中考圆的常见题型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考圆的常见题型
1、如图,EB 为半圆O 的直径,点A 在EB 的延长线上,AD 切半圆O 于点D ,BC ⊥AD 于点C ,AB =2,半圆O 的半径为2,则BC 的长为( B ) A .2 B .1 C .1.5 D .0.5
2、如图(2),在R t ABC △中,9068C AC BC O ∠===°,,,⊙为A B C △的内切圆,点D 是斜边A B 的中点,则tan O D A ∠=( D ) A
.2
B
.
3
C
D .2
3、如图,两同心圆的圆心为O ,大圆的弦AB 切小圆于P ,两圆的半径分别为6,3,则图中阴影部分的面积是(C )
A
.π
B
.π
C
.3π
D
.2π
4、如图,点A B C ,,在O 上,50A ∠=°
, 则B O C ∠的度数为( ) A .130° B .50°
C .65°
D .100°
5、一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是( ) A .0.4米
B .0.5米
C .0.8米
D .1米
6、如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到点C ,使DC =BD ,连接AC ,过点D 作DE ⊥AC ,垂足为E . (1)求证:AB =AC ;
(2)若⊙O 的半径为4,∠BAC =60º,求DE 的长. (1)证明:连接AD ∵AB 是⊙O 的直径 ∴∠ADB=90°
又∵BD=CD ∴AB=AC 。 (2)解:∵∠BAC=60°,由(1)知AB=AC ∴△ABC 是等边三角形
A
图(2)
(第4题图)
A B
O
C
在Rt △BAD 中,∠BAD=30°,AB=8 ∴BD=4,即DC=4 又∵DE ⊥AC ,
∴DE=DC×sinC=4×sin60°
=42
⨯
=
7、如图,P A 为O ⊙的切线,A 为切点.直线P O 与O ⊙交于B C 、两点,30P ∠=°,连接A O A B A C 、、.求证:AC B APO △≌△.
证明:P A 为O 的切线,90PAO ∴∠=°. ················································································ 1分 又30P ∠= °,60AO P ∴∠=°, ········································································································· 2分
1
302
C A O P ∴∠=
∠=°,··························································································································· 3分
C P ∴∠=∠, ·················································································································································· 4分
A C A P ∴=. ··················································································································································· 5分 又
B
C 为O 直径,90C AB PAO ∴∠=∠=°,··············································································· 6分 AC B APO ∴△≌△(ASA ). ·················································································································· 7分
(注:其它方法按步骤得分.)
8、如图,AB 是半圆O 的直径,C 为半圆上一点,N 是线段 BC 上一点(不与B ﹑C 重合),过N 作AB 的垂线交AB 于M , 交AC 的延长线于E ,过C 点作半圆O 的切线交EM 于F. ⑴求证:△ACO ∽△NCF ; ⑵若NC ∶CF =3∶2,求sinB 的值.
(1)证明:∵AB 为⊙O 直径 ∴∠ACB=90° ∴EM ⊥AB
∴∠A=∠CNF=∠MNB=90°-∠B ……………………………………(1分) 又∴CF 为⊙O 切线 ∴∠OCF=90° ∴∠ACO=∠NCF=90°-∠OCB ………………………………………(2分) ∴△ACO ∽△NCF ……………………………………………………(4分)
(2)由△ACO ∽△NCF 得:23=
=CF CN CO AC …………………………………(5分)
在Rt △ABC 中,sinB=4
322==
=
CO
AC AO
AC
AB
AC ………………………(7分)
A
(第7题图) O
B
P
C
E
N
O C
B
A
F (第8题图)