模拟电子技术第一章

合集下载

模拟电子技术第1章PPT课件

模拟电子技术第1章PPT课件

多数载流子——自由电子 施主离子
少数载流子—— 空穴
7
8
2. P型半导体
在本征半导体中掺入三价杂质元素,如硼、镓等。
硅原子
+4
空穴
+4
硼原子
+4
8
电子空穴对
空穴
+4 +4
P型半导体
- - --
+3 +4
- - --
- - --
+4 +4
受主离子
多数载流子—— 空穴 少数载流子——自由电子 9
杂质半导体的示意图
(1) 稳定电压UZ ——
在规定的稳压管反向工作电流IZ下UZ,所对应的Iz反min 向工作电u压。
(2) 动态电阻rZ ——
△I
rZ =U /I
rZ愈小,反映稳压管的击穿特性△愈U 陡。
I zmax
(3) 最小稳定工作 电流IZmin——
保证稳压管击穿所对应的电流,若IZ<IZmin则不能稳压。
(4) 最大稳定工作电流IZmax——
17
EW
R
18
(2) 扩散电容CD
当外加正向电压
不同时,PN结两 + 侧堆积的少子的 数量及浓度梯度 也不同,这就相 当电容的充放电 过程。
P区 耗 尽 层 N 区 -
P 区中电子 浓度分布
N 区中空穴 浓度分布
极间电容(结电容)
Ln
Lp
x
电容效应在交流信号作用下才会明显表现出来
18
19
1.2 半导体二极管
30
31
四、稳压二极管
稳压二极管是应用在反向击穿区的特殊二极管
பைடு நூலகம்

电子技术基础_第五版(模拟部分)第一章

电子技术基础_第五版(模拟部分)第一章
处理模拟信号的电子电路称为模拟电路。
18
1.4 放大电路模型
1. 放大电路的符号及模拟信号放大
电压增益(电压放大倍数)
互阻增益
Av

vo vi
Ar

vo ii
()
电流增益
Ai

io ii
互导增益
Ag

io vi
(S)
19
1.4 放大电路模型
2. 放大电路模型 A. 电压放大模型: vo Avvi
• 集成运放基本应用
– 集成运放工作在线性区的应用:运算、滤波
复杂应用
– 集成运放工作在非线性区的应用:电压比较器 7
从系统认识电路,注意知识点之间的相互关系 和知识的完整性
传感器
接收器
信号 发生器
滤波器 隔离电路 阻抗变换
放大器
运算电路
信号转 换电路 比较器 采样保持
功率 放大器
A/D转换
执行机构
Avo ——负载开路时的电压增益
Ro ——从负载端看进去的放大
电路的输出电阻
戴维宁等效
Ri ——输入电阻
20
1.4 放大电路模型
由输出回路得 则电压增益为
vo

AVOvi
RL Ro RL
AV

vo vi

Avo
RL Ro RL
由此可见 RL
Av 即负载的大小会影响增益的大小
要想减小负载的影响,则希望…? (考虑改变放大电路的参数)
16
1.2 信号的频谱
C. 非周期信号
傅里叶变换:
周期信号 非周期信号
离散频率函数 连续频率函数
非周期信号包含了所有可能的频率 成分 (0 )

《模拟电子技术基础》习题课1-2章-概念

《模拟电子技术基础》习题课1-2章-概念
三种基本组态放大电路特性与分析
三种组态为:BJT的共射、共基、共集 FET的共源、共栅、共漏
BJT
FET
差放
共射 共射 共集 共基 共源 共漏 共栅 差模 共模 (带反馈Re)
微变等效电路
p74
Ri
Ro
Av
15
模拟电路习题课(一)
共射小信号(微变)等效分析 输入电阻、输出电阻和增益
Ri
vi ii
rbe // Rb
Av
vo vi
(1 1)R'L rbe (1 1)R'L
1
R'o
rbe
1 1
//
rce1
rbe
1 1
Ro R'o // ro2 R'o
共集放大器的Ri比共射大很多
电压放大倍数接近于1(小于1)因此称为射随器
共集放大器的Ro比共射的小很多
17
模拟电路习题课(一)
共基小信号(微变)等效分析
R'i
U
反向击穿 电压VBR
2
二极管的电阻
模拟电路习题课(一)
直流等效电阻 RD:
RD
VD ID
交流(动态)电阻 rd:
rd
(
diD dvD
)Q1
2vd 2id
rd
(
diD dvD
)Q1
VT ID
3
模拟电路习题课(一)
共射(共E)BJT工作原理
以发射极(E极)作为公共端,EB结正偏,CB结反偏。
iC
参见 P12 图1.3.4
7
3. 饱和区
vCE<vBE vCB<0
4
集电结正偏

