=0,4-5-6+7=0,8-9-10+11=0,……∴(1+2-3)+(4-5-6+7)+……+(2016-2017-2018+2019)=0∴所得结果可能的最小非负数是0,故答案为0(6)设x 分钟后甲和乙、丙的距离相等,∵乙在甲前400米,丙在乙前400米,速度分别为120米/分钟、100米/分钟、90米/分钟,∴120x-400-100x=90x+800-120x解得:x=24.∵当乙追上丙时,甲和乙、丙的距离相等,∴400÷(100-90)=40(分钟)∴24分钟或40分钟时甲和乙、丙的距离相等.故答案为24或40.【点睛】本题考查数字类的变化规律、有理数的混合运算、近似数及一元一次方程的应用,熟练掌握相关知识是解题关键.29.(1)图1中∠AOD=60°;图2中∠AOD=10°;(2)图1中∠AOD=n m 2+;图2中∠AOD=n m 2-. 【解析】【分析】(1)图1中∠BOC=∠AOC ﹣∠AOB=20°,则∠BOD=10°,根据∠AOD=∠AOB+∠BOD 即得解;图2中∠BOC=∠AOC+∠AOB=120°,则∠BOD=60°,根据∠AOD=∠BOD ﹣∠AOB 即可得解;(2)图1中∠BOC=∠AOC ﹣∠AOB=n ﹣m ,则∠BOD=n m 2﹣,故∠AOD=∠AOB+∠BOD=n m 2+;图2中∠BOC=∠AOC+∠AOB=m+n ,则∠BOD=n m 2+,故∠AOD=∠BOD ﹣∠AOB=n m 2-. 【详解】解:(1)图1中∠BOC=∠AOC ﹣∠AOB=70°﹣50°=20°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=10°, ∴∠AOD=∠AOB+∠BOD=50°+10°=60°;图2中∠BOC=∠AOC+∠AOB=120°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=60°, ∴∠AOD=∠BOD ﹣∠AOB=60°﹣50°=10°;(2)根据题意可知∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,如图1中,∠BOC=∠AOC ﹣∠AOB=n ﹣m ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2﹣, ∴∠AOD=∠AOB+∠BOD=n m 2+; 如图2中,∠BOC=∠AOC+∠AOB=m+n ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2+, ∴∠AOD=∠BOD ﹣∠AOB=n m 2-. 【点睛】 本题主要考查角平分线,解此题的关键在于根据题意进行分类讨论,所有情况都要考虑,切勿遗漏.30.(1)CO=2.5;(2)①14和16 ;②定值55,理由见解析;(3)t=22.5和67.5【解析】【分析】(1)先求出线段AB的长,然后根据线段中点的定义解答即可;(2)①由PQ=1,得到|15-(4x-3x)|=1,解方程即可;②先表示出PM、OQ、OM的长,代入4PM+3OQ﹣mOM得到55+(21-7m)x,要使4PM+3OQ﹣mOM为定值,则21-7m=0,解方程即可;(3)分两种情况讨论,画出图形,根据图形列出方程,解方程即可.【详解】(1)∵OA=10cm,OB=5cm,∴AB=OA+OB=15cm.∵点C是线段AB的中点,∴AC=AB=7.5cm,∴CO=AO-AC=10-7.5=2.5(cm).(2)①∵PQ=1,∴|15-(4x-3x)|=1,∴|15-x|=1,∴15-x=±1,解得:x=14或16.②∵PM=10+7x-4x=10+3x,OQ=5+3x,OM=7x,∴4PM+3OQ﹣mOM=4(10+3x)+3(5+3x)-7mx=55+(21-7m)x,要使4PM+3OQ﹣mOM为定值,则21-7m=0,解得:m=3,此时定值为55.(3)分两种情况讨论:①如图1,根据题意得:6t-2t=90,解得:t=22.5;②如图2,根据题意得:6t+90=360+2t,解得:t=67.5.综上所述:当t=22.5秒和67.5秒时,射线OC⊥OD.【点睛】本题考查了一元一次方程的应用.解题的关键是分类讨论.31.(1) AB=15,BC=20;(2) 点N移动15秒时,点N追上点M;(3) BC-AB的值不会随着时间的变化而改变,理由见解析【解析】【分析】(1)根据数轴上点的位置求出AB与BC的长即可,(2)不变,理由为:经过t秒后,A、B、C三点所对应的数分别是-24-t,-10+3t,10+7t,表示出BC,AB,求出BC-AB即可做出判断,(3)经过t秒后,表示P、Q两点所对应的数,根据题意列出关于t的方程,求出方程的解得到t的值,分三种情况考虑,分别求出满足题意t的值即可.【详解】解:(1)AB=15,BC=20,(2)设点N移动x秒时,点N追上点M,由题意得:。
北京市北京四中七年级上册数学期末试卷(含答案)
北京市北京四中七年级上册数学期末试卷(含答案)一、选择题 1.地球与月球的平均距离为384 000km ,将384 000这个数用科学记数法表示为( ) A .3.84×103 B .3.84×104 C .3.84×105 D .3.84×1062.一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是( )A .B .C .D .3.一张普通A4纸的厚度约为0.000104m ,用科学计数法可表示为() mA .21.0410-⨯B .31.0410-⨯C .41.0410-⨯D .51.0410-⨯4.下列方程变形正确的是( )A .方程110.20.5x x --=化成1010101025x x --= B .方程 3﹣x=2﹣5(x ﹣1),去括号,得 3﹣x=2﹣5x ﹣1C .方程 3x ﹣2=2x+1 移项得 3x ﹣2x=1+2D .方程23t=32,未知数系数化为 1,得t=1 5.计算:2.5°=( ) A .15′ B .25′C .150′D .250′ 6.已知a =b ,则下列等式不成立的是( )A .a+1=b+1B .1﹣a =1﹣bC .3a =3bD .2﹣3a =3b ﹣2 7.下列方程的变形正确的有( )A .360x -=,变形为36x =B .533x x +=-,变形为42x =C .2123x -=,变形为232x -= D .21x =,变形为2x = 8.赣州是中国脐橙之乡,据估计2013年全市脐橙总产量将达到150万吨,用科学计数法表示为 ( )吨.A .415010⨯B .51510⨯C .70.1510⨯D .61.510⨯ 9.下列变形中,不正确的是( ) A .若x=y ,则x+3=y+3B .若-2x=-2y ,则x=yC .若x y m m =,则x y =D .若x y =,则x y m m= 10.如图,4张如图1的长为a ,宽为b (a >b )长方形纸片,按图2的方式放置,阴影部分的面积为S 1,空白部分的面积为S 2,若S 2=2S 1,则a ,b 满足( )A .a =32b B .a =2b C .a =52b D .a =3b11.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了( ) A .40分钟 B .42分钟 C .44分钟 D .46分钟12.正方形ABCD 的轨道上有两个点甲与乙,开始时甲在A 处,乙在C 处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm ,乙的速度为每秒5 cm ,已知正方形轨道ABCD 的边长为2 cm ,则乙在第2 020次追上甲时的位置在( )A .AB 上B .BC 上 C .CD 上 D .AD 上二、填空题13.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.14.把一张长方形纸按图所示折叠后,如果∠AOB ′=20°,那么∠BOG 的度数是_____.15.