烷烃简介ppt_图文
合集下载
烷烃的结构与性质课件(共24张PPT)人教版选择性必修3
(4)分解反应:隔绝空气,1000℃以上
知识精讲
(1)甲烷的稳定性
常温下,甲烷与强氧化剂、强酸、强碱反应探究
操作指南 打开输液袋下方开关,缓慢挤压输液袋
KMnO4溶液
溶液颜色变 化情况
滴加酚酞的NaOH溶液 滴加石蕊的H2SO4溶液
结论
通常情况下,CH4的化学性质比较—— 与强氧化剂、强酸、强碱—————
H
单键、σ键、sp3杂化、正四面体结构
知识精讲
根据烷烃的分子结构,
写出相应的结构简式和分 子式,分析他们在组成和 名称 结构上的相似点。
结构简式
分子 式
碳原子 分子中共价
的杂化 键的类型
方式
甲烷
CH4
CH4
sp3
σ键
乙烷
CH3CH3
C2H6
sp3
σ键
甲烷 乙烷
丙烷
丙烷
CH3CH2CH3
C3H8 sp3
σ键
丁烷 CH3CH2CH2CH3 C4H10 sp3
σ键
丁烷
戊烷 CH3CH2CH2CH2CH3 C5H12 sp3
σ键
戊烷
知识精讲
➢烷烃的结构特点 (1)烷烃的结构与甲烷相似 (2)其分子中的碳原子都采取sp3杂化,以伸向四面体四个顶点方向 的sp3杂化轨道与其他碳原子或氢原子结合,形成σ键。 (3)烷烃分子中的共价键全部是单键,单键可以旋转。
一氯乙烷 CH3CH2Cl
1种
二氯乙烷 CH3CHCl2 CH2ClCH2Cl
2种
三氯乙烷 CH3CCl3
CH2ClCHCl2
2种
四氯乙烷 CH2ClCCl3 CHCl2CHCl2
2种
《烷烃》精品课件
《烷烃》
1、烷烃
【温故知新】 甲烷:
2.烷烃的性质: (1)物理性质:
①均为难溶于水的无色物质; ②其熔点、沸点和密度一般随着分子中碳原子数的增加(相对分子质量增大) 而升高,密度均小于水;
碳原子数相同的烷烃,随支链增加,熔沸点降低。 ③随着分子中碳原子数的增加,常温下的状态由气态变为液态,再到固态。
【练习】
某两种气态烃组成的混合物,取其2.24L(标准状况下)充分燃烧,
得到0.16molCO2气体和3.6g液态水。据此判断下列分析中不正确
的是( D )
【解析】标况下,2.24L两种气态烃组成的混合物,其物质的 量为0.1mol,完全燃烧得到0.16molCO2和3.6g水,水的物质的 量为0.2mol,则混合气体平均分子式为C1.6H4 所以,肯定含有C原子数小于1.6的烃,即一定含有甲烷,因甲 烷中含有4个氢原子,则另一种烃也含有4个氢原子.
的是( D )
A.将气体通入酸性KMnO4溶液中,溶液颜色无变化,该气体一定是甲烷 B.在导管口点燃该气体,火焰呈淡蓝色,用干燥的冷烧杯罩在火焰上方,
杯壁有水滴产生,该气体一定是甲烷 C.点燃该气体,火焰呈淡蓝色,用沾有澄清石灰水的冷烧杯罩在火焰上
方,烧杯壁上有白色物质产生,该气体一定是甲烷 D.若上述B、C的现象均能出现,则可判断该气体一定是甲烷
加热、光照或使用催化剂的条件下进行。 有机物除了有以上通性,依据其组成和结构的不同,还具有很多特性。
【课堂小结】
物理性质
烷烃的性质
化学性质
稳定性 可燃性 高温分解 取代反应
【知识海洋】 高温分解: 在隔绝空气并加热至1000℃以上的高温条件下,甲烷分解
可以用于制造颜料、油墨、油漆等
1、烷烃
【温故知新】 甲烷:
2.烷烃的性质: (1)物理性质:
①均为难溶于水的无色物质; ②其熔点、沸点和密度一般随着分子中碳原子数的增加(相对分子质量增大) 而升高,密度均小于水;
碳原子数相同的烷烃,随支链增加,熔沸点降低。 ③随着分子中碳原子数的增加,常温下的状态由气态变为液态,再到固态。
【练习】
某两种气态烃组成的混合物,取其2.24L(标准状况下)充分燃烧,
得到0.16molCO2气体和3.6g液态水。据此判断下列分析中不正确
的是( D )
【解析】标况下,2.24L两种气态烃组成的混合物,其物质的 量为0.1mol,完全燃烧得到0.16molCO2和3.6g水,水的物质的 量为0.2mol,则混合气体平均分子式为C1.6H4 所以,肯定含有C原子数小于1.6的烃,即一定含有甲烷,因甲 烷中含有4个氢原子,则另一种烃也含有4个氢原子.