模拟电子技术基础简明教程-(第三版)第一章

模拟电子技术基础简明教程-(第三版)第一章

(a)外形图
21
(b)符号
第二节 半导体二极管
半导体二极管的类型: 按半导体材料分:有硅二极管、锗二极管等。 按 PN 结结构分:有点接触型和面接触型二极管。 点接触型管子中不允许通过较大的电流,因结电容
小,可在高频下工作。 面接触型二极管 PN 结的面积大,允许流过的电流
大,但只能在较低频率下工作。 按用途划分:有整流二极管、检波二极管、稳压
O
U
图 1.2.8
30
第二节 半导体二极管
2. 扩散电容 Cd
P区 耗 尽 层 N 区
是由多数载流子在扩散过程中积累而引起的。+ I
V P 区中电子
- R
N 区中空穴
浓 度 分布
浓 度 分布
x
Ln
Lp
在某个正向电压下,P 区中的电子浓度 np(或 N
区的空穴浓度 pn)分布曲线如图中曲线 1 所示。
路中反向电流非常小,几乎等于零, PN 结处
于截止状态。
PN 结具有单向导电性。
正向偏置:
电源正极接P区,负极接N区,即“P正N负” 反向偏置:
电源正极接N区2,0 负极接P区,即“P负N正”
第二节 半导体二极管
2 二极管的伏安特性
半导体二极管又称晶体二极管。 二极管的结构: 将 PN 结封装在塑料、玻璃或金属外壳里,再 从 P 区和 N 区分别焊出两根引线作正、负极。
28
第二节 半导体二极管
二极管的电容效应
当二极管上的电压发生变化时,PN 结中储存的 电荷量将随之发生变化,使二极管具有电容效应。
电容效应包括两部分 势垒电容 扩散电容
1. 势垒电容
是由 PN 结的空间电荷区变化形成的。

《模拟电子技术》(第3版)课件与教案 第1章

《模拟电子技术》(第3版)课件与教案 第1章

第1章 半导体二极管及其应用试确定图(a )、(b )所示电路中二极管D 是处于正偏还是反偏状态,并计算A 、B 、C 、D 各点的电位。

设二极管的正向导通压降V D(on) =。

解:如图E1.1所示,断开二极管,利用电位计算的方法,计算二极管开始工作前的外加电压,将电路中的二极管用恒压降模型等效,有(a )V D1'=(12-0)V =12V >0.7V ,D 1正偏导通,)7.02.22.28.17.012(A +⨯+-=VV B =V A -V D(on))V =6. 215V(b )V D2'=(0-12)V =-12V <0.7V ,D 2反偏截止,有V C =12V ,V D =0V二极管电路如图所示,设二极管的正向导通压降V D(on) =,试确定各电路中二极管D 的工作状态,并计算电路的输出电压V O 。

解:如图E1.2所示,将电路中连接的二极管开路,计算二极管的端电压,有 (a )V D1'=[-9-(-12)]V =3V >0.7V ,D 1正偏导通V O1(b )V D2'=[-3-(-29)]V =1.5V >0.7V ,D 2正偏导通V O2图E1.2(c)V D3'=9V>0.7V,V D4'=[9-(-6)]V=15V>0.7V,V D4'>V D3',D4首先导通。

