最新高考物理动量守恒定律练习题

合集下载

高考物理动量守恒定律练习题及答案

高考物理动量守恒定律练习题及答案

高考物理动量守恒定律练习题及答案一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg 和1kg 的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P .现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s ,此时乙尚未与P 相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板P 对乙的冲量的最大值. 【答案】v 乙=6m/s. I =8N 【解析】 【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。

(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.如图所示,两块相同平板P 1、P 2置于光滑水平面上,质量均为m 。

P 2的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L 。

物体P 置于P 1的最右端,质量为2m 且可以看作质点。

P 1与P 以共同速度v 0向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起,P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度内)。

P 与P 2之间的动摩擦因数为μ,求:(1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2; (2)此过程中弹簧最大压缩量x 和相应的弹性势能E p 。

【答案】(1) 201v v =,4302v v = (2)L g v x -=μ3220,1620p mv E = 【解析】(1) P 1、P 2碰撞过程,动量守恒,102mv mv =,解得21v v =。

对P 1、P 2、P 组成的系统,由动量守恒定律 ,204)2(mv v m m =+,解得4302v v =(2)当弹簧压缩最大时,P 1、P 2、P 三者具有共同速度v 2,对P 1、P 2、P 组成的系统,从P 1、P 2碰撞结束到P 压缩弹簧后被弹回并停在A 点,用能量守恒定律)(2)2()2(21221221222021x L mg u v m m m mv mv ++++=⨯+⨯ 解得L gv x -=μ3220 对P 1、P 2、P 系统从P 1、P 2碰撞结束到弹簧压缩量最大,用能量守恒定律p 222021))(2()2(21221221E x L mg u v m m m mv mv +++++=+ 最大弹性势能162P mv E =注意三个易错点:碰撞只是P 1、P 2参与;碰撞过程有热量产生;P 所受摩擦力,其正压力为2mg【考点定位】碰撞模型、动量守恒定律、能量守恒定律、弹性势能、摩擦生热。

动量-动量守恒定律专题练习(含答案)

动量-动量守恒定律专题练习(含答案)

动量-动量守恒定律专题练习(含答案)动量 动量守恒定律一、动量和冲量1、关于物体的动量和动能,下列说法中正确的是:A 、一物体的动量不变,其动能一定不变B 、一物体的动能不变,其动量一定不变C 、两物体的动量相等,其动能一定相等D 、两物体的动能相等,其动量一定相等2、两个具有相等动量的物体A 、B ,质量分别为m A 和m B ,且m A >m B ,比较它们的动能,则:A 、B 的动能较大 B 、A 的动能较大C 、动能相等 D 、不能确定3、恒力F 作用在质量为m 的物体上,如图所示,由于地面对物体的摩擦力较大,没有被拉动,则经时间t ,下列说法正确的是:A 、拉力F 对物体的冲量大小为零;B 、拉力F 对物体的冲量大小为Ft ;C 、拉力F 对物体的冲量大小是Ftcosθ;D 、合力对物体的冲量大小为零。

F4、如图所示,PQS 是固定于竖直平面内的光滑的14圆周轨道,圆心O 在S 的正上方,在O 和P 两点各有一质量为m 的小物块a 和b ,从同一时刻开始,a 自由下落,b 沿圆弧下滑。

以下说法正确的是 A 、a 比b 先到达S ,它们在S 点的动量不相等B 、a 与b 同时到达S ,它们在S 点的动量不相等C 、a 比b 先到达S ,它们在S 点的动量相等D 、b 比a 先到达S ,它们在S 点的动量不相等二、动量守恒定律1、一炮艇总质量为M ,以速度v 0匀速行驶,从船上以相对海岸的水平速度v 沿前进方向射出一质量为m 的炮弹,发射炮弹后艇的速度为v /,若不计水的阻力,则下列各关系式中正确的是 。

A 、'0()Mv M m v mv =-+B 、'00()()MvM m v m v v =-++ C 、''0()()Mv M m v m v v =-++ D 、'0Mv Mv mv =+2、在高速公路上发生一起交通事故,一辆质量为1500kg 向南行驶的长途客车迎面撞上了一辆质量为3000kg 向北行驶的卡车,碰后两车接在一起,并向南O P S Q5、光滑的水平面上有两个小球M和N,它们沿同一直线相向运动,M球的速率为5m/s,N球的速率为2m/s,正碰后沿各自原来的反方向而远离,M球的速率变为2m/s,N球的速率变为3m/s,则M、N两球的质量之比为A、3∶1B、1∶3C、3∶5D、5∶76、如图所示,一个木箱原来静止在光滑水平面上,都具有一定的质量。

物理动量守恒定律题20套(带答案)

物理动量守恒定律题20套(带答案)
v 25m / s
考点:考查了动量守恒定律的应用 【名师点睛】要使两车不相撞,甲车以最小的水平速度将小球发射到乙车上的临界条件是 两车速度相同,以甲车、球与乙车为系统,由系统动量守恒列出等式,再以球与乙车为系 统,由系统动量守恒列出等式,联立求解
2.一质量为 的子弹以某一初速度水平射入置于光滑水平面上的木块 并留在其中, 与木块 用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧
代入数据解得:E 损=0.25J 答:①碰后 A 球的速度为 1.0m/s; ②碰撞过程中 A、B 系统损失的机械能为 0.25J. 【点评】小球碰撞过程中动量守恒、机械能不守恒,由动量守恒定律与能量守恒定律可以 正确解题,应用动量守恒定律解题时要注意正方向的选择.
9.如图所示,光滑平行金属导轨的水平部分处于竖直向下的 B=4T 的匀磁场中,两导轨间 距 L=0.5m,导轨足够长金属棒 a 和 b 的质量都为 m=1kg,电阻 Ra Rb 1 .b 棒静止于轨 道水平部分,现将 a 棒从 h=80cm 高处自静止沿弧形轨道下滑,通过 C 点进入轨道的水平 部分,已知两棒在运动过程中始终保持与导轨垂直,且两棒始终不相碰.求 a、b 两棒的最 终速度大小以及整个过程中 b 棒中产生的焦耳热(已知重力加速度 g 取 10m/s2)
根据题意: m1 : m2 2
有以上四式解得: v2 2 2gR
接下来男演员做平抛运动:由 4R 1 gt2 ,得 t 8R
2
g
因而: s v2t 8R ; 【点睛】
两演员一起从从 A 点摆到 B 点,只有重力做功,根据械能守恒定律求出最低点速度;女 演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒,由于女演员刚好能回
Q

最新高中物理动量守恒定律专项训练100(附答案).docx

最新高中物理动量守恒定律专项训练100(附答案).docx

最新高中物理动量守恒定律专项训练100( 附答案 )一、高考物理精讲专题动量守恒定律1.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、 m,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度v0向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求:(1)第一次碰撞过程中系统损失的动能(2)第一次碰撞过程中甲对乙的冲量【答案】(1) 1 mv02; (2)4mv0【解析】【详解】解: (1)设第一次碰撞刚结束时甲、乙的速度分别为v1、 v2,之后甲做匀速直线运动,乙以v2初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速v2度相等,有: v12而第一次碰撞中系统动量守恒有:2mv02mv1 mv2由以上两式可得: v1v0, v2v0 2所以第一次碰撞中的机械能损失为:E 1g2mgv021g2mgv121mv221mv02 2224(2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:I mv20 mv02.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b,小车质量M=3kg, AO 部分粗糙且长L=2m,动摩擦因数μ=0.3,OB部分光滑.另一小物块a.放在车的最左端,和车一起以 v0=4m/s 的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车 OB 部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内. a、 b 两物块视为质点质量均为 m=1kg,碰撞时间极短且不粘连,碰后一起向右运动.(取 g=10m/s2)求:(1)物块 a 与 b 碰后的速度大小;(2)当物块 a 相对小车静止时小车右端 B 到挡板的距离;(3)当物块 a 相对小车静止时在小车上的位置到O 点的距离.【答案】 (1)1m/s (2)(3) x=0.125m【解析】试题分析:(1)对物块 a,由动能定理得:代入数据解得 a 与 b 碰前速度:;a、 b 碰撞过程系统动量守恒,以 a 的初速度方向为正方向,由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分离, a 以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车 B 端距挡板的距离:;(3)由能量守恒得:,解得滑块 a 与车相对静止时与O 点距离:;考点:动量守恒定律、动能定理。

选修1高中物理《动量守恒定律》测试题(含答案)

选修1高中物理《动量守恒定律》测试题(含答案)

选修1高中物理《动量守恒定律》测试题(含答案)一、动量守恒定律 选择题1.在光滑的水平桌面上有等大的质量分别为M =0.6kg ,m =0.2kg 的两个小球,中间夹着一个被压缩的具有E p =10.8J 弹性势能的轻弹簧(弹簧与两球不相连),原来处于静止状态。

现突然释放弹簧,球m 脱离弹簧后滑向与水平面相切、半径为R =0.425m 的竖直放置的光滑半圆形轨道,如图所示。

g 取10m/s 2。

则下列说法正确的是( )A .球m 从轨道底端A 运动到顶端B 的过程中所受合外力冲量大小为3.4N·sB .弹簧弹开过程,弹力对m 的冲量大小为1.8N·sC .若半圆轨道半径可调,则球m 从B 点飞出后落在水平桌面上的水平距离随轨道半径的增大而减小D .M 离开轻弹簧时获得的速度为9m/s2.如图,质量为m 的小木块从高为h 的质量为M 的光滑斜面体顶端滑下,斜面体倾角为θ,放在光滑水平面上,m 由斜面体顶端滑至底端的过程中,下列说法正确的是A .M 、m 组成的系统动量守恒B .M 移动的位移为()tan mh M m θ+ C .m 对M 做功为222cos ()(sin )Mm gh M m M m θθ++ D .m 对M 做功为222sin ()(cos )Mm gh M m M m θθ++ 3.如图所示,将一光滑的、质量为4m 、半径为R 的半圆槽置于光滑水平面上,在槽的左侧紧挨着一个质量为m 的物块.今让一质量也为m 的小球自左侧槽口A 的正上方高为R 处从静止开始落下,沿半圆槽切线方向自A 点进入槽内,则以下结论中正确的是( )A .小球在半圆槽内第一次由A 到最低点B 的运动过程中,槽的支持力对小球做负功 B .小球第一次运动到半圆槽的最低点B 时,小球与槽的速度大小之比为41︰C .小球第一次在半圆槽的最低点B 时对槽的压力为133mgmgRD.物块最终的动能为154.如图所示,A、B、C三个半径相同的小球穿在两根平行且光滑的足够长的杆上,三个球的质量分别为m A=2kg,m B=3kg,m C=1kg,初状态三个小球均静止,BC球之间连着一根轻质弹簧,弹簣处于原长状态.现给A一个向左的初速度v0=10m/s,A、B碰后A球的速度变为向右,大小为2m/s,下列说法正确的是A.球A和B碰撞是弹性碰撞B.球A和B碰后,球B的最小速度可为0C.球A和B碰后,弹簧的最大弹性势能可以达到96JD.球A和B碰后,弹簧恢复原长时球C的速度可能为12m/s5.如图所示,光滑绝缘的水平面上M、N两点有完全相同的金属球A和B,带有不等量的同种电荷.现使A、B以大小相等的初动量相向运动,不计一切能量损失,碰后返回M、N 两点,则A.碰撞发生在M、N中点之外B.两球同时返回M、N两点C.两球回到原位置时动能比原来大些D.两球回到原位置时动能不变6.如图,质量分别为m A、m B的两个小球A、B静止在地面上方,B球距地面的高度h=0.8m,A球在B球的正上方. 先将B球释放,经过一段时间后再将A球释放. 当A球下落t=0.3s时,刚好与B球在地面上方的P点处相碰,碰撞时间极短,碰后瞬间A球的速度恰为零.已知m B=3m A,重力加速度大小为g=10 m/s2,忽略空气阻力及碰撞中的动能损失.下列说法正确的是()A .B 球第一次到达地面时的速度为4m/sB .A 、B 球在B 球向上运动的过程中发生碰撞C .B 球与A 球碰撞后的速度为1m/sD .P 点距离地面的高度0.75m7.质量分别为3m 和m 的两个物体,用一根细绳相连,中间夹着一根被压缩的轻弹簧,在光滑的水平面上以速度v 0匀速运动.某时刻剪断细绳,质量为m 的物体离开弹簧时速度变为v= 2v 0,如图所示.则在这一过程中弹簧做的功和两物体之间转移的动能分别是A .2083mv2023mv B .20mv 2032mv C .2012mv 2032mv D .2023mv 2056mv 8.在光滑水平面上,有两个小球A 、B 沿同一直线同向运动(B 在前),已知碰前两球的动量分别为pA =10 kg·m/s 、pB =13 kg·m/s ,碰后它们动量的变化分别为ΔpA 、ΔpB .下列数值可能正确的是( )A .ΔpA =-3 kg·m/s 、ΔpB =3 kg·m/sB .ΔpA =3 kg·m/s 、ΔpB =-3 kg·m/sC .ΔpA =-20 kg·m/s 、ΔpB =20 kg·m/sD .ΔpA =20kg·m/s 、ΔpB =-20 kg·m/s9.如图,斜面体固定在水平面上,斜面足够长,在斜面底端给质量为m 的小球以平行斜面向上的初速度1v ,当小球回到出发点时速率为2v 。

