高考物理总复习资料汇总(十五)电磁感应

合集下载

高考物理总复习 考查点15 电磁感应掌中宝素材

高考物理总复习 考查点15 电磁感应掌中宝素材

考查点15电磁感应[考点巧记]考点1 电磁感应现象及其应用 A1.电磁感应现象的发现:1831年英国物理学家法拉第发现了电磁感应现象.2.电磁感应现象:利用磁场获得电流的现象,叫做电磁感应,产生的电流叫做感应电流.3.磁铁插入或拔出闭合线圈时产生了感应电流,产生感应电流的条件是:穿过闭合电路的磁通量发生变化.考点2 电磁感应定律 A1.感应电动势(1)感应电动势产生的条件:穿过闭合电路的磁通量发生变化.(2)感应电动势:电磁感应现象中产生的电动势.产生感应电动势的那部分电路相当于电源.2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.(2)公式:E =N ΔΦΔt(N 为线圈的匝数). (3)物理意义:闭合电路中产生的感应电动势的大小取决于此回路的磁通量变化的快慢,与磁通量多少无关,与穿过磁通量的变化多少无关.考点3 交变电流 A1.交变电流(1)交变电流(俗称交流):大小和方向都随时间做周期性变化的电流.(2)交流的变化规律:日常使用的交变电流,它的电流、电压随时间按正弦函数的规律变化,叫做正弦式电流.①表达式:e =E m sin ωt i =I m sin ωt .②图象:(3)描述物理量:周期(T )、频率(f )、有效值(E 、U 、I )、峰值(E m 、U m 、I m ).各物理量间的关系:T =1f ,E =E m 2,U =U m 2,I =I m 2. 家用电器铭牌上的额定电压、额定电流都是指有效值.交流电表的测量值都是有效值.保险丝的额定电流是有效值,电容器的额定电压是击穿电压,对应交流电的峰值.2.变压器(1)构造:变压器由一个闭合的铁芯、原线圈、副线圈组成.(2)工作原理:变压器利用的是电磁感应现象的互感现象.(3)在同一个铁芯上,哪个线圈的匝数多,哪个线圈的电压就高.U 1U 2=n 1n 2,I 1I 2=n 2n 1. 3.高压输电远距离输电减小输电线路上电能损失的方法:(1)降低导线电阻R (从ρ、L 、S 三个角度考虑,但效果不佳).(2)降低输电电流I (因为I =P U,所以采用高压输电既有效又经济). 4.自感现象 涡流(1)导体本身电流发生变化而产生的电磁感应现象叫自感现象.自感现象中产生的电动势叫自感电动势.(2)自感的应用:电感器(特点:通直流、阻交流)、日光灯电子镇流器.(3)通电自感和断电自感①A 1、A 2是规格完全一样的灯泡.闭合电键S ,调节变阻器R ,使A 1、A 2亮度相同,再调节R 1,使两灯正常发光,然后断开开关S.重新闭合S ,观察到灯泡A 2立刻正常发光,跟线圈L 串联的灯泡A 1逐渐亮起来.原因:电路接通时,电流由零开始增加,穿过线圈L 的磁通量逐渐增加,L 中产生的感应电动势的方向与原来的电流方向相反,阻碍L 中电流增加,即推迟了电流达到正常值的时间.②接通电路,待灯泡A 正常发光.然后断开电路,观察到S 断开时,A 灯突然闪亮一下才熄灭.原因:当S 断开时,L 中的电流突然减弱,穿过L 的磁通量逐渐减少,L 中产生感应电动势,方向与原电流方向相同,阻碍原电流减小.L 相当于一个电源,此时L 与A 构成闭合回路,故A 中还有一段持续电流.灯A 闪亮一下,说明流过A 的电流比原电流大.(4)涡流的应用:①真空冶炼炉(高频感应炉)(冶炼特种合金和特种钢);②金属探测器(用于安检、探雷、探矿等);③电磁炉.考点4 电磁波 A1.电磁波(1)电磁波的发现:麦克斯韦预言电磁波的存在,而赫兹通过实验证实了电磁波的存在.(2)麦克斯韦电磁场理论:①变化的磁场产生电场;②变化的电场产生磁场.③非均匀变化的周期性磁场与电场相互激发形成电磁场,电磁场由近向远传播出去形成电磁波.家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。

2024高考物理回归课本基础知识填空15.1电磁感应—知识点填空含答案

2024高考物理回归课本基础知识填空15.1电磁感应—知识点填空含答案
(2)[4][5]应用:利用互感现象可以把能量由一个线圈传递到另一个线圈,如变压器就是利用互感现象制成的。
(3)[6]危害:互感现象能发生在任何两个相互靠近的电路之间。在电力工程和电子电路中,互感现象有时会影响电路的正常工作。
14.变化变化本身自感电动势
【详解】[1][2][3][4]当一个线圈中的电流变化时,它产生的变化的磁场不仅在邻近的电路中激发出感应电动势,同样也在它本身激发出感应电动势,这种现象称为自感。由于自感而产生的感应电动势叫做自感电动势。
(2)法拉第电磁感应定律
a.内容:闭合电路中感应电动势的大小,跟穿过这一电路的成正比。
b.公式: ,其中n为线圈的匝数。
c.在国际单位制中,磁通量的单位是,感应电动势的单位是。
6.导线切割磁感线时的感应电动势反电动势
(1)导线垂直于磁场运动, 、 、 两两垂直时,如图1所示, 。
(2)导线的运动方向与导线本身垂直,但与磁感线方向夹角为 时,如图2所示, 。
8.电磁波与信息化社会
(1)电磁波的传输:电磁波可以通过电缆、光缆进行有线传输,也可实现无线传输。电磁波的频率,相同时间内传递的信息量越大。光的频率比无线电波的频率高得多,因此可以传递大量信息。
(2)电磁波的应用实例
①电视:摄像管摄取景物的图像并将其转换为用信号电流调制高频电流,通过把带有信号的电磁波发射出去。电视接收机收到高频信号以后,经、,将得到的信号送到显像管。伴音信号经解调后送到扬声器。
参考答案:
1.周期性振荡电流自感减少最大值电场能磁场能自感反向充电增多最大值磁场能电场能
【详解】略
2.周期性变化周期性变化固有固有
【详解】略
3.感应电流磁场磁场磁场
【详解】(1)[1][2][3]变化的磁场产生电场,a.实验基础:如图所示,在变化的磁场中放一个闭合电路,电路里就会产生感应电流。b.麦克斯韦的见解:电路里能产生感应电流,是因为变化的磁场产生了电场,电场促使导体中的自由电荷做定向运动。c.实质:变化的磁场产生了电场。

2025高考物理总复习法拉第电磁感应定律自感和涡流

2025高考物理总复习法拉第电磁感应定律自感和涡流

最接近
A.0.30 V C.0.59 V
√B.0.44 V
D.4.3 V
考点一 电磁感应现象的理解和判断
根据法拉第电磁感应定律 E=ΔΔΦt ,可得 E1=ΔΔBt S1,E2= ΔΔBt S2,E3=ΔΔBt S3,三个线圈产生的感应电动势方向相同, 故 E=E1+E2+E3=103×(1.02+1.22+1.42)×10-4 V= 0.44 V,故选 B。
考点一 电磁感应现象的理解和判断
根据法拉第电磁感应定律有 I=ER=ΔΔBt ·RS 可得电流之比为 I1∶I2∶I3=2∶2∶ 3 即I1=I2>I3,故选C。
返回
< 考点二 >
导体切割磁感线产生感应电动势
考点二 导体切割磁感线产生感应电动势
1.导体平动切割磁感线产生感应电动势的算式E=Blv的理解 在匀强磁场中,B、l、v三者互相垂直。如果不相互垂直,
考点一 电磁感应现象的理解和判断
判断正误
1.Φ=0,ΔΔΦt 不一定等于0。( √ ) 2.穿过线圈的磁通量变化越大,感应电动势也越大。( × ) 3.穿过线圈的磁通量变化越快,感应电动势越大。( √ ) 4.线圈匝数n越多,磁通量越大,产生的感应电动势也越大。( × )
考点一 电磁感应现象的理解和判断
考点一 电磁感应现象的理解和判断
拓展 若匀强磁场垂直向里且均匀增大,则图中a、b两点比较,__a__点 电势高。
考点一 电磁感应现象的理解和判断
总结提升
判断感应电路中电势高低的方法
考点一 电磁感应现象的理解和判断
例2 (2022·全国甲卷·16)三个用同样的细导线做成的刚性闭合线框,正
方形线框的边长与圆线框的直径相等,圆线框的半径与正六边形线框的

【高中物理】高考物理电磁感应知识点总结

【高中物理】高考物理电磁感应知识点总结

【高中物理】高考物理电磁感应知识点总结展开全文一、知识网络二、知识点归纳1、电流的磁效应:把一根导线平行地放在磁场上方,给导线通电时,磁针发生了偏转,就好像磁针受到磁铁的作用一样。

