2015学年山东省烟台市龙口五中七年级(上)数学期中试卷带参考答案(五四学制)

合集下载

山东省烟台市七年级(五四制)上学期数学期中考试试卷

山东省烟台市七年级(五四制)上学期数学期中考试试卷

山东省烟台市七年级(五四制)上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017八下·萧山期中) 下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分) (2016八上·延安期中) 如图,在△ABC中,AB=AC,∠A=40°,CD⊥AB于D,则∠DCB等于()A . 70°B . 50°C . 40°D . 20°3. (2分) (2020八下·西安月考) 下列说法正确的是()A . 无理数没有平方根B . 两个无理数的和还是无理数C . 无理数就是开方开不尽的数D . 任何实数都有立方根4. (2分) (2016八下·云梦期中) 如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A . 12≤a≤13B . 12≤a≤15C . 5≤a≤12D . 5≤a≤135. (2分)如图AD=AE,补充下列一个条件后,仍不能判定△ABE≌△ACD的是()A . ∠B=∠CB . AB=ACC . ∠AEB=∠ADCD . BE=CD6. (2分)若|x﹣5|+2=0,则x﹣y的值是()A . -7B . -5C . 3D . 77. (2分) (2017八上·贵港期末) 已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB,AC于点D,E,若DE=8,则线段BD+CE的长为()A . 5B . 6C . 7D . 88. (2分)的立方根是()A . -B .C . ±D .9. (2分)甲乙两人各用一张正方形的纸片ABCD折出一个45°的角(如图),两人做法如下:甲:将纸片沿AC折叠,使B点落在D点上,则∠1=45°;乙:将纸片沿AF、AE折叠,分别使B、D落在直线AM上B’,则∠EAF=45°.对于两人的做法,下列判断正确的是()A . 甲乙都对B . 甲对乙错C . 甲错乙对D . 甲乙都错10. (2分)如图,在直角坐标系中有线段AB,AB=50cm,A、B到x轴的距离分别为10cm和40cm,B点到y 轴的距离为30cm,现在在x轴、y轴上分别有动点P、Q,当四边形PABQ的周长最短时,则这个值为()A . 50B . 50C . 50 -50D . 50 +50二、填空题 (共8题;共8分)11. (1分)(2018·江津期中) 已知方程x2﹣10x+24=0的两个根是一个等腰三角形的两边长,则这个等腰三角形的周长为________.12. (1分)平方根节是数学爱好者的节目,这一天的月份和日期的数字正好是当年年份最后两位数字的算术平方根,例如2009年的3月3日,2016年的4月4日.请你写出本世纪内你喜欢的一个平方根(题中所举例子除外).________年________月________日.13. (1分) (2017九上·虎林期中) 如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD,若∠A=50°,则∠COD的度数为________.14. (1分)(2017·海陵模拟) 如图,在边长为3cm的正方形ABCD中,点E为BC边上的任意一点,AF⊥AE,AF交CD的延长线于F,则四边形AFCE的面积为________ cm2 .15. (1分) (2017九上·德惠期末) 如图,我国的一艘海监船在钓鱼岛A附近沿正东方向航行,船在B点时测得钓鱼岛A在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C点,此时钓鱼岛A在船的北偏东30°方向.请问船继续航行________海里与钓鱼岛A的距离最近。

青岛版(五四)数学七年级上第一学期期中检测.docx

青岛版(五四)数学七年级上第一学期期中检测.docx

2014~2015学年度第一学期期中检测七年级数学试题(时间120分钟,满分120分)第Ⅰ卷(选择题共36分)一、选择题(共12小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求)1. 2的相反数是()A.2B.-2C. -12D.122.在下面图形中,不能折成正方体的是()A. B. C. D.3.左边的图形绕着虚线旋转一周形成的几何体是右边的()A. B. C. D.4.下列图形中,能够相交的是( )5.某市在一次扶贫助残活动中,共捐款2 580 000元.将2580000元用科学记数法表示为()A.72.5810⨯元 B.70.25810⨯元 C.62.5810⨯元 D.625.810⨯元6.某天股票A 开盘价18元,上午11:30跌了1.5元,下午收盘时又涨了0.3元,则股票A 这天的收盘价为( )A .0.3元B .16.2元C .16.8元D .18元7. 下列说法中,正确的是( )A.正有理数和负有理数统称有理数B.0既不是整数也不是分数C.绝对值等于本身的数只有0D.有理数包括整数和分数8.下列说法不正确的是( )A .两点之间,线段最短B .两条直线相交,只有一个交点C .两点确定一条直线D .过平面上的任意三点,一定能做三条直线9. 若有理数a 、b 满足ab >0,且a +b <0,则下列说法正确的是( )A.a 、b 可能一正一负B. a 、b 都是正数C. a 、b 都是负数D. a 、b 中可能有一个为010.如图所示,根据有理数a ,b ,c 在数轴上的位置,下列关系正确的是( )A .b>a>0>cB .a<b<0<cC .b<a<0<cD .a<b<c<011. 在()()22007228,1,3,1,0,5--------中,负数共有( ) A.4个 B.3个 C.2个 D.1个12. 若23(2)0m n -++=,则2m n +的值为( )A .4-B .1-C .0D .4第Ⅱ卷(非选择题 84分)二、填空题(本题共5个小题,每小题3分,共15分,只要求写出最后结果)13.A 点为数轴上表示1-的点,将A 点沿数轴向左移动2个单位长度到B 点,则B 点所表示的数为 .14.比较:-23 与-34 的大小关系是 -23 -34. 15.小明在写作业时不慎将两滴墨水滴在数轴上(如图),根据图中的数据,判断墨迹盖住的正整数有_________个.16.如图是正方体的平面展开图,每个面上标有一个汉字,与“绿”字相对的面上的字是.17.小明与小刚规定了一种新运算*:若a、b是有理数,则32a b a b*=-,小明计算出254*=-,请你帮小刚计算2(5)*-=.三、解答题(本大题共8小题,共69分.解答要写出必要的文字说明、证明过程或演算步骤.)18.(本题6分)作图题(不写作法)如图,已知四点A,B,C,D。

数学-2015上-七年级-期中考试-答案-联考

数学-2015上-七年级-期中考试-答案-联考

2015学年第一学期七年级期中考试数学试卷答案一、填空题(每小题2分,共30分)1、 +11a b ; 2、14 ; 3、 -6a ; 4、-2.4×610 ;5、54-a; 6、194 ; 7、 +--+-2232415732z x x y x y x y ;8、12 ; 9、-+2269x xy y ; 10、-22259y x ;11、5813+m n;12、19=-k ; 13、1352 ; 14、20 ; 15、222+m n二、选择题(每小题2分,共8分)16、B 17、A 18、A 19、 D三、简答题(每小题5分,共35分)20、当23a =-时原式= 221323⎛⎫-+ ⎪⎝⎭- ( 1分) =41923+- (1分) == 13923-(1分)= 136-(2分)21、原式=22(35)b c a -- 2分=222(93025)b bc c a -+- 2分= 22293025b bc c a -+- 1分22、原式= )32(2c b a -+= 222494612a b c ab ac bc +++-- 5分(其他计算方法酌情给分)23、原式=2222112()36643xy y x x y -+-⋅ 2分=22222222112363636643xy x y y x y x x y -+-⋅ 1分=3324426924x y x y x y -+- 2分24、原式=()()222x a a x -+⎡⎤⎣⎦ 1分= ()2224x a - 2分 = 4224168x a x a -+ 2分25、原式=333244184227a b a b a a b ⋅-⋅ 2分 = 64644427a b a b - 2分 = 6410427a b - 1分 26、2222(4263)33x x x x x x x +----+>- 1分 2222426333x x x x x x x +--++->- 1分 2236433x x x x -+>- 1分34x ->- 1分43x < 1分四.解答题(本题共4题, 27、28题每题6分,29题7分,30题8分,共27分))27、 ∵ A -2B =13-x∴ 2B=A-(3x-1) 1分22231x x x =-+-+ 1分=2243x x -+ 1分∴B= 2322x x -+ 1分 ∴B+A= 2322x x -++222+-x x 1分 = 27332x x -+ 1分 28、()4222222m n -=⨯,()323333nm +=⨯ 1分 422222m n +-=,32333n m ++= 2分 4222m n =,3533n m += 1分4m=2n, 3n=m+5 1分解得m=1,n=2 1分29、(1)444a b a b += 1分()()2222a b = 2分22m n = 1分(2)623a a a = 2分mp = 1分30、( 1 ) S=()()34b t a a t b --- 1分 =334bt ab at ab --+ 1分 =()3b a t ab -+(结果写成3bt at ab -+也可以) 1分(2) 30b a -= 1分3a b = 1分(3)227xa yb ab ++=222921xb yb b ++=()2921x y b ++ 1分 〖 ()921x y ++应该是完全平方数,x 、y 是正整数。

鲁教版五四制七年级(上)数学期中试题(含答案) - 副本

鲁教版五四制七年级(上)数学期中试题(含答案) - 副本

第一学期期中质量调研七年级数学试题(时间:90分钟,满分120分)一、选择题(每题3分,共30分)1.运用等式性质进行的变形,不正确的是()A.如果a=b,那么a﹣c=b﹣c B.如果a=b,那么a+c=b+cC.如果a=b,那么ac=bc D.如果ac=bc,那么a=b2.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A B C D3.下图中,由AB∥CD,能得到∠1=∠2的是( )4.某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是()A.第一次左拐30°,第二次右拐30°B. 第一次右拐50°,第二次左拐130°C.第一次右拐50°,第二次右拐130°D.第一次向左拐50°,第二次向左拐120°已知5.在解方程13132x xx-++=时,方程两边同时乘以6,去分母后,正确的是()A.2x﹣1+6x=3(3x+1)B.2(x﹣1)+6x=3(3x+1)C.2(x﹣1)+x=3(3x+1)D.(x﹣1)+x=3(x+1)6.若A、B、C是直线l上的三点,P是直线l外一点,且P A=6cm,PB=5cm,PC=4cm,则点P到直线l 的距离()A.等于4cm B.大于4cm而小于5cmC.不大于4cm D.小于4cm7.∠α的补角为125°12′,则它的余角为()A.35°12′ B.35°48′ C.55°12′ D.55°48′8.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=35°,则∠2等于()A.55°B.45°C.35°D.65°9.小李在解方程5a-x=13(x为未知数)时,错将-x看作+x,得方程的解为x=-2,则原方程的解为( ) A.x=-3 B.x=0 C.x=2 D.x=110. 足球比赛的记分规则是:胜一场得3分,平一场得1分,负一场得0分,若一个队打了14场比赛得17分,其中负了5场,那么这个队胜了()场。

山东省烟台市七年级(上)期中数学试卷

山东省烟台市七年级(上)期中数学试卷

七年级(上)期中数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.下列代数式书写规范的是()A. 3aB. (5÷3)aC. x5D. 212n2.下列说法正确的是()A. x2x是整式B. 单项式28mn的系数是2,次数是10C. 多项式3x2−54的常数项是−54,二次项的系数是34D. 多项式3a−abc+4c−5a+2c按字母a的降幂排列是5a+3a+2c−abc+4c3.已知5x m+2y3与14x6y n+1是同类项,则(-m)3+n2等于()A. −64B. −60C. 68D. 624.某企业今年3月份产值为m万元,4月份比3月份减少了8%,预测5月份比4月份增加9%,则5月份的产值是()A. (m−8%)(m+9%)万元B. (1−8%)(1+9%)m万元C. (m−8%+9%)万元D. (m−8%+9%)m万元5.当a=1时,a+2a+3a+4a+…+99a+100a的值为()A. 5050B. 100C. −50D. 506.如图是小明家的楼梯示意图,一只蚂蚁从A点沿着楼梯爬到B点,共爬了(3a-b)米,则蚂蚁爬完两级台阶共走了()米.A. 3a−b8B. 3a−b16C. 3(3a−b)16D. 3a−b47.如果一个多项式的次数都相等,则称该多项式为齐次多项式,例如:x3+2x2y+y3是三次齐次多项式,若x m y+3x3y2+5x2y n+y5是齐次多项式,则m n等于()A. 32B. 64C. 81D. 1258.已知(x-5)2+3|y+3|=0,则3xy-4xy-(-2xy)的值为()A. −45B. 15C. 45D. −159.当x=1时,代数式ax5+bx3+cx-5的值为m,则当x=-1时,此代数式的值为()A. −mB. −m−10C. −m−5D. −m+510.将长为40cm,宽为15cm的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为5cm,则n张白纸粘合后的总长度为()cm.A. 35n+5B. 35nC. 40nD. 40n+5二、填空题(本大题共5小题,共15.0分)11.下列整式中:m4n27、-12x2y、x2+y2-1、x、3x2y+3xy2+x4-1、32t3、2x-y,单项式的个数为a,多项式的个数为b,则ab=______.12.请设计一个实际背景来表示代数式2x+3y的实际意义______.13.当k=______时,多项式x2-(3k-2)xy-3y2+7xy-8中不含xy项.14.根据图中标明的尺寸,用含a,b的代数式表示图中阴影部分的面积为______(结果保留π)15.任意写一个自然数,数一数这个数中偶数的个数、奇数的个数和这个自然数的总位数,按“偶-奇-总”的顺序排列得到一个新的整数.不断重复上面的过程,你将会进入一个数学黑洞(得到一个不变的数),这个不变的数是______.三、计算题(本大题共1小题,共12.0分)16.(1)化简:12x-(-3y3-x)-3(-xy+y3)(2)化简:3(x-12y2)-2(x-12y2)-1;(3)先化简,再求值:-(a2-2a+1)-12(-2a2+a-1),其中a=1.四、解答题(本大题共5小题,共43.0分)17.已知多项式(2ax2+3x-1)-(bx-2x2-3)的值与x的取值无关,求代数式-(a-ab)-3(ab-b)+2ab的值.18.如图用一张边长为16cm的正方形纸片,在其四个角上减掉四个边长相同的小正方形可做成无盖的长方体盒子.若设减掉的小正方形的边长为xcm,做成的无盖长方体盒子的容积为Vcm3.(1)要使做成的长方体盒子底面周长为48cm,那么减掉的正方形边长为______cm;(2)用含x的式子表示V=______;(3)填表:x(cm) 1 2 3 4 5V(cm3)______ ______ ______ ______ ______观察表格中的结果,你能得到那些信息?(写出两条)19.当a=3,b=-5时,(1)求下列代数式的值:①a2-b2;②(a-b)(a+b).(2)观察两个代数式的值有什么关系?(3)当a=3,b=4时,上述结论是否仍然成立?再任选a,b的一组数据试一试,由此你能得出什么结论?(4)你能用简便方法计算20192-20182吗?20.观察下面的几个式子:3×12=3×1:3×(12+22)=5×(1+2);3×(12+22+32)=7×(1+2+3);3×(12+22+32+42)=9×(1+2+3+4);……(1)根据上面的规律,第5个式子为______;(2)根据上面的规律,第n个式子为______;(3)利用你发现的规律,写出12+22+32+…+n2=______;(4)利用你发现的规律,求出12+22+32+…+102的值,并写出过程.21.某农户去年承包荒山若干亩.投资7800元改造后,种果树2000棵.今年产量为18000千克,此水果在市场上每千克售a元,在果园每千克售b元.该农户将水果运到市场出售平均每天出售1000千克,需8人帮忙.每人每天付工资25元,农用车运费及其他各项税费平均每天100元.(1)分别用a,b表示两种方式出售水果的收人.(2)若a=1.3,b=1.1,且两种出售方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好?答案和解析1.【答案】A【解析】解:A、3a,正确;B、正确写法是a,错误;C、正确写法是5x,错误;D、正确写法是n,错误;故选:A.由代数式的基本书写格式对比,分析可知哪项正确.此题考查了对代数式的基本书写,应根据代数式的书写格式对比作答.2.【答案】C【解析】解:A、=x,条件没有说明x是整式,因此A错误;B、单项式28mn的系数是1,次数是8;D、按字母a的降幂排列是5a+3a-abc+4c+2c.故选:C.解此题时可将选项一一进行分析,找出错误的反例或原因即可.此题考查的是对多项式的含义的理解,通过对选项的排除可选出答案.3.【答案】B【解析】解:根据题意可得:m+2=6,n+1=3,解得:m=4,n=2,∴(-m)3+n2=-64+4=-60,故选:B.根据同类项的定义,字母x、y的次数分别相等,列方程求m、n的值即可.本题考查同类项的概念,解题的关键是根据同类项的概念列出方程求出m,n,本题属于基础题型.4.【答案】B【解析】解:由题意可得,5月份的产值是:m(1-8%)(1+9%)万元,故选:B.根据题意可以求得5月份的产值,列出相应的代数式.本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.5.【答案】A【解析】解:当a=1时,a+2a+3a+4a+…+99a+100a=1+2+3+4+…+99+100==5050,故选:A.将a=1代入后,利用高斯求和方法计算可得.本题主要考查整式的加减-化简求值与数字的变化规律,解题的关键是掌握高斯求和的计算方法.6.【答案】D【解析】解:由题意可得,蚂蚁爬完两级台阶共走了:=(米),故选:D.根据题意可知(3a-b)米是八级台阶的长度,从而可以得到蚂蚁爬完两级台阶共走的路程.本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.7.【答案】B【解析】解:∵x m y+3x3y2+5x2y n+y5是齐次多项式,∴它是齐五次多项式,所以m+1=5,2+n=5,解得m=4,n=3.所以m n=43=64.故选:B.根据多项式是齐次多项式,先判断该多项式的次数,再求出m、n的值,代入计算即可.本题考查了多项式的次数、乘方运算,解决本题的关键是理解齐次多项式的定义.8.【答案】D【解析】解:由题意可知:x-5=0,y+3=0,∴x=5,y=-3,∴原式=-xy+2xy=xy=-15,故选:D.根据非负数性可求出x与y的值,然后代入原式即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.9.【答案】B【解析】解:将x=1代入ax5+bx3+cx-5=m,得:a+b+c-5=m,则a+b+c=m+5,当x=-1时,原式=-a-b-c-5=-(a+b+c)-5=-m-5-5=-m-10,故选:B.依据当x=1时代数式ax5+bx3+cx的值与当x=-1时代数式ax5+bx3+cx的值互为相反数进行计算.本题主要考查了代数式求值问题,解决问题的关键是掌握整体代入法.解答求代数式的值问题的时,如果给出的代数式可以化简,要先化简再求值.10.【答案】A【解析】解:根据题意和所给图形可得出:总长度为40n-5(n-1)=35n+5(cm),故选:A.n张白纸黏合,需黏合(n-1)次,重叠5(n-1)cm,所以总长可以表示出来.本题主要考查列代数式,解题的关键是结合图形找到粘合部分的次数及代数式的表示.11.【答案】12【解析】解:单项式有、-x2y、x、32t3,即a=4,多项式有x2+y2-1、3x2y+3xy2+x4-1、2x-y,即b=3,ab=12,故答案为:12.先选出多项式和单项式,即可得出答案.本题考查了对多项式、单项式的应用,能理解多项式和单项式的定义是解此题的关键,12.【答案】本子每本x元,铅笔盒每个y元,则购买2本本子和3个铅笔盒的总钱数为(2x+3y)元(答案不唯一)【解析】解:本子每本x元,铅笔盒每个y元,则购买2本本子和3个铅笔盒的总钱数为(2x+3y)元,故答案为:本子每本x元,铅笔盒每个y元,则购买2本本子和3个铅笔盒的总钱数为(2x+3y)元(答案不唯一).结合实际问题,赋予代数式实际意义即可.此题考查的知识点是代数式,此类问题答案不唯一,只需结合实际,根据代数式的特点解答.13.【答案】3【解析】解:x2-(3k-2)xy-3y2+7xy-8=x2-3y2+(9-3k)xy-8,由于不含xy项,故9-3k=0,解得k=3.先将多项式合并同类项,不含xy项即系数为0,列出方程求得k的值.解答此题必须先合并同类项,否则极易根据-(3k-2)=0误解出k=.14.【答案】12ab+(π4-12)b2【解析】解:图中阴影部分面积为ab+πb2-(a+b)•b=ab+(-)b2,故答案是:ab+(-)b2.根据长方形的面积+圆的面积-直角三角形面积求解可得.本题主要考查列代数式与代数式求值,解题的关键是掌握代数式书写规范与求值的能力.15.【答案】123【解析】解:根据题意取数字2008经过一步之后变为404,经过第二步后变为303,再变为123,再变为123,即发现黑洞数是123.故答案为:123.根据题意,取数字2008经过一步之后变为404,经过第二步后变为303,再变为123,再变为123,再变为123,即发现不变数是123,从而求解.此题主要了数字变化规律,根据已知正确理解题意,弄清偶数和奇数的概念是解题关键.16.【答案】解:(1)原式=12x+3y3+x+3xy-3y3=32x+3xy;(2)原式=3x-32y2-2x+y2-1=x-12y2-1;(3)原式=-a2+2a-1+a2-12a+12=32a-12,当a=1时,原式=32-12=1.【解析】(1)去括号,再合并同类项即可得;(2)去括号,再合并同类项即可得;(3)先去括号、合并同类项,再代入求值.本题主要考查整式的加减-化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.17.【答案】解:原式=(2a+2)x2+(3-b)x+2,∵多项式(2ax2+3x-1)-(bx-2x2-3)的值与x的取值无关,∴2a+2=0,3-b=0,解得:a=-1,b=3,∴-(a-ab)-3(ab-b)+2ab=-a+ab-3ab+3b+2ab=-a+3b,当a=-1,b=3时,原式=1+9=10.【解析】根据题意首先得出a,b的值,再去括号进而合并同类项,把a,b的值代入求出答案.此题主要考查了整式的加减,正确合并同类项是解题关键.18.【答案】2 x(16-2x)2196 288 300 256 180【解析】解:(1)由题意得16-2x=48÷4解得x=2;(2)V=(16-2x)2•x=x(16-2x)2.故答案为:x(16-2x)2.(3)分别把x=1,2,3,4,5代入x(16-2x)2观察表格中的结果,能得到:①当x=3时,体积最大为300;②盒子的容积V随x的增大先增大,后减小.(1)由已知图形,折成的无盖的长方体的底是边长为16-2x(cm)的正方形,由周长进一步代入求得答案;(2)根据(1)底是边长为16-2x(cm)的正方形,高为x,根据长方体的体积列出代数式;(3)由(2)分别把x的值代入即可求出V.的代数式,分别把x的值代入即可求出V.比较V值,易得结论.此题考查了学生对列代数式、代数式求值的理解与掌握.解答此题的关键是通过观察先确定折成的无盖的长方体的底是边长和高.19.【答案】解:(1)当a=3,b=-5时,①a2-b2;=9-25=-14;②(a-b)(a+b)=7×(-2)=-14;(2)相等;(3)成立;当a=3,b=4时时,∵a2-b2=9-16=-7,(a-b)(a+b)=-1×7=-7.∴结论仍然成立;(4)20192-20182=(2019+2018)(2019-2018)=4037.【解析】把ab的值代入所求代数式,计算即可,通过比较结果可得出平方差公式,从而可利用平方差公式进行计算,达到简化的目的.本题考查的是平方差公式,代数式求值,注意公式的推导及利用.20.【答案】3×(12+22+32+42+52)=11×(1+2+3+4+5)3×(12+22+32+42+…+n2)=(2n+1)×(1+2+3+4+…+n);n(n+1)(2n+1)6【解析】解:(1)第5个式子为:3×(12+22+32+42+52)=11×(1+2+3+4+5),故答案为:3×(12+22+32+42+52)=11×(1+2+3+4+5);(2)根据上面的规律,第n个式子为:3×(12+22+32+42+…+n2)=(2n+1)×(1+2+3+4+…+n),故答案为:3×(12+22+32+42+…+n2)=(2n+1)×(1+2+3+4+…+n);(3)12+22+32+…+n2=(2n+1)(1+2+3+…+n)=×(2n+1)×=,故答案为:;(4)原式=×(2×10+1)(1+2+3+4+…+10)=×21×55=385.(1)根据已知等式的规律可得;(2)根据已知等式的规律可得;(3)将(2)中所得等式两边都除以3,再整理可得;(4)利用所得规律计算可得.本题考查了数字的变化类,解此题的关键是找出规律直接解答.21.【答案】解:(1)市场销售的收入为:18000a-180001000×(25×8+100)-7800=18000a-5400-7800,=18000a-13200;果园销售的收入为:18000b-7800;(2)当a=1.3,b=1.1时,市场销售收入为:18000×1.3-13200=23400-13200=10200元,果园销售收入为:18000×1.1-7800=12000元,∵10200<12000,∴选择果园出售利润较高.【解析】(1)市场销售,用单价乘以销售数量,再减去销售时的费用与人工工资和投资,整理即可得解;在果园销售,用单价乘以销售数量减去投资即可;(2)把a、b的值代入进行计算即可进行判断.本题考查了列代数式,代数式求值,读懂题目信息,理解销售收入等于总收入减去各种费用之和是解题的关键.。

