半导体三极管及放大电路基础1
第三章 晶体三极管(BJT)及放大电路基础
•
• • • •
(2)、利用输出特性画iC和uCE波形 交流负载线 a、空载时RL=∞ 交流负载线与直流负载线重合,动态工作点在 交流负线上移动,斜率——1/RC • uCE=EC-IC*RC
• b、RL不等于∞ / • 放大电路的交流负载电阻RL =RC‖RL • 交流负载线作法:过Q点作一条斜率 / 为-1/RL 的直线
L be
如果电路如下图所示,如何分析?
+EC RB1 C1 RC C2
T
RL
ui
RB2 RE2
RE1 CE
uo
动态分析: +EC
RB1
C1
RC
C2 T RL
RB1 ui
RB2
RE1
RL
uo RC
ui
RB2 RE2
RE1 CE
uo
交流通路
交流通路:
ui
RB1
RB2
RE1
RL
uo RC
Ii
微变等效电路: Ui
iB /uA iB /uA
60 40 20
iC /mA iC /mA
交流负载线
Q` Q IBQ Q`` vBE/V vBE/V
ICQ t
Q` Q
60uA 40uA
Q`` 20uA vC E/V vC E/V
t
VBEQ t
VC EQ t
3. 非线性失真 1) 截止失真 Q点过低,信号进入截止区
iC 放大电路产生 截止失真 输入波形 uCE
§3.3 图解分析法
2. 用图解法确定Q点
• 1) 给出输入特性,输出特性曲线 • 2) 画出直流通路:标出IBQ,ICQ,UBEQ,UCEQ • 3) 利用输入特性曲线来确定IBEQ和UBEQ • 基极偏置线:UBE=EC-IB*RB 与输入特性曲线的交点对 应的IBQ,UBEQ • 4) 利用输出特性曲线来确定ICQ和UCEQ • 直流负载线:UCE=EC-IC*RC 与输出特性曲线中IBQ 线 的交点确定ICQ、UCEQ
放大电路基础知识
第一节 半导体二极管
2.最大反向工作电压URM 最大反向工作电压URM是指二极管工作时两端所允许加的最
大反向电压。为保证二极管安全工作、不被击穿,通常URM 约为反向击穿电压UR的一半。 3.反向电流 反向电流是指二极管加最高反向工作电压时的反向电流。反 向电流越小,管子的单向导电性能越好。常温下,硅管的反 向电流一般只有几微安;锗管的反向电流较大,一般在几十 至几百微安之间。 4.最高工作频率
上-页 下-页 返回
第二节 半导体三极管
由图1-14所示的输出特性曲线可以看出如下三点特性。 曲线的起始部分较陡,且不同的IB曲线的上升部分几乎重合,
表明当UCE较小时,只要UCE略有增大, IC就迅速增加,但 IB几乎不受IC的影响。 当UCE较大(例如大于1 V)后,曲线比较平坦。 曲线是非线性的。由于三极管的输入、输出特性曲线都是非 线性的,所以它是非线性器件。 六、晶体管的主要参数 1.穿透电流 穿透电流ICEO是指基极开路时集一射极之间的电流。
在数字电路中,三极管作为开关元件,主要工作在截止状态 或饱和状态,并在截止状态和饱和状态之间经过短促的放大 状态进行快速转换和过渡。
上-页 下-页 返回
第二节 半导体三极管
(1)截止状态 当开关S接位置1时,三极管发射结电压 UBE<UT,相当于开关断开状态,等效电路如图1-11 (b) 所示。
是具有电流放大作用。三极管按其结构不同,分为NPN型和 PNP型两种。相应的结构示意图及电路符号如图1-8所示。 在制作三极管时,其内部的结构特点是: 发射区掺杂浓度高; 基区很薄,且掺杂浓度低; 集电结面积大于发射结面积。 以上特点是三极管实现放大作用的内部条件。 另外,三极管按其所用半导体材料不同,分为硅管和锗管; 按用途不同,分为放大管、开关管和功率管;按工作频率不 同,分为低频管和高频管;按耗散功率大小不同,分为小功
第4章 三极管及放大电路基础1
与 的关系
IC IC ICBO I E ICBO IC I B ICBO