D4导通后,V D3''=(0.7-6)V=-5.3V<,D3反偏截止,V O3。

二极管电路如图所示,设二极管是理想的,输入信号v i=10sinωt V,试画出输出信号v O的波形。

图E1.3解:如图E1.3所示电路,二极管的工作状态取决于电路中的输入信号v i的变化。

(a)当v i<0时,D1反偏截止,v O1=0;当v i>0时,D1正偏导通,v O1=v i。

(b)当v i<0时,D2反偏截止,v O2=v i;当v i>0时,D2正偏导通,v O2=0。

(c)当v i<0时,D3正偏导通,v O3=v i;当v i>0时,D3反偏截止,v O3=0。

精品文档-模拟电子技术(江晓安)(第三版)-第1章

精品文档-模拟电子技术(江晓安)(第三版)-第1章

第一章 半导体器件
图 1 – 5 P型半导体的共价键结构
第一章 半导体器件
1.2PN 结
1.2.1 异型半导体接触现象 在P型和N型半导体的交界面两侧, 由于电子和空穴的
浓度相差悬殊, 因而将产生扩散运动。 电子由N区向P区扩 散; 空穴由P区向N区扩散。 由于它们均是带电粒子(离 子), 因而电子由N区向P区扩散的同时, 在交界面N区剩下 不能移动(不参与导电)的带正电的杂质离子; 空穴由P区向 N区扩散的同时, 在交界面P区剩下不能移动(不参与导电) 的带负电的杂质离子, 于是形成了空间电荷区。 在P区和N 区的交界处形成了电场(称为自建场)。 在此电场 作用下, 载流子将作漂移运, 其运动方向正好与扩散运动方 向相反, 阻止扩散运动。 电荷扩散得越多, 电场越强, 因而 漂移运动越强, 对扩散的阻力越大。 当达到平衡时, 扩散运 动的作用与漂移运动的作用相等, 通过界面的载流子总数为 0, 即PN结的电流为0。 此时在PN区交界处形成一个缺 少载流子的高阻区, 我们称为阻挡层(又称为耗尽层)。 上述 过程如图1-6(a)、 (b)所示。
所谓“齐纳”击穿, 是指当PN结两边掺入高浓度的杂 质时, 其阻挡层宽度很小, 即使外加反向电压不太高(一般为 几伏), 在PN结内就可形成很强的电场(可达2×106 V/cm), 将共价键的价电子直接拉出来, 产生电子-空穴对, 使反向电 流急剧增加, 出现击穿现象。
第一章 半导体器件
对硅材料的PN结, 击穿电压UB大于7V时通常是 雪崩击穿, 小于4V时通常是齐纳击穿;UB在4V和7V之间 时两种击穿均有。由于击穿破坏了PN结的单向导电特性, 因而一般使用时应避免出现击穿现象。
CT
dQ dU
S W
第一章 半导体器件

模拟电子技术(第三版)江晓安版 第一章ppt

模拟电子技术(第三版)江晓安版 第一章ppt
模拟电子技术基础
教材:《模拟电子技术》(第三版) 作者:江晓安 西电出版社
专业基础课课程体系
专业基础课
专业课
模电 (低频电子线路) 高频电子线路等 电路 数电 (计算机硬件) 信号与系统
学位课
微机原理、单片机等
数字信号处理
语音信号处理
图像信号处理等
考研课—电子技术(模电、数电)、信号与系统
概述:
3. 本征半导体中的两种载流子
运载电荷的粒子称为载流子。 外加电场时,带负电的自由电 子和带正电的空穴均参与导电, 且运动方向相反。由于载流子数 目很少,故导电性很差。 温度升高,热运动加剧,载 流子浓度增大,导电性增强。 热力学温度0K时不导电。 两种载流子
为什么要将半导体变成导电性很差的本征半导体?
2. 本征半导体的结构
共价键
由于热运动,具有足够能量 的价电子挣脱共价键的束缚 而成为自由电子 自由电子的产生使共价键中 留有一个空位置,称为空穴 自由电子与空穴相碰同时消失,称为复合。 动态平衡 一定温度下,自由电子与空穴对的浓度一定;温度升高, 热运动加剧,挣脱共价键的电子增多,自由电子与空穴对 的浓度加大。
电子技术的发展 从电子管→半导体管→集成电路
1904年 电子管问世
1947年 晶体管诞生
1958年集成电 路研制成功
1958年只有4个晶体管 1997年一芯片中有40亿个晶体管 电子管、晶体管、集成电路比较
值得纪念的几位科学家!
第一只晶体管的发明者 (by John Bardeen , William Schockley and Walter Brattain in Bell Lab) 贝尔实验室三名科学家在1947 年11月底发明了晶体管,1956年因 此获得诺贝尔物理学奖。 巴因所做的超导研究于1972年 第二次获得诺贝尔物理学奖。 第一个集成电路及其发明者 ( Jack Kilby from TI ) 1958年9月12日,在德州仪器公司 的实验室,实现了把电子器件集成在 一块半导体材料上的构想。42年后, 于2000年获诺贝尔物理学奖。

模拟电子技术第一章 习题与答案

模拟电子技术第一章 习题与答案

第一章习题与答案1.什么是PN结的偏置?PN结正向偏置与反向偏置时各有什么特点?答:二极管(PN结)阳极接电源正极,阴极接电源负极,这种情况称二极管正向偏置,简称正偏,此时二极管处于导通状态,流过二极管电流称作正向电流。

