【真卷】2016年四川省凉山州中考数学试卷含参考答案

合集下载

四川省凉山州中考试题

四川省凉山州中考试题

2016年四川省凉山州中考数学试卷一、选择题:(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,请把正确选项的字母填涂在答题卡上相应的位置.1.的倒数的绝对值是()A.﹣2016 B.C.2016 D.2.如图,是由若干个大小相同的正方体搭成的几何体的三视图,该几何体所用的正方体的个数是()A.6 B.4 C.3 D.23.下列计算正确的是()A.2a+3b=5ab B.(﹣2a2b)3=﹣6a6b3C.D.(a+b)2=a2+b24.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或95.在线段、平行四边形、矩形、等腰三角形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是()A.2个B.3个C.4个D.5个6.已知x1、x2是一元二次方程3x2=6﹣2x的两根,则x1﹣x1x2+x2的值是()A. B.C. D.7.关于x的方程无解,则m的值为()A.﹣5 B.﹣8 C.﹣2 D.58.如图,AB∥CD,直线EF分别交AB、CD于E、F两点,∠BEF的平分线交CD于点G,若∠EFG=52°,则∠EGF等于()A.26°B.64°C.52°D.128°9.二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数与一次函数y=bx﹣c在同一坐标系内的图象大致是()A.B.C.D.10.教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在形同条件下各打了5发子弹,命中环数如下:甲:9、8、7、7、9;乙:10、8、9、7、6.应该选()参加.A.甲B.乙C.甲、乙都可以 D.无法确定11.已知,一元二次方程x2﹣8x+15=0的两根分别是⊙O1和⊙O2的半径,当⊙O1和⊙O2相切时,O1O2的长度是()A.2 B.8 C.2或8 D.2<O2O2<812.观察图中正方形四个顶点所标的数字规律,可知,数2016应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角二、填空题:(共5个小题,每小题4分,共20分)13.分解因式:a3b﹣9ab=.14.今年西昌市的洋葱喜获丰收,据估计洋葱的产量约是325 000 000千克,这个数据用科学记数法表示为克.15.若实数x满足x2﹣x﹣1=0,则=.16.将抛物线y=﹣x2先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为.17.如图,△ABC的面积为12cm2,点D、E分别是AB、AC边的中点,则梯形DBCE的面积为cm2.三、解答题:(共2小题,每小题6分,共12分)18.计算:.19.先化简,再求值:,其中实数x、y满足.四、解答题:(共3小题,每小题8分,共24分)20.如图,▱ABCD的对角线AC、BD交于点O,EF过点O且与BC、AD分别交于点E、F.试猜想线段AE、CF的关系,并说明理由.21.为了切实关注、关爱贫困家庭学生,某校对全校各班贫困家庭学生的人数情况进行了统计,以便国家精准扶贫政策有效落实.统计发现班上贫困家庭学生人数分别有2名、3名、4名、5名、6名,共五种情况.并将其制成了如下两幅不完整的统计图:(1)求该校一共有多少个班?并将条形图补充完整;(2)某爱心人士决定从2名贫困家庭学生的这些班级中,任选两名进行帮扶,请用列表法或树状图的方法,求出被选中的两名学生来自同一班级的概率.22.如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.(1)画出△A1B1C,直接写出点A1、B1的坐标;(2)求在旋转过程中,△ABC所扫过的面积.五、解答题:(共2小题,每小题8分,共16分)23.为了更好的保护美丽图画的邛海湿地,西昌市污水处理厂决定先购买A、B两型污水处理设备共20台,对邛海湿地周边污水进行处理,每台A型污水处理设备12万元,每台B 型污水处理设备10万元.已知1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨.(1)求A、B两型污水处理设备每周分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?24.阅读下列材料并回答问题:材料1:如果一个三角形的三边长分别为a,b,c,记,那么三角形的面积为.①古希腊几何学家海伦(Heron,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.我国南宋数学家秦九韶(约1202﹣﹣约1261),曾提出利用三角形的三边求面积的秦九韶公式:.②下面我们对公式②进行变形:=====.这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦﹣﹣秦九韶公式.问题:如图,在△ABC中,AB=13,BC=12,AC=7,⊙O内切于△ABC,切点分别是D、E、F.(1)求△ABC的面积;(2)求⊙O的半径.六、B卷填空题:(共2小题,每小题5分,共10分)25.已知关于x的不等式组仅有三个整数解,则a的取值范围是.26.如图,四边形ABCD中,∠BAD=∠DC=90°,AB=AD=,CD=,点P是四边形ABCD四条边上的一个动点,若P到BD的距离为,则满足条件的点P有个.七、B卷解答题:(共2小题,27题8分,28题12分,共20分)27.如图,已知四边形ABCD内接于⊙O,A是的中点,AE⊥AC于A,与⊙O及CB 的延长线交于点F、E,且.(1)求证:△ADC∽△EBA;(2)如果AB=8,CD=5,求tan∠CAD的值.28.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0)、B(3,0)、C(0,﹣3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P的坐标;(3)点M也是直线l上的动点,且△MAC为等腰三角形,请直接写出所有符合条件的点M的坐标.2016年四川省凉山州中考数学试卷参考答案与试题解析一、选择题:(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,请把正确选项的字母填涂在答题卡上相应的位置.1.的倒数的绝对值是()A.﹣2016 B.C.2016 D.【考点】倒数;绝对值.【分析】根据倒数的定义求出的倒数,再根据绝对值的定义即可求解.【解答】解:的倒数是﹣2016,﹣2016的绝对值是2016.故选:C.2.如图,是由若干个大小相同的正方体搭成的几何体的三视图,该几何体所用的正方体的个数是()A.6 B.4 C.3 D.2【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:综合三视图可知,这个几何体的底层有3个小正方体,第2层有1个小正方体,第3层有1个小正方体,第4层有1个小正方体,因此搭成这个几何体所用小正方体的个数是3+1+1+1=6个.故选:A.3.下列计算正确的是()A.2a+3b=5ab B.(﹣2a2b)3=﹣6a6b3C.D.(a+b)2=a2+b2【考点】二次根式的加减法;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】直接利用二次根式加减运算法则以及完全平方公式和积的乘方运算法则分别化简求出答案.【解答】解:A、2a+3b无法计算,故此选项错误;B、(﹣2a2b)3=﹣8a6b3,故此选项错误;C、+=2+=3,正确;D、(a+b)2=a2+b2+2ab,故此选项错误;故选:C.4.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或9【考点】多边形内角与外角.【分析】首先求得内角和为1080°的多边形的边数,即可确定原多边形的边数.【解答】解:设内角和为1080°的多边形的边数是n,则(n﹣2)•180°=1080°,解得:n=8.则原多边形的边数为7或8或9.故选:D.5.在线段、平行四边形、矩形、等腰三角形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是()A.2个B.3个C.4个D.5个【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【解答】解:线段、矩形、圆既是轴对称图形又是中心对称图形,平行四边形不是轴对称图形是中心对称图形,等腰三角形是轴对称图形不是中心对称图形,故选:B.6.已知x1、x2是一元二次方程3x2=6﹣2x的两根,则x1﹣x1x2+x2的值是()A. B.C. D.【考点】根与系数的关系.【分析】由x1、x2是一元二次方程3x2=6﹣2x的两根,结合根与系数的关系可得出x1+x2=﹣,x1•x2=﹣2,将其代入x1﹣x1x2+x2中即可算出结果.【解答】解:∵x1、x2是一元二次方程3x2=6﹣2x的两根,∴x1+x2=﹣=﹣,x1•x2==﹣2,∴x1﹣x1x2+x2=﹣﹣(﹣2)=.故选D.7.关于x的方程无解,则m的值为()A.﹣5 B.﹣8 C.﹣2 D.5【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,由分式方程无解得到x+1=0,求出x的值,代入整式方程求出m的值即可.【解答】解:去分母得:3x﹣2=2x+2+m,由分式方程无解,得到x+1=0,即x=﹣1,代入整式方程得:﹣5=﹣2+2+m,解得:m=﹣5,故选A8.如图,AB∥CD,直线EF分别交AB、CD于E、F两点,∠BEF的平分线交CD于点G,若∠EFG=52°,则∠EGF等于()A.26°B.64°C.52°D.128°【考点】平行线的性质.【分析】根据平行线及角平分线的性质解答.【解答】解:∵AB∥CD,∴∠BEF+∠EFG=180°,∴∠BEF=180°﹣52°=128°;∵EG平分∠BEF,∴∠BEG=64°;∴∠EGF=∠BEG=64°(内错角相等).故选:B.9.二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数与一次函数y=bx﹣c在同一坐标系内的图象大致是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象;二次函数的图象.【分析】根据二次函数的图象找出a、b、c的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.【解答】解:观察二次函数图象可知:开口向上,a>0;对称轴大于0,﹣>0,b<0;二次函数图象与y轴交点在y轴的正半轴,c>0.∵反比例函数中k=﹣a<0,∴反比例函数图象在第二、四象限内;∵一次函数y=bx﹣c中,b<0,﹣c<0,∴一次函数图象经过第二、三、四象限.故选C.10.教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在形同条件下各打了5发子弹,命中环数如下:甲:9、8、7、7、9;乙:10、8、9、7、6.应该选()参加.A.甲B.乙C.甲、乙都可以 D.无法确定【考点】方差.【分析】根据题意分别求出甲、乙的平均数和方差,根据方差越小越稳定,可以解答本题.【解答】解:由题意可得,甲的平均数为:,方差为:=0.8,乙的平均数为:,方差为:=2,∵0.8<2,∴选择甲射击运动员,故选A.11.已知,一元二次方程x2﹣8x+15=0的两根分别是⊙O1和⊙O2的半径,当⊙O1和⊙O2相切时,O1O2的长度是()A.2 B.8 C.2或8 D.2<O2O2<8【考点】圆与圆的位置关系;根与系数的关系.【分析】先解方程求出⊙O1、⊙O2的半径,再分两圆外切和两圆内切两种情况讨论求解.【解答】解:∵⊙O1、⊙O2的半径分别是方程x2﹣8x+15=0的两根,解得⊙O1、⊙O2的半径分别是3和5.∴①当两圆外切时,圆心距O1O2=3+5=8;②当两圆内切时,圆心距O1O2=5﹣2=2.故选C.12.观察图中正方形四个顶点所标的数字规律,可知,数2016应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角【考点】规律型:点的坐标.【分析】根据图形中对应的数字和各个数字所在的位置,可以推出数2016在第多少个正方形和它所在的位置,本题得以解决.【解答】解:∵2016÷4=504,又∵由题目中给出的几个正方形观察可知,每个正方形对应四个数,而第一个最小的数是0,0在右下角,然后按逆时针由小变大,∴第504个正方形中最大的数是2015,∴数2016在第505个正方形的右下角,故选D.二、填空题:(共5个小题,每小题4分,共20分)13.分解因式:a3b﹣9ab=ab(a+3)(a﹣3).【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式ab,然后再利用平方差公式继续分解,即可求得答案.【解答】解:a3b﹣9ab=a(a2﹣9)=ab(a+3)(a﹣3).故答案为:ab(a+3)(a﹣3).14.今年西昌市的洋葱喜获丰收,据估计洋葱的产量约是325 000 000千克,这个数据用科学记数法表示为 3.25×1011克.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:325 000 000千克=325 000 000 000克=3.25×1011,故答案为:3.25×1011.15.若实数x满足x2﹣x﹣1=0,则=10.【考点】代数式求值.【分析】根据x2﹣x﹣1=0,可以求得的值,从而可以得到的值,本题得以解决.【解答】解:∵x2﹣x﹣1=0,∴,∴,∴,即,∴,故答案为:10.16.将抛物线y=﹣x2先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为y=﹣x2﹣6x﹣11.【考点】二次函数图象与几何变换.【分析】根据平移规律:上加下减,左加右减写出解析式即可.【解答】解:抛物线y=﹣x2先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为y=﹣(x﹣3)2﹣2即y=﹣x2+6x﹣11,故答案为y=﹣x2﹣6x﹣11.17.如图,△ABC的面积为12cm2,点D、E分别是AB、AC边的中点,则梯形DBCE的面积为9cm2.【考点】三角形中位线定理.【分析】根据三角形的中位线得出DE=BC,DE∥BC,推出△ADE∽△ABC,再求出△ABC和△ADE的面积比值求出,进而可求出梯形DBCE的面积.【解答】解:∵点D、E分别是AB、AC边的中点,∴DE是三角形的中位线,∴DE=BC,DE∥BC,∴△ADE∽△ABC,∴,∵△ABC的面积为12cm2,∴△ADE的面积为3cm2,∴梯形DBCE的面积=12﹣3=9cm2,故答案为:9.三、解答题:(共2小题,每小题6分,共12分)18.计算:.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】直接利用绝对值的性质以及特殊角的三角函数值和零指数幂的性质、二次根式的性质分别化简求出答案.【解答】解:=﹣1﹣3+2+1+1=1.19.先化简,再求值:,其中实数x、y满足.【考点】分式的化简求值;二次根式有意义的条件.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,根据负数没有平方根求出x与y的值,代入计算即可求出值.【解答】解:原式=•=,∵y=﹣+1,∴x﹣2≥0,2﹣x≥0,即x﹣2=0,解得:x=2,y=1,则原式=2.四、解答题:(共3小题,每小题8分,共24分)20.如图,▱ABCD的对角线AC、BD交于点O,EF过点O且与BC、AD分别交于点E、F.试猜想线段AE、CF的关系,并说明理由.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】先猜出AE与CF的关系,然后说明理由即可,由题意可以推出四边形AECF是平行四边形,从而可以推出AE与CF的关系.【解答】解:AE与CF的关系是平行且相等.理由:∵在,▱ABCD中,∴OA=OC,AF∥EC,∴∠OAF=∠OCE,在△OAF和△OCE中,,∴△OAF≌△OCE(ASA),∴AF=CE,又∵AF∥CE,∴四边形AECF是平行四边形,∴AE∥CF且AE=CF,即AE与CF的关系是平行且相等.21.为了切实关注、关爱贫困家庭学生,某校对全校各班贫困家庭学生的人数情况进行了统计,以便国家精准扶贫政策有效落实.统计发现班上贫困家庭学生人数分别有2名、3名、4名、5名、6名,共五种情况.并将其制成了如下两幅不完整的统计图:(1)求该校一共有多少个班?并将条形图补充完整;(2)某爱心人士决定从2名贫困家庭学生的这些班级中,任选两名进行帮扶,请用列表法或树状图的方法,求出被选中的两名学生来自同一班级的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)根据留守儿童有4名的班级有6个,占30%,可求得有留守儿童的班级总数,再求得留守儿童是2名的班数;(2)由(1)得只有2名留守儿童的班级有2个,共4名学生.设A1,A2来自一个班,B1,B2来自一个班,列表可得出来自一个班的共有4种情况,继而可得所选两名留守儿童来自同一个班级的概率.【解答】解:(1)该校的班级共有6÷30%=20(个),有2名贫困生的班级有20﹣5﹣6﹣5﹣2=2(个),补全条形图如图:(2)根据题意,将两个班级4名学生分别记作A1、A2、B1、B2,列表如下:A1 A2 B1 B2A1 A1,A2 A1,B1 A1,B2A2 A2,A1 A2,B1 A2,B2B1 B1,A1 B1,A2 B1,B2B2 B2,A1 B2,A2 B2,B1由上表可知,从这两个班级任选两名学生进行帮扶共有12种等可能结果,其中被选中的两名学生来自同一班级的有4种结果,∴被选中的两名学生来自同一班级的概率为=.22.如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.(1)画出△A1B1C,直接写出点A1、B1的坐标;(2)求在旋转过程中,△ABC所扫过的面积.【考点】作图-旋转变换;扇形面积的计算.【分析】(1)根据旋转中心方向及角度找出点A、B的对应点A1、B1的位置,然后顺次连接即可,根据A、B的坐标建立坐标系,据此写出点A1、B1的坐标;(2)利用勾股定理求出AC的长,根据△ABC扫过的面积等于扇形CAA1的面积与△ABC 的面积和,然后列式进行计算即可.【解答】解:(1)所求作△A1B1C如图所示:由A(4,3)、B(4,1)可建立如图所示坐标系,则点A1的坐标为(﹣1,4),点B1的坐标为(1,4);(2)∵AC===,∠ACA1=90°∴在旋转过程中,△ABC所扫过的面积为:S+S△ABC扇形CAA1=+×3×2=+3.五、解答题:(共2小题,每小题8分,共16分)23.为了更好的保护美丽图画的邛海湿地,西昌市污水处理厂决定先购买A、B两型污水处理设备共20台,对邛海湿地周边污水进行处理,每台A型污水处理设备12万元,每台B 型污水处理设备10万元.已知1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨.(1)求A、B两型污水处理设备每周分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)根据1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨,可以列出相应的二元一次方程组,从而解答本题;(2)根据题意可以列出相应的不等式组,从而可以得到购买方案,从而可以算出每种方案购买资金,从而可以解答本题.【解答】解:(1)设A型污水处理设备每周每台可以处理污水x吨,B型污水处理设备每周每台可以处理污水y吨,解得,即A型污水处理设备每周每台可以处理污水240吨,B型污水处理设备每周每台可以处理污水200吨;(2)设购买A型污水处理设备x台,则购买B型污水处理设备(20﹣x)台,则解得,12.5≤x≤15,第一种方案:当x=13时,20﹣x=7,花费的费用为:13×12+7×10=226万元;第二种方案:当x=14时,20﹣x=6,花费的费用为:14×12+6×10=228万元;第三种方案;当x=15时,20﹣x=5,花费的费用为:15×12+5×10=230万元;即购买A型污水处理设备13台,则购买B型污水处理设备7台时,所需购买资金最少,最少是226万元.24.阅读下列材料并回答问题:材料1:如果一个三角形的三边长分别为a,b,c,记,那么三角形的面积为.①古希腊几何学家海伦(Heron,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.我国南宋数学家秦九韶(约1202﹣﹣约1261),曾提出利用三角形的三边求面积的秦九韶公式:.②下面我们对公式②进行变形:=====.这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦﹣﹣秦九韶公式.问题:如图,在△ABC中,AB=13,BC=12,AC=7,⊙O内切于△ABC,切点分别是D、E、F.(1)求△ABC的面积;(2)求⊙O的半径.【考点】三角形的内切圆与内心.【分析】(1)由已知△ABC的三边a=3,b=12,c=7,可知这是一个一般的三角形,故选用海伦﹣秦九韶公式求解即可;(2)由三角形的面积=lr,计算即可.【解答】解:(1)∵AB=13,BC=12,AC=7,∴p==16,∴==24;(2)∵△ABC的周长l=AB+BC+AC=32,∴S=lr=24,∴r==.六、B卷填空题:(共2小题,每小题5分,共10分)25.已知关于x的不等式组仅有三个整数解,则a的取值范围是﹣1<a<﹣.【考点】一元一次不等式组的整数解.【分析】根据解方程组,可得方程组的解,根据方程组的解是整数,可得答案.【解答】解:由4x+2>3x+3a,解得x>3a﹣2,由2x>3(x﹣2)+5,解得3a﹣2<x<﹣1,由关于x的不等式组仅有三个整数解,得﹣5<3a﹣2<﹣4,解得﹣1<a<﹣,故答案为:﹣1<a<﹣.26.如图,四边形ABCD中,∠BAD=∠DC=90°,AB=AD=,CD=,点P是四边形ABCD四条边上的一个动点,若P到BD的距离为,则满足条件的点P有2个.【考点】点到直线的距离.【分析】首先作出AB、AD边上的点P(点A)到BD的垂线段AE,即点P到BD的最长距离,作出BC、CD的点P(点C)到BD的垂线段CF,即点P到BD的最长距离,由已知计算出AE、CF的长为,比较得出答案.【解答】解:过点A作AE⊥BD于E,过点C作CF⊥BD于F,∵∠BAD=∠ADC=90°,AB=AD=,CD=2,∴∠ABD=∠ADB=45°,∴∠CDF=90°﹣∠ADB=45°,∵sin∠ABD=,∴AE=AB•sin∠ABD=3•sin45°=3>,所以在AB和AD边上有符合P到BD的距离为的点2个,故答案为:2.七、B卷解答题:(共2小题,27题8分,28题12分,共20分)27.如图,已知四边形ABCD内接于⊙O,A是的中点,AE⊥AC于A,与⊙O及CB 的延长线交于点F、E,且.(1)求证:△ADC∽△EBA;(2)如果AB=8,CD=5,求tan∠CAD的值.【考点】相似三角形的判定与性质;圆周角定理.【分析】(1)欲证△ADC∽△EBA,只要证明两个角对应相等就可以.可以转化为证明且就可以;(2)A是的中点,的中点,则AC=AB=8,根据△CAD∽△ABE得到∠CAD=∠AEC,求得AE,根据正切三角函数的定义就可以求出结论.【解答】(1)证明:∵四边形ABCD内接于⊙O,∴∠CDA=∠ABE.∵,∴∠DCA=∠BAE.∴△ADC∽△EBA;(2)解:∵A是的中点,∴∴AB=AC=8,∵△ADC∽△EBA,∴∠CAD=∠AEC,,即,∴tan∠CAD=tan∠AEC===.28.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0)、B(3,0)、C(0,﹣3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P的坐标;(3)点M也是直线l上的动点,且△MAC为等腰三角形,请直接写出所有符合条件的点M的坐标.【考点】二次函数综合题.【分析】(1)直接将A、B、C三点坐标代入抛物线的解析式中求出待定系数即可;(2)由图知:A、B点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知,直线l与x轴的交点,即为符合条件的P点;(3)由于△MAC的腰和底没有明确,因此要分三种情况来讨论:①MA=AC、②MA=MC、③AC=MC;可先设出M点的坐标,然后用M点纵坐标表示△MAC的三边长,再按上面的三种情况列式求解.【解答】解:(1)将A(﹣1,0)、B(3,0)、C(0,﹣3)代入抛物线y=ax2+bx+c中,得:,解得:故抛物线的解析式:y=x2﹣2x﹣3.(2)当P点在x轴上,P,A,B三点在一条直线上时,点P到点A、点B的距离之和最短,此时x=﹣=1,故P(1,0);七年级下数学(3)如图所示:抛物线的对称轴为:x=﹣=1,设M(1,m),已知A(﹣1,0)、C(0,﹣3),则:MA2=m2+4,MC2=(3+m)2+1=m2+6m+10,AC2=10;①若MA=MC,则MA2=MC2,得:m2+4=m2+6m+10,解得:m=﹣1,②若MA=AC,则MA2=AC2,得:m2+4=10,得:m=±;③若MC=AC,则MC2=AC2,得:m2+6m+10=10,得:m1=0,m2=﹣6;当m=﹣6时,M、A、C三点共线,构不成三角形,不合题意,故舍去;综上可知,符合条件的M点,且坐标为M(1,)(1,﹣)(1,﹣1)(1,0).。