2015七年级(上)期中数学试卷附答案

2015七年级(上)期中数学试卷附答案

七年级(上)期中数学试卷一、选择题(每题3分,共36分)1.5的相反数是()A.B.﹣5 C.±5 D.﹣2.在﹣(﹣6),﹣(﹣6)2,﹣|﹣6|,(﹣6)2中,负数的个数为()A.0个B.1个C.2个D.3个3.一个两位数,十位数字是a,个位数字是b,则这个两位数是()A.ab B.a+b C.10a+b D.10b+a4.一列火车长m米,以每秒n米的速度通过一个长为p米的桥洞,用代数式表示它通过桥洞所需的时间为()A.秒B.秒C.秒D.秒5.一个代数式的2倍与﹣2a+b的和是a+2b,这个代数式是()A.3a+b B.C.D.6.下面几何体中,截面图形不可能是圆()A.圆柱B.圆锥C.球D.正方体7.下列两项中,属于同类项的是()A.62与x2 B.4ab与4abcC.0.2x2y与0.2xy2 D.nm和﹣mn8.下列计算正确的是()A.﹣12﹣8=﹣4 B.C.﹣5﹣(﹣2)=﹣3 D.﹣32=99.一个多项式加上3x2y﹣3xy2得x3﹣3x2y,则这个多项式是()A.x3+3xy2 B.x3﹣3xy2 C.x3﹣6x2y+3xy2 D.x3﹣6x2y﹣3x2y10.下列说法正确的是()A.单项式﹣πx3的系数是﹣B.0和a都是代数式C.数a的与这个数的和表示为+D.合并同类项﹣n2﹣n2=011.文具店、书店和玩具店依次座落在一条东西走向的九龙山大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了﹣60米,此时小明的位置在()A.文具店B.玩具店C.文具店西40米处D.玩具店西60米处12.已知:(b+3)2+|a﹣2|=0,则b a的值为()A.﹣9 B.9 C.﹣6 D. 6二、填空题(每题4分,共32分)13.平方得的数是,立方得﹣8的数是,倒数是﹣的数是,的相反数是.14.数轴上表示有理数﹣3.5与4.5两点的距离是.15.若3a m﹣1bc2和﹣2a3b n﹣2c2是同类项,则m+n=.16.38400万千米用科学记数表示为米.17.矩形的周长为30,若一边长用字母x表示,则此矩形的面积是.18.有一次小明在做24点游戏时抽到的四张牌分别是3、4、1、7,他苦思不得其解,相信聪明的你一定能帮他解除困难,请写出一个成功的算式:=24.19.代数式2x2y3﹣x3y﹣xy4﹣5x4y3有项,其中﹣xy4的系数是.20.观察下列算式:31=3,32=9,33=27,34=81,35=243,…,根据上述算式中的规律,你认为32014的末位数字是.三、数形题(本大题共10分,每小题5分)21.如图,是一个由小正方体搭成的几何体的俯视图,小正方形中的数字表示在该位置的正方形的个数.请你画出它的主视图和左视图.22.一点A从数轴上表示+2的A点开始连续移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位…求:(1)写出第一次移动后这个点在数轴上表示的数;(2)写出第二次移动结果这个点在数轴上表示的数;(3)写出第五次移动后这个点在数轴上表示的数;(4)写出第n次移动结果这个点在数轴上表示的数.四、计算题(每小题12分,共12分)23.(1)(﹣7)+(+15)﹣(﹣25)(2)(3)(4).五、解答题(本大题共36分)24.计算(1)3a+2a﹣7a(2)﹣4x2y+8xy2﹣9x2y﹣21xy2(3)﹣5m2n+4mn2﹣2mn+6m2n+3mn(4)(a+b)﹣2(2a﹣3b)+(3a﹣2b)25.先化简,再求值:(1)3x+2(﹣4x+1)﹣(6﹣4x),其中x=﹣(2)2(5a2﹣7ab+9b2)﹣3(14a2﹣2ab+3b2),其中a=(3)4x3﹣[﹣x2+2(x3﹣x2)],其中x=﹣3(4),其中x=﹣2,y=.六、综合题26.某下岗工人在路边开了一个小吃店,上星期日收入20元,下表是本周星期一至星期五小吃店的收入变化情况(多收入为正,少收入为负):星期一二三四五收入的变化值(与前一天比较)+10 ﹣5 ﹣3 +6 ﹣2(1)算出星期五该小店的收入情况;(2)算出这五天平均收入多少元?(3)请用折线统计图表示该小店这五天的收入情况,并观察折线统计图,写出一个正确的结论.27.解决问题:一辆货车从超市出发,向东走了3千米到达小彬家,继续走2.5千米到达小颖家,然后向西走了10千米到达小明家,最后回到超市.(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1千米,在数轴上表示出小明家,小彬家,小颖家的位置.(2)小明家距小彬家多远?(3)货车一共行驶了多少千米?(4)货车每千米耗油0.2升,这次共耗油多少升?参考答案与试题解析一、选择题(每题3分,共36分)1.5的相反数是()A.B.﹣5 C.±5 D.﹣考点:相反数.分析:据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可.解答:解:根据概念,(5的相反数)+5=0,则5的相反数是﹣5.故选:B.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.在﹣(﹣6),﹣(﹣6)2,﹣|﹣6|,(﹣6)2中,负数的个数为()A.0个B.1个C.2个D.3个考点:正数和负数.分析:先化简,再根据小于0的是负数即可求解.解答:解:在﹣(﹣6)=6,﹣(﹣6)2=﹣36,﹣|﹣6|=﹣6,(﹣6)2=36中,负数有﹣(﹣6)2,﹣|﹣6|,一共2个.故选C.点评:本题主要考查了正数和负数的意义,判断一个数是正数还是负数,关键是看它比0大还是比0小.3.一个两位数,十位数字是a,个位数字是b,则这个两位数是()A.ab B.a+b C.10a+b D.10b+a考点:列代数式.分析:根据数的表示,用数位上的数字乘以数位即可.解答:解:这个两位数是:10a+b.故选C.点评:本题考查了列代数式,比较简单,主要是数的表示方法.4.一列火车长m米,以每秒n米的速度通过一个长为p米的桥洞,用代数式表示它通过桥洞所需的时间为()A.秒B.秒C.秒D.秒考点:列代数式(分式).专题:应用题.分析:通过桥洞所需的时间为=(桥洞长+车长)÷车速.解答:解:它通过桥洞所需的时间为秒.故选D.点评:解决问题的关键是读懂题意,找到所求的量的等量关系.注意此时路程应为桥洞长+车长.5.一个代数式的2倍与﹣2a+b的和是a+2b,这个代数式是()A.3a+b B.C.D.考点:整式的加减.分析:此题可先列出所求代数式的两倍,然后再除以2即可.解答:解:依题意得[(a+2b)﹣(﹣2a+b)]÷2=.故选D.点评:整式的加减运算实际上就是去括号、合并同类项.合并同类项时,注意是系数相加减,字母与字母的指数不变.去括号时,括号前面是“﹣”号,去掉括号和“﹣”号,括号里的各项都要改变符号.6.下面几何体中,截面图形不可能是圆()A.圆柱B.圆锥C.球D.正方体考点:截一个几何体.分析:根据圆柱、圆锥、球、正方体的形状特点判断即可.解答:解:本题中,用平面去截正方体,得的截面可能为三角形、四边形、五边形、六边形,无论如何,截面也不会有弧度不可能是圆,故选D.点评:本题考查几何体的截面,关键要理解面与面相交得到线.7.下列两项中,属于同类项的是()A.62与x2 B.4ab与4abcC.0.2x2y与0.2xy2 D.nm和﹣mn考点:同类项.分析:同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项.并且与字母的顺序无关.解答:解:A、62与x2字母不同不是同类项;B、4ab与4abc字母不同不是同类项;C、0.2x2y与0.2xy2字母的指数不同不是同类项;D、nm和﹣mn是同类项.故选D.点评:同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.8.下列计算正确的是()A.﹣12﹣8=﹣4 B.C.﹣5﹣(﹣2)=﹣3 D.﹣32=9考点:有理数的除法;有理数的减法;有理数的乘方.专题:计算题.分析:原式利用有理数的乘方,乘法,以及除法法则计算得到结果,即可做出判断.解答:解:A、﹣12﹣8=﹣20,错误;B、(﹣)÷(﹣4)=﹣×(﹣)=,错误;C、﹣5﹣(﹣2)=﹣5+2=﹣3,正确;D、﹣32=﹣9,错误.故选C.点评:此题考查了有理数的除法,乘方,以及乘法,熟练掌握运算法则是解本题的关键.9.一个多项式加上3x2y﹣3xy2得x3﹣3x2y,则这个多项式是()A.x3+3xy2 B.x3﹣3xy2 C.x3﹣6x2y+3xy2 D.x3﹣6x2y﹣3x2y考点:整式的加减.分析:根据题意得出:(x3﹣3x2y)﹣(3x2y﹣3xy2),求出即可.解答:解:根据题意得:(x3﹣3x2y)﹣(3x2y﹣3xy2)=x3﹣3x2y﹣3x2y+3xy2=x3﹣6x2y+3xy2,故选C.点评:本题考查了整式的加减的应用,主要考查学生的计算能力.10.下列说法正确的是()A.单项式﹣πx3的系数是﹣B.0和a都是代数式C.数a的与这个数的和表示为+D.合并同类项﹣n2﹣n2=0考点:单项式;代数式;列代数式;合并同类项.分析:分别利用单项式以及代数式和合并同类项法则分析得出即可.解答:解:A、单项式﹣πx3的系数是﹣π,故此选项错误;B、0和a都是代数式,此选项正确;C、数a的与这个数的和表示为+a,故此选项错误;D、合并同类项﹣n2﹣n2=﹣2n2,故此选项错误.故选:B.点评:此题主要考查了单项式、代数式以及合并同类项的定义,正确把握相关性定义是解题关键.11.文具店、书店和玩具店依次座落在一条东西走向的九龙山大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了﹣60米,此时小明的位置在()A.文具店B.玩具店C.文具店西40米处D.玩具店西60米处考点:数轴.专题:计算题.分析:由题意知,可看作书店为原点,文具店在书店西边20米处,即﹣20米,玩具店位于书店东边100米处,即+100米,解答出即可.解答:解:根据题意得:文具店在书店西边20米处,玩具店位于书店东边100米处,∴书店看作原点时,玩具店为100米,文具店为﹣20米,∴小明的位置为:40﹣60=﹣20,∴小明的位置为:﹣20米,∴小明的位置在文具店.故答案为A.点评:本题考查了数轴,规定了原点、正方向、单位长度的直线叫做数轴,学生掌握数轴的定义,是解答本题的关键.12.已知:(b+3)2+|a﹣2|=0,则b a的值为()A.﹣9 B.9 C.﹣6 D. 6考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.解答:解:根据题意得,b+3=0,a﹣2=0,解得a=2,b=﹣3,所以,b a=(﹣3)2=9.故选B.点评:本题考查了绝对值非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.二、填空题(每题4分,共32分)13.平方得的数是±,立方得﹣8的数是﹣2,倒数是﹣的数是﹣4,的相反数是﹣1.考点:有理数的乘方;相反数;倒数.专题:计算题.分析:原式利用有理数的乘方,相反数,以及倒数的定义计算即可得到结果.解答:解:平方得的数是±,立方得﹣8的数是﹣2,倒数是﹣的数是﹣4,的相反数是﹣1.故答案为:±;﹣2;﹣4;﹣1点评:此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.14.数轴上表示有理数﹣3.5与4.5两点的距离是8.考点:数轴.专题:计算题.分析:有理数﹣3.5与4.5两点的距离实为两数差的绝对值.解答:解:由题意得:有理数﹣3.5与4.5两点的距离为|﹣3.5﹣4.5|=8.故答案为:8.点评:本题考查了数轴的知识,属于基础题,难度不大,注意两点之间的距离即是两数差的绝对值.15.若3a m﹣1bc2和﹣2a3b n﹣2c2是同类项,则m+n=7.考点:同类项.分析:根据同类项的定义:所含字母相同,并且相同字母的指数也相同,求得m,n的值,代入求解即可.解答:解:∵3a m﹣1bc2和﹣2a3b n﹣2c2是同类项,∴m﹣1=3,n﹣2=1,∴m=4,n=3,则m+n=7.故答案为:7.点评:本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.16.38400万千米用科学记数表示为 3.84×108米.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将300 670用科学记数法表示为3.84×108.故答案为3.84×108.点评:本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.17.矩形的周长为30,若一边长用字母x表示,则此矩形的面积是x(15﹣x).考点:列代数式.分析:根据周长是30,一边是x,求出另一边是15﹣x,再根据长方形的面积公式即可求解.解答:解:∵周长是30,∴相邻两边的和是15,∵一边是x,∴另一边是15﹣x.∴面积是:x(15﹣x).故答案为:x(15﹣x).点评:本题考查了列代数式,用到的知识点是矩形的周长和面积公式,关键是根据矩形的周长和一边的长,求出另一边的长.18.有一次小明在做24点游戏时抽到的四张牌分别是3、4、1、7,他苦思不得其解,相信聪明的你一定能帮他解除困难,请写出一个成功的算式:3×7+(4﹣1)=24.考点:有理数的混合运算.专题:计算题;开放型.分析:24点游戏的关键是加入任何运算符号和括号,使其运算结果为24即可,答案不唯一.解答:解:答案不唯一,如:3×7+(4﹣1)=24.点评:此题考查有理数混合运算的灵活程度,可以提高学生的学习兴趣.19.代数式2x2y3﹣x3y﹣xy4﹣5x4y3有四项,其中﹣xy4的系数是﹣1.考点:整式的加减;多项式.分析:几个单项式的和叫做多项式,其中每个单项式叫做多项式的项,由此可确定多项式2x2y3﹣x3y﹣xy4﹣5x4y3的项数,根据单项式的系数的定义确定﹣xy4的系数.解答:解:代数式2x2y3﹣x3y﹣xy4﹣5x4y3有四项,其中﹣xy4的系数是﹣1.故答案为:四,﹣1.点评:本题考查了多项式的定义,多项式中每个单项式叫做多项式的项,单项式中的数字因数叫做单项式的系数.20.观察下列算式:31=3,32=9,33=27,34=81,35=243,…,根据上述算式中的规律,你认为32014的末位数字是9.考点:尾数特征;规律型:数字的变化类.分析:由31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561…,可知末位数字以3、9、7、1四个数字为一循环,用32014的指数2014除以4得到的余数是几就与第几个数字相同,由此解答即可.解答:解:末位数字以3、9、7、1四个数字为一循环,2014÷4=503…2,所以32014的末位数字与32的末位数字相同是9.故答案为9.点评:此题考查尾数特征及规律型:数字的变化类,通过观察得出3的乘方的末位数字以3、9、7、1四个数字为一循环是解决问题的关键.三、数形题(本大题共10分,每小题5分)21.如图,是一个由小正方体搭成的几何体的俯视图,小正方形中的数字表示在该位置的正方形的个数.请你画出它的主视图和左视图.考点:作图-三视图;由三视图判断几何体.分析:由已知条件可知,主视图有3列,每列小正方数形数目分别为3,2,3;左视图有2列,每列小正方形数目分别为3,2.据此可画出图形.解答:解:如图所示:点评:本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.22.一点A从数轴上表示+2的A点开始连续移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位…求:(1)写出第一次移动后这个点在数轴上表示的数;(2)写出第二次移动结果这个点在数轴上表示的数;(3)写出第五次移动后这个点在数轴上表示的数;(4)写出第n次移动结果这个点在数轴上表示的数.考点:数轴.专题:计算题.分析:数轴上点的移动规律是“左减右加”.依据规律计算即可.解答:解:(1)第一次移动后这个点在数轴上表示的数:+2﹣1+2=+3;(2)第二次移动结果这个点在数轴上表示的数:+3﹣3+4=+4;(3)第五次移动后这个点在数轴上表示的数:+3+1+1+1+1=7;(4)第n次移动结果这个点在数轴上表示的数:+3+n﹣1=n+2.点评:本题考查了数轴的知识,要注意数轴上点的移动规律是“左减右加”.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.四、计算题(每小题12分,共12分)23.(1)(﹣7)+(+15)﹣(﹣25)(2)(3)(4).考点:有理数的混合运算.分析:(1)先化简,再分类计算;(2)先算乘方和括号里面的加法,再算除法,最后算减法;(3)先算乘方和除法,再算括号里面的减法,再算乘法,最后算加法;(4)利用乘法分配律简算.解答:解:(1)原式=﹣7+15+25=33;(2)原式=9﹣(﹣)÷=9﹣(﹣)×12=9+11=20;(3)原式=﹣1×(4﹣9)+3×(﹣)=﹣1×(﹣5)﹣4=5﹣4=1;(4)原式=﹣24×(﹣)+(﹣24)×﹣24×(﹣)=20﹣9+1=12.点评:此题考查有理数的混合运算,掌握运算顺序,正确判定符号计算即可.五、解答题(本大题共36分)24.计算(1)3a+2a﹣7a(2)﹣4x2y+8xy2﹣9x2y﹣21xy2(3)﹣5m2n+4mn2﹣2mn+6m2n+3mn(4)(a+b)﹣2(2a﹣3b)+(3a﹣2b)考点:整式的加减.分析:(1)(2)(3)直接合并整式中的同类项即可;(4)先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.解答:解:(1)3a+2a﹣7a=﹣2a;(2)﹣4x2y+8xy2﹣9x2y﹣21xy2=﹣13x2y﹣13xy2;(3)﹣5m2n+4mn2﹣2mn+6m2n+3mn=m2n+4mn2+mn;(4)(a+b)﹣2(2a﹣3b)+(3a﹣2b)=a+b﹣4a+6b+3a﹣2b=5b.点评:本题考查了整式的加减、去括号法则两个考点.解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.25.先化简,再求值:(1)3x+2(﹣4x+1)﹣(6﹣4x),其中x=﹣(2)2(5a2﹣7ab+9b2)﹣3(14a2﹣2ab+3b2),其中a=(3)4x3﹣[﹣x2+2(x3﹣x2)],其中x=﹣3(4),其中x=﹣2,y=.考点:整式的加减—化简求值.专题:计算题.分析:(1)原式去括号合并得到最简结果,把x的值代入计算即可求出值;(2)原式去括号合并得到最简结果,把a与b的值代入计算即可求出值;(3)原式去括号合并得到最简结果,把x的值代入计算即可求出值;(4)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.解答:解:(1)原式=3x﹣8x+2﹣3+2x=﹣3x﹣1,当x=﹣时,原式=1﹣1=0;(2)原式=10a2﹣14ab+18b2﹣42a2+6ab﹣9b2=﹣32a2﹣8ab+9b2,当a=,b=﹣时,原式=﹣18+4+4=﹣10;(3)原式=4x3+x2﹣2x3+x2=2x3+x2,当x=﹣3时,原式=﹣81+15=﹣66;(4)原式=5x2﹣2xy+xy+6﹣4x2=x2﹣xy+6,当x=﹣2,y=时,原式=4+1+6=11.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.六、综合题26.某下岗工人在路边开了一个小吃店,上星期日收入20元,下表是本周星期一至星期五小吃店的收入变化情况(多收入为正,少收入为负):星期一二三四五收入的变化值(与前一天比较)+10 ﹣5 ﹣3 +6 ﹣2(1)算出星期五该小店的收入情况;(2)算出这五天平均收入多少元?(3)请用折线统计图表示该小店这五天的收入情况,并观察折线统计图,写出一个正确的结论.考点:折线统计图;正数和负数;算术平均数.专题:应用题.分析:(1)根据上周日的收入依次加减即可解答;(2)根据平均数=总收入÷天数进行求解;(3)根据(2)的数据,可以作出折线图,然后分析即可.解答:解:(1)星期五该小店的收入情况为20+10﹣5﹣3+6﹣2=26(元);(2)星期一20+10=30元,星期二30﹣5=25元,25﹣3=22元,22+6=28元,28﹣2=26元,(30+25+22+28+26)÷5=26.2(元);(3)画折线统计图:正确结论例如:这五天中收入最高的是星期一为30元.点评:本题考查折线统计图的运用,折线统计图表示的是事物的变化情况.熟练掌握对统计图的分析和平均数的计算.要理解极差的概念,能够根据计算的数据进行综合分析.27.解决问题:一辆货车从超市出发,向东走了3千米到达小彬家,继续走2.5千米到达小颖家,然后向西走了10千米到达小明家,最后回到超市.(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1千米,在数轴上表示出小明家,小彬家,小颖家的位置.(2)小明家距小彬家多远?(3)货车一共行驶了多少千米?(4)货车每千米耗油0.2升,这次共耗油多少升?考点:数轴.分析:(1)根据题目的叙述1个单位长度表示1千米,即可表示出;(2)根据(1)得到的数轴,得到表示小明家与小彬家的两点之间的距离,利用1个单位长度表示1千米,即可得到实际距离;(3)把三次所行路程相加即可,(4)路程是20千米,乘以0.5即可求得耗油量.解答:解:(1)如图所示:(2)根据数轴可知:小明家距小彬家是7.5个单位长度,因而是7.5千米;(3)路程是2×10=20千米,(4)耗油量是:20×0.2=4升.答:小明家距小彬家7.5千米,这趟路货车共耗油4升.点评:本题考查了数轴,利用数轴表示一对具有相反意义的量,借助数轴用几何方法解决问题,有直观、简捷,举重若轻的优势.。