高考物理动量守恒定律试题(有答案和解析)

高考物理动量守恒定律试题(有答案和解析)

高考物理动量守恒定律试题(有答案和解析)一、高考物理精讲专题动量守恒定律1.如图所示,在倾角30°的斜面上放置一个凹撸B,B 与斜面间的动摩擦因数36μ=;槽内靠近右侧壁处有一小物块A(可视为质点),它到凹槽左侧壁的距离d =0.1m ,A 、B 的质量都为m=2kg ,B 与斜面间的最大静摩擦力可认为等于滑动摩摞力,不计A 、B 之间的摩擦,斜面足够长.现同时由静止释放A 、B,经过一段时间,A 与B 的侧壁发生碰撞,碰撞过程不计机械能损失,碰撞时间极短,g 取210/m s .求:(1)释放后物块A 和凹槽B 的加速度分别是多大?(2)物块A 与凹槽B 的左侧壁第一次碰撞后瞬间A 、B 的速度大小;(3)从初始位置到物块A 与凹糟B 的左侧壁发生第三次碰撞时B 的位移大小. 【答案】(1)(2)v An =(n-1)m∙s -1,v Bn ="n" m∙s -1(3)x n 总=0.2n 2m 【解析】 【分析】 【详解】(1)设物块A 的加速度为a 1,则有m A gsin θ=ma 1, 解得a 1=5m/s 2凹槽B 运动时受到的摩擦力f=μ×3mgcos θ=mg 方向沿斜面向上; 凹槽B 所受重力沿斜面的分力G 1=2mgsin θ=mg 方向沿斜面向下; 因为G 1=f ,则凹槽B 受力平衡,保持静止,凹槽B 的加速度为a 2=0 (2)设A 与B 的左壁第一次碰撞前的速度为v A0,根据运动公式:v 2A0=2a 1d 解得v A0=3m/s ;AB 发生弹性碰撞,设A 与B 第一次碰撞后瞬间A 的速度大小为v A1,B 的速度为v B1,则由动量守恒定律:0112A A B mv mv mv =+ ;由能量关系:2220111112222A AB mv mv mv =+⨯ 解得v A1=-1m/s(负号表示方向),v B1=2m/s2.一质量为的子弹以某一初速度水平射入置于光滑水平面上的木块并留在其中,与木块用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧被压缩瞬间的速度,木块、的质量均为.求:•子弹射入木块时的速度;‚弹簧被压缩到最短时弹簧的弹性势能.【答案】22()(2)Mm aM m M m++b【解析】试题分析:(1)普朗克为了对于当时经典物理无法解释的“紫外灾难”进行解释,第一次提出了能量量子化理论,A正确;爱因斯坦通过光电效应现象,提出了光子说,B正确;卢瑟福通过对粒子散射实验的研究,提出了原子的核式结构模型,故正确;贝克勒尔通过对天然放射性的研究,发现原子核有复杂的结构,但没有发现质子和中子,D错;德布罗意大胆提出假设,认为实物粒子也具有波动性,E错.(2)1以子弹与木块A组成的系统为研究对象,以子弹的初速度方向为正方向,由动量守恒定律得:解得:.2弹簧压缩最短时,两木块速度相等,以两木块与子弹组成的系统为研究对象,以木块的初速度方向为正方向,由动量守恒定律得:解得:由机械能守恒定律可知:.考点:本题考查了物理学史和动量守恒定律3.如图所示,在光滑的水平面上放置一个质量为2m的木板B,B的左端放置一个质量为m的物块A,已知A、B之间的动摩擦因数为μ,现有质量为m的小球以水平速度0υ飞来与A物块碰撞后立即粘住,在整个运动过程中物块A始终未滑离木板B,且物块A和小球均可视为质点(重力加速度g).求:①物块A相对B静止后的速度大小;②木板B至少多长.【答案】①0.25v0.②216v Lgμ=【解析】试题分析:(1)设小球和物体A碰撞后二者的速度为v1,三者相对静止后速度为v2,规定向右为正方向,根据动量守恒得,mv0=2mv1,① (2分)2mv1=4mv2② (2分)联立①②得,v2=0.25v0.(1分)(2)当A在木板B上滑动时,系统的动能转化为摩擦热,设木板B的长度为L,假设A刚好滑到B的右端时共速,则由能量守恒得,③ (2分)联立①②③得,L=考点:动量守恒,能量守恒.【名师点睛】小球与 A碰撞过程中动量守恒,三者组成的系统动量也守恒,结合动量守恒定律求出物块A相对B静止后的速度大小;对子弹和A共速后到三种共速的过程,运用能量守恒定律求出木板的至少长度.4.装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击.通过对一下简化模型的计算可以粗略说明其原因.质量为2m、厚度为2d的钢板静止在水平光滑桌面上.质量为m的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿.现把钢板分成厚度均为d、质量均为m的相同两块,间隔一段距离水平放置,如图所示.若子弹以相同的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深度.设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影响.【答案】【解析】设子弹初速度为v0,射入厚度为2d的钢板后,由动量守恒得:mv0=(2m+m)V(2分)此过程中动能损失为:ΔE损=f·2d=12mv20-12×3mV2(2分)解得ΔE=13mv20分成两块钢板后,设子弹穿过第一块钢板时两者的速度分别为v1和V1:mv1+mV1=mv0(2分)因为子弹在射穿第一块钢板的动能损失为ΔE损1=f·d=mv2(1分),由能量守恒得:1 2mv21+12mV21=12mv20-ΔE损1(2分)且考虑到v1必须大于V1,解得:v1=13(26v0设子弹射入第二块钢板并留在其中后两者的共同速度为V2,由动量守恒得:2mV 2=mv 1(1分) 损失的动能为:ΔE′=12mv 21-12×2mV 22(2分) 联立解得:ΔE′=13(1)22+×mv 2因为ΔE′=f·x (1分), 可解得射入第二钢板的深度x 为:(2分)子弹打木块系统能量损失完全转化为了热量,相互作用力乘以相对位移为产生的热量,以系统为研究对象由能量守恒列式求解5.(1)恒星向外辐射的能量来自于其内部发生的各种热核反应,当温度达到108K 时,可以发生“氦燃烧”。

高考物理动量守恒定律题20套(带答案)

高考物理动量守恒定律题20套(带答案)

高考物理动量守恒定律题20套(带答案)一、高考物理精讲专题动量守恒定律1.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。

已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。

求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J2.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求:(1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ;(2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1;(3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值.【答案】(1)24.610N F N -=⨯ (2)1 1.25B T = (3)127s 360t π=,001290143ββ==和【解析】 【详解】解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111-22m gl m v m v μ=- 解得:17m/s v =碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v '=+取向左为正方向,由题意11m/s v =-', 解得:24m/s v =b 点:对Q ,由牛顿第二定律得:2222N v F m g m R-=解得:24.610N N F -=⨯(2)设Q 在c 点的速度为c v ,在b 到c 点,由机械能守恒定律:22222211(1cos )22c m gR m v m v θ-+=解得:2m/s c v =进入磁场后:Q 所受电场力22310N F qE m g -==⨯= ,Q 在磁场做匀速率圆周运动由牛顿第二定律得:2211c c m v qv B r =Q 刚好不从gh 边穿出磁场,由几何关系:1 1.6m r d == 解得:1 1.25T B = (3)当所加磁场22T B =,2221m cm v r qB == 要让Q 从gh 边穿出磁场且在磁场中运动的时间最长,则Q 在磁场中运动轨迹对应的圆心角最大,则当gh 边或ef 边与圆轨迹相切,轨迹如图所示:设最大圆心角为α,由几何关系得:22cos(180)dr r α-︒-= 解得:127α=︒ 运动周期:222m T qB π=则Q 在磁场中运动的最长时间:222127127•s 360360360m t T qB παπ===︒此时对应的β角:190β=︒和2143β=︒3.如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3 m/s 的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h="0.3" m (h 小于斜面体的高度).已知小孩与滑板的总质量为m 1="30" kg ,冰块的质量为m 2="10" kg ,小孩与滑板始终无相对运动.取重力加速度的大小g="10" m/s 2.(i )求斜面体的质量;(ii )通过计算判断,冰块与斜面体分离后能否追上小孩? 【答案】(i )20 kg (ii )不能 【解析】试题分析:①设斜面质量为M ,冰块和斜面的系统,水平方向动量守恒:222()m v m M v =+系统机械能守恒:22222211()22m gh m M v m v ++= 解得:20kg M =②人推冰块的过程:1122m v m v =,得11/v m s =(向右)冰块与斜面的系统:22223m v m v Mv '=+ 22222223111+222m v m v Mv ='解得:21/v m s =-'(向右) 因21=v v ',且冰块处于小孩的后方,则冰块不能追上小孩. 考点:动量守恒定律、机械能守恒定律.4.氡是一种放射性气体,主要来源于不合格的水泥、墙砖、石材等建筑材料.呼吸时氡气会随气体进入肺脏,氡衰变时放出α射线,这种射线像小“炸弹”一样轰击肺细胞,使肺细胞受损,从而引发肺癌、白血病等.若有一静止的氡核22286Rn 发生α衰变,放出一个速度为0v 、质量为m 的α粒子和一个质量为M 的反冲核钋21884Po 此过程动量守恒,若氡核发生衰变时,释放的能量全部转化为α粒子和钋核的动能。

高考物理动量守恒定律题20套(带答案)

高考物理动量守恒定律题20套(带答案)

高考物理动量守恒定律题20套(带答案)一、高考物理精讲专题动量守恒定律1.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以02v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ;(4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能.【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)201532mv E ∆=【解析】 【详解】(1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有:mv 0=m2v +2mv B 解得v B =4v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量222000111()2()22224v v mgL mv m m μ⨯=--解得20516v gLμ=(3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有:2mv +mv B =2mv A 、C 系统机械能守恒:22200111()()222242v v mgR m m mv +-⨯=解得264v R g= (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒0024A C mv mv mv mv +=+ A 、C 系统初、末状态机械能守恒,2222001111()()222422A C m m m m +=+v v v v 解得v A =4v . 所以从开始滑上B 到最后滑离C 的过程中A 损失的机械能为:2220015112232A mv E mv mv ∆=-=【点睛】该题是一个板块的问题,关键是要理清A 、B 、C 运动的物理过程,灵活选择物理规律,能够熟练运用动量守恒定律和能量守恒定律列出等式求解.2.如图甲所示,物块A 、B 的质量分别是 m A =4.0kg 和m B =3.0kg .用轻弹簧拴接,放在光滑的水平地面上,物块B 右侧与竖直墙相接触.另有一物块C 从t =0时以一定速度向右运动,在t =4s 时与物块A 相碰,并立即与A 粘在一起不再分开,物块C 的v -t 图象如图乙所示.求:①物块C 的质量?②B 离开墙后的运动过程中弹簧具有的最大弹性势能E P ? 【答案】(1)2kg (2)9J 【解析】试题分析:①由图知,C 与A 碰前速度为v 1=9 m/s ,碰后速度为v 2=3 m/s ,C 与A 碰撞过程动量守恒.m c v 1=(m A +m C )v 2 即m c =2 kg②12 s 时B 离开墙壁,之后A 、B 、C 及弹簧组成的系统动量和机械能守恒,且当A 、C 与B 的速度相等时,弹簧弹性势能最大 (m A +m C )v 3=(m A +m B +m C )v 4得E p =9 J考点:考查了动量守恒定律,机械能守恒定律的应用【名师点睛】分析清楚物体的运动过程、正确选择研究对象是正确解题的关键,应用动量守恒定律、能量守恒定律、动量定理即可正确解题.3.人站在小车上和小车一起以速度v 0沿光滑水平面向右运动.地面上的人将一小球以速度v 沿水平方向向左抛给车上的人,人接住后再将小球以同样大小的速度v 水平向右抛出,接和抛的过程中车上的人和车始终保持相对静止.重复上述过程,当车上的人将小球向右抛出n 次后,人和车速度刚好变为0.已知人和车的总质量为M ,求小球的质量m . 【答案】02Mv m nv= 【解析】试题分析:以人和小车、小球组成的系统为研究对象,车上的人第一次将小球抛出,规定向右为正方向,由动量守恒定律:Mv 0-mv=Mv 1+mv 得:102mvv v M=-车上的人第二次将小球抛出,由动量守恒: Mv 1-mv=Mv 2+mv 得:2022mvv v M=-⋅同理,车上的人第n 次将小球抛出后,有02n mvv v n M=-⋅ 由题意v n =0, 得:02Mv m nv=考点:动量守恒定律4.如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径R =0.5m ,物块A 以v 0=6m/s 的速度滑入圆轨道,滑过最高点Q ,再沿圆轨道滑出后,与直轨道上P 处静止的物块B 碰撞,碰后粘在一起运动,P 点左侧轨道光滑,右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L =0.1m ,物块与各粗糙段间的动摩擦因数都为μ=0.1,A 、B 的质量均为m =1kg(重力加速度g 取10m/s 2;A 、B 视为质点,碰撞时间极短).(1)求A 滑过Q 点时的速度大小v 和受到的弹力大小F ; (2)若碰后AB 最终停止在第k 个粗糙段上,求k 的数值; (3)求碰后AB 滑至第n 个(n <k )光滑段上的速度v n 与n 的关系式. 【答案】(1)5m/s v =, F =22 N (2) k =45 (3)90.2m/s ()n v n n k =-<【解析】⑴物块A 从开始运动到运动至Q 点的过程中,受重力和轨道的弹力作用,但弹力始终不做功,只有重力做功,根据动能定理有:-2mgR =-解得:v ==4m/s在Q 点,不妨假设轨道对物块A 的弹力F 方向竖直向下,根据向心力公式有:mg +F =解得:F =-mg =22N ,为正值,说明方向与假设方向相同。