二极管阳极接电源负极,阴极接正极,二极管处于反向偏置,简称反偏,此时二极管处于截止状态,流过二极管电流称为反向饱和电流。

把二极管正向偏置导通、反向偏置截止的这种特性称之为单向导电性。

2.锗二极管与硅二极管的死区电压、正向压降、反向饱和电流各为多少?答:锗管死区电压约为0.1V,硅管死区电压约为0.5V。

硅二极管的正向压降约0.6~0.8 V;锗二极管约0.2~0.3V。

硅管的反向电流比锗管小,硅管约为1uA,锗管可达几百uA。

3.为什么二极管可以当作一个开关来使用?答:二极管在正向电压作用下电阻很小,处于导通状态,相当于一只接通的开关;在反向电压作用下,电阻很大,处于截止状态,如同一只断开的开关。

4.普通二极管与稳压管有何异同?普通二极管有稳压性能吗?答:普通二极管的主要特性是单向导电性,也就是在正向电压的作用下,导通电阻很小;而在反向电压作用下导通电阻极大或无穷大。

稳压二极管的稳压原理:稳压二极管的特点就是加反向电压击穿后,其两端的电压基本保持不变。

而普通二极管反向击穿后就损坏了。

这样,当把稳压管接入电路以后,若由于电源电压发生波动,或其它原因造成电路中各点电压变动时,负载两端的电压将基本保持不变。

因此,普通二极管在未击穿的条件下具有稳压性能。

5.选用二极管时主要考虑哪些参数?这些参数的含义是什么?答:正向电流IF:在额定功率下,允许通过二极管的电流值。

正向电压降VF:二极管通过额定正向电流时,在两极间所产生的电压降。

最大整流电流(平均值)IOM:在半波整流连续工作的情况下,允许的最大半波电流的平均值。

反向击穿电压VB:二极管反向电流急剧增大到出现击穿现象时的反向电压值。

正向反向峰值电压VRM:二极管正常工作时所允许的反向电压峰值。

第1章模拟电子技术(李雅轩)

第1章模拟电子技术(李雅轩)

结。如图1.1.1(b)所示。
在PN结的P区一侧带负电,N区一侧带正电。PN结便 产生了内电场,内电场的方向从N区指向P区。内电场对扩散 运动起到阻碍作用, 电子和空穴的扩散运动随着内电场的加强 而逐步减弱,直至停止。在界面处形成稳定的空间电荷区,如 图1.1.1(b)所示。
第1章 半导体元件及其特征
(五) 实训报告 (1) 整理数据, 填好表格。
(2) 根据测试结果,用方格坐标描绘二极管正、反向特性 曲线和三极管输入、输出特性曲线。
(3) 通过输出特性曲线,在UCE=6 V, IB=60μA的工作点上求 取共发射极直流电流放大系数 和交流电流放大系数β。 (六) 思考题
(1) 如果要测试硅二极管的正向特性,应如何较合理地安 排测试点,为什么?
实表 1.4三极管的输入特性 UBE/V 0 0.10 0.30 0.50 0.55 0.60 0.65 0.70 0.75 0.80
Uce=0V IB/MA
Uce=2V
第1章 半导体元件及其特征 实表1.5 三极管的输出特性
0
0.20
0.50
1
5
10
0 20 40 60 80 100 120
第1章 半导体元件及其特征
量和损坏情况。
(六) 实训报告 (1) 将测得数据进行分析整理, 填入实表1.1。
实表 1.1正、 反向电阻测量值 二极管类型 万用表电阻挡 正向电阻 反向电阻 2AP型 R×100(Ω) R×1K (Ω) 2CP型 R×100(Ω) R×1K (Ω)
1章 半导体元件及其特征
(2) 根据测量结果, 总结出一般晶体二极管正向电阻、 反 向电阻的范围。 (七) 思考题 通过实训, 你能否回答下列问题? (1) 能否用万用表测量大功率三极管? 测量时使用哪一挡, 为什么? (2) 为什么用万用表不同电阻挡测二极管的正向(或反向) 电阻值时,测得的阻值不同? (3) 用万用表测得的晶体二极管的正、反向电阻是直流电 阻还是交流电阻?用万用表R×10(Ω)挡和R×1k(Ω)挡去测量同 一个二极管的正向电阻时,所得的结果是否相同?为什么?

