2016-2017(下)《高等数学AⅡ》期末试卷-A卷 (1)
(完整版)高等数学下册期末考试试题及答案,推荐文档
又
1 zx2
z
2 y
a
a2 x2 y2 ,…..………【3】
第3页共2页
高数
故
dS z
Dxy
adxdy a2 x2 y2
a
2 d
0
a2 h2 0
d a2 2
2
a
1 2
ln(a2
2
)0
a2 h2
2 a ln a ..【7】 h
三、【9 分】解:设 M (x, y, z) 为该椭圆上的任一点,则点 M 到原点的距离为 d x2 y2 z2 ……【1】
n1
n
4、设 z f (xy, x ) sin y ,其中 f 具有二阶连续偏导数,求 z ,
2z
.
y
x xy
5、计算曲面积分 dS , 其中 是球面 x2 y2 z2 a2 被平面 z h (0 h a) 截出的顶部.
z
三、(本题满分 9 分) 抛物面 z x2 y2 被平面 x y z 1 截成一椭圆,求这椭圆上的点到原点的距离
第1页共2页
的最大值与最小值.
高数
(本题满分 10 分)
计算曲线积分 (ex sin y m)dx (ex cos y mx)dy , L
其中 m 为常数, L 为由点 A(a, 0) 至原点 O(0, 0) 的上半圆周 x2 y2 ax (a 0) .
四、(本题满分 10 分)
xn
3 , 1 2
3 ,2
3),
1 M2( 2
3 , 1 2
3 ,2
3). …………………【7】
又由题意知,距离的最大值和最小值一定存在,所以距离的最大值与最小值分别在这两点处取得.
高等数学下册的期末考试及试卷试题包括答案.docx
高等数学 A( 下册 ) 期末考试试题大题一二三四五 六七小题12345得分一、填空题:(本题共 5 小题,每小题 4 分,满分 20 分, 把答案直接填在题中横线上 )r rr rrr rrr1、已知向量 a 、 b 满足 a b0 , a2, b2 ,则 a b.2、设 zx ln( xy) ,则3z.x y23、曲面 x 2 y 2z 9 在点 (1, 2, 4) 处的切平面方程为.4、设 f ( x) 是周期为2 的周期函数,它在 [, ) 上的表达式为 f (x) x ,则 f ( x) 的傅里叶级数在 x3 处收敛于,在 x处收敛于.5、设 L 为连接 (1, 0) 与 (0,1) 两点的直线段,则(xy)ds.L※以下各题在答题纸上作答, 答题时必须写出详细的解答过程,并在每张答题纸写上: 姓名、学号、班级.二、解下列各题:5 小题,每小题 7 分,满分 35 分)(本题共 1、求曲线2x 2 3y 2 z 2 91,2)z23x2y2在点 M 0 (1, 处的切线及法平面方程.2、求由曲面 z2x 2 2 y 2 及 z 6 x 2 y 2 所围成的立体体积.3、判定级数( 1)nlnn1 是否收敛?如果是收敛的,是绝对收敛还是条件收敛?n 1n4、设 zf (xy, x) sin y ,其中 f 具有二阶连续偏导数,求z , 2z .yxx y5、计算曲面积分dS ,其中 是球面 x 2y 2z 2 a 2 被平面 zh (0 h a) 截出的顶部.z三、(本题满分 9 分) 抛物面 zx 2 y 2 被平面 x yz 1截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小值.(本题满分 10 分)计算曲线积分( e x siny m dx ( e x cos y mx dy ,L其中 m 为常数, L 为由点 A(a,0) 至原点 O(0,0) 的上半圆周 x 2y 2ax (a 0) .四、(本题满分 10 分)x n 求幂级数的收敛域及和函数.n 13n n五、(本题满分 10 分)计算曲面积分I2x3dydz 2y3dzdx 3(z21)dxdy ,其中为曲面 z 1 x2y 2 ( z0) 的上侧.六、(本题满分 6分)设 f ( x) 为连续函数, f (0) a , F (t )[ z f ( x2y2z2 )]dv ,其中t是由曲面 zx2y2t与 zt2x22所围成的闭区域,求lim F (t)y t 3 .t 0-------------------------------------备注:①考试时间为 2 小时;②考试结束时,请每位考生按卷面答题纸草稿纸由表及里依序对折上交;不得带走试卷。
2016-2017 学年第二学期高等数学AII 期末试卷(试卷+A3排版+解析)
¨D
¨D
(C) [f (x) + g(y)] d x d y = 0
13.
设由方程组
y + xyz
z+x =1
=
0
确定的隐函数
y
=
y(x)
及
z
=
z(x),求
dy dx ,
dz dx
.
14.
设连续函数
f (x)
满足方程
f (x)
=
ˆ
3x
f
() t d t + e2x,
求
f (x).