高考物理动量守恒定律专项训练100(附答案)含解析

高考物理动量守恒定律专项训练100(附答案)含解析

高考物理动量守恒定律专项训练100(附答案)含解析一、高考物理精讲专题动量守恒定律1.如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3 m/s 的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h="0.3" m (h 小于斜面体的高度).已知小孩与滑板的总质量为m 1="30" kg ,冰块的质量为m 2="10" kg ,小孩与滑板始终无相对运动.取重力加速度的大小g="10" m/s 2.(i )求斜面体的质量;(ii )通过计算判断,冰块与斜面体分离后能否追上小孩? 【答案】(i )20 kg (ii )不能 【解析】试题分析:①设斜面质量为M ,冰块和斜面的系统,水平方向动量守恒:222()m v m M v =+系统机械能守恒:22222211()22m gh m M v m v ++= 解得:20kg M =②人推冰块的过程:1122m v m v =,得11/v m s =(向右)冰块与斜面的系统:22223m v m v Mv '=+ 22222223111+222m v m v Mv ='解得:21/v m s =-'(向右) 因21=v v ',且冰块处于小孩的后方,则冰块不能追上小孩. 考点:动量守恒定律、机械能守恒定律.2.匀强电场的方向沿x 轴正向,电场强度E 随x 的分布如图所示.图中E 0和d 均为已知量.将带正电的质点A 在O 点由能止释放.A 离开电场足够远后,再将另一带正电的质点B 放在O 点也由静止释放,当B 在电场中运动时,A 、B 间的相互作用力及相互作用能均为零;B 离开电场后,A 、B 间的相作用视为静电作用.已知A 的电荷量为Q ,A 和B 的质量分别为m 和.不计重力.(1)求A在电场中的运动时间t,(2)若B的电荷量q =Q,求两质点相互作用能的最大值E pm(3)为使B离开电场后不改变运动方向,求B所带电荷量的最大值q m【答案】(1)(2)145QE0d (3)Q【解析】【分析】【详解】解:(1)由牛顿第二定律得,A在电场中的加速度 a ==A在电场中做匀变速直线运动,由d =a得运动时间 t ==(2)设A、B离开电场时的速度分别为v A0、v B0,由动能定理得QE0d =mqE0d =A、B相互作用过程中,动量和能量守恒.A、B相互作用为斥力,A受力与其运动方向相同,B受的力与其运动方向相反,相互作用力对A做正功,对B做负功.A、B靠近的过程中,B的路程大于A的路程,由于作用力大小相等,作用力对B做功的绝对值大于对A做功的绝对值,因此相互作用力做功之和为负,相互作用能增加.所以,当A、B最接近时相互作用能最大,此时两者速度相同,设为v,,由动量守恒定律得:(m +)v,= mv A0 +v B0由能量守恒定律得:E Pm= (m+)—)且 q =Q解得相互作用能的最大值 E Pm=145QE0d(3)A、B在x>d区间的运动,在初始状态和末态均无相互作用根据动量守恒定律得:mv A+v B= mv A0 +v B0根据能量守恒定律得:m+=m+解得:v B = -+因为B不改变运动方向,所以v B = -+≥0解得:q≤Q则B所带电荷量的最大值为:q m =Q3.牛顿的《自然哲学的数学原理》中记载,A、B两个玻璃球相碰,碰撞后的分离速度和它们碰撞前的接近速度之比总是约为15∶16.分离速度是指碰撞后B对A的速度,接近速度是指碰撞前A对B的速度.若上述过程是质量为2m的玻璃球A以速度v0碰撞质量为m 的静止玻璃球B,且为对心碰撞,求碰撞后A、B的速度大小.【答案】v0v0【解析】设A、B球碰撞后速度分别为v1和v2由动量守恒定律得2mv0=2mv1+mv2且由题意知=解得v1=v0,v2=v0视频4.如图的水平轨道中,AC段的中点B的正上方有一探测器,C处有一竖直挡板,物体P1沿轨道向右以速度v1与静止在A点的物体P2碰撞,并接合成复合体P,以此碰撞时刻为计时零点,探测器只在t1=2 s至t2=4 s内工作,已知P1、P2的质量都为m=1 kg,P与AC间的动摩擦因数为μ=0.1,AB段长L=4 m,g取10 m/s2,P1、P2和P均视为质点,P与挡板的碰撞为弹性碰撞。

高考物理《动量守恒定律》真题练习含答案

高考物理《动量守恒定律》真题练习含答案

高考物理《动量守恒定律》真题练习含答案1.[2024·全国甲卷](多选)蹦床运动中,体重为60 kg的运动员在t=0时刚好落到蹦床上,对蹦床作用力大小F与时间t的关系如图所示.假设运动过程中运动员身体始终保持竖直,在其不与蹦床接触时蹦床水平.忽略空气阻力,重力加速度大小取10 m/s2.下列说法正确的是()A.t=0.15 s时,运动员的重力势能最大B.t=0.30 s时,运动员的速度大小为10 m/sC.t=1.00 s时,运动员恰好运动到最大高度处D.运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N答案:BD解析:根据牛顿第三定律结合题图可知,t=0.15 s时,蹦床对运动员的弹力最大,蹦床的形变量最大,此时运动员处于最低点,运动员的重力势能最小,故A错误;根据题图可知运动员从t=0.30 s离开蹦床到t=2.3 s再次落到蹦床上经历的时间为2 s,根据竖直上抛运动的对称性可知,运动员上升时间为1 s,则在t=1.3 s时,运动员恰好运动到最大高度处,t=0.30 s时运动员的速度大小v=10×1 m/s=10 m/s,故B正确,C错误;同理可知运动员落到蹦床时的速度大小为10 m/s,以竖直向上为正方向,根据动量定理F·Δt-mg·Δt=mv-(-mv),其中Δt=0.3 s,代入数据可得F=4 600 N,根据牛顿第三定律可知运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N,故D正确.故选BD.2.[2022·山东卷]我国多次成功使用“冷发射”技术发射长征十一号系列运载火箭.如图所示,发射仓内的高压气体先将火箭竖直向上推出,火箭速度接近零时再点火飞向太空.从火箭开始运动到点火的过程中()A.火箭的加速度为零时,动能最大B.高压气体释放的能量全部转化为火箭的动能C.高压气体对火箭推力的冲量等于火箭动量的增加量D.高压气体的推力和空气阻力对火箭做功之和等于火箭动能的增加量答案:A解析:从火箭开始运动到点火的过程中,火箭先加速运动后减速运动,当加速度为零时,动能最大,A项正确;高压气体释放的能量转化为火箭的动能和重力势能及火箭与空气间因摩擦产生的热量,B项错误;根据动量定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f的冲量矢量和等于火箭动量的变化量,C项错误;根据动能定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f对火箭做的功之和等于火箭动能的变化量,D项错误.3.[2022·湖南卷]1932年,查德威克用未知射线轰击氢核,发现这种射线是由质量与质子大致相等的中性粒子(即中子)组成.如图,中子以速度v0分别碰撞静止的氢核和氮核,碰撞后氢核和氮核的速度分别为v1和v2.设碰撞为弹性正碰,不考虑相对论效应,下列说法正确的是()A.碰撞后氮核的动量比氢核的小B.碰撞后氮核的动能比氢核的小C.v2大于v1D.v2大于v0答案:B解析:设中子质量为m0,被碰粒子质量为m,碰后中子速度为v′0,被碰粒子速度为v,二者发生弹性正碰,由动量守恒定律和能量守恒定律有m 0v 0=m 0v ′0+m v ,12 m 0v 20 =12m 0v ′20 +12 m v 2,解得v ′0=m 0-m m 0+m v 0,v =2m 0m 0+mv 0,因为当被碰粒子分别为氢核(m 0)和氮核(14m 0)时,有v 1=v 0,v 2=215 v 0,故C 、D 项错误;碰撞后氮核的动量为p 氮=14m 0·v 2=2815m 0v 0,氢核的动量为p 氢=m 0·v 1=m 0v 0,p 氮>p 氢,故A 错误;碰撞后氮核的动能为E k 氮=12·14m 0v 22 =28225 m 0v 20 ,氢核的动能为E k 氢=12 ·m 0·v 21 =12m 0v 20 ,E k 氮<E k 氢,故B 正确. 4.[2021·全国乙卷]如图,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦.用力向右推动车厢使弹簧压缩,撤去推力时滑块在车厢底板上有相对滑动.在地面参考系(可视为惯性系)中,从撤去推力开始,小车、弹簧和滑块组成的系统( )A .动量守恒,机械能守恒B .动量守恒,机械能不守恒C .动量不守恒,机械能守恒D .动量不守恒,机械能不守恒答案:B解析:撤去推力后,小车、弹簧和滑块组成的系统所受合外力为零,满足系统动量守恒的条件,故系统动量守恒;由于撤去推力时滑块在车厢底板上有相对滑动,存在摩擦力做功的情况,故系统机械能不守恒,所以选项B 正确.5.[2023·新课标卷](多选)使甲、乙两条形磁铁隔开一段距离,静止于水平桌面上,甲的N 极正对着乙的S 极,甲的质量大于乙的质量,两者与桌面之间的动摩擦因数相等.现同时释放甲和乙,在它们相互接近过程中的任一时刻( )A .甲的速度大小比乙的大B .甲的动量大小比乙的小C .甲的动量大小与乙的相等D .甲和乙的动量之和不为零答案:BD解析:对甲、乙两条形磁铁分别做受力分析,如图所示对于整个系统,由于μm 甲g >μm 乙g ,合力方向向左,合冲量方向向左,所以合动量方向向左,甲的动量大小比乙的小,m 甲v 甲<m 乙v 乙,又m 甲>m 乙,故v 甲<v 乙,B 、D 正确,A 、C 错误.故选BD.6.[2021·全国乙卷](多选)水平桌面上,一质量为m 的物体在水平恒力F 拉动下从静止开始运动.物体通过的路程等于s 0时,速度的大小为v 0,此时撤去F ,物体继续滑行2s 0的路程后停止运动.重力加速度大小为g .则( )A .在此过程中F 所做的功为12m v 20 B .在此过程中F 的冲量大小等于32m v 0 C .物体与桌面间的动摩擦因数等于v 20 4s 0gD .F 的大小等于物体所受滑动摩擦力大小的2倍答案:BC解析:设物体与桌面间的动摩擦因数为μ,根据功的定义,可知在此过程中,F 做的功为W F =Fs 0=12m v 20 +μmgs 0,选项A 错误;物体通过路程s 0时,速度大小为v 0,撤去F 后,由牛顿第二定律有μmg =ma 2,根据匀变速直线运动规律有v 20 =2a 2·2s 0,联立解得μ=v 20 4s 0g ,选项C 正确;水平桌面上质量为m 的物体在恒力F 作用下从静止开始做匀加速直线运动,有F -μmg =ma 1,又v 20 =2a 1s 0,可得a 1=2a 2,可得F =3μmg ,即F 的大小等于物体所受滑动摩擦力大小的3倍,选项D 错误;对F 作用下物体运动的过程,由动量定理有Ft -μmgt=m v 0,联立解得F 的冲量大小为I F =Ft =32m v 0,选项B 正确.。