模拟电子技术第一章PPT课件

模拟电子技术第一章PPT课件

06 反馈放大电路
反馈的基本概念
反馈:将放大电路输出信号的一部分或全部,通过一定 的方式(反馈网络)送回到输入端的过程。
反馈的判断:瞬时极性法。
反馈的分类:正反馈和负反馈。 反馈的连接方式:串联反馈和并联反馈。
正反馈和负反馈
正反馈
反馈信号使输入信号增强的反 馈。
负反馈
反馈信号使输入信号减弱的反 馈。
集成化与小型化
随着便携式设备的普及,模拟电子技术需要实现 更高的集成度和更小体积,以满足设备小型化的 需求。
未来发展趋势
智能化
01
随着人工智能技术的发展,模拟电子技术将逐渐实现智能化,
能够自适应地处理各种复杂信号和数据。
高效化
02
未来模拟电子技术将更加注重能效,通过优化电路设计和材料
选择,提高能量利用效率和系统稳定性。
电压放大倍数的大小与电路中 各元件的参数有关,可以通过 调整元件参数来改变电压放大 倍数。在实际应用中,需要根 据具体需求选择合适的电压放 大倍数。
输入电阻和输出电阻
总结词
详细描述
总结词
详细描述
输入电阻和输出电阻分别表 示放大电路对信号源和负载 的阻抗,影响信号源和负载 的工作状态。
输入电阻越大,信号源的负 载越轻,信号源的输出电压 越稳定;输出电阻越小,放 大电路对负载的驱动能力越 强,负载得到的信号电压越 大。
共基放大电路和共集放大电路
共基放大电路的结构和工作原理
共基放大电路是一种特殊的放大电路,其输入级和输出级采用相同的晶体管,输入信号 通过输入级进入,经过晶体管的放大作用,输出信号被送到输出级,最终输出放大的信
号。
共集放大电路的结构和工作原理
共集放大电路是一种常用的放大电路,其结构包括输入级、输出级和偏置电路。输入信 号通过输入级进入,经过晶体管的放大作用,输出信号被送到输出级,最终输出放大的 信号。共集放大电路的特点是电压增益高、电流增益低、输出电压与输入电压同相位。