¨(
0
3
)
(
)
15. 计算曲面积分 I = x2 − yz d y d z + y2 − zx d z d x + 2z d x d y, 其中 Σ
xOy ydx
平面上一条简单光滑的正向闭曲线,原点在其所围闭区域之外,则
=
【】
C x2 + 4y2
(A) 4π
(B) 0
(C) 2π
(D) π
6. 微分方程 xy′′ − y′ = 0 满足条件 y′(1) = 1, y(1) = 0.5 的解为
【】
(A) y = x2 + 1 44
(B) y = x2 2
1,
√ − ¨x
⩽
y
⩽
√x},则正确的选x 项为
¨
【】
(A) f (y)g(x) d x d y = 0
(B) f (x)g(y) d x d y = 0
¨D
¨D
(C) [f (x) + g(y)] d x d y = 0
XX大学2016—2017学年度第二学期考试试卷A卷高数1-2(A)
XX 大学2016—2017学年度第二学期考试试卷A 卷高等数学1—2注意事项:1. 请考生在下列横线上填写姓名、学号和年级专业。
2 .请仔细阅读各种题目的回答要求,在规定的位置填写答案。
3. 不要在试卷上乱写乱画,不要在装订线内填写无关的内容。
4. 满分100分,考试时间120分钟专业 学号 姓名_________________一.填空题(共24分,每小题3分)1.设函数x y z =,则__________________________=dz .2.方程333z e xyz e -=确定()y x z z ,=,则__________________=∂∂x z. 3. 曲线t t x sin -=,t y cos 1-=,2sin 2tz =在π=t 处切线方程为_________________________________________. 4. 函数2u x y z =+在点(2,1,0)M 处最大的方向导数为__________________. 5. 交换二次积分222(,)y y I dy f x y dx =⎰⎰的积分次序,得__________________=I .6.设平面曲线)10(:2≤≤=x x y L ,则曲线积分__________________=⎰ds x L.7. 幂级数∑∞=12n n n x n的收敛域是 ________________________.8. 微分方程022=+'-''y y y 的通解为___________________________.二、选择题(共12分,每小题3分)1. 设曲面2232y x z +=在点)5 , 1 , 1(M 处的切平面方程为064=+-+λz y x ,则λ=( ).(A) 15- (B) 0 (C) 5- (D) 52. 函数),(y x f 在点),(y x 处可微是函数),(y x f 在该点处存在偏导数的( ). (A) 必要条件 (B) 充分条件(C) 充要条件 (D) 既非充分又非必要条件3. 设曲线L 是单位圆周122=+y x 按逆时针方向,则下列曲线积分不等于零的是( ).(A) ds y L⎰ (B) ds x L⎰ (C) dx y xdy L⎰+ (D) ⎰+-L y x ydxxdy 224. 下列级数中收敛的是( ).(A) ∑∞=122n n n (B) ∑∞=+12n n n(C) ∑∞=+1)2121(n n n (D) ∑∞=133n n n三、解答题:(共59分)1.(7分)求二元函数()3132,23---=y x xy y x f 的极值. 2. (7分)设函数2,x z f x y y ⎛⎫= ⎪⎝⎭,其中()v u f ,具有二阶连续偏导数,求yx zx z ∂∂∂∂∂2 , .3.(7分)计算二重积分dxdy xy D⎰⎰2,其中D 是由圆周422=+y x 与y 轴所围成的右半区域.4.(7分)将函数())1ln(x x f +=展成1-x 的幂级数,并写出可展区间5.(7分)计算曲面积分(2)I xy x y z dS ∑=+++⎰⎰,其中∑为平面1x y z ++=在第一卦限中的部分.6. (8分) 求微分方程x xe y y y 223=+'-''的通解.7. (8分)计算曲线积分()()y d y xy dx yx x I L⎰+-+-=2322其中L 为曲线22x x y -=从)0,2(A 到)0,0(O 的弧段. 8.(8分)利用高斯公式计算曲面积分()()d xdy x z dzdx y dydz x I ⎰⎰∑-+++=33332,其中∑为由上半球面224y x z --=与锥面22y x z +=围成的空间闭区域的整个边界曲面的外侧.四.(5分)设()f x 是在(,)-∞+∞内的可微函数, 且()()f x f x α'<, 其中01α<<. 任取实数0a , 定义1ln (),1,2,3n n a f a n -==.证明:级数11()n n n a a ∞-=-∑绝对收敛.高等数学1--2 参考答案与评分标准一、填空题(共24分,每小题3分) 1. dy xy ydx y dz x x 1ln -+= 2. 3z z yz x e xy ∂=∂- 3.2022-=-=-z y x π4.5. 2(,)xI dx f x y dy =⎰⎰6.()11127. )21, 21[- 8. )sin cos (21x c x c e y x +=二、选择题(共12分,每小题3分) 1. C 2. B 3. D 4. D 三、解答题(共64分) 1. (7分)解: 令⎪⎩⎪⎨⎧=-==-=022022y x f x y f yx 得驻点⎩⎨⎧==00y x ,⎩⎨⎧==22y x 2 分 x f xx 2-=,2=xy f ,2-=yy f 4 分 在(0,0)处, 2 , 2 , 0-===C B A04 2<-=-B AC , ∴(0,0)为非极值点. 5 分在(2,2)处 2 , 2 , 04-==<-=C B A04 2>=-B AC ∴ 1)2 , 2(=f 为函数),(y x f 的极大值. 7 分2.(7分) 解:2121f xy f yx z '+'=∂∂ 3分)21(212f xy f yy y x z '+'∂∂=∂∂∂ ])([ 22])([11222212221221112x f yx f xy f x x f y x f y f y ''+-''+'+''+-''+'-= 223122113212221f y x f y x f yx f x f y ''+''-''-'+'-= 7 分3. (7分) 解:⎰⎰⎰⎰--=224 0222y Dxdx dy y dxdy xy3分⎰--=2 2 22)4(21dy y y 5 分 1564)4(2 0 42=-=⎰dy y y 7 分4. (7分) 解:10(1)ln(1)1n n n x x n ∞+=-+=+∑ 11≤<-x 1 分)211ln(2ln )]1(2ln[)1ln(-++=⋅-+=+x x x 3分10)21(1)1(2ln +∞=∑-+-+=n n n x n∑∞=++-+-+=011)1(2)1()1(2ln n n n n x n 6分1211≤-<-x ⇒ 31≤<-x 7分5.