的是( D )
A.将气体通入酸性KMnO4溶液中,溶液颜色无变化,该气体一定是甲烷 B.在导管口点燃该气体,火焰呈淡蓝色,用干燥的冷烧杯罩在火焰上方,
杯壁有水滴产生,该气体一定是甲烷 C.点燃该气体,火焰呈淡蓝色,用沾有澄清石灰水的冷烧杯罩在火焰上
方,烧杯壁上有白色物质产生,该气体一定是甲烷 D.若上述B、C的现象均能出现,则可判断该气体一定是甲烷
加热、光照或使用催化剂的条件下进行。 有机物除了有以上通性,依据其组成和结构的不同,还具有很多特性。
【课堂小结】
物理性质
烷烃的性质
化学性质
稳定性 可燃性 高温分解 取代反应
【知识海洋】 高温分解: 在隔绝空气并加热至1000℃以上的高温条件下,甲烷分解
可以用于制造颜料、油墨、油漆等
人教版《烷烃》优秀课件PPT
志高山峰矮,路从脚下伸。
天干: 志正则众邪不生。
胸有凌云志,无高不可攀。 莫为一身之谋,而有天下之志。 志当存高远。
甲、乙、丙、丁、戊、 志不真则心不热,心不热则功不贤。
壮志与毅力是事业的双翼。 贫穷是一切艺术职业的母亲。
如:CH3CH3
乙烷
男儿不展同云志,空负天生八尺躯。
己、庚、辛、壬、癸 人之所以异于禽者,唯志而已矣!
说明:有多种支链时,支链编号数和要小。
P30思考讨论:(1) 请按照下列步骤写出己烷同分异构体的结构简式,并用系统命名法进行命名
3、烷烃的系统命名法:
CH3CH2CH3
(数字间用“,” 数字与文字间用“—”)
支链位置---支链数目---支链名称---主链名称
[小结] 名称组成顺序:
含
用“新”某烷表示
③主链碳原子由5个减为4个,两个甲基有两种可能的位置分布
志不立,天下无可成之事。
男儿不展同云志,空负天生八尺躯。
3、烷烃的系统命名法:
(1) 选主链,称“某烷”
选定分子中最长的碳链做主链,并按主链上碳原子的数目称为“某烷”。
CH3—CH—CH2—CH—CH3
CH3
CH2—CH3
己烷
说明①如果最长链不只一条,应选择连有支链多的最长链为主链。
CH3
CH3—C— CH3
CH3—CH2—CH— CH3
CH3—CH—CH2— CH3
课堂检测 C
D
C
丈夫志不大,何以佐乾坤。 志不立,天下无可成之事。
CH3CH2CH3
丙烷
与其当一辈子乌鸦,莫如当一次鹰。
C12H26
十二烷
⑵ 有同分异构体的烷烃命名: “正”某烷、 “异”某烷、 “新”某烷
有机化学课件第-二-章烷烃和环烷烃_图文
熔点高低取决于分子间的作用力 和晶格堆积的密集度。
烷烃熔点的特点 (1) 随相对分子质量增大
而增大。 (2) 偶数碳烷烃比奇数碳
烷烃的熔点升高值 大 (如右图)。 (3)相对分子质量相同的烷 烃,叉链增多,熔点 下降。
偶数碳 奇数碳
(二) 沸点
沸点大小取决于分子间的作用力
烷烃沸点的特点
(1)沸点一般很低。 (非极性,只有色散力)
H2O2 + Fe2+
RCOO-
-e-
电解
HO• + HO- + Fe3+ RCOO •
自由基的稳定性
均裂 H=359.8kJ/mol (88kcal/mol) 共价键均裂时所需的能量称为键解离能。 键解离能越小,形成的自由基越稳定。
苯甲基自由基
稀丙基自由基 三级丁基自由基 异丙基自由基
乙基自由基 甲基自由基 苯基自由基
Hammond假设:过渡态总是与能量相近 的分子的结构相近似。
甲烷氯代反应势能图
甲烷氯代反应势能图的分析
1、第一步反应的活化能比较大,是速控步骤。 2、第二步反应利于平衡的移动。 3、反应 1 吸热,反应 2 放热,总反应放热,所以反应 只需开始时供热。 4、过渡态的结构与中间体(中间体是自由基)相似, 所以过渡态的稳定性顺序与自由基稳定性顺序一致。 推论:3oH最易被取代,2oH次之,1oH最难被取代。
甲烷氯代反应的适用范围
1、 该反应只适宜工业生产而不适宜实验室制备。 2 、该反应可以用来制备一氯甲烷或四氯化碳,不适 宜制备二氯甲烷和三氯甲烷。 3、无取代基的环烷烃的一氯代反应也可以用相应方法 制备,C(CH3)4的一氯代反应也能用此方法制备。
(2) 甲烷卤代反应活性的比较
烷烃熔点的特点 (1) 随相对分子质量增大
而增大。 (2) 偶数碳烷烃比奇数碳
烷烃的熔点升高值 大 (如右图)。 (3)相对分子质量相同的烷 烃,叉链增多,熔点 下降。
偶数碳 奇数碳
(二) 沸点
沸点大小取决于分子间的作用力
烷烃沸点的特点
(1)沸点一般很低。 (非极性,只有色散力)
H2O2 + Fe2+
RCOO-
-e-
电解
HO• + HO- + Fe3+ RCOO •
自由基的稳定性
均裂 H=359.8kJ/mol (88kcal/mol) 共价键均裂时所需的能量称为键解离能。 键解离能越小,形成的自由基越稳定。
苯甲基自由基
稀丙基自由基 三级丁基自由基 异丙基自由基
乙基自由基 甲基自由基 苯基自由基
Hammond假设:过渡态总是与能量相近 的分子的结构相近似。
甲烷氯代反应势能图