这说明不仅磁铁能产生磁场,电流也能产生磁场,这个现象称为电流的磁效应。

2、电流磁效应现象:磁铁对通电导线的作用,磁铁会对通电导线产生力的作用,使导体棒偏转。

电流和电流间的相互作用,有相互平行而且距离较近的两条导线,当导线中分别通以方向相同和方向相反的电流时,观察到发生的现象是:同向电流相吸,异向电流相斥。

3、电磁感应发现的意义:①电磁感应的发现使人们对电与磁内在联系的认识更加完善,宣告了电磁学作为一门统一学科的诞生。

②电磁感应的发现使人们找到了磁生电的条件,开辟了人类的电器化时代。

③电磁感应现象的发现,推动了经济和社会的发展,也体现了自然规律的和谐的对称美。

4、对电磁感应的理解:电和磁之间有着必然的联系,电能生磁,磁也一定能够生电,但磁生电是有条件的。

只有变化的磁场或相对位置的变化才能产生感应电流,磁生电表现为磁场的“变化”和“运动”。

引起电流的原因概括为五类:① 变化的电流。

② 变化的磁场。

③ 运动的恒定电流。

④ 运动的磁场。

⑤ 在磁场中运动的导体。

5、磁通量:闭合电路的面积与垂直穿过它的磁感应强度的乘积叫磁通量,即Φ,θ为磁感线与线圈平面的夹角。

对磁通量Φ的说明:虽然闭合电路的面积与垂直穿过它的磁感应强度的乘积叫磁通量,但是当磁场与闭合电路的面积不垂直时,磁感应强度也有垂直闭合电路的分量磁感应强度垂直闭合电路面积的分量。

6、产生感应电流的条件:一是电路闭合。

二是磁通量变化。

7、楞次定律:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

8、楞次定律的理解:① 感应电流的磁场不一定与原磁场方向相反,只是在原磁场的磁通量增大时两者才相反;在磁通量减小时,两者是同样。

② “阻碍”并不是“阻止”如原磁通量要增加,感应电流的磁场只能“阻碍”其增加,而不能阻止其增加,即原磁通量还是要增加。

高考物理复习:电磁感应中的动力学与能量问题

高考物理复习:电磁感应中的动力学与能量问题

为h。初始时刻,磁场的下边缘和线框上边缘的高度差为2h,将重物从静止
开始释放,线框上边缘刚进磁场时,恰好做匀速直线运动,滑轮质量、摩擦
阻力均不计。下列说法正确的是(ABD)
A.线框进入磁场时的速度为 2ℎ
2
2
B.线框的电阻为2
2ℎ
C.线框通过磁场的过程中产生的热量 Q=2mgh
D.线框通过磁场的过程中产生的热量 Q=4mgh
热量等于系统重力势能的减少量,即 Q=3mg×2h-mg×2h=4mgh,C 错误, D 正
确。
能力形成点3
整合构建
电磁感应中的动量综合问题——规范训练
电磁感应中的有些题目可以从动量角度着手,运用动量定理或动量守恒
定律解决。
(1)应用动量定理可以由动量变化来求解变力的冲量。如在导体棒做非
匀变速运动的问题中,应用动量定理可以解决牛顿运动定律不易解答的问
解析:(1)由ab、cd棒被平行于斜面的导线相连,故ab、cd速度大小总是相
等,cd也做匀速直线运动。设导线的拉力的大小为FT,右斜面对ab棒的支持
力的大小为FN1,作用在ab棒上的安培力的大小为F,左斜面对cd棒的支持力
大小为FN2,对于ab棒,受力分析如图甲所示。
由力的平衡条件得2mgsin θ=μFN1+FT+F ①
电动势,该导体或回路就相当于电源。
(2)分析清楚有哪些力做功,就可以知道有哪些形式的能量发生了相互转化。
(3)根据能量守恒列方程求解。
训练突破
2.(多选)如图所示,质量为3m的重物与一质量为m的线框用一根绝缘细线
连接起来,挂在两个高度相同的定滑轮上。已知线框的横边边长为l,水平
方向匀强磁场的磁感应强度为B,磁场上下边界的距离、线框竖直边长均

高考物理一轮复习知识清单:电磁感应

高考物理一轮复习知识清单:电磁感应

知识清单:电磁感应●知识点1——磁通量1.物理意义:磁通量表示穿过某个闭合面积的磁感线条数。

2.公式: Φ=BS cos θ ,(1)θ是磁场方向与平面法向量的夹角,(2)S 应是指闭合回路中有磁感线的那部分有效面积(3)磁通量与线圈的匝数无关,也就是磁通量大小不受线圈匝数的影响 【例如】求图中穿过闭合回路abcd 的磁通量由θ=0º,S 等于S 2 得磁通量:Φ=BS 2 3.单位:韦伯,Wb4.磁通量与感应电流的关系:穿过闭合回路的磁通量发生变化,回路中就产生出感应电流,而且磁通量变化越快(即磁通量变化率ΔΦΔt越大)感应电流就越大。

⎩⎨⎧Φ不变→无感应电流Φ变化→⎩⎪⎨⎪⎧回路闭合,有感应电流不闭合,无感应电流,但有感应电动势●知识点2——感应电流方向1.楞次定律:2.右手定则:让磁感线垂直从右手掌心进入,并使拇指指向导线切割磁感线的方向,四指所指的方向就是感应电流的方向.3.楞次定律的推论——(1)增反减同(2)强斥缩、弱吸胀内容例证阻碍原磁通量变化“增反减同”磁铁靠近线圈,B感与B原方向相反阻碍相对运动“来拒去留”磁铁与线圈靠近时排斥,远离时吸引使回路面积有变化“增缩减扩”P、Q是光滑固定导轨,a、b是可动金属棒,磁铁下移,a、b靠近阻碍原电流的变化“增反减同”合上S,B先亮4.一定律、三定则的比较适用范围基本现象右手螺旋定则电流的磁效应电流、运动电荷周围产生磁场左手定则磁场力磁场对电流、运动电荷的作用右手定则电磁感应部分导体做切割磁感线运动楞次定律闭合回路的磁通量发生变化●知识点3——感应电动势1.法拉第电磁感应定律(1)内容:感应电动势的大小跟穿过这一回路的磁通量的变化率成正比 (2)公式:E =n ΔΦΔt,其中n 为线圈匝数(3)感应电流与感应电动势的关系:遵守闭合电路的欧姆定律,即I =ER +r2.导体棒平动切割磁感线引起的感应电动势E = B L v sin α sin βsin γ(1)这里L 是导轨架之间的导体棒直线长度(有效长度)(2)这里的α 、β、γ是 B 、L 、 v 任两个量的夹角 (3)若B 、L 、v 相互垂直,则E =BLv(4)导体棒相当于电源,感应电流在导体棒中从负极流向正极3.导体棒转动切割磁感线引起的感应电动势E =12Bωl 2 (l 是导体棒的长度)4.磁感应强度变化引起的感应电动势E = n S ΔBΔt (S 是闭合回路中磁场的面积)5.多匝矩形线框在匀强磁场中匀速转动引起的感应电动势(1)中性面的三大特征:①Φ=BS (最大) ②电动势电流为0 ③改变电流方向 (2)峰值面的三大特征:①Φ = 0(最小)②电动势E m =n BS ω 、电流I m =E mR +r(最大)规律物理量 (用途) t=0时刻是中性面 t=0时刻是峰值面图像瞬时电动势 瞬时输出电压 瞬时电流 e =E m sin ωt u =U m sin ωt i =I m sin ωte =E m cos ωt u =U m cos ωt i =I m cos ωt峰值电动势 (计算电容器的击穿电压) E m =n BS ωE m =n BS ω电动势有效值 电压有效值 电流有效值 (计算电功率)E =E m 2U =U m 2I =I m 2E =E m 2U =U m 2I =I m 2平均值 (用于计算通过导体的电荷量)E =BL v E =n ΔΦΔtI =ER +r E =BL v E =n ΔΦΔtI =ER +r●知识点4——通过导体的电荷量q1.已知导体棒的位移xq =I tI =ER +r q =n ∆ΦR+r q =nLxR+rE =n ΔΦΔt2.已知导体棒只在安培阻力作用下的运动时间,利用动量定理,有-(I L B )t= 0 - mv 0 得 qLB = m v 0 q =mv 0LB●知识点5——电磁感应中的动力学问题1.安培力的大小、方向:⎭⎪⎬⎪⎫安培力公式:F A =BIl感应电动势:E =Bl v 感应电流:I =ER F 安=B 2l 2vR安培力的方向一定与导体切割磁感线的运动方向相反(安培力是阻力)2.外力克服安培力做功,将机械能转化为电能,电流(导线中电场力)做功再将电能转化为其他形式的能。