模拟电子技术基础学习指导与习题解答第一章

模拟电子技术基础学习指导与习题解答第一章

第一章思考题与习题解答1-1 名词解释半导体、载流子、空穴、自由电子、本征半导体、杂质半导体、N型半导体、P型半导体、PN结。

解半导体——导电能力介乎于导体与绝缘体之间的一种物质。

例如硅(Si)和锗(Ge),这两种半导体材料经常用来做晶体管。

载流子——运载电流的粒子。

在导体中的载流子就是自由电子;半导体中的载流子有两种,就是自由电子与空穴,它们都能参加导电。

空穴——硅和锗均为共价键结构,属于四价元素。

最外层的四个电子与相邻原子最外层电子组成四个共价键,每一个共价键上均有两个价电子运动。

当环境温度升高(加热或光照)时,价电子获得能量摆脱原子核与共价键对它的束缚进入自由空间成为自由电子,在原来的位置上就出现一个空位,称为空穴。

空穴带正电,具有吸引相邻电子的能力,参加导电时只能沿着共价键作依次递补式的运动。

自由电子——位于自由空间,带负电,参加导电时,在自由空间作自由飞翔式的运动,这种载流子称为自由电子。

本征半导体——不掺任何杂质的半导体,也就是指纯净的半导体,称为本征半导体。

杂质半导体——掺入杂质的半导体称为杂质半导体。

N型半导体——在本征硅(或锗)中掺入微量五价元素(如磷P),就形成含有大量电子的N型杂质半导体,又称电子型杂质半导体,简称N型半导体。

P型半导体——在本征硅(或锗)中掺入微量的三价元素(如硼B),就形成含大量空穴的P型杂质半导体,又称空穴型杂质半导体,简称P型半导体。

PN结——将一块P型半导体与一块N型半导体放在一起,通过一定的工艺将它们有机地结合起来,在其交界面上形成一个结,称为PN结。

1-3 选择填空(只填a、b…以下类同)(1)在PN结不加外部电压时,扩散电流漂移电流。

(a.大于,b.小于,c.等于)(2)当PN结外加正向电压时,扩散电流漂移电流。

(a1.大于,b1.小于,c1.等于)此时耗尽层。

(a2.变宽,b2.变窄,c2.不变)(3)当PN结外加反向电压时,扩散电流漂移电流。

模电总结复习-模拟电子技术基础

模电总结复习-模拟电子技术基础

模电复习资料第一章半导体二极管一.半导体的基础知识1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。

2.特性---光敏、热敏和掺杂特性。

3.本征半导体----纯净的具有单晶体结构的半导体。

4. 两种载流子----带有正、负电荷的可移动的空穴和电子统称为载流子。

5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。

体现的是半导体的掺杂特性。

*P型半导体:在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。

*N型半导体: 在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。

6. 杂质半导体的特性*载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。

*体电阻---通常把杂质半导体自身的电阻称为体电阻。

*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。

7. PN结* PN结的接触电位差---硅材料约为~,锗材料约为~。

* PN结的单向导电性---正偏导通,反偏截止。

8. PN结的伏安特性二. 半导体二极管*单向导电性------正向导通,反向截止。

*二极管伏安特性----同PN结。

*正向导通压降------硅管~,锗管~。

*死区电压------硅管,锗管。

3.分析方法------将二极管断开,分析二极管两端电位的高低:若 V阳 >V阴( 正偏 ),二极管导通(短路);若 V阳 <V阴( 反偏 ),二极管截止(开路)。

1)图解分析法该式与伏安特性曲线的交点叫静态工作点Q。

2) 等效电路法➢直流等效电路法*总的解题手段----将二极管断开,分析二极管两端电位的高低:若 V阳 >V阴( 正偏 ),二极管导通(短路);若 V阳 <V阴( 反偏 ),二极管截止(开路)。

*三种模型➢微变等效电路法三. 稳压二极管及其稳压电路*稳压二极管的特性---正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。

1模拟电子技术基础(附答案)

1模拟电子技术基础(附答案)

第一章半导体二极管和三极管第一部分客观题1、正偏二极管端电压增加5%,通过二极管的电流()。

A 增大约5%B 增大小于5%C 增大大于5%D 基本不变。

图1-12、图1-1可用于测量二极管的直流电阻RD 。

当图中电源电压E加倍时,RD会()。

A 加倍B 变大C 不变D 变小3、工作在放大区的某三极管,如果当从12增大到22时,从1变为2,那么它的约为()。

A 70B 83C 91D 1004、在本征半导体中加入()元素可以形成N型半导体。

A 五价B 四价C 三价D 二价5、当晶体管工作在放大区时,发射结电压和集电结电压应为()。

A 前者正偏、后者正偏B 前者正偏、后者反偏C 前者反偏、后者正偏D 前者反偏、后者反偏6、稳压管的稳压区是其工作在()A 正向导通B 方向截止C 反向击穿7、关于晶体管特性曲线的用途,下述说法中的()不正确。

A. 判断BJT的质量B. 估算BJT的一些参数C. 计算放大电路的一些指标D.分析放大器的频率特性8、因为N型半导体的多子是自由电子,所以它带负电。

()9、处于放大状态的晶体管,集电极电流是多子漂移运动形成的。

()10、若耗尽层N沟道MOS管的大于零,则其输入电阻会明显变小。

()11、在N型半导体中如果掺入足够量的三价元素,可将其改型为P型半导体。

()12、若测得一支BJT 的电流IB=50uA,IC=2.5 mA ,则该管的≈IC/IB=50。

()13、工作点是指BJT 的电流和电压在其特性曲线上对应的点。

()14、放大区IC IB。

因>>1, 故BJT适于电流放大,不适于作电压放大。

()15、放大管集电结反向电压增大,会使集电极电流iC 增大,这是因为此时集电结对从基区扩散过来的载流子吸引力增大的结果。

()16、PNP和NPN是一种对称结构。

因此将发射极与集电极对调使用,BJT仍然能正常放大信号。

()17、PN结在无光照、无外加电压时,结电流为零。

模拟电子技术基础第四版课件-第一章

模拟电子技术基础第四版课件-第一章
60A 40A
20A IB=0 9 12 UCE(V)
(1-51)
4
IC(mA
) 此区域中UC1E00UBAE,
集电结正偏,
3
IB>IC,UCE800.3VA 称为饱和区。
60A
2
40A
1
20A
IB=0
3 6 9 12 UCE(V)
(1-52)
IC(mA ) 4 3
2
此1区00域A中 :
I,UB=B80E0<,ICA死=I区CEO 电压60,A称为 截止40区A。
变薄
+ P
-+ -+ -+ -+
内电场被削弱,多子 的扩散加强能够形成 较大的扩散电流。
_ N
外电场
R
内电场
E
(1-22)
2、PN 结反向偏置
_ P
变厚
-+ -+ -+ -+
内电场被被加强,多子
的扩散受抑制。少子漂
移加强,但少子数量有
限,只能形成较小的反
向电流。
+
N
内电场
外电场
R
E
(1-23)
3 PN 结方程
I
U
I I S (e UT 1)
U
三 PN结的击穿
(1-24)
四 PN结的电容效应
PN结高频小信号时的等效电路: rd
势垒电容和扩散电 容的综合效应
(1-25)
1. 2 半导体二极管
1.2. 1 半导体二极管的结构和符号
PN 结加上管壳和引线,就成为半导体二极管。
点接触型
触丝线
PN结
引线 外壳线