(1 ) IC I B ICBO
I CBO IC IB 1 1
IE
N
P
N
I'C ICBO IC
IC I B (1 ) ICBO
共射直流电流放大倍数: IC I B 1.7 42.5 0.04 共射交流电流放大倍数: IC I B 2.5 1.7 40 0.06 0.04 说明: 例:UCE=6V时: 曲线的疏密反映了 的大小; IC(mA ) 160mA 电流放大倍数与工作点的位置有关; I 5 140mA CM 120mA 交、直流的电流放大倍数差别不大, 4 100mA 今后不再区别;
3 80mA
___
4. 集电极最大电流ICM 当值下降到正常值的三分之二时的 集电极电流即为ICM。
IC
2.5 2 1.7
1 0 2 4 6 8
IB 40mA
IB=60mA 20mA IB=0 10 UCE(V)
六、主要参数
5. 集-射极反向击穿电压U(BR)CEO 手册上给出的数值是25C、基极开路时的击穿电压U(BR)CEO。 6. 集电极最大允许功耗PCM 集电极电流IC 流过三极管, 所发出的焦耳热为: PC =ICUCE 导致结温 上升,PC 有限制, PCPCM 7. 频率参数
扩散 I C 复合 I B
IC
C
N
IB
P N
EC
或者 IC≈IB
I E IC I B (1 ) I B
EB
E
IE
二、电流放大原理
三极管及放大电路基础教案
三极管及放大电路基础教案章节一:三极管概述教学目标:1. 了解三极管的定义、结构和工作原理。
2. 掌握三极管的类型和符号。
教学内容:1. 三极管的定义:三极管是一种半导体器件,具有放大电信号的功能。
2. 三极管的结构:三极管由发射极、基极和集电极组成。
3. 三极管的工作原理:通过基极控制发射极和集电极之间的电流。
4. 三极管的类型:NPN型和PNP型。
5. 三极管的符号:NPN型三极管符号为“N”,PNP型三极管符号为“P”。
教学活动:1. 讲解三极管的定义、结构和工作原理。
2. 展示三极管的实物图和符号图。
3. 引导学生通过实验观察三极管的工作状态。
章节二:放大电路基础教学目标:1. 了解放大电路的定义和作用。
2. 掌握放大电路的基本组成和原理。
教学内容:1. 放大电路的定义:放大电路是一种通过反馈作用放大电信号的电路。
2. 放大电路的作用:放大微弱的信号,使其具有足够的功率驱动负载。
3. 放大电路的基本组成:电源、三极管、输入电阻、输出电阻和反馈电阻。
4. 放大电路的原理:通过三极管的放大作用,实现电信号的放大。
教学活动:1. 讲解放大电路的定义、作用和基本组成。
2. 展示放大电路的原理图和实际电路图。
3. 引导学生通过实验观察放大电路的工作状态。
章节三:三极管的放大特性教学目标:1. 了解三极管的放大特性。
2. 掌握三极管的放大原理。
教学内容:1. 三极管的放大特性:三极管的放大能力与基极电流、集电极电流和发射极电流之间的关系。
2. 三极管的放大原理:通过基极电流的控制,实现发射极和集电极之间电流的放大。
教学活动:1. 讲解三极管的放大特性和放大原理。
2. 分析三极管放大电路的输入和输出特性曲线。
3. 引导学生通过实验观察三极管的放大特性。
章节四:三极管放大电路的设计与应用教学目标:1. 了解三极管放大电路的设计方法。
2. 掌握三极管放大电路的应用。
教学内容:1. 三极管放大电路的设计方法:根据输入和输出信号的要求,选择合适的三极管、电阻等元件,设计合适的电路。
半导体三极管及其放大电路专题
解: 原则:先求UBE,若等于0.6-0.7V,为硅管;若等于0.2-0.3V,为锗管。
2
1
03 6 ICEO
截止条件:
100A 发射结反偏(或零偏),集电结反偏。
80A
60A 特点:
40A (1)三极管无电流放大作用,相当于一
20A 个断开的开关。uBE小于死区电压,发射结 IB=0 反偏。