初中毕业升学考试(四川凉山卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(四川凉山卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(四川凉山卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】的倒数的绝对值是()A.﹣2016 B. C.2016 D.【答案】C.【解析】试题分析:的倒数是﹣2016,﹣2016的绝对值是2016.故选C.考点:倒数;绝对值.【题文】如图,是由若干个大小相同的正方体搭成的几何体的三视图,该几何体所用的正方体的个数是()A.6 B.4 C.3 D.2【答案】A.【解析】试题分析:综合三视图可知,这个几何体的底层有3个小正方体,第2层有1个小正方体,第3层有1个小正方体,第4层有1个小正方体,因此搭成这个几何体所用小正方体的个数是3+1+1+1=6个.故选A.考点:由三视图判断几何体.【题文】下列计算正确的是()A. B. C. D.评卷人得分【答案】C.【解析】试题分析:A.2a+3b无法计算,故此选项错误;B.,故此选项错误;C.,正确;D.,故此选项错误;故选C.考点:二次根式的加减法;合并同类项;幂的乘方与积的乘方;完全平方公式.【题文】一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或9【答案】D.【解析】试题分析:设内角和为1080°的多边形的边数是n,则(n﹣2)•180°=1080°,解得:n=8.则原多边形的边数为7或8或9.故选D.考点:多边形内角与外角.【题文】在线段、平行四边形、矩形、等腰三角形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是()A.2个 B.3个 C.4个 D.5个【答案】B.【解析】试题分析:线段、矩形、圆既是轴对称图形又是中心对称图形,平行四边形不是轴对称图形是中心对称图形,等腰三角形是轴对称图形不是中心对称图形,故选B.考点:中心对称图形;轴对称图形.【题文】已知已知、是一元二次方程的两根,则的值是()A. B. C. D.【答案】D.【解析】试题分析:∵、是一元二次方程的两根,∴,,∴=.故选D.考点:根与系数的关系.【题文】关于x的方程无解,则m的值为()A. -5B. -8C. -2D. 5【答案】A【解析】试题分析:去分母得:3x﹣2=2x+2+m,由分式方程无解,得到x+1=0,即x=﹣1,代入整式方程得:﹣5=﹣2+2+m,解得:m=﹣5,故选A.考点:分式方程的解.【题文】如图,AB∥CD,直线EF分别交AB、CD于E、F两点,∠BEF的平分线交CD于点G,若∠EFG=52°,则∠EGF等于()A.26° B.64° C.52° D.128°【答案】B.【解析】试题分析:∵AB∥CD,∴∠BEF+∠EFG=180°,∴∠BEF=180°﹣52°=128°;∵EG平分∠BEF,∴∠BEG=64°;∴∠EGF=∠BEG=64°(内错角相等).故选B.考点:平行线的性质.【题文】二次函数()的图象如图,则反比例函数与一次函数在同一坐标系内的图象大致是()A. B. C. D.【答案】C.【解析】试题分析:观察二次函数图象可知:开口向上,a>0;对称轴大于0,>0,b<0;二次函数图象与y轴交点在y轴的正半轴,c>0.∵反比例函数中k=﹣a<0,∴反比例函数图象在第二、四象限内;∵一次函数y=bx﹣c中,b<0,﹣c<0,∴一次函数图象经过第二、三、四象限.故选C.考点:反比例函数的图象;一次函数的图象;二次函数的图象.【题文】教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在形同条件下各打了5发子弹,命中环数如下:甲:9、8、7、7、9;乙:10、8、9、7、6.应该选()参加.A.甲 B.乙 C.甲、乙都可以 D.无法确定【答案】A.【解析】试题分析:由题意可得,甲的平均数为:(9+8+7+7+9)÷5=8;方差为:=0.8乙的平均数为:(10+8+9+7+6)÷5=8;方差为:=2;∵0.8<2,∴选择甲射击运动员,故选A.考点:方差.【题文】已知,一元二次方程的两根分别是⊙O1和⊙O2的半径,当⊙O1和⊙O2相切时,O1O2的长度是()A.2 B.8 C.2或8 D.2<O2O2<8【答案】C.【解析】试题分析:∵⊙O1、⊙O2的半径分别是方程x2﹣8x+15=0的两根,解得⊙O1、⊙O2的半径分别是3和5,∴①当两圆外切时,圆心距O1O2=3+5=8;②当两圆内切时,圆心距O1O2=5﹣2=2.故选C.考点:圆与圆的位置关系;根与系数的关系;分类讨论.【题文】观察图中正方形四个顶点所标的数字规律,可知,数2016应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角【答案】D.【解析】试题分析:∵2016÷4=504,又∵由题目中给出的几个正方形观察可知,每个正方形对应四个数,而第一个最小的数是0,0在右下角,然后按逆时针由小变大,∴第504个正方形中最大的数是2015,∴数2016在第505个正方形的右下角,故选D.考点:规律型:点的坐标;规律型.【题文】分解因式: =.【答案】ab(a+3)(a﹣3).【解析】试题分析:==ab(a+3)(a﹣3).故答案为:ab(a+3)(a﹣3).考点:提公因式法与公式法的综合运用.【题文】今年西昌市的洋葱喜获丰收,据估计洋葱的产量约是325 000 000千克,这个数据用科学记数法表示为克.【答案】3.25×1011.【解析】试题分析:325 000 000千克=325 000 000 000克=3.25×1011克,故答案为:3.25×1011.考点:科学记数法—表示较大的数.【题文】若实数x满足,则=.【答案】10.【解析】试题分析:∵,∴,∴,∴,即,∴=10,故答案为:10.考点:代数式求值;条件求值.【题文】将抛物线先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为.【答案】.【解析】试题分析:抛物线先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为即,故答案为:.考点:二次函数图象与几何变换.【题文】如图,△ABC的面积为12cm2,点D、E分别是AB、AC边的中点,则梯形DBCE的面积为 cm2.【答案】9.【解析】试题分析:∵点D、E分别是AB、AC边的中点,∴DE是三角形的中位线,∴DE=BC,DE∥BC,∴△ADE∽△ABC,∴,∵△ABC的面积为12cm2,∴△ADE的面积为3cm2,∴梯形DBCE的面积=12﹣3=9cm2,故答案为:9.考点:三角形中位线定理.【题文】计算:.【答案】1.【解析】试题分析:直接利用绝对值的性质以及特殊角的三角函数值和零指数幂的性质、二次根式的性质分别化简求出答案.试题解析:原式=1.考点:实数的运算;零指数幂;特殊角的三角函数值.【题文】先化简,再求值:,其中实数x、y满足.【答案】,2.【解析】试题分析:原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,根据负数没有平方根求出x与y的值,代入计算即可求出值.试题解析:原式==,∵,∴x﹣2≥0,2﹣x≥0,即x﹣2=0,解得:x=2,y=1,则原式=2.考点:分式的化简求值;二次根式有意义的条件.【题文】如图,▱ABCD的对角线AC、BD交于点O,EF过点O且与BC、AD分别交于点E、F.试猜想线段AE 、CF的关系,并说明理由.【答案】AE与CF的关系是平行且相等.【解析】试题分析:先猜出AE与CF的关系,然后说明理由即可,由题意可以推出四边形AECF是平行四边形,从而可以推出AE与CF的关系.试题解析:AE与CF的关系是平行且相等.理由:∵在,▱ABCD中,∴OA=OC,AF∥EC,∴∠OAF=∠OCE,在△OAF和△OCE中,∵∠OAF=∠OCE,OA=OCA ,∠EOC=∠F OA,∴△OAF≌△OCE(ASA),∴AF=CE,又∵AF∥CE,∴四边形AECF是平行四边形,∴AE∥CF 且AE=CF,即AE与CF的关系是平行且相等.考点:平行四边形的性质;全等三角形的判定与性质.【题文】为了切实关注、关爱贫困家庭学生,某校对全校各班贫困家庭学生的人数情况进行了统计,以便国家精准扶贫政策有效落实.统计发现班上贫困家庭学生人数分别有2名、3名、4名、5名、6名,共五种情况.并将其制成了如下两幅不完整的统计图:(1)求该校一共有多少个班?并将条形图补充完整;(2)某爱心人士决定从2名贫困家庭学生的这些班级中,任选两名进行帮扶,请用列表法或树状图的方法,求出被选中的两名学生来自同一班级的概率.【答案】(1)20;(2).【解析】试题分析:(1)根据留守儿童有4名的班级有6个,占30%,可求得有留守儿童的班级总数,再求得留守儿童是2名的班数;(2)由(1)得只有2名留守儿童的班级有2个,共4名学生.设A1,A2来自一个班,B1,B2来自一个班,列表可得出来自一个班的共有4种情况,继而可得所选两名留守儿童来自同一个班级的概率.试题解析:(1)该校的班级共有6÷30%=20(个),有2名贫困生的班级有20﹣5﹣6﹣5﹣2=2(个),补全条形图如图:(2)根据题意,将两个班级4名学生分别记作A1、A2、B1、B2,列表如下:由上表可知,从这两个班级任选两名学生进行帮扶共有12种等可能结果,其中被选中的两名学生来自同一班级的有4种结果,∴被选中的两名学生来自同一班级的概率为=.考点:列表法与树状图法;扇形统计图;条形统计图.【题文】如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.(1)画出△A1B1C,直接写出点A1、B1的坐标;(2)求在旋转过程中,△ABC所扫过的面积.【答案】(1)A1(﹣1,4),B1(1,4);(2).【解析】试题分析:(1)根据旋转中心方向及角度找出点A、B的对应点A1、B1的位置,然后顺次连接即可,根据A、B的坐标建立坐标系,据此写出点A1、B1的坐标;(2)利用勾股定理求出AC的长,根据△ABC扫过的面积等于扇形CAA1的面积与△ABC的面积和,然后列式进行计算即可.试题解析:(1)所求作△A1B1C如图所示:由A(4,3)、B(4,1)可建立如图所示坐标系,则点A1的坐标为(﹣1,4),点B1的坐标为(1,4);(2)∵AC===,∠ACA1=90°,∴在旋转过程中,△ABC所扫过的面积为:S扇形CAA1+S△ABC==.考点:作图-旋转变换;扇形面积的计算.【题文】为了更好的保护美丽图画的邛海湿地,西昌市污水处理厂决定先购买A、B两型污水处理设备共20台,对邛海湿地周边污水进行处理,每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨.(1)求A、B两型污水处理设备每周分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?【答案】(1)A型污水处理设备每周每台可以处理污水240吨,B型污水处理设备每周每台可以处理污水200吨;(2)共有三种方案,详见解析,购买A型污水处理设备13台,则购买B型污水处理设备7台时,所需购买资金最少,最少是226万元.【解析】试题分析:(1)根据1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨,可以列出相应的二元一次方程组,从而解答本题;(2)根据题意可以列出相应的不等式组,从而可以得到购买方案,从而可以算出每种方案购买资金,从而可以解答本题.试题解析:(1)设A型污水处理设备每周每台可以处理污水x吨,B型污水处理设备每周每台可以处理污水y吨,则:,解得:.即A型污水处理设备每周每台可以处理污水240吨,B型污水处理设备每周每台可以处理污水200吨;(2)设购买A型污水处理设备x台,则购买B型污水处理设备(20﹣x)台,则:,解得:12.5≤x≤15,故有三种方案:第一种方案:当x=13时,20﹣x=7,花费的费用为:13×12+7×10=226万元;第二种方案:当x=14时,20﹣x=6,花费的费用为:14×12+6×10=228万元;第三种方案;当x=15时,20﹣x=5,花费的费用为:15×12+5×10=230万元;即购买A型污水处理设备13台,则购买B型污水处理设备7台时,所需购买资金最少,最少是226万元.考点:一元一次不等式组的应用;二元一次方程组的应用;最值问题;方案型.【题文】阅读下列材料并回答问题:材料1:如果一个三角形的三边长分别为a,b,c,记,那么三角形的面积为.①古希腊几何学家海伦(Heron,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.我国南宋数学家秦九韶(约1202﹣﹣约1261),曾提出利用三角形的三边求面积的秦九韶公式:.②下面我们对公式②进行变形:.这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦﹣﹣秦九韶公式.问题:如图,在△ABC中,AB=13,BC=12,AC=7,⊙O内切于△ABC,切点分别是D、E、F.(1)求△ABC的面积;(2)求⊙O的半径.【答案】(1);(2).【解析】试题分析:(1)由已知△ABC的三边a=3,b=12,c=7,可知这是一个一般的三角形,故选用海伦﹣秦九韶公式求解即可;.(2)由三角形的面积=lr,计算即可.试题解析:(1)∵AB=13,BC=12,AC=7,∴p==16,∴==;(2)∵△ABC的周长l=AB+BC+AC=32,∴S=lr=,∴r==.考点:三角形的内切圆与内心;阅读型.【题文】已知关于x的不等式组仅有三个整数解,则a的取值范围是___________.【答案】【解析】试题分析:由4x+2>3x+3a,解得x>3a﹣2,由2x>3(x﹣2)+5,解得3a﹣2<x<1,由关于x的不等式组仅有三个整数解,得﹣3≤3a﹣2<﹣2解得,故答案为考点:一元一次不等式组的整数解【题文】如图,四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=,CD=,点P是四边形ABCD四条边上的一个动点,若P到BD的距离为,则满足条件的点P有个.【答案】2.【解析】试题分析:过点A作AE⊥BD于E,过点C作CF⊥BD于F,∵∠BAD=∠ADC=90°,AB=AD=,CD=,∴∠ABD=∠ADB=45°,∴∠CDF=90°﹣∠ADB=45°,∵sin∠ABD=,∴AE=AB•sin∠ABD=•sin45°=3>,CF=2<,所以在AB和AD边上有符合P到BD的距离为的点2个,故答案为:2.考点:点到直线的距离;分类讨论.【题文】如图,已知四边形ABCD内接于⊙O,A是的中点,AE⊥AC于A,与⊙O及CB的延长线交于点F、E,且.(1)求证:△ADC∽△EBA;(2)如果AB=8,CD=5,求tan∠CAD的值.【答案】(1)证明见解析;(2).【解析】试题分析:(1)欲证△ADC∽△EBA,只要证明两个角对应相等就可以.可以转化为证明且就可以;(2)A是的中点,的中点,则AC=AB=8,根据△CAD∽△ABE得到∠CAD=∠AEC,求得AE,根据正切三角函数的定义就可以求出结论.试题解析:(1)证明:∵四边形ABCD内接于⊙O,∴∠CDA=∠ABE.∵,∴∠DCA=∠BAE,∴△ADC∽△EBA;(2)解:∵A是的中点,∴,∴AB=AC=8,∵△ADC∽△EBA,∴∠CAD=∠AEC,,即,∴AE=,∴tan∠CAD=tan∠AEC===.考点:相似三角形的判定与性质;圆周角定理.【题文】如图,已知抛物线(a≠0)经过A(﹣1,0)、B(3,0)、C(0,﹣3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P的坐标;(3)点M也是直线l上的动点,且△MAC为等腰三角形,请直接写出所有符合条件的点M的坐标.【答案】(1);(2)P(1,0);(3).【解析】试题分析:(1)直接将A、B、C三点坐标代入抛物线的解析式中求出待定系数即可;(2)由图知:A.B点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知,直线l与x轴的交点,即为符合条件的P点;(3)由于△MAC的腰和底没有明确,因此要分三种情况来讨论:①MA=AC、②MA=MC、③AC=MC;可先设出M 点的坐标,然后用M点纵坐标表示△MAC的三边长,再按上面的三种情况列式求解.试题解析:(1)将A(﹣1,0)、B(3,0)、C(0,﹣3)代入抛物线中,得:,解得:,故抛物线的解析式:.(2)当P点在x轴上,P,A,B三点在一条直线上时,点P到点A、点B的距离之和最短,此时x==1,故P(1,0);(3)如图所示:抛物线的对称轴为:x==1,设M(1,m),已知A(﹣1,0)、C(0,﹣3),则:=,==,=10;①若MA=MC,则,得:=,解得:m=﹣1;②若MA=AC,则,得:=10,得:m=;③若MC=AC,则,得:=10,得:,;当m=﹣6时,M、A、C三点共线,构不成三角形,不合题意,故舍去;综上可知,符合条件的M点,且坐标为 M(1,)(1,)(1,﹣1)(1,0).考点:二次函数综合题;分类讨论;综合题;动点型.。

2016年四川省凉山州中考数学试卷(含详细答案)

2016年四川省凉山州中考数学试卷(含详细答案)

数学试卷 第1页(共6页) 数学试卷 第2页(共6页)绝密★启用前四川省凉山州2016年高中阶段教育学校招生统一考试数 学本试卷满分150分,考试时间120分钟.A 卷(共120分)第Ⅰ卷(选择题 共48分)一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.12016-的倒数的绝对值是( )A .2016-B .12016C .2016D .12016-2.如图,是由若干个大小相同的正方体搭成的几何体的三视图.该几何体所用的正方体的个数是( )主视图 左视图 俯视图A .5B .4C .3D .23.下列计算正确的是( )A .235a b ab +=B .2363(2)6a b a b -=-C .82=32+D .222()a b a b +=+ 4.一个多边形切去一个角后,形成的另一个边形的内角和为1080,那么原多边形的边数为( )A .7B .7或8C .8或9D .7或8或9 5.在线段、平行四边形、矩形、等腰三角形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是( )A .2个B .3个C .4个D .5个6.已知1x ,2x 是一元二次方程2362x x =-的两根,则11x x -,22x x +的值是 ( ) A .43-B .83C .83-D .437.关于x 的方程32211x mx x -=+++无解,则m 的值为 ( )A .5-B .8-C .2-D .58.如图,AB CD ∥,直线EF 分别交,AB CD 于,E F 两点,BEF ∠的平分线交CD 于点G ,若52EFG =∠,则EGF =∠ ( ) A .26 B .64 C .52D .1289.二次函数2(0)y ax bx c a =++≠的图象如图,则反比例函数ay x=-与一次函数y bx c =-在同一坐标系内的图象大致是( )10.教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在相同条件下各打了5发子弹,命中环数如下,甲:9,8,7,7,9;乙:10,8,9,7,6.应该选( )A .甲参加B .乙参加C .甲、乙都可以参加D .无法确定 11.已知,一元二次方程28150x x -+=的两根分别是1O 和2O 的半径,当1O 与2O 相切时,12O O 的长度是( )A .2B .8C .2或8D .1228O O <<12.观察图中正方形四个顶点所标的数字规律,可知,数2016应标在( )A .第504个正方形的左下角B .第504个正方形的右下角C .第505个正方形的左上角D .第505个正方形的右上角ABCD毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共6页) 数学试卷 第4页(共6页)第Ⅱ卷(非选择题 共72分)二、填空题(本大题共5小题,每小题4分,共20分.把答案填写在题中的横线上) 13.分解因式39a b ab -= .14.2016年西昌市的洋葱喜获丰收,据估计洋葱的产量约是325000000千克,这个数据用科学记数法表示为 克. 15.若实数x满足210x --=,则221x x += . 16.将抛物线2y x =-先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为 .17.如图,已知ABC △的面积为212cm ,点D ,E 分别是AB ,AC 边的中点,则梯形DBCE 的面积为 2cm .三、解答题(本大题7小题,共52分.解答应写出必要的文字说明、证明过程或演算步骤) 18.(本小题满分5分)计算:02016|13tan 6012(π 3.14)(1)-+-+-.19.(本小题满分7分) 先化简,再求值:2122()2x x y x xy x++÷--, 其中实数,x y 满足1y =.20.(本小题满分8分)如图,□ABCD 的对角线,AC BD 交于点O ,EF 过点O 且与BC ,AD 分别交于点,E F .试猜想线段,AE CF 的关系,并说明理由.21.(本小题满分8分)为了切实做到关注、关爱贫困家庭学生,某校对全校各班贫困家庭学生的人数情况进行了统计,以便国家精准扶贫政策有效落实.统计发现班上贫困家庭学生人数分别有2名、3名、4名、5名、6名,共五种情况.并将其制成了如下两幅不完整的统计图:(1)求该校一共有多少个班?并将该条形统计图补充完整;(2)某爱心人士决定从只有2名贫困家庭学生的这些班级中,任选两名进行帮扶,请用列表法或画树状图的方法,求出被选中的两名学生来自同一个班级的概率.22.(本小题满分8分)如图,在边长为1的正方形网格中,ABC △的顶点均在格点上,点,A B 的坐标分别是(4,3)A ,(4,1)B ,把ABC △绕点C 逆时针旋转90后得到111A B C △. (1)画出111A B C △,直接写出点1A ,1B 的坐标; (2)求在旋转过程中,ABC △所扫过的面积.23.(本小题满分8分)为了更好的保护美丽图画的邛海湿地,西昌市污水处理厂决定先购买A ,B 两型污水处理设备共20台,对邛海湿地周边污水进行处理,每台A 型污水处理设备12万元,每台B 型污水处理设备10万元.已知1台A 型污水处理设备和2台B 型污水处理设备每周可以处理污水640吨,2台A 型污水处理设备和3台B 型污水处理设备每周可以处理污水1080吨.(1)求A ,B 两型污水处理设备每周分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?数学试卷 第5页(共6页) 数学试卷 第6页(共6页)24.(本小题满分8分)阅读下列材料并回答问题:材料:如果一个三角形的三边长分别为,,a b c ,记2a b cp ++=,那么三角形的面积为()()()S p a p b p c =---. ①古希腊几何学家海伦(Heron ,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.我国南宋数学家秦九韶(约1202—约1261),曾提出利用三角形的三边求面积的秦九韶公式2222221()42a b c S a b ⎡⎤+-=-⎢⎥⎣⎦. ② 下面我们对公式②进行变形:22222222222222222222222222211()=()()422411=()()]24242244()()442222()()().a b c a b c a b ab a b c a b c ab ab ab a b c ab a b c a b c c a b a b c a b c a c b b c a p p a p b p c ⎡⎤+-+---⎢⎥⎣⎦+-+-+-++---+=+---=+++-+-+-==---这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦—秦九韶公式.问题:如图,在ABC △中,13AB =,12BC =,7AC =,O 内切于ABC △,切点分别是,,D E F .(1)求ABC △的面积; (2)求O 的半径.B 卷(共30分)一、填空题(本大题共2小题,每小题5分,共10分.把答案填写在题中的横线上)25.已知关于x 的不等式组423()23(2)5x x a x x ++⎧⎨-+⎩>>仅有三个整数解,则a的取值范围是 .26.如图,四边形ABCD 中,=90BAD ADC =∠∠,32AB AD ==,22CD =,点P 是ABCD 四条边上的一个动点,若P 到BD 的距离为52,则满足条件的点P 有个. 二、解答题(本大题2小题,共20分.解答应写出必要的文字说明、证明过程或演算步骤) 27.(本小题满分8分)如图,已知四边形ABCD 内接于O ,A 是BDC 的中点,AE AC ⊥于A ,与O 及CB 的延长线分别交于点,F E ,且BF AD =. (1)求证:ADC EBA △∽△;(2)如果85AB CD ==,,求tan CAD ∠的值.28.(本小题满分12分)如图,抛物线2(0)y ax bx c a =+=≠经过(1,0)A -,(3,0)B ,(0,3)C -三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当点P 到点A 、点C 的距离之和最短时,求点P 的坐标;(3)点M 也是直线l 上的动点,且MAC △为等腰三角形,请直接写出所有符合条件的点M 的坐标.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共6页)数学试卷 第4页(共6页)2)1801080︒=一是截线不过多边形其他内角的顶点,此时多边形的边数比原来多此时多边形的边数与原来相同;122=-x x,一坐标系内的图像大致如图,故选C.5/ 14数学试卷 第3页(共6页)数学试卷 第4页(共6页)当1O 和2O 内切时,当1O 和2O 外切时,C .两圆位置关系:设两圆的半径分别为两圆的圆心距为d ,当时,两圆内切两圆相交;当d R r =+时,两国外切;【考点】一元二次方程的解法及两圆位置关系的确定 【答案】D7 / 14ADE ABC △,所以29cm2]2xx + 2)2xx +21.【答案】(1)41数学试卷第3页(共6页) 数学试卷第4页(共6页)补图.【解析】(1)如图.AC BC29/ 14数学试卷第3页(共6页) 数学试卷第4页(共6页)(2)连接OA ,OB ,OC ,OD ,OE ,OF ,∵O 内切于设O 的半径为=++△A △△△BC ABO BCO ACO S S S S ,222=++△ABC AB r BC r AC r S , 131********++=r r r ,332r ∴=. 【考点】公式计算,内切圆的性质,三角形面积公式建立方程求解.3【解析】解不等式423()++>x x a 得32->x a ,解不等式2325()-+>x x 得1<x ,将不等式的解集表示在数轴上为,根据不等式组仅有三个整数解确定3322---≤<a ,解得103-≤<a .数学试卷 第3页(共6页)数学试卷 第4页(共6页)5sin 32sin4532∠=︒=>AB ABD ,AD 边上有2个符合P 到B D 的距离为22.)证明:四边形内接于O , ∴△△ADC EBA .∵△△ADC EBA ,CD【考点】二次函数的图象和性质的应用数学试卷第3页(共6页) 数学试卷第4页(共6页)。