2022届高三物理一轮总复习:电磁感应题型归纳

2022届高三物理一轮总复习:电磁感应题型归纳

高考物理总复习电磁感应题型归纳一、电磁感应中的电路及图像问题类型一、根据B t -图像的规律,选择E t -图像、I t -图像电磁感应中线圈面积不变、磁感应强度均匀变化,产生的感应电动势为S B E n n nSk t t φ∆∆===∆∆,磁感应强度的变化率B k t∆=∆是定值,感应电动势是定值, 感应电流E I R r=+就是一个定值,在I t -图像上就是水平直线。

例1、矩形导线框abcd 固定在匀强磁场中,磁感线的方向与导线框所在平面垂直,规定磁场的正方向垂直纸面向里,磁感应强度B 随时间变化的规律如图所示。

若规定顺时针方向为感应电流I 的正方向,下列各图中正确的是( )【思路点拨】磁感应强度的变化率为定值,感应电动势电流即为定值。

应用楞次定律“增反减同”逐段判断电流的方向,同一个斜率电流方向、大小均相同。

【答案】D 【解析】根据法拉第电磁感应定律,S B E nn t t φ∆∆==∆∆,导线框面积不变,B t∆∆为一定值,感应电动势也为定值,感应电流也为定值,所以A 错误。

0-1s 磁感应强度随时间增大,根据楞次定律,感应电流的方向为逆时针,为负,C 错误。

1-3s 斜率相同即B t ∆∆相同为负,与第一段的B t∆∆大小相等,感应电动势、感应电流大小相等,方向相反,为顺时针方向,为正,所以B 错误,D 正确。

【总结升华】斜率是一个定值,要灵活应用法拉第电磁感应定律(这里定性分析)。

1-3s 可以分段分析判断感应电流的方向,速度太慢,这里充分应用1-2s 和2-3s 是同一个斜率, 感应电动势、感应电流大小相等方向相同,概念清晰,解题速度快。

类型二 选择E t -图像、U t -图像、I t -图像或E -x 图像、U -x 图像和I -x 图像例2、如图所示,一个菱形的导体线框沿着自己的对角线匀速运动,穿过具有一定宽度的匀强磁场区域,已知对角线AC 的长度为磁场宽度的两倍且与磁场边界垂直.下面对于线框中感应电流随时间变化的图象(电流以ABCD 顺序流向为正方向,从C 点进入磁场开始计时)正确的是 ( )【思路点拨】先根据楞次定律判断感应电流的方向,再结合切割产生的感应电动势公式判断感应电动势的变化,从而结合闭合电路欧姆定律判断感应电流的变化.解决本题的关键掌握楞次定律判断感应电流的方向,以及知道在切割产生的感应电动势公式E=BLv中,L为有效长度.【答案】B【解析】线圈在进磁场的过程中,根据楞次定律可知,感应电流的方向为ABCD方向,即为正值,在出磁场的过程中,根据楞次定律知,感应电流的方向为ADCBA,即为负值.在线圈进入磁场的前一半的过程中,切割的有效长度均匀增大,感应电动势均匀增大,则感应电流均匀增大,在线圈进入磁场的后一半过程中,切割的有效长度均匀减小,感应电动势均匀减小,则感应电流均匀减小;在线圈出磁场的前一半的过程中,切割的有效长度均匀增大,感应电流均匀增大,在线圈出磁场的后一半的过程中,切割的有效长度均匀减小,感应电流均匀减小.故B正确,A、C、D错误.故选:B.【变式】一正方形闭合导线框abcd ,边长L=0.1m ,各边电阻为1Ω,bc 边位于x 轴上,在x 轴原点O 右方有宽L=0.1m 、磁感应强度为1T 、方向垂直纸面向里的匀强磁场区域,如图所示,当线框以恒定速度4m/s 沿x 轴正方向穿越磁场区域过程中,下面4个图可正确表示线框进入到穿出磁场过程中,ab 边两端电势差ab U 随位置变化情况的是( )【答案】B 【解析】由题知ab 边进入磁场做切割磁感线运动时,据闭合电路知识,3330.344ab BLv U I R R BLv V R =⋅=⋅==,且a 点电势高于b 点电势,同理ab 边出磁场后cd 边进入磁场做切割磁感线运动,10.14ab U BLv V ==,a 点电势高于b 点电势,故B正确,A 、C 、D 错误。

高三物理一轮复习知识总结:电磁感应基础知识归纳

高三物理一轮复习知识总结:电磁感应基础知识归纳

高中物理电磁感应基础知识归纳考点1、磁通量(Φ)(1)定义:穿过某一面积的磁感线的条数叫做穿过这一面积的磁通量。

磁通量简称磁通。

①若磁场方向与面积垂直,磁场的磁感应强度为B ,平面的面积为S ,则穿过该平面的磁通量为Φ=BS②若磁场方向与面积不垂直,则穿过该平面的磁通量等于磁感应强度与该平面在垂直于磁场方向上投影面积的乘积。

③若磁感线沿相反方向穿过同一平面,且正向磁感线条数为Φ1,反向磁感线条数为Φ2,则磁通量为Φ=Φ1-Φ2(2)磁通量的变化量的计算①ΔΦ=Φ2-Φ1;ΔΦ=B ΔS ;ΔΦ=S ΔB②开始和转过1800时平面都与磁场垂直,则磁通量的变化量ΔΦ=2BS (磁感应强度为B ,平面的面积为S )(3)磁通量的变化率①磁通量的变化率:描述磁场中穿过某个面磁通量变化快慢的物理量。

②大小计算:tB s t S B t ∆∆=∆∆=∆∆ϕ ③在数值上等于单匝线圈产生的感应电动势的大小。

④在Φ—t 图象中,图象的斜率表示t∆∆ϕ (4)引起某一回路磁通量变化的原因(1)磁感强度的变化(2)线圈面积的变化(部分导体做切割磁感线运动)(3)线圈平面的法线方向与磁场方向夹角的变化考点2、感应电流的方向判断(1)判断的方法:①右手定则——部分导体做切割磁感线运动时产生的感应电流的方向②楞次定律(2)楞次定律的理解运用楞次定律判定感应电流方向的基本思路可归结为:“一原、二感、三电流”,即为: ①明确原磁场:弄清原磁场的方向及磁通量的变化情况.②确定感应磁场:即根据楞次定律中的"阻碍"原则,结合原磁场磁通量变化情况,确定出感应电流产生的感应磁场的方向.③判定电流方向:即根据感应磁场的方向,运用安培定则判断出感应电流方向.(b )判断闭合电路(或电路中可动部分导体)相对运动类问题的分析策略在电磁感应问题中,有一类综合性较强的分析判断类问题,主要讲的是磁场中的闭合电路在一定条件下产生了感应电流,而此电流又处于磁场中,受到安培力作用,从而使闭合电路或电路中可动部分的导体发生了运动.对其运动趋势的分析判断可有两种思路方法:①常规法:据原磁场(B 原方向及ΔΦ情况)−−−−→−楞次定律确定感应磁场(B 感方向)−−−−→−安培定则判断感应电流(I 感方向)−−−−→−左手定则导体受力及运动趋势.②效果法由楞次定律可知,感应电流的“效果”总是阻碍引起感应电流的“原因”,深刻理解“阻碍”的含义.据"阻碍"原则,可直接对运动趋势作出判断,更简捷、迅速.a 、 阻碍变化变形为−→−−−阻碍原磁通的变化b 、阻碍变化拓展为−→−−−阻碍(导体间的)相对运动,即“来时拒,去时留” c 、 阻碍变化推广为−→−−−阻碍原电流的变化,应用在解释自感现象的有关问题。

高考物理电磁感应总复习课件1共51页文档

高考物理电磁感应总复习课件1共51页文档
答案:AD
点评:解答此类题的关键:
(1)正确理解通电自感和断电自感现象中自感电动势对“原 电流的变化”的阻碍作用,即延缓原电流的变化.
(2)纯电感线圈在电流稳定时相当于一根短路导线,非纯电 感线圈在电流稳定时相当于一定值电阻.
跟踪训练3 如图所示电路,多匝线圈的电阻和电池的
内阻均可以忽略,两个电阻的阻值都是R,电键K原来打开
3.互感现象:两个互相靠近的线圈(两线圈的导线并没有直 接相连),当一个线圈中的电流变化时,它所产生的变化的 ________,会在另一个线圈中产生________,这种现象称 为互感.互感现象产生的感应电动势,称为互感电动 势.变压器就是利用互感现象制成的.
4.涡流:当线圈中的电流发生变化时,在它附近的任何导 体中都会产生________,这种电流像水中的漩涡叫涡流.
2.磁通量Φ、磁通量的变化量ΔΦ、磁通量的变化率
ΔΔΦt 的意义
(1)磁通量Φ是穿过某一面积的磁感线的条数;磁通量
的变化量ΔΦ=Φ2-Φ1,表示磁通量变化的多少,并不涉及
这种变化所经历的时间;磁通量的变化率
ΔΦ Δt
,表示磁通量
变化的快慢.
(2)当磁通量Φ很大时,磁通量的变化量ΔΦ可能很小.同理, 当磁通量的变化量ΔΦ很大时,若经历的时间很长,则磁通 量的变化率也可能较小.
感线,则感应电动势的大小为E=BL·12
ωL=
1 2
BL2ω(平均速
度取中点位置,此位置的线速度为12ωL).
三、自感和互感、涡流
1.自感现象:导体本身的________发生变化在它本身产 生的电磁感应现象叫自感现象.自感现象中产生的电动势 叫自感电动势,E=________,L为线圈的自感系数.