已知关于x 的一元一次方程320202020x x n +=+①与关于y 的一元一次方程3232020(32)2020y y n --=--②,若方程①的解为x =2020,那么方程②的解为_____.16.多项式2x 3﹣x 2y 2﹣1是_____次_____项式.17.若1x =-是关于x 的方程220x a b -+=的解,则代数式241a b -+的值是___________.18.﹣30×(1223-+45)=_____. 19.分解因式: 22xy xy +=_ ___________20.如图,已知OC 是∠AOB 内部的一条射线,∠AOC =30°,OE 是∠COB 的平分线.当∠BOE =40°时,则∠AOB 的度数是_____.21.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”,那么驴子原来所驮货物有_____袋.22.化简:2x+1﹣(x+1)=_____.23.若关于x 的方程2x +a ﹣4=0的解是x =﹣2,则a =____.24.一个水库的水位变化情况记录:如果把水位上升5cm 记作+5cm ,那么水位下降3cm 时水位变化记作_____.三、解答题25.计算与解方程:(1)﹣32+(﹣3)2+3×(﹣2)+|﹣4|;(2)12°24′17″×4﹣30°27′8″;(3)421123x x -+-=. 26.(1)如图1,∠AOB 和∠COD 都是直角,①若∠BOC=60°,则∠BOD= °,∠AOC= °;②改变∠BOC 的大小,则∠BOD 与∠AOC 相等吗?为什么?(2)如图2,∠AOB=100°,∠COD=110°,若∠AOD=∠BOC+70°,求∠AOC 的度数.27.定义:若线段上的一个点把这条线段分成1:2的两条线段,则称这个点是这条线段的三等分点.如图1,点C 在线段AB 上,且AC :CB =1:2,则点C 是线段AB 的一个三等分点. (1)如图2,数轴上点A 、B 表示的数分别为-4、12,点D 是线段AB 的三等分点,求点D 在数轴上所表示的数;(2)在(1)的条件下,点P 从点A 出发以每秒1个单位长度的速度在数轴上向右运动;点Q 从点B 出发,在数轴上先向左运动,与点P 重合后立刻改变方向与点P 同向而行,且速度始终为每秒3个单位长度,点P 、Q 同时出发,设运动时间为t 秒.①用含t 的式子表示线段AQ 的长度;②当点P 是线段AQ 的三等分点时,求点P 在数轴上所表示的数.图128.解方程:2112233x x -+=. 29.计算:()()320192413-÷--⨯-30.如图,在数轴上点A 表示的数a 、点B 表示数b ,a 、b 满足|a ﹣30|+(b+6)2=0.点O 是数轴原点.(1)点A 表示的数为 ,点B 表示的数为 ,线段AB 的长为 .(2)若点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC ,请在数轴上找一点C ,使AC=2BC ,则点C 在数轴上表示的数为 .(3)现有动点P 、Q 都从B 点出发,点P 以每秒1个单位长度的速度向终点A 移动;当点P 移动到O 点时,点Q 才从B 点出发,并以每秒3个单位长度的速度向右移动,且当点P 到达A 点时,点Q 就停止移动,设点P 移动的时间为t 秒,问:当t 为多少时,P 、Q 两点相距4个单位长度?四、压轴题31.如图,数轴上点A 表示的数为4-,点B 表示的数为16,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t 0)>.()1A ,B 两点间的距离等于______,线段AB 的中点表示的数为______;()2用含t 的代数式表示:t 秒后,点P 表示的数为______,点Q 表示的数为______; ()3求当t 为何值时,1PQ AB 2=? ()4若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN 的长.32.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m 和数n 的两点之间的距离等于∣m-n ∣.直接应用:表示数a 和2的两点之间的距离等于____,表示数a 和-4的两点之间的距离等于____;灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a 的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____;(3)若∣a-2∣+∣a+4∣=10,则a =______;实际应用:已知数轴上有A 、B 、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A 、C 两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A 、C 两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。
北京四中七年级(上)期末数学复习试卷(一)
北京四中七年级(上)期末数学复习试卷(一)一、选择题1.(3分)如果“盈利10%”记为+10%,那么“亏损6%”记为()A.﹣16%B.﹣6%C.+6%D.+4%2.(3分)若家用电冰箱冷藏室的温度是4℃,冷冻室比冷藏室的温度低22℃,则冷冻室的温度为()A.﹣18℃B.18℃C.﹣26℃D.26℃3.(3分)如果一个数的等于平方的相反数,则这个数是.4.(3分)﹣3的倒数是()A.﹣3B.﹣C.3D.±35.(3分)下列各数中,最小的数是()A.(﹣2﹣3)2B.C.﹣32÷(﹣3)2D.(﹣1)4二、填空题(共16小题,每小题3分,满分48分)6.(3分)填空:(1)绝对值是7的数是;(2)绝对值小于3.9的整数;(3)当a>0时,|2a|=;(4)当a>1时,|a﹣1|=;(5)当a<1时,|a﹣1|=(6)如果a>3,则|3﹣a|=.7.(3分)已知:数a,b,c在数轴上的对应点如图所示,化简|b﹣a|+|b﹣c|=.8.(3分)已知a、b都是有理数,且|a|=a,|b|=﹣b,则ab是()A.负数B.正数C.非正数D.非负数9.(3分)已知|m|=|2m﹣3|,则m=.10.(3分)已知数轴上有A、B两点,A、B之间的距离为1,点A与原点O的距离为2,则所有满足条件的点B与原点O的距离之和为.11.(3分)(1)已知:|x|=4,|y|=3,且xy<0,则x﹣y=.(2)已知:|x|=4,|y|=3,且x<y,则x﹣y=.(3)已知:|x|=4,y2=9,且|x﹣y|=y﹣x,则x﹣y=.(4)已知:|x|=4,y2=9,则x﹣y=.12.(3分)如果a<0,b>0,a+b>0,那么下列各式中大小关系正确的是()A.a<﹣b<﹣a<b B.a<﹣b<b<﹣a C.﹣b<a<b <﹣a D.﹣b<a<﹣a<b13.(3分)在数轴上,已知在纸面上有一数轴(如图),折叠纸面.(1)若1表示的点与﹣1表示的点重合,则﹣2表示的点与数表示的点重合;(2)若﹣1表示的点与3表示的点重合,5表示的点与数表示的点重合;(3)若数轴上A、B两点之间的距离为c个单位长度,点A表示的有理数是a,并且A、B两点经折叠后重合,请写出此时折线与数轴的交点表示的有理数是多少?14.(3分)如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是()A.M或R B.N或P C.M或N D.P或R 15.(3分)下列说法正确的是()A.如果a>b,那么a2>b2B.如果a2>b2,那么a>bC.如果|a|>|b|,那么a2>b2D.如果a>b,那么|a|>|b| 16.(3分)A、B两地相距6987000m,用科学记数法表示为km.17.(3分)近似数2.30万精确到位.18.(3分)用四舍五入法求1549.647的近似数(保留到百分位)为.19.(3分)下列说法正确的是()A.