(7分)解::1z x y ∑=--dS ∴== 2分(2DI xy ∴=+⎰⎰4分1102xDdx xydy dxdy -=⎰5分()13202xx x dx =-+6分=7分6.(8分)解 (1)先求微分方程023=+'-''y y y 的通解Y特征方程 0232=+-r r 即 0)1)(2(=--r r ,21=r ,12=rx x e c e c Y 221+= 3 分(2)求原方程的一个特解*y 2 =λ 是特征方程的根,故设 x x e bx ax e b ax x y 222)()(+=+=*5分令bx ax x Q +=2)(,则b ax x Q +='2)(,a x Q 2)(=''将)(x Q ',)(x Q ''代入方程x x Q p x Q ='++'')()2()(λ 得 x b ax a =++22则 ⎩⎨⎧=+=1212b a a , 解之得⎪⎩⎪⎨⎧==021b a , x xe y 221=*7 分 所求通解 x x x xe e c e c y 222121++= 8 分7.(8分) 解:⎰++-+-OAL dy y xy dx yx x )2()(322dxdy x y dxdy y Px Q DD)()(22⎰⎰⎰⎰+=∂∂-∂∂= 3 分 ⎰⎰⋅=θd ρd cos 2 0220 ρρθπ5 分⎰==20 443cos 4ππθθd 6 分dy y xy dx yx x I OA ⎰+-+--=)2()(43322π 7 分2434320-=-=⎰ππxdx 8 分8. (8分) 解:由高斯公式dV z y x I )333(222⎰⎰⎰Ω++= 3 分2244 03 sin d d r dr ππθφφ=⎰⎰⎰ 6 分192(152π=- 8 分9.(5分)解:对任意设2n ≥,由拉格朗日中值定理,有111212121'()ln ()ln (),()n n n n n n n n n n f a a f a f a a a a a f ξαξ----------=-=-<-2 分其中1n ξ-介于1n a -与2n a -之间. 于是有11101,2,.n n n a a a a n α---<-= 3分 又级数1101n n a a α∞-=-∑收敛, 由比较审敛法知级数11()n n n a a ∞-=-∑绝对收敛.5分。
2016级高等数学(A)(下)期末试卷含答案
2016级高等数学(A )(下)期末试卷一。
填空题(本题共10小题,每小题3分,满分30分)1.已知曲面z xy =上一点0000(,,)M x y z 处的法线垂直于平面390x y z +++=,则0x = ,0y = ,0z = ;2.交换积分次序2111d (,)d x x f x y y --=⎰⎰;3.设{},,,x y z r ==r 3divr=r; 4.设正向闭曲线C :1x y +=,则曲线积分22d d Cx y x xy y +=⎰ ;5.设幂级数nn n a x∞=∑的收敛半径为3,则幂级数11(1)n nn na x ∞+=-∑的收敛区间为 ;6.设2()e xf x =,则(2)(0)n f= ;7. 设0,0()1,0x f x x x ππ-<≤⎧=⎨+<≤⎩,其以2π为周期的Fourier 级数的和函数记为()S x ,则(3)S π= ;8.设正向圆周:1C z =,则cos d Czz z=⎰; 9.函数1()cosf z z z=的孤立奇点0z =的类型是 (如为极点,应指明是几级极点),[]Res (),0f z = ;二.(本题共2小题,每小题8分,满分16分)11.判断级数1342n n nn ∞=-∑的敛散性. 12.求幂级数1121n n n n x n ∞+=+∑的收敛域与和函数. 三.(本题共2小题,每小题9分,满分18分)14.将函数21()43f z z z =-+ 在圆环域13z <<内展开为Laurent 级数.四.(15)(本题满分9分)验证表达式 22(cos 21)d (3)d x xy x x y y +++-+ 为某一函10.使二重积分()2244d Dxy σ--⎰⎰的值达到最大的平面闭区域D 为 .13.将函数()f x x x =+ 在(1,1]-上展开为以2为周期的Fourier 级数.数的全微分,并求其原函数.五.(16)(本题满分9分)利用留数计算反常积分41d 1x x+∞+⎰. 六.(17)(本题满分10分) 已知流体的流速函数{}33333(,,),,2x y z y z z x z =--v ,求该流体流过由上半球面1z =z = 所围立体表面的外侧的流量.七.(18)(本题满分8分) 设函数([0,1])f C ∈,且0()1f x ≤<,利用二重积分证明不等式:11100()d ()d 1()1()d f x x f x x f x f x x ≥--⎰⎰⎰2016级高等数学(A )(下)期末试卷一。
大学-高等数学(Ⅱ)试卷题(A)+参考答案
大学-高等数学(Ⅱ)试卷题(A )一、选择题:(每小题2分,共10分)1. 函数 ),(y x f z =在点),(00y x 处偏导数 ),(00y x f x ,),(00y x f y 存在是函数z在点),(00y x 存在全微分的( );A.充分条件;B.必要条件;C.充分必要条件;D.既非充分又非必要条件.2.下列级数发散的是( );A .;(1)n nn n ∞=+- B.2(1)ln(1);1n n n n ∞=-++∑ C .222sin();n a π∞=+∑ D.1.1nn n ∞=+ 3.级数1sin (0) n nxx n ∞=≠∑!,则该级数( );A.是发散级数;B.是绝对收敛级数;C.是条件收敛级数;D. 仅在)1,0)(0,1(-内级数收敛,其他x 值时数发散。
4. 双曲抛物面22x y z p p-=.(p >0,q >0)与xOy 平面的交线是( );A.双曲线B.抛物线C.平行直线D.相交于原点的两条直线. 5.322(,)42,f x y x x xy y =-+-函数下列命题正确的是。