高考物理一轮复习之《电磁感应》知识汇总

高考物理一轮复习之《电磁感应》知识汇总

⾼考物理⼀轮复习之《电磁感应》知识汇总第⼀节 电磁感应现象 楞次定律【基本概念、规律】⼀、磁通量1.定义:在磁感应强度为B的匀强磁场中,与磁场⽅向垂直的⾯积S和B的乘积.2.公式:Φ=B·S.3.单位:1 Wb=1_T·m2.4.标⽮性:磁通量是标量,但有正、负.⼆、电磁感应1.电磁感应现象当穿过闭合电路的磁通量发⽣变化时,电路中有电流产⽣,这种现象称为电磁感应现象.2.产⽣感应电流的条件(1)电路闭合;(2)磁通量变化.3.能量转化发⽣电磁感应现象时,机械能或其他形式的能转化为电能.特别提醒:⽆论回路是否闭合,只要穿过线圈平⾯的磁通量发⽣变化,线圈中就有感应电动势产⽣.三、感应电流⽅向的判断1.楞次定律(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化.(2)适⽤情况:所有的电磁感应现象.2.右⼿定则(1)内容:伸开右⼿,使拇指与其余四个⼿指垂直,并且都与⼿掌在同⼀个平⾯内,让磁感线从掌⼼进⼊,并使拇指指向导体运动的⽅向,这时四指所指的⽅向就是感应电流的⽅向.(2)适⽤情况:导体切割磁感线产⽣感应电流.【重要考点归纳】考点⼀ 电磁感应现象的判断1.判断电路中能否产⽣感应电流的⼀般流程:2.判断能否产⽣电磁感应现象,关键是看回路的磁通量是否发⽣了变化.磁通量的变化量ΔΦ=Φ2-Φ1有多种形式,主要有:(1)S、θ不变,B改变,这时ΔΦ=ΔB·S sin θ;(2)B、θ不变,S改变,这时ΔΦ=ΔS·B sin θ;(3)B、S不变,θ改变,这时ΔΦ=BS(sin θ2-sin θ1).考点⼆ 楞次定律的理解及应⽤1.楞次定律中“阻碍”的含义2.应⽤楞次定律判断感应电流⽅向的步骤考点三 “⼀定律三定则”的综合应⽤1.“三个定则与⼀个定律”的⽐较2.应⽤技巧⽆论是“安培⼒”还是“洛伦兹⼒”,只要是涉及磁⼒都⽤左⼿判断.“电⽣磁”或“磁⽣电”均⽤右⼿判断.【思想⽅法与技巧】楞次定律推论的应⽤楞次定律中“阻碍”的含义可以理解为感应电流的效果总是阻碍产⽣感应电流的原因,推论如下:(1)阻碍原磁通量的变化——“增反减同”;(2)阻碍相对运动——“来拒去留”;(3)使线圈⾯积有扩⼤或缩⼩的趋势——“增缩减扩”;(4)阻碍原电流的变化(⾃感现象)——“增反减同”第⼆节 法拉第电磁感应定律 ⾃感 涡流【基本概念、规律】⼀、法拉第电磁感应定律1.感应电动势(1)感应电动势:在电磁感应现象中产⽣的电动势.产⽣感应电动势的那部分导体就相当于电源,导体的电阻相当于电源内阻.(2)感应电流与感应电动势的关系:遵循闭合电路欧姆定律,即I=E/(R+r)2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的⼤⼩,跟穿过这⼀电路的磁通量的变化率成正⽐.3.导体切割磁感线的情形(1)若B、l、v相互垂直,则E=Blv.(2)若B⊥l,l⊥v,v与B夹⾓为θ,则E=Blv sin_θ.⼆、⾃感与涡流1.⾃感现象(1)概念:由于导体本⾝的电流变化⽽产⽣的电磁感应现象称为⾃感,由于⾃感⽽产⽣的感应电动势叫做⾃感电动势.(3)⾃感系数L的影响因素:与线圈的⼤⼩、形状、匝数以及是否有铁芯有关.2.涡流当线圈中的电流发⽣变化时,在它附近的任何导体中都会产⽣像⽔的旋涡状的感应电流.(1)电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培⼒,安培⼒的⽅向总是阻碍导体的运动.(2)电磁驱动:如果磁场相对于导体转动,在导体中会产⽣感应电流,使导体受到安培⼒作⽤,安培⼒使导体运动起来.交流感应电动机就是利⽤电磁驱动的原理⼯作的.【重要考点归纳】考点⼀ 公式E=nΔΦ/Δt的应⽤1.感应电动势⼤⼩的决定因素(1)感应电动势的⼤⼩由穿过闭合电路的磁通量的变化率和线圈的匝数共同决定,⽽与磁通量Φ、磁通量的变化量ΔΦ的⼤⼩没有必然联系.3.应⽤电磁感应定律应注意的三个问题考点⼆ 公式E=Blv的应⽤1.使⽤条件本公式是在⼀定条件下得出的,除了磁场是匀强磁场外,还需B、l、v三者相互垂直.实际问题中当它们不相互垂直时,应取垂直的分量进⾏计算,公式可为E=Blv sin θ,θ为B与v⽅向间的夹⾓.2.使⽤范围3.有效性公式中的l为有效切割长度,即导体与v垂直的⽅向上的投影长度.例如,求下图中MN两点间的电动势时,有效长度分别为甲图:l=cd sin β.4.相对性E=Blv中的速度v是相对于磁场的速度,若磁场也运动,应注意速度间的相对关系.5.感应电动势两个公式的⽐较考点三 ⾃感现象的分析1.⾃感现象“阻碍”作⽤的理解(1)流过线圈的电流增加时,线圈中产⽣的⾃感电动势与电流⽅向相反,阻碍电流的增加,使其缓慢地增加.(2)流过线圈的电流减⼩时,线圈中产⽣的⾃感电动势与电流⽅向相同,阻碍电流的减⼩,使其缓慢地减⼩.2.⾃感现象的四个特点(1)⾃感电动势总是阻碍导体中原电流的变化.(2)通过线圈中的电流不能发⽣突变,只能缓慢变化.(3)电流稳定时,⾃感线圈就相当于普通导体.(4)线圈的⾃感系数越⼤,⾃感现象越明显,⾃感电动势只是延缓了过程的进⾏,但它不能使过程停⽌,更不能使过程反向.3.⾃感现象中的能量转化通电⾃感中,电能转化为磁场能;断电⾃感中,磁场能转化为电能.4.分析⾃感现象的两点注意(1)通过⾃感线圈中的电流不能发⽣突变,即通电过程,线圈中电流逐渐变⼤,断电过程,线圈中电流逐渐变⼩,⽅向不变.此时线圈可等效为“电源”,该“电源”与其他电路元件形成回路.(2)断电⾃感现象中灯泡是否“闪亮”问题的判断,在于对电流⼤⼩的分析,若断电后通过灯泡的电流⽐原来强,则灯泡先闪亮后再慢慢熄灭.第三节 电磁感应中的电路和图象问题【基本概念、规律】⼀、电磁感应中的电路问题1.内电路和外电路(1)切割磁感线运动的导体或磁通量发⽣变化的线圈都相当于电源.(2)该部分导体的电阻或线圈的电阻相当于电源的内阻,其余部分是外电阻.2.电源电动势和路端电压⼆、电磁感应中的图象问题1.图象类型(1)随时间t变化的图象如B-t图象、Φ-t图象、E-t图象和i-t图象.(2)随位移x变化的图象如E-x图象和i-x图象.2.问题类型(1)由给定的电磁感应过程判断或画出正确的图象.(2)由给定的有关图象分析电磁感应过程,求解相应的物理量.(3)利⽤给出的图象判断或画出新的图象.【重要考点归纳】考点⼀ 电磁感应中的电路问题1.对电源的理解:在电磁感应现象中,产⽣感应电动势的那部分导体就是电源,如切割磁感线的导体棒、有磁通量变化的线圈等.这种电源将其他形式的能转化为电能.2.对电路的理解:内电路是切割磁感线的导体或磁通量发⽣变化的线圈,外电路由电阻、电容等电学元件组成.3.解决电磁感应中电路问题的⼀般思路:(2)分析电路结构(内、外电路及外电路的串、并联关系),画出等效电路图.(3)利⽤电路规律求解.主要应⽤欧姆定律及串、并联电路的基本性质等列⽅程求解.4.(1)对等效于电源的导体或线圈,两端的电压⼀般不等于感应电动势,只有在其电阻不计时才相等.(2)沿等效电源中感应电流的⽅向,电势逐渐升⾼.考点⼆ 电磁感应中的图象问题1.题型特点⼀般可把图象问题分为三类:(1)由给定的电磁感应过程选出或画出正确的图象;(2)由给定的有关图象分析电磁感应过程,求解相应的物理量;(3)根据图象定量计算.2.解题关键弄清初始条件,正负⽅向的对应,变化范围,所研究物理量的函数表达式,进、出磁场的转折点是解决问题的关键.3.解决图象问题的⼀般步骤(1)明确图象的种类,即是B-t图象还是Φ-t图象,或者是E-t图象、I-t图象等;(2)分析电磁感应的具体过程;(3)⽤右⼿定则或楞次定律确定⽅向对应关系;(4)结合法拉第电磁感应定律、欧姆定律、⽜顿运动定律等规律写出函数关系式;(5)根据函数关系式,进⾏数学分析,如分析斜率的变化、截距等;(6)画出图象或判断图象.4.解决图象类选择题的最简⽅法——分类排除法.⾸先对题中给出的四个图象根据⼤⼩或⽅向变化特点分类,然后定性地分析电磁感应过程中物理量的变化趋势(增⼤还是减⼩)、变化快慢(均匀变化还是⾮均匀变化),特别是⽤物理量的⽅向,排除错误选项,此法最简捷、最有效.【思想⽅法与技巧】电磁感应电路与图象的综合问题解决电路与图象综合问题的思路(1)电路分析弄清电路结构,画出等效电路图,明确计算电动势的公式.(2)图象分析①弄清图象所揭⽰的物理规律或物理量间的函数关系;②挖掘图象中的隐含条件,明确有关图线所包围的⾯积、图线的斜率(或其绝对值)、截距所表⽰的物理意义.(3)定量计算运⽤有关物理概念、公式、定理和定律列式计算.第四节 电磁感应中的动⼒学和能量问题【基本概念、规律】⼀、电磁感应现象中的动⼒学问题1.安培⼒的⼤⼩2.安培⼒的⽅向(1)先⽤右⼿定则判定感应电流⽅向,再⽤左⼿定则判定安培⼒⽅向.(2)根据楞次定律,安培⼒的⽅向⼀定和导体切割磁感线运动⽅向相反.⼆、电磁感应中的能量转化1.过程分析(1)电磁感应现象中产⽣感应电流的过程,实质上是能量的转化过程.(2)感应电流在磁场中受安培⼒,若安培⼒做负功,则其他形式的能转化为电能;若安培⼒做正功,则电能转化为其他形式的能.(3)当感应电流通过⽤电器时,电能转化为其他形式的能.2.安培⼒做功和电能变化的对应关系“外⼒”克服安培⼒做多少功,就有多少其他形式的能转化为电能;安培⼒做多少功,就有多少电能转化为其他形式的能.【重要考点归纳】考点⼀ 电磁感应中的动⼒学问题分析1.导体的平衡态——静⽌状态或匀速直线运动状态.处理⽅法:根据平衡条件(合外⼒等于零)列式分析.2.导体的⾮平衡态——加速度不为零.处理⽅法:根据⽜顿第⼆定律进⾏动态分析或结合功能关系分析.3.分析电磁感应中的动⼒学问题的⼀般思路(1)先进⾏“源”的分析——分离出电路中由电磁感应所产⽣的电源,求出电源参数E和r;(2)再进⾏“路”的分析——分析电路结构,弄清串、并联关系,求出相关部分的电流⼤⼩,以便求解安培⼒;(3)然后是“⼒”的分析——分析研究对象(常是⾦属杆、导体线圈等)的受⼒情况,尤其注意其所受的安培⼒;(4)最后进⾏“运动”状态的分析——根据⼒和运动的关系,判断出正确的运动模型.考点⼆ 电磁感应中的能量问题1.电磁感应过程的实质是不同形式的能量转化的过程,⽽能量的转化是通过安培⼒做功的形式实现的,安培⼒做功的过程,是电能转化为其他形式能的过程,外⼒克服安培⼒做功,则是其他形式的能转化为电能的过程.2.能量转化及焦⽿热的求法(1)能量转化(2)求解焦⽿热Q的三种⽅法3. 在解决电磁感应中的能量问题时,⾸先进⾏受⼒分析,判断各⼒做功和能量转化情况,再利⽤功能关系或能量守恒定律列式求解.【思想⽅法与技巧】电磁感应中的“双杆”模型1.模型分类“双杆”模型分为两类:⼀类是“⼀动⼀静”,甲杆静⽌不动,⼄杆运动,其实质是单杆问题,不过要注意问题包含着⼀个条件:甲杆静⽌、受⼒平衡.另⼀种情况是两杆都在运动,对于这种情况,要注意两杆切割磁感线产⽣的感应电动势是相加还是相减.2.分析⽅法通过受⼒分析,确定运动状态,⼀般会有收尾状态.对于收尾状态则有恒定的速度或者加速度等,再结合运动学规律、⽜顿运动定律和能量观点分析求解.3.分析“双杆”模型问题时,要注意双杆之间的制约关系,即“动杆”与“被动杆”之间的关系,需要注意的是,最终两杆的收尾状态的确定是分析该类问题的关键.电磁感应中的含容电路分析⼀、电磁感应回路中只有电容器元件1.这类问题的特点是电容器两端电压等于感应电动势,充电电流等于感应电流.(2)由本例可以看出:导体棒在恒定外⼒作⽤下,产⽣的电动势均匀增⼤,电流不变,所受安培阻⼒不变,导体棒做匀加速直线运动.⼆、电磁感应回路中电容器与电阻并联问题1.这⼀类问题的特点是电容器两端的电压等于与之并联的电阻两端的电压,充电过程中的电流只是感应电流的⼀⽀流.稳定后,充电电流为零.2.在这类问题中,导体棒在恒定外⼒作⽤下做变加速运动,最后做匀速运动.。