准确数18精确到个位B.5.649精确到0.1是5.7C.近似数18.0的有效数字的个数与近似数18相同D.由四舍五入将3.995精确到百分位是4.0020.(3分)根据如图中箭头的指向规律,从2013到2014再到2015,箭头的方向是以下图示中的()A.B.C.D.21.(3分)已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…,依此类推,则a2012的值为.三、解答题(共2小题,满分0分)22.计算下列各题(1)(﹣49)﹣(+91)﹣(﹣5)+(﹣9)(2)(﹣12)+(+11.3)﹣(+7.4)+(+8.4)+(+2.7)(3)(4)(5)(6)(7).(8)(9)(10)﹣72+2×(﹣3)2+(﹣6)÷(﹣)3.23.观察下列等式:第一个等式:a1==﹣;第二个等式:a2==﹣;第三个等式:a3==﹣;第四个等式:a4==﹣.按上述规律,回答以下问题:(1)用含n的代数式表示第n个等式:a n==;(2)式子a1+a2+a3+…+a20=.北京四中七年级(上)期末数学复习试卷(一)参考答案一、选择题1.B;2.A;3.﹣;4.B;5.C;二、填空题(共16小题,每小题3分,满分48分)6.±7;±3,±2,±1,0;2a;a﹣1;1﹣a;a﹣3;7.a﹣c;8.C;9.1或3;10.8;11.7或﹣7;﹣7或﹣1;﹣7或﹣1;±7或±1;12.D;13.;14.A;15.C;16.6.987×106;17.百;18.1549.65;19.D;20.D;21.﹣1006;三、解答题(共2小题,满分0分)22.;23.;﹣;﹣;。
北京市北京四中七年级上册数学 压轴题 期末复习试卷(含答案)
北京市北京四中七年级上册数学压轴题期末复习试卷(含答案)一、压轴题1.数轴上A、B两点对应的数分别是﹣4、12,线段CE在数轴上运动,点C在点E的左边,且CE=8,点F是AE的中点.(1)如图1,当线段CE运动到点C、E均在A、B之间时,若CF=1,则AB=,AC =,BE=;(2)当线段CE运动到点A在C、E之间时,①设AF长为x,用含x的代数式表示BE=(结果需化简.....);②求BE与CF的数量关系;(3)当点C运动到数轴上表示数﹣14的位置时,动点P从点E出发,以每秒3个单位长度的速度向右运动,抵达B后,立即以原来一半速度返回,同时点Q从A出发,以每秒2个单位长度的速度向终点B运动,设它们运动的时间为t秒(t≤8),求t为何值时,P、Q 两点间的距离为1个单位长度.2.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC,∠BOD的平分线OM、ON,然后提出如下问题:求出∠MON的度数.特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM和ON仍然是∠AOC和∠BOD的角平分线.其中,按图2方式摆放时,可以看成是ON、OD、OB在同一直线上.按图3方式摆放时,∠AOC和∠BOD相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON的度数为°.图3中∠MON的度数为°.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC和∠BOD的和为90°,所以我们容易得到∠MOC和∠NOD的和,这样就能求出∠MON的度数.小华:设∠BOD为x°,我们就能用含x的式子分别表示出∠NOD和∠MOC度数,这样也能求出∠MON的度数.(2)请你根据他们的谈话内容,求出图1中∠MON的度数.类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC、∠BOD的平分线OM、ON,他们认为也能求出∠MON的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON的度数;若不同意,请说明理由.3.已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(1)如图1,当OB、OC重合时,求∠AOE﹣∠BOF的值;(2)如图2,当∠COD从图1所示位置绕点O以每秒3°的速度顺时针旋转t秒(0<t<10),在旋转过程中∠AOE﹣∠BOF的值是否会因t的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF=14°时,t=秒.4.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)出数轴上点B表示的数;点P表示的数(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.5.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图①,连接边长为2的正三角形三条边的中点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,共有个;边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.6.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠.(1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数.(2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.7.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:[)a,b 表示在范围a b ~中,可以取到a ,不能取到b .根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠. 例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元. (购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价, 请问:()1购买一件标价为500元的商品,顾客的实际付款是多少元?()2购买一件商品,实际付款375元,那么它的标价为多少元?()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.8.已知线段30AB cm =(1)如图1,点P 沿线段AB 自点A 向点B 以2/cm s 的速度运动,同时点Q 沿线段点B 向点A 以3/cm s 的速度运动,几秒钟后,P Q 、两点相遇?(2)如图1,几秒后,点P Q 、两点相距10cm ?(3)如图2,4AO cm =,2PO cm =,当点P 在AB 的上方,且060=∠POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P Q 、两点能相遇,求点Q 的运动速度.9.已知,如图,A 、B 、C 分别为数轴上的三点,A 点对应的数为60,B 点在A 点的左侧,并且与A 点的距离为30,C 点在B 点左侧,C 点到A 点距离是B 点到A 点距离的4倍.(1)求出数轴上B 点对应的数及AC 的距离.(2)点P 从A 点出发,以3单位/秒的速度向终点C 运动,运动时间为t 秒.①当P 点在AB 之间运动时,则BP = .(用含t 的代数式表示)②P 点自A 点向C 点运动过程中,何时P ,A ,B 三点中其中一个点是另外两个点的中点?求出相应的时间t .③当P 点运动到B 点时,另一点Q 以5单位/秒的速度从A 点出发,也向C 点运动,点Q 到达C 点后立即原速返回到A 点,那么Q 点在往返过程中与P 点相遇几次?直.接.写.出.相遇时P 点在数轴上对应的数10.对于数轴上的点P ,Q ,给出如下定义:若点P 到点Q 的距离为d(d≥0),则称d 为点P 到点Q 的d 追随值,记作d[PQ].