2015七年级(上)期中数学试卷 附答案

2015七年级(上)期中数学试卷 附答案

七年级(上)期中数学试卷一、选择题(每题3分,共30分)1.﹣3的相反数是()A.﹣B.C.﹣3 D.32.2010年5月1日至2010年10月31日期间在上海举行的世界博览会总投资约450亿元人民币,其中“450亿”用科学记数法表示为()元.A.4.5×1010 B.4.5×109 C.4.5×108 D.0.45×1093.下列说法错误的是()A.2x2﹣3xy﹣1是二次三项式B.﹣x+1不是单项式C.的系数是D.﹣22xab2的次数是64.|3.14﹣π|的值为()A.0 B. 3.14﹣π C.π﹣3.14 D.0.145.若﹣3x2m y3与2x4y n是同类项,那么m﹣n=()A.0 B. 1 C.﹣1 D.﹣26.有理数a、b在数轴上的对应的位置如图所示,则()A.a+b<0 B.a+b>0 C.a﹣b=0 D.a﹣b>07.计算(﹣2)11+(﹣2)10的值是()A.﹣2 B.(﹣2)21 C.0 D.﹣2108.减去﹣3x得x2﹣3x+6的式子为()A.x2+6 B.x2+3x+6 C.x2﹣6x D.x2﹣6x+69.若(a﹣1)2+|b+2|=0,则|a+b|的值是()A.3 B. 1 C. 2 D.﹣110.化简2a﹣[3b﹣5a﹣(2a﹣7b)]的结果是()A.﹣7a+10b B.5a+4b C.﹣a﹣4b D.9a﹣10b二、填空题(每题3分,共30分)11.单项式﹣的系数是,次数是.12.已知|x|=3,(y+1)2=4,且xy<0,则x﹣y的值是.13.观察一列数:,,,,,…根据规律,请你写出第10个数是.14.化简3x2﹣[7x﹣(4x﹣3)﹣2x2]的结果是.15.规定一种新运算:a△b=a•b﹣a﹣b+1,如3△4=3×4﹣3﹣4+1,则(﹣2)△5=.16.已知a、b互为相反数,m、n互为倒数,x的绝对值为2,计算﹣2mn+﹣x2=.17.计算:﹣15﹣(﹣8)+(﹣11)﹣12=.18.汽车向东行驶5千米记作+5千米,那么汽车向西行驶5千米记作.19.已知多项式3x m﹣1+3x﹣1是关于x的四次三项式,那么m的值为.20.根据如图所示的程序计算,若输入x的值为1,则输出y的值为.三、解答题21.在数轴上表示下列各数,并把下列各数用“”号连接起来:﹣,﹣2,,﹣|﹣5|,﹣(﹣5)22.计算(1)|﹣|÷(﹣)﹣×(﹣2)2(2)﹣14+﹣(﹣4)×(﹣)23.先化简,再求值:(1)﹣(a2+2a)+3(a2﹣3a﹣),其中a=﹣1;(2)(4a2﹣2a﹣6)﹣2(2a2﹣2a﹣5).其中a=﹣2.24.已知一个三角形的第一条边长为(a+2b)厘米,第二条边比第一条边短(b﹣2)厘米,第三条边比第二条边短3厘米.(1)请用式子表示该三角形的周长(2)当a=2,b=3时,求此三角形的周长(3)当a=2,三角形的周长为27时,求此三角形各边的长.25.有这样一道题“当a=2,b=﹣2时,求多项式﹣2b2+3的值”,马小虎做题时把a=2错抄成a=﹣2,王小真没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由.26.某儿童服装店以每件32元的价格购进30件连衣裙,针对不同的顾客,30件连衣裙的售价不完全相同.若以47元为标准,将超出的钱数记为正数,不足的钱数记为负数,记录结果如下表所示:售出件数(件)7 6 3 5 4 5售价(元)+3 +2 +1 0 ﹣1 ﹣2(1)该服装店在售完这30件连衣裙后,赚了多少钱?(2)平均每件连衣裙赚了多少钱?(精确到0.01)参考答案与试题解析一、选择题(每题3分,共30分)1.﹣3的相反数是()A.﹣B.C.﹣3 D.3考点:相反数.分析:根据相反数的概念解答即可.解答:解:﹣3的相反数是﹣(﹣3)=3.故选:D.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.2010年5月1日至2010年10月31日期间在上海举行的世界博览会总投资约450亿元人民币,其中“450亿”用科学记数法表示为()元.A.4.5×1010 B.4.5×109 C.4.5×108 D.0.45×109考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将450亿用科学记数法表示为:4.5×1010.故选:A.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列说法错误的是()A.2x2﹣3xy﹣1是二次三项式B.﹣x+1不是单项式C.的系数是D.﹣22xab2的次数是6考点:多项式;单项式.专题:常规题型.分析:根据单项式和多项式的概念及性质判断各个选项即可.解答:解:A、2x2﹣3xy﹣1是二次三项式,故本选项不符合题意;B、﹣x+1不是单项式,故本选项不符合题意;C、的系数是,故本选项不符合题意;D、﹣22xab2的次数是4,故本选项符合题意.故选D.点评:本题考查单项式及多项式的知识,注意对这两个基本概念的熟练掌握,属于基础题,比较容易解答.4.|3.14﹣π|的值为()A.0 B. 3.14﹣π C.π﹣3.14 D.0.14考点:实数的性质.专题:计算题.分析:首先判断3.14﹣π的正负情况,然后利用绝对值的定义即可求解|.解答:解:∵3.14﹣π<0,∴|3.14﹣π|=π﹣3.14.故选C.点评:此题主要考查了绝对值的定义,解题时先确定绝对值符号中代数式的正负再去绝对值符号.5.若﹣3x2m y3与2x4y n是同类项,那么m﹣n=()A.0 B. 1 C.﹣1 D.﹣2考点:同类项.专题:计算题.分析:根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m和n的值,继而代入可得出答案.解答:解:∵﹣3x2m y3与2x4y n是同类项,∴2m=4,n=3,解得:m=2,n=3,∴m﹣n=﹣1.故选C.点评:此题考查同类项的定义,属于基础题,解答本题的关键是掌握同类项:所含字母相同,并且相同字母的指数也相同,难度一般.6.有理数a、b在数轴上的对应的位置如图所示,则()A.a+b<0 B.a+b>0 C.a﹣b=0 D.a﹣b>0考点:有理数的减法;数轴;有理数的加法.专题:常规题型.分析:先根据数轴判断出a、b的正负情况,以及绝对值的大小,然后对各选项分析后利用排除法求解.解答:解:根据图形可得:a<﹣1,0<b<1,∴|a|>|b|,A、a+b<0,故A选项正确;B、a+b>0,故B选项错误;C、a﹣b<0,故C选项错误;D、a﹣b<0,故D选项错误.故选:A.点评:本题考查了有理数的加法、减法,根据数轴判断出a、b的情况,以及绝对值的大小是解题的关键.7.计算(﹣2)11+(﹣2)10的值是()A.﹣2 B.(﹣2)21 C.0 D.﹣210考点:有理数的乘方.分析:乘方的运算可以利用乘法的运算来进行,运用乘法的分配律简便计算.解答:解:原式=(﹣2)10×(﹣2+1)=(﹣2)10×(﹣1)=﹣210.故选D.点评:乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.本题运用乘法的分配律计算.负数的奇数次幂是负数,负数的偶数次幂是正数;﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.8.减去﹣3x得x2﹣3x+6的式子为()A.x2+6 B.x2+3x+6 C.x2﹣6x D.x2﹣6x+6考点:整式的加减.分析:本题考查整式的加法运算,要先去括号,然后合并同类项.解答:解:﹣3x+(x2﹣3x+6)=﹣3x+x2﹣3x+6=x2﹣6x+6故选D.点评:整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.合并同类项时,注意是系数相加减,字母与字母的指数不变.去括号时,括号前面是“﹣”号,去掉括号和“﹣”号,括号里的各项都要改变符号.9.若(a﹣1)2+|b+2|=0,则|a+b|的值是()A.3 B. 1 C. 2 D.﹣1考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.解答:解:由题意得,a﹣1=0,b+2=0,解得a=1,b=﹣2,所以,|a+b|=|1﹣2|=1.故选B.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.化简2a﹣[3b﹣5a﹣(2a﹣7b)]的结果是()A.﹣7a+10b B.5a+4b C.﹣a﹣4b D.9a﹣10b考点:整式的加减.分析:先去小括号,再去中括号,进而求解.解答:解:2a﹣[3b﹣5a﹣(2a﹣7b)]=2a﹣[3b﹣5a﹣2a+7b]=2a﹣(10b﹣7a)=9a﹣10b,故选D.点评:能够化简一些简单的整式.注意去括号法则.二、填空题(每题3分,共30分)11.单项式﹣的系数是,次数是4.考点:单项式.分析:根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.解答:解:根据单项式系数、次数的定义,数字因数是系数,字母的指数和1+3=4,故次数为4.点评:确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.12.已知|x|=3,(y+1)2=4,且xy<0,则x﹣y的值是6或﹣4.考点:有理数的混合运算.专题:计算题.分析:根据题意,求出x与y的值,即可求出x﹣y的值.解答:解:∵|x|=3,(y+1)2=4,且xy<0,∴x=3或﹣3,y+1=2或y+1=﹣2,解得:x=3,y=﹣3;x=﹣3,y=1,则x﹣y=6或﹣4.故答案为:6或﹣4.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.13.观察一列数:,,,,,…根据规律,请你写出第10个数是.考点:规律型:数字的变化类.分析:仔细观察给出的一列数字,从而可发现,分子等于其项数,分母为其所处的项数的平方加1,根据规律解题即可.解答:解:,,,,,…根据规律可得第n个数是,∴第10个数是,故答案为;.点评:本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.14.化简3x2﹣[7x﹣(4x﹣3)﹣2x2]的结果是5x2﹣3x﹣3.考点:整式的加减.分析:先去小括号,再去中括号,合并同类项即可.解答:解:原式=3x2﹣[7x﹣4x+3﹣2x2]=3x2﹣7x+4x﹣3+2x2=5x2﹣3x﹣3.故答案为:5x2﹣3x﹣3.点评:本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.15.规定一种新运算:a△b=a•b﹣a﹣b+1,如3△4=3×4﹣3﹣4+1,则(﹣2)△5=﹣12.考点:有理数的混合运算.专题:新定义.分析:根据题中的新定义计算即可得到结果.解答:解:根据题中的新定义得:(﹣2)△5=﹣10+2﹣5+1=﹣12.故答案为:﹣12点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.已知a、b互为相反数,m、n互为倒数,x的绝对值为2,计算﹣2mn+﹣x2=﹣7.考点:代数式求值;相反数;绝对值;倒数.专题:计算题.分析:利用相反数,倒数,以及绝对值的代数意义求出a+b,mn,以及x的值,代入原式计算即可得到结果.解答:解:根据题意得:a+b=0,mn=1,x=2或﹣2,则原式=﹣3+0﹣4=﹣7.故答案为:﹣7点评:此题考查了代数式求值,相反数,以及倒数,熟练掌握各自的定义是解本题的关键.17.计算:﹣15﹣(﹣8)+(﹣11)﹣12=﹣30.考点:有理数的加减混合运算.专题:计算题.分析:原式利用减法法则变形,计算即可得到结果.解答:解:原式=﹣15+8﹣11﹣12=﹣38+8=﹣30.故答案为:﹣30点评:此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.18.汽车向东行驶5千米记作+5千米,那么汽车向西行驶5千米记作﹣5千米.考点:正数和负数.分析:根据正数和负数表示相反意义的量,向东记作正,可得向西记作负.解答:解:汽车向东行驶5千米记作+5千米,那么汽车向西行驶5千米记作﹣5千米,故答案为:﹣5千米.点评:本题考查了正数和负数,向东记作正,向西记作负.19.已知多项式3x m﹣1+3x﹣1是关于x的四次三项式,那么m的值为5.考点:多项式.专题:计算题.分析:利用多项式的项与次数的定义判断即可求出m的值.解答:解:∵多项式3x m﹣1+3x﹣1是关于x的四次三项式,∴m﹣1=4,解得:m=5,故答案为:5点评:此题考查了多项式,熟练掌握多项式的项与次数定义是解本题的关键.20.根据如图所示的程序计算,若输入x的值为1,则输出y的值为4.考点:代数式求值.专题:图表型.分析:观察图形我们可以得出x和y的关系式为:y=2x2﹣4,因此将x的值代入就可以计算出y的值.如果计算的结果<0则需要把结果再次代入关系式求值,直到算出的值>0为止,即可得出y的值.解答:解:依据题中的计算程序列出算式:12×2﹣4.由于12×2﹣4=﹣2,﹣2<0,∴应该按照计算程序继续计算,(﹣2)2×2﹣4=4,∴y=4.故答案为:4.点评:解答本题的关键就是弄清楚题图给出的计算程序.由于代入1计算出y的值是﹣2,但﹣2<0不是要输出y的值,这是本题易出错的地方,还应将x=﹣2代入y=2x2﹣4继续计算.三、解答题21.在数轴上表示下列各数,并把下列各数用“”号连接起来:﹣,﹣2,,﹣|﹣5|,﹣(﹣5)考点:数轴.分析:先把各数在数轴上表示出来,再从左到右用“<”连接起来即可.解答:解:如图所示,,由图可知,﹣|﹣5|<﹣2<﹣<<﹣(﹣5).点评:本题考查的是数轴,熟知数轴上右边的数总比左边的大的特点是解答此题的关键.22.计算(1)|﹣|÷(﹣)﹣×(﹣2)2(2)﹣14+﹣(﹣4)×(﹣)考点:有理数的混合运算.专题:计算题.分析:(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.解答:解:(1)原式=÷﹣×4=﹣=;(2)原式=﹣1++2﹣1=1.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.先化简,再求值:(1)﹣(a2+2a)+3(a2﹣3a﹣),其中a=﹣1;(2)(4a2﹣2a﹣6)﹣2(2a2﹣2a﹣5).其中a=﹣2.考点:整式的加减—化简求值.专题:计算题.分析:(1)原式去括号合并得到最简结果,把a的值代入计算即可求出值;(2)原式去括号合并得到最简结果,把a的值代入计算即可求出值.解答:解:(1)原式=﹣a2﹣2a+3a2﹣9a﹣1=2a2﹣11a﹣1,当a=﹣1时,原式=2+11﹣1=12;(2)原式=4a2﹣2a﹣6﹣4a2+4a+10=2a+4,当a=﹣2时,原式=﹣4+4=0.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.24.已知一个三角形的第一条边长为(a+2b)厘米,第二条边比第一条边短(b﹣2)厘米,第三条边比第二条边短3厘米.(1)请用式子表示该三角形的周长(2)当a=2,b=3时,求此三角形的周长(3)当a=2,三角形的周长为27时,求此三角形各边的长.考点:整式的加减;代数式求值.分析:(1)根据题意列出各边长的式子,再把各整式相加即可;(2)把a=2,b=3代入(1)中的式子即可;(3)把a=2代入(1)中的式子求出b的值,进而可得出结论.解答:解:(1)∵第一条边长为(a+2b)厘米,第二条边比第一条边短(b﹣2)厘米,∴第二条边长=(a+2b)﹣(b﹣2)=a+b+2;∵第三条边比第二条边短3厘米,∴第三条边长=a+b+2﹣3=a+b﹣1,∴该三角形的周长=(a+2b)+(a+b+2)+(a+b﹣1)=3a+4b+1;(2)∵由(1)知该三角形的周长=3a+4b+1,∴当a=2,b=3时,该三角形的周长=3×2+4×3+1=19;(3)∵当a=2时,三角形的周长为27,∴3×2+4b+1=27,解得b=5,∴第一条边长=a+2b=2+10=12;第二条边长=a+b+2=2+5+2=9;第三条边长=a+b﹣1=2+5﹣1=6.点评:本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.25.有这样一道题“当a=2,b=﹣2时,求多项式﹣2b2+3的值”,马小虎做题时把a=2错抄成a=﹣2,王小真没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由.考点:整式的加减.专题:应用题.分析:先通过去括号、合并同类项对多项式进行化简,然后代入a、b的值进行计算.解答:解:﹣2b2+3=(3﹣4+1)a3b3+(﹣++)a2b+(1﹣2)b2+b+3=b﹣b2+3.因为它不含有字母a,所以代数式的值与a的取值无关.点评:整式的加减运算实际上就是去括号、合并同类项;与某字母的取值无关,则是式子中不含该字母.26.某儿童服装店以每件32元的价格购进30件连衣裙,针对不同的顾客,30件连衣裙的售价不完全相同.若以47元为标准,将超出的钱数记为正数,不足的钱数记为负数,记录结果如下表所示:售出件数(件)7 6 3 5 4 5售价(元)+3 +2 +1 0 ﹣1 ﹣2(1)该服装店在售完这30件连衣裙后,赚了多少钱?(2)平均每件连衣裙赚了多少钱?(精确到0.01)考点:正数和负数.分析:(1)首先由进货量和进货单价计算出进货的成本,然后再根据售价计算出赚了多少钱.(2)用赚的钱数÷30即可.解答:解:(1)7×(47+3)+6×(47+2)+3×(47+1)+5×47+4×(47﹣1)+5×(47﹣2)=350+294+144+235+184+225=1432,∵30×32=960,∴1432﹣960=472,∴售完这30件连衣裙后,赚了472元;(2)472÷30≈15.73(元).∴平均每件连衣裙赚了15.73元.点评:本题主要考查有理数的混合运算,关键在于根据表格计算出一共卖了多少钱.。