2016学年四川省凉山州中考数学年试题答案

2016学年四川省凉山州中考数学年试题答案

数学试卷 第 4 页(共 6 页)
数学试卷 第 5 页(共 6 页)
数学试卷 第 6 页(共 6 页)
()
A. 乙盒中黑球不多于丙盒中黑球
B. 乙盒中红球与丙盒中黑球一样多
C. 乙盒中红球不多于丙盒中红球
D. 乙盒中黑球与丙盒中红球一样多
数学试卷 第 2 页(共 6 页)
第二部分(非选择题 共 100 分)
二、填空题共 6 小题,每小题 5 分,共 30 分. 9. 设 a R ,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则 a _______. 10. 在 (1 2x)6 的展开式中, x2 的系数为_______(用数字作答).
18. (本小题满分 13 分) 设 函 数 f (x) xeax bx , 曲 线 y f (x) 在 点 ( 2, (f 2)) 处 的 切 线 方 程 为 y (e
1)x 4 . (Ⅰ)求 a,b 的值; (Ⅱ)求 f (x) 的单调区间.
19. (本小题满分 14 分)
绝密★启用前

2016 年普通高等学校招生全国统一考试(北京卷)
数学(理)
本试卷共 6 页,150 分.考试时长 120 分钟.考生务必将答案答在答题卡上,在试卷上 此 作答无效.考试结束后,将本试卷和答题卡一并交回.
第一部分(选择题 共 40 分)
一、选择题共 8 小题,每小题 5 分,共 40 分.在每小题列出的四个选项中,选出符合题目
(Ⅰ)试估计 C 班的学生人数; (Ⅱ)从 A 班和 C 班抽出的学生中,各随机选取一人,A 班选出的人记为甲,C 班选 出的人记为乙.假设所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼

四川省凉山州中考数学真题试题(含扫描答案)

四川省凉山州中考数学真题试题(含扫描答案)

数学试题班级: 姓名: 学号:注意事项:1. 答题前,考生务必将自己的姓名、座位号、准考证号用0.5毫米的黑色签字笔填写在答题卡上,并在答题卡背面上方填涂座位号,同时检查条形码粘贴是否正确。

2. 选择题使用2B 铅笔涂在答题卡对应题目的位置上;非选择题用0.5毫米黑色签字笔书写在答题卡的对应框内,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

3. 考试结束后,教师将试题卷、答题卡、草稿纸一并收回。

本试卷共6页,分为A 卷(120分),B 卷(30分),全卷满分150分,考试时间120分钟。

A 卷又分为第I 卷和第II 卷。

A 卷(共120分)第Ⅰ卷(选择题 共48分)一、选择题:(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,请把正确选项的字母填涂在答题卡上相应的位置。

1. 在2,3-,0,1-这四个数中,最小的数是( )A .2B .3-C .0D .1-2. 如右图,AB CD ∥,则下列式子一定成立的是( )A .13∠=∠B .23∠=∠C .123∠=∠+∠D .312∠=∠+∠3. 下列运算正确的是( ) A= B .32361126xy x y ⎛⎫-=- ⎪⎝⎭C .523()()x x x -÷-=D4=4. 指出下列事件中是随机事件的个数( )①投掷一枚硬币正面朝上;②明天太阳从东方升起;③五边形的内角和是560;④购买一张彩票中奖。

A .0B .1C .2D .35. 一列数4,5,6,4,4,7,x ,5的平均数是5,则中位数和众数分别是( )A .4,4B .5,4C .5,6D .6,76. 有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是( )A.B. C. D .87. 小明和哥哥从家里出发去买书,从家出发走了20分钟到一个离家1000米的书店。

小明买了书后随即按原路返回;哥哥看了20分钟书后,用15分钟返家。

2016年凉山州初三中考适应性考试题 数学答案

2016年凉山州初三中考适应性考试题 数学答案

五、解答题(共 2 小题,每小题 8 分,共 16 分) 23. 解:⑴A(1,0)是一次函数与二次函数的交点 ∴ k+1=0 k=-1
y1 = - x + 1
抛物线的对称轴是 x = - 3 ,且经过点 A(1,0) ∴ a+b-2=0
b 3 =2a 2 1 3 ,b= 2 2
2
解方程组得:a=
y2 =
» = DF » BF
∴∠OBE+∠BOF=90°∠BOF=∠DOF= 1 ∠BOD
2
∵∠A= 1 ∠BOD
2
∴∠BOF=∠A ∵∠DBC =∠A ∴∠OBE+∠DBC=90° ∴OB⊥BC ∵OB 是半径 ∴BC 是⊙O 的切线 ⑵ 在 Rt△OBC 中 ∵OB=6,BC=8 ∴OC=10 ∵OE⊥BD ∴OB·BC=OC·BE ∴6×8=10BE ∴BE=4.8 ∴BE=DE ∴BD=9.6
1 2
x1 = 2, x2 = -
………………………………3 分
⑵ x (2 x + 3) - 2 x - 3 = 0 解:
( 2 x + 3)( x - 1) = 0
2 x + 3 = 0或x - 1 = 0
3 x1 = - , x2 = 1 ………………………………3 分 2 19.⑴ 如图所示 ………………………………3 分 ⑵ 解:∵点 B 绕点 C 逆时针方向旋转到点 A 的位置 ∴旋转角∠BCA=90° …………………………………4 分 点 D 绕点 C 逆时针方向旋转到点 D′的位置 ∴旋转角∠DCD′=90°,CD=CD′ ∵小正方形的边长都是 1,点 D 在格点上
6.B 12.C
14. -1 17. 4p cm 2

四川省凉山州中考数学真题试题

四川省凉山州中考数学真题试题

四川省凉山州高中阶段招生统一考试数学试卷本试卷共10页,分为A 卷(120分)、B 卷(30分),全卷150分,考试时间120分钟。

A 卷又分第Ⅰ卷和第Ⅱ卷。

A 卷(共120分)第I 卷(选择题 共48分)注意事项:1.第I 卷答在答题卡上,不能答在试卷上。

答卷前,考生务必将自己的姓名、准考证号、试题科目涂写在答题卡上。

2.每小题选出答案后,用2B 或3B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案。

一、选择题:(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确的字母填涂在答题卡上相应的位置。

1. 2-是2的A .相反数B .倒数C .绝对值D .算术平方根2. 你认为下列各式正确的是A .22()a a =-B .33()a a =-C .22||a a -=-D .33||a a =3.A .圆柱B .圆锥C .圆台D .三棱柱4. 如果单项式13a x y +-与212by x 是同类项,那么a 、b 的值分别为 A.2a =,3b = B .1a =,2b = C .1a =,3b =D .2a =,2b =5. 有意义,那么x 的取值范围是 A .x ≥0 B .1x ≠ C .0x > D .x ≥0且1x ≠6. 下列图案中,既是轴对称图形又是中心对称图形的是7. 已知方程组2435x y x y +=⎧⎨+=⎩,则x y +的值为 A .1- B .0 C .2 D .38. 下列说法中:①邻补角是互补的角;②数据7、1、3、5、6、3的中位数是3,众数是4;③|5|-的算术平方根是5;④点P (1,2-)在第四象限,其中正确的个数是 A .0 B .1 C .2 D .39. 如图,菱形ABCD 中,60B ∠=,4AB =,则以AC 为边长的正方形ACEF 的周长为 主视图 左视图 俯视图 A . B . C . D . B60 (第9题图) (第11题图)A .14B .15C .16D .17 10.已知1O 和2O 的半径分别为2cm 和3cm ,圆心距12O O 为5cm ,则2O 和2O 的位置关系是A .外离B .外切C .相交D .内切11.如图,330∠=,为了使白球反弹后能将黑球直接撞入袋中,那么几大白球时,必须保证1∠的度数为A .30B .45C .60D .7512.如图,正比例函数1y 与反比例函数2y 相交于点E (1-,2),若0y y >>,则x 的取值范围在数轴上表示正确的是四川省凉山州高中阶段招生统一考试数学试卷第II 卷(非选择题 共72分)注意事项:1.答卷前将密封线内的项目填写清楚,准考证号前7位填在密封线方框内,末两位填在句首方框内。

【新编】四川凉山州2019中考试题数学卷(解析版)

【新编】四川凉山州2019中考试题数学卷(解析版)

2016年四川省凉山州中考数学试卷A卷一、选择题:(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,请把正确选项的字母填涂在答题卡上相应的位置.1.12016-的倒数的绝对值是()A.﹣2016 B.12016C.2016 D.12016-【答案】C.【解析】试题分析:12016-的倒数是﹣2016,﹣2016的绝对值是2016.故选C.考点:倒数;绝对值.2.如图,是由若干个大小相同的正方体搭成的几何体的三视图,该几何体所用的正方体的个数是()A.6 B.4 C.3 D.2【答案】A.考点:由三视图判断几何体.3.下列计算正确的是()A.235a b ab+=B.2363(2)6a b a b-=-C.8232=D.222()a b a b+=+【答案】C.【解析】试题分析:A.2a+3b无法计算,故此选项错误;B.2363(2)8a b a b-=-,故此选项错误;C8232=D.222()2a b a b ab+=++,故此选项错误;故选C.考点:二次根式的加减法;合并同类项;幂的乘方与积的乘方;完全平方公式.4.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为( )A .7B .7或8C .8或9D .7或8或9 【答案】D . 【解析】 试题分析:设内角和为1080°的多边形的边数是n ,则(n ﹣2)•180°=1080°,解得:n=8.则原多边形的边数为7或8或9.故选D . 考点:多边形内角与外角.5.在线段、平行四边形、矩形、等腰三角形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是( )A .2个B .3个C .4个D .5个 【答案】B .考点:中心对称图形;轴对称图形. 6.已知已知1x 、2x 是一元二次方程2362x x =-的两根,则1122x x x x -+的值是( )A .43-B .83C .83-D .43【答案】D . 【解析】 试题分析:∵1x 、2x 是一元二次方程2362x x =-的两根,∴1223x x +=-,122x x =-,∴1122x x x x -+=24(2)33---=.故选D . 考点:根与系数的关系.7.关于x 的方程32211x m x x -=+++无解,则m 的值为( ) A .﹣5 B .﹣8 C .﹣2 D .5【答案】A . 【解析】试题分析:去分母得:3x ﹣2=2x+2+m ,由分式方程无解,得到x+1=0,即x=﹣1,代入整式方程得:﹣5=﹣2+2+m ,解得:m=﹣5,故选A . 考点:分式方程的解.8.如图,AB∥CD,直线EF 分别交AB 、CD 于E 、F 两点,∠BEF 的平分线交CD 于点G ,若∠EFG=52°,则∠EGF 等于( )A .26°B .64°C .52°D .128° 【答案】B .考点:平行线的性质.9.二次函数2y ax bx c =++(0a ≠)的图象如图,则反比例函数ay x =-与一次函数y bx c =-在同一坐标系内的图象大致是( )A .B .C .D .【答案】C . 【解析】试题分析:观察二次函数图象可知:开口向上,a >0;对称轴大于0,2ba ->0,b <0;二次函数图象与y 轴交点在y 轴的正半轴,c >0.∵反比例函数中k=﹣a <0,∴反比例函数图象在第二、四象限内;∵一次函数y=bx ﹣c 中,b <0,﹣c <0,∴一次函数图象经过第二、三、四象限. 故选C .考点:反比例函数的图象;一次函数的图象;二次函数的图象.10.教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在形同条件下各打了5发子弹,命中环数如下:甲:9、8、7、7、9;乙:10、8、9、7、6.应该选( )参加.A .甲B .乙C .甲、乙都可以D .无法确定 【答案】A .考点:方差.11.已知,一元二次方程28150x x -+=的两根分别是⊙O1和⊙O2的半径,当⊙O1和⊙O2相切时,O1O2的长度是( )A .2B .8C .2或8D .2<O2O2<8 【答案】C . 【解析】试题分析:∵⊙O1、⊙O2的半径分别是方程x2﹣8x+15=0的两根,解得⊙O1、⊙O2的半径分别是3和5,∴①当两圆外切时,圆心距O1O2=3+5=8; ②当两圆内切时,圆心距O1O2=5﹣2=2. 故选C .考点:圆与圆的位置关系;根与系数的关系;分类讨论.12.观察图中正方形四个顶点所标的数字规律,可知,数2016应标在( )A .第504个正方形的左下角B .第504个正方形的右下角C .第505个正方形的左上角D .第505个正方形的右下角 【答案】D .考点:规律型:点的坐标;规律型. 二、填空题:(共5个小题,每小题4分,共20分)13.分解因式:39a b ab - = . 【答案】ab (a+3)(a ﹣3). 【解析】试题分析:39a b ab -=2(9)b a -=ab (a+3)(a ﹣3).故答案为:ab (a+3)(a ﹣3).考点:提公因式法与公式法的综合运用.14.今年西昌市的洋葱喜获丰收,据估计洋葱的产量约是325 000 000千克,这个数据用科学记数法表示为 克. 【答案】3.25×1011. 【解析】试题分析:325 000 000千克=325 000 000 000克=3.25×1011克,故答案为:3.25×1011. 考点:科学记数法—表示较大的数. 15.若实数x 满足22210x x --=,则221x x += .【答案】10. 【解析】试题分析:∵22210x x --=,∴1220x x -=,∴122x x -=,∴21()8x x -=,即22128xx-+=,∴221xx+=10,故答案为:10.考点:代数式求值;条件求值.16.将抛物线2y x=-先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为.【答案】2611y x x=-+-.考点:二次函数图象与几何变换.17.如图,△ABC的面积为12cm2,点D、E分别是AB、AC边的中点,则梯形DBCE的面积为cm2.【答案】9.【解析】试题分析:∵点D、E分别是AB、AC边的中点,∴DE是三角形的中位线,∴DE=12BC,DE∥BC,∴△ADE∽△ABC,∴ΔADEΔABC14SS=,∵△ABC的面积为12cm2,∴△ADE的面积为3cm2,∴梯形DBCE的面积=12﹣3=9cm2,故答案为:9.考点:三角形中位线定理.三、解答题:(共2小题,每小题6分,共12分)18.计算:02016133tan6012( 3.14)(1)π-+-+-o.【答案】1.【解析】试题分析:直接利用绝对值的性质以及特殊角的三角函数值和零指数幂的性质、二次根式的性质分别化简求出答案.31332311-+=1.考点:实数的运算;零指数幂;特殊角的三角函数值.19.先化简,再求值:21222xx y x xy x⎛⎫++÷⎪--⎝⎭,其中实数x、y满足2421y x x=--.【答案】2x y-,2.考点:分式的化简求值;二次根式有意义的条件.四、解答题:(共3小题,每小题8分,共24分)20.如图,▱ABCD的对角线AC、BD交于点O,EF过点O且与BC、AD分别交于点E、F.试猜想线段AE、CF的关系,并说明理由.【答案】AE与CF的关系是平行且相等.考点:平行四边形的性质;全等三角形的判定与性质.21.为了切实关注、关爱贫困家庭学生,某校对全校各班贫困家庭学生的人数情况进行了统计,以便国家精准扶贫政策有效落实.统计发现班上贫困家庭学生人数分别有2名、3名、4名、5名、6名,共五种情况.并将其制成了如下两幅不完整的统计图:(1)求该校一共有多少个班?并将条形图补充完整;(2)某爱心人士决定从2名贫困家庭学生的这些班级中,任选两名进行帮扶,请用列表法或树状图的方法,求出被选中的两名学生来自同一班级的概率.【答案】(1)20;(2)1 3.【解析】试题分析:(1)根据留守儿童有4名的班级有6个,占30%,可求得有留守儿童的班级总数,再求得留守儿童是2名的班数;A1、A2、B1、B2,列表如下:A1 A2 B1 B2A1 A1,A2 A1,B1 A1,B2A2 A2,A1 A2,B1 A2,B2B1 B1,A1 B1,A2 B1,B2B2 B2,A1 B2,A2 B2,B1由上表可知,从这两个班级任选两名学生进行帮扶共有12种等可能结果,其中被选中的两名学生来自同一班级的有4种结果,∴被选中的两名学生来自同一班级的概率为412=13.考点:列表法与树状图法;扇形统计图;条形统计图.22.如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A (4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.(1)画出△A1B1C,直接写出点A1、B1的坐标;(2)求在旋转过程中,△ABC所扫过的面积.【答案】(1)A1(﹣1,4),B1(1,4);(2)1334π+.(2)利用勾股定理求出AC的长,根据△ABC扫过的面积等于扇形CAA1的面积与△ABC的面积和,然后列式进行计算即可.试题解析:(1)所求作△A1B1C如图所示:由A(4,3)、B(4,1)可建立如图所示坐标系,则点A1的坐标为(﹣1,4),点B1的坐标为(1,4);(222AB BC+2223+13所扫过的面积为:S扇形CAA1+S△ABC=290(13)1322π⋅+⨯⨯=1334π+.考点:作图-旋转变换;扇形面积的计算.五、解答题:(共2小题,每小题8分,共16分)23.为了更好的保护美丽图画的邛海湿地,西昌市污水处理厂决定先购买A、B两型污水处理设备共20台,对邛海湿地周边污水进行处理,每台A型污水处理设备12万元,每台B 型污水处理设备10万元.已知1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨.(1)求A、B两型污水处理设备每周分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?【答案】(1)A型污水处理设备每周每台可以处理污水240吨,B型污水处理设备每周每台可以处理污水200吨;(2)共有三种方案,详见解析,购买A型污水处理设备13台,则购买B型污水处理设备7台时,所需购买资金最少,最少是226万元.考点:一元一次不等式组的应用;二元一次方程组的应用;最值问题;方案型. 24.阅读下列材料并回答问题:材料1:如果一个三角形的三边长分别为a ,b ,c ,记2a b c p ++=,那么三角形的面积为()()()S p p a p b p c =--- ①古希腊几何学家海伦(Heron ,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式. 我国南宋数学家秦九韶(约1202﹣﹣约1261),曾提出利用三角形的三边求面积的秦九韶公式:222222142a b c S a b ⎡⎤⎛⎫+-=-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦ ②下面我们对公式②进行变形:22222222222114224a b c a b c a b ab ⎡⎤⎛⎫⎛⎫+-+-⎛⎫-=-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎢⎥⎝⎭⎝⎭⎣⎦222222112424a b c a b c ab ab ⎛⎫⎛⎫+-+-=+- ⎪⎪⎝⎭⎝⎭2222222244ab a b c ab a b c++---+=g2222()()44a b c c a b+---=g2222a b c a b c a c b b c a+++-+-+-=g g g()()()p p a p b p c=---.这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦﹣﹣秦九韶公式.问题:如图,在△ABC中,AB=13,BC=12,AC=7,⊙O内切于△ABC,切点分别是D、E、F.(1)求△ABC的面积;(2)求⊙O的半径.【答案】(1)243;(2)332.(2)由三角形的面积=12lr,计算即可.试题解析:(1)∵AB=13,BC=12,AC=7,∴p=131272++=16,∴()()()S p p a p b p c=---16349⨯⨯⨯3(2)∵△ABC的周长l=AB+BC+AC=32,∴S=12lr=3483=33.考点:三角形的内切圆与内心;阅读型.B卷(共30分)一、填空题:(共2小题,每小题5分,共10分)25.已知关于x的不等式组423()23(2)5x x ax x+>+⎧⎨>-+⎩仅有三个整数解,则a的取值范围是.【答案】﹣1≤a<23-.考点:一元一次不等式组的整数解.26.如图,四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=32,CD=22,点P是四边形ABCD四条边上的一个动点,若P到BD的距离为52,则满足条件的点P有个.【答案】2.【解析】试题分析:过点A作AE⊥BD于E,过点C作CF⊥BD于F,∵∠BAD=∠ADC=90°,AB=AD=32,CD=22,∴∠ABD=∠ADB=45°,∴∠CDF=90°﹣∠ADB=45°,∵sin∠ABD=AE AB,∴AE=AB•sin∠ABD=32•sin45°=3>52,CF=2<52,所以在AB和AD边上有符合P到BD的距离为52的点2个,故答案为:2.考点:点到直线的距离;分类讨论.二、解答题:(共2小题,27题8分,28题12分,共20分)27.如图,已知四边形ABCD内接于⊙O,A是¼BDC的中点,AE⊥AC于A,与⊙O及CB的延长线交于点F、E,且»»BF AD.(1)求证:△ADC∽△EBA;(2)如果AB=8,CD=5,求tan∠CAD的值.【答案】(1)证明见解析;(2)5 8.(2)解:∵A是¼BDC的中点,∴»»AB AC=,∴AB=AC=8,∵△ADC∽△EBA,∴∠CAD=∠AEC,DC ACAB AE=,即588AE=,∴AE=645,∴tan∠CAD=tan∠AEC=ACAE=8645=58.考点:相似三角形的判定与性质;圆周角定理.28.如图,已知抛物线2y ax bx c=++(a≠0)经过A(﹣1,0)、B(3,0)、C(0,﹣3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P的坐标;(3)点M也是直线l上的动点,且△MAC为等腰三角形,请直接写出所有符合条件的点M 的坐标.【答案】(1)223y x x=--;(2)P(1,0);(3).考点:二次函数综合题;分类讨论;综合题;动点型.。