例如,在数轴上点P 表示的数是2,点Q 表示的数是5,则点P 到点Q 的d 追随值为d[PQ]=3.问题解决:(1)点M ,N 都在数轴上,点M 表示的数是1,且点N 到点M 的d 追随值d[MN]=a(a≥0),则点N 表示的数是_____(用含a 的代数式表示);(2)如图,点C 表示的数是1,在数轴上有两个动点A ,B 都沿着正方向同时移动,其中A 点的速度为每秒3个单位,B 点的速度为每秒1个单位,点A 从点C 出发,点B 表示的数是b ,设运动时间为t(t>0).①当b=4时,问t 为何值时,点A 到点B 的d 追随值d[AB]=2;②若0<t≤3时,点A 到点B 的d 追随值d[AB]≤6,求b 的取值范围.11.如图,已知数轴上点A 表示的数为10,B 是数轴上位于点A 左侧一点,且AB=30,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B 表示的数是________,点P 表示的数是________(用含的代数式表示);(2)若M 为线段AP 的中点,N 为线段BP 的中点,在点P 运动的过程中,线段MN 的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q 从点B 处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时与点Q 相距4个单位长度?12.已知:如图数轴上两点A 、B 所对应的数分别为-3、1,点P 在数轴上从点A 出发以每秒钟2个单位长度的速度向右运动,点Q 在数轴上从点B 出发以每秒钟1个单位长度的速度向左运动,设点P 的运动时间为t 秒.(1)若点P 和点Q 同时出发,求点P 和点Q 相遇时的位置所对应的数;(2)若点P 比点Q 迟1秒钟出发,问点P 出发几秒后,点P 和点Q 刚好相距1个单位长度;(3)在(2)的条件下,当点P 和点Q 刚好相距1个单位长度时,数轴上是否存在一个点C ,使其到点A 、点P 和点Q 这三点的距离和最小,若存在,直接写出点C 所对应的数,若不存在,试说明理由.13.如图,在数轴上从左往右依次有四个点,,,A B C D ,其中点,,A B C 表示的数分别是0,3,10,且2CD AB =.(1)点D 表示的数是 ;(直接写出结果)(2)线段AB 以每秒2个单位长度的速度沿数轴向右运动,同时线段CD 以每秒1个单位长度的速度沿数轴向左运动,设运动时间是t (秒),当两条线段重叠部分是2个单位长度时.①求t 的值;②线段AB 上是否存在一点P ,满足3BD PA PC -=?若存在,求出点P 表示的数x ;若不存在,请说明理由.14.已知:如图,点A 、B 分别是∠MON 的边OM 、ON 上两点,OC 平分∠MON ,在∠CON 的内部取一点P (点A 、P 、B 三点不在同一直线上),连接PA 、PB .(1)探索∠APB 与∠MON 、∠PAO 、∠PBO 之间的数量关系,并证明你的结论; (2)设∠OAP=x°,∠OBP=y°,若∠APB 的平分线PQ 交OC 于点Q ,求∠OQP 的度数(用含有x 、y 的代数式表示).15.已知数轴上三点A ,O ,B 表示的数分别为6,0,-4,动点P 从A 出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P 到点A 的距离与点P 到点B 的距离相等时,点P 在数轴上表示的数是______;(2)另一动点R 从B 出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P 、R 同时出发,问点P 运动多少时间追上点R ?(3)若M 为AP 的中点,N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN 的长度.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)16,6,2;(2)①162x -②2BE CF =;(3)t=1或3或487或527 【解析】【分析】(1)由数轴上A 、B 两点对应的数分別是-4、12,可得AB 的长;由CE =8,CF =1,可得EF 的长,由点F 是AE 的中点,可得AF 的长,用AB 的长减去2倍的EF 的长即为BE 的长;(2)设AF =FE =x ,则CF =8-x ,用含x 的式子表示出BE ,即可得出答案(3)分①当0<t ≤6时; ②当6<t ≤8时,两种情况讨论计算即可得解【详解】(1)数轴上A 、B 两点对应的数分别是-4、12,∴AB=16,∵CE=8,CF=1,∴EF=7,∵点F 是AE 的中点,∴AF=EF=7,,∴AC=AF ﹣CF=6,BE=AB ﹣AE=16﹣7×2=2,故答案为16,6,2;(2)∵点F 是AE 的中点,∴AF=EF ,设AF=EF=x,∴CF=8﹣x ,∴BE=16﹣2x=2(8﹣x ),∴BE=2CF.故答案为①162x -②2BE CF =;(3) ①当0<t ≤6时,P 对应数:-6+3t ,Q 对应数-4+2t ,=4t t =2t =1PQ ﹣+2﹣(﹣6+3)﹣,解得:t=1或3;②当6<t ≤8时,P 对应数()33126t 22t ---=21 , Q 对应数-4+2t , 37=4t =t 2=12t PQ -﹣+2﹣()25﹣21, 解得:48t=7或527; 故答案为t=1或3或487或527. 【点睛】 本题考查了一元一次方程在数轴上的动点问题中的应用,根据题意正确列式,是解题的关健2.(1)135,135;(2)∠MON =135°;(3)同意,∠MON =(90°﹣12x °)+x °+(45°﹣12x °)=135°. 【解析】【分析】(1)由题意可得,∠MON =12×90°+90°,∠MON =12∠AOC +12∠BOD +∠COD ,即可得出答案;(2)根据“OM 和ON 是∠AOC 和∠BOD 的角平分线”可求出∠MOC +∠NOD ,又∠MON =(∠MOC +∠NOD )+∠COD ,即可得出答案;(3)设∠BOC =x °,则∠AOC =180°﹣x °,∠BOD =90°﹣x °,进而求出∠MOC 和∠BON ,又∠MON =∠MOC +∠BOC +∠BON ,即可得出答案.【详解】解:(1)图2中∠MON =12×90°+90°=135°;图3中∠MON =12∠AOC +12∠BOD +∠COD =12(∠AOC +∠BOD )+90°=12⨯90°+90°=135°;故答案为:135,135;(2)∵∠COD =90°,∴∠AOC +∠BOD =180°﹣∠COD =90°,∵OM 和ON 是∠AOC 和∠BOD 的角平分线,∴∠MOC +∠NOD =12∠AOC +12∠BOD =12(∠AOC +∠BOD )=45°, ∴∠MON =(∠MOC +∠NOD )+∠COD =45°+90°=135°;(3)同意,设∠BOC =x °,则∠AOC =180°﹣x °,∠BOD =90°﹣x °,∵OM 和ON 是∠AOC 和∠BOD 的角平分线,∴∠MOC =12∠AOC =12(180°﹣x °)=90°﹣12x °, ∠BON =12∠BOD =12(90°﹣x °)=45°﹣12x °, ∴∠MON =∠MOC +∠BOC +∠BON =(90°﹣12x °)+x °+(45°﹣12x °)=135°. 【点睛】本题考查的是对角度关系及运算的灵活运用和掌握,此类问题的练习有利于学生更好的对角进行理解.3.(1)35°;(2)∠AOE ﹣∠BOF 的值是定值,理由详见解析;(3)4.【解析】【分析】(1)首先根据角平分线的定义求得∠AOE 和∠BOF 的度数,然后根据∠AOE ﹣∠BOF 求解;(2)首先由题意得∠BOC =3t°,再根据角平分线的定义得∠AOC =∠AOB+3t°,∠BOD =∠COD+3t°,然后由角平分线的定义解答即可;(3)根据题意得∠BOF =(3t+14)°,故3314202t t +=+,解方程即可求出t 的值. 