【数学】2014-2015年山东省烟台市七年级上学期期中数学试卷与解析PDF

【数学】2014-2015年山东省烟台市七年级上学期期中数学试卷与解析PDF

2014-2015学年山东省烟台市七年级(上)期中数学试卷(五四学制)一、选择题(本题共10个小题,每小题3分)1.(3分)以下列各组长度的线段为边,能构成三角形的是()A.6cm、8cm、15cm B.7cm、5cm、12cm C.4cm、6cm、5cm D.8cm、4cm、3cm2.(3分)下列图形中,是轴对称图形的有()A.1个 B.2个 C.3个 D.4个3.(3分)锐角三角形中,任意两个内角之和必大于()A.120°B.100°C.90°D.60°4.(3分)如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件中选一个,错误的选法是()A.∠ADB=∠ADC B.∠B=∠C C.DB=DC D.AB=AC5.(3分)下列语句:①面积相等的两个三角形全等;②两个等边三角形一定是全等图形;③如果两个三角形全等,它们的形状和大小一定都相同;④边数相同的图形一定能互相重合.其中错误的说法有()A.4个 B.3个 C.2个 D.1个6.(3分)如果一个三角形的三条高所在直线的交点在三角形外部,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形7.(3分)等腰三角形的一个内角为100°,则它的底角为()A.100°B.40°C.100°或40°D.不能确定8.(3分)如图,在Rt△ABC中,∠C=90°,它的周长为24,且AB:BC=5:3,则AC的长为()A.6 B.8 C.10 D.129.(3分)如图,在△ABC中,D、E分别是AC、BC边上的一点,AD=2DC,BE=EC,若△DBE的面积为1,则△ABC的面积等于()A.4 B.6 C.8 D.1010.(3分)如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2的值等于()A.2πB.4πC.8πD.16π二、填空题(本题共10个小题)11.(3分)三角形的三条交于一点,这点叫做三角形的重心.12.(3分)正九边形有条对称轴.13.(3分)如图是边长为1的正方形网格,点A、B、C、D都在格点上,图中阴影部分的面积等于.14.(3分)如图,∠α=.15.(3分)如图,在△ABC中,∠C=90°,AD是角平分线,点D到AB的距离为7cm,则CD=.16.(3分)如果一个三角形有两个角等于60°,那么这个三角形是三角形.17.(3分)在△ABC中,若∠C=∠B=∠A,则△ABC是三角形(按角分类)18.(3分)如图,AD与BC交于点O,△AOB≌△COD,A和C,B和D是对应顶点,若BO=5,AO=3,AB=4,则BD2=.19.(3分)如图,在△ABC中,∠A=36°,∠B=72°,CD是∠ACD的平分线,则图中共有个等腰三角形.20.(3分)如图,在△ABC中,AB=AC,AD平分∠BAC,点E、F在AD上,若△ABC的面积为16cm2,则图中阴影部分的面积是cm2.三、解答题21.(8分)尺规作图:如图,已知线段a、b和∠α用尺规作一个三角形,使其两边分别等于a、b,这两边的夹角等于2∠α.要求:不写已知、求作、作法,只画图,保留作图痕迹.22.(6分)利用一个点、一条线段、一个正三角形(或等腰三角形)、一个正方形(或长方形)设计一个轴对称图案,并说明你希望表达的含义.23.(9分)如图,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=10,试求△PMN的周长.24.(11分)已知:如图△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=4cm.求BC 的长.25.(11分)如图,小芳和她的同学汤秋千,秋千AB在静止时,下端B离地面0.6m,秋千荡到AB′的位置时,下端B′距静止位置的水平距离B′D等于2m,距地面1.4m,求秋千AB的长.26.(12分)如图:已知AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足,求证:①AC=AD;②CF=DF.2014-2015学年山东省烟台市七年级(上)期中数学试卷(五四学制)参考答案与试题解析一、选择题(本题共10个小题,每小题3分)1.(3分)以下列各组长度的线段为边,能构成三角形的是()A.6cm、8cm、15cm B.7cm、5cm、12cm C.4cm、6cm、5cm D.8cm、4cm、3cm【解答】解:根据三角形的三边关系,得:A、6+8=14<15,不能组成三角形;B、7+5=12,不能组成三角形;C、4+5=9>6,能够组成三角形;D、4+3=7<8,不能组成三角形.故选:C.2.(3分)下列图形中,是轴对称图形的有()A.1个 B.2个 C.3个 D.4个【解答】解:第一个图形是轴对称图形,第二个图形不是轴对称图形,第三个图形不是轴对称图形,第四个图形是轴对称图形,综上所述,是轴对称图形的有2个.故选:B.3.(3分)锐角三角形中,任意两个内角之和必大于()A.120°B.100°C.90°D.60°【解答】解:如果两个锐角和不大于90°,那么第三个角将大于等于90°,就不再是锐角三角形.故选:C.4.(3分)如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件中选一个,错误的选法是()A.∠ADB=∠ADC B.∠B=∠C C.DB=DC D.AB=AC【解答】解:A、加∠ADB=∠ADC,∵∠1=∠2,AD=AD,∠ADB=∠ADC,∴△ABD ≌△ACD(ASA),是正确选法;B、加∠B=∠C∵∠1=∠2,AD=AD,∠B=∠C,∴△ABD≌△ACD(AAS),是正确选法;C、加DB=DC,满足SSA,不能得出△ABD≌△ACD,是错误选法;D、加AB=AC,∵∠1=∠2,AD=AD,AB=AC,∴△ABD≌△ACD(SAS),是正确选法.故选:C.5.(3分)下列语句:①面积相等的两个三角形全等;②两个等边三角形一定是全等图形;③如果两个三角形全等,它们的形状和大小一定都相同;④边数相同的图形一定能互相重合.其中错误的说法有()A.4个 B.3个 C.2个 D.1个【解答】解:①面积相等的两个三角形不一定全等,故本选项错误;②两个等边三角形一定是相似图形,但不一定全等,故本选项错误;③如果两个三角形全等,它们的形状和大小一定都相同,符合全等形的定义,正确;④边数相同的图形不一定能互相重合,故本选项错误;综上可得错误的说法有①②④共3个.故选:B.6.(3分)如果一个三角形的三条高所在直线的交点在三角形外部,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形【解答】解:一个三角形的三条高所在直线的交点在三角形外部,那么这个三角形是钝角三角形.故选:C.7.(3分)等腰三角形的一个内角为100°,则它的底角为()A.100°B.40°C.100°或40°D.不能确定【解答】解:根据等腰三角形的性质得,底角度数为:(180°﹣100°)÷2=40°;故选:B.8.(3分)如图,在Rt△ABC中,∠C=90°,它的周长为24,且AB:BC=5:3,则AC的长为()A.6 B.8 C.10 D.12【解答】解:设AB=5x,BC=3x,则AC==4x,于是5x+3x+4x=24,解得x=2,故AC=4×2=8,故选:B.9.(3分)如图,在△ABC中,D、E分别是AC、BC边上的一点,AD=2DC,BE=EC,若△DBE的面积为1,则△ABC的面积等于()A.4 B.6 C.8 D.10【解答】解:如图,过点A作AM⊥BC,过点D作DN⊥BC;则AM∥DN;∴△AMC∽△DNC,∴,而AD=2DC,∴AM=3DN(设DN为λ);设BE=EC=μ,∴=6,而S=1,△BED=6,∴S△ABC故选:B.10.(3分)如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2的值等于()A.2πB.4πC.8πD.16π【解答】解:S1=πAC2,S2=πBC2,所以S1+S2=π(AC2+BC2)=πAB2=2π.故选:A.二、填空题(本题共10个小题)11.(3分)三角形的三条中线交于一点,这点叫做三角形的重心.【解答】解:三角形的三条中线交于一点,这点叫做三角形的重心.故答案为:中线.12.(3分)正九边形有9条对称轴.【解答】解:正九边形有9条对称轴.故答案为:9.13.(3分)如图是边长为1的正方形网格,点A、B、C、D都在格点上,图中阴影部分的面积等于15.【解答】解:如图,S ABCD=S MNPQ﹣S△ABM﹣S△BCQ﹣S△CDP﹣S△ADN=6×5﹣=30﹣15=15.故答案为15.14.(3分)如图,∠α=17°.【解答】解:∵三角形内角和是180°,∴40°+32°=55°+α,解得α=17°.故答案为:17°.15.(3分)如图,在△ABC中,∠C=90°,AD是角平分线,点D到AB的距离为7cm,则CD=7cm.【解答】解:∵AD是∠BAC的平分线,BC⊥AC,点D到AB的距离为7cm,∴CD=7cm.故答案为:7cm.16.(3分)如果一个三角形有两个角等于60°,那么这个三角形是等边三角形.【解答】解:∵一个三角形有两个角等于60°,且三角之和为180°,∴第三个角的度数=180°﹣60°﹣60°=60°,∴这个三角形是等边三角形.故答案为:等边.17.(3分)在△ABC中,若∠C=∠B=∠A,则△ABC是直角三角形(按角分类)【解答】解:∠C=x°,∵∠C=∠B=∠A,∴∠B=2∠C=2x,∠A=3∠C=3x,∵∠A+∠B+∠C=180°,即:3x+2x+x=180°,解得:x=30°,∴∠C=30°,∠A=3∠C=90°,∠B=2∠C=60°,∴此三角形是直角三角形.故答案为:直角.18.(3分)如图,AD与BC交于点O,△AOB≌△COD,A和C,B和D是对应顶点,若BO=5,AO=3,AB=4,则BD2=80.【解答】解:∵AB2+AO2=42+32=25,BO2=52=25,∴AB2+AO2=BO2,∴∠A=90°,∵△AOB≌△COD,∴BO=DO=5,∵BO=5,AO=3,∴AD=AO+DO=3+5=8,在Rt△ABD中,BD2=AB2+AD2=42+82=80.故答案为:80.19.(3分)如图,在△ABC中,∠A=36°,∠B=72°,CD是∠ACD的平分线,则图中共有3个等腰三角形.【解答】解:有3个等腰三角形,理由是:∵在△ABC中,∠A=36°,∠B=72°,∴∠ACB=180°﹣∠A﹣∠B=72°,∴∠ACB=∠B,∴△ABC是等腰三角形,∵CD是∠ACD的平分线,∴∠ACD=∠BCD=∠ACB=36°,∴∠A=∠ACD=36°,∴△ACD是等腰三角形,∵∠BCD=36°,∠B=72°,∴∠CDB=180°﹣36°﹣72°=72°,∴∠B=∠CDB,∴△BCD是等腰三角形,故答案为:3.20.(3分)如图,在△ABC中,AB=AC,AD平分∠BAC,点E、F在AD上,若△ABC的面积为16cm2,则图中阴影部分的面积是8cm2.【解答】解:∵AB=AC,AD平分∠BAC,∴AD⊥DC,∴S△BEF =S△CEF,∴S阴影部分=S△ABD=S△ABC=×16=8(cm2).故答案为8.三、解答题21.(8分)尺规作图:如图,已知线段a、b和∠α用尺规作一个三角形,使其两边分别等于a、b,这两边的夹角等于2∠α.要求:不写已知、求作、作法,只画图,保留作图痕迹.【解答】解:如图所示:△ABC即为所求.22.(6分)利用一个点、一条线段、一个正三角形(或等腰三角形)、一个正方形(或长方形)设计一个轴对称图案,并说明你希望表达的含义.【解答】解:如图所示.表示一个垃圾箱.23.(9分)如图,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=10,试求△PMN的周长.【解答】解:∵P点关于OA、OB的对称点P1,P2,∴PM=P1M,PN=P2N,∴△PMN的周长=PM+MN+PN,=P1M+MN+P2N,=P1P2,∵P1P2=10,∴△PMN的周长=10.24.(11分)已知:如图△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=4cm.求BC 的长.【解答】解:∵AB=AC∴∠B=∠C=30°∵AB⊥AD∴BD=2AD=2×4=8(cm)∠B+∠ADB=90°,∴∠ADB=60°∵∠ADB=∠DAC+∠C=60°∴∠DAC=30°∴∠DAC=∠C∴DC=AD=4cm∴BC=BD+DC=8+4=12(cm).25.(11分)如图,小芳和她的同学汤秋千,秋千AB在静止时,下端B离地面0.6m,秋千荡到AB′的位置时,下端B′距静止位置的水平距离B′D等于2m,距地面1.4m,求秋千AB的长.【解答】解:设AB=xm,则AB′=xm,由题意可得出:DB=1.4﹣0.6=0.8(m),则AD=AB﹣DB=x﹣0.8,在Rt△AB′D中,AD2+B′D2=AB′2,则(x﹣0.8)2+22=x2解得:x=2.9.答:秋千AB的长为2.9m.26.(12分)如图:已知AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足,求证:①AC=AD;②CF=DF.【解答】证明:①∵AB=AE,BC=ED,∠B=∠E,∴△ABC≌△AED(SAS),∴AC=AD,②∵AF⊥CD,AC=AD,∴CF=FD(三线合一性质).。