2016年凉山州中考数学试题解析版

2016年凉山州中考数学试题解析版

2016年四川省凉山州中考数学试卷一、选择题:(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,请把正确选项的字母填涂在答题卡上相应的位置.1.的倒数的绝对值是()A.﹣2016 B.C.2016 D.2.如图,是由若干个大小相同的正方体搭成的几何体的三视图,该几何体所用的正方体的个数是()A.6 B.4 C.3 D.23.下列计算正确的是()A.2a+3b=5ab B.(﹣2a2b)3=﹣6a6b3C.D.(a+b)2=a2+b24.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或95.在线段、平行四边形、矩形、等腰三角形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是()A.2个B.3个C.4个D.5个6.已知x1、x2是一元二次方程3x2=6﹣2x的两根,则x1﹣x1x2+x2的值是()A. B.C. D.7.关于x的方程无解,则m的值为()A.﹣5 B.﹣8 C.﹣2 D.58.如图,AB∥CD,直线EF分别交AB、CD于E、F两点,∠BEF的平分线交CD于点G,若∠EFG=52°,则∠EGF等于()A.26°B.64°C.52°D.128°9.二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数与一次函数y=bx﹣c在同一坐标系内的图象大致是()A.B.C.D.10.教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在形同条件下各打了5发子弹,命中环数如下:甲:9、8、7、7、9;乙:10、8、9、7、6.应该选()参加.A.甲B.乙C.甲、乙都可以 D.无法确定11.已知,一元二次方程x2﹣8x+15=0的两根分别是⊙O1和⊙O2的半径,当⊙O1和⊙O2相切时,O1O2的长度是()A.2 B.8 C.2或8 D.2<O2O2<812.观察图中正方形四个顶点所标的数字规律,可知,数2016应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角二、填空题:(共5个小题,每小题4分,共20分)13.分解因式:a3b﹣9a b=.14.今年西昌市的洋葱喜获丰收,据估计洋葱的产量约是325 000 000千克,这个数据用科学记数法表示为克.15.若实数x满足x2﹣x﹣1=0,则=.16.将抛物线y=﹣x2先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为.17.如图,△ABC的面积为12cm2,点D、E分别是AB、AC边的中点,则梯形DBCE的面积为cm2.三、解答题:(共2小题,每小题6分,共12分)18.计算:.19.先化简,再求值:,其中实数x、y满足.四、解答题:(共3小题,每小题8分,共24分)20.如图,▱ABCD的对角线AC、BD交于点O,EF过点O且与BC、AD分别交于点E、F.试猜想线段AE、CF的关系,并说明理由.21.为了切实关注、关爱贫困家庭学生,某校对全校各班贫困家庭学生的人数情况进行了统计,以便国家精准扶贫政策有效落实.统计发现班上贫困家庭学生人数分别有2名、3名、4名、5名、6名,共五种情况.并将其制成了如下两幅不完整的统计图:(1)求该校一共有多少个班?并将条形图补充完整;(2)某爱心人士决定从2名贫困家庭学生的这些班级中,任选两名进行帮扶,请用列表法或树状图的方法,求出被选中的两名学生来自同一班级的概率.22.如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.(1)画出△A1B1C,直接写出点A1、B1的坐标;(2)求在旋转过程中,△ABC所扫过的面积.五、解答题:(共2小题,每小题8分,共16分)23.为了更好的保护美丽图画的邛海湿地,西昌市污水处理厂决定先购买A、B两型污水处理设备共20台,对邛海湿地周边污水进行处理,每台A型污水处理设备12万元,每台B 型污水处理设备10万元.已知1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨.(1)求A、B两型污水处理设备每周分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?24.阅读下列材料并回答问题:材料1:如果一个三角形的三边长分别为a,b,c,记,那么三角形的面积为.①古希腊几何学家海伦(Heron,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.我国南宋数学家秦九韶(约1202﹣﹣约1261),曾提出利用三角形的三边求面积的秦九韶公式:.②下面我们对公式②进行变形:=====.这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦﹣﹣秦九韶公式.问题:如图,在△ABC中,AB=13,BC=12,AC=7,⊙O内切于△ABC,切点分别是D、E、F.(1)求△ABC的面积;(2)求⊙O的半径.六、B卷填空题:(共2小题,每小题5分,共10分)25.已知关于x的不等式组仅有三个整数解,则a的取值范围是.26.如图,四边形ABCD中,∠BAD=∠DC=90°,AB=AD=,CD=,点P是四边形ABCD四条边上的一个动点,若P到BD的距离为,则满足条件的点P有个.七、B卷解答题:(共2小题,27题8分,28题12分,共20分)27.如图,已知四边形ABCD内接于⊙O,A是的中点,AE⊥AC于A,与⊙O及CB的延长线交于点F、E,且.(1)求证:△ADC∽△EBA;(2)如果AB=8,CD=5,求tan∠CAD的值.28.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0)、B(3,0)、C(0,﹣3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P的坐标;(3)点M也是直线l上的动点,且△MAC为等腰三角形,请直接写出所有符合条件的点M的坐标.2016年四川省凉山州中考数学试卷参考答案与试题解析一、选择题:(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,请把正确选项的字母填涂在答题卡上相应的位置.1.的倒数的绝对值是()A.﹣2016 B.C.2016 D.【考点】倒数;绝对值.【分析】根据倒数的定义求出的倒数,再根据绝对值的定义即可求解.【解答】解:的倒数是﹣2016,﹣2016的绝对值是2016.故选:C.2.如图,是由若干个大小相同的正方体搭成的几何体的三视图,该几何体所用的正方体的个数是()A.6 B.4 C.3 D.2【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:综合三视图可知,这个几何体的底层有3个小正方体,第2层有1个小正方体,第3层有1个小正方体,第4层有1个小正方体,因此搭成这个几何体所用小正方体的个数是3+1+1+1=6个.故选:A.3.下列计算正确的是()A.2a+3b=5ab B.(﹣2a2b)3=﹣6a6b3C.D.(a+b)2=a2+b2【考点】二次根式的加减法;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】直接利用二次根式加减运算法则以及完全平方公式和积的乘方运算法则分别化简求出答案.【解答】解:A、2a+3b无法计算,故此选项错误;B、(﹣2a2b)3=﹣8a6b3,故此选项错误;C、+=2+=3,正确;D、(a+b)2=a2+b2+2ab,故此选项错误;故选:C.4.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或9【考点】多边形内角与外角.【分析】首先求得内角和为1080°的多边形的边数,即可确定原多边形的边数.【解答】解:设内角和为1080°的多边形的边数是n,则(n﹣2)•180°=1080°,解得:n=8.则原多边形的边数为7或8或9.故选:D.5.在线段、平行四边形、矩形、等腰三角形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是()A.2个B.3个C.4个D.5个【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【解答】解:线段、矩形、圆既是轴对称图形又是中心对称图形,平行四边形不是轴对称图形是中心对称图形,等腰三角形是轴对称图形不是中心对称图形,故选:B.6.已知x1、x2是一元二次方程3x2=6﹣2x的两根,则x1﹣x1x2+x2的值是()A. B.C. D.【考点】根与系数的关系.【分析】由x1、x2是一元二次方程3x2=6﹣2x的两根,结合根与系数的关系可得出x1+x2=﹣,x1•x2=﹣2,将其代入x1﹣x1x2+x2中即可算出结果.【解答】解:∵x1、x2是一元二次方程3x2=6﹣2x的两根,∴x1+x2=﹣=﹣,x1•x2==﹣2,∴x1﹣x1x2+x2=﹣﹣(﹣2)=.故选D.7.关于x的方程无解,则m的值为()A.﹣5 B.﹣8 C.﹣2 D.5【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,由分式方程无解得到x+1=0,求出x的值,代入整式方程求出m的值即可.【解答】解:去分母得:3x﹣2=2x+2+m,由分式方程无解,得到x+1=0,即x=﹣1,代入整式方程得:﹣5=﹣2+2+m,解得:m=﹣5,故选A8.如图,AB∥CD,直线EF分别交AB、CD于E、F两点,∠BEF的平分线交CD于点G,若∠EFG=52°,则∠EGF等于()A.26°B.64°C.52°D.128°【考点】平行线的性质.【分析】根据平行线及角平分线的性质解答.【解答】解:∵AB∥CD,∴∠BEF+∠EFG=180°,∴∠BEF=180°﹣52°=128°;∵EG平分∠BEF,∴∠BEG=64°;∴∠EGF=∠BEG=64°(内错角相等).故选:B.9.二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数与一次函数y=bx﹣c在同一坐标系内的图象大致是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象;二次函数的图象.【分析】根据二次函数的图象找出a、b、c的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.【解答】解:观察二次函数图象可知:开口向上,a>0;对称轴大于0,﹣>0,b<0;二次函数图象与y轴交点在y轴的正半轴,c>0.∵反比例函数中k=﹣a<0,∴反比例函数图象在第二、四象限内;∵一次函数y=bx﹣c中,b<0,﹣c<0,∴一次函数图象经过第二、三、四象限.故选C.10.教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在形同条件下各打了5发子弹,命中环数如下:甲:9、8、7、7、9;乙:10、8、9、7、6.应该选()参加.A.甲B.乙C.甲、乙都可以 D.无法确定【考点】方差.【分析】根据题意分别求出甲、乙的平均数和方差,根据方差越小越稳定,可以解答本题.【解答】解:由题意可得,甲的平均数为:,方差为:=0.8,乙的平均数为:,方差为:=2,∵0.8<2,∴选择甲射击运动员,故选A.11.已知,一元二次方程x2﹣8x+15=0的两根分别是⊙O1和⊙O2的半径,当⊙O1和⊙O2相切时,O1O2的长度是()A.2 B.8 C.2或8 D.2<O2O2<8【考点】圆与圆的位置关系;根与系数的关系.【分析】先解方程求出⊙O1、⊙O2的半径,再分两圆外切和两圆内切两种情况讨论求解.【解答】解:∵⊙O1、⊙O2的半径分别是方程x2﹣8x+15=0的两根,解得⊙O1、⊙O2的半径分别是3和5.∴①当两圆外切时,圆心距O1O2=3+5=8;②当两圆内切时,圆心距O1O2=5﹣2=2.故选C.12.观察图中正方形四个顶点所标的数字规律,可知,数2016应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角【考点】规律型:点的坐标.【分析】根据图形中对应的数字和各个数字所在的位置,可以推出数2016在第多少个正方形和它所在的位置,本题得以解决.【解答】解:∵2016÷4=504,又∵由题目中给出的几个正方形观察可知,每个正方形对应四个数,而第一个最小的数是0,0在右下角,然后按逆时针由小变大,∴第504个正方形中最大的数是2015,∴数2016在第505个正方形的右下角,故选D.二、填空题:(共5个小题,每小题4分,共20分)13.分解因式:a3b﹣9ab=ab(a+3)(a﹣3).【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式ab,然后再利用平方差公式继续分解,即可求得答案.【解答】解:a3b﹣9ab=a(a2﹣9)=ab(a+3)(a﹣3).故答案为:ab(a+3)(a﹣3).14.今年西昌市的洋葱喜获丰收,据估计洋葱的产量约是325 000 000千克,这个数据用科学记数法表示为 3.25×1011克.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:325 000 000千克=325 000 000 000克=3.25×1011,故答案为:3.25×1011.15.若实数x满足x2﹣x﹣1=0,则=10.【考点】代数式求值.【分析】根据x2﹣x﹣1=0,可以求得的值,从而可以得到的值,本题得以解决.【解答】解:∵x2﹣x﹣1=0,∴,∴,∴,即,∴,故答案为:10.16.将抛物线y=﹣x2先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为y=﹣x2﹣6x﹣11.【考点】二次函数图象与几何变换.【分析】根据平移规律:上加下减,左加右减写出解析式即可.【解答】解:抛物线y=﹣x2先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为y=﹣(x﹣3)2﹣2即y=﹣x2+6x﹣11,故答案为y=﹣x2﹣6x﹣11.17.如图,△ABC的面积为12cm2,点D、E分别是AB、AC边的中点,则梯形DBCE的面积为9cm2.【考点】三角形中位线定理.【分析】根据三角形的中位线得出DE=BC,DE∥BC,推出△ADE∽△ABC,再求出△ABC和△ADE的面积比值求出,进而可求出梯形DBCE的面积.【解答】解:∵点D、E分别是AB、AC边的中点,∴DE是三角形的中位线,∴DE=BC,DE∥BC,∴△ADE∽△ABC,∴,∵△ABC的面积为12cm2,∴△ADE的面积为3cm2,∴梯形DBCE的面积=12﹣3=9cm2,故答案为:9.三、解答题:(共2小题,每小题6分,共12分)18.计算:.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】直接利用绝对值的性质以及特殊角的三角函数值和零指数幂的性质、二次根式的性质分别化简求出答案.【解答】解:=﹣1﹣3+2+1+1=1.19.先化简,再求值:,其中实数x、y满足.【考点】分式的化简求值;二次根式有意义的条件.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,根据负数没有平方根求出x与y的值,代入计算即可求出值.【解答】解:原式=•=,∵y=﹣+1,∴x﹣2≥0,2﹣x≥0,即x﹣2=0,解得:x=2,y=1,则原式=2.四、解答题:(共3小题,每小题8分,共24分)20.如图,▱ABCD的对角线AC、BD交于点O,EF过点O且与BC、AD分别交于点E、F.试猜想线段AE、CF的关系,并说明理由.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】先猜出AE与CF的关系,然后说明理由即可,由题意可以推出四边形AECF是平行四边形,从而可以推出AE与CF的关系.【解答】解:AE与CF的关系是平行且相等.理由:∵在,▱ABCD中,∴OA=OC,AF∥EC,∴∠OAF=∠OCE,在△OAF和△OCE中,,∴△OAF≌△OCE(ASA),∴AF=CE,又∵AF∥CE,∴四边形AECF是平行四边形,∴AE∥CF且AE=CF,即AE与CF的关系是平行且相等.21.为了切实关注、关爱贫困家庭学生,某校对全校各班贫困家庭学生的人数情况进行了统计,以便国家精准扶贫政策有效落实.统计发现班上贫困家庭学生人数分别有2名、3名、4名、5名、6名,共五种情况.并将其制成了如下两幅不完整的统计图:(1)求该校一共有多少个班?并将条形图补充完整;(2)某爱心人士决定从2名贫困家庭学生的这些班级中,任选两名进行帮扶,请用列表法或树状图的方法,求出被选中的两名学生来自同一班级的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)根据留守儿童有4名的班级有6个,占30%,可求得有留守儿童的班级总数,再求得留守儿童是2名的班数;(2)由(1)得只有2名留守儿童的班级有2个,共4名学生.设A1,A2来自一个班,B1,B2来自一个班,列表可得出来自一个班的共有4种情况,继而可得所选两名留守儿童来自同一个班级的概率.【解答】解:(1)该校的班级共有6÷30%=20(个),有2名贫困生的班级有20﹣5﹣6﹣5﹣2=2(个),补全条形图如图:(2)根据题意,将两个班级4名学生分别记作A1、A2、B1、B2,12种等可能结果,其中被选中的两名学生来自同一班级的有4种结果,∴被选中的两名学生来自同一班级的概率为=.22.如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.(1)画出△A1B1C,直接写出点A1、B1的坐标;(2)求在旋转过程中,△ABC所扫过的面积.【考点】作图-旋转变换;扇形面积的计算.【分析】(1)根据旋转中心方向及角度找出点A、B的对应点A1、B1的位置,然后顺次连接即可,根据A、B的坐标建立坐标系,据此写出点A1、B1的坐标;(2)利用勾股定理求出AC的长,根据△ABC扫过的面积等于扇形CAA1的面积与△ABC 的面积和,然后列式进行计算即可.【解答】解:(1)所求作△A1B1C如图所示:由A(4,3)、B(4,1)可建立如图所示坐标系,则点A1的坐标为(﹣1,4),点B1的坐标为(1,4);(2)∵AC===,∠ACA1=90°∴在旋转过程中,△ABC所扫过的面积为:S+S△ABC扇形CAA1=+×3×2=+3.五、解答题:(共2小题,每小题8分,共16分)23.为了更好的保护美丽图画的邛海湿地,西昌市污水处理厂决定先购买A、B两型污水处理设备共20台,对邛海湿地周边污水进行处理,每台A型污水处理设备12万元,每台B 型污水处理设备10万元.已知1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨.(1)求A、B两型污水处理设备每周分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)根据1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨,可以列出相应的二元一次方程组,从而解答本题;(2)根据题意可以列出相应的不等式组,从而可以得到购买方案,从而可以算出每种方案购买资金,从而可以解答本题.【解答】解:(1)设A型污水处理设备每周每台可以处理污水x吨,B型污水处理设备每周每台可以处理污水y吨,解得,即A型污水处理设备每周每台可以处理污水240吨,B型污水处理设备每周每台可以处理污水200吨;(2)设购买A型污水处理设备x台,则购买B型污水处理设备(20﹣x)台,则解得,12.5≤x≤15,第一种方案:当x=13时,20﹣x=7,花费的费用为:13×12+7×10=226万元;第二种方案:当x=14时,20﹣x=6,花费的费用为:14×12+6×10=228万元;第三种方案;当x=15时,20﹣x=5,花费的费用为:15×12+5×10=230万元;即购买A型污水处理设备13台,则购买B型污水处理设备7台时,所需购买资金最少,最少是226万元.24.阅读下列材料并回答问题:材料1:如果一个三角形的三边长分别为a,b,c,记,那么三角形的面积为.①古希腊几何学家海伦(Heron,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.我国南宋数学家秦九韶(约1202﹣﹣约1261),曾提出利用三角形的三边求面积的秦九韶公式:.②下面我们对公式②进行变形:=====.这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦﹣﹣秦九韶公式.问题:如图,在△ABC中,AB=13,BC=12,AC=7,⊙O内切于△ABC,切点分别是D、E、F.(1)求△ABC的面积;(2)求⊙O的半径.【考点】三角形的内切圆与内心.【分析】(1)由已知△ABC的三边a=3,b=12,c=7,可知这是一个一般的三角形,故选用海伦﹣秦九韶公式求解即可;(2)由三角形的面积=lr,计算即可.【解答】解:(1)∵AB=13,BC=12,AC=7,∴p==16,∴==24;(2)∵△ABC的周长l=AB+BC+AC=32,∴S=lr=24,∴r==.六、B卷填空题:(共2小题,每小题5分,共10分)25.已知关于x的不等式组仅有三个整数解,则a的取值范围是﹣1<a<﹣.【考点】一元一次不等式组的整数解.【分析】根据解方程组,可得方程组的解,根据方程组的解是整数,可得答案.【解答】解:由4x+2>3x+3a,解得x>3a﹣2,由2x>3(x﹣2)+5,解得3a﹣2<x<﹣1,由关于x的不等式组仅有三个整数解,得﹣5<3a﹣2<﹣4,解得﹣1<a<﹣,故答案为:﹣1<a<﹣.26.如图,四边形ABCD中,∠BAD=∠DC=90°,AB=AD=,CD=,点P是四边形ABCD四条边上的一个动点,若P到BD的距离为,则满足条件的点P有2个.【考点】点到直线的距离.【分析】首先作出AB、AD边上的点P(点A)到BD的垂线段AE,即点P到BD的最长距离,作出BC、CD的点P(点C)到BD的垂线段CF,即点P到BD的最长距离,由已知计算出AE、CF的长为,比较得出答案.【解答】解:过点A作AE⊥BD于E,过点C作CF⊥BD于F,∵∠BAD=∠ADC=90°,AB=AD=,CD=2,∴∠ABD=∠ADB=45°,∴∠CDF=90°﹣∠ADB=45°,∵sin∠ABD=,∴AE=AB•sin∠ABD=3•sin45°=3>,CF=2<,所以在AB和AD边上有符合P到BD的距离为的点2个,故答案为:2.七、B卷解答题:(共2小题,27题8分,28题12分,共20分)27.如图,已知四边形ABCD内接于⊙O,A是的中点,AE⊥AC于A,与⊙O及CB的延长线交于点F、E,且.(1)求证:△ADC∽△EBA;(2)如果AB=8,CD=5,求tan∠CAD的值.【考点】相似三角形的判定与性质;圆周角定理.【分析】(1)欲证△ADC∽△EBA,只要证明两个角对应相等就可以.可以转化为证明且就可以;(2)A是的中点,的中点,则AC=AB=8,根据△CAD∽△ABE得到∠CAD=∠AEC,求得AE,根据正切三角函数的定义就可以求出结论.【解答】(1)证明:∵四边形ABCD内接于⊙O,∴∠CDA=∠ABE.∵,∴∠DCA=∠BAE.∴△ADC∽△EBA;(2)解:∵A是的中点,∴∴AB=AC=8,∵△ADC∽△EBA,∴∠CAD=∠AEC,,即,∴AE=,∴tan∠CAD=tan∠AEC===.28.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0)、B(3,0)、C(0,﹣3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P的坐标;(3)点M也是直线l上的动点,且△MAC为等腰三角形,请直接写出所有符合条件的点M的坐标.【考点】二次函数综合题.【分析】(1)直接将A、B、C三点坐标代入抛物线的解析式中求出待定系数即可;(2)由图知:A、B点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知,直线l与x轴的交点,即为符合条件的P点;(3)由于△MAC的腰和底没有明确,因此要分三种情况来讨论:①MA=AC、②MA=MC、③AC=MC;可先设出M点的坐标,然后用M点纵坐标表示△MAC的三边长,再按上面的三种情况列式求解.【解答】解:(1)将A(﹣1,0)、B(3,0)、C(0,﹣3)代入抛物线y=ax2+bx+c中,得:,解得:故抛物线的解析式:y=x2﹣2x﹣3.(2)当P点在x轴上,P,A,B三点在一条直线上时,点P到点A、点B的距离之和最短,此时x=﹣=1,故P(1,0);(3)如图所示:抛物线的对称轴为:x=﹣=1,设M(1,m),已知A(﹣1,0)、C(0,﹣3),则:MA2=m2+4,MC2=(3+m)2+1=m2+6m+10,AC2=10;①若MA=MC,则MA2=MC2,得:m2+4=m2+6m+10,解得:m=﹣1,②若MA=AC,则MA2=AC2,得:m2+4=10,得:m=±;③若MC=AC,则MC2=AC2,得:m2+6m+10=10,得:m1=0,m2=﹣6;当m=﹣6时,M、A、C三点共线,构不成三角形,不合题意,故舍去;综上可知,符合条件的M点,且坐标为M(1,)(1,﹣)(1,﹣1)(1,0).2016年6月23日。