甲烷氯代反应势能图的分析
1、第一步反应的活化能比较大,是速控步骤。 2、第二步反应利于平衡的移动。 3、反应 1 吸热,反应 2 放热,总反应放热,所以反应 只需开始时供热。 4、过渡态的结构与中间体(中间体是自由基)相似, 所以过渡态的稳定性顺序与自由基稳定性顺序一致。 推论:3oH最易被取代,2oH次之,1oH最难被取代。
甲烷氯代反应的适用范围
1、 该反应只适宜工业生产而不适宜实验室制备。 2 、该反应可以用来制备一氯甲烷或四氯化碳,不适 宜制备二氯甲烷和三氯甲烷。 3、无取代基的环烷烃的一氯代反应也可以用相应方法 制备,C(CH3)4的一氯代反应也能用此方法制备。
(2) 甲烷卤代反应活性的比较
第2章 烷烃
20
以乙烷的重叠式构象
H
H H H H
HH HH 伞形式
锯架式
21
纽曼投影式:
H H H H H H
d. 注意:构象异构体的互相转换不需发生共价键的断裂。
分子的构象异构体有无数个,无法画出,采用 抓两头,选中间(选内能最高及最低构象), 中间选几个典型。
22
1. 乙烷构象 扭转角:
CH3
CH3CH3
CH3Cl
链终止
35
①. 具有链引发、链增长、链终止的反应在化学上叫自由 基反应(自由基链反应,连锁反应)。
②. 决定反应速度的步骤是
Cl + CH4 CH3 + HCl
链增长反应中的 夺氢过程
③. 不同卤素的反应活性
氟>氯>溴>碘 ④. 各种氢的相对反应活性 结论:叔氢>仲氢>伯氢
+ Br2
hν
CH3
CH3 C Br CH3
99.5%
2). 烷基自由基的稳定性 在自由基链反应中,决定速度步骤中的中间体是烷基自由
远,斥力最小,能量最低,最稳定。
φ= 60°300 °为顺交叉式。 C2上CH3与C3上CH3离的相对 较近,斥力相对较大,稳定性不如④。 φ= 0°为全重叠式。 C2上CH3与C3上CH3离的最近,斥力 最大,能量最高,最不稳定。 φ= 120 °240 °为部分重叠式。C2上CH3与C3上CH3离的较 近,斥力也较大,较不稳定。
16
d. 写法
( 半 取代基位置 字 线 用 ) 阿 拉 伯 数 字 , 数 字 间 用 逗 号 隔 开 位次 取代基名称 母体
相 同 的 取 代 基 合 并 起 来 , 用 一 、 二 、 三 表 示
《烷烃的结构》PPT课件
LOGO
烷烃的结构
有机化学基础
烷烃的结构和性质
1.结构:
a.碳原子只间都以单键(C-C) 结合成链状
b.碳原子其余的价键都跟氢原子结合达到饱和
饱和链烃或烷烃
c. 烷烃的书写
分子式:反应一个分子中原子的种类和数目
最简式:表示物质组成中各元素原子的最简整数比
电子式:用小黑点或“×”表示原子最外层电子成键情况的式
的异构现象。
如CH2=CHCH2CH3与CH3CH=CHCH3 3) 类别异构:由于官能团的不同产生的异
构现象,也叫官能团异构。
如乙醇与二甲醚
LOGO
Page 10
互变异构:
指一类特殊的同分异构现象。其特点是含有
杂原子(如氮、氧或硫原子)的两个同分异构体,
其结构差异仅在于质子和相应的双键的迁移,且
CH3 CH=CHCH3
CH3 C=CH2 CH3
1-丁烯 2-丁烯 2-甲基-1-丙烯
LOGO
Page 13
思考回答
同分异构体之间有哪些相同点和不同点。
分子组成
分子式
相同
相对分子质量
结构
性质
LOGO
不同
Page 14
思考回答
同分异构现象只存在于有机物之间吗?
同分异构现象不只是存在于有机物中, 它广泛存在于化合物中
子
结构式:用短线表示共用电子对的式子,“——”表示共用电子
对
结构简式:省略结构式中C-H,C-C单键后的式子
有机化学中通常用结构简式而不用分子式表示
LOGO
Page 2
结构简式的写法:
HHHHH
︳︳︳︳︳
→ H-C-C-C-C-C-H
烷烃的结构
有机化学基础
烷烃的结构和性质
1.结构:
a.碳原子只间都以单键(C-C) 结合成链状
b.碳原子其余的价键都跟氢原子结合达到饱和
饱和链烃或烷烃
c. 烷烃的书写
分子式:反应一个分子中原子的种类和数目
最简式:表示物质组成中各元素原子的最简整数比
电子式:用小黑点或“×”表示原子最外层电子成键情况的式
的异构现象。
如CH2=CHCH2CH3与CH3CH=CHCH3 3) 类别异构:由于官能团的不同产生的异
构现象,也叫官能团异构。
如乙醇与二甲醚
LOGO
Page 10
互变异构:
指一类特殊的同分异构现象。其特点是含有
杂原子(如氮、氧或硫原子)的两个同分异构体,
其结构差异仅在于质子和相应的双键的迁移,且
CH3 CH=CHCH3
CH3 C=CH2 CH3
1-丁烯 2-丁烯 2-甲基-1-丙烯
LOGO
Page 13
思考回答
同分异构体之间有哪些相同点和不同点。
分子组成
分子式
相同
相对分子质量
结构
性质
LOGO
不同
Page 14
思考回答
同分异构现象只存在于有机物之间吗?