高中物理动量守恒定律题20套(带答案)及解析

高中物理动量守恒定律题20套(带答案)及解析

高中物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg和1kg的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P.现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s,此时乙尚未与P相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P碰撞反弹后,不能再与弹簧发生碰撞.求挡板P对乙的冲量的最大值.【答案】v乙=6m/s. I=8N【解析】【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。

(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、C,三球的质量分别为m A=1kg、m B=2kg、m C=6kg,初状态BC球之间连着一根轻质弹簧并处于静止,B、C连线与杆垂直并且弹簧刚好处于原长状态,A球以v0=9m/s的速度向左运动,与同一杆上的B球发生完全非弹性碰撞(碰撞时间极短),求:(1)A球与B球碰撞中损耗的机械能;(2)在以后的运动过程中弹簧的最大弹性势能;(3)在以后的运动过程中B球的最小速度.【答案】(1);(2);(3)零.【解析】试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有:碰后A 、B 的共同速度损失的机械能(2)A 、B 、C 系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A 、B 在前,C 在后.此后C 向左加速,A 、B 的加速度沿杆向右,直到弹簧恢复原长,故A 、B 继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A 、B 的速度,C 的速度可知碰后A 、B 已由向左的共同速度减小到零后反向加速到向右的,故B的最小速度为零 .考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A 、B 发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答3.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以02v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数 ; (3)圆弧槽C 的半径R ;(4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能.【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)201532mv E ∆=【解析】 【详解】(1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有:mv 0=m2v +2mv B 解得v B =4v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量222000111()2()22224v v mgL mv m m μ⨯=--解得20516v gLμ=(3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有:2mv +mv B =2mv A 、C 系统机械能守恒:22200111()()222242v v mgR m m mv +-⨯=解得264v R g= (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒0024A C mv mv mv mv +=+ A 、C 系统初、末状态机械能守恒,2222001111()()222422A C m m m m +=+v v v v 解得v A =4v . 所以从开始滑上B 到最后滑离C 的过程中A 损失的机械能为:2220015112232A mv E mv mv ∆=-=【点睛】该题是一个板块的问题,关键是要理清A、B、C运动的物理过程,灵活选择物理规律,能够熟练运用动量守恒定律和能量守恒定律列出等式求解.4.28.如图所示,质量为m a=2kg的木块A静止在光滑水平面上。

(完整版)动量守恒定律经典习题(带答案)

(完整版)动量守恒定律经典习题(带答案)

动量守恒定律习题(带答案)(基础、典型)例1、质量为1kg的物体从距地面5m高处自由下落,正落在以5m/s的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为4kg,地面光滑,则车后来的速度为多少?例2、质量为1kg的滑块以4m/s的水平速度滑上静止在光滑水平面上的质量为3kg的小车,最后以共同速度运动,滑块与车的摩擦系数为0.2,则此过程经历的时间为多少?例3、一颗手榴弹在5m高处以v0=10m/s的速度水平飞行时,炸裂成质量比为3:2的两小块,质量大的以100m/s的速度反向飞行,求两块落地点的距离。

(g取10m/s2)例4、如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止的平板小车,车的质量为1.6kg,木块与小车之间的摩擦系数为0.2(g取10m/s2)。

设小车足够长,求:(1)木块和小车相对静止时小车的速度。

(2)从木块滑上小车到它们处于相对静止所经历的时间。

(3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离。

例5、甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他所乘的冰车的质量共为30kg,乙和他所乘的冰车的质量也为30kg。

游戏时,甲推着一个质量为15kg的箱子和甲一起以2m/s的速度滑行,乙以同样大小的速度迎面滑来。

为了避免相撞,甲突然将箱子沿冰面推向乙,箱子滑到乙处,乙迅速将它抓住。

若不计冰面的摩擦,甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞?答案:1. 分析:以物体和车做为研究对象,受力情况如图所示。

在物体落入车的过程中,物体与车接触瞬间竖直方向具有较大的动量,落入车后,竖直方向上的动量减为0,由动量定理可知,车给重物的作用力远大于物体的重力。

因此地面给车的支持力远大于车与重物的重力之和。

系统所受合外力不为零,系统总动量不守恒。

但在水平方向系统不受外力作用,所以系统水平方向动量守恒。

以车的运动方向为正方向,由动量守恒定律可得:车 重物初:v 0=5m/s 0末:v v ⇒Mv 0=(M+m)v⇒s m v m N M v /454140=⨯+=+= 即为所求。

最新高中物理动量守恒定律题20套(带答案)

最新高中物理动量守恒定律题20套(带答案)

最新高中物理动量守恒定律题20套(带答案)一、高考物理精讲专题动量守恒定律1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求:(1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v;②23v 【解析】试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v =②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223v v =考点:动量守恒定律2.(16分)如图,水平桌面固定着光滑斜槽,光滑斜槽的末端和一水平木板平滑连接,设物块通过衔接处时速率没有改变。

质量m 1=0.40kg 的物块A 从斜槽上端距水平木板高度h=0. 80m 处下滑,并与放在水平木板左端的质量m 2=0.20kg 的物块B 相碰,相碰后物块B 滑行x=4.0m 到木板的C 点停止运动,物块A 滑到木板的D 点停止运动。

已知物块B 与木板间的动摩擦因数=0.20,重力加速度g=10m/s 2,求:(1) 物块A 沿斜槽滑下与物块B 碰撞前瞬间的速度大小; (2) 滑动摩擦力对物块B 做的功;(3) 物块A 与物块B 碰撞过程中损失的机械能。

【答案】(1)v 0=4.0m/s (2)W=-1.6J (3)E=0.80J【解析】试题分析: ①设物块A 滑到斜面底端与物块B 碰撞前时的速度大小为v 0,根据机械能守恒定律有m 1gh =12m 120v (1分)v 02gh ,解得:v 0=4.0 m/s(1分) ②设物块B 受到的滑动摩擦力为f ,摩擦力做功为W ,则f =μm 2g(1分)W =-μm 2gx 解得:W =-1.6 J(1分)③设物块A 与物块B 碰撞后的速度为v 1,物块B 受到碰撞后的速度为v ,碰撞损失的机械能为E ,根据动能定理有-μm 2gx =0-12m 2v 2 解得:v =4.0 m/s(1分)根据动量守恒定律m 1v 0=m 1v 1+m 2v(1分) 解得:v 1=2.0 m/s(1分)能量守恒12m 120v =12m 121v +12m 2v 2+E(1分) 解得:E =0.80 J(1分)考点:考查了机械能守恒,动量守恒定律3.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m 的光滑14圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。

高中物理:动量守恒定律练习题(可编文档+参考答案)

高中物理:动量守恒定律练习题(可编文档+参考答案)

高中物理:动量守恒定律一、选择题(在每小题给出的四个选项中. 1~8题只有一项符合题目要求; 9~11题有多项符合题目要求。

) 1.如图所示,跳水运动员从某一峭壁上水平跳出,跳入湖水中,已知运动员的质量m =70kg ,初速度v 0=5m/s 。

若经过1s 时,速度为v =5m/s ,则在此过程中,运动员动量的变化量为(g =10m/s 2,不计空气阻力): ( ) A. 700 kg·m/s B. 350 kg·m/s C. 350(-1) kg·m/s D. 350(+1) kg·m/s2.如图所示,光滑平面上有一辆质量为4m 的小车,车上左右两端分别站着甲、乙两人,他们的质量都是m ,开始两个人和车一起以速度v 0向右匀速运动.某一时刻,站在车右端的乙先以相对地面向右的速度v 跳离小车,然后站在车左端的甲以相对于地面向左的速度v 跳离小车.两人都离开小车后,小车的速度将是: ( ) A. 1.5v 0 B. v 0 C. 大于v 0,小于1.5v 0 D. 大于1.5v 03.如图所示,两个质量相等的物体,在同一高度沿倾角不同的两个光滑斜面由静止自由滑下到达斜面底端的过程中,相同的物理量是 : ( )A. 重力的冲量B. 弹力的冲量C. 到达底端的动量D. 到达底端的动能4.如图所示,竖直墙壁两侧固定着两轻质弹簧,水平面光滑,一弹性小球在两弹簧间往复运动,把小球和弹簧视为一个系统,则小球在运动过程中: ( ) A. 系统的动量守恒,动能守恒B. 系统的动量守恒,机械能守恒C. 系统的动量不守恒,机械能守恒D. 系统的动量不守恒,动能守恒5.A 、B 两物体发生正碰,碰撞前后物体A 、B 都在同一直线上运动,其位移—时间图象如图所示。

由图可知,物体A 、B 的质量之比为: ( ) A. 1∶1 B. 1∶2 C. 1∶3 D. 3∶16.在光滑水平地面上匀速运动的装有砂子的小车,小车和砂子总质量为M ,速度为v 0,在行驶途中有质量为m 的砂子从车上漏掉,砂子漏掉后小车的速度应为: ( ) A. v 0 B.0Mv M m - C. 0mv M m - D. ()0M m v M-7.一个质量为0.5kg 的篮球从离地面5m 高处自由落下,与地面碰撞后上升的最大高度为3.2m ,设球与地面接触时间为0.2s ,则地面对球的平均作用力为(不计空气阻力,g 取10m/s 2): ( ) A. 30N B. 45N C. 50N D. 60N8.如图所示,在光滑水平面上停放质量为m装有弧形槽的小车。

高考物理动量守恒定律题20套(带答案)

高考物理动量守恒定律题20套(带答案)

高考物理动量守恒定律题20套(带答案)一、高考物理精讲专题动量守恒定律1.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、m ,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度0v 向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求:(1)第一次碰撞过程中系统损失的动能 (2)第一次碰撞过程中甲对乙的冲量 【答案】(1)2014mv ;(2) 0mv 【解析】 【详解】解:(1)设第一次碰撞刚结束时甲、乙的速度分别为1v 、2v ,之后甲做匀速直线运动,乙以2v 初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速度相等,有:212v v =而第一次碰撞中系统动量守恒有:01222mv mv mv =+ 由以上两式可得:012v v =,20 v v = 所以第一次碰撞中的机械能损失为:222201201111222224E m v m v mv mv ∆=--=gg g g (2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:200I mv mv =-=2.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A 、B 、C ,三球的质量分别为m A =1kg 、m B =2kg 、m C =6kg ,初状态BC 球之间连着一根轻质弹簧并处于静止,B 、C 连线与杆垂直并且弹簧刚好处于原长状态,A 球以v 0=9m/s 的速度向左运动,与同一杆上的B 球发生完全非弹性碰撞(碰撞时间极短),求:(1)A 球与B 球碰撞中损耗的机械能; (2)在以后的运动过程中弹簧的最大弹性势能; (3)在以后的运动过程中B 球的最小速度. 【答案】(1);(2);(3)零.【解析】试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有:碰后A、B的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A、B已由向左的共同速度减小到零后反向加速到向右的,故B 的最小速度为零.考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A、B发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A球与B球碰撞中损耗的机械能.当B、C速度相等时,弹簧伸长量最大,弹性势能最大,结合B、C在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答3.如图所示,质量M=1kg的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef两个光滑半圆形导轨,c与e端由导线连接,一质量m=lkg的导体棒自ce端的正上方h=2m处平行ce由静止下落,并恰好从ce端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。

物理动量守恒定律题20套(带答案)

物理动量守恒定律题20套(带答案)

物理动量守恒定律题20套(带答案)一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg和1kg的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P.现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s,此时乙尚未与P相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P碰撞反弹后,不能再与弹簧发生碰撞.求挡板P对乙的冲量的最大值.【答案】v乙=6m/s. I=8N【解析】【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。