2015七年级(上)期中数学试卷 附答案

2015七年级(上)期中数学试卷 附答案

七年级(上)期中数学试卷一、选择题(每题2分,共18分)1.据报道,我省西环高铁预计2015年底建成通车,计划总投资27100000000元,数据27100000000用科学记数法表示为()A. 271×108 B. 2.71×109 C. 2.71×1010 D. 2.71×10112.如果收入80元记作+80元,那么支出20元记作()A. +20元 B.﹣20元 C. +100元 D.﹣100元3.比较﹣3,1,﹣2的大小,下列判断正确的是()A.﹣3<﹣2<1 B.﹣2<﹣2<1 C.﹣2<﹣3<1 D. 1<﹣3<﹣24.下列四个实数中,是无理数的为()A. 0 B.﹣3 C.π D.5.实数a,b在数轴上的位置如图所示,以下说法正确的是()A. a+b=0 B. b<a C. ab>0 D. |b|<|a|6.下列各组是同类项的一组是()A. xy2与﹣x2y B. 3x2y与﹣4x2yz C. a3与b3 D.﹣2a3b与ba37.化简m﹣n﹣(m+n)的结果是()A. 0 B. 2m C.﹣2n D. 2m﹣2n8.已知﹣x+2y=6,则3(x﹣2y)2﹣5(x﹣2y)+6的值是()A. 84 B. 144 C. 72 D. 3609.如果M=3x2﹣2xy﹣4y2,N=4x2+5xy﹣y2,则8x2﹣13xy﹣15y2等于()A. 2M﹣3N B. 2M﹣N C. 3M﹣2N D. 4M﹣N二、填空题(每题2分,共18分)10.计算:﹣2+3= .11.若a与﹣5互为相反数,则a= ;若b的绝对值是,则b= .12.一个圆柱形蓄水池,底面半径r,高为h,如果这个蓄水池蓄满水,可蓄水.13.一个长方形的宽为x厘米,长比宽的2倍多1厘米,则长方形的周长为厘米.14.将(a+b)看作一个整体,则5(a+b)﹣3(a+b)﹣7(a+b)= .15.减去﹣3m等于5m2﹣3m﹣5的式子是.16.若(a2﹣3a﹣1)+A=a2﹣a+4,则A= .17.如图,程序运算器中,当输入﹣1时,则输出的数是.18.将自然数按以下规律排列:表中数2在第二行第一列,与有序数对(2,1)对应,数5与(1,3)对应,数14与(3,4)对应,根据这一规律,数2014对应的有序数对为.三、解答题(第19题20分,第20题8分,共28分)19.计算:(1)(﹣)+(﹣)﹣(﹣2)(2)﹣﹣+(3)9+5×(﹣3)﹣(﹣2)2+4(4)﹣5﹣[﹣1.5﹣(4.5﹣4)].20.计算(1)(﹣5)3×[2﹣(﹣6)]﹣300÷5(2)(﹣)÷(﹣)+(﹣2)2×(﹣14)四、解答题(第21题16分,第22题6分,共22分)21.化简或先化简求值(1)3x2y3+(﹣4x2y3)﹣(﹣x2y3)(2)ab﹣[3a2b﹣(4a2b+ab)﹣4a2b]+3a2b(3)m﹣(m﹣1)+3(4﹣m),其中m=﹣3.(4)2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y,其中x=﹣2,y=2.22.(1)根据要求列出代数式:①m的3倍与n的一半的和;②m与3的积减去n.(2)比较所列两个代数式的大小(直接写出结果)五、解答题(第23题6分,第24-25题每题4分,共14分)23.有3张如图所示的卡片,用它们可以拼成各种形状不同的四边形.(1)画出所有可能拼成的四边形;(2)计算其中两个所拼四边形的周长和与周长差.24.阅读下列解题过程:为了求1+2+22+23+…+2100的值,可令S=1+2+22+23+…+2100,则2S=2+22+23+24+…+2101,因此2S﹣S=2101﹣1,所以S=2101﹣1,即1+2+22+23+...+2100=2101﹣1,仿照以上方法计算1+3+32+33+ (32014)25.阅读理解:图1中的每相邻两条线间,有从上至下的几条横线(即“桥”),这样就构成了“天梯”规定,运算符号“+、﹣、×、÷”在“天梯”的竖线与横线上运动,它们在运动过程中按自上而下,且逢“桥”必过的规划进行,最后运动到竖线下方的“○”中,将a、b、c、d、e 连接起来,构成一个算式.如,“+”号根据规则就应该沿减号方向运动,最后向下进入“○”中,其余3个运算符号分别按规则运动到“○”中后,就得到算式a÷b×c﹣d+e.解决问题:(1)根据图2所示的“天梯”写出算式,并计算当a=﹣6,b=﹣1.52,c=﹣2,d=,c=﹣时所写算式的值;(2)添加1条横线,使图2中最后结果的“﹣”、“+”位置互换;(3)在图3中设计出一种“天梯”,使列出的算式为a×b÷c+d﹣e.参考答案与试题解析一、选择题(每题2分,共18分)1.据报道,我省西环高铁预计2015年底建成通车,计划总投资27100000000元,数据27100000000用科学记数法表示为()A. 271×108 B. 2.71×109 C. 2.71×1010 D. 2.71×1011考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将27100000000用科学记数法表示为:2.71×1010.故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.如果收入80元记作+80元,那么支出20元记作()A. +20元 B.﹣20元 C. +100元 D.﹣100元考点:正数和负数.分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:“正”和“负”相对,所以如果+80元表示收入80元,那么支出20元表示为﹣20元.故选:B.点评:此题考查的是正数和负数的定义,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.3.比较﹣3,1,﹣2的大小,下列判断正确的是()A.﹣3<﹣2<1 B.﹣2<﹣2<1 C.﹣2<﹣3<1 D. 1<﹣3<﹣2考点:有理数大小比较.分析:本题是对有理数的大小比较,根据有理数性质即可得出答案.解答:解:有理数﹣3,1,﹣2的中,根据有理数的性质,∴﹣3<﹣2<0<1.故选:A.点评:本题主要考查了有理数大小的判定,难度较小,熟知两个负数,绝对值大的其值反而小是解答此题的关键.4.下列四个实数中,是无理数的为()A. 0 B.﹣3 C.π D.考点:无理数.分析:根据无理数是无限不循小数,可得答案.解答:解:A、是有理数,故A错误;B、是有理数,故B错误;C、是无理数,故C正确;D、是有理数,故D错误;故选:C.点评:本题考查了无理数,无理数是无限不循环小数.5.实数a,b在数轴上的位置如图所示,以下说法正确的是()A. a+b=0 B. b<a C. ab>0 D. |b|<|a|考点:实数与数轴.专题:常规题型.分析:根据图形可知,a是一个负数,并且它的绝对是大于1小于2,b是一个正数,并且它的绝对值是大于0小于1,即可得出|b|<|a|.解答:解:根据图形可知:﹣2<a<﹣1,0<b<1,则|b|<|a|;故选:D.点评:此题主要考查了实数与数轴,解答此题的关键是根据数轴上的任意两个数,右边的数总比左边的数大,负数的绝对值等于它的相反数,正数的绝对值等于本身.6.下列各组是同类项的一组是()A. xy2与﹣x2y B. 3x2y与﹣4x2yz C. a3与b3 D.﹣2a3b与ba3考点:同类项.分析:本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,同类项与字母的顺序无关.解答:解:A、未知数指数不同;B、C组中未知数不同,所以错误;D、﹣2a3b与ba3符合同类项的条件.故选D.点评:同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.7.化简m﹣n﹣(m+n)的结果是()A. 0 B. 2m C.﹣2n D. 2m﹣2n考点:整式的加减.分析:根据整式的加减运算法则,先去括号,再合并同类项.注意去括号时,括号前是负号,去括号时,括号里各项都要变号;合并同类项时,只把系数相加减,字母和字母的指数不变.解答:解:原式=m﹣n﹣m﹣n=﹣2n.故选C.点评:解决此类题目的关键是熟记去括号法则,及熟练运用合并同类项的法则,其是各地中考的常考点.注意去括号法则为:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.8.已知﹣x+2y=6,则3(x﹣2y)2﹣5(x﹣2y)+6的值是()A. 84 B. 144 C. 72 D. 360考点:代数式求值.专题:整体思想.分析:因为﹣x+2y=6,所以x﹣2y=﹣6,可直接代入3(x﹣2y)2﹣5(x﹣2y)+6解答.解答:解:因为﹣x+2y=6,所以x﹣2y=﹣6.则3(x﹣2y)2﹣5(x﹣2y)+6=3×(﹣6)2﹣5×(﹣6)+6=144故选B.点评:代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式x﹣2y=﹣6的值,然后利用“整体代入法”求代数式的值.9.如果M=3x2﹣2xy﹣4y2,N=4x2+5xy﹣y2,则8x2﹣13xy﹣15y2等于()A. 2M﹣3N B. 2M﹣N C. 3M﹣2N D. 4M﹣N考点:整式的加减.分析:本题涉及去括号法则、合并同类项两个考点,解答时根据每个考点作出回答.根据已知条件逐项算出各项的值判断即可.解答: A、原式=﹣6x2﹣19xy﹣5y2;B、原式=2x2﹣9xy﹣7y2;C、原式=x2﹣16xy﹣10y2;D、原式=8x2﹣13xy﹣15y2.故选D.点评:解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则.合并同类项的时候,字母应平移下来,只对系数相加减.二、填空题(每题2分,共18分)10.计算:﹣2+3= 1 .考点:有理数的加法.分析:根据有理数的加法法则,从而得出结果.解答:解:﹣2+3=1.故答案为:1.点评:此题主要考查了有理数的加法运算,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.11.若a与﹣5互为相反数,则a= 5 ;若b的绝对值是,则b= .考点:绝对值;相反数.分析:一个数的相反数就是在这个数前面添上“﹣”号.计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解答:解:﹣5的相反数是5,如果a与﹣5互为相反数,那么a=5;||=,所以b=.故答案为:5;点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.一个圆柱形蓄水池,底面半径r,高为h,如果这个蓄水池蓄满水,可蓄水πr2h .考点:列代数式.分析:根据圆柱的体积=底面积×高列出代数式即可.解答:解:水池可畜水:πr2h.故答案是:πr2h.点评:本题考查了列代数式及圆柱体积的求法,熟记圆柱的体积公式是解题的关键.13.一个长方形的宽为x厘米,长比宽的2倍多1厘米,则长方形的周长为(6x+2)厘米.考点:整式的加减.专题:计算题.分析:由于一个长方形的宽为x厘米,长比宽的2倍多1厘米,则一个长方形的长为(2x+1)厘米,再根据长方形的周长的定义得到长方形的周长=2(x+2x+1),然后去括号,合并同类项即可.解答:解:∵一个长方形的宽为x厘米,长比宽的2倍多1厘米,∴一个长方形的长为(2x+1)厘米,∴长方形的周长=2(x+2x+1)=2x+4x+2=6x+2(厘米).故答案为(6x+2).点评:本题考查了整式的加减:整式的加减运算就是合并同类项.14.将(a+b)看作一个整体,则5(a+b)﹣3(a+b)﹣7(a+b)= ﹣5(a+b).考点:合并同类项.分析:根据合并同类项,系数相加字母部分不变,可得答案.解答:解:原式=(5﹣3﹣7)(a+b)=﹣5(a+b),故答案为:﹣5(a+b).点评:本题考查了合并同类项,把(a+b)看作一个整体是解题关键.15.减去﹣3m等于5m2﹣3m﹣5的式子是5m2﹣6m﹣5 .考点:整式的加减.分析:此题只需设这个式子为A,则A﹣(﹣3m)=5m2﹣3m﹣5,求得A的值即可.解答:解:由题意得,设这个式子为A,则A﹣(﹣3m)=5m2﹣3m﹣5,A=5m2﹣3m﹣5﹣3m=5m2﹣6m﹣5.故答案为:5m2﹣6m﹣5.点评:本题考查了整式的加减,比较简单,容易掌握.熟练掌握运算法则是解本题的关键.16.若(a2﹣3a﹣1)+A=a2﹣a+4,则A= 2a+5 .考点:整式的加减.分析:先把括号里面的整式移到等号右边,然后按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.解答:解:A=a2﹣a+4﹣(a2﹣3a﹣1)=a2﹣a+4﹣a2+3a+1=2a+5.故答案为;2a+5.点评:本题考查了整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.17.如图,程序运算器中,当输入﹣1时,则输出的数是7 .考点:有理数的混合运算.专题:图表型.分析:首先理解清题意,知道此题分两种情况,且只有运算的数值大于3时才能输出结果.解答:解:(﹣1+4)×(﹣2)+(﹣3)=3×(﹣2)+(﹣3)=﹣6﹣3=﹣9<3(﹣9+4)×(﹣2)+(﹣3)=(﹣5)×(﹣2)+(﹣3)=10﹣3=7>3.故答案为:7.点评:此题的关键是知道计算顺序,明白当运算的结果小于3时要再重新计算,直到结果大于3,输出结果为止.18.将自然数按以下规律排列:表中数2在第二行第一列,与有序数对(2,1)对应,数5与(1,3)对应,数14与(3,4)对应,根据这一规律,数2014对应的有序数对为(45,12).考点:规律型:数字的变化类.专题:压轴题;规律型.分析:根据已知数据可得出第一列的奇数行的数的规律是第几行就是那个数平方,同理可得出第一行的偶数列的数的规律,从而得出2014所在的位置.解答:解:由已知可得:根据第一列的奇数行的数的规律是第几行就是那个数平方,第一行的偶数列的数的规律,与奇数行规律相同;∵45×45=2025,2014在第45行,向右依次减小,∴2014所在的位置是第45行,第12列,其坐标为(45,12).故答案为:(45,12).点评:此题主要考查了数字的规律知识,得出第一列的奇数行的数的规律与第一行的偶数列的数的规律是解决问题的关键.三、解答题(第19题20分,第20题8分,共28分)19.计算:(1)(﹣)+(﹣)﹣(﹣2)(2)﹣﹣+(3)9+5×(﹣3)﹣(﹣2)2+4(4)﹣5﹣[﹣1.5﹣(4.5﹣4)].考点:有理数的混合运算.专题:计算题.分析:(1)原式利用减法法则变形,计算即可得到结果;(2)原式结合后,相加即可得到结果;(3)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(4)原式去括号,计算即可得到结果.解答:解:(1)原式=﹣﹣+2=﹣1+2=1;(2)原式=﹣+﹣=﹣+=﹣;(3)原式=9﹣15﹣1=﹣7;(4)原式=﹣5+1.5+4.5﹣4=﹣10.5+6=﹣4.5.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.计算(1)(﹣5)3×[2﹣(﹣6)]﹣300÷5(2)(﹣)÷(﹣)+(﹣2)2×(﹣14)考点:有理数的混合运算.专题:计算题.分析:(1)首先算括号里的,利用有理数的减法法则;减去一个数等于加上它的相反数,2﹣(﹣6)=2+6;再算乘方,(﹣5)3表示3个﹣5相乘得﹣125,再算乘除,两数相乘(或相除),同号得正,异号得负,首先确定好符号,然后把绝对值相乘(或相除);最后再算加减即可以得到答案.(2)首先算括号里的﹣=;再算乘方,(﹣2)2表示2个﹣2相乘得4,再算乘除,两数相乘(或相除),同号得正,异号得负,首先确定好符号,然后把绝对值相乘(或相除);最后再算加减即可以得到答案.解答:解:(1)原式=(﹣5)3×(2+6)﹣300÷5,=(﹣5)3×8﹣300÷5,=﹣125×8﹣300÷5,=﹣1000﹣60,=﹣1060.(2)原式=÷(﹣)+4×(﹣14),=﹣1+(﹣56),=﹣57.点评:此题主要考查了有理数的加减,乘除,乘方的混合运算,计算时要把握两个关键:①计算顺序,②符号的确定.四、解答题(第21题16分,第22题6分,共22分)21.化简或先化简求值(1)3x2y3+(﹣4x2y3)﹣(﹣x2y3)(2)ab﹣[3a2b﹣(4a2b+ab)﹣4a2b]+3a2b(3)m﹣(m﹣1)+3(4﹣m),其中m=﹣3.(4)2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y,其中x=﹣2,y=2.考点:整式的加减;整式的加减—化简求值.分析:(1)(2)先去括号,然后合并同类项即可;(3)(4)先去括号、合并同类项,然后再代入求值即可.解答:解:(1)3x2y3+(﹣4x2y3)﹣(﹣x2y3)=3x2y3﹣4x2y3+x2y3=0;(2)ab﹣[3a2b﹣(4a2b+ab)﹣4a2b]+3a2b=ab﹣3a2b+4a2b+ab+4a2b+3a2b=ab+8a2b;(3)m﹣(m﹣1)+3(4﹣m),=m﹣m+1+12﹣3m,=﹣4m+13,当m=﹣3时,原式=﹣4×(﹣3)+13=12+13=25;(4)2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y,=2x2y+2xy2﹣2x2y+2x﹣2xy2﹣2y,=2x﹣2y,当x=﹣2,y=2时,原式=2×(﹣2)﹣2×2=﹣4﹣4=﹣8.点评:此题考查的知识点是整式的混合运算﹣化简求值,关键是先去括号、合并同类项进行化简,然后代入求值.22.(1)根据要求列出代数式:①m的3倍与n的一半的和;②m与3的积减去n.(2)比较所列两个代数式的大小(直接写出结果)考点:列代数式;整式的加减.分析:(1)①m的3倍即3m,n的一半即n,二者相加即可.②m与3的积表示为3m,然后减去n.(2)利用作差法比较它们的大小.解答:解:①依题意得 3m+n;②依题意得 3m﹣n;(2)∵(3m+n)﹣(3m﹣n)=n.∴当n>0时,3m+n>3m﹣n;当n<0时,3m+n<3m﹣n;当n=0时,3m+n=3m﹣n.点评:此题考查的知识点是列代数式,关键是能够正确运用数学语言,即代数式来表示题意.五、解答题(第23题6分,第24-25题每题4分,共14分)23.有3张如图所示的卡片,用它们可以拼成各种形状不同的四边形.(1)画出所有可能拼成的四边形;(2)计算其中两个所拼四边形的周长和与周长差.考点:整式的加减;列代数式;图形的剪拼.分析:(1)拼成各种形状不同的四边形,需让相等的边重合,可先从常见的图形等腰梯形入手,然后进行一定转换;(2)根据作出的图形求出周长,然后求出周长差.解答:解:(1)所作图形如图所示:(2)第一个四边形的周长为:4a+2b,第二个四边形的周长为:2a+4b,则周长差为:(4a+2b)﹣(2a+4b)=2a﹣2b.点评:本题考查了整式的加减,着重考察了学生的动手操作能力,让相等的边重合,构造四边形即可.24.阅读下列解题过程:为了求1+2+22+23+…+2100的值,可令S=1+2+22+23+…+2100,则2S=2+22+23+24+…+2101,因此2S﹣S=2101﹣1,所以S=2101﹣1,即1+2+22+23+...+2100=2101﹣1,仿照以上方法计算1+3+32+33+ (32014)考点:有理数的乘方.专题:阅读型.分析:利用题中的方法求出原式的值即可.解答:解:设M=1+3+32+33+…+32014,①①式两边都乘以3,得3M=3+32+33+…+32015,②②﹣①得:2M=32015﹣1,即M=,则原式=.点评:此题考查了有理数的乘方,弄清题中的方法是解本题的关键.25.阅读理解:图1中的每相邻两条线间,有从上至下的几条横线(即“桥”),这样就构成了“天梯”规定,运算符号“+、﹣、×、÷”在“天梯”的竖线与横线上运动,它们在运动过程中按自上而下,且逢“桥”必过的规划进行,最后运动到竖线下方的“○”中,将a、b、c、d、e连接起来,构成一个算式.如,“+”号根据规则就应该沿减号方向运动,最后向下进入“○”中,其余3个运算符号分别按规则运动到“○”中后,就得到算式a÷b×c﹣d+e.解决问题:(1)根据图2所示的“天梯”写出算式,并计算当a=﹣6,b=﹣1.52,c=﹣2,d=,c=﹣时所写算式的值;(2)添加1条横线,使图2中最后结果的“﹣”、“+”位置互换;(3)在图3中设计出一种“天梯”,使列出的算式为a×b÷c+d﹣e.考点:有理数的混合运算.专题:阅读型.分析:(1)根据题意确定出图2所示的“天梯”表示的算式,把a,b,c,d,e代入计算即可求出值;(2)根据题意画出粗线,如图所示;(3)如图3所示,设计出一种“天梯”满足题意即可.解答:解:(1)由题意得:ab﹣c+d+e,当a=﹣6,b=﹣1.52=﹣2.25,c=﹣2,d=,e=﹣时,原式=﹣6×(﹣2.25)﹣(﹣2)÷+(﹣)=;(2)加的横线见图2中的粗线部分,该横线应该在第二栏的第二座“桥”附近,可以添加在第二座“桥”的上方或下方,但不能超过第二座“桥”相邻的其他“桥”,这样就可以使图2中最后结果的“﹣”、“+”位置互换;(3)如图3所示.点评:此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.。

山东省龙口市(五四学制)2014-2015学年七年级下学期期中考试数学试题

山东省龙口市(五四学制)2014-2015学年七年级下学期期中考试数学试题

2014-2015学年度第二学期阶段性测试初二数学试题(90分钟)一、选择题(每个小题只有一个正确答案,请将正确答案的字母代号填写在下列表格中)每题3分 题号1 23456789101112答案1、下列方程: ①213y x -=; ②332xy+=; ③224x y -=;④5()7()x y x y +=+;⑤223x =;⑥14x y +=.其中是二元一次方程的是( )。

A.①B.①④C.①③D.①②④⑥2、某同学掷一枚硬币,结果是一连9次都掷出正面朝上,请问他第10次掷出硬币时出现正面朝上的概率为( ) A .小于12B .大于12C .12D .不能确定3、已知下列命题:①相等的角是对顶角;②互补的角就是平角;③互补的两个角一定是一个锐角,另一个为钝角;④垂直于同一条直线的两直线平行; ⑤同旁内角的平分线互相垂直.其中,真命题的个数为( )A 、0B 、1个C 、2个D 、3个4.图中两直线L1,L2的交点坐标可以看作方程组( )的解. A .121x y x y -=⎧⎨-=-⎩ B.121x y x y -=-⎧⎨-=⎩C .321x y x y -=⎧⎨-=⎩ D.321x y x y -=-⎧⎨-=-⎩5、任意买一张电影票,座位号是2的倍数,此事件是( )A 、不可能事件B 、不确定事件C 、必然事件D 、以上结论都不正确 6、如图右:AB ∥CD ,直线HE ⊥MN 交MN 于E ,∠1=130º,则∠2等于( ) A 、50ºB 、40ºC 、30ºD 、60°2HNMECA7、如图,如果AB ∥CD ,则角α、β、γ之间的关系式为( )A.α+β+γ=360ºB.α-β+γ=180ºC.α+β+γ=180ºD.α+β-γ=180º8、已知10x y =-=⎧⎨⎩和23x y ==⎧⎨⎩都是方程y ax b =+的解,则a 和b 的值是( )A.11a b =-=-⎧⎨⎩B.11a b ==⎧⎨⎩C.11a b =-=⎧⎨⎩ D.11a b ==-⎧⎨⎩9、如图所示,已知∠1=20°,∠2=25°,∠A=35°,则∠BDC 的度数为( )A .60°B .70°C .80°D .85°概率是12,则n10、从n 个苹果和3个雪梨中,任选1个,若选中苹果的的值是( )A 、6B 、3C 、2D 、111、如图所示,则∠A+∠B+∠C+∠D+∠E+∠F 的度数是( ). A .180° B .270° C .360° D .540°12、如图,宽为50 cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( )A. 400 cm2B. 500 cm2C. 600 cm2D. 4000 cm2二、填空题(每题3分) 13. 若方程456m nm n xy -+-=是二元一次方程,则____m =,____n =.14.已知方程组 y-3x+3=0的解为4,31,x y ⎧=⎪⎨⎪=⎩则一次函数y=3x-3与y=-32x+3的3x+2y-6=0 交点P 的坐标是______15、甲、乙、丙三种商品,如果购甲3件、乙2件、丙1件共需315元;购甲1件、乙2件、丙3件共需285元,那么购甲乙丙各1件共需______元16、如图,已知△ABC 中, ∠ABC 的平分线与∠ACE 的平分线交于点D ,若∠A=50°,αγβEDCBA则∠D=______度。

初中数学山东省龙口市第五中学(五四学制)七年级上学期期中考模拟试数学考试题.docx

初中数学山东省龙口市第五中学(五四学制)七年级上学期期中考模拟试数学考试题.docx

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:下列交通标志图案是轴对称图形的是()试题2:利用基本作图,不能作出唯一三角形的是()A. 已知两边及其夹角B. 已知两角及其夹边C. 已知两边及一边的对角D. 已知三边试题3:满足下列条件的△ABC,不是直角三角形的是()A. ∠A=∠B-∠CB.∠A:∠B:∠C=1:1:2C.a:b:c=1:1:2D.试题4:如图用直尺和圆规作出∠AOB的角平分线OC的依据是()A. SSSB. ASA评卷人得分C. AASD. SAS试题5:等腰三角形一腰上的高与另一腰的夹角为30°,则顶角为()A. 60°B. 120°C. 60°或150°D. 60°或120°试题6:如图AB=CD,AD=BC,过O点的直线交AD于E,交BC于F,图中全等三角形有()A. 4对B. 5对C. 6对D.7对试题7:如图OP平分∠MON,PA⊥ON,垂足为A,点Q是射线OM上的一个动点,若PA=4,则线段PQ长度的最小值为()A. 2 B. 4 C. 5 D. 6试题8:如图,,表示三条两两交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可选的地址为几处()A. 一处B. 两处C. 三处D. 四处试题9:三个正方形的面积如图所示,则正方形A的边长为()A. 6B. 8C. 36D.64试题10:一个等腰三角形的周长为20,两条边的比为1:2,则其底边长为()A.10B.4C. 4或10D.5或8试题11:如图△ABC中,AD⊥BC,垂足为D, BE⊥AC,垂足为E,AD与BE相交于点F,若BF=AC,那么∠ABC的大小为()A.40°B.45°C.50°D.60°试题12:如图图中的阴影部分是由5个小正方形组成的一个图形,若在图中的方格里涂黑两个正方形,使整个阴影部分成为轴对称图形,涂法有几种()A. 2种B. 4种C. 5种D. 7种试题13:一副三角板如图摆放,∠= 。

鲁教版(五四学制)七年级数学(上册)期中复习检测题(含答案详解)

鲁教版(五四学制)七年级数学(上册)期中复习检测题(含答案详解)