A.点(2,2)是f(x,y)的极小值点B. 点(0,0)是f(x,y)的极大值点C. 点(2,2)不是f(x,y)的驻 点D.f(0,0)不是 f(x,y)的极值.二、填空题:(每小题3分,共30分 )1.222ln()1z x y x y =-++-的定义域为 ;2.曲面2221ax by cz ++=在点()000,,x y z 的法线方程是 ;3.设(,)ln()2yf x y x x=+,则 '(1,0)y f = ;4.已知D 是由直线x +y =1,x -y =1及x = 0所围,则Dyd σ⎰⎰= ;5. 3(,)ydy f x y dx ⎰⎰交换积分次序得 ;7.1(2),n n n u u ∞→∞=+=∑n 若级数收敛则lim ;8.微分方程y / + P(x)y = Q(x)的积分因子为_____________(写出一个即可); 9.设y z x dz ==,则;10.设P(x,y)、Q(x,y)在曲线L 围成的单联通区域内具有一阶连续偏导数。
2016-2017(下)《高等数学AⅡ》期末试卷-E卷答案 (2) (1)
下学期期末考试试卷答案课程名称:《高等数学A Ⅱ》 (试卷编号:E )一、填空题(本大题共9小题10空,每空2 分,共 20分)1.2-2. 221,,333⎛⎫- ⎪⎝⎭3.2154. (){}22,12x y xy ≤+< 5. 36. 23,137. xy xye xye +(或“()1xy xy e +”) 8.3 9. 收敛二、单项选择题(选择正确答案的字母填入括号,本大题共6小题,每小题3 分,共18 分)三、判断题(选择正确答案的字母填入括号,正确的打“√”,错误的打“×”。
本大题共5小题,每小题2分,共10分)四、计算题(本大题共5小题,每小题6分,共30分)1.解:因为22sin y zxe y x x∂=-∂,22cos y z x e y x y ∂=+∂, ――――――――2分所以(),02zx ππ∂=∂,()2,0z y ππ∂=∂, ――――――――2分 于是,所求全微分22dz dx dy ππ=+ ――――――――2分 2.解:dz z du z dv fdx u dx v dx x∂∂∂=++∂∂∂ ――――――――2分 11x v u e x=⋅+⋅+ ――――――――2分()111x x x e x=++++ ――――――――2分3.解:积分区域(){}2,1D x y xy x =≤≤≤≤所以210x Dxyd dx σ=⎰⎰⎰ ――――――――2分25122x x dx dx ⎛⎫==- ⎪⎝⎭⎰⎰ ――――――――2分1360161212x x ⎛⎫=-= ⎪⎝⎭ ――――――――2分4.解:积分区域(){}2,,01,1,11x y z z xy x Ω=≤≤≤≤-≤≤所以21111xxzdxdydz dx dy xzdz -Ω=⎰⎰⎰⎰⎰⎰ ――――――――2分2121112xxz dx dy -=⎰⎰ 21112x xdx dy -=⎰⎰ ――――――――2分 21112x xy dx -⎛⎫= ⎪⎝⎭⎰ 21122x x dx -⎛⎫=- ⎪⎝⎭⎰ 1231=46x x -⎛⎫- ⎪⎝⎭ 13=- ――――――――2分5.解:由11limlim 1n n n na n a n ρ+→∞→∞+===,得级数的收敛半径 1R =, ――――――――3分在1x =-处,幂级数成为()()111231n nn n n ∞=-=-+-++-+∑L L ,由()lim 10nn n →∞-≠知该级数发散;在1x =处,幂级数成为1n n ∞=∑,由lim 0n n →∞=∞≠知该级数发散。
第二学期高数(下)期末考试试卷及答案
第二学期期末高数(下)考试试卷及答案1一、填空题(每空3 分,共15 分)1。
设,则.2。
曲面在点处的切平面方程是.3.交换累次积分的次序:.4.设闭区域D是由分段光滑的曲线L围成,则:使得格林公式:成立的充分条件是:。
其中L是D的取正向曲线;5.级数的收敛域是。
二、单项选择题(每小题3分,共15分)1.当,时,函数的极限是A。
等于0; B. 等于;C。
等于; D. 不存在.2.函数在点处具有偏导数,是函数在该点可微分的A.充分必要条件;B。
充分但非必要条件;C。
必要但非充分条件; D. 既非充分又非必要条件。
3.设,则A。
; B。
;C.;D。
4.若级数在处收敛,则此级数在处A。
绝对收敛; B。
条件收敛;C.发散;D.收敛性不确定。
5。
微分方程的特解应设为A.;B.;C.;D.。
三。
(8分)设一平面通过点,而且通过直线,求该平面方程.解:平行该平面该平面的法向量所求的平面方程为:即:四.(8分)设,其中具有二阶连续偏导数,试求和.解:令,五.(8分)计算对弧长的曲线积分其中是圆周与直线在第一象限所围区域的边界.解:其中::::而故:六、(8分)计算对面积的曲面积分,其中为平面在第一卦限中的部分.解::,七。
(8分)将函数,展开成的幂级数.解:,而,,,八。
(8分)求微分方程:的通解。
解:,原方程为:通解为:九。
幂级数:1。
试写出的和函数;(4分)2.利用第1问的结果求幂级数的和函数.(8分)解:1、于是2、令:由1知:且满足:通解:由,得:;故:十.设函数在上连续,且满足条件其中是由曲线,绕轴旋转一周而成的曲面与平面(参数)所围成的空间区域。
1、将三重积分写成累次积分的形式;(3分) 2、试求函数的表达式。
(7分)解:1、旋转曲面方程为:由,得:故在面的投影区域为::2、由1得:记:则:两边乘以:,再在上积分得:解得:故:第二学期期末高数(下)考试试卷及答案2三、填空题(每空3 分,共15 分)1.曲线,绕轴旋转一周所得到的旋转曲面的方程是。
高数下期末考试试题及答案解析
高数下期末考试试题及答案解析(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--22017学年春季学期《高等数学Ⅰ(二)》期末考试试卷(A )注意: 1、本试卷共 3 页;2、考试时间110分钟;3、姓名、学号必须写在指定地方一、单项选择题(8个小题,每小题2分,共16分)将每题的正确答案的代号A 、B 、C 或D 填入下表中.1.已知a 与b都是非零向量,且满足-=+a b a b ,则必有( ). (A)-=0a b (B)+=0a b (C)0⋅=a b (D)⨯=0a b2.极限2222001lim()sin x y x y x y →→+=+( ). (A) 0 (B) 1 (C) 2 (D)不存在3.下列函数中,d f f =∆的是( ).(A )(,)f x y xy = (B )00(,),f x y x y c c =++为实数 (C )(,)f x y =(D )(,)e x y f x y +=4.函数(,)(3)f x y xy x y =--,原点(0,0)是(,)f x y 的( ). (A )驻点与极值点 (B )驻点,非极值点 (C )极值点,非驻点 (D )非驻点,非极值点 5.设平面区域22:(1)(1)2D x y -+-≤,若1d 4Dx y I σ+=⎰⎰,2DI σ=,3DI σ=,则有( ). (A )123I I I << (B )123I I I >> (C )213I I I << (D )312I I I <<6.