同分异构现象不只是存在于有机物中, 它广泛存在于化合物中
子
结构式:用短线表示共用电子对的式子,“——”表示共用电子
对
结构简式:省略结构式中C-H,C-C单键后的式子
有机化学中通常用结构简式而不用分子式表示
LOGO
Page 2
结构简式的写法:
HHHHH
︳︳︳︳︳
→ H-C-C-C-C-C-H
烷烃完整版课件
合成路线
化学合成法主要是通过有机化学 反应来合成烷烃,如卤代烃的还
原、烯烃的加氢等。
反应条件
不同的合成路线需要不同的反应条 件,如温度、压力、催化剂等。
产物纯化
通过精馏、结晶等方法将合成产物 中的杂质去除,得到纯净的烷烃产 品。
03
烷烃的反应与转化
燃烧反应
烷烃燃烧反应的定义
烷烃与氧气在点燃条件下发生氧化反 应,生成二氧化碳和水。
工艺流程
天然气经过压缩、冷却、 精馏等步骤,得到不同沸 点的烷烃产品。
石油裂解法
原料选择
石油裂解的原料主要是重 质石油馏分,如重油、渣 油等。
裂解反应
在高温和催化剂的作用下, 重质石油馏分发生裂解反 应,生成小分子的烷烃和 烯烃。
产品分离
通过精馏、萃取等方法将 裂解产物中的烷烃和烯烃 分离。
化学合成法
汽油和柴油
由不同碳链长度的烷烃混合而成,是交通运输领 域的主要燃料。
3
液化石油气(LPG) 丙烷和丁烷的混合物,用作燃料和烹饪用途。
有机合成原料
乙烯和丙烯
通过石油裂解得到,是合成塑料、橡胶和纤维等高分子材料的基 础原料。
丁二烯和苯乙烯
用于合成橡胶、树脂和合成纤维等。
高级烷烃
用作表面活性剂、增塑剂和润滑剂等化学品的合成原料。
生物降解困难
烷烃在土壤中的生物降解速度较慢,长期积累可对土壤生态系统产 生负面影响。
农作物污染
被烷烃污染的土壤种植出的农作物可能含有有害物质,影响食品安 全和人类健康。
治理措施与政策建议
01
02
03
04
源头控制
加强烷烃生产、储存、运输等 环节的监管,减少泄漏和排放。
化学合成法主要是通过有机化学 反应来合成烷烃,如卤代烃的还
原、烯烃的加氢等。
反应条件
不同的合成路线需要不同的反应条 件,如温度、压力、催化剂等。
产物纯化
通过精馏、结晶等方法将合成产物 中的杂质去除,得到纯净的烷烃产 品。
03
烷烃的反应与转化
燃烧反应
烷烃燃烧反应的定义
烷烃与氧气在点燃条件下发生氧化反 应,生成二氧化碳和水。
工艺流程
天然气经过压缩、冷却、 精馏等步骤,得到不同沸 点的烷烃产品。
石油裂解法
原料选择
石油裂解的原料主要是重 质石油馏分,如重油、渣 油等。
裂解反应
在高温和催化剂的作用下, 重质石油馏分发生裂解反 应,生成小分子的烷烃和 烯烃。
产品分离
通过精馏、萃取等方法将 裂解产物中的烷烃和烯烃 分离。
化学合成法
汽油和柴油
由不同碳链长度的烷烃混合而成,是交通运输领 域的主要燃料。
3
液化石油气(LPG) 丙烷和丁烷的混合物,用作燃料和烹饪用途。
有机合成原料
乙烯和丙烯
通过石油裂解得到,是合成塑料、橡胶和纤维等高分子材料的基 础原料。
丁二烯和苯乙烯
用于合成橡胶、树脂和合成纤维等。
高级烷烃
用作表面活性剂、增塑剂和润滑剂等化学品的合成原料。
生物降解困难
烷烃在土壤中的生物降解速度较慢,长期积累可对土壤生态系统产 生负面影响。
农作物污染
被烷烃污染的土壤种植出的农作物可能含有有害物质,影响食品安 全和人类健康。
治理措施与政策建议
01
02
03
04
源头控制
加强烷烃生产、储存、运输等 环节的监管,减少泄漏和排放。
有机化学课件 第二章 烷烃
交叉式
交叉式
交叉式
乙烷分子各种构象的能量曲线
2.4.2丁烷的构象 丁烷的结构(模型)
2.4.2丁烷的构象
为 主
丁烷C(2)-C(3)键旋转引起的各构象的能量变化
丁烷C(2)-C(3)键旋转引起的各构象的能量变化
烷烃的物理性质:
1、状态:在常温常压下,1至4个碳原子的直链烷烃是气 体,5至16个碳原子的是液体,17个以上的是固体。 2、熔沸点:随分子量的增大而升高,原因:⑴ 分子大, 接触面积大,范德华力大;⑵ 分子大,分子运动所需能 量大。 A 烷烃的沸点 随C数增加的变化: 1) 直链烷烃的沸点随着分子量(碳数)的增加而有规律地升 高,并且升高的趋势渐缓; 2) 在含同数碳原子的烷烃异构体中,直链异构体的沸点最 高,支链越多,沸点越低.
HH H H HH H H (3) H H H H H (6)
H H
H H (5)
H
(1) 球棒模型
乙烷的重叠式构象 重叠式、交叉式构象比较
(2)透视式表示乙烷的构象
重叠式构象
交叉式构象
(3)纽曼投影式
重叠式构象
交叉式构象
重叠式
重叠式
12.6kJ/mol
• 分子中只含有C、H两种元素的有机化合物叫
碳氢化合物,简称烃. (二) 烃的分类:
根据烃分子中碳原子连接方式 1) 脂肪烃:饱和烃和不饱和烃 2) 脂环烃:分子中碳原子联结成闭合碳环 3) 芳香烃: 含芳香环的一大类烃化合物,如苯环
2.1 烷烃的通式,同系列和同分异构
(1)烷烃—碳原子的四个共价键,除以单键与其他碳原子 相互结合成碳链外,其余的价键也都和氢原子相结合,即 完全为氢原子所饱和。又叫饱和烃 , 由于石蜡是烷烃的混 合物,故烷烃也称石蜡烃. 例如:甲烷,乙烷,丙烷,丁烷(正丁烷,异丁烷),戊烷 (正戊烷, 异戊烷,新戊烷)......