(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.如图:竖直面内固定的绝缘轨道abc,由半径R=3 m的光滑圆弧段bc与长l=1.5 m的粗糙水平段ab在b点相切而构成,O点是圆弧段的圆心,Oc与Ob的夹角θ=37°;过f点的竖直虚线左侧有方向竖直向上、场强大小E=10 N/C的匀强电场,Ocb的外侧有一长度足够长、宽度d =1.6 m的矩形区域efgh,ef与Oc交于c点,ecf与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m2=3×10-3 kg、电荷量q=3×l0-3 C的带正电小物体Q静止在圆弧轨道上b点,质量m1=1.5×10-3 kg的不带电小物体P从轨道右端a以v0=8 m/s的水平速度向左运动,P、Q碰撞时间极短,碰后P以1 m/s的速度水平向右弹回.已知P与ab间的动摩擦因数μ=0.5,A、B均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g=10m/s2.求:(1)碰后瞬间,圆弧轨道对物体Q的弹力大小F N;(2)当β=53°时,物体Q刚好不从gh边穿出磁场,求区域efgh内所加磁场的磁感应强度大小B1;(3)当区域efgh内所加磁场的磁感应强度为B2=2T时,要让物体Q从gh边穿出磁场且在磁场中运动的时间最长,求此最长时间t及对应的β值.【答案】(1)24.610N F N -=⨯ (2)1 1.25B T = (3)127s 360t π=,001290143ββ==和 【解析】 【详解】解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111-22m gl m v m v μ=- 解得:17m/s v =碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v '=+取向左为正方向,由题意11m/s v =-', 解得:24m/s v =b 点:对Q ,由牛顿第二定律得:2222N v F m g m R-=解得:24.610N N F -=⨯(2)设Q 在c 点的速度为c v ,在b 到c 点,由机械能守恒定律:22222211(1cos )22c m gR m v m v θ-+=解得:2m/s c v =进入磁场后:Q 所受电场力22310N F qE m g -==⨯= ,Q 在磁场做匀速率圆周运动由牛顿第二定律得:2211c c m v qv B r =Q 刚好不从gh 边穿出磁场,由几何关系:1 1.6m r d == 解得:1 1.25T B = (3)当所加磁场22T B =,2221m cm v r qB == 要让Q 从gh 边穿出磁场且在磁场中运动的时间最长,则Q 在磁场中运动轨迹对应的圆心角最大,则当gh 边或ef 边与圆轨迹相切,轨迹如图所示:设最大圆心角为α,由几何关系得:22cos(180)d r rα-︒-= 解得:127α=︒ 运动周期:222m T qB π=则Q 在磁场中运动的最长时间:222127127•s 360360360m t T qB παπ===︒此时对应的β角:190β=︒和2143β=︒3.两个质量分别为0.3A m kg =、0.1B m kg =的小滑块A 、B 和一根轻质短弹簧,弹簧的一端与小滑块A 粘连,另一端与小滑块B 接触而不粘连.现使小滑块A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度03/v m s =在水平面上做匀速直线运动,如题8图所示.一段时间后,突然解除锁定(解除锁定没有机械能损失),两滑块仍沿水平面做直线运动,两滑块在水平面分离后,小滑块B 冲上斜面的高度为 1.5h m =.斜面倾角o 37θ=,小滑块与斜面间的动摩擦因数为0.15μ=,水平面与斜面圆滑连接.重力加速度g 取210/m s .求:(提示:o sin 370.6=,o cos370.8=)(1)A 、B 滑块分离时,B 滑块的速度大小. (2)解除锁定前弹簧的弹性势能.【答案】(1)6/B v m s = (2)0.6P E J = 【解析】试题分析:(1)设分离时A 、B 的速度分别为A v 、B v , 小滑块B 冲上斜面轨道过程中,由动能定理有:2cos 1sin 2B B B Bm gh m gh m v θμθ+⋅= ① (3分)代入已知数据解得:6/B v m s = ② (2分)(2)由动量守恒定律得:0()A B A A B B m m v m v m v +=+ ③ (3分) 解得:2/A v m s = (2分) 由能量守恒得:2220111()222A B P A A B Bm m v E m v m v ++=+ ④ (4分) 解得:0.6P E J = ⑤ (2分)考点:本题考查了动能定理、动量守恒定律、能量守恒定律.4.如图所示,质量M=1kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。

高考物理动量守恒定律题20套(带答案)

高考物理动量守恒定律题20套(带答案)

22
2
2
联立①③④解得:R= v02 64g
点睛:该题考查动量守恒定律的应用,要求同学们能正确分析物体的运动情况,列出动量 守恒以及能量转化的方程;注意使用动量守恒定律解题时要规定正方向.
6.甲图是我国自主研制的 200mm 离子电推进系统, 已经通过我国“实践九号”卫星空间飞 行试验验证,有望在 2015 年全面应用于我国航天器.离子电推进系统的核心部件为离子推 进器,它采用喷出带电离子的方式实现飞船的姿态和轨道的调整,具有大幅减少推进剂燃 料消耗、操控更灵活、定位更精准等优势.离子推进器的工作原理如图乙所示,推进剂氙 原子 P 喷注入腔室 C 后,被电子枪 G 射出的电子碰撞而电离,成为带正电的氙离子.氙离 子从腔室 C 中飘移过栅电极 A 的速度大小可忽略不计,在栅电极 A、B 之间的电场中加 速,并从栅电极 B 喷出.在加速氙离子的过程中飞船获得推力. 已知栅电极 A、B 之间的电压为 U,氙离子的质量为 m、电荷量为 q.
【分析】
【详解】
(1)设物块 A 的加速度为 a1,则有 mAgsinθ=ma1, 解得 a1=5m/s2 凹槽 B 运动时受到的摩擦力 f=μ×3mgcosθ=mg 方向沿斜面向上;
凹槽 B 所受重力沿斜面的分力 G1=2mgsinθ=mg 方向沿斜面向下; 因为 G1=f,则凹槽 B 受力平衡,保持静止,凹槽 B 的加速度为 a2=0 (2)设 A 与 B 的左壁第一次碰撞前的速度为 vA0,根据运动公式:v2A0=2a1d 解得 vA0=3m/s; AB 发生弹性碰撞,设 A 与 B 第一次碰撞后瞬间 A 的速度大小为 vA1,B 的速度为 vB1,则由
子个数为 N nt ,设氙离子受到的平均力为 F ,对时间 t 内的射出的氙离子运用动量定 理, Ft Nmv ntmv , F= nmv 根据牛顿第三定律可知,离子推进器工作过程中对飞船的推力大小 F= F = nmv

【物理】物理动量守恒定律题20套(带答案)含解析

【物理】物理动量守恒定律题20套(带答案)含解析

【物理】物理动量守恒定律题20套(带答案)含解析一、高考物理精讲专题动量守恒定律1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求:(1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v;②23v 【解析】试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v =②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223v v =考点:动量守恒定律2.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。