【详解】解:(1)∵OE 平分∠AOC ,OF 平分∠BOD , ∴11AOE AOC 11022︒∠=∠=⨯=55°,11AOF BOD 402022︒︒∠=∠=⨯=, ∴∠AOE ﹣∠BOF =55°﹣20°=35°;(2)∠AOE ﹣∠BOF 的值是定值由题意∠BOC =3t°,则∠AOC =∠AOB+3t°=110°+3t°,∠BOD =∠COD+3t°=40°+3t°,∵OE 平分∠AOC ,OF 平分∠BOD ,()11AOE AOC 1103t =22︒︒∴∠=∠=⨯+3552t ︒︒+∴()113BOF BOD 403t 20t 222︒︒︒︒∠=∠=+=+, ∴33AOE BOF 55t 20t 3522︒︒︒︒︒⎛⎫⎛⎫∠-∠=+-+= ⎪ ⎪⎝⎭⎝⎭, ∴∠AOE ﹣∠BOF 的值是定值,定值为35°;(3)根据题意得∠BOF =(3t+14)°,∴3314202t t +=+, 解得4t =.故答案为4.【点睛】本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键.4.(1)﹣14,8﹣5t ;(2)2.5或3秒时P 、Q 之间的距离恰好等于2;(3)点P 运动11秒时追上点Q ;(4)线段MN 的长度不发生变化,其值为11,见解析.【解析】【分析】(1)根据已知可得B 点表示的数为8﹣22;点P 表示的数为8﹣5t ;(2)设t 秒时P 、Q 之间的距离恰好等于2.分①点P 、Q 相遇之前和②点P 、Q 相遇之后两种情况求t 值即可;(3)设点P 运动x 秒时,在点C 处追上点Q ,则AC =5x ,BC =3x ,根据AC ﹣BC =AB ,列出方程求解即可;(3)分①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,利用中点的定义和线段的和差求出MN 的长即可.【详解】(1)∵点A 表示的数为8,B 在A 点左边,AB =22,∴点B 表示的数是8﹣22=﹣14,∵动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒,∴点P 表示的数是8﹣5t .故答案为:﹣14,8﹣5t ;(2)若点P 、Q 同时出发,设t 秒时P 、Q 之间的距离恰好等于2.分两种情况: ①点P 、Q 相遇之前,由题意得3t +2+5t =22,解得t =2.5;②点P 、Q 相遇之后,由题意得3t ﹣2+5t =22,解得t =3.答:若点P 、Q 同时出发,2.5或3秒时P 、Q 之间的距离恰好等于2;(3)设点P 运动x 秒时,在点C 处追上点Q ,则AC =5x ,BC =3x ,∵AC ﹣BC =AB ,∴5x﹣3x=22,解得:x=11,∴点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,都等于11;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=12×22=11;②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=11,∴线段MN的长度不发生变化,其值为11.【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.5.探究三:16,6;结论:n²,;应用:625,300.【解析】【分析】探究三:模仿探究一、二即可解决问题;结论:由探究一、二、三可得:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,边长为1的正三角形共有个;边长为2的正三角形共有个;应用:根据结论即可解决问题.【详解】解:探究三:如图3,连接边长为4的正三角形三条边的对应四等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,共有个;边长为2的正三角形有个.结论:连接边长为的正三角形三条边的对应等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,……,第层有个,共有个;边长为2的正三角形,共有个.应用:边长为1的正三角形有=625(个),边长为2的正三角形有(个). 故答案为探究三:16,6;结论:n², ;应用:625,300.【点睛】本题考查规律型问题,解题的关键是理解题意,学会模仿例题解决问题. 6.(1)41°;(2)见解析. 【解析】 【分析】(1)根据角平分线的定义可得12AOC AOB ∠∠=,12AOE AOD ∠∠=,进而可得∠COE=()12AOB AOD ∠∠-,即可得答案;(2)分别讨论OA 在∠BOD 内部和外部的情况,根据求得结果进行判断即可. 【详解】(1)∵射线OC 平分AOB ∠、射线OE 平分AOD ∠, ∴12AOC AOB ∠∠=,12AOE AOD ∠∠=, ∴COE AOC AOE ∠∠∠=-=1122AOB AOD ∠∠- =()12AOB AOD ∠∠- =12BOD ∠ =01822⨯ =41°(2)α与β之间的数量关系发生变化,如图,当OA 在BOD ∠内部,∵射线OC 平分AOB ∠、 射线OE 平分AOD ∠,∴11O ,22AOC A B AOE AOD ∠∠∠∠==, ∴COE AOC AOE β∠∠∠==+=1122AOB AOD ∠∠+ =()12AOB AOD ∠∠+=12α如图,当OA 在BOD ∠外部,∵射线OC 平分AOB ∠、射线OE 平分AOD ∠,∴11,22AOC AOB AOE AOD ∠∠∠∠==, ∴COE AOC AOE β∠∠∠==+=1122AOB AOD ∠∠=+ =()12AOB AOD ∠∠+ =()013602BOD ∠- =()13602α- =011802α-∴α与β之间的数量关系发生变化. 【点睛】本题考查角平分线的定义,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.7.(1)230元;(2) 790元或者810元;(3) 400,55%. 【解析】()1可对照表格计算,500元的商品打折后为250元,再享受20元抵扣金额,即可得出实际付款;()2实际付款375元时,应考虑到20037520400≤+<与40037530600≤+<这两种情况的存在,所以分这两种情况讨论;()3根据优惠率的定义表示出四个范围的数据,进行比较即可得结果.【详解】解:()1由题意可得:顾客的实际付款()500500150%20230⎡⎤=-⨯-+=⎣⎦ 故购买一件标价为500元的商品,顾客的实际付款是230元.()2设商品标价为x 元.20037520400≤+<与40037530600≤+<两种情况都成立,于是分类讨论①抵扣金额为20元时,1x 203752-=,则x 790=②抵扣金额为30元时,1x 303752-=,则x 810=故当实际付款375元,那么它的标价为790元或者810元.()3设商品标价为x 元,抵扣金额为b 元,则优惠率1x b1b 2100%x 2x+=⨯=+为了得到最高优惠率,则在每一范围内x 均取最小值,可以得到2030405040080012001600>>> ∴当商品标价为400元时,享受到最高的优惠率1155%220=+= 故答案为400,55% 【点睛】本题考查的是日常生活中的打折销售问题,运用一元一次方程解决问题时要抓住未知量,明确等量关系列出方程是关键.8.(1)6秒钟;(2)4秒钟或8秒钟;(3)点Q 的速度为7/cm s 或2.4/cm s . 【解析】 【分析】(1)设经过ts 后,点P Q 、相遇,根据题意可得方程2330t t +=,解方程即可求得t 值;(2)设经过xs ,P Q 、两点相距10cm ,分相遇前相距10cm 和相遇后相距10cm 两种情况求解即可;(3)由题意可知点P Q 、只能在直线AB 上相遇,由此求得点Q 的速度即可.解:(1)设经过ts 后,点P Q 、相遇. 依题意,有2330t t +=, 解得:6t =.