有机化学课件-2-烷烃
二、同分异构:
定义:分子式相同而结构(或物理或化学性质)不同的现象; 分类:同分异构可分为构造异构和立体异构;
构造异构:分子式相同而构造式不同(构造是指分子中原子的连 接顺序); 如:CH3CH2OH和CH3OCH3;
构造异构又可分为:碳架异构、碳链异构、官能团异构和位置异 构。
如:环己烷和己烯 (碳架异构)
HHH HH
其立体结构为:
H
C
H
C
C
H
H
H H
C-C(σ键): 154pm,sp3-sp3; C-H(σ键): 110pm,sp3-s; 由于所有C原子都采用sp3杂化,所以所有的键角都约在109.5 0;
为了书写方便,碳链可写成折线式, 如己烷可写成:
碳原子上的氢原子可省略,但也可标出;但若标出某个碳原子 上的氢原子,则必须标齐。
如: CH3(CH2)4CH3 正己烷
3. 带有支链的烷烃;
CH3
末端具有 CH3CH 结构的,加“异”,
CH3
末端具有 CH3 C 结构的,加“新”,
CH3
CH3
如:CH3CH CH2CH3 异戊烷
CH3
CH3 C CH2CH3 新己烷
CH3
普通命名法只能命名结构简单的有机物,局限性大;但名称可 直接反映出有机物的结构。
CH3CH2CH2CH3和CH3CH(CH3)2(碳链异构) CH3CH2OH和CH3OCH3 (官能团异构)、 CH3CH2CH=CH2和CH3CH=CHCH3 (位置异构);
立体异构: 构造式相同而原子在空间的立体位置不同; 可分为: 顺反异构(见第三章“环烷烃”和第六章“烯烃”)
和对映异构(见第四章“对映异构”)。 烷烃只存在构造异构(碳链异构),没有立体异构; 如:
有机化学第二章烷烃PPT课件
成醇或醚。
在硫酸存在下,烷烃发 生磺化反应,生成磺酸。
烷烃的工业应用
燃料
润滑油
烷烃是燃料的主要成分,如汽油、柴 油等。
烷烃可以作为润滑油的成分,起到润 滑和冷却的作用。
化工原料
烷烃可以作为生产醇、醚、酯等化合 物的原料。
04 烷烃的同分异构现象
同分异构体的概念
01
同分异构体是指具有相同分子式 ,但具有不同结构的现象。
和烯烃。
烷基化反应
将一个碳负离子加到另一个碳 基上,生成新的烷烃。
加氢反应
将氢气与不饱和烃反应,生成 饱和烃。
烷烃的分解反应
氧化反应
脱氢反应
水解反应
磺化反应
在氧气存在下,烷烃发 生氧化反应,生成酮、
醛、酸等化合物。
在加热条件下,烷烃发 生脱氢反应,生成烯烃。
在酸性或碱性条件下, 烷烃发生水解反应,生
02
同分异构体可以是碳链异构、官 能团位置异构和官能团异构等。
烷烃的同分异构现象
烷烃的同分异构现象主要表现在碳链 异构上,即相同数目的碳原子通过不 同的方式连接而成。
烷烃的碳链异构可以分为直链烷烃和 支链烷烃两类。
同分异构体的分类
碳链异构
由于碳原子的排列顺序不同而引 起的同分异构现象。
官能团位置异构
烷烃在其他领域的应用
工业润滑油
烷烃具有良好的润滑性能和稳定性,是工业润滑油的重要组分。随着工业技术的发展,对烷烃润滑油的需求也在 不断增加。
高分子材料
烷烃可以作为合成高分子材料的基础原料,如聚乙烯、聚丙烯等塑料,广泛应用于包装、建筑、电子等领域。随 着环保意识的提高,烷烃基高分子材料正朝着可降解、环保的方向发展。
详细描述
在硫酸存在下,烷烃发 生磺化反应,生成磺酸。
烷烃的工业应用
燃料
润滑油
烷烃是燃料的主要成分,如汽油、柴 油等。
烷烃可以作为润滑油的成分,起到润 滑和冷却的作用。
化工原料
烷烃可以作为生产醇、醚、酯等化合 物的原料。
04 烷烃的同分异构现象
同分异构体的概念
01
同分异构体是指具有相同分子式 ,但具有不同结构的现象。
和烯烃。
烷基化反应
将一个碳负离子加到另一个碳 基上,生成新的烷烃。
加氢反应
将氢气与不饱和烃反应,生成 饱和烃。
烷烃的分解反应
氧化反应
脱氢反应
水解反应
磺化反应
在氧气存在下,烷烃发 生氧化反应,生成酮、
醛、酸等化合物。
在加热条件下,烷烃发 生脱氢反应,生成烯烃。
在酸性或碱性条件下, 烷烃发生水解反应,生
02
同分异构体可以是碳链异构、官 能团位置异构和官能团异构等。
烷烃的同分异构现象
烷烃的同分异构现象主要表现在碳链 异构上,即相同数目的碳原子通过不 同的方式连接而成。
烷烃的碳链异构可以分为直链烷烃和 支链烷烃两类。
同分异构体的分类
碳链异构
由于碳原子的排列顺序不同而引 起的同分异构现象。
官能团位置异构
烷烃在其他领域的应用
工业润滑油
烷烃具有良好的润滑性能和稳定性,是工业润滑油的重要组分。随着工业技术的发展,对烷烃润滑油的需求也在 不断增加。
高分子材料
烷烃可以作为合成高分子材料的基础原料,如聚乙烯、聚丙烯等塑料,广泛应用于包装、建筑、电子等领域。随 着环保意识的提高,烷烃基高分子材料正朝着可降解、环保的方向发展。
详细描述
有机化学烷烃ppt
hv or CH4 + X2
CH3X + CH2X2 + CHX3 + CX4 + HX
CH4 (过量)+ X2
hv or
CH3X + HX
hv or CH4 + X2(过量)
CX4 + HX
反应速率: F2 > Cl2 > Br2 > I2 (不反应)
碳原子的种类
➢ 分析下列化合物所含碳原子种类
CH3
H3C CH2 CH2 CH2 CH3