2016年中考数学试题分项版解析(第02期)专题16 压轴题

2016年中考数学试题分项版解析(第02期)专题16 压轴题

专题16 压轴题一、选择题1.(2016四川省凉山州)已知,一元二次方程28150x x -+=的两根分别是⊙O 1和⊙O 2的半径,当⊙O 1和⊙O 2相切时,O 1O 2的长度是( )A .2B .8C .2或8D .2<O 2O 2<8 【答案】C .考点:1.圆与圆的位置关系;2.根与系数的关系;3.分类讨论.2.(2016四川省宜宾市)如图,点P 是矩形ABCD 的边AD 上的一动点,矩形的两条边AB 、BC 的长分别是6和8,则点P 到矩形的两条对角线AC 和BD 的距离之和是( )A .4.8B .5C .6D .7.2 【答案】A . 【解析】试题分析:首先连接OP ,由矩形的两条边AB 、BC 的长分别为3和4,可求得OA =OD =5,△AOD 的面积,然后由S △A O D =S △A O P +S △D O P =12OA •PE +OD •PF 求得答案. 试题解析:连接OP ,∵矩形的两条边AB 、BC 的长分别为6和8,∴S 矩形A B C D=AB •BC =48,OA =OC ,OB =OD ,AC =BD =10,∴OA =OD =5,∴S △A C D =12S 矩形A B C D=24,∴S △A O D =12S △A C D =12,∵S △A O D =S △A O P +S △D O P =12OA •PE +12OD •PF =12×5×PE +12×5×PF =52(PE +PF )=12,解得:PE +PF =4.8.故选A .考点:1.矩形的性质;2.和差倍分;3.定值问题.3.(2016四川省宜宾市)宜宾市某化工厂,现有A种原料52千克,B种原料64千克,现用这些原料生产甲、乙两种产品共20件.已知生产1件甲种产品需要A种原料3千克,B种原料2千克;生产1件乙种产品需要A种原料2千克,B种原料4千克,则生产方案的种数为()A.4 B.5 C.6 D.7【答案】B.故选B.考点:1.二元一次方程组的应用;2.方案型.4.(2016四川省泸州市)以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A B C.D【答案】D .考点:1.正多边形和圆;2.分类讨论.5.(2016四川省自贡市)圆锥的底面半径为4cm ,高为5cm ,则它的表面积为( )A .12πcm 2B .26πcm 2C cm 2D .16)πcm 2【答案】D . 【解析】试题分析:利用勾股定理求得圆锥的母线长,则圆锥表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.试题解析:底面半径为4cm ,则底面周长=8πcm ,底面面积=16πcm 2;由勾股定理得,母线长cm ,圆锥的侧面面积=182π⨯=cm 2,∴它的表面积=16π+=16)π cm 2,故选D . 考点:1.圆锥的计算;2.压轴题.6.(2016甘肃省白银市)如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A.B.C.D.【答案】A.当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x,∴y=12•(4﹣x)•x=2122x x-+,故选A.考点:1.动点问题的函数图象;2.分类讨论.二、填空题7.(2016四川省凉山州)如图,四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=CD=P是四边形ABCD四条边上的一个动点,若P到BD的距离为52,则满足条件的点P有个.【答案】2.考点:1.点到直线的距离;2.分类讨论.8.(2016四川省宜宾市)如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C两点),将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的有(写出所有正确结论的序号)①△CMP∽△BPA;②四边形AMCB的面积最大值为10;③当P为BC中点时,AE为线段NP的中垂线;④线段AM的最小值为⑤当△ABP≌△ADN时,BP=4.【答案】①②⑤.考点:相似形综合题.9.(2016四川省自贡市)如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为cm2.【答案】16.考点:1.一次函数综合题;2.压轴题.10.(2016江苏省宿迁市)如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为.【答案】4.考点:1.矩形的性质;2.等腰三角形的性质;3.勾股定理;4.分类讨论.11.(2016江西省)如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是.【答案】5.【解析】试题分析:分情况讨论:①当AP=AE=5时,则△AEP是等腰直角三角形,得出底边PE AE=②当PE=AE=5时,求出BE,由勾股定理求出PB,再由勾股定理求出等边AP即可;③当PA=PE时,底边AE=5;即可得出结论.试题解析:如图所示:①当AP=AE=5时,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底边PE AE=②当PE=AE=5时,∵BE=AB﹣AE=8﹣5=3,∠B=90°,∴PB==4,∴底边考点:1.矩形的性质;2.等腰三角形的性质;3.勾股定理;4.分类讨论.12.(2016甘肃省兰州市)对于一个矩形ABCD 及⊙M 给出如下定义:在同一平面内,如果矩形ABCD 的四个顶点到⊙M 上一点的距离相等,那么称这个矩形ABCD 是⊙M 的“伴侣矩形”.如图,在平面直角坐标系xOy 中,直线l :3y =-交x 轴于点M ,⊙M 的半径为2,矩形ABC D 沿直线运动(BD 在直线l 上),BD =2,AB ∥y 轴,当矩形ABCD 是⊙M 的“伴侣矩形”时,点C 的坐标为 .【答案】(12,2-)或(32,2). 【解析】试题分析:根据“伴侣矩形”的定义可知:圆上的点一定在矩形的对角线交点上,因为只有对角线交点到四个顶点的距离相等,由此画出图形,先求出直线与x 轴和y 轴两交点的坐标,和矩形的长和宽;有两种情况:①矩形在x 轴下方时,作辅助线构建相似三角形得比例式,分别求出DG 和DH 的长,从而求出CG 的长,根据坐标特点写出点C 的坐标;②矩形在x 轴上方时,也分别过C 、B 两点向两坐标轴作垂线,利用平行相似得比例式,求出C 的坐标.考点:1.圆的综合题;2.新定义;3.分类讨论.三、解答题13.(2016上海市)如图,抛物线25y ax bx =+-(a ≠0)经过点A (4,﹣5),与x 轴的负半轴交于点B ,与y 轴交于点C ,且OC =5OB ,抛物线的顶点为点D .(1)求这条抛物线的表达式;(2)联结AB 、BC 、CD 、DA ,求四边形ABCD 的面积;(3)如果点E 在y 轴的正半轴上,且∠BEO =∠ABC ,求点E 的坐标.【答案】(1)245y x x =--;(2)18;(3)E (0,32).(2)由245y x x =--,得顶点D 的坐标为(2,﹣9).连接AC ,∵点A 的坐标是(4,﹣5),点C 的坐标是(0,﹣5),又S △ABC =12×4×5=10,S △ACD =12×4×4=8,∴S 四边形ABCD =S △ABC +S △ACD =18; (3)过点C 作CH ⊥AB ,垂足为点H .∵S △ABC =12×AB ×CH =10,AB =,∴CH =,在RT △BCH 中,∠BHC =90°,BC =,BH ==,∴tan ∠CBH =23CH BH =.∵在RT △BOE 中,∠BOE =90°,tan ∠BEO =BO EO,∵∠BEO =∠ABC ,∴BO EO =23,得EO =32,∴点E 的坐标为(0,32). 考点:二次函数综合题.14.(2016上海市)如图所示,梯形ABCD 中,AB ∥DC ,∠B =90°,AD =15,AB =16,BC =12,点E 是边AB 上的动点,点F 是射线CD 上一点,射线ED 和射线AF 交于点G ,且∠AGE =∠DAB .(1)求线段CD 的长;(2)如果△AEC 是以EG 为腰的等腰三角形,求线段AE 的长;(3)如果点F 在边CD 上(不与点C 、D 重合),设AE =x ,DF =y ,求y 关于x 的函数解析式,并写出x 的取值范围.【答案】(1)7;(2)15或252;(3)22518x y x -=(2592x <<).考点:1.四边形综合题;2.相似三角形综合题;3.分类讨论;4.压轴题.15.(2016北京市)在等边△ABC中:(1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC 的对称点为M,连接AM,PM.①依题意将图2补全;②小茹通过观察、实验提出猜想:在点P,Q运动的过程中,始终有PA=PM,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明PA=PM,只需证△APM是等边三角形;想法2:在BA上取一点N,使得BN=BP,要证明PA=PM,只需证△ANP≌△PCM;想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证PA=PM,只需证PA=CK,PM=CK…请你参考上面的想法,帮助小茹证明PA=PM(一种方法即可).【答案】(1)40°;(2)①作图见解析;②证明见解析.考点:三角形综合题.16.(2016北京市)在平面直角坐标系xOy 中,点P 的坐标为(1x ,1y ),点Q 的坐标为(2x ,2y ),且12x x ≠,12y y ≠,若P ,Q 为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P ,Q 的“相关矩形”.下图为点P ,Q 的“相关矩形”的示意图.(1)已知点A 的坐标为(1,0).①若点B 的坐标为(3,1)求点A ,B 的“相关矩形”的面积;②点C 在直线x =3上,若点A ,C 的“相关矩形”为正方形,求直线AC 的表达式;(2)⊙O M 的坐标为(m ,3).若在⊙O 上存在一点N ,使得点M ,N 的“相关矩形”为正方形,求m 的取值范围.【答案】(1)①2;②1y x =- 或 1y x =-+;(2)1≤m ≤5 或者51m -≤≤-.考点:1.圆的综合题;2.新定义.17.(2016吉林省长春市)如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=8,∠BAD=60°,点E从点A出发,沿AB以每秒2个单位长度的速度向终点B运动,当点E不与点A重合时,过点E作EF⊥AD于点F,作EG∥AD交AC于点G,过点G作GH⊥AD交AD(或AD的延长线)于点H,得到矩形EFHG,设点E运动的时间为t秒(1)求线段EF的长(用含t的代数式表示);(2)求点H与点D重合时t的值;(3)设矩形EFHG与菱形ABCD重叠部分图形的面积与S平方单位,求S与t之间的函数关系式;(4)矩形EFHG的对角线EH与FG相交于点O′,当OO′∥AD时,t的值为;当OO′⊥AD时,t的值为.【答案】(1)EF=t;(2)t=83;(3)228(0)383 (4)3tSt⎧≤≤⎪⎪=⎨⎪+-<≤⎪⎩;(4)t=4;t=3.考点:1.四边形综合题;2.动点型;3.分类讨论;4.分段函数;5.压轴题.18.(2016吉林省长春市)如图,在平面直角坐标系中.有抛物线2(3)4y a x =-+和2()y a x h =-.抛物线2(3)4y a x =-+经过原点,与x 轴正半轴交于点A ,与其对称轴交于点B .P 是抛物线2(3)4y a x =-+上一点,且在x 轴上方.过点P 作x 轴的垂线交抛物线2()y a x h =-于点Q .过点Q 作PQ 的垂线交抛物线2()y a x h =-于点'Q (不与点Q 重合),连结'PQ .设点P 的横坐标为m .(1)求a 的值;(2)当抛物线2()y a x h =-经过原点时,设△'PQQ 与△OAB 重叠部分图形的周长为l .②求l 与m 之间的函数关系式;(3)当h 为何值时,存在点P ,使以点O 、A 、Q 、'Q 为顶点的四边形是轴对称图形?直接写出h 的值.【答案】(1)49a =-;(2)①43;②24 (03)1171010(36)163m m l m m m <≤⎧⎪=⎨-++<<⎪⎩;(3)h =3或3-3+考点:1.二次函数综合题;2.分类讨论;3.压轴题.19.(2016四川省凉山州)为了更好的保护美丽图画的邛海湿地,西昌市污水处理厂决定先购买A、B两型污水处理设备共20台,对邛海湿地周边污水进行处理,每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨.(1)求A、B两型污水处理设备每周分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?【答案】(1)A型污水处理设备每周每台可以处理污水240吨,B型污水处理设备每周每台可以处理污水200吨;(2)共有三种方案,详见解析,购买A型污水处理设备13台,则购买B型污水处理设备7台时,所需购买资金最少,最少是226万元.即A型污水处理设备每周每台可以处理污水240吨,B型污水处理设备每周每台可以处理污水200吨;考点:1.一元一次不等式组的应用;2.二元一次方程组的应用;3.最值问题;4.方案型.20.(2016四川省凉山州)如图,已知抛物线2y ax bx c =++(a ≠0)经过A (﹣1,0)、B (3,0)、C (0,﹣3)三点,直线l 是抛物线的对称轴. (1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当点P 到点A 、点B 的距离之和最短时,求点P 的坐标; (3)点M 也是直线l 上的动点,且△MAC 为等腰三角形,请直接写出所有符合条件的点M 的坐标.【答案】(1)223y x x =--;(2)P (1,0);(3). 【解析】试题分析:(1)直接将A 、B 、C 三点坐标代入抛物线的解析式中求出待定系数即可;(2)由图知:A .B 点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知,直线l 与x 轴的交点,即为符合条件的P 点;(3)由于△MAC 的腰和底没有明确,因此要分三种情况来讨论:①MA =AC 、②MA =MC 、③AC =MC ;可先设出M 点的坐标,然后用M 点纵坐标表示△MAC 的三边长,再按上面的三种情况列式求解.试题解析:(1)将A (﹣1,0)、B (3,0)、C (0,﹣3)代入抛物线2y ax bx c =++中,得:09303a b c a b c c -+=⎧⎪++=⎨⎪=-⎩考点:1.二次函数综合题;2.分类讨论;3.综合题;4.动点型.21.(2016四川省宜宾市)如图,已知二次函数21y a x b x =+过(﹣2,4),(﹣4,4)两点.(1)求二次函数1y 的解析式;(2)将1y 沿x 轴翻折,再向右平移2个单位,得到抛物线2y ,直线y =m (m >0)交2y 于M 、N 两点,求线段MN 的长度(用含m 的代数式表示);(3)在(2)的条件下,1y 、2y 交于A 、B 两点,如果直线y =m 与1y 、2y 的图象形成的封闭曲线交于C 、D 两点(C 在左侧),直线y =﹣m 与1y 、2y 的图象形成的封闭曲线交于E 、F 两点(E 在左侧),求证:四边形CEFD 是平行四边形.【答案】(1)21132y x x =--;(2)(3)证明见解析.CD =12x x -==,由219(1)22y m y x =-⎧⎪⎨=+-⎪⎩,消去y 得到22820x x m +-+=,设两个根为1x ,2x ,则EF =12x x -==∴EF =CD ,EF ∥CD ,∴四边形CEFD 是平行四边形.考点:二次函数综合题.22.(2016四川省巴中市)已知:如图,四边形ABCD 是平行四边形,延长BA 至点E ,使AE +CD =AD .连结CE ,求证:C E 平分∠BCD .【答案】证明见解析.考点:1.平行四边形的性质;2.和差倍分.23.(2016四川省巴中市)如图,在平面直角坐标系中,抛物线245y mx mx m =+-(m <0)与x 轴交于点A 、B (点A 在点B 的左侧),该抛物线的对称轴与直线3y x =相交于点E ,与x 轴相交于点D ,点P 在直线y x =上(不与原点重合),连接PD ,过点P 作PF ⊥PD 交y 轴于点F ,连接DF .(1)如图①所示,若抛物线顶点的纵坐标为 (2)求A 、B 两点的坐标;(3)如图②所示,小红在探究点P 的位置发现:当点P 与点E 重合时,∠PDF 的大小为定值,进而猜想:对于直线3y x =上任意一点P (不与原点重合),∠PDF 的大小为定值.请你判断该猜想是否正确,并说明理由.【答案】(1)2333y x x =--+;(2)A (﹣5,0)、B (1,0);(3)∠PDF =60°.考点:1.二次函数综合题;2.定值问题.24.(2016四川省广安市)如图,抛物线2y x bx c =++与直线132y x =-交于A 、B 两点,其中点A 在y 轴上,点B 坐标为(﹣4,﹣5),点P 为y 轴左侧的抛物线上一动点,过点P 作PC ⊥x 轴于点C ,交AB 于点D .(1)求抛物线的解析式;(2)以O ,A ,P ,D 为顶点的平行四边形是否存在?如存在,求点P 的坐标;若不存在,说明理由. (3)当点P 运动到直线AB 下方某一处时,过点P 作PM ⊥AB ,垂足为M ,连接PA 使△PAM 为等腰直角三角形,请直接写出此时点P 的坐标.【答案】(1)2932y x x =+-;(2)P (2-1--,(﹣1,132-),(﹣3,152-);(3)P (32-,152-). 【解析】试题分析:(1)先确定出点A 坐标,然后用待定系数法求抛物线解析式;(2)先用m 表示出PD ,当PD =OA =3,故存在以O ,A ,P ,D 为顶点的平行四边形,得到243m m +=,分两种情况进行讨论计算即可;(3)由△PAM 为等腰直角三角形,得到∠BAP =45°,从而求出直线AP 的解析式,最后求出直线AP 和抛物线的交点坐标即可. 试题解析:(1)∵直线132y x =-交于A 、B 两点,其中点A 在y 轴上,∴A (0,﹣3),∵B (﹣4,﹣5),考点:1.二次函数综合题;2.动点型;3.存在型;4.分类讨论;5.压轴题.25.(2016四川省成都市)如图,在Rt △ABC 中,∠ABC =90°,以CB 为半径作⊙C ,交AC 于点D ,交AC 的延长线于点E ,连接ED ,BE . (1)求证:△ABD ∽△AEB ; (2)当43AB BC 时,求tanE ; (3)在(2)的条件下,作∠BAC 的平分线,与BE 交于点F ,若AF =2,求⊙C 的半径.【答案】(1)证明见解析;(2)12;(3)8.考点:圆的综合题.26.(2016四川省成都市)如图,在平面直角坐标系xOy 中,抛物线2(1)3y a x =+-与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C (0,83-),顶点为D ,对称轴与x 轴交于点H ,过点H 的直线l 交抛物线于P ,Q 两点,点Q 在y 轴的右侧. (1)求a 的值及点A ,B 的坐标;(2)当直线l 将四边形ABCD 分为面积比为3:7的两部分时,求直线l 的函数表达式;(3)当点P 位于第二象限时,设PQ 的中点为M ,点N 在抛物线上,则以DP 为对角线的四边形DMPN 能否为菱形?若能,求出点N 的坐标;若不能,请说明理由.【答案】(1)13a =,A (-4,0),B (2,0);(2)y =2x +2或4433y x =--;(3)存在,N (-132-, 1). 【解析】由⎪⎩⎪⎨⎧-+=+=3832312x x y k kx y ,∴038)32(312=---+k x k x ,∴1223x x k+=-+,212123y y kx k kx k k +=+++=,∵点M 是线段PQ 的中点,∴由中点坐标公式的点M (312k -,232k ).假设存在这样的N 点如图,直线DN ∥PQ ,设直线DN 的解析式为y =kx +k ﹣3,由⎪⎩⎪⎨⎧-+=-+=38323132x x y k kx y ,解考点:1.二次函数综合题;2.压轴题.27.(2016四川省攀枝花市)如图,在△AOB中,∠AOB为直角,OA=6,OB=8,半径为2的动圆圆心Q从点O出发,沿着OA方向以1个单位长度/秒的速度匀速运动,同时动点P从点A出发,沿着AB方向也以1个单位长度/秒的速度匀速运动,设运动时间为t秒(0<t≤5)以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连结CD、QC.(1)当t为何值时,点Q与点D重合?(2)当⊙Q经过点A时,求⊙P被OB截得的弦长.(3)若⊙P与线段QC只有一个公共点,求t的取值范围.【答案】(1)3011;(2;(3)0<t ≤1813或3011<t ≤5.考点:1.圆的综合题;2.分类讨论;3.动点型;4.压轴题.28.(2016四川省攀枝花市)如图,抛物线2y x bx c =++与x 轴交于A 、B 两点,B 点坐标为(3,0),与y 轴交于点C (0,﹣3) (1)求抛物线的解析式;(2)点P 在抛物线位于第四象限的部分上运动,当四边形ABPC 的面积最大时,求点P 的坐标和四边形ABPC 的最大面积.(3)直线l 经过A 、C 两点,点Q 在抛物线位于y 轴左侧的部分上运动,直线m 经过点B 和点Q ,是否存在直线m ,使得直线l 、m 与x 轴围成的三角形和直线l 、m 与y 轴围成的三角形相似?若存在,求出直线m 的解析式,若不存在,请说明理由.【答案】(1)223y x x =--;(2)P 点坐标为(32,154-)时,四边形ABPC 的面积最大,最大面积为758;(3)存在,113y x =-.在223y x x =--中,令y =0可得2023x x =--,解得x =﹣1或x =3,∴A 点坐标为(﹣1,0),∴AB =3﹣(﹣1)=4,且OC =3,∴S △ABC =12AB •OC =12×4×3=6,∵B (3,0),C (0,﹣3),∴直线BC 解析式为y =x ﹣3,设P 点坐标为(x ,223x x --),则M 点坐标为(x ,x ﹣3),∵P 点在第四限,∴PM =23(23)x x x ----=23x x -+,∴S △PBC =12PM •OH +12PM •HB =12PM •(OH +HB )=12PM •OB =32PM ,∴当PM 有最大值时,△PBC 的面积最大,则四边形ABPC 的面积最大,∵PM =23x x -+=239()24x --+,∴当x =32时,PM max =94,则S △PBC =3924⨯=278,此时P 点坐标为(32,154-),S 四边形ABPC =S △ABC +S △PBC =6+278=758,即当P 点坐标为(32,154-)时,四边形ABPC 的面积最大,最大面积为758;考点:1.二次函数综合题;2.存在型;3.最值问题;4.二次函数的最值;5.动点型;6.压轴题.29.(2016四川省泸州市)如图,△ABC内接于⊙O,BD为⊙O的直径,BD与AC相交于点H,AC的延长线与过点B的直线相交于点E,且∠A=∠EBC.(1)求证:B E是⊙O的切线;(2)已知CG∥EB,且CG与BD、BA分别相交于点F、G,若BG•BA=48,FG=,DF=2BF,求AH的值.【答案】(1)证明见解析;(2)考点:1.圆的综合题;2.三角形的外接圆与外心;3.切线的判定.30.(2016四川省泸州市)如图,在平面直角坐标系中,点O为坐标原点,直线l与抛物线2=+相交于A(1,,B(4,0)两点.y mx nx(1)求出抛物线的解析式;(2)在坐标轴上是否存在点D,使得△ABD是以线段AB为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;(3)点P是线段AB上一动点,(点P不与点A、B重合),过点P作PM∥OA,交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,若△BCN、△PMN的面积S△B C N、S△P M N满足S△B C N=2S△P M N,求出MNNC的值,并求出此时点M的坐标.【答案】(1)2y=+;(2)D(1,0)或(0)或(0);(3),M(1,).综上可知存在满足条件的D 点,其坐标为(1,0)或(0,2)或(0,2);(3)如图2,过P 作PF ⊥CM 于点F ,∵PM ∥OA ,∴Rt △ADO ∽Rt △MFP ,∴MF ADPF OD==∴MF =,在Rt △ABD 中,BD =3,AD =∴tan ∠ABD =∴∠ABD =60°,设BC =a ,则CN =a ,在Rt △PFN 中,∠PNF =∠BNC =30°,∴tan ∠PNF =3PF PN =,∴FN =,∴MN =MF +FN =PF ,∵S △B C N =2S △P M N ,∴22122=⨯⨯,∴a =PF ,∴NC =a =PF ,∴MNNC ==,∴MN =NC ==a ,∴MC =MN +NC =()a ,∴M 点坐标为(4﹣a ,()a ),又M 点在抛物线上,代入可得2))a a -+-=()a ,解得a =3或a =0(舍去),OC =4﹣a =1,MC =,∴点M 的坐标为(1,).考点:1.二次函数综合题;2.分类讨论;3.动点型;4.存在型;5.压轴题. 31.(2016四川省资阳市)已知抛物线与x 轴交于A (6,0)、B (54-,0)两点,与y 轴交于点C ,过抛物线上点M (1,3)作MN ⊥x 轴于点N ,连接OM .(1)求此抛物线的解析式;(2)如图1,将△OMN 沿x 轴向右平移t 个单位(0≤t ≤5)到△O ′M ′N ′的位置,MN ′、M ′O ′与直线AC 分别交于点E 、F .①当点F 为M ′O ′的中点时,求t 的值;②如图2,若直线M ′N ′与抛物线相交于点G ,过点G 作GH ∥M ′O ′交AC 于点H ,试确定线段EH 是否存在最大值?若存在,求出它的最大值及此时t 的值;若不存在,请说明理由.【答案】(1)241921515y x x =-++;(2)①1;②t =2时,EH 最大值为考点:1.二次函数综合题;2.最值问题;3.二次函数的最值;4.存在型;5.平移的性质;6.压轴题.32.(2016山东省临沂市)现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?【答案】(1)22 (01)157 (1)x xyx x<<⎧=⎨+>⎩甲,=163y x+乙;(2)当12<x<4时,选乙快递公司省钱;当x=4或x=12时,选甲、乙两家快递公司快递费一样多;当0<x<12或x>4时,选甲快递公司省钱.当0<x <12或x >4时,选甲快递公司省钱. 考点:1.一次函数的应用;2.分段函数;3.方案型.33.(2016山东省临沂市)如图,在平面直角坐标系中,直线y =﹣2x +10与x 轴,y 轴相交于A ,B 两点,点C 的坐标是(8,4),连接AC ,BC .(1)求过O ,A ,C 三点的抛物线的解析式,并判断△ABC 的形状;(2)动点P 从点O 出发,沿OB 以每秒2个单位长度的速度向点B 运动;同时,动点Q 从点B 出发,沿BC 以每秒1个单位长度的速度向点C 运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t 秒,当t 为何值时,PA =QA ?(3)在抛物线的对称轴上,是否存在点M ,使以A ,B ,M 为顶点的三角形是等腰三角形?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】(1)21566y x x =-,直角三角形;(2)103;(3)M 1(52),M 2(52,M 3(52,2),M 4(52,2-).(3)存在,∵21566y x x =-,∴抛物线的对称轴为x =52,∵A (5,0),B (0,10),∴AB = 设点M (52,m );①若BM =BA 时,∴225()(10)1252m +-=,∴m 1=202+,m 2=202-M 1(52,202+),M 2(52②若AM =AB 时,∴225()1252m +=,∴m 3=2,m 4=2-,∴M 3(52,2),M 4(52,2-); ③若MA =MB 时,∴222255(5)()(10)22m m -+=+-,∴m =5,∴M (52,5),此时点M 恰好是线段AB 的中点,构不成三角形,舍去;∴点M 的坐标为:M 1(52,202+),M 2(52,202-),M 3(52,2),M 4(52,2-).考点:1.二次函数综合题;2.动点型;3.存在型;4.分类讨论;5.压轴题.34.(2016山东省德州市)如图,⊙O 是△ABC 的外接圆,AE 平分∠BAC 交⊙O 于点E ,交BC 于点D ,过点E做直线l∥BC.(1)判断直线l与⊙O的位置关系,并说明理由;(2)若∠ABC的平分线BF交AD于点F,求证:B E=EF;(3)在(2)的条件下,若DE=4,DF=3,求AF的长.【答案】(1)直线l与⊙O相切;(2)证明见解析;(3)214.∵AE平分∠BAC,∴∠BAE=∠CAE,∴BE CE,∴∠BOE=∠COE.又∵OB=OC,∴OE⊥BC.∵l∥BC,∴OE⊥l,∴直线l与⊙O相切.(2)∵BF平分∠ABC,∴∠ABF=∠CBF.又∵∠CBE=∠CAE=∠BAE,∴∠CBE+∠CBF=∠BAE+∠ABF.又∵∠EFB =∠BAE +∠ABF ,∴∠EBF =∠EFB ,∴BE =EF .(3)由(2)得BE =EF =DE +DF =7.∵∠DBE =∠BAE ,∠DEB =∠BEA ,∴△BED ∽△AEB ,∴DE BE BE AE =,即477AE=,解得;AE =494,∴AF =AE ﹣EF =494﹣7=214. 考点:圆的综合题.35.(2016山东省德州市)已知,m ,n 是一元二次方程2+430x x +=的两个实数根,且|m |<|n |,抛物线2y x bx c =++的图象经过点A (m ,0),B (0,n ),如图所示.(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x 轴的另一个交点为抛物线的顶点为D ,试求出点C ,D 的坐标,并判断△BCD 的形状;(3)点P 是直线BC 上的一个动点(点P 不与点B 和点C 重合),过点P 作x 轴的垂线,交抛物线于点M ,点Q 在直线BC 上,距离点P个单位长度,设点P 的横坐标为t ,△PMQ 的面积为S ,求出S 与t 之间的函数关系式.【答案】(1)223y x x =--;(2)△BCD 是直角三角形;(3)S =2213(03)2213 (03)22t t t t t t t ⎧-+<<⎪⎪⎨⎪-<>⎪⎩或.考点:1.二次函数综合题;2.分类讨论.36.(2016江苏省宿迁市)如图,在平面直角坐标系xOy 中,将二次函数21y x =-的图象M 沿x 轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N . (1)求N 的函数表达式;(2)设点P (m ,n )是以点C (1,4)为圆心、1为半径的圆上一动点,二次函数的图象M 与x 轴相交于两点A 、B ,求22PA PB +的最大值;(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M 与N 所围成封闭图形内(包括边界)整点的个数.【答案】(1)245y x x =-++;(2)38+(3)25.。