期中检测题(时间:120分钟,满分:120分)一、选择题(每小题3分,共36分) 1.下列图中不是轴对称图形的是( )2. 如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( ) A.2,3,4 B.3,4,5 C.6,8,10 D.53,54,1 3. 若均为正整数,且,,则的最小值是( )A.3B.4C.5D.6 4. 数学在我们的生活中无处不在,就连小小的台球桌上都有数学问题,如图所示,∠1=∠2,若∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1 为( )A.60°B.30°C.45°D.50° 5. 如图所示,△ABC 中,AB+BC=10,AC 的垂直平分线分别交AB 、AC 于点D 和E ,则△BCD 的周长是( )A.6B.8C.10D.无法确定6. 若是169的算术平方根,是121的负的平方根,则(+)2的平方根为( ) A. 2 B. 4 C.±2 D. ±47. 若,则的值是( )A .78B .78-C .78±D .343512- 8. 如图,已知正方形的面积为144,正方形的面积为169,那么正方形的面积为( )A.313B.144C.169D.259. 如图,在Rt△中,∠°,,,则其斜边上的高为( )A.cm 6B.cm 8.5第5题图 第4题图ABC第8题图第9题图C.cm 1360 D.cm 133010. 下列事件:①掷一枚硬币,着地时正面向上;②在标准大气压下,水加热到会沸腾;③买一张福利彩票,开奖后会中奖;④明天会下雨.其中,必然事件有( ) A.1个 B.2个 C.3个 D.4个 11. 某市民政部门:“五•一”期间举行“即开式福利彩票”的销售活动,发行彩票10万张A.20001B.5001C.5003D.200312.现有游戏规则如下:第一个人先说“1”或“1、2”,第二个人要接着往下说一个或两个数,然后又轮到第一个人,再接着往下说一个或两个数,这样两人反复轮流,每次每人说一个或两个数都可以,但是不可以连说三个数,谁先抢到“38”,谁就获胜.在这个游戏中,若采取合理的策略,你认为( )A.后报者可能胜B.后报者必胜C.先报者必胜D.不分胜负 二、填空题(每小题3分,共24分)13.国际奥委会会旗上的图案由5个圆环组成.每两个圆环相交的部分叫做曲边四边形,如图所示,从左至右共有8个曲边四边形,分别给它们标上序号.观察图形,我们发现标号为2的曲边四边形(以下简称“2”)经过平移能与“6”重合,2又与成轴对称.(请把能成轴对称的曲边四边形标号都填上)14.如图所示,△ABC中,AB=AC ,AD 是△ABC 的角平分线, 则∠ABD ∠ACD.(填“>”、“<”或“=”) 15. 在△中,,,⊥于点,则_______.16. 三角形三边长分别为,且,则这个三角形(按边分类)一定是. 17. 已知:若≈1.910,≈6.042,则≈,±≈.18.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了________步路(假设2步为),却踩伤了花草. 19. 若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数 是_______. 20.下列6个事件中:(1)掷一枚硬币,正面朝上;(2)从一副没有大小王的扑克牌中抽出一张恰为黑桃;(3)随意翻开一本有400页的第13题图 第19题图 第14题图书,正好翻到第100页;(4)天上下雨,马路潮湿;(5)买奖券中特等大奖;(6)掷一枚正方体骰子,得到的点数大于7.其中确定事件为___________,不确定事件为____________;不可能事件为_________,必然事件为__________;不确定事件中,发生可能性最大的是_______,发生可能性最小的是________. 三、解答题(共60分)21.(6分)将16个相同的小正方形拼成正方形格,并将其中的两个小正方形涂成黑色,请你用两种不同的方法分别在图甲、图乙中再将两个空白的小正方形涂黑,使它成为轴对称图形.22.(6分)如图所示,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连接AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F . 求证:(1)FC=AD ;(2)AB=BC+AD .请你结合该表格及相关知识,求出的值.24.(6分)如图,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗?25.(6分)观察图,每个小正方形的边长均为1.(1)图中阴影部分的面积是多少,边长是多少? (2)估计边长的值在哪两个整数之间. (3)把边长在数轴上表示出来.26.(6分) 若实数满足条件,求的值. 27.(8分)如图是小明家地板的部分示意图,它由大小相同的黑白两色正方形拼接而成,家中的小猫在地板上行走,请问:(1)小猫踩在白色的正方形地板上,这属于哪一类事件?(2)小猫踩在白色或黑色的正方形地板上,这属于哪一类事件?第21题图第22题图 第25题图第24题图(3)小猫踩在红色的正方形地板上,这属于哪一类事件? (4)小猫踩在哪种颜色的正方形地板上可能性较大?28.(8分)小颖和小红两名同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:(1)计算“3点朝上”的频率和“5点朝上”的频率. (2)小颖说:“根据上述实验,一次实验中出现5点朝上的概率最大”;小红说:“如果投 掷600次,那么出现6点朝上的次数正好是100次”.小颖和小红的说法正确吗?为什么? 29.(8分) 一只口袋中放着若干只红球和白球,这两种球除了颜色以外没有任何其他区别,袋中的球已经搅匀,蒙上眼睛从口袋中取出一只球,取到红球的概率是14. (1)取到白球的概率是多少?(2)如果袋中的白球有18只,那么袋中的红球有多少只?期中检测题参考答案1.C 解析:由轴对称的性质可知A 、B 、D 都能找到对称轴,而C 找不到对称轴,故选C. 2.A3.C 解析:均为正整数,且,,∴ 的最小值是3,的最小值是2, 则的最小值是5.故选C .4.A 解析:∵ 台球桌四角都是直角,∠3=30°, ∴ ∠2=60°.∵ ∠1=∠2,∴ ∠1=60°,故选A .5.C 解析:∵ DE 是AC 的垂直平分线,∴ AD=DC , △BCD 的周长=BC+BD+DC=BC+BD+AD=AB+BC=10.故选C .6.C 解析:因为169的算术平方根为13,所以 =13.又121的平方根为,所以 =-11,所以4的平方根为,所以选C. 7.B 解析:由题意可知,所以8.D 解析:设三个正方形的边长依次为,由于三个正方形的三边组成一个直角三角形,所以,故,则.9.C 解析:由勾股定理可知;再由三角形的面积公式,有21,得cm.1360=⋅AB BC AC 10.A 解析:②在标准大气压下,水加热到会沸腾是必然事件.11.C 解析:因为从10万张彩票中购买一张,每张被买到的机会相同, 因而有10万个结果,奖金不少于50元的共有,个)(6004001504010=+++,元所得奖金不少于所以5003100000600)50(==P 故选C.12.C 解析:为了抢到,必须抢到35,那么不论另一个人报还是,你都能胜.游戏的关键是报数先后顺序,并且每次报数的个数和对方合起来是三个,即对方报个数,你就报个数.抢数游戏,它的本质是一个是否被“”整除的问题.谁先抢到,对方无论报“36”或“37”你都获胜. 朝上的点数 1 2 3 4 5 6 出现的次数 7 9 6 8 20 1013.1,3,7 解析:根据轴对称图形的定义可知:标号为2的曲边四边形与标号为1,3,7的曲边四边形成轴对称.14.= 解析:∵△ABC中,AB=AC,AD是△ABC的角平分线,∴∠BAD=∠CAD.又∵AB=AC,AD=AD,∴△ABD≌△ACD.∴∠ABD=∠ACD.解析:如图,因为等腰三角形底边上的高、中线以及顶角平分线三线合一,所以.因为cm,所以. 因为,所以.16.等腰三角形解析:∵∴,.∵+≠0,∴-=0,则三角形一定是等腰三角形.17.604.2 0.019 1 解析:;±0.019 1.18. 4 解析:在Rt△中,,则,少走了.19.解析:∵ -2<-<-1,2<<3,3.5<<4,且墨迹覆盖的范围大概是1 3.3,∴能被墨迹覆盖的数是.20.解析:因为一枚硬币有正反两面,所以掷一枚硬币,正面朝上,是随机事件;因为一副没有大小王的扑克牌中有黑桃、红桃、梅花及方块共四种花色,故随机抽出一张恰是黑桃,是随机事件;因为一本书有400页,每页都有被翻到的可能性,正好翻到第100页,是随机事件;天上下雨后雨水落到地上,马路就湿了,是必然事件;买奖券可能中特等奖,也可能不中特等奖,是随机事件;正方体骰子共有6个面,点数为得到的点数大于7,是不可能事件.1,可能性最大;发生的可能性最小,概率往往为数百万分之一.221.分析:根据轴对称图形的性质得出,分别在图甲、图乙中再将两个空白的小正方形涂黑,使它成为轴对称图形即可.解:如图所示.(答案不唯一)第21题答图22.分析:(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可证出△ADE≌△FCE,根据全等三角形的性质即可解答.(2)根据线段垂直平分线的性质判断出AB=BF即可.证明:(1)∵ AD∥BC(已知),∴∠ADC=∠ECF(两直线平行,内错角相等).∵ E是CD的中点(已知),∴ DE=EC(中点的定义).∵在△ADE与△FCE中,∠ADC=∠ECF,DE=EC,∠AED=∠CEF,∴△ADE≌△FCE(ASA),∴ FC=AD(全等三角形的性质).(2)∵△ADE≌△FCE,∴ AE=EF,AD=CF(全等三角形的对应边相等),∴ BE是线段AF的垂直平分线,∴ AB=BF=BC+CF.又∵ AD=CF(已证),∴ AB=BC+AD(等量代换).23.解:由3,4,5:;5,12,13:;7,24,25:.知,,解得,所以.24.解:设旗杆在离底部米的位置断裂,则折断部分的长为米,根据勾股定理,得,解得,即旗杆在离底部6米处断裂.25.解:(1)由勾股定理得,阴影部分的边长==,所以图中阴影部分的面积S=()2=17,边长是.(2)∵ 42=16,52=25,()2=17,∴边长的值在4与5之间.(3)如图所示.26.分析:分析题中条件不难发现等号左边含有未知数的项都有根号,而等号右边的则都没有.由此可以想到将等式移项,并配方成三个完全平方数之和等于0的形式,从而可以分别求出的值.解:将题中等式移项并将等号两边同乘4得,∴,∴,∴,,,∴,,,∴∴.∴=120.27.解:(1)可能发生,也可能不发生,是随机事件;(2)一定会发生,是必然事件;(3)一定不会发生,是不可能事件;(4)踩在黑色的正方形地板上可能性较大.第25题答图28.解:(1)“3点朝上”的频率是101606=;“5点朝上”的频率是316020=.(2)小颖的说法是错误的,因为“5点朝上”的频率最大并不能说明“5点朝上”这一事 件发生的概率最大,只有当实验的次数足够大时,该事件发生的频率才稳定在事件发生的概率附近;小红的说法也是错误的,因为事件的发生具有随机性,所以“6点朝上”的次数不一定是100次.29.解:(1)()().434111=-=-=取到红球取到白球P P (2)设袋中的红球有x 只,则有1184x x =+ 或183184x =+,解得6x =. 所以袋中的红球有6只.。

鲁教版五四制七年级(上)数学期中试题(含答案)

鲁教版五四制七年级(上)数学期中试题(含答案)

第一学期期中质量调研七年级数学试题(时间:90分钟,满分120分)一、选择题(每题3分,共30分)1.运用等式性质进行的变形,不正确的是()A.如果a=b,那么a﹣c=b﹣c B.如果a=b,那么a+c=b+cC.如果a=b,那么ac=bc D.如果ac=bc,那么a=b2.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A B C D3.下图中,由AB∥CD,能得到∠1=∠2的是( )4.某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是()A.第一次左拐30°,第二次右拐30°B. 第一次右拐50°,第二次左拐130°C.第一次右拐50°,第二次右拐130°D.第一次向左拐50°,第二次向左拐120°已知5.在解方程13132x xx-++=时,方程两边同时乘以6,去分母后,正确的是()A.2x﹣1+6x=3(3x+1)B.2(x﹣1)+6x=3(3x+1)C.2(x﹣1)+x=3(3x+1)D.(x﹣1)+x=3(x+1)6.若A、B、C是直线l上的三点,P是直线l外一点,且P A=6cm,PB=5cm,PC=4cm,则点P到直线l 的距离()A.等于4cm B.大于4cm而小于5cmC.不大于4cm D.小于4cm7.∠α的补角为125°12′,则它的余角为()A.35°12′ B.35°48′ C.55°12′ D.55°48′8.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=35°,则∠2等于()A.55°B.45°C.35°D.65°9.小李在解方程5a-x=13(x为未知数)时,错将-x看作+x,得方程的解为x=-2,则原方程的解为( ) A.x=-3 B.x=0 C.x=2 D.x=110. 足球比赛的记分规则是:胜一场得3分,平一场得1分,负一场得0分,若一个队打了14场比赛得17分,其中负了5场,那么这个队胜了()场。

2014-2015学年山东省烟台市龙口五中七年级(上)期中数学试卷含答案(五四学制)

2014-2015学年山东省烟台市龙口五中七年级(上)期中数学试卷含答案(五四学制)

2014-2015学年山东省烟台市龙口五中七年级(上)期中数学试卷(五四学制)一、选择题(每小题有且只有一个正确答案)1.(3分)下列交通标志图案是轴对称图形的是()A.B.C.D.2.(3分)下列各条件中,不能作出唯一三角形的是()A.已知两边和夹角 B.已知两角和夹边C.已知两边和其中一边的对角D.已知三边3.(3分)满足下列条件的△ABC,不是直角三角形的是()A.∠A=∠B﹣∠C B.∠A:∠B:∠C=1:1:2C.a:b:c=1:1:2 D.b2=a2﹣c24.(3分)如图,用直尺和圆规作出∠AOB的角平分线OC的依据是()A.(SSS)B.(SAS)C.(ASA)D.(AAS)5.(3分)等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A.60°B.120°C.60°或150°D.60°或120°6.(3分)如图AB=CD,AD=BC,过O点的直线交AD于E,交BC于F,图中全等三角形有()A.4对 B.5对 C.6对 D.7对7.(3分)如图,OP平分∠MON,PA⊥ON于点A,点D是射线OM上的一个动点.若PA=4,则PD的最小值为()A.1 B.2 C.3 D.48.(3分)如图,直线l1、l2、l3分别表示三条相互交叉的公路,现要建立一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有()A.一处B.二处C.三处D.四处9.(3分)三个正方形的面积如图所示,则正方形A的边长为()A.6 B.8 C.36 D.6410.(3分)一等腰三角形的周长为20,两条边的比为1:2,那么其底边长为()A.10 B.4 C.4或10 D.5或811.(3分)如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,若BF=AC,则∠ABC的大小是()A.40°B.45°C.50°D.60°12.(3分)如图图中的阴影部分是由5个小正方形组成的一个图形,若在图中的方格里涂黑两个正方形,使整个阴影部分成为轴对称图形,涂法有几种()A.4种 B.5种 C.7种 D.9种二、填空题(请把正确答案填在题中的横线上)13.(3分)一副三角板如图摆放,∠α=.14.(3分)△ABC中,D为BC边上任意一点,DE、DF分别是△ADB和△ADC 的角平分线,连接EF,则△DEF的形状为.15.(3分)如图,∠3=120°,则∠1﹣∠2=度.16.(3分)如图,BD是∠ABC的平分线,DE⊥AB,垂足为E,S△ABC=36cm2,AB=18cm,BC=6cm,则DE=.17.(3分)如图,∠AOB内一点P,P1、P2分别是点P关于OA、OB的对称点,P1P2交OA于M,交OB于N,若P1P2=5cm,则△PMN的周长是.18.(3分)如图,把长方形纸片ABCD沿EF折叠,∠1=50°,则∠BFE=.19.(3分)等边三角形的两条中线相交所成的钝角的度数是度.20.(3分)一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B 点,那么它所行的最短路线的长是.三、解答题(请写出完整的解题步骤)21.(8分)如图,在△ABC中,AC=BC,CD为AB边上的中线,DE⊥CB于E,∠B=55°,求∠CDE的度数.22.(10分)王先生有块地如图所示,已知∠ABC=90°,AB=3米,BC=4米,CD=12米,AD=13米,求这块地的面积多大?23.(8分)如图,DE是△ABC的AB边的垂直平分线,分别交AB、BC于D、E,AE平分∠BAC,若∠B=30°,求∠C的度数.24.(8分)如图,在△ABC中,∠ABC=90°,D是BC边延长线上一点,且CD=CA,∠ADC=15°,CD=6,求AB的长?25.(12分)如图,在△ABC中,D是AB上一点,DF交AC于点E,DE=FE,AE=CE,AB与CF有什么位置关系?证明你的结论.26.(14分)如图点C是线段BD上一点,分别以BC和CD为一边,在BD的同侧作等边△ABC和等边△ECD,AC交BE于点G,CE交AD于点F.(1)△ACD与△BCE全等吗?为什么?(2)CG与CF相等吗?为什么?(3)连接GF,△GCF是等边三角形吗?为什么?2014-2015学年山东省烟台市龙口五中七年级(上)期中数学试卷(五四学制)参考答案与试题解析一、选择题(每小题有且只有一个正确答案)1.(3分)下列交通标志图案是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:B.2.(3分)下列各条件中,不能作出唯一三角形的是()A.已知两边和夹角 B.已知两角和夹边C.已知两边和其中一边的对角D.已知三边【解答】解:A、B、D三个选项分别符合全等三角形的判定方法SAS,ASA,SSS,故能作出唯一三角形;C、只有涉及的两个三角形同为锐角三角形或者钝角三角形或者直角三角形时,才成立.故选:C.3.(3分)满足下列条件的△ABC,不是直角三角形的是()A.∠A=∠B﹣∠C B.∠A:∠B:∠C=1:1:2C.a:b:c=1:1:2 D.b2=a2﹣c2【解答】解:A、∠A=∠B﹣∠C,△ABC是直角三角形;B、∠A:∠B:∠C=1:1:2,△ABC是直角三角形;C、a:b:c=1:1:2,△ABC不是直角三角形;D、b2=a2﹣c2得b2+c2=a2,△ABC是直角三角形;故选:C.4.(3分)如图,用直尺和圆规作出∠AOB的角平分线OC的依据是()A.(SSS)B.(SAS)C.(ASA)D.(AAS)【解答】解:由作图知:OB=OA,BC=AC,OC=OC(公共边),即三边分别对应相等(SSS),△OBC≌△OAC,故选:A.5.(3分)等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A.60°B.120°C.60°或150°D.60°或120°【解答】解:当高在三角形内部时(如图1),顶角是60°;当高在三角形外部时(如图2),顶角是120°.故选:D.6.(3分)如图AB=CD,AD=BC,过O点的直线交AD于E,交BC于F,图中全等三角形有()A.4对 B.5对 C.6对 D.7对【解答】解:在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),同理可得△ABC≌△CDA,∵AB=CD,AD=BC,∴四边形ABCD为平行四边形,∴OA=OC,OB=OD,在△AOB和△COD中,,∴△AOB≌△BOD(SAS),同理可得△BOC≌△DOA,由平行四边形的性质可得AD∥BC,∴∠EAO=∠FCO,∠AEO=∠CFO,在△AEO和△CFO中,,∴△AEO≌△CFO(AAS),同理可得△DOE≌△BOF,所以共有六组.故选:C.7.(3分)如图,OP平分∠MON,PA⊥ON于点A,点D是射线OM上的一个动点.若PA=4,则PD的最小值为()A.1 B.2 C.3 D.4【解答】解:过点P作PD⊥OM于点D,则线段PD的长就是点P代射线OM的最短距离,∵OP平分∠MON,PA⊥ON于点A,PA=4,∴PD的最小值=PD=PA=4.故选:D.8.(3分)如图,直线l1、l2、l3分别表示三条相互交叉的公路,现要建立一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有()A.一处B.二处C.三处D.四处【解答】解:如图,可选择的地址有四处.故选D.9.(3分)三个正方形的面积如图所示,则正方形A的边长为()A.6 B.8 C.36 D.64【解答】解:∵A=100﹣64=36,∴正方形A的边长为6.故选:A.10.(3分)一等腰三角形的周长为20,两条边的比为1:2,那么其底边长为()A.10 B.4 C.4或10 D.5或8【解答】解:分别设两条边的长为x,2x;若x为腰,则x+x=2x,不符合三角形三边关系;因此只有一种情况,即长为2x的边为腰,则有:x+2x+2x=20,x=4;∴底边长x=4.故选:B.11.(3分)如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,若BF=AC,则∠ABC的大小是()A.40°B.45°C.50°D.60°【解答】解:∵AD⊥BC于D,BE⊥AC于E,∴∠BEA=∠ADC=90°.∵∠FBD+∠BFD=90°,∠AFE+∠FAE=90°,∠BFD=∠AFE,∴∠FBD=∠FAE,在△BDF和△ADC中,,∴△BDF≌△ADC(AAS),∴BD=AD,∴∠ABC=∠BAD=45°,故选:B.12.(3分)如图图中的阴影部分是由5个小正方形组成的一个图形,若在图中的方格里涂黑两个正方形,使整个阴影部分成为轴对称图形,涂法有几种()A.4种 B.5种 C.7种 D.9种【解答】解:如图所示:一共有9种,故选:D.二、填空题(请把正确答案填在题中的横线上)13.(3分)一副三角板如图摆放,∠α=105°.【解答】解:∵∠AEC=∠ADC+∠BCD=30°+45°=75°,∴∠α=180°﹣∠AEC=180°﹣75°=105°,故答案为:105°.14.(3分)△ABC中,D为BC边上任意一点,DE、DF分别是△ADB和△ADC 的角平分线,连接EF,则△DEF的形状为直角三角形.【解答】解:∵DE、DF分别是△ADB和△ADC的角平分线,∴∠ADE=∠ADB,∠ADF=∠ADC,∴∠EDF=∠ADE+∠ADF=∠ADB+∠ADC=90°,∴△DEF是直角三角形.故答案为:直角三角形.15.(3分)如图,∠3=120°,则∠1﹣∠2=60度.【解答】解:如图所示:∵∠3=120°,∠3+∠4=180°,∴∠4=60°,∵∠1=∠2+∠4,∴∠1﹣∠2=∠4=60°.16.(3分)如图,BD 是∠ABC 的平分线,DE ⊥AB ,垂足为E ,S △ABC =36cm 2,AB=18cm ,BC=6cm ,则DE= 3cm .【解答】解:过点D 作DF ⊥BC 的延长线于点F ,∵BD 是∠ABC 的平分线,DE ⊥AB ,∴DE=DF .∵S △ABC =36cm 2,∴S △ABD +S △BCD =AB•DE +BC •DF=×18DE +×6DE=36,解得DE=3(cm ).故答案为:3cm .17.(3分)如图,∠AOB 内一点P ,P 1、P 2分别是点P 关于OA 、OB 的对称点,P 1P 2交OA 于M ,交OB 于N ,若P 1P 2=5cm ,则△PMN 的周长是 5cm .【解答】解:∵OA和OB分别是△PMP1和△PNP2的对称轴,∴PM=MP1,PN=NP2;∴P1M+MN+NP2=PM+MN+PN=P1P2=5cm,∴△PMN的周长为5cm.故填5cm.18.(3分)如图,把长方形纸片ABCD沿EF折叠,∠1=50°,则∠BFE=65°.【解答】解:如图,由题意得:∠BFE=∠MFE,而∠1=50°,∴∠BFE==65°.故该题答案为65°.19.(3分)等边三角形的两条中线相交所成的钝角的度数是120度.【解答】解:如图,∵等边三角形ABC,AD、BE分别是中线,∴AD、BE分别是角平分线,∴∠1=∠2=∠ABC=30°,∴∠AFB=180°﹣∠1﹣∠2=120°故填120.20.(3分)一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B 点,那么它所行的最短路线的长是10.【解答】解:如图(1)所示:AB==;如图(2)所示:AB==10.由于>10,所以最短路径为10.三、解答题(请写出完整的解题步骤)21.(8分)如图,在△ABC中,AC=BC,CD为AB边上的中线,DE⊥CB于E,∠B=55°,求∠CDE的度数.【解答】解:∵AC=BC,CD为AB边上的中线,∴CD⊥AB,∴∠CDB=90°,∴∠CDE+∠BDE=90°,∵DE⊥CB,∴∠B+∠BDE=90°,∴∠CDE=∠B=55°.22.(10分)王先生有块地如图所示,已知∠ABC=90°,AB=3米,BC=4米,CD=12米,AD=13米,求这块地的面积多大?【解答】解:连接AC,∵∠ABC=90°,AB=3米,BC=4米,∴AC==5,∵CD=12米,AD=13米,∴AC2+CD2=52+122=25+144=169,AD2=132=169,∴AC2+CD2=AD2,∴△ACD是∠ACD=90°的直角三角形,四边形ABCD的面积=△ABC的面积+△ACD的面积=AB•BC+A C•CD=×3×4+×5×12=6+30=36(米2).23.(8分)如图,DE是△ABC的AB边的垂直平分线,分别交AB、BC于D、E,AE平分∠BAC,若∠B=30°,求∠C的度数.【解答】解:∵DE是AB边的垂直平分线,∴EA=EB,∴∠ABE=∠1,∵∠B=30°,∴∠1=30°.又AE平分∠BAC,∴∠2=∠1=30°,即∠BAC=60°.(1分)∴∠C=180°﹣∠BAC﹣∠B,∴∠C=90°(2分)24.(8分)如图,在△ABC中,∠ABC=90°,D是BC边延长线上一点,且CD=CA,∠ADC=15°,CD=6,求AB的长?【解答】解:∵CD=CA,∴∠CAD=∠D=15°,∵∠CAD+∠D+∠ACD=180°,∴∠ACB=30°,∵∠B=90°,∴AB=AC,∵CD=CA=6,∴AB=3.25.(12分)如图,在△ABC中,D是AB上一点,DF交AC于点E,DE=FE,AE=CE,AB与CF有什么位置关系?证明你的结论.【解答】解:AB∥CF.证明如下:∵∠AED与∠CEF是对顶角,∴∠AED=∠CEF,在△ADE和△CFE中,∵DE=FE,∠AED=∠CEF,AE=CE,∴△ADE≌△CFE.∴∠A=∠FCE.∴AB∥CF.26.(14分)如图点C是线段BD上一点,分别以BC和CD为一边,在BD的同侧作等边△ABC和等边△ECD,AC交BE于点G,CE交AD于点F.(1)△ACD与△BCE全等吗?为什么?(2)CG与CF相等吗?为什么?(3)连接GF,△GCF是等边三角形吗?为什么?【解答】解:(1)全等,∵△ABC是等边三角形,∴BC=AC,∠ACB=60°,同理:CE=CD,∠ECD=60°,∴∠ACB=∠ECD=60°,∴∠ACB+∠ACE=∠ECD+∠ACE,即∠BCE=∠ACD,在△BCE和△ACD中,,∴△BCE≌△ACD(SAS);(2)CG=CF,∵△ADE△CFE∴∠CBE=∠CAD∵∠ACB=∠ECD=60°∴∠ACE=60°∴∠ACB=∠ACE,在△BCG和△ACF中,,∴△BCG≌△ACF(SAS),∴CG=CF;(3)△GCF是等边三角形,∵CG=CF,∠ACE=60°;∴△GCF是等边三角形.。