模拟电子技术第一章 模拟电路及放大器基础知识

模拟电子技术第一章 模拟电路及放大器基础知识
ui
+
方法是在一个放大器输入端加一 电压源,求出电压源的输出电压 ui和输出电流ii,由此而求得Ri 。
ii Si Ri
放 器 大
图1-5 放大器输入阻抗的理解示意图
下面讨论一下输入阻抗对放大器的影响。
(2)电压输入型放大器应有高输入阻抗 当输入信号源为电压型时,要求放大器也为电压输入 型。对非理想的电压源来讲,由戴维南定理可等效为理想 电压源us 与内阻Rs 之串联,电压源加入放大器的等效电路 如图1-6,此时,在放大器输入端得到的有效电压ui为:
注重培养系统的观念、工程的观念、科技进步 的观念和创新意识,学习科学的思维方法。提倡 快乐学习!
七、考查方法
1. 会看:读图,定性分析 2. 会算:定量计算
考查分析问题的能力
3. 会选:电路形式、器件、参数 考查解决问题的能力--设计能力 4. 会调:仪器选用、测试方法、故障诊断、EDA 考查解决问题的能力--实践能力

(1)输出阻抗的定义
输出阻抗是反映放大器输出带载能力的一个指标,带 载能力由输出阻抗来决定。当放大器在工作时,其输出端 就是一个带载能力较强的信号源,因此我们定义输出阻抗 为从放大器输出端看进去的等效电阻Ro。下面来讨论输出 阻抗对负载的影响。
(2)电压输出型放大器应有低输出阻抗 如果放大器是电压输出型,根据戴维南定理,其输出 端可等效为一个开路输出电压和其内阻Ro的串联,如图1-8 所示,在输出端有负载RL时,落在RL上的输出电压uo为:
二、模拟信号与模拟电路
1. 电子电路中信号的分类
数字信号:离散性
“1”的电 压当量
“1”的倍 数
介于K与K+1之 间时需根据阈值 确定为K或K+1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2 晶体二极管
一、二极管的组成 二、二极管的伏安特性及电流方程 三、二极管的电路模型 四、二极管的主要参数 五、二极管的应用(重点) 六、稳压二极管
一Байду номын сангаас二极管的组成
将PN结封装,引出两个电极,就构成了二极管。
点接触型: 结面积小,结电容小 故结允许的电流小 最高工作频率高
面接触型: 结面积大,结电容大 故结允许的电流大 最高工作频率低
三、PN结的形成及其单向导电性
物质因浓度差而产生的运动称为扩散运动。气 体、液体、固体均有之。
P区空穴 浓度远高 于N区。
N区自由电 子浓度远高
于P区。
扩散运动
扩散运动使靠近接触面P区的空穴浓度降低、靠近接触面 N区的自由电子浓度降低,产生内电场,不利于扩散运动的继 续进行。
PN结的形成
由于扩散运动使P区与N区的交界面缺少多数载流子,形成 内电场,从而阻止扩散运动的进行。内电场使空穴从N区向P 区、自由电子从P区向N 区运动。
ui
4V
R
2.7V
t
+
I+
0
ui
uO -4V
-
U RE F
-
uo
2.7V
②采用简化二极管模型
t
分析,波形如图所示。
0
六、稳压二极管
1. 伏安特性
由一个PN结组 成,反向击穿后 在一定的电流范 围内端电压基本 不变,为稳定电 压。
R
1k
uo UREF UD 2V 0.7V 2.7V
(2)如果ui为幅度±4V的交流三角波,波形如图(b)所 示,分别采用理想二极管模型和简化二极管模型分析电路
并画出相应的输出电压波形。
ui
R
4V
2V
+
I+
t
ui
uO
0
-
U RE F
-
-4V
uo
2V
解:①采用理想二极管
t
模型分析。波形如图所示。
平面型: 结面积可小、可大 小的工作频率高 大的结允许的电流大
二、二极管的伏安特性及电流方程
二极管的电流与其端电压的关系称为伏安特性
i f (u)
u
i IS(eUT 1) (常温下UT 26mV)
击穿 电压
温度的 电压当量
材料 硅Si 锗Ge
开启电压 0.5V 0.1V
导通电压 0.5~0.8V 0.1~0.3V
1. N型半导体
多数载流子
空穴比未加杂质时的数目
多了?少了?为什么?
5
杂质半导体主要靠多数载
流子导电。掺入杂质越多,
多子浓度越高,导电性越强,
实现导电性可控。
磷(P)
2. P型半导体
3
硼(B)
多数载流子
P型半导体主要靠空穴导电, 掺入杂质越多,空穴浓度越高, 导电性越强,
在杂质半导体中,温度变化时, 载流子的数目变化吗?少子与多 子变化的数目相同吗?少子与多 子浓度的变化相同吗?
无杂质 稳定的结构
1、本征半导体的结构
共价键
由于热运动,具有足够能量 的价电子挣脱共价键的束缚
而成为自由电子
自由电子的产生使共价键中 留有一个空位置,称为空穴
自由电子与空穴相碰同时消失,称为复合。
一定温度下,自由电子与空穴对的浓度一定;温度升高, 热运动加剧,挣脱共价键的电子增多,自由电子与空穴对 的浓度加大。
反向饱 开启 和电流 电压
反向饱和电流 1µA以下 几十µA
从二极管的伏安特性可以反映出:
1. 单向导电性
正向特性为 指数曲线
u
i IS(eUT 1)
u
若正向电压u