答:经过6秒钟后,点P Q 、相遇;(2)设经过xs ,P Q 、两点相距10cm ,由题意得231030x x ++=或231030x x +-=, 解得:4x =或8x =.答:经过4秒钟或8秒钟后,P Q 、两点相距10cm ;(3)点P Q 、只能在直线AB 上相遇,则点P 旋转到直线AB 上的时间为:()120430s =或()1201801030s +=, 设点Q 的速度为/ycm s ,则有4302y =-,解得:7y =; 或10306y =-, 解得 2.4y =,答:点Q 的速度为7/cm s 或2.4/cm s . 【点睛】本题考查了一元一次方程的综合应用解决第(2)(3)问都要分两种情况进行讨论,注意不要漏解.9.(1)30,120(2)①30﹣3t②5或20③﹣15或﹣4834【解析】 【分析】(1)根据A 点对应的数为60,B 点在A 点的左侧,AB =30求出B 点对应的数;根据AC =4AB 求出AC 的距离;(2)①当P 点在AB 之间运动时,根据路程=速度×时间求出AP =3t ,根据BP =AB ﹣AP 求解;②分P 点是A 、B 两个点的中点;B 点是A 、P 两个点的中点两种情况讨论即可; ③根据P 、Q 两点的运动速度与方向可知Q 点在往返过程中与P 点相遇2次.设Q 点在往返过程中经过x 秒与P 点相遇.第一次相遇是点Q 从A 点出发,向C 点运动的途中.根据AQ ﹣BP =AB 列出方程;第二次相遇是点Q 到达C 点后返回到A 点的途中.根据CQ+BP =BC 列出方程,进而求出P 点在数轴上对应的数. 【详解】(1)∵A 点对应的数为60,B 点在A 点的左侧,并且与A 点的距离为30, ∴B 点对应的数为60﹣30=30;∵C 点到A 点距离是B 点到A 点距离的4倍, ∴AC=4AB =4×30=120;(2)①当P点在AB之间运动时,∵AP=3t,∴BP=AB﹣AP=30﹣3t.故答案为30﹣3t;②当P点是A、B两个点的中点时,AP=12AB=15,∴3t=15,解得t=5;当B点是A、P两个点的中点时,AP=2AB=60,∴3t=60,解得t=20.故所求时间t的值为5或20;③相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.∵AQ﹣BP=AB,∴5x﹣3x=30,解得x=15,此时P点在数轴上对应的数是:60﹣5×15=﹣15;第二次相遇是点Q到达C点后返回到A点的途中.∵CQ+BP=BC,∴5(x﹣24)+3x=90,解得x=1054,此时P点在数轴上对应的数是:30﹣3×1054=﹣4834.综上,相遇时P点在数轴上对应的数为﹣15或﹣4834.【点睛】本题考查了一元一次方程的应用,行程问题相等关系的应用,线段中点的定义,进行分类讨论是解题的关键.10.(1)1+a或1-a;(2)12或52;(3)1≤b≤7.【解析】【分析】(1)根据d追随值的定义,分点N在点M左侧和点N在点M右侧两种情况,直接写出答案即可;(2)①分点A在点B左侧和点A在点B右侧两种情况,类比行程问题中的追及问题,根据“追及时间=追及路程÷速度差”计算即可;②【详解】解:(1)点N在点M右侧时,点N表示的数是1+a;点N在点M左侧时,点N表示的数是1-a;(2)①b=4时,AB相距3个单位,当点A在点B左侧时,t=(3-2)÷(3-1)=12,当点A在点B右侧时,t=(3+2)÷(3-1)=52;②当点B在点A左侧或重合时,即d≤1时,随着时间的增大,d追随值会越来越大,∵0<t≤3,点A到点B的d追随值d[AB]≤6,∴1-d+3×(3-1)≤6,解得d≥1,∴d=1,当点B在点A右侧时,即d>1时,在AB重合之前,随着时间的增大,d追随值会越来越小,∵点A到点B的d追随值d[AB]≤6,∴d≤7∴1<d≤7,综合两种情况,d的取值范围是1≤d≤7.故答案为(1)1+a或1-a;(2)①12或52;②1≤b≤7.【点睛】本题考查了数轴上两点之间的距离和动点问题.11.(1)-20,10-5t;(2)线段MN的长度不发生变化,都等于15.(3)13秒或17秒【解析】【分析】(1)根据已知可得B点表示的数为10-30;点P表示的数为10-5t;(2)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.(3) 分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;【详解】解:(1))∵点A表示的数为10,B在A点左边,AB=30,∴数轴上点B表示的数为10-30=-20;∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数为10-5t;故答案为-20,10-5t;(2)线段MN的长度不发生变化,都等于15.理由如下:①当点P在点A、B两点之间运动时,∵M为线段AP的中点,N为线段BP的中点,∴MN=MP+NP=AP+BP=(AP+BP)=AB=15;②当点P运动到点B的左侧时:∵M为线段AP的中点,N为线段BP的中点,∴MN=MP-NP=AP-BP=(AP-BP)=AB=15,∴综上所述,线段MN的长度不发生变化,其值为15.(3)若点P、Q同时出发,设点P运动t秒时与点Q距离为4个单位长度.①点P、Q相遇之前,由题意得4+5t=30+3t,解得t=13;②点P、Q相遇之后,由题意得5t-4=30+3t,解得t=17.答:若点P、Q同时出发,13或17秒时P、Q之间的距离恰好等于4;【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.12.(1)13-;(2)P出发23秒或43秒;(3)见解析.【解析】【分析】(1)由题意可知运动t秒时P点表示的数为-3+2t,Q点表示的数为1-t,若P、Q相遇,则P、Q两点表示的数相等,由此可得关于t的方程,解方程即可求得答案;(2)由点P比点Q迟1秒钟出发,则点Q运动了(t+1)秒,分相遇前相距1个单位长度与相遇后相距1个单位长度两种情况分别求解即可得;(3)设点C表示的数为a,根据两点间的距离进行求解即可得.【详解】(1)由题意可知运动t秒时P点表示的数为-5+t,Q点表示的数为10-2t;若P,Q两点相遇,则有-3+2t=1-t,解得:t=43,∴41 3233 -+⨯=-,∴点P和点Q相遇时的位置所对应的数为13 -;(2)∵点P比点Q迟1秒钟出发,∴点Q运动了(t+1)秒,若点P和点Q在相遇前相距1个单位长度,则()2t 1t 141+⨯+=-, 解得:2t 3=; 若点P 和点Q 在相遇后相距1个单位长度, 则2t+1×(t+1) =4+1, 解得:4t 3=, 综合上述,当P 出发23秒或43秒时,P 和点Q 相距1个单位长度; (3)①若点P 和点Q 在相遇前相距1个单位长度, 此时点P 表示的数为-3+2×23=-53,Q 点表示的数为1-(1+23)=-23, 设此时数轴上存在-个点C ,点C 表示的数为a ,由题意得 AC+PC+QC=|a+3|+|a+53|+|a+23|, 要使|a+3|+|a+53|+|a+23|最小, 当点C 与P 重合时,即a=-53时,点C 到点A 、点P 和点Q 这三点的距离和最小; ②若点P 和点Q 在相遇后相距1个单位长度,此时点P 表示的数为-3+2×43=-13,Q 点表示的数为1-(1+43)=-43, 此时满足条件的点C 即为Q 点,所表示的数为43-, 综上所述,点C 所表示的数分别为-53和-43. 【点睛】本题考查了数轴上的动点问题,一元一次方程的应用,数轴上两点间的距离,正确理解数轴上两点间的距离,从中找到等量关系列出方程是解题的关键.本题也考查了分类讨论思想. 13.(1)16;(2)①t 的值为3或143秒;②存在,P 表示的数为314. 【解析】 【分析】(1)由数轴可知,AB=3,则CD=6,所以D 表示的数为16,(2)①当运动时间是t 秒时,在运动过程中,B 点表示的数为3+2t,A 点表示的数为2t, C 点表示的数为10-t ,D 点表示的数为16-t ,分情况讨论两条线段重叠部分是2个单位长度解答即可;②分情况讨论当t=3秒, t=143秒时,满足3BD PA PC -=的点P , 注意P 为线段AB 上的点对x 的值的限制.