高考物理复习要点第十五单元nbsp交变电流nbsp电磁场和电磁波

高考物理复习要点第十五单元nbsp交变电流nbsp电磁场和电磁波

第十五单元 交变电流 电磁场和电磁波教学目标1.掌握交流电变化规律。

2.理解交流电的有效值。

3.掌握变压器工作原理及规律。

4.知道变压器的输入功率随输出功率增大而增大,知道变压器原线圈中的电流随副线圈电流增大而增大。

5.知道电磁场电磁波电磁波的波速。

6.培养综合应用电磁感应知识解决复杂问题的能力。

教学重点、难点分析1.交流电的产生和变化规律。

2.交流电有效值的计算。

教学过程设计一、正弦交变电流 法拉第电磁感应定律的内容:电路中感应电动势大小跟穿过这一电路的磁通量的变化率成正比,ΔtΔN E ϕ=。

启发引导:一个矩形闭合线框在磁场中绕垂直于磁场方向的轴转动,情况将如何?线框边长a b=dc=L 1,a d=bc=L 2OO′为过a d 、bc 中点的轴。

从图示位置开始计时,经过时间t ,线圈转过角度θ=ωt ,此时a b 和dc 边产生感应电动势,θωsin 2211ab L BL v BL E ==⊥,θωsin 2211dc L BL v BL E ==⊥。

线圈产生总电动势e= E ab + E dc =BL 1L 2ωsinωt ,记作e=E m sinωt设线圈总电阻为R ,线圈中感应电流t RE i m ωsin =,记作i=I m sinωt e 和i 随t 按正弦规律变化。

1.正弦交变电流的产生闭合矩形线圈在磁场中绕垂直于场强方向的轴转动产生的电流随时间作周期性变化,称交流电。

当闭合线圈由中性面位置(右图中O 1O 2位置)开始在匀强磁场中匀速转动时,线圈中产生的感应电动势随时间而变的函数是正弦函数:e =E m sin ωt ,其中E m =nBSω,这就是正弦交变电流。

2.交流电的变化规律(1)函数表达式:e=E m sinωt 、i=I m sinωt 、u=U m sinωt(2)图像:以e (i 、u )为因变量,t 或ωt 为自变量作图。