四川凉山州2016中考试题数学卷(解析版)

四川凉山州2016中考试题数学卷(解析版)

2016年四川省凉山州中考数学试卷 A 卷一、选择题:(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,请把正确选项的字母填涂在答题卡上相应的位置.1.12016-的倒数的绝对值是( )A .﹣2016B .12016C .2016D .12016-【答案】C . 【解析】试题分析:12016-的倒数是﹣2016,﹣2016的绝对值是2016.故选C .考点:倒数;绝对值.2.如图,是由若干个大小相同的正方体搭成的几何体的三视图,该几何体所用的正方体的个数是( )A .6B .4C .3D .2 【答案】A .考点:由三视图判断几何体. 3.下列计算正确的是( ) A .235a b ab +=B .2363(2)6a b a b -=- C .8232=D .222()a b a b +=+【答案】C .【解析】试题分析:A .2a+3b 无法计算,故此选项错误;B .2363(2)8a b a b -=-,故此选项错误; C 8232=D .222()2a b a b ab +=++,故此选项错误; 故选C .考点:二次根式的加减法;合并同类项;幂的乘方与积的乘方;完全平方公式.4.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为( )A .7B .7或8C .8或9D .7或8或9【答案】D . 【解析】试题分析:设内角和为1080°的多边形的边数是n ,则(n ﹣2)•180°=1080°,解得:n=8.则原多边形的边数为7或8或9.故选D . 考点:多边形内角与外角.5.在线段、平行四边形、矩形、等腰三角形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是( )A .2个B .3个C .4个D .5个 【答案】B .考点:中心对称图形;轴对称图形. 6.已知已知1x 、2x 是一元二次方程2362x x =-的两根,则1122x x x x -+的值是( )A .43-B .83C .83-D .43【答案】D . 【解析】 试题分析:∵1x 、2x 是一元二次方程2362x x =-的两根,∴1223x x +=-,122x x =-,∴1122x x x x -+=24(2)33---=.故选D . 考点:根与系数的关系.7.关于x 的方程32211x m x x -=+++无解,则m 的值为( ) A .﹣5 B .﹣8 C .﹣2 D .5【答案】A . 【解析】试题分析:去分母得:3x ﹣2=2x+2+m ,由分式方程无解,得到x+1=0,即x=﹣1,代入整式方程得:﹣5=﹣2+2+m ,解得:m=﹣5,故选A . 考点:分式方程的解.8.如图,AB∥CD,直线EF 分别交AB 、CD 于E 、F 两点,∠BEF 的平分线交CD 于点G ,若∠EFG=52°,则∠EGF 等于( )A .26°B .64°C .52°D .128° 【答案】B .考点:平行线的性质.9.二次函数2y ax bx c =++(0a ≠)的图象如图,则反比例函数ay x =-与一次函数y bx c =-在同一坐标系内的图象大致是( )A .B .C .D . 【答案】C . 【解析】试题分析:观察二次函数图象可知:开口向上,a >0;对称轴大于0,2ba ->0,b <0;二次函数图象与y 轴交点在y 轴的正半轴,c >0.∵反比例函数中k=﹣a <0,∴反比例函数图象在第二、四象限内;∵一次函数y=bx ﹣c 中,b <0,﹣c <0,∴一次函数图象经过第二、三、四象限. 故选C .考点:反比例函数的图象;一次函数的图象;二次函数的图象.10.教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在形同条件下各打了5发子弹,命中环数如下:甲:9、8、7、7、9;乙:10、8、9、7、6.应该选( )参加.A .甲B .乙C .甲、乙都可以D .无法确定 【答案】A .考点:方差.11.已知,一元二次方程28150x x -+=的两根分别是⊙O1和⊙O2的半径,当⊙O1和⊙O2相切时,O1O2的长度是( )A .2B .8C .2或8D .2<O2O2<8 【答案】C . 【解析】试题分析:∵⊙O1、⊙O2的半径分别是方程x2﹣8x+15=0的两根,解得⊙O1、⊙O2的半径分别是3和5,∴①当两圆外切时,圆心距O1O2=3+5=8; ②当两圆内切时,圆心距O1O2=5﹣2=2. 故选C .考点:圆与圆的位置关系;根与系数的关系;分类讨论.12.观察图中正方形四个顶点所标的数字规律,可知,数2016应标在( )A .第504个正方形的左下角B .第504个正方形的右下角C .第505个正方形的左上角D .第505个正方形的右下角 【答案】D .考点:规律型:点的坐标;规律型. 二、填空题:(共5个小题,每小题4分,共20分)13.分解因式:39a b ab - = . 【答案】ab (a+3)(a ﹣3). 【解析】试题分析:39a b ab -=2(9)b a -=ab (a+3)(a ﹣3).故答案为:ab (a+3)(a ﹣3).考点:提公因式法与公式法的综合运用.14.今年西昌市的洋葱喜获丰收,据估计洋葱的产量约是325 000 000千克,这个数据用科学记数法表示为 克. 【答案】3.25×1011. 【解析】试题分析:325 000 000千克=325 000 000 000克=3.25×1011克,故答案为:3.25×1011. 考点:科学记数法—表示较大的数.15.若实数x 满足22210x x --=,则221x x += .【答案】10. 【解析】试题分析:∵22210x x --=,∴1220x x --=,∴122x x -=∴21()8x x -=,即22128xx-+=,∴221xx+=10,故答案为:10.考点:代数式求值;条件求值.16.将抛物线2y x=-先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为.【答案】2611 y x x=-+-.考点:二次函数图象与几何变换.17.如图,△ABC的面积为12cm2,点D、E分别是AB、AC边的中点,则梯形DBCE的面积为 cm2.【答案】9.【解析】试题分析:∵点D、E分别是AB、AC边的中点,∴DE是三角形的中位线,∴DE=12BC,DE∥BC,∴△ADE∽△ABC,∴ΔADEΔABC14SS=,∵△ABC的面积为12cm2,∴△ADE的面积为3cm2,∴梯形DBCE的面积=12﹣3=9cm2,故答案为:9.考点:三角形中位线定理.三、解答题:(共2小题,每小题6分,共12分)18.计算:02016 133tan6012( 3.14)(1)π-+-+-.【答案】1.【解析】试题分析:直接利用绝对值的性质以及特殊角的三角函数值和零指数幂的性质、二次根式的性质分别化简求出答案.31332311-+=1.考点:实数的运算;零指数幂;特殊角的三角函数值.19.先化简,再求值:21222xx y x xy x⎛⎫++÷⎪--⎝⎭,其中实数x、y满足2421 y x x=--.【答案】2x y-,2.考点:分式的化简求值;二次根式有意义的条件.四、解答题:(共3小题,每小题8分,共24分)20.如图,▱ABCD的对角线AC、BD交于点O,EF过点O且与BC、AD分别交于点E、F.试猜想线段AE、CF的关系,并说明理由.【答案】AE与CF的关系是平行且相等.考点:平行四边形的性质;全等三角形的判定与性质.21.为了切实关注、关爱贫困家庭学生,某校对全校各班贫困家庭学生的人数情况进行了统计,以便国家精准扶贫政策有效落实.统计发现班上贫困家庭学生人数分别有2名、3名、4名、5名、6名,共五种情况.并将其制成了如下两幅不完整的统计图:(1)求该校一共有多少个班?并将条形图补充完整;(2)某爱心人士决定从2名贫困家庭学生的这些班级中,任选两名进行帮扶,请用列表法或树状图的方法,求出被选中的两名学生来自同一班级的概率.【答案】(1)20;(2)1 3.【解析】试题分析:(1)根据留守儿童有4名的班级有6个,占30%,可求得有留守儿童的班级总数,再求得留守儿童是2名的班数;(2)根据题意,将两个班级4名学生分别记作A1、A2、B1、B2,列表如下:A1 A2 B1 B2A1 A1,A2 A1,B1 A1,B2A2 A2,A1 A2,B1 A2,B2B1 B1,A1 B1,A2 B1,B2B2 B2,A1 B2,A2 B2,B1由上表可知,从这两个班级任选两名学生进行帮扶共有12种等可能结果,其中被选中的两名学生来自同一班级的有4种结果,∴被选中的两名学生来自同一班级的概率为4 12=1 3.考点:列表法与树状图法;扇形统计图;条形统计图.22.如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.(1)画出△A1B1C,直接写出点A1、B1的坐标;(2)求在旋转过程中,△ABC所扫过的面积.【答案】(1)A1(﹣1,4),B1(1,4);(2)133 4π+.(2)利用勾股定理求出AC的长,根据△ABC扫过的面积等于扇形CAA1的面积与△ABC 的面积和,然后列式进行计算即可.试题解析:(1)所求作△A1B1C如图所示:由A(4,3)、B(4,1)可建立如图所示坐标系,则点A1的坐标为(﹣1,4),点B1的坐标为(1,4);(2)22AB BC+2223+13∠ACA1=90°,∴在旋转过程中,△ABC所扫过的面积为:S扇形CAA1+S△ABC=29013)1323602π⋅+⨯⨯=1334π+.考点:作图-旋转变换;扇形面积的计算.五、解答题:(共2小题,每小题8分,共16分)23.为了更好的保护美丽图画的邛海湿地,西昌市污水处理厂决定先购买A、B两型污水处理设备共20台,对邛海湿地周边污水进行处理,每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨.(1)求A、B两型污水处理设备每周分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?【答案】(1)A型污水处理设备每周每台可以处理污水240吨,B型污水处理设备每周每台可以处理污水200吨;(2)共有三种方案,详见解析,购买A型污水处理设备13台,则购买B型污水处理设备7台时,所需购买资金最少,最少是226万元.考点:一元一次不等式组的应用;二元一次方程组的应用;最值问题;方案型. 24.阅读下列材料并回答问题:材料1:如果一个三角形的三边长分别为a ,b ,c ,记2a b c p ++=,那么三角形的面积为()()()S p p a p b p c --- ①古希腊几何学家海伦(Heron ,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式. 我国南宋数学家秦九韶(约1202﹣﹣约1261),曾提出利用三角形的三边求面积的秦九韶公式:222222142a b c S a b ⎡⎤⎛⎫+-=-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦ ②下面我们对公式②进行变形:22222222222114224a b c a b c a b ab ⎡⎤⎛⎫⎛⎫+-+-⎛⎫-=-⎢⎥ ⎪ ⎪⎪⎝⎭⎢⎥⎝⎭⎝⎭⎣⎦222222112424a b c a b c ab ab ⎛⎫⎛⎫+-+-=+- ⎪⎪⎝⎭⎝⎭2222222244ab a b c ab a b c ++---+=2222()()44a b c c a b +---=2222a b c a b c a c b b c a +++-+-+-=()()()p p a p b p c =---.这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦﹣﹣秦九韶公式.问题:如图,在△ABC 中,AB=13,BC=12,AC=7,⊙O 内切于△ABC,切点分别是D 、E 、F . (1)求△ABC 的面积; (2)求⊙O 的半径.【答案】(1)243;(2)332.(2)由三角形的面积=12lr ,计算即可.试题解析:(1)∵AB=13,BC=12,AC=7,∴p=131272++=16,∴()()()S p p a p b p c ---16349⨯⨯⨯3(2)∵△ABC 的周长l=AB+BC+AC=32,∴S=12lr=348332=332.考点:三角形的内切圆与内心;阅读型. B 卷(共30分) 一、填空题:(共2小题,每小题5分,共10分)25.已知关于x 的不等式组423()23(2)5x x a x x +>+⎧⎨>-+⎩仅有三个整数解,则a 的取值范围是 .【答案】﹣1≤a<23-.考点:一元一次不等式组的整数解.26.如图,四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=32,CD=22,点P是四边形ABCD四条边上的一个动点,若P到BD的距离为52,则满足条件的点P有个.【答案】2.【解析】试题分析:过点A作AE⊥BD于E,过点C作CF⊥BD于F,∵∠BAD=∠ADC=90°,AB=AD=32,CD=22,∴∠ABD=∠ADB=45°,∴∠CDF=90°﹣∠ADB=45°,∵sin∠ABD=AE AB,∴AE=AB•sin∠ABD=32•sin45°=3>52,CF=2<52,所以在AB和AD边上有符合P到BD的距离为52的点2个,故答案为:2.考点:点到直线的距离;分类讨论.二、解答题:(共2小题,27题8分,28题12分,共20分)27.如图,已知四边形ABCD内接于⊙O,A是BDC的中点,AE⊥AC于A,与⊙O及CB的延长线交于点F、E,且BF AD.(1)求证:△ADC∽△EBA;(2)如果AB=8,CD=5,求tan∠CAD的值.【答案】(1)证明见解析;(2)58. (2)解:∵A 是BDC 的中点,∴AB AC =,∴AB=AC=8,∵△ADC∽△EBA,∴∠CAD=∠AEC ,DC AC AB AE =,即588AE =,∴AE=645,∴tan∠CAD=tan∠AEC=AC AE =8645=58. 考点:相似三角形的判定与性质;圆周角定理.28.如图,已知抛物线2y ax bx c =++(a≠0)经过A (﹣1,0)、B (3,0)、C (0,﹣3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当点P 到点A 、点B 的距离之和最短时,求点P 的坐标;(3)点M 也是直线l 上的动点,且△MAC 为等腰三角形,请直接写出所有符合条件的点M 的坐标.【答案】(1)223y x x =--;(2)P (1,0);(3).考点:二次函数综合题;分类讨论;综合题;动点型.。