【详解】 (1)16(2)①在运动过程中,B 点表示的数为3+2t,A 点表示的数为2t,C 点表示的数为10-t ,D 点表示的数为16-t.当BC =2,点B 在点C 的右边时, 由题意得:32-10-2BC t t =+=(), 解得:t =3,当AD=2,点A 在点D 的左边时, 由题意得:16--22AD t t ==, 解得:t =143. 综上,t 的值为3或143秒 ②存在,理由如下:当t=3时,A 点表示的数为6,B 点表示的数为9,C 点表示的数为7,D 点表示的数为13. 则13-94-6|-7|BD PA x PC x ====,,,-3BD PA PC =, ()4--6|-7|x x ∴=,解得:314x =或112, 又P 点在线段AB 上,则69x ≤≤ 314x ∴=.当143t =时,A 点表示的数为283,B 点表示的数为373,C 点表示的数为163,D 点表示的数为343. 则37343816-1-|-|3333BD PA x PC x ====,,, -3BD PA PC =,∴ 28161--|-|33x x ⎛⎫= ⎪⎝⎭, 解得:7912x =或176, 又283733x ≤≤, x ∴无解综上,P 表示的数为314.【点睛】 本题考查了一元一次方程的应用以及数轴,解题的关键是:(1)由路程=速度×时间结合运动方向找出运动t 秒时点A 、B 、C 、D 所表示的数,(2)根据3BD PA PC -=列出关于t 的含绝对值符号的一元一次方程.14.(1)见解析;(2)∠OQP=180°+12x°﹣12y°或∠OQP=12x°﹣12y°. 【解析】【试题分析】(1)分下面两种情况进行说明;①如图1,点P 在直线AB 的右侧,∠APB+∠MON+∠PAO+∠PBO=360°,②如图2,点P 在直线AB 的左侧,∠APB=∠MON+∠PAO+∠PBO ,(2)分两种情况讨论,如图3和图4.【试题解析】(1)分两种情况:①如图1,点P 在直线AB 的右侧,∠APB+∠MON+∠PAO+∠PBO=360°,证明:∵四边形AOBP 的内角和为(4﹣2)×180°=360°,∴∠APB=360°﹣∠MON ﹣∠PAO ﹣∠PBO ;②如图2,点P 在直线AB 的左侧,∠APB=∠MON+∠PAO+∠PBO ,证明:延长AP 交ON 于点D ,∵∠ADB 是△AOD 的外角,∴∠ADB=∠PAO+∠AOD ,∵∠AP B 是△PDB 的外角,∴∠APB=∠PDB+∠PBO ,∴∠APB=∠MON+∠PAO+∠PBO ;(2)设∠MON=2m°,∠APB=2n°,∵OC 平分∠MON ,∴∠AOC=∠MON=m°,∵PQ 平分∠APB ,∴∠APQ=∠APB=n°,分两种情况:第一种情况:如图3,∵∠OQP=∠MOC+∠PAO+∠APQ ,即∠OQP=m°+x°+n°①∵∠OQP+∠CON+∠OBP+∠BPQ=360°,。
北京四中第一学期期末练习七年级数学试卷与答案
北京四中第一学期期末练习七年级数学试卷与答案(时间:100分钟 满分:110分)姓名: 班级: 学号:一、选择题(每小题3分,共30分)1.下列计算正确的是 ( )A .(-3)-(-5)=-8B .(-3)+(-5)=+8C .3(3)-=-9D .23-=-92.下列各组单项式中,是同类项的是 ( )A .-a 2与(-a) 2B .2a 2b 与212ab C .xyz 与2xy D .3x 2y 与3x 2z 3. 若a b 、互为相反数,那么 ( )A. 0ab <B. 22a b =- C. 33a b = D.a b = 4.下列说法不正确...的是 ( ) ①任何一个有理数的平方都是正数②任何一个有理数的绝对值都是非负数 ③0既不是正数也不是负数④符号不同的两个数是互为相反数的A. ①④B.①③C. ③④D. ②④5. 如果2=x 是方程121-=+a x 的解,那么a 的值是 ( ) A. 0 B. 2 C. 2- D. 6-6.下列说法正确的个数是 ( )①连接两点的线中以线段最短 ②两条直线相交,有且只有一个交点③若两条直线有两个公共点,则这两条直线重合 ④若AB+BC=AC ,则A 、B 、C 三点共线A. 1B. 2C. 3D. 47.今年某种药品的单价比去年便宜了10%,如果今年的单价是a 元,则去年的单价是 ( ) A .(110%)a +元 B .(110%)a -元 C.110%a +元 D .110%a-元8.如果代数式2425y y -+的值为7,那么代数式221y y -+的值等于 ( ) A .2 B .3 C .-2 D .49.如图所示的立方体,如果把它展开,可以是下列图形中的 ( )A B C D 10.有理数a ,b ,c 在数轴上的位置如右图所示,则a c c b b a ++--+= ( )A .-2bB .0C .2cD .2c -2b二、填空题(每小题2分,共20分) 11.125-的倒数为________, —3的相反数为________. 12.单项式243ab c -的系数是 ,次数是 .13. 数轴上与表示—3的点的距离等于213的点表示的有理数是__________. 14. 已知2312(1)02nm -++=,则=+n m .15.据《中国经济周刊》报道,上海世博会第四轮环保活动投资总金额高达821 亿元,其中821亿用科学记数法表示为 ,保留两位有效数字为 . 16.若x 2=4,则x=________,若x 3=-8,则x=________. 17.(1)-=+-222x y xy x (___________); (2)2a -3(b -c )=___________.18.一个物体由多个完全相同的小正方体组成,它的三视图 如右图所示,那么组成这个物体的小正方体的个数为 .19.已知一条直线上有A 、B 、C 三点,线段AB 的中点为P ,AB=10,线段BC 的中点为Q ,BC=6,则线段PQ 的长为 .20.如图,是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第6个图案需要 枚棋子,摆第n 个图案需要 枚棋子.三、解答题…21.(本题3分)(1) 请你在数轴上表示下列有理数:12-, 2.5-,0,-22,-(-4).(2) 将上列各数用“<”号连接起来:____________________________.22.计算(每小题3分)(1) -24+3-16-5; (2) 2342293⎛⎫-÷⨯- ⎪⎝⎭;(3) 3114814315⎛⎫⨯-- ⎪⎝⎭; (4) 115951236149⎛⎫⎛⎫⎛⎫+÷--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(5) ()()241110.5233⎡⎤---⨯⨯--⎣⎦.23.化简:(每小题3分)(1) 57859m n p n m p --+-- (2)2223(32)(541)3a a a a a a ⎡⎤---+-+-⎣⎦24.(本题3分)先化简,再求值:4x 3—[—x 2—2( x 3—12x 2+1)],其中x= —13.25.(本题3分)从一个多项式中减去2ab-3bc+4,由于误认为加上这个式子,得到2bc-2ab-1,试求正确答案.26.(每小题3分)解方程(1) 12)12(2)1(3=+--x x (2) 334515x x -+=27.(本题3分)列方程解应用题种一批树苗,如果每人种15棵,则剩下6棵没人种,如果每人种17棵,则缺6棵树苗,问有多少人种树?28.(本题3分)已知:a ,b 互为相反数,c ,d 互为倒数,2,1,.x y x y ==<求2222)1(xy y x cdy x b a -++++的值.29. (本题4分)如图所示,用三种大小不同的六个正方形 和一个缺角的正方形拼成长方形ABCD, 其中,GH=2cm, GK=2cm, 设BF=x cm, (1)用含x 的代数式表示CM= cm, DM= cm.