设椭圆L :13422=+y x 的周长为l ,则22(34)d L x y s +=⎰( ). (A) l (B) l 3 (C) l 4 (D) l 127.设级数∑∞=1n n a 为交错级数,0()n a n →→+∞,则( ).(A)该级数收敛 (B)该级数发散(C)该级数可能收敛也可能发散 (D)该级数绝对收敛 8.下列四个命题中,正确的命题是( ).(A )若级数1n n a ∞=∑发散,则级数21n n a ∞=∑也发散(B )若级数21n n a ∞=∑发散,则级数1n n a ∞=∑也发散(C )若级数21n n a ∞=∑收敛,则级数1n n a ∞=∑也收敛(D )若级数1||n n a ∞=∑收敛,则级数21n n a ∞=∑也收敛二、填空题(7个小题,每小题2分,共14分).1.直线3426030x y z x y z a -+-=⎧⎨+-+=⎩与z 轴相交,则常数a 为 .2.设(,)ln(),y f x y x x=+则(1,0)y f '=______ _____.3.函数(,)f x y x y =+在(3,4)处沿增加最快的方向的方向导数为 .4.设22:2D x y x +≤,二重积分()d Dx y σ-⎰⎰= .5.设()f x 是连续函数,22{(,,)|09}x y z z x y Ω=≤≤--,22()d f x y v Ω+⎰⎰⎰在柱面坐标系下的三次积分为 .6.幂级数11(1)!nn n x n ∞-=-∑的收敛域是 . 三峡大学 试卷纸 教学班 序 学 姓名 …………………….……答 题 不 要 超 过 密 封 线………….………………………………37.将函数21,0()1,0x f x xx ππ--<≤⎧⎪=⎨+<≤⎪⎩以2π为周期延拓后,其傅里叶级数在点x π=处收敛于 .三、综合解答题一(5个小题,每小题7分,共35分,解答题应写出文字说明、证明过程或演算步骤) 1.设(,)x u xf x y=,其中f 有连续的一阶偏导数,求ux∂∂,u y ∂∂. 解:2.求曲面e 3z z xy ++=在点(2,1,0)处的切平面方程及法线方程. 解:3.交换积分次序,并计算二次积分0sin d d xyx y yππ⎰⎰. 解:4.设Ω是由曲面1,,===x x y xy z 及0=z 所围成的空间闭区域,求23d d d I xy z x y z Ω=⎰⎰⎰.解:三峡大学 试卷纸 教学班 序 学 姓名 …………………….……答 题 不 要 超 过 密 封 线………….………………………………45.求幂级数11n n nx∞-=∑的和函数()S x ,并求级数12n n n ∞=∑的和.解:四、综合解答题二(5个小题,每小题7分,共35分,解答题应写出文字说明、证明过程或演算步骤)1.从斜边长为1的一切直角三角形中,求有最大周长的直角三角形. 解2.计算积分22()d Lx y s +⎰,其中L 为圆周22x y ax += (0a >).解:3.利用格林公式,计算曲线积分22()d (2)d LI xy x x xy y =+++⎰,其中L 是由抛物线2y x =和2x y =所围成的区域D 的正向边界曲线.4. 计算d x S ∑⎰⎰,∑为平面1=++z y x 在第一卦限部分.解:三峡大学 试卷纸 教学班 序 学 姓名 …………………….……答 题 不 要 超 过 密 封 线………….………………………………x O 2y x = 2x y = yD55.利用高斯公式计算对坐标的曲面积分d d d d d d x y y z zx ,其中∑为圆锥面222z x y =+介于平面0z =及1z =之间的部分的下侧. 解:2017学年春季学期《高等数学Ⅰ(二)》期末考试试卷(A)答案及评分标准一、单项选择题(8个小题,每小题2分,共16分)1.已知a 与b 都是非零向量,且满足-=+a b a b ,则必有(D ) (A)-=0a b ; (B)+=0a b ; (C)0⋅=a b ; (D)⨯=0a b .2.极限2222001lim()sin x y x y x y →→+=+ ( A )(A) 0; (B) 1; (C) 2; (D)不存在. 3.下列函数中,d f f =∆的是( B );(A ) (,)f x y xy =; (B )00(,),f x y x y c c =++为实数; (C )(,)f x y = (D )(,)e x y f x y +=.4.函数(,)(3)f x y xy x y =--,原点(0,0)是(,)f x y 的( B ). (A )驻点与极值点; (B )驻点,非极值点; (C )极值点,非驻点; (D )非驻点,非极值点. 5.设平面区域D :22(1)(1)2x y -+-≤,若1d 4Dx y I σ+=⎰⎰,2DI σ=,3DI σ=,则有( A ) (A )123I I I <<; (B )123I I I >>; (C )213I I I <<; (D )312I I I <<. 6.设椭圆L :13422=+y x 的周长为l ,则22(34)d L x y s +=⎰(D ) (A) l ; (B) l 3; (C) l 4; (D) l 12.7.设级数∑∞=1n n a 为交错级数,0()n a n →→+∞,则( C )(A)该级数收敛; (B)该级数发散;(C)该级数可能收敛也可能发散; (D) 该级数绝对收敛. 8.下列四个命题中,正确的命题是( D )(A )若级数1n n a ∞=∑发散,则级数21n n a ∞=∑也发散;(B )若级数21n n a ∞=∑发散,则级数1n n a ∞=∑也发散;(C )若级数21n n a ∞=∑收敛,则级数1n n a ∞=∑也收敛;6(D )若级数1||n n a ∞=∑收敛,则级数21n n a ∞=∑也收敛.二、填空题(7个小题,每小题2分,共14分).1.直线3426030x y z x y z a -+-=⎧⎨+-+=⎩与z 轴相交,则常数a 为 3 。
2016-2017(下)《高等数学AⅡ》期末试卷-A卷 (1)