已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。

求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅ ⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J3.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A 、B 、C ,三球的质量分别为m A =1kg 、m B =2kg 、m C =6kg ,初状态BC 球之间连着一根轻质弹簧并处于静止,B 、C 连线与杆垂直并且弹簧刚好处于原长状态,A 球以v 0=9m/s 的速度向左运动,与同一杆上的B 球发生完全非弹性碰撞(碰撞时间极短),求:(1)A球与B球碰撞中损耗的机械能;(2)在以后的运动过程中弹簧的最大弹性势能;(3)在以后的运动过程中B球的最小速度.【答案】(1);(2);(3)零.【解析】试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有:碰后A、B的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A、B已由向左的共同速度减小到零后反向加速到向右的,故B 的最小速度为零.考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A、B发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答4.如图所示,固定的凹槽水平表面光滑,其内放置U 形滑板N ,滑板两端为半径R=0.45m 的1/4圆弧面.A 和D 分别是圆弧的端点,BC 段表面粗糙,其余段表面光滑.小滑块P 1和P 2的质量均为m .滑板的质量M=4m ,P 1和P 2与BC 面的动摩擦因数分别为μ1=0.10和μ2=0.20,最大静摩擦力近似等于滑动摩擦力.开始时滑板紧靠槽的左端,P 2静止在粗糙面的B 点,P 1以v 0=4.0m/s 的初速度从A 点沿弧面自由滑下,与P 2发生弹性碰撞后,P 1处在粗糙面B 点上.当P 2滑到C 点时,滑板恰好与槽的右端碰撞并与槽牢固粘连,P 2继续运动,到达D 点时速度为零.P 1与P 2视为质点,取g=10m/s 2.问:(1)P 1和P 2碰撞后瞬间P 1、P 2的速度分别为多大? (2)P 2在BC 段向右滑动时,滑板的加速度为多大? (3)N 、P 1和P 2最终静止后,P 1与P 2间的距离为多少?【答案】(1)10v '=、25m/s v '= (2)220.4m/s a = (3)△S=1.47m 【解析】试题分析:(1)P 1滑到最低点速度为v 1,由机械能守恒定律有:22011122mv mgR mv += 解得:v 1=5m/sP 1、P 2碰撞,满足动量守恒,机械能守恒定律,设碰后速度分别为1v '、2v ' 则由动量守恒和机械能守恒可得:112mv mv mv ''=+ 222112111222mv mv mv ''=+ 解得:10v '=、25m/s v '= (2)P 2向右滑动时,假设P 1保持不动,对P 2有:f 2=μ2mg=2m (向左) 设P 1、M 的加速度为a 2;对P 1、M 有:f=(m+M )a 22220.4m/s 5f ma m M m===+ 此时对P 1有:f 1=ma 2=0.4m <f m =1.0m ,所以假设成立. 故滑块的加速度为0.4m/s 2;(3)P 2滑到C 点速度为2v ',由2212mgR mv '= 得23m/s v '= P 1、P 2碰撞到P 2滑到C 点时,设P 1、M 速度为v ,由动量守恒定律得:22()mv m M v mv '=++ 解得:v=0.40m/s 对P 1、P 2、M 为系统:222211()22f L mv m M v '=++ 代入数值得:L=3.8m滑板碰后,P 1向右滑行距离:2110.08m 2v s a ==P 2向左滑行距离:22222.25m 2v s a '==所以P 1、P 2静止后距离:△S=L-S 1-S 2=1.47m考点:考查动量守恒定律;匀变速直线运动的速度与位移的关系;牛顿第二定律;机械能守恒定律.【名师点睛】本题为动量守恒定律及能量关系结合的综合题目,难度较大;要求学生能正确分析过程,并能灵活应用功能关系;合理地选择研究对象及过程;对学生要求较高.5.如图所示,在光滑的水平面上放置一个质量为2m 的木板B ,B 的左端放置一个质量为m 的物块A ,已知A 、B 之间的动摩擦因数为μ,现有质量为m 的小球以水平速度0υ飞来与A 物块碰撞后立即粘住,在整个运动过程中物块A 始终未滑离木板B ,且物块A 和小球均可视为质点(重力加速度g).求:①物块A 相对B 静止后的速度大小; ②木板B 至少多长.【答案】①0.25v 0.②2016v L gμ=【解析】试题分析:(1)设小球和物体A 碰撞后二者的速度为v 1,三者相对静止后速度为v 2,规定向右为正方向,根据动量守恒得, mv 0=2mv 1,① (2分) 2mv 1=4mv 2② (2分)联立①②得,v 2=0.25v 0. (1分)(2)当A 在木板B 上滑动时,系统的动能转化为摩擦热,设木板B 的长度为L ,假设A 刚好滑到B 的右端时共速,则由能量守恒得,③ (2分)联立①②③得,L=考点:动量守恒,能量守恒.【名师点睛】小球与 A 碰撞过程中动量守恒,三者组成的系统动量也守恒,结合动量守恒定律求出物块A 相对B 静止后的速度大小;对子弹和A 共速后到三种共速的过程,运用能量守恒定律求出木板的至少长度.6.一列火车总质量为M ,在平直轨道上以速度v 匀速行驶,突然最后一节质量为m 的车厢脱钩,假设火车所受的阻力与质量成正比,牵引力不变,当最后一节车厢刚好静止时,前面火车的速度大小为多少? 【答案】Mv/(M-m) 【解析】 【详解】因整车匀速运动,故整体合外力为零;脱钩后合外力仍为零,系统的动量守恒. 取列车原来速度方向为正方向.由动量守恒定律,可得()0Mv M m v m =-'+⨯ 解得,前面列车的速度为Mvv M m'=-;7.如图所示,在光滑水平面上有一个长为L 的木板B ,上表面粗糙,在其左端有一个光滑的14圆弧槽C 与长木板接触但不连接,圆弧槽的下端与木板的上表面相平,B 、C 静止在水平面上,现有滑块A 以初速度v 0从右端滑上B 并以02v滑离B ,恰好能到达C 的最高点.A 、B 、C 的质量均为m ,试求:(1)滑块与木板B 上表面间的动摩擦因数μ; (2)14圆弧槽C 的半径R 【答案】(1)20516v gL μ=;(2)2064v R g=【解析】由于水平面光滑,A 与B 、C 组成的系统动量守恒和能量守恒,有:mv 0=m (12v 0)+2mv 1 ① μmgL =12mv 02-12m (12v 0) 2-12×2mv 12 ②联立①②解得:μ=2516v gL.②当A 滑上C ,B 与C 分离,A 、C 间发生相互作用.A 到达最高点时两者的速度相等.A 、C 组成的系统水平方向动量守恒和系统机械能守恒: m (12v 0)+mv 1=(m +m )v 2 ③ 12m (12v 0)2+12mv 12=12(2m )v 22+mgR ④ 联立①③④解得:R =264v g点睛:该题考查动量守恒定律的应用,要求同学们能正确分析物体的运动情况,列出动量守恒以及能量转化的方程;注意使用动量守恒定律解题时要规定正方向.8.如图所示,一对杂技演员(都视为质点)乘秋千(秋千绳处于水平位置)从A 点由静止出发绕O 点下摆,当摆到最低点B 时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处A .求男演员落地点C 与O 点的水平距离s .已知男演员质量m 1和女演员质量m 2之比m 1∶m 2=2,秋千的质量不计,秋千的摆长为R ,C 点比O 点低5R .【答案】8R 【解析】 【分析】 【详解】两演员一起从从A 点摆到B 点,只有重力做功,机械能守恒定律,设总质量为m ,则212mgR mv =女演员刚好能回到高处,机械能依然守恒:222112m gR m v =女演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒:122112m m v m v m v +=-+()③根据题意:12:2m m = 有以上四式解得:222v gR =接下来男演员做平抛运动:由2142R gt =,得8 t g R 因而:28s v t R ==; 【点睛】两演员一起从从A 点摆到B 点,只有重力做功,根据机械能守恒定律求出最低点速度;女演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒,由于女演员刚好能回到高处,可先根据机械能守恒定律求出女演员的返回速度,再根据动量守恒定律求出男演员平抛的初速度,然后根据平抛运动的知识求解男演员的水平分位移;本题关键分析求出两个演员的运动情况,然后对各个过程分别运用动量守恒定律和机械能守恒定律列式求解.9.如图所示,质量为m A =3kg 的小车A 以v 0=4m/s 的速度沿光滑水平面匀速运动,小车左端固定的支架通过不可伸长的轻绳悬挂质量为m B =1kg 的小球B (可看作质点),小球距离车面h =0.8m .某一时刻,小车与静止在光滑水平面上的质量为m C =1kg 的物块C 发生碰撞并粘连在一起(碰撞时间可忽略),此时轻绳突然断裂.此后,小球刚好落入小车右端固定的砂桶中(小桶的尺寸可忽略),不计空气阻力,重力加速度g =10m/s 2.求:(1)小车系统的最终速度大小v 共; (2)绳未断前小球与砂桶的水平距离L ; (3)整个过程中系统损失的机械能△E 机损. 【答案】(1)3.2m/s (2)0.4m (3)14.4J 【解析】试题分析:根据动量守恒求出系统最终速度;小球做平抛运动,根据平抛运动公式和运动学公式求出水平距离;由功能关系即可求出系统损失的机械能. (1)设系统最终速度为v 共,由水平方向动量守恒: (m A +m B ) v 0=(m A +m B +m C ) v 共 带入数据解得:v 共=3.2m/s(2)A 与C 的碰撞动量守恒:m A v 0=(m A +m C )v 1 解得:v 1=3m/s设小球下落时间为t ,则: 212h gt = 带入数据解得:t =0.4s 所以距离为:01()L v v =- 带入数据解得:L =0.4m(3)由能量守恒得:()()2201122B A B A B E m gh m m v m m m v ∆=++-++共损 带入数据解得:14.4E J ∆=损点睛:本题主要考查了动量守恒和能量守恒定律的应用,要注意正确选择研究对象,并分析系统是否满足动量守恒以及机械能守恒;然后才能列式求解.10.如图所示,一轻质弹簧的一端固定在滑块B 上,另一端与滑块C 接触但未连接,该整体静止放在离地面高为H 的光滑水平桌面上.现有一滑块A 从光滑曲面上离桌面h 高处由静止开始滑下,与滑块B 发生碰撞并粘在一起压缩弹簧推动滑块C 向前运动,经一段时间,滑块C 脱离弹簧,继续在水平桌面上匀速运动一段后从桌面边缘飞出.已知,2,3A B C m m m m m m ===,求:(1)滑块A 与滑块B 碰撞结束瞬间的速度v ; (2)被压缩弹簧的最大弹性势能E Pmax ; (3)滑块C 落地点与桌面边缘的水平距离 s. 【答案】(1)111233v v gh ==(2)6mgh (323Hh 【解析】 【详解】解:(1)滑块A 从光滑曲面上h 高处由静止开始滑下的过程,机械能守恒,设其滑到底面的速度为1v ,由机械能守恒定律有:2112=A A m gh m v 解之得:12v gh =滑块A 与B 碰撞的过程,A 、B 系统的动量守恒,碰撞结束瞬间具有共同速度设为v ,由动量守恒定律有:()1A A B m v m m v =+ 解之得:111233v v gh ==(2)滑块A 、B 发生碰撞后与滑块C 一起压缩弹簧,压缩的过程机械能守恒,被压缩弹簧的弹性势能最大时,滑块A 、B 、C 速度相等,设为速度2v 由动量守恒定律有: ()12A A B C m v m m m v =++ 由机械能守恒定律有: ()22max 21()2A A CB B P m v m m m m E v -++=+ 解得被压缩弹簧的最大弹性势能:max 16P E mgh =(3)被压缩弹簧再次恢复自然长度时,滑块C 脱离弹簧,设滑块A 、B 的速度为3v ,滑块C 的速度为4v ,分别由动量守恒定律和机械能守恒定律有:()()34A B A B C m m v m m v m v +=++()()22234111222A B A B C m m v m m v m v +=++ 解之得:30=v ,4123v gh =滑块C 从桌面边缘飞出后做平抛运动:4 s v t =212H gt =解之得滑块C 落地点与桌面边缘的水平距离:23s Hh =11.如图所示,在水平面上有一弹簧,其左端与墙壁相连,O 点为弹簧原长位置,O 点左侧水平面光滑,水平段OP 长L=1m ,P 点右侧一与水平方向成的足够长的传送带与水平面在P 点平滑连接,皮带轮逆时针转动速率为3m/s ,一质量为1kg 可视为质点的物块A 压缩弹簧(与弹簧不栓接),使弹簧获得弹性势能,物块与OP 段动摩擦因数,另一与A 完全相同的物块B 停在P 点,B 与传送带的动摩擦因数,传送带足够长,A 与B 的碰撞时间不计,碰后A .B 交换速度,重力加速度,现释放A ,求:(1)物块A .B 第一次碰撞前瞬间,A 的速度(2)从A .B 第一次碰撞后到第二次碰撞前,B 与传送带之间由于摩擦而产生的热量 (3)A .B 能够碰撞的总次数 【答案】(1)(2)(3)6次【解析】试题分析:(1)设物块质量为m ,A 与B 第一次碰前的速度为,则:解得:(2)设A.B 第一次碰撞后的速度分别为,则,碰后B 沿传送带向上匀减速运动直至速度为零,加速度大小设为, 则:,解得:运动的时间,位移此过程相对运动路程此后B反向加速,加速度仍为,与传送带共速后匀速运动直至与A再次碰撞,加速时间为位移为此过程相对运动路程全过程生热(3)B与A第二次碰撞,两者速度再次互换,此后A向左运动再返回与B碰撞,B沿传送带向上运动再次返回,每次碰后到再次碰前速率相等,重复这一过程直至两者不再碰撞.则对A.B和弹簧组成的系统,从第二次碰撞后到不再碰撞:解得第二次碰撞后重复的过程数为n=2.25,所以碰撞总次数为N=2+2n=6.5=6次(取整数)考点:动能定理;匀变速直线运动的速度与时间的关系;牛顿第二定律【名师点睛】本题首先要理清物体的运动过程,其次要准确把握每个过程所遵守的物理规律,特别要掌握弹性碰撞过程,动量和机械能均守恒,两物体质量相等时交换速度12.如图所示,物块质量m=4kg,以速度v=2m/s水平滑上一静止的平板车上,平板车质量M=16kg,物块与平板车之间的动摩擦因数μ=0.2,其他摩擦不计(g=10m/s2),求:(1)物块相对平板车静止时,物块的速度;(2)物块在平板车上滑行的时间;(3)物块在平板车上滑行的距离,要使物块在平板车上不滑下,平板车至少多长?【答案】(1)0.4m/s(2)(3)【解析】解:物块滑下平板车后,在车对它的摩擦力作用下开始减速,车在物块对它的摩擦力作用下开始加速,当二者速度相等时,物块相对平板车静止,不再发生相对滑动。