3.描述交流电的周期性变化规律的物理量(1)周期(T ):完成一次周期性变化所需要的时间。

高考物理讲解:电磁感应公式总结

高考物理讲解:电磁感应公式总结

高考物理讲解:电磁感应公式总结
1、E=nΔΦ/Δt,E:感应电动势(V),n:感应线圈匝数,
ΔΦ/Δt:磁通量的变化率。

2、E=BLV sin A(切割磁感线运动),E=BLV中的v和L不可以和磁感线平行,但可以不和磁感线垂直,其中sin A为v或L与磁感线的夹角。

L:有效长度(m),一般用于求瞬时感应电动势,但也可求平均电动势。

3、Em=nBSω,Em:感应电动势峰值。

4、E=BL2ω/2,ω:角速度(rad/s),V:速度(m/s)。

电磁感应是指因为磁通量变化产生感应电动势的现象。

电磁感应现象的发现,是电磁学领域中最伟大的成就之一。

电磁感应不仅揭示了电与磁之间的内在联系,而且为电与磁之间的相互转化奠定了实验基础,为人类获取巨大而廉价的电能开辟了道路,在实用上有重大意义。

电磁感应现象的发现,标志着一场重大的工业和技术革命的到来。

2024高考物理电磁感应现象及其应用

2024高考物理电磁感应现象及其应用

2024高考物理电磁感应现象及其应用电磁感应是物理学中的重要现象之一,广泛应用于现代科技和工业领域。

本文将详细介绍电磁感应的基本原理、应用以及未来的发展趋势。

一、电磁感应的基本原理电磁感应是指当导体处于磁场中或磁场发生变化时,由于感应电动势的存在,将产生电流。

这个现象最早由法拉第在19世纪发现和研究,并总结为法拉第电磁感应定律。

该定律表明,在一段导线内,感应电动势的大小与导线长度、磁场强度和导线运动速度有关。

二、电磁感应的应用1. 发电机电磁感应的最重要应用之一是发电机。

发电机通过利用电磁感应的原理,将机械能转化为电能。

当导体线圈在磁场中旋转时,磁场的变化将导致电流的产生,从而实现了电能的转化和输送。

2. 变压器变压器也是电磁感应的重要应用之一。

通过将交流电输入主线圈,产生交变磁场,进而诱导出次级线圈中的电流,实现电能的传递和降压升压。

3. 电动机电动机是将电能转化为机械能的装置。

通过利用电磁感应现象产生的磁场力线和导体电流的相互作用,实现电能转化为机械能,驱动设备的运转。

4. 感应炉感应炉是一种利用电磁感应原理加热的设备。

通过高频交流电在线圈中产生的磁场,诱发电流在导体中产生热能,并在短时间内将导体加热到高温。

5. 电磁感应传感器电磁感应传感器在现代工业和科技领域有着广泛的应用,如位移传感器、速度传感器、涡流传感器等。

这些传感器利用电磁感应现象对物体的运动和变化进行检测和测量。

三、电磁感应的发展趋势随着科技的不断进步,电磁感应在各个领域的应用将变得更加广泛和深入。

以下是电磁感应未来的几个发展趋势:1. 高效能量转换技术:尽管现有的发电机、变压器和电动机已经经过多年的改进和优化,但在能量转换效率上仍有提升的空间。

未来的发展趋势将主要集中在提高能量转换效率,减少能源浪费。

2. 环保与可持续发展:电磁感应技术在可再生能源中的应用将得到进一步发展,如风力发电、太阳能发电等。

通过结合电磁感应技术和可持续能源,可以实现对环境的保护和可持续发展。

高考物理电磁感应现象知识点汇总

高考物理电磁感应现象知识点汇总

高考物理电磁感应现象知识点汇总一、高中物理解题方法:电磁感应现象的两类情况1.如图甲所示,相距d 的两根足够长的金属制成的导轨,水平部分左端ef 间连接一阻值为2R 的定值电阻,并用电压传感器实际监测两端电压,倾斜部分与水平面夹角为37°.长度也为d 、质量为m 的金属棒ab 电阻为R ,通过固定在棒两端的金属轻滑环套在导轨上,滑环与导轨上MG 、NH 段动摩擦因数μ=18(其余部分摩擦不计).MN 、PQ 、GH 相距为L ,MN 、PQ 间有垂直轨道平面向下、磁感应强度为B 1的匀强磁场,PQ 、GH 间有平行于斜面但大小、方向未知的匀强磁场B 2,其他区域无磁场,除金属棒及定值电阻,其余电阻均不计,sin 37°=0.6,cos 37°=0.8,当ab 棒从MN 上方一定距离由静止释放通过MN 、PQ 区域(运动过程中ab 棒始终保持水平),电压传感器监测到U -t 关系如图乙所示.(1)求ab 棒刚进入磁场B 1时的速度大小. (2)求定值电阻上产生的热量Q 1.(3)多次操作发现,当ab 棒从MN 以某一特定速度进入MNQP 区域的同时,另一质量为2m ,电阻为2R 的金属棒cd 只要以等大的速度从PQ 进入PQHG 区域,两棒均可同时匀速通过各自场区,试求B 2的大小和方向.【答案】(1)11.5U B d (2)2221934-mU mgL B d;(3)32B 1 方向沿导轨平面向上 【解析】 【详解】(1)根据ab 棒刚进入磁场B 1时电压传感器的示数为U ,再由闭合电路欧姆定律可得此时的感应电动势:1 1.52UE U R U R=+⋅= 根据导体切割磁感线产生的感应电动势计算公式可得:111E B dv =计算得出:111.5Uv B d=. (2)设金属棒ab 离开PQ 时的速度为v 2,根据图乙可以知道定值电阻两端电压为2U ,根据闭合电路的欧姆定律可得:12222B dv R U R R⋅=+计算得出:213Uv B d=;棒ab 从MN 到PQ ,根据动能定理可得: 222111sin 37cos3722mg L mg L W mv mv μ︒︒⨯-⨯-=-安 根据功能关系可得产生的总的焦耳热 :=Q W 总安根据焦耳定律可得定值电阻产生的焦耳热为:122RQ Q R R=+总 联立以上各式得出:212211934mU Q mgL B d=-(3)两棒以相同的初速度进入场区匀速经过相同的位移,对ab 棒根据共点力的平衡可得:221sin 37cos3702B d vmg mg Rμ︒︒--=计算得出:221mgRv B d =对cd 棒分析因为:2sin372cos370mg mg μ︒︒-⋅>故cd 棒安培力必须垂直导轨平面向下,根据左手定则可以知道磁感应强度B 2沿导轨平面向上,cd 棒也匀速运动则有:1212sin 372cos37022B dv mg mg B d R μ︒︒⎛⎫-+⨯⨯⨯= ⎪⎝⎭将221mgRv B d =代入计算得出:2132B B =. 答:(1)ab 棒刚进入磁场1B 时的速度大小为11.5UB d; (2)定值电阻上产生的热量为22211934mU mgL B d-; (3)2B 的大小为132B ,方向沿导轨平面向上.2.电源是通过非静电力做功把其它形式的能转化为电势能的装置,在不同的电源中,非静电力做功的本领也不相同,物理学中用电动势E 来表明电源的这种特性。

高考物理一轮复习知识点总结

高考物理一轮复习知识点总结

精品基础教育教学资料,仅供参考,需要可下载使用!磁场一、磁场:1、基本性质:对放入其中的磁极、电流有力的作用。

磁极间、电流间的作用通过磁场产生,磁场是客观存在的一种特殊形态的物质。

2、方向:放入其中小磁针N极的受力方向(静止时N极的指向)放入其中小磁针S极的受力的反方向(静止时S极的反指向)3、磁感线:形象描述磁场强弱和方向的假想的曲线。

磁体外部:N极到S极;磁体内部:S极到N极。

磁感线上某点的切线方向为该点的磁场方向;磁感线的疏密表示磁场的强弱。

4、安培定则:(右手四指为环绕方向,大拇指为单独走向)导体的种类磁场形状判断方法通电直导线以导线为中心的各簇互相平行的同心圆。

右手握住导线,大拇指指向与电流方向一致,四指绕向为磁感线的方向。

矩形、环形电流各簇围绕环形导线的闭合曲线,中心轴上,磁感垂直环形平面。

右手绕向与环形电流方向一致,大拇指方向为环形电流内部的磁场方向。

通电螺线管外部类似于条形磁体的磁场,内部为匀强磁场。

右手握住螺线管,四指绕向与电流绕向一致,大拇指指向为磁场的N极。

二、安培力:1、定义:磁场对电流的作用力。

2、计算公式:F=ILBsinθ=I⊥LB 式中:θ是I与B的夹角。

电流与磁场平行时,电流在磁场中不受安培力;电流与磁场垂直时,电流在磁场中受安培力最大:F=ILB 0≤F ≤ILB3、安培力的方向:左手定则——左手掌放入磁场中,磁感线穿过掌心,四指指向电流方向,大拇指指向为通电导线所受安培力的方向。