9 12 UCE(V) (2)IB=0,IC不为0,IC=ICEO≈0。
截止区
ICEO叫穿透电流。
三极管的开关特性
• 三极管同二极管一样,也可以作为电 子开关器件,构成电子开关电路。当三极管 用于开关电路中时,三极管工作在截止区和 饱和区。如下表是三极管开关特性说明。
开关状态 三极管工作状态 内阻特性
解说
开关接通 饱和状态 开关断开 截止状态
集电极与 发射极间 内阻很小
集电极与 发射极间 内阻很大
二、三极管的电流放大作用
1。放大作用的内部条件:
发射区掺杂浓度最高 基区掺杂浓度最低且最薄
2. 放大作用的外部条件: 集电区面积最大
发射结正偏、集电结反偏
从电位的角度看:
C
NPN
发射结正偏 集电结反偏
发射结正偏 集电结反偏
VB>VE
VC>VB PNP
VB<VE VC<VB
N
B
P
半导体三极管及放大电路基础知识讲解
半导体三极管及放大电路基础知识讲解第一节学习要求第二节半导体三极管第三节共射极放大电路第四节图解分析法第五节小信号模型分析法第六节放大电路的工作点稳固问题第七节共集电极电路第八节放大电路的频率响应概述第九节本章小结第一节学习要求〔1〕把握差不多放大电路的两种差不多分析方法--图解法与微变等效电路法。
会用图解法分析电路参数对电路静态工作点的阻碍和分析波形失真等;会用微变等效电路法估算电压增益、电路输入、输出阻抗等动态指标。
〔2〕熟悉差不多放大电路的三种组态及特点;把握工作点稳固电路的工作原理。
〔3〕把握频率响应的概念。
了解共发射极电路频率特性的分析方法和上、下限截止频率的概念。
第二节半导体三极管〔BJT〕BJT是通过一定的工艺,将两个PN结结合在一起的器件,由于PN结之间的相互阻碍,使BJT表现出不同于单个 PN结的特性而具有电流放大,从而使PN结的应用发生了质的飞跃。
本节将围绕BJT什么缘故具有电流放大作用那个核心问题,讨论BJT的结构、内部载流子的运动过程以及它的特性曲线和参数。
一、BJT的结构简介BJT又常称为晶体管,它的种类专门多。
按照频率分,有高频管、低频管;按照功率分,有小、中、大功率管;按照半导体材料分,有硅管、锗管;依照结构不同,又可分成NPN型和PNP型等等。
但从它们的外形来看,BJT 都有三个电极,如图3.1所示。
图3.1是NPN型BJT的示意图。
它是由两个 PN结的三层半导体制成的。
中间是一块专门薄的P型半导体(几微米~几十微米),两边各为一块N型半导体。
从三块半导体上各自接出的一根引线确实是BJT的三个电极,它们分别叫做发射极e、基极b和集电极c,对应的每块半导体称为发射区、基区和集电区。
尽管发射区和集电区差不多上N型半导体,然而发射区比集电区掺的杂质多。
在几何尺寸上,集电区的面积比发射区的大,这从图3.1也可看到,因此它们并不是对称的。
二、BJT的电流分配与放大作用1、BJT内部载流子的传输过程BJT工作于放大状态的差不多条件:发射结正偏、集电结反偏。
三极管及放大电路基础
IC(mA ) 4
3
2
1 36
截止区
100A 80A
IB= 60A 40A 20A 0 9 12 VCE(V)
IC RC
IB B C
VCE
RB
VBE EB
E IE
EC
(1-13)
特点:VBE<死区电压, IB≤0≈0, IC ≤ICEO≈ 0,VCE ≈EC
这时三极管C 、 E端相当于: 一个断开的开关。
过大,温升过高会烧坏三极管。所以要求:
PC =IC VCE≤PCM 6.集-射极反向击穿电压V(BR)CEO ——基极开路时,集电极与发射极之间允许的最大反向 电压。
(1-22)
由三个极限参数可画出三极管的安全工作区
IC ICM
ICVCE=PCM
安全工作区
O
V(BR)CEO
VCE
(1-23)
八、晶体管参数与温度的关系
IC RC
IB B
C VCE
RB
VBE EB
E IE
EC
如何判断是否截止?