2020-2021学年山东省烟台市龙口市七年级(上)期中数学试卷(五四学制)(附答案详解)

2020-2021学年山东省烟台市龙口市七年级(上)期中数学试卷(五四学制)(附答案详解)

2020-2021学年山东省烟台市龙口市七年级(上)期中数学试卷(五四学制)一、选择题(本大题共12小题,共36.0分)1.小强将一张正方形纸片按如图所示对折两次,并在如图位置上剪去一个小正方形,然后把纸片展开,得到的图形应是()A. B.C. D.2.下列说法正确的是()A. 轴对称图形是两个图形组成的B. 等边三角形有三条对称轴C. 两个全等的三角形组成一个轴对称图形D. 直角三角形一定是轴对称图形3.如图所示的图形中,AE⊥BD于E,AE是几个三角形的高()A. 3B. 4C. 5D. 64.如图,AC=BD,AO=BO,CO=DO,∠D=30°,∠A=95°,则∠AOB等于()A. 120°B. 125°C. 130°D. 135°5.如图小明从平面镜里看到镜子对面电子钟显示的时间如图所示,这时的实际时刻应该是()A. 21:10B. 10:21C. 10:51D. 12:016.已知直角三角形的两条直角边长为6,8,那么斜边上的高为()A. 4.8B. 5C. 2√7D. 107.如图,在△ABC中,∠BAC=90°,AB=3,AC=4,BC=5,EF垂直平分BC,点P为直线EF上的任一点,则AP+BP的最小值是()A. 3B. 4C. 5D. 68.如图,有一张直角三角形纸片,两直角边长AC=6cm,BC=8cm,将△ABC折叠,使点B与点A重合,折痕为DE,则CD等于()cmA. 254cmB. 223cmC. 74cmD. 539.给出下列四组条件,①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中能使△ABC≌△DEF的共有()A. 1组B. 2组C. 3组D. 4组10.一艘轮船和一艘渔同时沿自的航向从港口O出发,如图,轮港口沿偏西20°的方向行0海到达M,时刻船航行到与港口O80海里的点N处,若M、N两距100海里则∠NOF的度数为()A. 50°B. 60°C. 70°D. 80°11.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度hcm,则h的取值范围是()A. ℎ≤17cmB. ℎ≥8cmC. 15cm≤ℎ≤16cmD. 7cm≤ℎ≤16cm12.如图,方格纸中有四个相同的正方形,则∠1+∠2+∠3为()A. 90°B. 120°C. 135°D. 150°二、填空题(本大题共6小题,共18.0分)13.a,b,c为△ABC的三边,化简|a−b−c|−|a+b−c|+2a结果是______.14.如图,△EFG≌△NMH,△EFG的周长为15cm,HN=6cm,EF=4cm,FH=1cm,则HG=______ .15.已知△ABC中,AB=20,AC=15,BC边上的高为12,则△ABC的周长为______ .16.如图,在△ABC中,已知点D、E、F分别为BC、AD、CE的中点,且S△ABC=1cm2,则S△BEF=______cm2.17.用直尺和圆规作一个角等于已知角的示意图,如图所示,则说明∠A′O′B′=∠AOB的依据是全等三角形的______相等.其全等的依据是______.18.如图,阴影部分是两个正方形,其它部分是两个直角三角形和一个正方形.若右边的直角三角形ABC中,AC=34,BC=30,则阴影部分的面积是______.三、解答题(本大题共7小题,共66.0分)19.如图,在4×4的正方形网格中,每个小正方形的边长都是1,△ABC三个顶点分别在正方形网格的格点上,试判断△ABC是否是直角三角形.20.如图,在△ABC中,AB=AC,取点D与点E,使得AD=AE,∠BAE=∠CAD,连结BD与CE交于点O.求证:(1)△ABD≌△ACE;(2)OB=OC.21.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,DE⊥AB于点E.(1)求证:△ACD≌△AED(2)若AC=5,△DEB的周长为8,求△ABC的周长.22.甲、乙两船同时从港口A出发,甲船以30海里/时的速度沿北偏东35°方向航行,乙船沿南偏东55°向航行,2小时后,甲船到达C岛,乙船到达B岛,若C,B两岛相距100海里,问乙船的速度是每小时多少海里?23.(1)如图,在“4×4”正方形网格中,已有2个小正方形被涂黑.请你分别在下面2张图中再将若干个空白的小正方形涂黑,使得涂黑的图形成为轴对称图形.(图(1)要求只有1条对称轴,图(2)要求只有2条对称轴).(2)如图,A、B为直线MN外两点,且到MN的距离不相等.分别在MN上求一点P,并满足如下条件:①在图(3)中求一点P使得PA+PB最小;②在图(4)中求一点P使得|PA−PB|最大.(不写作法,保留作图痕迹)24.一辆装满货物的卡车,高2.5米,宽1.6米,要开进上边是半圆,下边是长方形的桥洞,如图所示,已知半圆的直径为2m,长方形的另一条边长是2.3m.(1)此卡车是否能通过桥洞?试说明你的理由.(2)为了适应车流量的增加,先把桥洞改为双行道,要使宽为1.2m,高为2.8m的卡车能安全通过,那么此桥洞的宽至少增加到多少?25.如图,已知在等腰直角三角形△DBC中,∠BDC=90°,BF平分∠DBC,与CD相交于点F,延长BD到A,使DA=DF,(1)试说明:△FBD≌△ACD;BF;(2)延长BF交AC于E,且BE⊥AC,试说明:CE=12(3)在(2)的条件下,若H是BC边的中点,连接DH与BE相交于点G.试探索CE,GE,BG之间的数量关系,并说明理由.答案和解析1.【答案】B【解析】解:严格按照图中的顺序向左对折,向上对折,从直角三角形的一直角边的正中间剪去一个正方形,展开后实际是从正方形的一条对角线上剪去两个小长方形,得到结论.故选B.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.本题主要考查学生的动手能力及空间想象能力.2.【答案】B【解析】解:A、轴对称图形可以是1个图形,故错误;B、等边三角形有三条对称轴,即三条中线,故正确;C、两个全等的三角形不一定组成一个轴对称图形,故错误;D、直角三角形不一定是轴对称图形,故错误.故选:B.认真阅读各选项提供的已知条件,根据轴对称的定义逐一进行判定解答.本题考查轴对称图形的定义与性质,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.找着每个选项的正误是正确解答本题的关键.3.【答案】D【解析】解:∵AE⊥BD于E,∴AE是△ACB,△ABE,△ACE,△ABD,△ACD,△ADE6个三角形的高,故选:D.根据三角形的高线的定义即可得到结论.本题考查了三角形的角平分线,中线,高,熟记定义是解题的关键.4.【答案】B【解析】解:在△ACO和△BDO中,∵{AC=BD AO=BO CO=DO,∴△ACO≌△BDO(SSS),∴∠C=∠D=30°,∵∠AOB=∠C+∠A=30°+95°=125°,故选:B.根据SSS证明△ACO≌△BDO,再利用外角定理可得结论.本题考查了三角形全等的性质和判定及外角定理,熟练掌握三角形全等的判定是关键.5.【答案】D【解析】解:因为是从镜子中看,所以对称轴为竖直方向的直线,2的对称数字是5,镜子中数字的顺序与实际数字顺序相反,这时的时刻应是12:01.故选:D.根据镜面对称的性质求解,在平面镜中的像与现实中的事物恰好左右或上下顺序颠倒,且关于镜面对称.本题考查了镜面对称,得到相应的对称轴是解决本题的关键;若是竖直方向的对称轴,数的顺序正好相反,注意2的对称数字为5,5的对称数字是2.6.【答案】A【解析】解:∵直角三角形的两条直角边长为6,8,∴斜边的长=√62+82=10.设斜边上的高为h,则6×8÷2=10ℎ÷2,解得ℎ=4.8.故选:A.先根据勾股定理求出斜边的长,设斜边上的高为h,再根据三角形的面积公式求解即可.本题考查的是勾股定理及三角形的面积公式,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.7.【答案】B【解析】【分析】根据题意知EF是BC的垂直平分线,故B P=PC,故当点P在AC上时,AP+CP有最小值,即AP+BP取得最小值.本题考查了轴对称−最短路线问题的应用,明确点A、P、C在一条直线上时,AP+PB 有最小值是解题的关键.【解答】解:连接PC.∵EF是BC的垂直平分线,∴BP=PC.∴PA+BP=AP+PC.∴当点A,P,C在一条直线上时,PA+BP有最小值,最小值=AC=4.故选:B.8.【答案】C【解析】解:∵△ABC折叠,使点B与点A重合,折痕为DE,∴DA=DB,设CD=xcm,则BD=AD=(8−x)cm,在Rt△ACD中,∵CD2+AC2=AD2,∴x2+62=(8−x)2,解得x=7,4.即CD的长为74故选:C.根据折叠的性质得DA=DB,设CD=xcm,则BD=AD=(8−x)cm,在Rt△ACD中利用勾股定理得到x2+62=(8−x)2,然后解方程即可.本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.9.【答案】C【解析】解:①AB=DE,BC=EF,AC=DF,可根据SSS判定△ABC≌△DEF;②AB=DE,∠B=∠E,BC=EF,可根据SAS判定△ABC≌△DEF;③∠B=∠E,BC=EF,∠C=∠F,可根据ASA判定△ABC≌△DEF;④AB=DE,AC=DF,∠B=∠E,不能判定△ABC≌△DEF;故选:C.根据全等三角形的判定方法:SSS、SAS、ASA、AAS、HL结合选项进行判定.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.【答案】C【解析】解:∵OM=6里,O=80海里,MN=0海里,∴OF=18°−20°−90°70°,∵∠EM=0°,∴ON=90°,故C.求OON2MN2,根据勾股定理的逆定得出∠MON=0°,根平角定义求即可.题查了勾股理的的应用,能根据勾股定理的逆定理出∠ON=0°是解此题的关键.11.【答案】D【解析】【分析】本题考查勾股定理的应用.善于观察题目的信息是解题以及学好数学的关键.如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出h的取值范围.【解答】 解:如图,当筷子的底端在D 点时,筷子露在杯子外面的长度最长,∴ℎ=24−8=16cm ;当筷子的底端在A 点时,筷子露在杯子外面的长度最短,在Rt △ABD 中,AD =15,BD =8,∴AB =√AD 2+BD 2=17,∴此时ℎ=24−17=7cm ,所以h 的取值范围是7cm ≤ℎ≤16cm .故选:D .12.【答案】C【解析】解:∵在△ACB 和△BDE {BC =ED∠ACB =∠BDE AC =BD,∴△ACB≌△BDE ,∠1所在的三角形与∠3所在的三角形全等,∴∠1+∠3=90°,又∠2=45°,∴∠1+∠2+∠3=135°.故选:C .根据对称性可得∠1+∠3=90°,∠2=45°,即可求出∠1+∠2+∠3的值.主要考查了全等图形的性质.关键是充分利用正方形的特殊性质来找到全等的条件从而判定全等后利用全等三角形的性质解题.13.【答案】2c【解析】解:∵a ,b ,c 为△ABC 的三边,∴a +b >c ,b +c >a ,∴原式=c +b −a −(a +b −c)+2a=c+b−a−a−b+c+2a=2c.故答案为:2c.根据三角形三边的关系得到a+b>c,b+c>a,则根据二次根式的性质得原式=c+ b−a−(a+b−c)+2a,然后去括号后合并即可.本题考查了三角形三边的关系及绝对值符号的去除问题,解题的关键是了解负数的绝对值是其相反数,难度不大.14.【答案】4cm【解析】【分析】此题主要考查了全等三角形的性质,关键是掌握全等三角形对应边相等.首先根据全等三角形对应边相等可得MN=EF=4cm,FG=MH,△HMN的周长=△EFG的周长=15cm,再根据等式的性质可得FG−HG=MH−HG,即GM=FH,进而可得答案.【解答】解:∵△EFG≌△NMH,∴MN=EF=4cm,FG=MH,∴FG−HG=MH−HG,即FH=GM=1cm,∵△EFG的周长为15cm,△HMN的周长=△EFG的周长=15cm,∴HM=15−6−4=5cm,∴HG=5−1=4cm.故答案为:4cm.15.【答案】60或42【解析】解:作AD⊥BC于D,则AD为BC边上的高,AD=12.分两种情况:①高AD在三角形内,如图所示:在Rt△ADC中,由勾股定理得:AC2=AD2+DC2,∴DC=√AC2−AD2=√152−122=9,在Rt△ADB中,由勾股定理得:AB2=AD2+BD2,∴BD=√AB2−AD2=√202−122=16,∴BC=BD+DC=16+9=25,所以,△ABC的周长为AB+AC+BC=20+15+25=60.②高AD在三角形外,如图所示:在Rt△ADC中,由勾股定理得:AC2=AD2+DC2∴DC=√AC2−AD2=√152−122=9,在Rt△ADB中,由勾股定理得:AB2=AD2+BD2,∴BD=√AB2−AD2=√202−122=16,∴BC=BD−DC=16−9=7,所以,△ABC的周长为AB+AC+BC=20+15+7=42.故△ABC的周长为60或42.此题分两种情况:∠B为锐角或∠C为钝角.△ABC的周长为AB+AC+BC,已知AB、AC的值,所以要求三角形的周长,只需求出BC的值即可.如下图所示:作AD⊥BC于D,则AD为BC边上的高,在Rt△ADC中,由勾股定理得:AC2=AD2+DC2,在Rt△ADB 中,由勾股定理得:AB2=AD2+BD2,代入AB=20,AC=15,AD=12,可求出BD、DC的值,BC=BD+DC,将AB、BC、AC的值代入周长公式,可求出该三角形的周长.本题主要考查运用勾股定理结合三角形的周长公式求三角形周长的能力,三角形的周长等于三边之和.16.【答案】14【解析】【分析】此题考查了三角形的面积,根据三角形中线将三角形的面积分成相等的两部分解答.由于D、E、F分别为BC、AD、CE的中点,可判断出AD、BE、CE、BF为△ABC、△ABD、△ACD、△BEC的中线,根据中线的性质可知将相应三角形分成面积相等的两部分,据此即可解答.【解答】解:∵D是BC的中点∴S△ABD=S△ADC,∵E是AD的中点,∴S△ABE=S△BDE,S△ACE=S△CDE,∴S△ABE=S△DBE=S△DCE=S△AEC,∴S△BEC=12S△ABC=12cm2.∵F是CE的中点,∴S△BEF=S△BCE,∴S△BEF=12S△BEC=12×12=14cm2.故答案为14.17.【答案】对应角SSS【解析】解:∠A′O′B′=∠AOB,理由是:连接CD、C′D′,从作图可知OD=OD′=OC=OC′,CD=C′D′,∵在△ODC和△O′D′C′中{OD=O′D′OC=O′C′CD=C′D′,∴△ODC≌△O′D′C′(SSS),∴∠A′O′B′=∠AOB(全等三角形的对应角相等),故答案为:对应角,SSS.连接CD、C′D′,从作图可知OD=OD′=OC=OC′,CD=C′D′,根据SSS证△ODC≌△O′D′C′,根据全等三角形的对应角相等推出即可.本题考查了全等三角形的性质和判定和有关角的作法,主要考查学生的观察能力和推理能力,全等三角形的判定定理有SAS,ASA,AAS,SSS.18.【答案】256【解析】解:由勾股定理得,AB2=AC2−BC2=342−302=256,∵四边形ABFD为正方形,∴DF=AB,∴阴影部分的面积=DE2+EF2=DF2=256,故答案为:256.根据勾股定理求出AB2,根据正方形的性质得到DF=AB,根据勾股定理、正方形的面积公式计算即可.本题考查的是勾股定理、正方形的性质,掌握如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2是解题的关键.19.【答案】解:△ABC是直角三角形.理由:∵AC2=AE2+EC2=12+12=2,BC2=BF2+CF2=32+32=18,AB2=AD2+BD2=22+42=20,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°.【解析】首先由勾股定理,可求得AC2+BC2=AB2,然后根据勾股定理的逆定理,即可判定△ABC是直角三角形.此题考查了勾股定理与勾股定理的逆定理.此题比较简单,解题的关键是掌握勾股定理与勾股定理的逆定理的应用,掌握数形结合思想的应用.20.【答案】证明:(1)∵∠BAE=∠CAD,∴∠BAD=∠CAE,在△ABD与△ACE中,{AB=AC∠BAD=∠CAE AD=AE,∴△ABD≌△ACE(SAS);(2)∵△ABD≌△ACE,∴∠ABD=∠ACE,∵AB=AC,∴∠ABC=∠ACB∴∠ABC−∠ABD=∠ACB−∠ACE,即∠OBC=∠OCB,∴OB=OC.【解析】(1)由已知条件得到∠BAD=∠CAE,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到∠ABD=∠ACE,由等腰三角形的性质得到∠ABC=∠ACB由角的和差即可得到∠OBC=∠OCB,然后根据等腰三角形的判定即可得到结论.此题考查了全等三角形的判定与性质,等腰三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.21.【答案】解:(1)证明:因为AD平分∠CAB,∠C=90°,DE⊥AB所以DC=DE在△ACD和△AED中,{DC=DEAD=AD,∴△ACD≌△AED(HL).(2)由(1)得△ACD≌△AED所以AE=AC=5,CD=ED,C△ABC=AC+AB+BC=AC+(AE+EB)+(BD+DC)=AC+AC+(EB+BD+DE)=AC+AC+C△DEB=5+5+8=18.【解析】(1)根据HL证明△ACD≌△AED即可;(2)根据C△ABC=AC+AB+BC=AC+(AE+EB)+(BD+DC)=AC+AC+(EB+ BD+DE)=AC+AC+C△DEB计算即可;本题考查全等三角形的判定和性质、角平分线的性质定理等知识,解题的关键是掌握角平分线的性质定理,属于中考常考题型.22.