第 1 页 (共 3 页)下学期期末考试试卷课程名称:《高等数学A Ⅱ》 (试卷编号: A )(本卷满分100分,考试时间120分钟)考试方式:考试考查闭卷开卷仅理论部分其他)学院: 专业:班级: 学号: 姓名: 任课教师:考试地点: 考试时间: 月 日 时 分一、填空题(本大题共10小题10空,每空2 分,共 20分)1.极限(,)limx y →= .2.经过两点(1,2,0)A -、(4,1,3)B -的直线方程为 .3.求两直线113:141x y z l -+==-和22:221x y zl +==--的夹角θ= . 4.球心在点(1,3,2)-且通过坐标原点的球面方程为 . 5.求直线234112x y z ---==与平面260x y z ++-=的交点坐标 . 6.设(,)f x y =,则(1,1)xy f = .7.设2sin 2z x y =,则全微分dz = . 8.计算二次积分2ln 1yx dy e dx =⎰⎰.9.若级数11p n n ∞=∑收敛,则P 的范围是 . 10.把函数2xe 展开成x 的幂级数,则2xe = .二、单项选择题(选择正确答案的字母填入括号,本大题共6小题,每小题3 分,共18 分)1.已知级数21sin n n n α∞=∑,则此级数( ). A. 发散 B. 条件收敛 C. 绝对收敛 D. 不能确定2.过点(2,0,3)-且与直线27010x y z x y z -+-=⎧⎨+-+=⎩垂直的平面方程为( ).A. 2370x y z +++=B. 2350x y z +-+=C. 2350x y z -+-=D. 2370x y z --+= 3.设函数22324z x y y =-+-,则(0,2)是( ).A. 极大值点B. 极小值点C.不是极值点D. 无法确定 4.设22(,)xy z f x y e =+,则zx∂=∂( ). A. 122xy xf xe f ''+ B. 122xy xf ye f ''+ C. 122xy yf xe f ''+ D. 122xy yf ye f ''+5.求曲线221()44z x y y ⎧=+⎪⎨⎪=⎩在点4,7)处的切线与x 轴正向之间的夹角( ). A. 30oB. 45oC. 90oD. 60o6.设25DI xy d σ=⎰⎰,其中区域{}(,)01,11D x y x y =≤≤-≤≤,则I =( ).A. 1-B. 0C. 1D. 2请考生注意:答题时不要超过“装订线”,否则后果自负。
2016-2017高数二、二期末试题答案
课程名称:高等数学(二、二)(期末试卷)答案要求:1.答案一律写在答题纸上,写在其它位置无效 2.答题纸单独收,与试卷和草稿纸分开。
一、填空题(每空3分,共15分) 1.微分方程()460yxy y ''-+=的通解中含任意常数的个数为 4 个.2. 以函数2y x Cx =+为通解的一阶微分方程为2xy x y'=+.3. 若级数1n n u ∞=∑的部分和为21n ns n =+,则级数1n n u ∞=∑的和s = 2 .4. 为使级数()11np n n∞=-∑条件收敛,则常数p 的取值范围为01p <≤.5. 设幂级数1nn n a x ∞=∑的收敛区间为()3,3-,则幂级数()111n n n na x ∞-=-∑的收敛区间为()2,4-.二、单项选择题(每小题3分,共15分) 1.设,,xxx e e-是某二阶线性非齐次微分方程的三个特解,则该微分方程的通解为( D ).(A) 12xy C x C e =+; (B) 123x x y C x C e C e -=++;(C) ()12x x y C x C e e -=+-; (D) ()()12x x y C e x C e x x -=-+-+. 2.将微分方程()21yy y '''-=降为一阶微分方程时,做变量代换y p '=,则( C ).(A) y p '''=; (B) dp y ydy ''=; (C) dp y p dy ''=; (D) dp y x dx''=. 3.微分方程23y y x '''-=的特解形式为( B ).(其中,,a b c 为常数)(A)*2y ax bx c =++; (B) ()*2y x ax bx c =++;(C) ()*y x ax b =+; (D) ()*22y x ax bx c =++. 4.若级数1nn u∞=∑收敛,则必收敛的级数为( A ).(A) ()11n n n u u ∞+=+∑ (B )()11nn n u n ∞=-∑ (C )21n n u ∞=∑ (D )()2121n n n u u ∞-=-∑5. 级数()1113n n n -∞=-∑的和s =( A ).(A)14 ; (B) 13 ; (C) 12; (D) 1 . 三、判断下列常数项级数是否收敛?若收敛,是条件收敛还是绝对收敛(每小题7分,共21分) 1.13n n n ∞=∑ ; 解:由正项级数的比值判别法11131lim lim 133n n n n n nu n u n ++→∞→∞+=⋅=<,所以该级数收敛,又因是正项级数,收敛的正项级数绝对收敛。
2016-2017(下)《高等数学AⅡ》期末试卷-E卷 (1)
第 1 页 (共 3 页)下学期期末考试试卷课程名称:《高等数学A Ⅱ》 (试卷编号:E )(本卷满分100分,考试时间120分钟)考试方式:考试考查闭卷开卷仅理论部分其他 )学院: 专业:班级: 学号: 姓名: 任课教师:考试地点: 考试时间: 月 日 时 分一、填空题(本大题共9小题10空,每空2 分,共 20分)1.已知()(),1,0,1a b ==r r2,1,-4,则a b ⋅=r r 。
2.与()2,2,1a =-r共线的单位向量e =r。
3.直线+162212x y z --==-与直线123043x y z -+-==的夹角余弦为。
4. ()22ln 2zx y=+--的定义域是 。
5.()(,)(0,3)sin limx y xy x→= 。
6.若()ln 1z xy =+,则()1,2zx ∂=∂ ,()1,2z y ∂=∂ 。
7.若xyz e =,则2zx y∂=∂∂ 。
8.若平面区域D 的面积为3,则二重积分Dd σ=⎰⎰ 。
9. 级数211n n ∞=∑的敛散性是 。
二、单项选择题(选择正确答案的字母填入括号,本大题共6小题,每小题3 分,共18 分)1. 已知,23a i j b i j k =-=+-r r r r r r r3,则a b ⨯=r r ( )。
A. 5 B. 2 C. 95i j k -+r r r 3 D. 95i j k ++r r r32.向量()1,2,a m =-r与向量()4,1,2b =r 垂直,则m =( )。
A.1- B. 0 C. 1 D.23.设23(,,)2f x y z xy y z xyz =+-,则()2,1,1yz f -=( )。
A.0 B. 4 C. 8 D. 13- 4. 函数x y x y x y x f 933),(2233-+++= 在点()1,0处( )。
A.取极大值B.取极小值C.不取极值D.无法确定 5.设()22DI xy dxdy =+⎰⎰, 其中D 是由曲线222x y a +=所围成的平面区域 ()0a >,则I =( )。
1617高等数学A(二)部分试题答案 济南大学20180614
d
2 ( y)
1( y)
f ( x, y ) d x
目录
上页
下页
返回
结束
n 1 n 1 2 n 2n
( 1)
n 1
n 1 n
2
n
收敛, 因此
( 1)
n 1
n 1
n 绝对收敛. n 2
目录 上页 下页 返回 结束
故原级数收敛且绝对收敛.