若:VBE ≤0(死区电压)
或 VC>VE >VB 三极管可靠截止
IC
VCE
C RC
E
EC
(1-14)
(3) 放大区:IC=IB区域 , 发射结e正偏,集电结c反偏 特点: IC=IB , 且 IC = IB , VCE=EC-IC RC
(1-29)
三极管在电路中的应用
1、放大电路 对三极管放大电路的分析,包括静态分 析和动态分析两部分。 也就是直流方面的分析和交流方面的分 析 直流方面的分析主要是判断三极管是否 有合适的直流工作条件 交流方面的分析主要是判断放大电路是 否能够正常的放大信号。
第03章-半导体三极管及放大电路基础
退出
放大电路的动态图解分析
(1)交流负载线 1.从B点通过输出特性曲线上的Q点做一条直线,
其斜率为-1/R'L 。 2.R'L= RL∥Rc,
是交流负载电阻。
3.交流负载线是有 交流 输入信号时Q 点的运动轨迹。
退出
三极管电流分配
半导体三极管在工作时一定要加上适当的直流偏置电压。 在放大工作状态: 发射结加正向电压,集电结加反向电压。
退出
三极的工作原理
发射结加正偏时,从发射区将
有大量的电子向基区扩散,形成
的电流为IEN。 从基区向发射区也有空穴的扩
散运动,但其数量小,形成的电
流为IEP。(这是因为发射区的掺杂浓
Av Vo /Vi
A I / I
i
oi
Ap Po / Pi Vo Io /Vi Ii
退出
(2) 输入电阻 Ri
输入电阻是表明放大电路从信号源 吸取电流大小的参数,Ri大放大电路 从信号源吸取的电流小,反之则大。
Ri
Vi Ii
退出
(3) 输出电阻Ro
输出电阻是表明放大电路带负载的能力,
Ro大表明放大电路带负载的能力差,反之则强。
退出
双极型三极管的参数
参数 型号
PCM
I CM
mW mA
3AX31D 125 125
3BX31C 125 125
3CG101C 100 30
3DG123C 500 50
3DD101D 5A
5A
3DK100B 100 30
3DKG23 250W 30A
第3章 半导体三极管及其基本放大电路
3.2 三极管基本应用电路及其分析 方法
3.2.3图解分析法
1.用图解法确定静态工作点 在分析静态值时,只需研究直流通路,图3-19用图解法分析 电路的步骤如下: 1)作直流负载线
U CE U CC I C RC
上式确定的直线就是直流负载线。 2)确定静态工作点 利用 I BQ (UCC U BEQ ) I RB ,求得IBQ的近似值。在输出特 性曲线上,确定IB=IBQ的一条曲线。该曲线与直线MN的交 点Q就是静态工作点。 上一页 下一页
3.1.5温度对三极管的特性与参数的影响
1.温度对UBE的影响 三极管的输入特性曲线与二极管的正向特性曲线相似,温度 升高,曲线左移,如图3-9所示。 2.温度对ICBO的影响 三极管输出特性曲线随温度升高将向上移动,如图3 -10所 示。 3.温度对β的影响 温度升高,输出特性各条曲线之间的间隔增大,从而β值增 大,如图3-10所示。
上一页
下一页
3.1 双极型半导体三极管
3.1.6三极管的判别及其手册的查阅方法
1.三极管型号的意义 三极管的型号一般由五大部分组成如3AX31A、3DG12B、 3CG14G等。 2.三极管手册的查阅方法 1)三极管手册的基本内容 (1)三极管的型号。 (2)电参数符号说明。 (3)主要用途。 (4)主要参数。 2)三极管手册的查阅方法 (1)已知三极管的型号查阅其性能参数和使用范围。 (2)根据使用要求选择三极管。
3.1.4三极管的主要参数