【答案】解:∵甲的速度是30海里/时,时间是2小时,∴AC=60海里.∵∠EAC=35°,∠FAB=55°,∴∠CAB=90°.∵BC=100海里,∴AB=√1002−602=80海里.∵乙船也用2小时,∴乙船的速度是40海里/时.【解析】根据已知判定∠CAB为直角,根据路程公式求得AC的长.再根据勾股定理求得AB的长,从而根据公式求得其速度.此题考查了直角三角形的判定及方向角的掌握情况,关键是根据勾股定理解答.23.【答案】解:(1)如图所示:.(2)如图所示:.【解析】(1)根据轴对称的特点,作出符合题意的图形即可;(2)根据轴对称的性质,作图即可.本题考查了利用轴对称设计图案的知识,解答本题的关键是掌握轴对称的性质及轴对称的特点.24.【答案】解:(1)如图,M,N为卡车的宽度,过M,N作AB的垂线交半圆于C,D,过O作OE⊥CD,E为垂足,CD=MN=1.6米,AB=2米,由作法得,CE=DE=0.8米,又∵OC=OA=1米,在Rt△OCE中,OE=√OC2−CE2≈0.6(米),∴CM=2.3+0.6=2.9>2.5.∴这辆卡车能通过.(2)如图:根据题意可知:CG=BE=2.8米,BG=OF=1.2米,EF=AD=2.3米,∴BF=0.5米∴根据勾股定理有:OA2=OB2=BF2+OF2=0.52+1.22=1.32(米),∴OA=1.3米,∴桥洞的宽至少增加到1.3×2=2.6(米).【解析】(1)过M,N作AB的垂线交半圆于C,D,过O作OE⊥CD,E为垂足,根据卡车的宽和半圆的直径和勾股定理求出OE的长,再根据长方形的一边长和卡车的高即可得出答案;(2)根据已知条件求出BF的长,再根据勾股定理求出OA的长,从而得出答案.本题考查了垂径定理和勾股定理:掌握垂直于弦的直径平分弦,并且平分弦所对的弧,建立数学模型,善于观察题目的信息是解题的关键.25.【答案】解:(1)∵DB=DC,∠BDF=∠ADC=90°又∵DA=DF,∴△BFD≌△ACD;(2)∵△BFD≌△ACD,∴BF=AC,又∵BF平分∠DBC,∴∠ABE=∠CBE,又∵BE⊥AC,∴∠AEB=∠CEB,又∵BE=BE,∴△ABE≌△CBE,∴CE=AE=12AC,∴CE=12AC=12BF;(3)CE,GE,BG之间的数量关系为:CE2+GE2=BG2,连接CG.∵BD=CD,H是BC边的中点,∴DH是BC的中垂线,∴BG=CG,在Rt△CGE中有:CG2=CE2+GE2,∴CE2+GE2=BG2.【解析】(1)由已知等腰直角三角形△DBC可推出DB=DC,且∠BDF=∠ADC=90°,与已知DA=DF通过SAS证得△FBD≌△ACD;(2)先由(1)△FBD≌△ACD得出BF=AC,再由BF平分∠DBC和BE⊥AC通过ASA证得△ABE≌△CBE,即得CE=AE=12AC,从而得出结论;(3)连接CG,由H是BC边的中点和等腰直角三角形△DBC得出BG=CG,再由直角三角形CEG得出CG2=CE2+GE2,从而得出CE,GE,BG的关系.此题考查的知识点是等腰直角三角形的性质、全等三角形的判定与性质及线段垂直平分线的性质,运用好SAS、ASA判定三角形全等及勾股定理是关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014-2015学年山东省烟台市龙口五中七年级(上)期中数学试卷(五四学制)一、选择题(每小题有且只有一个正确答案)1.(3分)下列交通标志图案是轴对称图形的是()A.B.C.D.2.(3分)下列各条件中,不能作出唯一三角形的是()A.已知两边和夹角 B.已知两角和夹边C.已知两边和其中一边的对角D.已知三边3.(3分)满足下列条件的△ABC,不是直角三角形的是()A.∠A=∠B﹣∠C B.∠A:∠B:∠C=1:1:2C.a:b:c=1:1:2 D.b2=a2﹣c24.(3分)如图,用直尺和圆规作出∠AOB的角平分线OC的依据是()A.(SSS)B.(SAS)C.(ASA)D.(AAS)5.(3分)等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A.60°B.120°C.60°或150°D.60°或120°6.(3分)如图AB=CD,AD=BC,过O点的直线交AD于E,交BC于F,图中全等三角形有()A.4对 B.5对 C.6对 D.7对7.(3分)如图,OP平分∠MON,PA⊥ON于点A,点D是射线OM上的一个动点.若PA=4,则PD的最小值为()A.1 B.2 C.3 D.48.(3分)如图,直线l1、l2、l3分别表示三条相互交叉的公路,现要建立一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有()A.一处B.二处C.三处D.四处9.(3分)三个正方形的面积如图所示,则正方形A的边长为()A.6 B.8 C.36 D.6410.(3分)一等腰三角形的周长为20,两条边的比为1:2,那么其底边长为()A.10 B.4 C.4或10 D.5或811.(3分)如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,若BF=AC,则∠ABC的大小是()A.40°B.45°C.50°D.60°12.(3分)如图图中的阴影部分是由5个小正方形组成的一个图形,若在图中的方格里涂黑两个正方形,使整个阴影部分成为轴对称图形,涂法有几种()A.4种 B.5种 C.7种 D.9种二、填空题(请把正确答案填在题中的横线上)13.(3分)一副三角板如图摆放,∠α=.14.(3分)△ABC中,D为BC边上任意一点,DE、DF分别是△ADB和△ADC 的角平分线,连接EF,则△DEF的形状为.15.(3分)如图,∠3=120°,则∠1﹣∠2=度.16.(3分)如图,BD是∠ABC的平分线,DE⊥AB,垂足为E,S△ABC=36cm2,AB=18cm,BC=6cm,则DE=.17.(3分)如图,∠AOB内一点P,P1、P2分别是点P关于OA、OB的对称点,P1P2交OA于M,交OB于N,若P1P2=5cm,则△PMN的周长是.18.(3分)如图,把长方形纸片ABCD沿EF折叠,∠1=50°,则∠BFE=.19.(3分)等边三角形的两条中线相交所成的钝角的度数是度.20.(3分)一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B 点,那么它所行的最短路线的长是.三、解答题(请写出完整的解题步骤)21.(8分)如图,在△ABC中,AC=BC,CD为AB边上的中线,DE⊥CB于E,∠B=55°,求∠CDE的度数.22.(10分)王先生有块地如图所示,已知∠ABC=90°,AB=3米,BC=4米,CD=12米,AD=13米,求这块地的面积多大?23.(8分)如图,DE是△ABC的AB边的垂直平分线,分别交AB、BC于D、E,AE平分∠BAC,若∠B=30°,求∠C的度数.24.(8分)如图,在△ABC中,∠ABC=90°,D是BC边延长线上一点,且CD=CA,∠ADC=15°,CD=6,求AB的长?25.(12分)如图,在△ABC中,D是AB上一点,DF交AC于点E,DE=FE,AE=CE,AB与CF有什么位置关系?证明你的结论.26.(14分)如图点C是线段BD上一点,分别以BC和CD为一边,在BD的同侧作等边△ABC和等边△ECD,AC交BE于点G,CE交AD于点F.(1)△ACD与△BCE全等吗?为什么?(2)CG与CF相等吗?为什么?(3)连接GF,△GCF是等边三角形吗?为什么?2014-2015学年山东省烟台市龙口五中七年级(上)期中数学试卷(五四学制)参考答案与试题解析一、选择题(每小题有且只有一个正确答案)1.(3分)下列交通标志图案是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:B.2.(3分)下列各条件中,不能作出唯一三角形的是()A.已知两边和夹角 B.已知两角和夹边C.已知两边和其中一边的对角D.已知三边【解答】解:A、B、D三个选项分别符合全等三角形的判定方法SAS,ASA,SSS,故能作出唯一三角形;C、只有涉及的两个三角形同为锐角三角形或者钝角三角形或者直角三角形时,才成立.故选:C.3.(3分)满足下列条件的△ABC,不是直角三角形的是()A.∠A=∠B﹣∠C B.∠A:∠B:∠C=1:1:2C.a:b:c=1:1:2 D.b2=a2﹣c2【解答】解:A、∠A=∠B﹣∠C,△ABC是直角三角形;B、∠A:∠B:∠C=1:1:2,△ABC是直角三角形;C、a:b:c=1:1:2,△ABC不是直角三角形;D、b2=a2﹣c2得b2+c2=a2,△ABC是直角三角形;故选:C.4.(3分)如图,用直尺和圆规作出∠AOB的角平分线OC的依据是()A.(SSS)B.(SAS)C.(ASA)D.(AAS)【解答】解:由作图知:OB=OA,BC=AC,OC=OC(公共边),即三边分别对应相等(SSS),△OBC≌△OAC,故选:A.5.(3分)等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A.60°B.120°C.60°或150°D.60°或120°【解答】解:当高在三角形内部时(如图1),顶角是60°;当高在三角形外部时(如图2),顶角是120°.故选:D.6.(3分)如图AB=CD,AD=BC,过O点的直线交AD于E,交BC于F,图中全等三角形有()A.4对 B.5对 C.6对 D.7对【解答】解:在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),同理可得△ABC≌△CDA,∵AB=CD,AD=BC,∴四边形ABCD为平行四边形,∴OA=OC,OB=OD,在△AOB和△COD中,,∴△AOB≌△BOD(SAS),同理可得△BOC≌△DOA,由平行四边形的性质可得AD∥BC,∴∠EAO=∠FCO,∠AEO=∠CFO,在△AEO和△CFO中,,∴△AEO≌△CFO(AAS),同理可得△DOE≌△BOF,所以共有六组.故选:C.7.(3分)如图,OP平分∠MON,PA⊥ON于点A,点D是射线OM上的一个动点.若PA=4,则PD的最小值为()A.1 B.2 C.3 D.4【解答】解:过点P作PD⊥OM于点D,则线段PD的长就是点P代射线OM的最短距离,∵OP平分∠MON,PA⊥ON于点A,PA=4,∴PD的最小值=PD=PA=4.故选:D.8.(3分)如图,直线l1、l2、l3分别表示三条相互交叉的公路,现要建立一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有()A.一处B.二处C.三处D.四处【解答】解:如图,可选择的地址有四处.故选D.9.(3分)三个正方形的面积如图所示,则正方形A的边长为()A.6 B.8 C.36 D.64【解答】解:∵A=100﹣64=36,∴正方形A的边长为6.故选:A.10.(3分)一等腰三角形的周长为20,两条边的比为1:2,那么其底边长为()A.10 B.4 C.4或10 D.5或8【解答】解:分别设两条边的长为x,2x;若x为腰,则x+x=2x,不符合三角形三边关系;因此只有一种情况,即长为2x的边为腰,则有:x+2x+2x=20,x=4;∴底边长x=4.故选:B.11.(3分)如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,若BF=AC,则∠ABC的大小是()A.40°B.45°C.50°D.60°【解答】解:∵AD⊥BC于D,BE⊥AC于E,∴∠BEA=∠ADC=90°.∵∠FBD+∠BFD=90°,∠AFE+∠FAE=90°,∠BFD=∠AFE,∴∠FBD=∠FAE,在△BDF和△ADC中,,∴△BDF≌△ADC(AAS),∴BD=AD,∴∠ABC=∠BAD=45°,故选:B.12.(3分)如图图中的阴影部分是由5个小正方形组成的一个图形,若在图中的方格里涂黑两个正方形,使整个阴影部分成为轴对称图形,涂法有几种()A.4种 B.5种 C.7种 D.9种【解答】解:如图所示:一共有9种,故选:D.二、填空题(请把正确答案填在题中的横线上)13.(3分)一副三角板如图摆放,∠α=105°.【解答】解:∵∠AEC=∠ADC+∠BCD=30°+45°=75°,∴∠α=180°﹣∠AEC=180°﹣75°=105°,故答案为:105°.14.(3分)△ABC中,D为BC边上任意一点,DE、DF分别是△ADB和△ADC 的角平分线,连接EF,则△DEF的形状为直角三角形.【解答】解:∵DE、DF分别是△ADB和△ADC的角平分线,∴∠ADE=∠ADB,∠ADF=∠ADC,∴∠EDF=∠ADE+∠ADF=∠ADB+∠ADC=90°,∴△DEF是直角三角形.故答案为:直角三角形.15.(3分)如图,∠3=120°,则∠1﹣∠2= 60 度.【解答】解:如图所示:∵∠3=120°,∠3+∠4=180°,∴∠4=60°,∵∠1=∠2+∠4,∴∠1﹣∠2=∠4=60°.16.(3分)如图,BD 是∠ABC 的平分线,DE ⊥AB ,垂足为E ,S △ABC =36cm 2,AB=18cm ,BC=6cm ,则DE= 3cm .【解答】解:过点D 作DF ⊥BC 的延长线于点F ,∵BD 是∠ABC 的平分线,DE ⊥AB ,∴DE=DF .∵S △ABC =36cm 2,∴S △ABD +S △BCD =AB•DE +BC•DF=×18DE +×6DE=36,解得DE=3(cm ).故答案为:3cm .17.(3分)如图,∠AOB内一点P,P1、P2分别是点P关于OA、OB的对称点,P1P2交OA于M,交OB于N,若P1P2=5cm,则△PMN的周长是5cm.【解答】解:∵OA和OB分别是△PMP1和△PNP2的对称轴,∴PM=MP1,PN=NP2;∴P1M+MN+NP2=PM+MN+PN=P1P2=5cm,∴△PMN的周长为5cm.故填5cm.18.(3分)如图,把长方形纸片ABCD沿EF折叠,∠1=50°,则∠BFE=65°.【解答】解:如图,由题意得:∠BFE=∠MFE,而∠1=50°,∴∠BFE==65°.故该题答案为65°.19.(3分)等边三角形的两条中线相交所成的钝角的度数是120度.【解答】解:如图,∵等边三角形ABC,AD、BE分别是中线,∴AD、BE分别是角平分线,∴∠1=∠2=∠ABC=30°,∴∠AFB=180°﹣∠1﹣∠2=120°故填120.20.(3分)一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B 点,那么它所行的最短路线的长是10.【解答】解:如图(1)所示:AB==;如图(2)所示:AB==10.由于>10,所以最短路径为10.三、解答题(请写出完整的解题步骤)21.(8分)如图,在△ABC中,AC=BC,CD为AB边上的中线,DE⊥CB于E,∠B=55°,求∠CDE的度数.【解答】解:∵AC=BC,CD为AB边上的中线,∴CD⊥AB,∴∠CDB=90°,∴∠CDE+∠BDE=90°,∵DE⊥CB,∴∠B+∠BDE=90°,∴∠CDE=∠B=55°.22.(10分)王先生有块地如图所示,已知∠ABC=90°,AB=3米,BC=4米,CD=12米,AD=13米,求这块地的面积多大?【解答】解:连接AC,∵∠ABC=90°,AB=3米,BC=4米,∴AC==5,∵CD=12米,AD=13米,∴AC2+CD2=52+122=25+144=169,AD2=132=169,∴AC2+CD2=AD2,∴△ACD是∠ACD=90°的直角三角形,四边形ABCD的面积=△ABC的面积+△ACD的面积=AB•BC+AC•CD=×3×4+×5×12=6+30=36(米2).23.(8分)如图,DE是△ABC的AB边的垂直平分线,分别交AB、BC于D、E,AE平分∠BAC,若∠B=30°,求∠C的度数.【解答】解:∵DE是AB边的垂直平分线,∴EA=EB,∴∠ABE=∠1,∵∠B=30°,∴∠1=30°.又AE平分∠BAC,∴∠2=∠1=30°,即∠BAC=60°.(1分)∴∠C=180°﹣∠BAC﹣∠B,∴∠C=90°(2分)24.(8分)如图,在△ABC中,∠ABC=90°,D是BC边延长线上一点,且CD=CA,∠ADC=15°,CD=6,求AB的长?【解答】解:∵CD=CA,∴∠CAD=∠D=15°,∵∠CAD+∠D+∠ACD=180°,∴∠ACB=30°,∵∠B=90°,∴AB=AC,∵CD=CA=6,∴AB=3.25.(12分)如图,在△ABC中,D是AB上一点,DF交AC于点E,DE=FE,AE=CE,AB与CF有什么位置关系?证明你的结论.【解答】解:AB∥CF.证明如下:∵∠AED与∠CEF是对顶角,∴∠AED=∠CEF,在△ADE和△CFE中,∵DE=FE,∠AED=∠CEF,AE=CE,∴△ADE≌△CFE.∴∠A=∠FCE.∴AB∥CF.26.(14分)如图点C是线段BD上一点,分别以BC和CD为一边,在BD的同侧作等边△ABC和等边△ECD,AC交BE于点G,CE交AD于点F.(1)△ACD与△BCE全等吗?为什么?(2)CG与CF相等吗?为什么?(3)连接GF,△GCF是等边三角形吗?为什么?【解答】解:(1)全等,∵△ABC是等边三角形,∴BC=AC,∠ACB=60°,同理:CE=CD,∠ECD=60°,∴∠ACB=∠ECD=60°,∴∠ACB+∠ACE=∠ECD+∠ACE,即∠BCE=∠ACD,在△BCE和△ACD中,,∴△BCE≌△ACD(SAS);(2)CG=CF,∵△ADE△CFE∴∠CBE=∠CAD∵∠ACB=∠ECD=60°∴∠ACE=60°∴∠ACB=∠ACE,在△BCG和△ACF中,,∴△BCG≌△ACF(SAS),∴CG=CF;(3)△GCF是等边三角形,∵CG=CF,∠ACE=60°;∴△GCF是等边三角形.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。

相关文档
最新文档