高考物理动量守恒定律专项训练100(附答案)含解析

高考物理动量守恒定律专项训练100(附答案)含解析

高考物理动量守恒定律专项训练100(附答案)含解析一、高考物理精讲专题动量守恒定律1.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、C,三球的质量分别为m A=1kg、m B=2kg、m C=6kg,初状态BC球之间连着一根轻质弹簧并处于静止,B、C连线与杆垂直并且弹簧刚好处于原长状态,A球以v0=9m/s的速度向左运动,与同一杆上的B球发生完全非弹性碰撞(碰撞时间极短),求:(1)A球与B球碰撞中损耗的机械能;(2)在以后的运动过程中弹簧的最大弹性势能;(3)在以后的运动过程中B球的最小速度.【答案】(1);(2);(3)零.【解析】试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有:碰后A、B的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A 、B 已由向左的共同速度减小到零后反向加速到向右的,故B的最小速度为零 .考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A 、B 发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答2.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以02v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ;(4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能.【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)201532mv E ∆=【解析】 【详解】(1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有:mv 0=m2v +2mv B 解得v B =4v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量222000111()2()22224v v mgL mv m m μ⨯=--解得20516v gLμ=(3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有:2mv +mv B =2mv A 、C 系统机械能守恒:22200111()()222242v v mgR m m mv +-⨯=解得264v R g= (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒0024A C mv mv mv mv +=+ A 、C 系统初、末状态机械能守恒,2222001111()()222422A C m m m m +=+v v v v 解得v A =4v . 所以从开始滑上B 到最后滑离C 的过程中A 损失的机械能为:2220015112232A mv E mv mv ∆=-=【点睛】该题是一个板块的问题,关键是要理清A 、B 、C 运动的物理过程,灵活选择物理规律,能够熟练运用动量守恒定律和能量守恒定律列出等式求解.3.如图所示,质量分别为m 1和m 2的两个小球在光滑水平面上分别以速度v 1、v 2同向运动,并发生对心碰撞,碰后m 2被右侧墙壁原速弹回,又与m 1碰撞,再一次碰撞后两球都静止.求第一次碰后m 1球速度的大小.【答案】【解析】设两个小球第一次碰后m 1和m 2速度的大小分别为和,由动量守恒定律得:(4分) 两个小球再一次碰撞,(4分)得:(4分)本题考查碰撞过程中动量守恒的应用,设小球碰撞后的速度,找到初末状态根据动量守恒的公式列式可得4.光滑水平轨道上有三个木块A 、B 、C ,质量分别为3A m m =、B C m m m ==,开始时B 、C 均静止,A 以初速度0v 向右运动,A 与B 相撞后分开,B 又与C 发生碰撞并粘在一起,此后A 与B 间的距离保持不变.求B 与C 碰撞前B 的速度大小.【答案】065B v v = 【解析】 【分析】 【详解】设A 与B 碰撞后,A 的速度为A v ,B 与C 碰撞前B 的速度为B V ,B 与C 碰撞后粘在一起的速度为v ,由动量守恒定律得: 对A 、B 木块:0A A A B B m v m v m v =+对B 、C 木块:()B B B C m v m m v =+由A 与B 间的距离保持不变可知A v v = 联立代入数据得:065B v v =.5.如图,一质量为M 的物块静止在桌面边缘,桌面离水平地面的高度为h.一质量为m 的子弹以水平速度v 0射入物块后,以水平速度v 0/2 射出.重力加速度为g.求: (1)此过程中系统损失的机械能;(2)此后物块落地点离桌面边缘的水平距离.【答案】(1)20138m E mv M ⎛⎫∆=- ⎪⎝⎭ (2)02mv hs M g=【解析】 【分析】【详解】试题分析:(1)设子弹穿过物块后物块的速度为V,由动量守恒得mv0=m+MV ①解得②系统的机械能损失为ΔE=③由②③式得ΔE=④(2)设物块下落到地面所需时间为t,落地点距桌面边缘的水平距离为s,则⑤s=Vt ⑥由②⑤⑥得S=⑦考点:动量守恒定律;机械能守恒定律.点评:本题采用程序法按时间顺序进行分析处理,是动量守恒定律与平抛运动简单的综合,比较容易.6.如图所示,光滑半圆形轨道MNP竖直固定在水平面上,直径MP垂直于水平面,轨道半径R=0.5 m.质量为m1的小球A静止于轨道最低点M,质量为m2的小球B用长度为2R的细线悬挂于轨道最高点P.现将小球B向左拉起,使细线水平,以竖直向下的速度v0=4 m/s释放小球B,小球B与小球A碰后粘在一起恰能沿半圆形轨道运动到P点.两球可视为质点,g=10 m/s2,试求:(1)B球与A球相碰前的速度大小;(2)A、B两球的质量之比m1∶m2.【答案】(1) 6 m/s(2) 1∶5【解析】试题分析:B球与A球碰前的速度为v1,碰后的速度为v2B球摆下来的过程中机械能守恒,解得m/s碰后两球恰能运动到P点得v p=gR=5碰后两球机械能守恒得v2=5m/s两球碰撞过程中动量守恒m2v1=(m1+m2)v2解得m1:m2=1:5考点:机械能守恒定律,动量守恒定律.7.如图所示,质量为m A=3kg的小车A以v0=4m/s的速度沿光滑水平面匀速运动,小车左端固定的支架通过不可伸长的轻绳悬挂质量为m B=1kg的小球B(可看作质点),小球距离车面h=0.8m.某一时刻,小车与静止在光滑水平面上的质量为m C=1kg的物块C发生碰撞并粘连在一起(碰撞时间可忽略),此时轻绳突然断裂.此后,小球刚好落入小车右端固定的砂桶中(小桶的尺寸可忽略),不计空气阻力,重力加速度g=10m/s2.求:(1)小车系统的最终速度大小v共;(2)绳未断前小球与砂桶的水平距离L;(3)整个过程中系统损失的机械能△E机损.【答案】(1)3.2m/s (2)0.4m (3)14.4J【解析】试题分析:根据动量守恒求出系统最终速度;小球做平抛运动,根据平抛运动公式和运动学公式求出水平距离;由功能关系即可求出系统损失的机械能.(1)设系统最终速度为v共,由水平方向动量守恒:(m A+m B) v0=(m A+m B+m C) v共带入数据解得:v 共=3.2m/s(2)A 与C 的碰撞动量守恒:m A v 0=(m A +m C )v 1 解得:v 1=3m/s设小球下落时间为t ,则: 212h gt = 带入数据解得:t =0.4s 所以距离为:01()L v v =- 带入数据解得:L =0.4m(3)由能量守恒得:()()2201122B A B A B E m gh m m v m m m v ∆=++-++共损 带入数据解得:14.4E J ∆=损点睛:本题主要考查了动量守恒和能量守恒定律的应用,要注意正确选择研究对象,并分析系统是否满足动量守恒以及机械能守恒;然后才能列式求解.8.如图所示,一光滑弧形轨道末端与一个半径为R 的竖直光滑圆轨道平滑连接,两辆质量均为m 的相同小车(大小可忽略),中间夹住一轻弹簧后连接在一起(轻弹簧尺寸忽略不计),两车从光滑弧形轨道上的某一高度由静止滑下,当两车刚滑入圆环最低点时连接两车的挂钩突然断开,弹簧瞬间将两车弹开,其中后车刚好停下,前车沿圆环轨道运动恰能越过圆弧轨道最高点.求:(1)前车被弹出时的速度1v ;(2)前车被弹出的过程中弹簧释放的弹性势能p E ; (3)两车从静止下滑处到最低点的高度差h . 【答案】(1)15v Rg =(2)54mgR (3)58h R = 【解析】试题分析:(1)前车沿圆环轨道运动恰能越过圆弧轨道最高点,根据牛顿第二定律求出最高点速度,根据机械能守恒列出等式求解(2)由动量守恒定律求出两车分离前速度,根据系统机械能守恒求解(3)两车从h 高处运动到最低处机械能守恒列出等式求解.(1)设前车在最高点速度为2v ,依题意有22v mg m R= ①设前车在最低位置与后车分离后速度为1v ,根据机械能守恒得222111222mv mg R mv +⨯=② 由①②得:15v Rg =(2)设两车分离前速度为0v ,由动量守恒定律得012mv mv = 设分离前弹簧弹性势能P E ,根据系统机械能守恒得:22101152224P E mv m mgR =-⨯= (3)两车从h 高处运动到最低处过程中,由机械能守恒定律得:201222mgh mv =⨯ 解得:58h R =9.如图所示,光滑固定斜面的倾角Θ=30°,一轻质弹簧一端固定,另一端与质量M=3kg 的物体B 相连,初始时B 静止.质量m=1kg 的A 物体在斜面上距B 物体处s1=10cm 静止释放,A 物体下滑过程中与B 发生碰撞,碰撞时间极短,碰撞后与B 粘在一起,已知碰后整体经t=0.2s 下滑s2=5cm 至最低点. 弹簧始终处于弹性限度内,A 、B 可视为质点,g 取10m/s 2.(1)从碰后到最低点的过程中,求弹簧最大的弹性势能; (2)碰后至返回到碰撞点的过程中,求弹簧对物体B 的冲量大小.【答案】(1)1.125J ;(2)10Ns 【解析】 【分析】(1)A 物体下滑过程,A 物体机械能守恒,求得A 与B 碰前的速度;A 与B 碰撞是完全非弹性碰撞,A 、B 组成系统动量守恒,求得碰后AB 的共同速度;从碰后到最低点的过程中,A 、B 和弹簧组成的系统机械能守恒,可求得从碰后到最低点的过程中弹性势能的增加量. (2)从碰后至返回到碰撞点的过程中,A 、B 和弹簧组成的系统机械能守恒,可求得返回碰撞点时AB 的速度;对AB 从碰后至返回到碰撞点的过程应用动量定理,可得此过程中弹簧对物体B 冲量的大小. 【详解】(1)A 物体下滑过程,A 物体机械能守恒,则:02101302mgS sin mv = 解得:0012302100.10.51m m v gS sin s s==⨯⨯⨯=A 与B 碰撞是完全非弹性碰撞,据动量守恒定律得:01()mv m M v =+解得:10.25m v s =从碰后到最低点的过程中,A 、B 和弹簧组成的系统机械能守恒,则:20121()()302PT E m M v m M gS sin =+++增 解得: 1.125PT E J =增(2)从碰后至返回到碰撞点的过程中,A 、B 和弹簧组成的系统机械能守恒,可求得返回碰撞点时AB 的速度大小210.25m v v s == 以沿斜面向上为正,由动量定理可得:[]021()302()()T I m M gsin t m M v m M v -+⨯=+--+解得:10T I N s =⋅10.光滑水平面上放着一质量为M 的槽,槽与水平面相切且光滑,如图所示,一质量为m 的小球以v 0向槽运动.(1)若槽固定不动,求小球上升的高度(槽足够高). (2)若槽不固定,则小球上升多高?【答案】(1)202v g (2)22()Mv M m g+【解析】(1)槽固定时,设球上升的高度为h 1,由机械能守恒得:21012mgh mv =解得:2012v h g=;(2)槽不固定时,设球上升的最大高度为2h ,此时两者速度为v ,由动量守恒定律得:()0mv m M v =+ 再由机械能守恒定律得:()22021122mv m M v mgh =++ 联立解得,上球上升的高度:()222Mv h m M g=+11.图中两根足够长的平行光滑导轨,相距1m 水平放置,磁感应强度B =0.4T 的匀强磁场竖直向上穿过整个导轨所在的空间.金属棒ab 、cd 质量分别为0.1kg 和0.2kg ,电阻分别为0.4Ω和0.2Ω,并排垂直横跨在导轨上.若两棒以相同的初速度3m /s 向相反方向分开,不计导轨电阻,求:(1)金属棒运动达到稳定后的ab棒的速度大小;(2)金属棒运动达到稳定的过程中,回路上释放出的焦耳热;(3)金属棒运动达到稳定后,两棒间距离增加多少?【答案】(1)1m/s(2)1.2J(3)1.5m【解析】【详解】解:(1)ab、cd棒组成的系统动量守恒,最终具有共同速度v ,以水平向右为正方向,则解得稳定后的ab棒的速度大小:(2)根据能量转化与守恒定律,产生的焦耳热为:(3)对cd棒根据动量定理有:即:又两棒间距离增加:12.如图所示,在水平面上有一弹簧,其左端与墙壁相连,O点为弹簧原长位置,O点左侧水平面光滑,水平段OP长L=1m,P点右侧一与水平方向成的足够长的传送带与水平面在P点平滑连接,皮带轮逆时针转动速率为3m/s,一质量为1kg可视为质点的物块A压缩弹簧(与弹簧不栓接),使弹簧获得弹性势能,物块与OP段动摩擦因数,另一与A完全相同的物块B停在P点,B与传送带的动摩擦因数,传送带足够长,A与B的碰撞时间不计,碰后A.B交换速度,重力加速度,现释放A,求:(1)物块A.B第一次碰撞前瞬间,A的速度(2)从A.B第一次碰撞后到第二次碰撞前,B与传送带之间由于摩擦而产生的热量(3)A.B能够碰撞的总次数【答案】(1)(2)(3)6次【解析】试题分析:(1)设物块质量为m,A与B第一次碰前的速度为,则:解得:(2)设A.B第一次碰撞后的速度分别为,则,碰后B沿传送带向上匀减速运动直至速度为零,加速度大小设为,则:,解得:运动的时间,位移此过程相对运动路程此后B反向加速,加速度仍为,与传送带共速后匀速运动直至与A再次碰撞,加速时间为位移为此过程相对运动路程全过程生热(3)B与A第二次碰撞,两者速度再次互换,此后A向左运动再返回与B碰撞,B沿传送带向上运动再次返回,每次碰后到再次碰前速率相等,重复这一过程直至两者不再碰撞.则对A.B和弹簧组成的系统,从第二次碰撞后到不再碰撞:解得第二次碰撞后重复的过程数为n=2.25,所以碰撞总次数为N=2+2n=6.5=6次(取整数)考点:动能定理;匀变速直线运动的速度与时间的关系;牛顿第二定律【名师点睛】本题首先要理清物体的运动过程,其次要准确把握每个过程所遵守的物理规律,特别要掌握弹性碰撞过程,动量和机械能均守恒,两物体质量相等时交换速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新高考物理动量守恒定律练习题一、高考物理精讲专题动量守恒定律1.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg.用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙相接触.另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不再分开,物块C的v-t图象如图乙所示.求:①物块C的质量?②B离开墙后的运动过程中弹簧具有的最大弹性势能E P?【答案】(1)2kg(2)9J【解析】试题分析:①由图知,C与A碰前速度为v1=9 m/s,碰后速度为v2=3 m/s,C与A碰撞过程动量守恒.m c v1=(m A+m C)v2即m c=2 kg②12 s时B离开墙壁,之后A、B、C及弹簧组成的系统动量和机械能守恒,且当A、C与B的速度相等时,弹簧弹性势能最大(m A+m C)v3=(m A+m B+m C)v4得E p=9 J考点:考查了动量守恒定律,机械能守恒定律的应用【名师点睛】分析清楚物体的运动过程、正确选择研究对象是正确解题的关键,应用动量守恒定律、能量守恒定律、动量定理即可正确解题.2.如图所示,固定的凹槽水平表面光滑,其内放置U形滑板N,滑板两端为半径R=0.45m 的1/4圆弧面.A和D分别是圆弧的端点,BC段表面粗糙,其余段表面光滑.小滑块P1和P2的质量均为m.滑板的质量M=4m,P1和P2与BC面的动摩擦因数分别为μ1=0.10和μ2=0.20,最大静摩擦力近似等于滑动摩擦力.开始时滑板紧靠槽的左端,P2静止在粗糙面的B点,P1以v0=4.0m/s的初速度从A点沿弧面自由滑下,与P2发生弹性碰撞后,P1处在粗糙面B点上.当P2滑到C点时,滑板恰好与槽的右端碰撞并与槽牢固粘连,P2继续运动,到达D点时速度为零.P1与P2视为质点,取g=10m/s2.问:(1)P 1和P 2碰撞后瞬间P 1、P 2的速度分别为多大? (2)P 2在BC 段向右滑动时,滑板的加速度为多大? (3)N 、P 1和P 2最终静止后,P 1与P 2间的距离为多少?【答案】(1)10v '=、25m/s v '= (2)220.4m/s a = (3)△S=1.47m 【解析】试题分析:(1)P 1滑到最低点速度为v 1,由机械能守恒定律有:22011122mv mgR mv += 解得:v 1=5m/sP 1、P 2碰撞,满足动量守恒,机械能守恒定律,设碰后速度分别为1v '、2v ' 则由动量守恒和机械能守恒可得:112mv mv mv ''=+ 222112111222mv mv mv ''=+ 解得:10v '=、25m/s v '= (2)P 2向右滑动时,假设P 1保持不动,对P 2有:f 2=μ2mg=2m (向左) 设P 1、M 的加速度为a 2;对P 1、M 有:f=(m+M )a 22220.4m/s 5f ma m M m===+ 此时对P 1有:f 1=ma 2=0.4m <f m =1.0m ,所以假设成立. 故滑块的加速度为0.4m/s 2;(3)P 2滑到C 点速度为2v ',由2212mgR mv '= 得23m/s v '= P 1、P 2碰撞到P 2滑到C 点时,设P 1、M 速度为v ,由动量守恒定律得:22()mv m M v mv '=++ 解得:v=0.40m/s 对P 1、P 2、M 为系统:222211()22f L mv m M v '=++ 代入数值得:L=3.8m滑板碰后,P 1向右滑行距离:2110.08m 2v s a ==P 2向左滑行距离:22222.25m 2v s a '==所以P 1、P 2静止后距离:△S=L-S 1-S 2=1.47m考点:考查动量守恒定律;匀变速直线运动的速度与位移的关系;牛顿第二定律;机械能守恒定律.【名师点睛】本题为动量守恒定律及能量关系结合的综合题目,难度较大;要求学生能正确分析过程,并能灵活应用功能关系;合理地选择研究对象及过程;对学生要求较高.3.如图,一质量为M 的物块静止在桌面边缘,桌面离水平地面的高度为h.一质量为m 的子弹以水平速度v 0射入物块后,以水平速度v 0/2 射出.重力加速度为g.求: (1)此过程中系统损失的机械能;(2)此后物块落地点离桌面边缘的水平距离.【答案】(1)20138m E mv M ⎛⎫∆=- ⎪⎝⎭ (2)02mv hs M g=【解析】 【分析】 【详解】试题分析:(1)设子弹穿过物块后物块的速度为V ,由动量守恒得 mv 0=m +MV ①解得②系统的机械能损失为 ΔE =③由②③式得 ΔE =④(2)设物块下落到地面所需时间为t ,落地点距桌面边缘的水平距离为s ,则⑤s=Vt ⑥ 由②⑤⑥得 S =⑦考点:动量守恒定律;机械能守恒定律.点评:本题采用程序法按时间顺序进行分析处理,是动量守恒定律与平抛运动简单的综合,比较容易.4.(1)(6分)一质子束入射到静止靶核AI 2713上,产生如下核反应:p+AI 2713→x+n 式中p 代表质子,n 代表中子,x 代表核反应产生的新核。