3.极限参数 1)集电极最大允许电流ICM 2)反向击穿电压U(BR)CEO 3)集电极最大允许功耗PCM 根据给定的PCM值可以作出一条PCM曲线如图3-8所示,由 PCM、ICM和U(BR)CEO包围的区域为三1 双极型半导体三极管
第一章 基本放大电路
2.实验电路 以下是说明晶体管的放大原理和其中的电流分 配的实验电路. IC
IB
A
mA
+ + V UCE + EC
RB
V UBE – 输出回路 输入回路 – – + – EB 共发射极放大电路
发射极是输入回路、输出回路的公共端
3. 各电极电流关系及电流放大作用
IB/mA 0 0.02 0.04 0.06 0.08 0.10
带正电
空穴
价电子
温度愈高,晶体中产生 的自由电子便愈多。
在外电场的作用下,有空穴的原子吸引相邻原子的价电子 来填补空穴,而在该原子中出现一个空穴,其结果相当于空 穴的运动(相当于正电荷的移动)。
本征半导体的导电机理 当半导体两端加上外电压时,在半导体中将出 现两部分电流
(1)自由电子作定向运动 电子电流 (2)价电子递补空穴 空穴电流
P
IR
内电场 外电场
N
–
内电场被加 强,少子的漂 移加强,由于 少子数量很少, 形成很小的反 向电流。
+
PN 结加反向电压时,PN结变宽,反向电流较小, 反向电阻较大,PN结处于截止状态。 温度越高少子的数目越多,反向电流将随温度增加。
总目录 章目录 返回 上一页 下一页
PN结具有单向导电性
正偏时,结电阻小,正向电流大——导通
例1:
+ ui –
R D + uo –
已知: 二极管是理想的,
ui 10sin t V, E 5V, R 1K
试画出 uo 波形。
二极管的用途: 整流、检波、 限幅、钳位、开 关、元件保护、 温度补偿等。
E
ui
E
三极管及其放大电路
第2章 半导体三极管及其基本放大电路
2.1.3 .BJT的特性曲线
BJT的特性曲线是指各电极电压与电流之间 的关系曲线,它是BJT内部载流子运动的外部 表现。
工程上最常用的是BJT的输入特性和输出特 性曲线。
第2章 半导体三极管及其基本放大电路
以共射放大电路为例:
输入特性:iBf vBEvCE 常 数 输出特性: iCf vCEiB常数
第2章 半导体三极管及其基本放大电路
输出特性曲线可以划分为三个区域: 饱和区——iC受vCE控制的区域,该区域内vCE的 数值较小。此时Je正偏,Jc正偏
iC /mA
25℃
=80μA =60μA =40μA
=20μA
vCE /V
第2章 半导体三极管及其基本放大电路
饱和区——iC受vCE显著控制的区域,该区域内vCE的数值较 小。此时Je正偏,Jc正偏。
电压增益2= 0lgAV dB 电流增益2= 0lgAI dB
由于功率与电压(或电流)的平方成比例, 因此功率增益表示为:
功率增益=10lgAP
【 AP
Po 】 Pi
第2章 半导体三极管及其基本放大电路
2.2.2
+
VS
-
R
=
i
Vi I i
输入电阻Ri
I i
Io
+
+
Rs Vi
放大电路 Ri (放大器)
2.3 共射基本放大电路
共射基本放大电路组成
放大的外部条件
输入回 路
输出回 路
两个回路 正确的直流偏置
ui为小信号 ui和VBB串接 RB为基极偏置电阻
RC为集电极偏置电
阻
第2章 半导体三极管及其基本放大电路
第四章三极管及放大电路基础
N
P
N
IE
I EN
e
I
EP
Re
VEE
b IB
IC c
VCC
Rc
+ +
载流子运动过程
(2) 复合(基区参杂浓度很低)