(2)若DC=10cm ,求x 的值.(3)求长方形ABCD 的面积.30. (本题4分)(1)填空:1—2+3—4+……+49—50= ;1—2+3—4+……+99—100+101= ; (2)计算:11234(1)n n +-+-++-L L附加题:(每小题2分,共10分)1.若a, b 之间有9个整数(不含a, b 本身),则a —b 的范围是 . 2.下面是按一定规律排列的一列数: 第1个数:11122-⎛⎫-+ ⎪⎝⎭; 第2个数:2311(1)(1)1113234⎛⎫⎛⎫---⎛⎫-+++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭; 第3个数:234511(1)(1)(1)(1)11111423456⎛⎫⎛⎫⎛⎫⎛⎫-----⎛⎫-+++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭; ……第n 个数:232111(1)(1)(1)111112342n n n -⎛⎫⎛⎫⎛⎫----⎛⎫-++++ ⎪⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭L .那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是( ) A .第10个数B .第11个数C .第12个数D .第13个数3.已知:a 为有理数,a 3+a 2+a+1=0,求1+a+a 2+a 3+…+a 2012的值.4.已知:2()55a b b b +++=+,210a b --=,求ab 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010~2011学年度第一学期期中初一数学试卷与答案(北京四中)
(时间:100分钟满分:110分)
姓名:_____________班级:_____________学号:_____________
一、选择题(每小题3分,共30分)
1.下列计算正确的是()
A.(-3)-(-5)=-8B.(-3)+(-5)=+8
C.=-9 D.=-9
2.下列各组单项式中,是同类项的是()
A.-a2与(-a) 2B.2a2b与C.xyz与2xy D.3x2y与3x2z
3. 若互为相反数,那么()
A. B. C. D.
4.下列说法不正确的是()
①任何一个有理数的平方都是正数
②任何一个有理数的绝对值都是非负数
③0既不是正数也不是负数
④符号不同的两个数是互为相反数的
A. ①④B.①③ C. ③④ D. ②④
5. 如果是方程的解,那么的值是()
A. 0
B. 2
C.
D.
6.下列说法正确的个数是()
①连接两点的线中以线段最短
②两条直线相交,有且只有一个交点
③若两条直线有两个公共点,则这两条直线重合
④若AB+BC=AC,则A、B、C三点共线
A. 1
B. 2
C. 3
D. 4
7.今年某种药品的单价比去年便宜了10%,如果今年的单价是a元,则去年的单价是()
A.元B.元C.元D.
元
8.如果代数式的值为7,那么代数式的值等于()
A.2 B.3C.-2D.4
9.如图所示的立方体,如果把它展开,可以是下列图形中的()
10.有理数a,b,c在数轴上的位置如右图所示,则()A.-2b B.0
C.2c D.2c-2b
二、填空题(每小题2分,共20分)
11.的倒数为________, —3的相反数为________.
12.单项式的系数是_____________,次数是_____________.
13. 数轴上与表示—3的点的距离等于的点表示的有理数是__________.
14. 已知,则_____________.
15.据《中国经济周刊》报道,上海世博会第四轮环保活动投资总金额高达821亿元,其中821亿用科学
记数法表示为_____________,保留两位有效数字为_____________.16.若x2=4,则x=________,若x3=-8,则x=________.
17.(1)(___________);
(2)2a-3(b-c)=___________.
18.一个物体由多个完全相同的小正方体组成,它的三视图如右图所示,那么组成这个物体的小正方体
的个数为_____________.
19.已知一条直线上有A、B、C三点,线段AB的中点为P,AB=10,线段BC的中点为Q,BC=6,则线段PQ的
长为_____________.
20.如图,是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案
需要37枚棋子,按照这样的方式摆下去,则摆第6个图案需要_____________枚棋子,摆第n个图案
需要_____________枚棋子.
三、解答题
21.(本题3分)
(1) 请你在数轴上表示下列有理数:,,0,-22,-(-4).
(2) 将上列各数用“<”号连接起来:_______________________.
22.计算(每小题3分)
(1) -24+3-16-5;(2) ;
(3) ; (4) ;
(5)
.
23.化简:(每小题3分)
(1)
(2)
24.(本题3分)先化简,再求值:
4x 3—[—x 2 —2( x 3—x 2+1 )],其中x= —
.
25.(本题3分)
从一个多项式中减去2ab-3bc+4,由于误认为加上这个式子,得到2bc-2ab-1,试求正确答案.
26.(每小题3分)解方程
(1) (2)
27.(本题3分)列方程解应用题 种一批树苗,如果每人种15棵,则剩下6棵没人种,如果每人种17棵,则缺6棵树苗,问有多少人种树?
28.(本题3分)已知:,互为相反数,,互为倒数,
求
的值.
29. (本题4分) 如图所示,用三种大小不同的六个正方形和一个缺角的正方形拼成长方形ABCD,其中,GH=2cm, GK=2cm, 设BF=x cm,
(1)用含x 的代数式表示CM=_____________cm ,DM=_____________cm. (2)若DC=10cm ,求x 的值. (3)求长方形ABCD 的面积.
30. (本题4分)
(1)填空:1—2+3—4+……+49—50=_____________;
1—2+3—4+……+99—100+101=_____________;
(2)计算:
附加题:(每小题2分,共10分)
1.若a, b之间有9个整数(不含a, b本身),则a—b的范围是_____________.
2.下面是按一定规律排列的一列数:
第1个数:;
第2个数:;
第3个数:;
……
第个数:.
那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是()A.第10个数B.第11个数C.第12个数D.第13个数
3.已知:a为有理数,a3+a2+a+1=0,求1+a+a2+a3+…+a2012的值.
4.已知:,,求ab的值。
5.当整数k为何值时,方程9x-3=kx+14有正整数解?并求出正整数解。
参考答案:
一、选择题
1.~10. DADAC DDADB
二、填空题
11.; 12. ; 13. ; 14. 2;
15.
16. ; 17. ,; 18. 4;19. 8或2;
20. 127, .
三、解答题
21.(1)略;(2).
22.(1);(2);(3);(4)0; (5).
23.(1); (2).
24.,当.
25. .
26. ; .
27. 解: .依题意:. 解得:
答:有6人种树.
28.解:由题意可得:则:.
,将它们代入上式有:.
29. (1)(或3x).
(2). 解得.
注:本小题为了降低难度,给了DC=10cm这个条件. 实际上,从两个角度表示线段DM长度时
可得3x=2x+2, 解得.
(3)长方形的长为:cm,
宽为:cm.
所以长方形的面积为:
30.(1),;
(2)解:; .
附加题:
1.; 2. A; 3. 1; 4. ;
5. 时原方程有正整数解:。