三、磁感应强度B:1、定义:放入磁场中的电流元与磁场垂直时,所受安培力F跟电流元IL的比值。

2、公式: 磁感应强度B是磁场的一种特性,与F、I、L等无关。

注:匀强磁场中,B与I垂直时,L为导线的长度; 非匀强磁场中,B与I垂直时,L为短导线长度。

3、国际单位:特斯拉(T)。

4、磁感应强度B是矢量,方向即磁场方向。

磁感线方向为B方向,疏密表示B的强弱。

5、匀强磁场:磁感应强度B的大小和方向处处相同的磁场。

高考物理试题汇编:电磁感应

高考物理试题汇编:电磁感应

高考物理试题汇编:电磁感应1、〔扬州市2008届第二次调研〕电阻R、电容C与一线圈连成闭合电路,条形磁铁静止于线圈的正上方,N极朝下,如下列图。

现使磁铁自由下落,在N极接近线圈上端的过程中,流过R的电流方向和电容器极板的带电情况是〔〕DA、从a到b,上极板带正电;B、从a到b,下极板带正电;C、从b到a,上极板带正电;D、从b到a,下极板带正电;2、〔扬州市2008届第四次调研〕如图甲所示,光滑导轨水平放置在与水平方向夹60角斜向下的匀强磁场中,匀强磁场的磁感应强度B随时间的变化规律如图乙所示〔规定斜向下为正方向〕,导体棒ab垂直导轨放置,除电阻R的阻值外,其余电阻不计,导体棒ab在水平外力作用下始终处于静止状态。

规定a→b的方向为电流的正方向,水平向右的方向为外力的正方向,如此在0~t时间内,能正确反映流过导体棒ab的电流i 和导体棒ab所受水平外力F随时间t变化的图象是( )D3、〔徐州市2008届第3次质检〕如图甲所示,正三角形导线框abc放在匀强磁场中静止不动,磁场方向与线框平面垂直,磁感应强度B随时间t的变化关系如图乙所示,t=0时刻,磁感应强abc甲Bt/s1357OB0-2B0-B0乙度的方向垂直纸面向里.图丙中能表示线框的ab边受到的磁场力F随时间t的变化关系的是(力的方向规定以向左为正方向)A4、〔某某四县市2008届高三联考〕如下列图,金属棒ab置于水平放置的光滑框架cdef上,棒与框架接触良好,匀强磁场垂直于ab棒斜向下.从某时刻开始磁感应强度均匀减小,同时施加一个水平外力F使金属棒ab保持静止,如此F CA.方向向右,且为恒力B.方向向右,且为变力C.方向向左,且为变力D.方向向左,且为恒力5、〔某某市2008届第三次调研〕如下列图,一个金属薄圆盘水平放置在竖直向上的匀强磁场中,如下做法中能使圆盘中产生感应电流的是BDA.圆盘绕过圆心的竖直轴匀速转动B.圆盘以某一水平直径为轴匀速转动C.圆盘在磁场中向右匀速平移D.匀强磁场均匀增加Bcfed ba6、〔苏北四市高三第三次调研〕在磁感应强度为B 的匀强磁场中,有一与磁场方向垂直长度为L 金属杆aO ,ab=bc=cO=L/3,a 、c 与磁场中以O 为圆心的同心圆(都为局部圆弧)金属轨道始终接触良好.一电容为C 的电容器接在轨道上,如下列图,当金属杆在与磁场垂直的平面内以O 为轴,以角速度ω顺时针匀速转动时:〔 〕AC A.U ac =2U b0 B.U ac =2U abC.电容器带电量Q 249BL C ω=D.假设在eO 间连接一个电压表,如此电压表示数为零7、〔镇江市2008届期初教学情况调查〕在一起的线圈 A 与 B 如图甲所示,当给线圈 A 通以图乙所示的电流〔规定由“进入 b 流出为电流正方向〕时,如此线圈 B 两端的电压变化应为如下图中的8、〔某某市2008届根底调研测〕2006年7月1日,世界某某拔最高、线路最长的青藏铁路全线通车,青藏铁路安装的一种电磁装置可以向控制中心传输信号,以确定火车的位置和运动状态,其原理是将能产生匀强磁场的磁铁安装在火车首节车厢下面,如图甲所示〔俯视图〕,当它经过安放在两铁轨间的线圈时,线圈便产生一个电信号传输给控制中心.线圈边长分别为l 1和l 2,匝数为n ,线圈和传输线的电阻忽略不计.假设火车通过线圈时,控制中心接收到线圈两端的电压信号u 与时间t 的关系如图乙所示〔ab 、cd 均为直线〕,t 1、t 2、t 3、t 4是运动过程的四个时刻,如此火车 ACDA××××××××××××××××××××××××××××××××××××××××××××××××××o ab c d eMNBCRbA .在t 1~t 2时间内做匀加速直线运动B .在t 3~t 4时间内做匀减速直线运动C .在t 1~t 2时间内加速度大小为21121()u u nBl t t --D .在t 3~ t 4时间内平均速度的大小为3412u u nBl +9、〔南京市2008届4月高三调研考试〕如下列图的电路中,电源电动势为E ,内阻r 不能忽略.R 1和R 2是两个定值电阻,L 是一个自感系数较大的线圈.开关S 原来是断开的.从开关S 闭合到电路中电流达到稳定的时间内,通过R 1的电流I 1和通过R 2的电流I 2的变化情况是AC A .I 1开始较大而后逐渐变小 B .I 1开始很小而后逐渐变大 C .I 2开始很小而后逐渐变大 D .I 2开始较大而后逐渐变小10、〔如皋市2008届抽样检测〕两金属棒和三根电阻丝如图连接,虚线框内存在均匀变化的匀强磁场,三根电阻丝的电阻大小之比R1:R2:R3=1:2:3,金属棒电阻不计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图-1 图-2图-32008高考物理总复习资料(十五)电磁感应复习要点1、掌握磁通量概念及其意义,能够正确判断磁通量的变化情况。

2、了解电磁感应现象,掌握发生电磁感应现象,产生感应电动势、产生感应电流的条件。

3、掌握右手定则和楞次定律,并能灵活运用于感应电流方向的判断。

4、掌握法拉第电磁感应定律,明确tE ∆φ∆=和E=LvB 两种表述形式的适用条件和适用范围,并能运用法拉第电磁感应定律熟练地计算电磁感应现象中所产生的感应电动势。

5、对导体棒旋转切割磁感线时所产生的感应电动势能够灵活地运用法拉第电磁感应定律做出正确的计算。

6、了解自感现象,掌握自感现象中的基本特征。

二、难点剖析1、关于电磁感应的几个基本问题(1)电磁感应现象所谓电磁感应现象,实际上是指由于磁的某种变化而引起电的产生的现象,磁场变化,将在周围空间激起电场;如周围空间中有导体存在,一般导体中将激起感应电动势;如导体构成闭合回路,则回路程还将产生感应电流。

(2)发生电磁感应现象的两种基本方式及其理论解释①导体在磁场中做切割磁感线的相对运动而发生电磁感应现象:当导体在磁场中做切割磁感线的相对运动时,就将在导体中激志感应电动势。

这种发生电磁感应现象的方式可以用运动电荷在磁场中受到洛仑兹力的作用来解释。

如图-1所示,当导体棒ab 在磁场B 中做切割磁感线运动时,棒中的自由电荷将随棒一起在磁场中运动而受到洛仑兹力f B 的作用于是受到f B 作用的自由电荷将向棒端迁移而使棒两端分别积累起正、负电荷,形成所谓感应电动势。

②磁场变化使穿过磁场中闭合回路的磁通量改变而发生电磁感应现象:当磁场的强弱改变而使穿过磁场中的闭合回路程的磁通量发生变化时,就将在闭合回路程里激起感应电流。

这种发生电磁感应现象的方式可以用麦克斯韦的电磁场理论来解释。

如图-2所示,在滑动变阴器滑动头P向右滑动的过程中,用绝缘线悬挂着的线圈a中的自由电荷沿特定方向移动,形成所谓感应电流。

(3)发生电磁感应现象,产生感应电流的条件:发生电磁感应现象,产生感应电流的条件通常有如下两种表述。

①当穿过线圈的磁通量发生变化时就将发生电磁感应现象,线圈里产生感应电动势。

如线圈闭合,则线圈子里就将产生感应电流。

②当导体在磁场中做切割磁感线的运动时就将发生电磁感应现象,导体里产生感应电动势如做切割感线运动的导体是某闭合电路的一部分,则电路里就将产生感应电流。

应指出的是:闭合电路的一部分做切割磁感线运动时,穿过闭合电路的磁通量也将发生变化。

所以上述两个条件从根本上还应归结磁通量的变化。

像图-3所示的矩形线圈abcd在匀强磁场B中以速度v平动时,尽管线圈的bc和ad边都在做切割磁感线运动,但由于穿过线圈的磁通量没有变,所以线圈回路中没有感应电流。