5. 求幂级数
知识点:收敛半径和收敛域 解: lim u n 1 ( x) lim n u n ( x) n
1 lim sin 2 n n
1 1 lim 2 2 n n n
1 2 1 n
原级数收敛 .
1 ( 1) n1 发散 , 收敛 , n n 1 n n 1
目录 上页 下页 返回 结束
1 当 p 1时 ,收敛 p n n 0 当 p 1时 ,发散
三重积分计算 先一后二,先二后一
目录
上页
下页
返回
结束
1.
D f ( x, y ) d
d x
a b
f ( x , y ) d x d y
D
f ( r cos , r sin ) r d r d
D
2 ( x)
1 ( x )
f ( x , y ) d y d y
目录
上页
下页
返回
结束
三、计算题(每小题5分,共30分)
u
1. 设 z e cos v , u x + y , v xy , z z v 解: 教材P81 x v x
高等数学下试题及参考答案
华南农业大学期末考试试卷(A卷)2016~2017学年第2 学期 考试科目:高等数学A Ⅱ 考试类型:(闭卷)考试 考试时间: 120 分钟学号 姓名 年级专业一、填空题(本大题共5小题,每小题3分,共15分)1.二元函数2ln(21)z y x =-+的定义域为 。
2. 设向量(2,1,2)a =r ,(4,1,10)b =-r,c b a λ=-r r r ,且a c ⊥r r ,则λ= 。
3.经过(4,0,2)-和(5,1,7)且平行于x 轴的平面方程为 。
4.设yz u x =,则du = 。
5.级数11(1)npn n ∞=-∑,当p 满足 条件时级数条件收敛。
二、单项选择题(本大题共5小题,每小题3分,共15分) 1.微分方程2()'xy x y y+=的通解是( )A .2x y Ce =B .22x y Ce =C .22y y e Cx =D .2y e Cxy = 2.求极限(,)(0,0)limx y →= ( )A .14 B.12- C .14- D .123.直线:327x y zL ==-和平面:32780x y z π-+-=的位置关系是 ( ) A .直线L 平行于平面π B .直线L 在平面π上 C .直线L 垂直于平面π D .直线L 与平面π斜交4.D 是闭区域2222{(,)|}x y a x y b ≤+≤,则Dσ= ( ) A .33()2b a π- B .332()3b a π- C .334()3b a π- D .333()2b a π-5.下列级数收敛的是 ( )A .11(1)(4)n n n ∞=++∑ B .2111n n n ∞=++∑ C .1121n n ∞=-∑ D.n ∞=三、计算题(本大题共7小题,每小题7分,共49分) 求微分方程'x y y e +=满足初始条件0x =,2y =的特解。
1.2. 计算二重积分22Dx y dxdy x y++⎰⎰,其中22{(,):1,1}D x y x y x y =+≤+≥。
高等数学下试题及参考答案
华南农业大学期末考试试卷(A卷)2016~2017学年第2 学期 考试科目:高等数学A Ⅱ 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业一、填空题(本大题共5小题,每小题3分,共15分)1.二元函数2ln(21)z y x =-+的定义域为 。
2. 设向量(2,1,2)a =,(4,1,10)b =-,c b a λ=-,且a c ⊥,则λ= 。
3.经过(4,0,2)-和(5,1,7)且平行于x 轴的平面方程为 。
4.设yz u x =,则du = 。
5.级数11(1)np n n∞=-∑,当p 满足 条件时级数条件收敛。
二、单项选择题(本大题共5小题,每小题3分,共15分) 1.微分方程2()'xy x y y+=的通解是( )A .2x y Ce =B .22x y Ce =C .22y y e Cx =D .2y e Cxy = 2.求极限(,)(0,0)limx y →= ( )A .14 B .12- C .14- D .123.直线:327x y zL ==-和平面:32780x y z π-+-=的位置关系是( ) A .直线L 平行于平面π B .直线L 在平面π上 C .直线L 垂直于平面π D .直线L 与平面π斜交4.D 是闭区域2222{(,)|}x y a x y b ≤+≤,则Dσ= () A .33()2b a π- B .332()3b a π- C .334()3b a π- D .333()2b a π-5.下列级数收敛的是 ( )A .11(1)(4)n n n ∞=++∑ B .2111n n n ∞=++∑ C .1121n n ∞=-∑ D.1n ∞=三、计算题(本大题共7小题,每小题7分,共49分) 微分方程'x y y e +=满足初始条件0x =,2y =的特解。
1. 求2. 计算二重积分22Dx y dxdy x y++⎰⎰,其中22{(,):1,1}D x y x y x y =+≤+≥。
高二数学下学期期末考试试题理(1)word版本
2016~2017学年度第二学期高二理科数学期末联考测试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共22小题,共150分.共4开, 考试时间120分钟,考生作答时将答案答在答题卡上,在本试卷上答题无效.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分)1.我们把各位数字之和等于6的三位数称为“吉祥数”,例如123就是一个“吉祥数”,则这样的“吉祥数”一共有( ) A .28个 B .21个 C .35个 D .56个2.将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( ) A .10 B .20种 C .36种 D .52种3.某人参加一次考试,4道题中解对3道即为及格,已知他的解题正确率为0.4,则他能及格的概率是( )A .0.18B .0.28C .0.37D .0.484.已知随机变量ξ服从正态分布N(2,σ2),且P(ξ<4)=0.8,则P(0<ξ<2)=( )A .0.6B .0.4C .0.3D .0.25.从一个棱长为1的正方体中切去一部分,得到一个几何体,其三视图如右图,则该几何体的体积为 ( ) A.87 B. 85 C. 65 D. 436. 六个人站成一排照相,则甲乙两人之间恰好站两人的概率为( ) A.16 B.15 C.13 D.127.