2016年四川省凉山州中考试题

2016年四川省凉山州中考试题

2016年四川省凉山州中考数学试卷一、选择题:(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,请把正确选项的字母填涂在答题卡上相应的位置. 1.的倒数的绝对值是( ) A .﹣2016B .C .2016D .2.如图,是由若干个大小相同的正方体搭成的几何体的三视图,该几何体所用的正方体的个数是( )A .6B .4C .3D .2 3.下列计算正确的是( ) A .2a+3b=5ab B .(﹣2a 2b )3=﹣6a 6b 3 C . D .(a+b )2=a 2+b 24.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为( ) A .7 B .7或8 C .8或9 D .7或8或95.在线段、平行四边形、矩形、等腰三角形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是( )A .2个B .3个C .4个D .5个6.已知x 1、x 2是一元二次方程3x 2=6﹣2x 的两根,则x 1﹣x 1x 2+x 2的值是( ) A .B .C .D .7.关于x 的方程无解,则m 的值为( )A .﹣5B .﹣8C .﹣2D .58.如图,AB ∥CD ,直线EF 分别交AB 、CD 于E 、F 两点,∠BEF 的平分线交CD 于点G ,若∠EFG=52°,则∠EGF 等于( )A .26°B .64°C .52°D .128°9.二次函数y=ax 2+bx+c (a ≠0)的图象如图,则反比例函数与一次函数y=bx ﹣c 在同一坐标系内的图象大致是( )A .B .C .D .10.教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在形同条件下各打了5发子弹,命中环数如下:甲:9、8、7、7、9;乙:10、8、9、7、6.应该选( )参加.A .甲B .乙C .甲、乙都可以D .无法确定11.已知,一元二次方程x 2﹣8x+15=0的两根分别是⊙O 1和⊙O 2的半径,当⊙O 1和⊙O 2相切时,O 1O 2的长度是( ) A .2 B .8 C .2或8 D .2<O 2O 2<812.观察图中正方形四个顶点所标的数字规律,可知,数2016应标在( )A .第504个正方形的左下角B .第504个正方形的右下角C .第505个正方形的左上角D .第505个正方形的右下角二、填空题:(共5个小题,每小题4分,共20分) 13.分解因式:a 3b ﹣9ab= .14.今年西昌市的洋葱喜获丰收,据估计洋葱的产量约是325 000 000千克,这个数据用科学记数法表示为 克. 15.若实数x 满足x 2﹣x ﹣1=0,则= .16.将抛物线y=﹣x 2先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为 .17.如图,△ABC 的面积为12cm 2,点D 、E 分别是AB 、AC 边的中点,则梯形DBCE 的面积为 cm 2.三、解答题:(共2小题,每小题6分,共12分) 18.计算:.19.先化简,再求值:,其中实数x 、y 满足.四、解答题:(共3小题,每小题8分,共24分)20.如图,▱ABCD 的对角线AC 、BD 交于点O ,EF 过点O 且与BC 、AD 分别交于点E 、F .试猜想线段AE 、CF 的关系,并说明理由.21.为了切实关注、关爱贫困家庭学生,某校对全校各班贫困家庭学生的人数情况进行了统计,以便国家精准扶贫政策有效落实.统计发现班上贫困家庭学生人数分别有2名、3名、4名、5名、6名,共五种情况.并将其制成了如下两幅不完整的统计图:(1)求该校一共有多少个班?并将条形图补充完整;(2)某爱心人士决定从2名贫困家庭学生的这些班级中,任选两名进行帮扶,请用列表法或树状图的方法,求出被选中的两名学生来自同一班级的概率.22.如图,在边长为1的正方形网格中,△ABC 的顶点均在格点上,点A 、B 的坐标分别是A (4,3)、B (4,1),把△ABC 绕点C 逆时针旋转90°后得到△A 1B 1C . (1)画出△A 1B 1C ,直接写出点A 1、B 1的坐标;(2)求在旋转过程中,△ABC 所扫过的面积.五、解答题:(共2小题,每小题8分,共16分)23.为了更好的保护美丽图画的邛海湿地,西昌市污水处理厂决定先购买A 、B 两型污水处理设备共20台,对邛海湿地周边污水进行处理,每台A 型污水处理设备12万元,每台B 型污水处理设备10万元.已知1台A 型污水处理设备和2台B 型污水处理设备每周可以处理污水640吨,2台A 型污水处理设备和3台B 型污水处理设备每周可以处理污水1080吨. (1)求A 、B 两型污水处理设备每周分别可以处理污水多少吨? (2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少? 24.阅读下列材料并回答问题:材料1:如果一个三角形的三边长分别为a ,b ,c ,记,那么三角形的面积为. ①古希腊几何学家海伦(Heron ,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式. 我国南宋数学家秦九韶(约1202﹣﹣约1261),曾提出利用三角形的三边求面积的秦九韶公式:. ②下面我们对公式②进行变形:=====.这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦﹣﹣秦九韶公式.问题:如图,在△ABC 中,AB=13,BC=12,AC=7,⊙O 内切于△ABC ,切点分别是D 、E 、F .(1)求△ABC 的面积; (2)求⊙O 的半径.六、B 卷填空题:(共2小题,每小题5分,共10分) 25.已知关于x 的不等式组仅有三个整数解,则a 的取值范围是 .26.如图,四边形ABCD 中,∠BAD=∠DC=90°,AB=AD=,CD=,点P 是四边形ABCD 四条边上的一个动点,若P 到BD 的距离为,则满足条件的点P 有 个.七、B 卷解答题:(共2小题,27题8分,28题12分,共20分) 27.如图,已知四边形ABCD 内接于⊙O ,A 是的中点,AE ⊥AC 于A ,与⊙O 及CB 的延长线交于点F 、E ,且. (1)求证:△ADC ∽△EBA ;(2)如果AB=8,CD=5,求tan ∠CAD 的值.28.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0)、B(3,0)、C(0,﹣3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P的坐标;(3)点M也是直线l上的动点,且△MAC为等腰三角形,请直接写出所有符合条件的点M的坐标.2016年四川省凉山州中考数学试卷参考答案与试题解析一、选择题:(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,请把正确选项的字母填涂在答题卡上相应的位置. 1.的倒数的绝对值是( ) A .﹣2016B .C .2016D .【考点】倒数;绝对值. 【分析】根据倒数的定义求出的倒数,再根据绝对值的定义即可求解.【解答】解:的倒数是﹣2016,﹣2016的绝对值是2016. 故选:C .2.如图,是由若干个大小相同的正方体搭成的几何体的三视图,该几何体所用的正方体的个数是( )A .6B .4C .3D .2【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形. 【解答】解:综合三视图可知,这个几何体的底层有3个小正方体,第2层有1个小正方体,第3层有1个小正方体,第4层有1个小正方体,因此搭成这个几何体所用小正方体的个数是3+1+1+1=6个. 故选:A .3.下列计算正确的是( ) A .2a+3b=5ab B .(﹣2a 2b )3=﹣6a 6b 3 C . D .(a+b )2=a 2+b 2【考点】二次根式的加减法;合并同类项;幂的乘方与积的乘方;完全平方公式. 【分析】直接利用二次根式加减运算法则以及完全平方公式和积的乘方运算法则分别化简求出答案.【解答】解:A 、2a+3b 无法计算,故此选项错误; B 、(﹣2a 2b )3=﹣8a 6b 3,故此选项错误;C 、+=2+=3,正确;D 、(a+b )2=a 2+b 2+2ab ,故此选项错误; 故选:C .4.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为( ) A .7 B .7或8 C .8或9 D .7或8或9 【考点】多边形内角与外角.【分析】首先求得内角和为1080°的多边形的边数,即可确定原多边形的边数. 【解答】解:设内角和为1080°的多边形的边数是n ,则(n ﹣2)•180°=1080°, 解得:n=8.则原多边形的边数为7或8或9. 故选:D .5.在线段、平行四边形、矩形、等腰三角形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是( )A .2个B .3个C .4个D .5个 【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念进行判断即可. 【解答】解:线段、矩形、圆既是轴对称图形又是中心对称图形, 平行四边形不是轴对称图形是中心对称图形, 等腰三角形是轴对称图形不是中心对称图形, 故选:B .6.已知x 1、x 2是一元二次方程3x 2=6﹣2x 的两根,则x 1﹣x 1x 2+x 2的值是( ) A .B .C .D .【考点】根与系数的关系.【分析】由x 1、x 2是一元二次方程3x 2=6﹣2x 的两根,结合根与系数的关系可得出x 1+x 2=﹣,x 1•x 2=﹣2,将其代入x 1﹣x 1x 2+x 2中即可算出结果. 【解答】解:∵x 1、x 2是一元二次方程3x 2=6﹣2x 的两根, ∴x 1+x 2=﹣=﹣,x 1•x 2==﹣2, ∴x 1﹣x 1x 2+x 2=﹣﹣(﹣2)=. 故选D .7.关于x 的方程无解,则m 的值为( )A .﹣5B .﹣8C .﹣2D .5 【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,由分式方程无解得到x+1=0,求出x 的值,代入整式方程求出m 的值即可.【解答】解:去分母得:3x ﹣2=2x+2+m , 由分式方程无解,得到x+1=0,即x=﹣1, 代入整式方程得:﹣5=﹣2+2+m , 解得:m=﹣5, 故选A8.如图,AB ∥CD ,直线EF 分别交AB 、CD 于E 、F 两点,∠BEF 的平分线交CD 于点G ,若∠EFG=52°,则∠EGF 等于( )A .26°B .64°C .52°D .128° 【考点】平行线的性质.【分析】根据平行线及角平分线的性质解答. 【解答】解:∵AB ∥CD , ∴∠BEF+∠EFG=180°, ∴∠BEF=180°﹣52°=128°; ∵EG 平分∠BEF , ∴∠BEG=64°;∴∠EGF=∠BEG=64°(内错角相等). 故选:B .9.二次函数y=ax 2+bx+c (a ≠0)的图象如图,则反比例函数与一次函数y=bx ﹣c 在同一坐标系内的图象大致是( )A .B .C .D .【考点】反比例函数的图象;一次函数的图象;二次函数的图象.【分析】根据二次函数的图象找出a 、b 、c 的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.【解答】解:观察二次函数图象可知:开口向上,a >0;对称轴大于0,﹣>0,b <0;二次函数图象与y 轴交点在y 轴的正半轴,c >0.∵反比例函数中k=﹣a <0,∴反比例函数图象在第二、四象限内; ∵一次函数y=bx ﹣c 中,b <0,﹣c <0, ∴一次函数图象经过第二、三、四象限. 故选C .10.教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在形同条件下各打了5发子弹,命中环数如下:甲:9、8、7、7、9;乙:10、8、9、7、6.应该选( )参加.A .甲B .乙C .甲、乙都可以D .无法确定 【考点】方差.【分析】根据题意分别求出甲、乙的平均数和方差,根据方差越小越稳定,可以解答本题.【解答】解:由题意可得, 甲的平均数为:,方差为:=0.8,乙的平均数为:,方差为:=2,∵0.8<2,∴选择甲射击运动员, 故选A .11.已知,一元二次方程x 2﹣8x+15=0的两根分别是⊙O 1和⊙O 2的半径,当⊙O 1和⊙O 2相切时,O 1O 2的长度是( ) A .2 B .8 C .2或8 D .2<O 2O 2<8 【考点】圆与圆的位置关系;根与系数的关系.【分析】先解方程求出⊙O 1、⊙O 2的半径,再分两圆外切和两圆内切两种情况讨论求解. 【解答】解:∵⊙O 1、⊙O 2的半径分别是方程x 2﹣8x+15=0的两根, 解得⊙O 1、⊙O 2的半径分别是3和5. ∴①当两圆外切时,圆心距O 1O 2=3+5=8; ②当两圆内切时,圆心距O 1O 2=5﹣2=2. 故选C .12.观察图中正方形四个顶点所标的数字规律,可知,数2016应标在( )A .第504个正方形的左下角B .第504个正方形的右下角C .第505个正方形的左上角D .第505个正方形的右下角【考点】规律型:点的坐标.【分析】根据图形中对应的数字和各个数字所在的位置,可以推出数2016在第多少个正方形和它所在的位置,本题得以解决.【解答】解:∵2016÷4=504,又∵由题目中给出的几个正方形观察可知,每个正方形对应四个数,而第一个最小的数是0,0在右下角,然后按逆时针由小变大,∴第504个正方形中最大的数是2015,∴数2016在第505个正方形的右下角,故选D .二、填空题:(共5个小题,每小题4分,共20分)13.分解因式:a 3b ﹣9ab= ab (a+3)(a ﹣3) .【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式ab ,然后再利用平方差公式继续分解,即可求得答案.【解答】解:a 3b ﹣9ab=a (a 2﹣9)=ab (a+3)(a ﹣3).故答案为:ab (a+3)(a ﹣3).14.今年西昌市的洋葱喜获丰收,据估计洋葱的产量约是325 000 000千克,这个数据用科学记数法表示为 3.25×1011 克.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【解答】解:325 000 000千克=325 000 000 000克=3.25×1011,故答案为:3.25×1011.15.若实数x 满足x 2﹣x ﹣1=0,则= 10 . 【考点】代数式求值.【分析】根据x 2﹣x ﹣1=0,可以求得的值,从而可以得到的值,本题得以解决.【解答】解:∵x 2﹣x ﹣1=0, ∴,∴, ∴, 即, ∴,故答案为:10.16.将抛物线y=﹣x 2先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为 y=﹣x 2﹣6x ﹣11 .【考点】二次函数图象与几何变换.【分析】根据平移规律:上加下减,左加右减写出解析式即可.【解答】解:抛物线y=﹣x 2先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为y=﹣(x ﹣3)2﹣2即y=﹣x 2+6x ﹣11,故答案为y=﹣x 2﹣6x ﹣11.17.如图,△ABC 的面积为12cm 2,点D 、E 分别是AB 、AC 边的中点,则梯形DBCE 的面积为 9 cm 2.【考点】三角形中位线定理.【分析】根据三角形的中位线得出DE=BC ,DE ∥BC ,推出△ADE ∽△ABC ,再求出△ABC和△ADE 的面积比值求出,进而可求出梯形DBCE 的面积.【解答】解:∵点D 、E 分别是AB 、AC 边的中点,∴DE 是三角形的中位线,∴DE=BC ,DE ∥BC ,∴△ADE ∽△ABC ,∴,∵△ABC 的面积为12cm 2,∴△ADE 的面积为3cm 2,∴梯形DBCE 的面积=12﹣3=9cm 2,故答案为:9.三、解答题:(共2小题,每小题6分,共12分)18.计算:.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】直接利用绝对值的性质以及特殊角的三角函数值和零指数幂的性质、二次根式的性质分别化简求出答案.【解答】解:=﹣1﹣3+2+1+1 =1.19.先化简,再求值:,其中实数x 、y 满足.【考点】分式的化简求值;二次根式有意义的条件.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,根据负数没有平方根求出x 与y 的值,代入计算即可求出值.【解答】解:原式=•=,∵y=﹣+1, ∴x ﹣2≥0,2﹣x ≥0,即x ﹣2=0,解得:x=2,y=1,则原式=2.四、解答题:(共3小题,每小题8分,共24分)20.如图,▱ABCD 的对角线AC 、BD 交于点O ,EF 过点O 且与BC 、AD 分别交于点E 、F .试猜想线段AE 、CF 的关系,并说明理由.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】先猜出AE 与CF 的关系,然后说明理由即可,由题意可以推出四边形AECF 是平行四边形,从而可以推出AE 与CF 的关系.【解答】解:AE 与CF 的关系是平行且相等.理由:∵在,▱ABCD 中,∴OA=OC ,AF ∥EC ,∴∠OAF=∠OCE ,在△OAF 和△OCE 中,,∴△OAF ≌△OCE (ASA ),∴AF=CE ,又∵AF ∥CE ,∴四边形AECF 是平行四边形,∴AE ∥CF 且AE=CF ,即AE 与CF 的关系是平行且相等.21.为了切实关注、关爱贫困家庭学生,某校对全校各班贫困家庭学生的人数情况进行了统计,以便国家精准扶贫政策有效落实.统计发现班上贫困家庭学生人数分别有2名、3名、4名、5名、6名,共五种情况.并将其制成了如下两幅不完整的统计图:(1)求该校一共有多少个班?并将条形图补充完整;(2)某爱心人士决定从2名贫困家庭学生的这些班级中,任选两名进行帮扶,请用列表法或树状图的方法,求出被选中的两名学生来自同一班级的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)根据留守儿童有4名的班级有6个,占30%,可求得有留守儿童的班级总数,再求得留守儿童是2名的班数;(2)由(1)得只有2名留守儿童的班级有2个,共4名学生.设A1,A2来自一个班,B1,B2来自一个班,列表可得出来自一个班的共有4种情况,继而可得所选两名留守儿童来自同一个班级的概率.【解答】解:(1)该校的班级共有6÷30%=20(个),有2名贫困生的班级有20﹣5﹣6﹣5﹣2=2(个),补全条形图如图:(2)根据题意,将两个班级4名学生分别记作A1、A2、B1、B2,12种等可能结果,其中被选中的两名学生来自同一班级的有4种结果,∴被选中的两名学生来自同一班级的概率为=.22.如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.(1)画出△A1B1C,直接写出点A1、B1的坐标;(2)求在旋转过程中,△ABC所扫过的面积.【考点】作图-旋转变换;扇形面积的计算.【分析】(1)根据旋转中心方向及角度找出点A、B的对应点A1、B1的位置,然后顺次连接即可,根据A、B的坐标建立坐标系,据此写出点A1、B1的坐标;(2)利用勾股定理求出AC的长,根据△ABC扫过的面积等于扇形CAA1的面积与△ABC 的面积和,然后列式进行计算即可.【解答】解:(1)所求作△A1B1C如图所示:由A(4,3)、B(4,1)可建立如图所示坐标系,则点A 1的坐标为(﹣1,4),点B 1的坐标为(1,4);(2)∵AC===,∠ACA 1=90°∴在旋转过程中,△ABC 所扫过的面积为:S 扇形CAA1+S △ABC=+×3×2=+3.五、解答题:(共2小题,每小题8分,共16分)23.为了更好的保护美丽图画的邛海湿地,西昌市污水处理厂决定先购买A 、B 两型污水处理设备共20台,对邛海湿地周边污水进行处理,每台A 型污水处理设备12万元,每台B 型污水处理设备10万元.已知1台A 型污水处理设备和2台B 型污水处理设备每周可以处理污水640吨,2台A 型污水处理设备和3台B 型污水处理设备每周可以处理污水1080吨. (1)求A 、B 两型污水处理设备每周分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)根据1台A 型污水处理设备和2台B 型污水处理设备每周可以处理污水640吨,2台A 型污水处理设备和3台B 型污水处理设备每周可以处理污水1080吨,可以列出相应的二元一次方程组,从而解答本题;(2)根据题意可以列出相应的不等式组,从而可以得到购买方案,从而可以算出每种方案购买资金,从而可以解答本题.【解答】解:(1)设A 型污水处理设备每周每台可以处理污水x 吨,B 型污水处理设备每周每台可以处理污水y 吨,解得,即A 型污水处理设备每周每台可以处理污水240吨,B 型污水处理设备每周每台可以处理污水200吨;(2)设购买A 型污水处理设备x 台,则购买B 型污水处理设备(20﹣x )台,则解得,12.5≤x ≤15,第一种方案:当x=13时,20﹣x=7,花费的费用为:13×12+7×10=226万元;第二种方案:当x=14时,20﹣x=6,花费的费用为:14×12+6×10=228万元;第三种方案;当x=15时,20﹣x=5,花费的费用为:15×12+5×10=230万元;即购买A 型污水处理设备13台,则购买B 型污水处理设备7台时,所需购买资金最少,最少是226万元.24.阅读下列材料并回答问题:材料1:如果一个三角形的三边长分别为a ,b ,c ,记,那么三角形的面积为. ①古希腊几何学家海伦(Heron ,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.我国南宋数学家秦九韶(约1202﹣﹣约1261),曾提出利用三角形的三边求面积的秦九韶公式:. ② 下面我们对公式②进行变形:=====.这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦﹣﹣秦九韶公式.问题:如图,在△ABC 中,AB=13,BC=12,AC=7,⊙O 内切于△ABC ,切点分别是D 、E 、F .(1)求△ABC 的面积;(2)求⊙O 的半径.【考点】三角形的内切圆与内心.【分析】(1)由已知△ABC 的三边a=3,b=12,c=7,可知这是一个一般的三角形,故选用海伦﹣秦九韶公式求解即可;(2)由三角形的面积=lr ,计算即可.【解答】解:(1)∵AB=13,BC=12,AC=7,∴p==16, ∴==24;(2)∵△ABC 的周长l=AB+BC+AC=32,∴S=lr=24, ∴r==.六、B 卷填空题:(共2小题,每小题5分,共10分)25.已知关于x 的不等式组仅有三个整数解,则a 的取值范围是 ﹣1<a<﹣.【考点】一元一次不等式组的整数解.【分析】根据解方程组,可得方程组的解,根据方程组的解是整数,可得答案.【解答】解:由4x+2>3x+3a ,解得x >3a ﹣2,由2x >3(x ﹣2)+5,解得3a ﹣2<x <﹣1,由关于x 的不等式组仅有三个整数解,得﹣5<3a ﹣2<﹣4, 解得﹣1<a <﹣,故答案为:﹣1<a <﹣.26.如图,四边形ABCD 中,∠BAD=∠DC=90°,AB=AD=,CD=,点P 是四边形ABCD 四条边上的一个动点,若P 到BD 的距离为,则满足条件的点P 有 2 个.【考点】点到直线的距离.【分析】首先作出AB 、AD 边上的点P (点A )到BD 的垂线段AE ,即点P 到BD 的最长距离,作出BC 、CD 的点P (点C )到BD 的垂线段CF ,即点P 到BD 的最长距离,由已知计算出AE 、CF 的长为,比较得出答案.【解答】解:过点A 作AE ⊥BD 于E ,过点C 作CF ⊥BD 于F ,∵∠BAD=∠ADC=90°,AB=AD=,CD=2,∴∠ABD=∠ADB=45°,∴∠CDF=90°﹣∠ADB=45°,∵sin ∠ABD=,∴AE=AB •sin ∠ABD=3•sin45°=3>, CF=2<,所以在AB 和AD 边上有符合P 到BD 的距离为的点2个,故答案为:2.七、B 卷解答题:(共2小题,27题8分,28题12分,共20分)27.如图,已知四边形ABCD 内接于⊙O ,A 是的中点,AE ⊥AC 于A ,与⊙O 及CB 的延长线交于点F 、E ,且.(1)求证:△ADC ∽△EBA ;(2)如果AB=8,CD=5,求tan ∠CAD 的值.【考点】相似三角形的判定与性质;圆周角定理.【分析】(1)欲证△ADC ∽△EBA ,只要证明两个角对应相等就可以.可以转化为证明且就可以;(2)A 是的中点,的中点,则AC=AB=8,根据△CAD ∽△ABE 得到∠CAD=∠AEC ,求得AE ,根据正切三角函数的定义就可以求出结论.【解答】(1)证明:∵四边形ABCD 内接于⊙O ,∴∠CDA=∠ABE .∵,∴∠DCA=∠BAE .∴△ADC ∽△EBA ;(2)解:∵A 是的中点,∴∴AB=AC=8,∵△ADC ∽△EBA ,∴∠CAD=∠AEC ,,即, ∴AE=, ∴tan ∠CAD=tan ∠AEC===.28.如图,已知抛物线y=ax 2+bx+c (a ≠0)经过A (﹣1,0)、B (3,0)、C (0,﹣3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当点P 到点A 、点B 的距离之和最短时,求点P 的坐标;(3)点M 也是直线l 上的动点,且△MAC 为等腰三角形,请直接写出所有符合条件的点M 的坐标.【考点】二次函数综合题.【分析】(1)直接将A 、B 、C 三点坐标代入抛物线的解析式中求出待定系数即可;(2)由图知:A 、B 点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知,直线l 与x 轴的交点,即为符合条件的P 点;(3)由于△MAC 的腰和底没有明确,因此要分三种情况来讨论:①MA=AC 、②MA=MC 、③AC=MC ;可先设出M 点的坐标,然后用M 点纵坐标表示△MAC 的三边长,再按上面的三种情况列式求解.【解答】解:(1)将A (﹣1,0)、B (3,0)、C (0,﹣3)代入抛物线y=ax 2+bx+c 中,得:第 21 页 共 21 页,解得:故抛物线的解析式:y=x 2﹣2x ﹣3.(2)当P 点在x 轴上,P ,A ,B 三点在一条直线上时,点P 到点A 、点B 的距离之和最短,此时x=﹣=1,故P (1,0);(3)如图所示:抛物线的对称轴为:x=﹣=1,设M (1,m ),已知A (﹣1,0)、C (0,﹣3),则:MA 2=m 2+4,MC 2=(3+m )2+1=m 2+6m+10,AC 2=10;①若MA=MC ,则MA 2=MC 2,得:m 2+4=m 2+6m+10,解得:m=﹣1,②若MA=AC ,则MA 2=AC 2,得:m 2+4=10,得:m=±;③若MC=AC ,则MC 2=AC 2,得:m 2+6m+10=10,得:m 1=0,m 2=﹣6;当m=﹣6时,M 、A 、C 三点共线,构不成三角形,不合题意,故舍去;综上可知,符合条件的M 点,且坐标为 M (1,)(1,﹣)(1,﹣1)(1,0).。