发射区的电子注入基区后,少数将与基区的空穴复合掉, 形成IBN。
N
P
N
IE
I
EN
IC
e
c
Re
VEE
b IB
VCC
Rc
+ +
载流子运动过程
(3) 收集(集电区面积大)
因为集电结反偏,收集扩散到集 集电区及基区的少数载流子形成
4. 放大作用
IE +iE e
c IC +iC
+
vI -
VEB+vEB
b IB +iB
+ vO RL
1k -
VEE
VCC
图 03.1.05 共基极放大电路
若 vI = 20mV 使 iE = -1 mA, 当 = 0.98 时, 则 iC = iE = -0.98 mA, vO = -iC• RL = 0.98 V,
3DKG23 250W 30A
注:*为 f
VRCBO V
20 40 45 40 300 25 400
VRCEO V 12 24
30 250 15 325
VREBO V
4
I C BO μA
≤6 ≤6 0.1 0.35 ≤2mA ≤0.1
fT MHz *≥ 8 *≥ 8 100
300 8
4.1 BJT
动态是放大的对象和预期的结果
半导体三极管及基本放大电路教案
教学章节第2章半导体三极管及基本放大电路2.1 双极型三极管课型理论课对象教学目标1.掌握:双极型三极管的电流分配方程和输入、输出曲线(截止区、放大区、饱和区的特点);2.理解:双极型三极管的放大条件和放大原理,三极管的直流参数和交流参数;3.了解:双极型三极管的结构和电路符号,特殊三极管。
教学重点1.双极型三极管的电流分配方程;2.双极型三极管的输入、输出曲线(截止区、放大区、饱和区);3.双极型三极管的放大条件和放大原理;4.三极管的直流参数和交流参数。
教学难点1.双极型三极管的放大原理;2.双极型三极管输入、输出曲线(截止区、放大区、饱和区)。
教学方法多媒体教学,讨论教学课时2学时教学内容2.1 双极型三极管半导体三极管有两大类型,一是双极型三极管,二是单极型场效应管。
由于它有空穴和自由电子两种载流子参与导电,故称为双极型。
本讲讨论双极型半导体三极管,通常用BJT表示,以下简称三极管。
双极型三极管可以分为如下几种类型:(1)按结构分——NPN管和PNP管(2)按功率大小分——大、中、小功率管(3)按材料分——硅管和锗管(4)按频率分——高频管和低频管2.1.1 三极管的结构和符号通过工艺的方法,把两个二极管背靠背的连接起来级组成了三极管。
按PN结的组合方式有PNP型和NPN型,它们的结构示意图和符号图分别为:如图2.1所示。
(a)NPN管的结构及符号(b)PNP管的结构及符号图2.1 三极管的结构示意图和符号不管是什麽样的三极管,它们均包含三个区:发射区,基区,集电区,同时相应的引出三个电极:发射极,基极,集电极。
同时又在两两交界区形成PN结,分别是发射结和集电结。
双极型晶体管的常见外形如图2.2所示。
图2.2 三极管的外型和管脚排列2.1.2 三极管的电流分配与放大原理(这一问题是重点)1.三极管的结构特点(1)基区很薄,且掺杂浓度很低;(2)发射区掺杂浓度远大于基区和集电区掺杂浓度;(3)集电结的结面积很大。
3_三极管及放大电路基础
VBB
e
位关系应为VC>VB>VE。
4. 共射极基本放大电路
(3)放大电路中电位的关系
PNP型三极管放大工作时,其电源电压VCC 极性与NPN型管相反,这时,管子三个电极的电 流方向也与NPN型管电流方向相反,电位关系则 为VE>VB>VC。
截止区:发射结反偏,集电结反偏,相当于开关的断开状态。
U BE U ON , I B 0