H3C CH CH2 CH3
CH3
CH3
H3C CH CH2 C CH3
CH3
不能根据碳原子所连接氢原子的个数来确定碳原子的种类, 如中间体(碳正离子等)。
碳原子的种类
➢ 碳原子种类的扩展
H3C CH2 CH2
第二章 烷烃
§1. 烷烃的命名(普通命名法, IUPAC命名法) §2. 烷烃的结构 §3. 构象和构象异构体 §4. 烷烃的物理性质 §5. 烷烃的化学性质
基本概念
✓ 烃:碳氢化合物(烷烃、烯烃、炔烃、芳烃) ✓ 烷烃的通式:CnH2n+2 石蜡、汽油
(例:CH4, C2H6, C3H8, C4H10, ……)
不同取代基的中英文写作顺序相同
4、若主链两端取代基的种类及位次相同时,要遵守最低序列规则。
最低序列规则:第1个取代基位次号最小的同时要使第2取代基的位次号最小。 若第2个还出现选择性,则位次号加和最小。
课本P39,就编号的优先性,应将第(2)的最低序列规则放到(3)的后面。
§1.2 系统命名法 (IUPAC命名法)
较稳定
CH3
60o
烷烃课件
有机物的表示方法(举例说明) 有机物的表示方法(举例说明)
结构式: 结构式:
分子式: 分子式:C6H14 结构简式: 结构简式:
省略C—H键 键 省略 把同一C上的 合并 把同一 上的H合并 上的 省略横线上C—C键 键 省略横线上 CH3—CH—CH—CH—CH 3 2 2 CH3 CH3CHCH2CH2CH3
第三章
有机化合物
第二课时 烷烃
学与问: 学与问:下列有机物在结构上的特点
H H C H
H H H H H H H H C H H C C C H H C C C C H H H H H H H H H
乙烷 丙烷 丁烷
一、烷烃 1、烷烃的概念: 、烷烃的概念: 烃分子中的碳原子之间只以碳碳单键 碳碳单键结合 烃分子中的碳原子之间只以碳碳单键结合 链状,剩余价键均与氢原子结合, 成链状,剩余价键均与氢原子结合,使每个碳 原子的化合价都达到“饱和” 原子的化合价都达到“饱和”。这样的烃叫做 饱和烃,又叫烷烃。 饱和烃,又叫烷烃。 要点: 要点: 1、碳碳单键 、 2、链状 、 3、“饱和”— 每个碳原子都形成四个单键 、 饱和”
三、同分异构现象、同分异构体 同分异构现象、 1、同分异构现象 、 化合物具有相同的分子式, 具有不 具有相同的分子式 化合物具有相同的分子式,但具有不 同结构的现象,叫做同分异构现象。 同结构的现象,叫做同分异构现象。 2、同分异构体: 构体: 、 具有同分异构现象的化合物互称为同分异构 体。
练习1、下列哪些物质是属于同一物质?( 省略) ?(H省略 练习 、下列哪些物质是属于同一物质?( 省略)
4.烷烃的物理性质 烷烃的物理性质 随着烷烃碳原子数的增加,总趋势(递变性) 随着烷烃碳原子数的增加,总趋势(递变性)是: ①气→液→固 液 固 常温下状态: 常温下状态: 1-4:气态 5-16:液态 : : 17以上 17以上:固态 以上: ②熔、沸点升高 相对密度依次增大且小于1 ③相对密度依次增大且小于 ④另外,与甲烷相似,烷烃易溶于有机溶剂, 另外,与甲烷相似,烷烃易溶于有机溶剂, 难溶于水
烷烃ppt课件
长链烷烃
02
可作为润滑油、石蜡等产品的原料。
烷烃溶剂
03
如正己烷、环己烷等,在油漆、涂料、油墨等领域用作溶剂。
其他领域拓展应用
生物医学
某些长链烷烃具有生物活性,可用于药物合成或作为生物标记物 。
环境科学
烷烃作为大气污染物之一,其排放和转化对环境质量有重要影响 。
材料科学
利用烷烃的化学反应性,可合成具有特殊性能的高分子材料或纳 米材料。
学生对本次课程感想和体会分享
学生对烷烃的基本概念和分类有了更清晰的认识,能够准确区分不同类型的烷烃并 理解其命名规则。
学生通过本次课程深入了解了烷烃的物理和化学性质,掌握了烷烃的熔沸点、密度 、溶解性等物理性质以及稳定性、燃烧反应、卤代反应等化学性质。
学生认识到烷烃在日常生活和工业生产中的重要性,对烷烃的来源和用途有了更全 面的了解。
命名与分类方法
命名方法
根据IUPAC命名法,烷烃的命名基于 其最长的连续碳链,称为“主链”或 “母链”。主链上的碳原子依次编号 ,支链作为取代基进行命名。
分类方法
根据碳链的结构,烷烃可分为直链烷 烃(正构烷烃)、支链烷烃(异构烷 烃)和环烷烃。
物理性质及变化规律
物理性质
随着分子量的增加,烷烃的沸点、熔点和密度逐渐升高;溶解度逐渐降低;颜 色由无色逐渐变为淡黄色。
04 烷烃在日常生活 中的应用
燃料领域应用现状
天然气
主要成分为甲烷,广泛用于家庭 、工业等领域作为清洁能源。
汽油、柴油
由不同碳链长度的烷烃混合而成 ,是交通运输领域的主要燃料。
煤油、燃料油
用于航空、航海及一些特殊工业 领域的燃料。
化工原料及溶剂使用情况
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 习惯命名法(也称普通命名法) (正丁烷)
(异丁烷)
(正戊烷) (异戊烷)
(新戊烷)
习惯命名法命名直链烷烃 时,与系统命名法相同。
习惯命名法命名有支链的 烷烃时,一般只适合于简 单的烷烃。
异辛烷 异辛烷中的异不符合命名的规定,是一个特例。
四、烷烃的结构
两个成单电子,呈2价 ?