2016年四川省凉山州中考数学试卷-答案

2016年四川省凉山州中考数学试卷-答案

一般需要选择平均成绩较好的运动员去参加比赛,在平均成绩相同的条件下,要选择方差较小的运动员去 参加比赛.比较稳定性大小要通过计算方差来确定,方差越大,稳定性越小;方差越小,稳定性越大.平均
2 / 11
数计算公式 xቤተ መጻሕፍቲ ባይዱ
1 1 ( x1 x2 x3 … xn ) ,方差计算公式 s 2 [( x x1 )2 ( x x2 )2 …( x xn )2 ] . n n
1 / 11
2 , x1 x2 2 , 则 3
2 4 x1 x1 x2 x2 x1 x2 x1 x2 (2) ,故选 D. 3 3
【考点】一元二次方程根与系数的关系 7. 【答案】A 【解析】原方程化为
x4m 0 ,分式方程无解,则 x 1 0 ,即 x 1 ,将 x 1 代入 x 4 m 0 得 x 1
四川省凉山州 2016 年高中阶段教育学校招生统一考试
数学答案解析
A卷 第 Ⅰ卷
一、选择题 1. 【答案】C 【解析】
1 的倒数是 2016 , 2016 的绝对值是 2016 ,故选 C. 2016
【考点】倒数及绝对值的概念 2. 【答案】B 【解析】从主视图看左列有一个正方体,中列有两个正方体,右列有一个正方体,结合左视图及俯视图可以 确定此几何体共有 4 个小正方体,故选 B. 【考点】由三视图确定几何体的个数 3. 【答案】C 【解析】2a 3b 不能再进行合并, 故 A 错误;(2a 2b6 )3 8a6b3 , 故 B 错误; 8 2 2 2 2 3 2 , 故 C 正确; (a b)2 a2 2ab b2 ,故 D 错误,故选 C. 【考点】整式的运算及二次根式加减运算 4. 【答案】D 【解析】设内角和为 1080 的多边形的边数是 n ,则 (n 2) 180 1080 ,解得 n 8 ,则原多边形的边数 为 7 或 8 或 9.故选 D. 切去一角有三种可能情况:一是截线不过多边形其他内角的顶点,此时多边形的边数比原来多 1;二是截线 过多边形其中一个内角的顶点, 此时多边形的边数与原来相同; 三是截线过多边形两个内角的顶点, 此时多 边形的边数比原来少 1. 【考点】多边形的内角和定理及分类讨论的思想方法 5. 【答案】B 【解析】线段、矩形、圆既是轴对称图形又是中心对称图形,平行四边形是中心对称图形,等腰三角形只是 轴对称图形,故选 B. 【考点】轴对称图形与中心对称图形的概念 6. 【答案】D 【 解 析 】 因 为 x1 , x2 是 一 元 二 次 方 程 3x2 2x 6 0 的 两 根 , 所 以 x1 x2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年四川省凉山州中考数学试卷一、选择题:(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,请把正确选项的字母填涂在答题卡上相应的位置.1.(4分)的倒数的绝对值是()A.﹣2016 B.C.2016 D.2.(4分)如图,是由若干个大小相同的正方体搭成的几何体的三视图,该几何体所用的正方体的个数是()A.6 B.4 C.3 D.23.(4分)下列计算正确的是()A.2a+3b=5ab B.(﹣2a2b)3=﹣6a6b3C.D.(a+b)2=a2+b24.(4分)一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或95.(4分)在线段、平行四边形、矩形、等腰三角形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是()A.2个 B.3个 C.4个 D.5个6.(4分)已知x1、x2是一元二次方程3x2=6﹣2x的两根,则x1﹣x1x2+x2的值是()A.B.C.D.7.(4分)关于x的方程无解,则m的值为()A.﹣5 B.﹣8 C.﹣2 D.58.(4分)如图,AB∥CD,直线EF分别交AB、CD于E、F两点,∠BEF的平分线交CD于点G,若∠EFG=52°,则∠EGF等于()A.26°B.64°C.52°D.128°9.(4分)二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数与一次函数y=bx﹣c在同一坐标系内的图象大致是()A.B.C.D.10.(4分)教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在形同条件下各打了5发子弹,命中环数如下:甲:9、8、7、7、9;乙:10、8、9、7、6.应该选()参加.A.甲B.乙C.甲、乙都可以D.无法确定11.(4分)已知,一元二次方程x2﹣8x+15=0的两根分别是⊙O1和⊙O2的半径,当⊙O1和⊙O2相切时,O1O2的长度是()A.2 B.8 C.2或8 D.2<O1O2<812.(4分)观察图中正方形四个顶点所标的数字规律,可知,数2016应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角二、填空题:(共5个小题,每小题4分,共20分)13.(4分)分解因式:a3b﹣9ab=.14.(4分)今年西昌市的洋葱喜获丰收,据估计洋葱的产量约是325 000 000千克,这个数据用科学记数法表示为克.15.(4分)若实数x满足x2﹣x﹣1=0,则=.16.(4分)将抛物线y=﹣x2先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为.17.(4分)如图,△ABC的面积为12cm2,点D、E分别是AB、AC边的中点,则梯形DBCE的面积为cm2.三、解答题:(共2小题,每小题6分,共12分)18.(6分)计算:.19.(6分)先化简,再求值:,其中实数x、y满足.四、解答题:(共3小题,每小题8分,共24分)20.(8分)如图,▱ABCD的对角线AC、BD交于点O,EF过点O且与BC、AD 分别交于点E、F.试猜想线段AE、CF的关系,并说明理由.21.(8分)为了切实关注、关爱贫困家庭学生,某校对全校各班贫困家庭学生的人数情况进行了统计,以便国家精准扶贫政策有效落实.统计发现班上贫困家庭学生人数分别有2名、3名、4名、5名、6名,共五种情况.并将其制成了如下两幅不完整的统计图:(1)求该校一共有多少个班?并将条形图补充完整;(2)某爱心人士决定从2名贫困家庭学生的这些班级中,任选两名进行帮扶,请用列表法或树状图的方法,求出被选中的两名学生来自同一班级的概率.22.(8分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.(1)画出△A1B1C,直接写出点A1、B1的坐标;(2)求在旋转过程中,△ABC所扫过的面积.五、解答题:(共2小题,每小题8分,共16分)23.(8分)为了更好的保护美丽图画的邛海湿地,西昌市污水处理厂决定先购买A、B两型污水处理设备共20台,对邛海湿地周边污水进行处理,每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨.(1)求A、B两型污水处理设备每周分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?24.(8分)阅读下列材料并回答问题:材料1:如果一个三角形的三边长分别为a,b,c,记,那么三角形的面积为.①古希腊几何学家海伦(Heron,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.我国南宋数学家秦九韶(约1202﹣﹣约1261),曾提出利用三角形的三边求面积的秦九韶公式:.②下面我们对公式②进行变形:=====.这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦﹣﹣秦九韶公式.问题:如图,在△ABC中,AB=13,BC=12,AC=7,⊙O内切于△ABC,切点分别是D、E、F.(1)求△ABC的面积;(2)求⊙O的半径.六、B卷填空题:(共2小题,每小题5分,共10分)25.(5分)已知关于x的不等式组仅有三个整数解,则a的取值范围是.26.(5分)如图,四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=,CD=,点P是四边形ABCD四条边上的一个动点,若P到BD的距离为,则满足条件的点P有个.七、B卷解答题:(共2小题,27题8分,28题12分,共20分)27.(8分)如图,已知四边形ABCD内接于⊙O,A是的中点,AE⊥AC于A,与⊙O及CB的延长线交于点F、E,且.(1)求证:△ADC∽△EBA;(2)如果AB=8,CD=5,求tan∠CAD的值.28.(12分)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0)、B(3,0)、C(0,﹣3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P的坐标;(3)点M也是直线l上的动点,且△MAC为等腰三角形,请直接写出所有符合条件的点M的坐标.2016年四川省凉山州中考数学试卷参考答案与试题解析一、选择题:(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,请把正确选项的字母填涂在答题卡上相应的位置.1.(4分)的倒数的绝对值是()A.﹣2016 B.C.2016 D.【解答】解:的倒数是﹣2016,﹣2016的绝对值是2016.故选:C.2.(4分)如图,是由若干个大小相同的正方体搭成的几何体的三视图,该几何体所用的正方体的个数是()A.6 B.4 C.3 D.2【解答】解:综合三视图可知,这个几何体的底层有3个小正方体,第2层有1个小正方体,第3层有1个小正方体,第4层有1个小正方体,因此搭成这个几何体所用小正方体的个数是3+1+1+1=6个.故选:A.3.(4分)下列计算正确的是()A.2a+3b=5ab B.(﹣2a2b)3=﹣6a6b3C.D.(a+b)2=a2+b2【解答】解:A、2a+3b无法计算,故此选项错误;B、(﹣2a2b)3=﹣8a6b3,故此选项错误;C、+=2+=3,正确;D、(a+b)2=a2+b2+2ab,故此选项错误;故选:C.4.(4分)一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或9【解答】解:设内角和为1080°的多边形的边数是n,则(n﹣2)•180°=1080°,解得:n=8.则原多边形的边数为7或8或9.故选:D.5.(4分)在线段、平行四边形、矩形、等腰三角形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是()A.2个 B.3个 C.4个 D.5个【解答】解:线段、矩形、圆既是轴对称图形又是中心对称图形,平行四边形不是轴对称图形是中心对称图形,等腰三角形是轴对称图形不是中心对称图形,故选:B.6.(4分)已知x1、x2是一元二次方程3x2=6﹣2x的两根,则x1﹣x1x2+x2的值是()A.B.C.D.【解答】解:∵x1、x2是一元二次方程3x2=6﹣2x的两根,∴x1+x2=﹣=﹣,x1•x2==﹣2,∴x1﹣x1x2+x2=﹣﹣(﹣2)=.故选D.7.(4分)关于x的方程无解,则m的值为()A.﹣5 B.﹣8 C.﹣2 D.5【解答】解:去分母得:3x﹣2=2x+2+m,由分式方程无解,得到x+1=0,即x=﹣1,代入整式方程得:﹣5=﹣2+2+m,解得:m=﹣5,故选A8.(4分)如图,AB∥CD,直线EF分别交AB、CD于E、F两点,∠BEF的平分线交CD于点G,若∠EFG=52°,则∠EGF等于()A.26°B.64°C.52°D.128°【解答】解:∵AB∥CD,∴∠BEF+∠EFG=180°,∴∠BEF=180°﹣52°=128°;∵EG平分∠BEF,∴∠BEG=64°;∴∠EGF=∠BEG=64°(内错角相等).故选:B.9.(4分)二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数与一次函数y=bx﹣c在同一坐标系内的图象大致是()A.B.C.D.【解答】解:观察二次函数图象可知:开口向上,a>0;对称轴大于0,﹣>0,b<0;二次函数图象与y轴交点在y轴的正半轴,c>0.∵反比例函数中k=﹣a<0,∴反比例函数图象在第二、四象限内;∵一次函数y=bx﹣c中,b<0,﹣c<0,∴一次函数图象经过第二、三、四象限.故选C.10.(4分)教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在形同条件下各打了5发子弹,命中环数如下:甲:9、8、7、7、9;乙:10、8、9、7、6.应该选()参加.A.甲B.乙C.甲、乙都可以D.无法确定【解答】解:由题意可得,甲的平均数为:,方差为:=0.8,乙的平均数为:,方差为:=2,∵0.8<2,∴选择甲射击运动员,故选A.11.(4分)已知,一元二次方程x2﹣8x+15=0的两根分别是⊙O1和⊙O2的半径,当⊙O1和⊙O2相切时,O1O2的长度是()A.2 B.8 C.2或8 D.2<O1O2<8【解答】解:∵⊙O1、⊙O2的半径分别是方程x2﹣8x+15=0的两根,解得⊙O1、⊙O2的半径分别是3和5.∴①当两圆外切时,圆心距O1O2=3+5=8;②当两圆内切时,圆心距O1O2=5﹣3=2.故选C.12.(4分)观察图中正方形四个顶点所标的数字规律,可知,数2016应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角【解答】解:∵2016÷4=504,又∵由题目中给出的几个正方形观察可知,每个正方形对应四个数,而第一个最小的数是0,0在右下角,然后按逆时针由小变大,∴第504个正方形中最大的数是2015,∴数2016在第505个正方形的右下角,故选D.二、填空题:(共5个小题,每小题4分,共20分)13.(4分)分解因式:a3b﹣9ab=ab(a+3)(a﹣3).【解答】解:a3b﹣9ab=a(a2﹣9)=ab(a+3)(a﹣3).故答案为:ab(a+3)(a﹣3).14.(4分)今年西昌市的洋葱喜获丰收,据估计洋葱的产量约是325 000 000千克,这个数据用科学记数法表示为 3.25×1011克.【解答】解:325 000 000千克=325 000 000 000克=3.25×1011克,故答案为:3.25×1011.15.(4分)若实数x满足x2﹣x﹣1=0,则=10.【解答】解:∵x2﹣x﹣1=0,∴,∴,∴,即,∴,故答案为:10.16.(4分)将抛物线y=﹣x2先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为y=﹣x2+6x﹣11.【解答】解:抛物线y=﹣x2先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为y=﹣(x﹣3)2﹣2即y=﹣x2+6x﹣11,故答案为y=﹣x2+6x﹣11.17.(4分)如图,△ABC的面积为12cm2,点D、E分别是AB、AC边的中点,则梯形DBCE的面积为9cm2.【解答】解:∵点D、E分别是AB、AC边的中点,∴DE是三角形的中位线,∴DE=BC,DE∥BC,∴△ADE∽△ABC,∴,∵△ABC的面积为12cm2,∴△ADE的面积为3cm2,∴梯形DBCE的面积=12﹣3=9cm2,故答案为:9.三、解答题:(共2小题,每小题6分,共12分)18.(6分)计算:.【解答】解:=﹣1﹣3+2+1+1=1.19.(6分)先化简,再求值:,其中实数x、y满足.【解答】解:原式=•=,∵y=﹣+1,∴x﹣2≥0,2﹣x≥0,即x﹣2=0,解得:x=2,y=1,则原式=2.四、解答题:(共3小题,每小题8分,共24分)20.(8分)如图,▱ABCD的对角线AC、BD交于点O,EF过点O且与BC、AD 分别交于点E、F.试猜想线段AE、CF的关系,并说明理由.【解答】解:AE与CF的关系是平行且相等.理由:∵四边形ABCD是平行四边形,∴OA=OC,AF∥EC,∴∠OAF=∠OCE,在△OAF和△OCE中,,∴△OAF≌△OCE(ASA),∴AF=CE,又∵AF∥CE,∴四边形AECF是平行四边形,∴AE∥CF且AE=CF,即AE与CF的关系是平行且相等.21.(8分)为了切实关注、关爱贫困家庭学生,某校对全校各班贫困家庭学生的人数情况进行了统计,以便国家精准扶贫政策有效落实.统计发现班上贫困家庭学生人数分别有2名、3名、4名、5名、6名,共五种情况.并将其制成了如下两幅不完整的统计图:(1)求该校一共有多少个班?并将条形图补充完整;(2)某爱心人士决定从2名贫困家庭学生的这些班级中,任选两名进行帮扶,请用列表法或树状图的方法,求出被选中的两名学生来自同一班级的概率.【解答】解:(1)该校的班级共有6÷30%=20(个),有2名贫困生的班级有20﹣5﹣6﹣5﹣2=2(个),补全条形图如图:(2)根据题意,将两个班级4名学生分别记作A1、A2、B1、B2,列表如下:由上表可知,从这两个班级任选两名学生进行帮扶共有12种等可能结果,其中被选中的两名学生来自同一班级的有4种结果,∴被选中的两名学生来自同一班级的概率为=.22.(8分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.(1)画出△A1B1C,直接写出点A1、B1的坐标;(2)求在旋转过程中,△ABC所扫过的面积.【解答】解:(1)所求作△A1B1C如图所示:由A(4,3)、B(4,1)可建立如图所示坐标系,则点A1的坐标为(﹣1,4),点B1的坐标为(1,4);(2)∵AC===,∠ACA1=90°∴在旋转过程中,△ABC所扫过的面积为:S扇形CAA1+S△ABC=+×3×2=+3.五、解答题:(共2小题,每小题8分,共16分)23.(8分)为了更好的保护美丽图画的邛海湿地,西昌市污水处理厂决定先购买A、B两型污水处理设备共20台,对邛海湿地周边污水进行处理,每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨.(1)求A、B两型污水处理设备每周分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?【解答】解:(1)设A型污水处理设备每周每台可以处理污水x吨,B型污水处理设备每周每台可以处理污水y吨,解得,即A型污水处理设备每周每台可以处理污水240吨,B型污水处理设备每周每台可以处理污水200吨;(2)设购买A型污水处理设备x台,则购买B型污水处理设备(20﹣x)台,则解得,12.5≤x≤15,第一种方案:当x=13时,20﹣x=7,花费的费用为:13×12+7×10=226万元;第二种方案:当x=14时,20﹣x=6,花费的费用为:14×12+6×10=228万元;第三种方案;当x=15时,20﹣x=5,花费的费用为:15×12+5×10=230万元;即购买A型污水处理设备13台,则购买B型污水处理设备7台时,所需购买资金最少,最少是226万元.24.(8分)阅读下列材料并回答问题:材料1:如果一个三角形的三边长分别为a,b,c,记,那么三角形的面积为.①古希腊几何学家海伦(Heron,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.我国南宋数学家秦九韶(约1202﹣﹣约1261),曾提出利用三角形的三边求面积的秦九韶公式:.②下面我们对公式②进行变形:=====.这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦﹣﹣秦九韶公式.问题:如图,在△ABC中,AB=13,BC=12,AC=7,⊙O内切于△ABC,切点分别是D、E、F.(1)求△ABC的面积;(2)求⊙O的半径.【解答】解:(1)∵AB=13,BC=12,AC=7,∴p==16,∴==24;(2)∵△ABC的周长l=AB+BC+AC=32,∴S=lr=24,∴r==.六、B卷填空题:(共2小题,每小题5分,共10分)25.(5分)已知关于x的不等式组仅有三个整数解,则a的取值范围是﹣≤a<0.【解答】解:由4x+2>3x+3a,解得x>3a﹣2,由2x>3(x﹣2)+5,解得3a﹣2<x<1,由关于x的不等式组仅有三个整数解,得﹣3≤3a﹣2<﹣2,解得﹣≤a<0,故答案为:﹣≤a<0.26.(5分)如图,四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=,CD=,点P是四边形ABCD四条边上的一个动点,若P到BD的距离为,则满足条件的点P有2个.【解答】解:过点A作AE⊥BD于E,过点C作CF⊥BD于F,∵∠BAD=∠ADC=90°,AB=AD=,CD=2,∴∠ABD=∠ADB=45°,∴∠CDF=90°﹣∠ADB=45°,∵sin∠ABD=,∴AE=AB•sin∠ABD=3•sin45°=3>,CF=2<,所以在AB和AD边上有符合P到BD的距离为的点2个,故答案为:2.七、B卷解答题:(共2小题,27题8分,28题12分,共20分)27.(8分)如图,已知四边形ABCD内接于⊙O,A是的中点,AE⊥AC于A,与⊙O及CB的延长线交于点F、E,且.(1)求证:△ADC∽△EBA;(2)如果AB=8,CD=5,求tan∠CAD的值.【解答】(1)证明:∵四边形ABCD内接于⊙O,∴∠CDA=∠ABE.∵,∴∠DCA=∠BAE.∴△ADC∽△EBA;(2)解:∵A是的中点,∴∴AB=AC=8,∵△ADC∽△EBA,∴∠CAD=∠AEC,,即,∴AE=,∴tan∠CAD=tan∠AEC===.28.(12分)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0)、B(3,0)、C(0,﹣3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P的坐标;(3)点M也是直线l上的动点,且△MAC为等腰三角形,请直接写出所有符合条件的点M的坐标.【解答】解:(1)将A(﹣1,0)、B(3,0)、C(0,﹣3)代入抛物线y=ax2+bx+c 中,得:,解得:故抛物线的解析式:y=x2﹣2x﹣3.(2)当P点在x轴上,P,A,B三点在一条直线上时,点P到点A、点B的距离之和最短,此时x=﹣=1,故P(1,0);(3)如图所示:抛物线的对称轴为:x=﹣=1,设M(1,m),已知A(﹣1,0)、C(0,﹣3),则:MA2=m2+4,MC2=(3+m)2+1=m2+6m+10,AC2=10;①若MA=MC,则MA2=MC2,得:m2+4=m2+6m+10,解得:m=﹣1,②若MA=AC,则MA2=AC2,得:m2+4=10,得:m=±;③若MC=AC,则MC2=AC2,得:m2+6m+10=10,得:m1=0,m2=﹣6;当m=﹣6时,M、A、C三点共线,构不成三角形,不合题意,故舍去;综上可知,符合条件的M点,且坐标为M(1,)(1,﹣)(1,﹣1)(1,0).。

相关文档
最新文档