U

T
则i

ISeUT;
若反向电压u
UT,则i


I

S
2. 伏安特性受温度影响
反向特性为横轴的平行线
T(℃)↑→在电流不变情况下管压降u↓
→反向饱和电流IS↑,U(BR) ↓ T(℃)↑→正向特性左移,反向特性下移
三、二极管的电路模型
导通时i与u成 线性关系
理想 二极管
理想开关 导通时 UD=0 截止时IS=0
近似分析 中最常用
导通时UD=Uon 截止时IS=0
应根据不同情况选择不同的等效电路!
四、二极管的主要参数
• 最大整流电流IF:最大平均值 • 最大反向工作电压UR:最大瞬时值 • 反向电流 IR:即IS • 最高工作频率fM:因PN结有电容效应
结电容为扩散电容(Cd)与势垒电容(Cb)之和。
扩散路程中 电荷的积累 与释放
空间电荷区 宽窄的变化 有电荷的积 累与释放
五、二极管电路的分析
• 二极管工作状态的判断; • 参数计算; • 画波形图;
例 : 二 极 管 构 成 的 限 幅 电 路 如 图 所 示 , R = 1kΩ ,
UREF=2V,输入信号为ui。
模拟/数字电子技术
第1章 半导体器件基础
主讲 :xxx
1.1 半导体基础知识
一、本征半导体 二、杂质半导体 (重点) 三、PN结的形成及其单向导电性
一、本征半导体
1、什么是半导体?什么是本征半导体?
导电性介于导体与绝缘体之间的物质称为半导体。 导体--铁、铝、铜等金属元素等低价元素,其最外层电 子在外电场作用下很容易产生定向移动,形成电流。 绝缘体--惰性气体、橡胶等,其原子的最外层电子受原 子核的束缚力很强,只有在外电场强到一定程度时才可能导 电。 半导体--硅(Si)、锗(Ge),均为四价元素,它们原 子的最外层电子受原子核的束缚力介于导体与绝缘体之间。 本征半导体是纯净的晶体结构的半导体。
漂移运动
因电场作用所产生 的运动称为漂移运动。
参与扩散运动和漂移运动的载流子数目相同, 达到动态平衡,就形成了PN结。
PN结的单向导电性
PN结加正向电压导通: 耗尽层变窄,扩散运动加
剧,由于外电源的作用,形 成扩散电流,PN结处于导通 状态。
PN结加反向电压截止: 耗尽层变宽,阻止扩散运动,
有利于漂移运动,形成漂移电 流。由于电流很小,故可近似 认为其截止。
(1)若 ui为4V的直流信号,分别采用理想二极管模型,
计算电流I和输出电压uo
解:(1)采用理想模型分析。
R
+
I=ui UREF 4V 2V 2mA
R
1k
ui
uo UREF 2V
-
I+
uO
U RE F
-
采用理想二极管简化模型分析。
I=ui UREF-UD 4V 2V 0.7V 1.3mA
2、本征半导体中的两种载流子
运载电荷的粒子称为载流子。 外加电场时,带负电的自由电 子和带正电的空穴均参与导电, 且运动方向相反。由于载流子数 目很少,故导电性很差。 温度升高,热运动加剧,载流 子浓度增大,导电性增强。 热力学温度0K时不导电。
载流子
为什么要将半导体变成导电性很差的本征半导体?
二、杂质半导体
相关文档
最新文档