键长 110 pm, 键角HCH=109o28’
实例三
名称: 2,3,5-三甲基-4-丙基庚烷 2,3-二甲基-4-仲丁基庚烷
错误
实例四
1 确定主链: 最长链为主链。 2 编 号: 第一行 取代基编号为2, 4, 5;
第二行 取代基编号为2, 3, 5;
3. 命
根据最低系列原则, 用第二行编号。 名: 中文名称:2,3,5-三甲基己烷
实例五
1,1,1,1,9
2编
号:第二行编号和第一行编号取代基位次等同(均为3,5,7,9,11),此时用最底
系列原则无法确定选那一种编号,则用下面方法确定编号。让顺 序规
则中顺序较小的基团位次尽可能小,所以,取第二行字编号。
命 名:中文 3,5,9-三甲基-11-乙基-7-(2,4-二甲基己基)十三烷
实 例 八
七、 烷烃的化学性质
烷烃中的C-C、C-H都是σ键 ,极性小,键能大,化学性质稳定 。
(1) 卤化反应
CH4与Cl2在黑暗中不发生反应在强烈日光照射下,发生爆炸 在漫射光、热或某些催化剂作用下,氢被氯取代:
另外还 生成乙烷、更高级烷烃及其氯代物
甲烷氯代反应历程如下:
链引发的特点是只产生自由基不消耗自由基。
能 量
4 2,6 3,5
1=7
全重叠 部分重叠 邻位交叉 对位交叉
2, 4, 6 是不稳定构象 ,
1, 3, 5, 7 是稳定构象 。
1=7 是优势构象(能 量最低的稳定构象称 为优势构象)
旋转角
(3) 正丁烷的构象分布
分子总是倾
向于以稳定
的构象形式
存在
15 %
70 %
15 %
高级烷烃的碳链呈锯齿形
每个C-H、C-H 重叠的能量约 为4 KJ mol-1
C-H 键长
C-C 键长
键角
两面角
两氢相距
110.7 pm 154 pm 109.3o 0o 229 pm
110.7 pm 154 pm 109.3o 60o 250 pm
250 pm > 240 pm > 229 pm E重叠 > E交叉 E=12.1KJmol-1
1 确定主链: 有两个等长的最长链。 比侧链数: 一长链有四个侧链,另一长链有二个 侧链,多的优先。
2 编 号: 第二行取代基编号2,3,4,5; 第一行取代基编号 4,5,6,7。根据最低系列原则, 选第二行编号
3 命 名: 中文名称: 2,3,5-三甲基-4-丙基辛烷
实例六
1 确定主链:有两根等长的主链,侧链数均为三个。 一长链侧链位次为2,4,5; 而另一长链侧链位次 为2,4,6, 小的优先
由于分子主要以交叉式构象的形式存在, 所以高级烷烃的碳链呈锯齿形。
六、物理性质 1 熔点
取决于分子间的作用力和晶格堆积的密集度。
烷烃熔点的特点 (1) 随相对分子质量增大
而增大。 (2) 偶数碳烷烃比奇数碳
烷烃的熔点升高值 大 (如右图)。 (3)相对分子质量相同的烷 烃,叉链增多,熔点下降。
偶数碳 奇数碳
• 异丁烷的氯代反应如下: 即叔自由基的稳定性大于伯自由基,即(CH3)3C >(CH3)2CHCH2
自由基稳定性顺序
伯、仲、叔氢的活性不同,与C-H键的解离能有关。 键的解离能越小,其均裂时吸收的能量越少,因此也就容 易被取代。有关键的解离能如下:
形成自由基3>2>1> CH3·
…… 链增长的特点是:消耗一个自由基的同时产生另一个自由基
。
链终止的特点是只消耗自由基而不再产生自由基。
只有在大量甲烷存在时才能得到一氯甲烷为主的产 物。当CH3Cl达到一定浓度时,·Cl可与之反应,生成 CH2Cl2,进而有CHCl3、CCl4生成。
1. 自由基
定义:带有孤电子的原子或原子团称为自由基。 碳自由基:含有孤电子碳的体系称为碳自由基。
面角。
两面角为0° 时的构象为重叠式构象。 两面角为60° 时的构象为交叉式构象。 两面角在0-60o之间的构象称为扭曲式构象。
(2)乙烷交叉式构象与重叠式构象的表示方法
重叠式构象
交叉式构象
透视式
锯架式
纽曼式
透视式,锯架式与纽曼式的画法也适合于其它有机化合物
(3)乙烷交叉式构象与重叠式构象的能量分析
势
能
中间体:两个过渡态之间的产物称为中间
体。(中间体能分离得到。过渡态不可分
离得到。)
Hammond假设:过渡态总是与能量相近 的分子的结构相近似。
反应坐标
(丙) 卤化反应的取向与自由基的稳定
丙烷的氯代反应如下:
丙烷中,伯氢∶仲氢 = 6∶2 ,那么正丙基氯应为异丙基氯的三 倍,其实不然!! 二级自由基稳定性大于一级自由基,即CH3CHCH3>CH3CH2CH2
当二个氢原子的间距少于240pm(即二个氢原子的半径和)时,氢原子之 间会产生排斥力,从而使分子内能增高,所以重叠式比交叉式内能高。
(4)乙烷构象势能关系图
以单键的旋转角度为横坐标 ,以各种构象的势能为纵坐标。 如果将单键旋转360度,就可以画 出一条构象的势能曲线。由势能 曲线与坐标共同组成的图为构象 的势能关系图。
乙烷、丙烷、丁烷及高级烷烃碳原子也都采取sp3杂化 :
CH3CH3
sp3杂化碳的轨道夹角应该是109.5°其它烷烃SP3杂化 ,形成C-C σ键,键长 154 pm, 键角CCC=111-113o
五、构象
1. 乙烷的构象 (1) 两面角
单键旋转时,相邻碳上的其他键
会交叉成一定的角度(),称为两
2 沸点
沸点大小取决于分子间的作用力
烷烃沸点的特点
(1)沸点一般很低(非极性,只有色散力)。 (2)随相对分子质量增大而增大(运动能量增大,范德华引力增大)。 (3)相对分子质量相同、叉链多、沸点低。(叉链多,分子不易接近)
3密度
烷烃的密度均小于1(0.424-0.780)
4 饱和烃的偶极矩 偶极矩均为0。 5 溶解度 烷烃不溶于水,溶于非极性溶剂.
一级碳自由基 二级碳自由基 三级碳自由基
热均裂产生 辐射均裂产生
自由基的产生
光
2. 自由基反应
定义:由化学键均裂引起的反应称为自由基反应。
(1)反应机理包括链引发、链增长、链终止三个阶段 。
(2)反应必须在光、热或自由基引发剂的作用下发生 。
(3)溶剂的极性、酸或碱催化剂对反应无影响。
3. 过渡态理论 任何一个化学反应都要经过一个过渡态才能完成。
=
过渡态的特点: (1)能量高。 (2)极不稳定,不能分离得到。 (3)旧键未完全断开,新键未完全形成。
反应势能图
反应势能曲线:图中表示势能高低的曲线
。
势
能
反应坐标:由反应物到生成物所经过的能
量要求最低的途径。
过渡态:在反应物互相接近的反应进程中 ,与势能最高点相对应的结构称为过渡态 。
反应坐标
活化能:由反应物转变为过渡态所需要的 能量。
。
2 编 号:黑色编号侧链位次2,4,5;蓝色编号侧链位次3,4,6。按最底系列原 则选黑 色编号。
3命名:中文命名: 2,5-二甲基-4-异丁基庚烷; 或 2,5-二甲基-4-(2-甲丙基)庚烷
实 例 七
1 确定主链: 有两根等长的最长链。侧链数均为5。侧链的位次均为3,5,7,9,11
。
侧链的碳原子数由小到大依次为:1,1,1,2,8 多的优先
烷烃简介ppt_图文.ppt
*4 有机化合物系统命名的基本格式
取代基
+
取代基位置号 + 个数 + 名称
(有多个取代基时,按顺序规 则确定次序,小的在前)
母体
官能团位置号 +名称 (没有官能团时 不涉及位置号)
*5 命名步骤
(A) 确定主链: 链的长短(长的优先),侧链数目(多的优先),
侧链位次大小(小的优先),侧分支的多少(少的 优先)。
1 确定主链:有两根等长的长链。两根长链均有两个侧链。侧链位次 均为4,5。侧链的碳原子数均为3,7。 黑字长链4位无侧分支,5位有侧分支。绿字长链4,5位 侧链均有侧 分支。侧分支少优先。
2 编 号:黑字编号,取代基位置4,5。蓝字编号取代基位置7,8。取黑字编号 。 3 命 名: 中文命名 4-丙基-5-(1-异丙基丁基)十一烷
非键连相互作用 不直接相连的原子
间的排斥力。
稳定构象 位于势能曲线谷
底的构象
扭转张力 非稳定构象具有恢复成稳
定构象的力量;
转动能垒 分子由一个稳定的交叉式构 象转为一个不稳定的重叠式 构象所必须的最低能量。( 25°时转速达1011次/秒)
2、(2)正丁烷的构象势能关系图
沿C2-C3键轴 旋转的转动能 垒 22.6 kJ·mol-1
(B) 支链做取代基。 (C) 编号:按最低系列原则编号。
最低系列原则:使取代基的位置号码尽可能小 。若有多个取代基,逐个比较,直至比出高底为止 。
(D) 按名称基本格式写出全名。
实例一
名称: 3-甲基戊烷
实例二
名称: 2,3,8,8,9,11-六甲基十二烷 2,4,5,5,10,11-六甲基十二烷 错误