2、几种定则、定律的适用范围3、关于楞次定律(1)楞次定律的内容感应电流的磁场总阻碍引起感应电流的原磁场的磁通量的变化。

(2)对楞次定律的正确理解第一,楞次定律的核心内容是“阻碍”二字,这恰恰表明楞次定律实质上就是能的转化和守恒定律在电磁感应现象中的特殊表达形式;第二,这里的“阻碍”,并非是阻碍引起感应电流的原磁场,而是阻碍原磁场磁通量的变化;第三,正因阻碍是的是“变化”,所以,当原磁场的磁通量增加(或减少)而引起感应电流时,则感应电流的磁场必与原磁场反向(或同向)而阻碍其磁通量的增加(或减少),概括起来就是,增加则反向,减少则同向。

(3)楞次定律的应用步骤①明确引起感应电流的原磁场在被感应的回路上的方向;②搞清原磁场穿过被感应的回路中的磁通量增减情况;③根据楞次定律确定感应电流的磁场的方向;④运用安培定则判断出感生电流的方向。

(4)楞次定律的灵活运用在一些由于某种相对运动而引起感应电流的电磁感应现象中,如运用楞次定律从“感应电流的磁场总是阻碍引起感应电流的原磁场的磁通量变化”出发来判断感应电流方向,往往会比较困难,对于这样的顺题,在运用楞次定律时,一般可以灵活处理,考虑到原磁场的磁通量变化又是由相对运动而引起的,于是可以从“感应电流的磁场阻碍相对运动”出发来判断。

4、对公式E = lvB 的研究(1)公式的推导如图-4所示,取长度为1的导体棒ab ,强度垂直于磁场方向放在磁感强度为B 的匀强磁场中,当棒以速度v 做垂直切割磁感线运动时,棒中自由电子就将受到洛仑兹力f b =evB 的作用,这将使的a 、b 两端分别积累起正、负电荷而在棒中形成电场,于是自由电子除受f b 作用外又将受到电场力f c =eE ,开始a 、b 两端积累的电荷少,电场弱,f c 小,棒两端积累的电荷继续增加,直至电场力与洛仑兹力平衡:f c =f B 。

由于f B 移动电荷,使得做切割磁感线运动的ab 棒形成一个感应电源,在其外电路开路的状态下,电动势(感应电动势)与路端电压相等,即E =U ab =El ,于是由 evB f le l U ef B ab e ====ε, 便可得 E = lvB(2)与公式E =t∆φ∆的比较。

当把法拉第电磁感应定律E =t∆φ∆中的∆Φ理解为切割导体在t ∆时间内“扫过的磁通图-4量”时,就可用E =t∆φ∆直接推导出。

因此公式E = lvB 实际上可以理解为法拉第电磁感应定律在导体切割磁感线而发生电磁感应现象这种特殊情况下的推论。

一般地说,公式E = lvB 只能用于计算导体切割磁感线时产生的感应电动势。

公式E =t ∆φ∆则可以用来计算所有电磁感应现象中产生的感应电动势;但公式E =t∆φ∆只能用于计算在t ∆时间内的平均感应电动势,而公式E = lvB 则既可以用来计算某段时间内的平均感应电动势,又可以用来计算某个时刻的瞬时感应电动势,只要把公式中的v 分别以某段时间内的平均速度或某个时刻的瞬时速度代入即可。

(3)适用条件除了磁场必须是匀强的外,磁感强度B 、切割速度v 、导体棒长度l 三者中任意两个都应垂直的,即B v ,v l ,l B ⊥⊥⊥这三个关系必须是同时成立的。

如有不垂直的情况,应通过正交分解取其垂直分量代入。

(4)公式中l 的意义公式E = lvB 中l 的意义应理解为导体的有效切割长度。

所谓导体的有效切割长度,指的是切割导体两端点的连线在同时垂直于v 和B 的方向上的投影的长度。

(5)公式中v 的意义对于公式E = lvB 中的v ,首先应理解为导体与磁场间的相对速度,所以即使导体不动因则磁场运动,也能使导体切割磁感线而产生感应电动势;其次,还应注意到v 应该是垂直切割速度;另外,还应注意到在“旋转切割”这类问题中,导体棒上各部分的切割速度不同,此时的v 则应理解为导体棒上各部分切割速度的平均值,在数值上一般等于旋转导体棒中点的切割速度。

5、自感现象中的一个重要特征自感现象作为一种特殊的电磁感应现象,是由于流过导体自身的电流的变化而引起的,由楞次定律知,产生的感应电动热(自感电动势)又必将阻碍着电流的这一变化,正是由于主种阻碍,使得自感现象具备一个重要的特征:自感现象中引起自感电动势产生的电流变化,一般只能是逐渐变化而不可能发生突变。

三、典型题例例1 如图5所示,两个同心圆形线圈a 、b 在同一平面内,其半径大小关系为r a <r b ,条形磁铁穿过圆心并与圆面垂直,则穿过两线圈的磁通量b a ,φφ间的大小关系为( )A 、b a φφ>B 、b a φφ=C 、b a φφ<D 、条件不足,无法判断分析:常会有同学对此题作出这样的错误分析: BS =φ ,而S a <S b ,∴b a φφ<,应选C 。

之所以犯这样的错误,就是因为对磁通量的意义、磁通量的正负、磁感线的特征及磁感线的分布特征等,缺乏一个全面正确的认识。

解答:画出俯视图如较20-6所示,整个平面分为1、2、3、4四个区域,穿过各区域的磁通量分别为φ1、φ2、φ3、φ4,由于磁感线是封闭的曲线,所以除φ1是穿出纸面外的,φ2、φ3、φ4都是穿入纸面的,且有φ1=φ2+φ3+φ4,考虑到磁通量的正负,于是可得φa =φ1—φ2>φb=φ1—φ2—φ3。

所以应选A 。

例2 如图-7所示,边长为l 、总电阻为R 的正方形线圈abcd 处在磁感强度为B 的匀强磁场中,线圈平面与磁场方向垂直,当线圈以速度v 在垂直于磁场方向的平面内估匀速直线运动时,线圈中感应电流的强度I=__________,线圈回路中总的感应电动势 E =________,a 、c 两点间电热差U=____________。

分析:只要导体做切割磁感线的相对运动,导体中就将形成感应电动势,该导体相当于一个感应电源;只要闭合回路的磁通量不变,无论回路中有几部分导体图-5 图-6图-7切割磁感线,无论回路程中有几个感应电源,回路程中的感应电流都为零。

解答:尽管线圈的ac 和bd 两边都做切割磁感线运动,但由于穿过线圈的磁通量不变,因此线圈中无感应电流,I=0;尽管线圈的ac 和bd 两边都切割磁感线运动,形成感应电动势均为E ac =E bd =lvB 的感应电源,但由于对整个线圈回路来说,E ac 和E bd 是反向串联的,因此线圈回路中的总的感应电动势为E = E ac –E bd =0。

由于线圈运动时,ac 和bd 两边相当于外电路开路的两个并联的感应电源,因此a 、c 两点间的电势差就等于两个并联感应电源的等次电动势,为U= E 并=lvB 。

例3:在电磁感应现象中,下列说法中正确的是( )A 、感应电流的磁场总是跟原来的磁场方向相反B 、闭合线框放在变化的磁场中一定能产生感应电流C 、闭合线杠放在匀强磁场中做切割磁感线运动,一定能产生感应电流D 、感应电流的磁场总是阻碍原来磁场磁通量的变化分析:此例的分析必须熟悉发生电磁感应现象产生感应电流的条件,熟悉楞次定律。

解答:根据楞次定律,感应电流的磁场总是阻碍引起感应电流的磙量的变化。

原来的磁场若要减弱,则感应电流的磁场方向与原来磁场方向相同;若原来的磁场在增强,则两磁反向。

产生感应电流的条件是闭合回路中磁通量变化,虽然磁场的强弱在变化,但闭合线框平行磁场放入,磁通量不变( =0),不能产生感应电流,闭合线框在匀强磁场中平动时,线框中的磁通量不变,不能产生感应电流。

此例应选D 。

例4 如图-8所示,接有理想电压表的三角形导线框abc ,在匀强磁场中向右运动,问:框中有无感应电流?a 、b 两点间有无电势差?电压表有无读数(示数不为零称有读数)A 、无、无、无B 、无、有、有C 、无、有、无D 、有、有、有分析:应注意到产生感应电动势及感应电流的条件,同时还应了解电压表的工作原理。

解答:由于穿过三角形导线框的磁通量不变,所以框中没有感应电流产生;由于ab 边和bc 边均做切割磁感线的运动,所以均将产生b 端为正极的感应电动势,a 、b 两点间有电势差;由于没有电流流过电压表,所以其表头指针将不发生偏转,即电压表无读数(示数为零)。

相关文档
最新文档