放大区:发射结正偏,集电结反偏,具有电流放大作用。
I C I B
三极管的前一种状态被广泛应用于信号的放大,后两种状态常被用作电子开关。
4. 共射极基本放大电路
(1)电路组成 如图所示
Rcc Rbb C11 c b VT Vcc c2
三极管引脚读取方式
任务实施
三极管器件手册查阅 三极管引脚排列
三极管引脚识读如表所示 对于中小功率塑料三极管:按图使其平面朝向自己,三个引脚朝下放置 从左到右依次为e b c。
三极管引脚读取方式
四、三极管的使用常识
小功率三极管检测 1. 三极管基极和类型判断
如图
点击
当第一根表笔接某电极, 万用表置于R×1k挡。 用万用表的第一根表笔依次 接三极管的一个引脚,而第 二根表笔分别接另两根引脚, 以测量三极管三个电极中每 两个极之间的正、反向电阻 值。 而第二根表笔先后接触另外两个
三极管引脚排列有很多形 式,使用三极管之前应该先熟 半导体三极管也称为晶体 三极管。由于工作时,多数载 流子和少数载流子都参与运行, 因此又叫双极性晶体管,简称 BJT,是现代电子产品中必不可 少的半导体器件。 悉三极管的型号、用途、参数、 外形尺寸以及引脚的排列,以 保证能正确使用三极管。 三极 管的产生使PN结的应用发生了 质的飞跃。它分为双极型和单
半导体三极管及基本放大电路教案
半导体三极管及基本放大电路教案一、课程目标:1.了解半导体三极管的结构和工作原理;2.掌握基本放大电路的设计和分析方法;3.培养学生动手实验和分析实验结果的能力。
二、教学内容:1.半导体三极管的结构和工作原理;2.基本放大电路的设计和分析方法;3.实验:利用半导体三极管构建基本放大电路。
三、教学过程:1.导入(10分钟)引入半导体三极管的概念和作用,和学生一起思考半导体三极管在现代电子设备中的重要性和应用。
2.半导体三极管的结构和工作原理(20分钟)2.1.引入半导体三极管的结构和符号表示,解释其由三个半导体材料构成的特点;2.2.介绍半导体三极管的三个结:发射结、基极结和集电结;2.3.描述半导体三极管的工作原理,包括截止区、饱和区和放大区的区别。
3.基本放大电路的设计和分析方法(40分钟)3.1.介绍基本放大电路的概念和作用;3.2.引入电流放大倍数和电压放大倍数的概念;3.3.讲解共射放大电路和共集放大电路的基本原理和特点;3.4.教授基本放大电路的设计和分析方法,包括选择电阻值和计算放大倍数。
4.实验(30分钟)4.1.实验目的:通过实际操作半导体三极管和元器件,构建基本放大电路并测试其放大性能;4.2.实验步骤:a.准备实验所需材料:半导体三极管、电阻、电源等;b.按照电路图连接元器件;c.接通电源,调整电阻和电压,观察输出信号;d.测量输出信号的放大倍数;e.记录实验结果并分析。
五、小结(10分钟)总结本节课的重点和难点,并对实验结果进行分析和讨论,对半导体三极管及基本放大电路的原理和实际应用进行探讨。
六、作业(10分钟)布置作业:要求学生选择一个电子设备(如手机、电脑等),研究其中一个关键元器件的工作原理和作用,并写一份报告。
七、教学反思通过本节课的教学,学生能够了解半导体三极管的结构和工作原理,掌握基本放大电路的设计和分析方法,并通过实验加深对相关知识的理解。
同时,通过作业的布置,培养了学生自主学习和研究的能力。
第二章半导体三极管及放大电路
(2)输出特性曲线 iC=f(uCE) iB=const
现以iB=60uA一条加以说明。
(1)当uCE=0 V时,因集电极无收集作用,iC=0。
(2) uCE ↑ → Ic ↑ 。
i C(mA)