在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据,并制作成如图所示的人体脂肪含量与年龄关系的散点图.根据该图,下列结论中正确的是( )(A )人体脂肪含量与年龄正相关,且脂肪含量的中位数等于20% (B )人体脂肪含量与年龄正相关,且脂肪含量的中位数小于20% (C )人体脂肪含量与年龄负相关,且脂肪含量的中位数等于20%(D )人体脂肪含量与年龄负相关,且脂肪含量的中位数小于20%8.高三毕业时,甲、乙、丙、丁四位同学站成一排合影留念,已知甲、乙相邻,则甲、丙相邻的概率为 ( )A .31 B .32 C .21 D .61 9.广告投入对商品的销售额有较大影响.某电商对连续5个年度的广告费和销售额进行统计,得到统计数据如下表(单位:万元):由上表可得回归方程为ˆˆ10.2yx a =+,据此模型,预测广告费为万元时的销售额约( ) A .101.2 B .108.8 C .111.2 D .118.210.将三颗骰子各掷一次,记事件A =“三个点数都不同”,B =“至少出现一个6点”,则条件概率()P A B ,()P B A 分别是( )A.6091,12 B.12,6091C.518,6091 D.91216,1211.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c ,,,(0,1)a b c ∈,且无其它得分情况,已知他投篮一次得分的数学期望为1,则ab 的最大值为( )A .148 B .124 C .112 D .1612.位于数轴原点的一只电子兔沿着数轴按下列规则移动:电子兔每次移动一个单位,移动的方向向左或向右,并且向左移动的概率为23,向右移动的概率为13,则电子兔移动五次后位于点(1,0)-的概率是 ( )A .4243B .8243 C .40243 D .80243二、填空题:(本大题共4小题,每小题5分,共20分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页 (共 3 页)
下学期期末考试试卷
课程名称:《高等数学A Ⅱ》 (试卷编号: A )
(本卷满分100分,考试时间120分钟)
考试方式:
考试
考查
闭卷
开卷
仅理论部分
其他
)
学院: 专业:
班级: 学号: 姓名: 任课教师:
考试地点: 考试时间: 月 日 时 分
一、填空题(本大题共10小题10空,每空2 分,共 20分)
1.
极限
(,)lim
x y →= .
2.经过两点(1,
2,0)A -、(4,1,3)B -的直线方程为 .
3.求两直线113:141x y z l -+==-和22
:221
x y z
l +==--的夹角θ= . 4.球心在点(1,3,2)-且通过坐标原点的球面方程为 . 5.求直线
234112
x y z ---==与平面260x y z ++-=的交点坐标 . 6.设(,)f x y =
,则(1,1)xy f = .
7.设2
sin 2z x y =,则全微分dz = . 8.计算二次积分
2
ln 1
y
x dy e dx =⎰
⎰
.
9.若级数
1
1
p n n ∞
=∑收敛,则P 的范围是 . 10.把函数2x
e 展开成x 的幂级数,则2x
e = .
二、单项选择题(选择正确答案的字母填入括号,本大题共6小题,每小
题3 分,共18 分)
1.已知级数
2
1
sin n n n α
∞
=∑,则此级数( ). A. 发散 B. 条件收敛 C. 绝对收敛 D. 不能确定
2.过点(2,0,3)-且与直线270
10x y z x y z -+-=⎧⎨+-+=⎩
垂直的平面方程为( ).
A. 2370x y z +++=
B. 2350x y z +-+=
C. 2350x y z -+-=
D. 2370x y z --+= 3.设函数2
2
324z x y y =-+-,则(0,2)是( ).
A. 极大值点
B. 极小值点
C.不是极值点
D. 无法确定 4.设2
2
(,)xy z f x y e =+,则
z
x
∂=∂( ). A. 122xy xf xe f ''+ B. 122xy xf ye f ''+ C. 122xy yf xe f ''+ D. 122xy yf ye f ''+
5.求曲线22
1()
4
4z x y y ⎧=+⎪⎨⎪=⎩
在点4,7)处的切线与x 轴正向之间的夹角( ). A. 30o
B. 45o
C. 90o
D. 60o
6.设2
5D
I x
y d σ=
⎰⎰,其中区域{}(,)01,11D x y x y =≤≤-≤≤,则I =( ).
A. 1-
B. 0
C. 1
D. 2
请
考生注意:答题时不要超过“装订线”,否则后果自负。
第 2 页 (共 3 页)
三、判断题:(本大题共5小题,在括号内正确的打“√”,错误的打“×”,每小题2分,共10分)
( )1.与向量(2,2,1)a =r 共线的单位向量是221
(,,)333。
( )2.方程2
2
41x y +=在空间表示椭圆柱面。
( )3.直线223
314
x y z -+-==
-在平面3x y z ++=上。
( )4.如果lim 0n n u →∞=,则级数
1
n
n u
∞
=∑一定收敛。
( )5.级数1
2(21)!n
n n ∞
=+∑是收敛的。
四、 计算题(本大题共5小题,每小题6分,共30分)
1.求函数ln()y
z x xy =+当1,1x y ==时的全微分dz .
2.设(cos sin )x
z e y x y =+,求二阶偏导数22z
y
∂∂.
3.计算3D
xy d σ⎰⎰,其中D 是由抛物线2
y x
=及直线y x =所围成的闭区域.
4.计算22
()x y dv Ω
+⎰⎰⎰
,其中Ω是由圆柱面228x y +=与平面0z =,3z =所围成的闭区域.
5.求幂级数13
n
n
n x n ∞
=⋅∑的收敛半径和收敛域.
请考生注意:答题时不要超过“装订线”,否则后果自负。
第 3 页 (共 3 页)
五、应用与证明(本大题共3小题,第1、2小题每题7分,第3小题8分,
共22分)
1.求曲面3z
e z xy -+=在点(2,1,0)处的切平面方程与法线方程。
2.要修建一个表面积为2
36m 的长方体水箱(有盖),问长、宽、高各取怎样的尺寸时,水箱的体积最大,最大体积是多少?
3.设()z xy xF u =+,而y
u x
=
,()F u 为可导函数,证明:z z x y z xy x y ∂∂+=+∂∂.
请
考生注意:答题时不要超过“装订线”,否则后果自负。