由反应式可知,新核x 的质子数为 ,中子数为 。

(2)(9分)在粗糙的水平桌面上有两个静止的木块A 和B ,两者相距为d 。

现给A 一初速度,使A 与B 发生弹性正碰,碰撞时间极短:当两木块都停止运动后,相距仍然为d 。

已知两木块与桌面之间的动摩擦因数均为μ,B 的质量为A 的2倍,重力加速度大小为g 。

求A 的初速度的大小。

【答案】(1)14 13 (2【解析】(1)由127271113140H Al X n +→+,由质量数守恒定律和电荷数守恒可得,新核的质子数为14,中子数为13。

(2)设物块A 的初速度为0v ,运动距离d 的速度为v ,A 、B 碰后的速度分别为v 1、v 2,运动的距离分别为x 1、x 2,由于A 、B 发生弹性正碰,时间极短,所以碰撞墙后动量守恒,动能守恒,有12A A B m v m v m v =+ ①22212111222A AB m v m v m v =+ ② ①②联立解得113A B A B m m v v v m m -==-+ ③ 2223A AB m v v v m m ==+ ④A 、B 与地面的动摩擦因数均为μ,有动能定理得211102A m gx mv μ-=-⑤ 222102B m gx mv μ-=- ⑥ 由题意知12x x d += ⑦ 再由221122A A A m gd m v m v μ-=- ⑧联立③至⑧式解得0v ==⑨ 另解:由牛顿第二定律得mg ma μ=,⑤ 所以A 、B 的加速度均为a g μ= ⑥A 、B 均做匀减速直线运动对A 物体有:碰前2202v v ad =- ⑦碰后:A 物体反向匀减速运动:21102v ax =- ⑧对B 物体有22202v ax =- ⑨由题意知12x x d += ⑩ ②③⑤⑦⑧⑨联立解得185v gd μ=(11) 将上式带入⑥解得0285.65v gd gd μμ== (12) 【考点定位】动量守恒定律、弹性正碰、匀减速直线运动规律、动能定理、牛顿第二定律。

5.如图所示,一质量m 1=0.45kg 的平顶小车静止在光滑的水平轨道上.车顶右端放一质量m 2=0.4 kg 的小物体,小物体可视为质点.现有一质量m 0=0.05 kg 的子弹以水平速度v 0=100 m/s 射中小车左端,并留在车中,已知子弹与车相互作用时间极短,小物体与车间的动摩擦因数为μ=0.5,最终小物体以5 m/s 的速度离开小车.g 取10 m/s 2.求:(1)子弹从射入小车到相对小车静止的过程中对小车的冲量大小. (2)小车的长度.【答案】(1)4.5N s ⋅ (2)5.5m 【解析】①子弹进入小车的过程中,子弹与小车组成的系统动量守恒,有:0011()o m v m m v =+,可解得110/v m s =;对子弹由动量定理有:10I mv mv -=-, 4.5I N s =⋅ (或kgm/s); ②三物体组成的系统动量守恒,由动量守恒定律有:0110122()()m m v m m v m v +=++;设小车长为L ,由能量守恒有:22220110122111()()222m gL m m v m m v m v μ=+-+- 联立并代入数值得L =5.5m ;点睛:子弹击中小车过程子弹与小车组成的系统动量守恒,由动量守恒定律可以求出小车的速度,根据动量定理可求子弹对小车的冲量;对子弹、物块、小车组成的系统动量守恒,对系统应用动量守恒定律与能量守恒定律可以求出小车的长度.6.如图,水平面上相距为L=5m 的P 、Q 两点分别固定一竖直挡板,一质量为M=2kg 的小物块B 静止在O 点,OP 段光滑,OQ 段粗糙且长度为d=3m .一质量为m=1kg 的小物块A 以v 0=6m/s 的初速度从OP 段的某点向右运动,并与B 发生弹性碰撞.两物块与OQ 段的动摩擦因数均为μ=0.2,两物块与挡板的碰撞时间极短且均不损失机械能.重力加速度g=10m/s 2,求(1)A与B在O点碰后瞬间各自的速度;(2)两物块各自停止运动时的时间间隔.【答案】(1),方向向左;,方向向右.(2)1s【解析】试题分析:(1)设A、B在O点碰后的速度分别为v1和v2,以向右为正方向由动量守恒:碰撞前后动能相等:解得:方向向左,方向向右)(2)碰后,两物块在OQ段减速时加速度大小均为:B经过t1时间与Q处挡板碰,由运动学公式:得:(舍去)与挡板碰后,B的速度大小,反弹后减速时间反弹后经过位移,B停止运动.物块A与P处挡板碰后,以v4=2m/s的速度滑上O点,经过停止.所以最终A、B的距离s=d-s1-s2=1m,两者不会碰第二次.在AB碰后,A运动总时间,整体法得B运动总时间,则时间间隔.考点:弹性碰撞、匀变速直线运动7.如图,两块相同平板P1、P2置于光滑水平面上,质量均为m=0.1kg.P2的右端固定一轻质弹簧,物体P置于P1的最右端,质量为M=0.2kg且可看作质点.P1与P以共同速度v0=4m/s向右运动,与静止的P2发生碰撞,碰撞时间极短,碰撞后P1与P2粘连在一起,P 压缩弹簧后被弹回(弹簧始终在弹性限度内).平板P1的长度L=1m ,P与P1之间的动摩擦因数为μ=0.2,P2上表面光滑.求:(1)P 1、P 2刚碰完时的共同速度v 1; (2)此过程中弹簧的最大弹性势能E p .(3)通过计算判断最终P 能否从P 1上滑下,并求出P 的最终速度v 2. 【答案】(1)v 1=2m/s (2)E P =0.2J (3)v 2=3m/s 【解析】 【分析】 【详解】(1)P 1、P 2碰撞过程,由动量守恒定律 01m 2v mv = 解得012/2v v m s ==,方向水平向右 ; (2)对P 1、P 2、P 系统,由动量守恒定律 1022(2)mv Mv m M v '+=+ 解得2033/4v v m s ='=,方向水平向右, 此过程中弹簧的最大弹性势能222102111•2+Mv 2m )0.2222P E mv M v J =-='+(; (3)对P 1、P 2、P 系统,由动量守恒定律 103222mv Mv mv Mv +=- 由能量守恒定律得2222103211112+Mv 2mv +Mg 2222mv Mv L ⋅=⋅+μ 解得P 的最终速度23/0v m s =>,即P 能从P 1上滑下,P 的最终速度23/v m s =8.如图所示,光滑半圆形轨道MNP 竖直固定在水平面上,直径MP 垂直于水平面,轨道半径R =0.5 m .质量为m 1的小球A 静止于轨道最低点M ,质量为m 2的小球B 用长度为2R 的细线悬挂于轨道最高点P .现将小球B 向左拉起,使细线水平,以竖直向下的速度v 0=4 m/s 释放小球B ,小球B 与小球A 碰后粘在一起恰能沿半圆形轨道运动到P 点.两球可视为质点,g =10 m/s 2,试求:(1)B 球与A 球相碰前的速度大小; (2)A 、B 两球的质量之比m 1∶m 2. 【答案】(1) 6 m/s(2) 1∶5 【解析】 试题分析:B 球与A 球碰前的速度为v 1,碰后的速度为v 2B球摆下来的过程中机械能守恒,解得m/s碰后两球恰能运动到P点得v p=gR=5碰后两球机械能守恒得v2=5m/s两球碰撞过程中动量守恒m2v1=(m1+m2)v2解得m1:m2=1:5考点:机械能守恒定律,动量守恒定律.9.如图所示,木块m2静止在高h=0.45 m的水平桌面的最右端,木块m1静止在距m2左侧s0=6.25 m处.现木块m1在水平拉力F作用下由静止开始沿水平桌面向右运动,与 m2碰前瞬间撤去F,m1和m2发生弹性正碰.碰后m2落在水平地面上,落点距桌面右端水平距离s=l.2 m.已知m1=0.2 kg,m2 =0.3 kg,m1与桌面的动摩擦因素为0.2.(两个木块都可以视为质点,g=10 m/s2)求:(1)碰后瞬间m2的速度是多少?(2)m1碰撞前后的速度分别是多少?(3)水平拉力F的大小?【答案】(1)4m/s(2)5m/s ;-1m/s (3)0.8N【解析】试题分析:(1)m2做平抛运动,则:h=12gt2;s=v2t;解得v2=4m/s(2)碰撞过程动量和能量守恒:m1v=m1v1+m2v21 2m1v2=12m1v12+12m2v22代入数据解得:v=5m/s v1=-1m/s(3)m 1碰前:v 2=2as11F m g m a μ-=代入数据解得:F=0.8N考点:动量守恒定律;能量守恒定律;牛顿第二定律的应用【名师点睛】此题关键是搞清两个物体的运动特征,分清物理过程;用动量守恒定律和能量守恒定律结合牛顿定律列出方程求解.10.如图所示,内壁粗糙、半径R =0.4 m 的四分之一圆弧轨道AB 在最低点B 与光滑水平轨道BC 相切。

相关文档
最新文档