IB =100uA IB =80uA
(3) 当uCE >1V后, 收集电子的能力足够强。 这时,发射到基区的电 子都被集电极收集,形 成iC。所以uCE再增加, iC基本保持不变。 同理,可作出iB=其他值的曲线。
3dB带宽 fL 下限截 止频率 上限截 fH 止频率 f
通频带: fbw=fH–fL
2.4 单管共射放大电路的工作原理
一.三极管的放大原理
三极管工作在放大区: 发射结正偏, 集电结反偏。
IC +△IC I B +△IB T
+ +
+△UCE UCE
+
放大原理:
Rb VBB
ui →△UBE→△IB
UBE+△ UBE -
IC IB
i = C i B
△ iC
2.3 1.5
△ iB
IB =60uA IB =40uA IB =20uA IB=0 uCE (V)
I C 2.3mA 38 I B 60A
iC (2.3 1.5)mA = 40 iB (60- 40)A
(2)共基极电流放大系数:
放大区——
放大区
IB =100uA IB =80uA IB =60uA IB =40uA IB =20uA IB=0 uCE (V)
曲线基本平行等 距。 此时,发 射结正偏,集电 结反偏。 该区中有:
IC=IB
截止区
四. BJT的主要参数
三极管基础知识
网络教材—《模拟电子技术》-半导体三极管及放大电路基础Frequently Asked Question(FAQ)1. 既然BJT具有两个PN结,可否用两个二极管相联以构成一只BJT,试说明其理由。
解:BJT要实现放大作用,首先满足其内部条件,即要求发射区杂质浓度要远大于基区杂质浓度,同时基区厚度要很薄;集电结的结面要大。
仅用两个二极管相联构成的BJT不能满足上述三极管具有放大的内部条件,因此不能用两个二极管相联以构成一只BJT。
2. 要使BJT具有放大作用,发射结和集电结的偏置电压应如何联接?解:要使BJT具有放大作用,必须满足三极管放大的内部条件和外部条件。
外部条件为发射结必须正偏,集电结必须反偏。
3. BJT三极管为什么又称为双极型半导体三极管?解:通过对BJT工作时载流子的运动分析可知,它是由两种载流子即自由电子和空穴参与导电的半导体器件,所以称它为双极型半导体三极管,是一种CCCS器件。
4. 小结BJT三极管内部结构的特点。
解:BJT能进行放大,必须满足其内部结构的特点:①发射区重掺杂;②集电区中等掺杂,集电结的结面积远大于发射结的结面积;③基区轻掺杂,基区做得很薄。
5. 晶体管的发射极和集电极是否可以调换使用,为什么?更多图纸请加QQ:453100829 解:不可以!由于三极管的特殊构造,虽然发射区和集电区是同型半导体,但发射区掺杂浓度高而面积小,而集电区则掺杂浓度低而面积大。
若调换使用将不能获得有效的电流放大作用(β<1)。
其次,由于三极管U(BR)ERO≤4V,若调换使用,当电源电压高于4.7V时,三极管便因击穿而损坏。
6. α、β是两种电流放大系数,有人说,它们的值受控于外电路,外加电压大,其值就大,这种说法正确吗?解:这种说法不正确! α、β是两种电流放大系数主要取决于基区、集电区和发射区的杂质浓度以及器件的几何结构,与外电路没有关系,只不过用基极电流来控制集电极电流在外加电压的作用下才能体现出来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流工作状态。
动态 分析 确定放大电路的放大倍数 AV 或AI
vi vo
输入电阻ri和输出电阻ro
动态分析要借助于交流通路 1、交流通路的画法:
(1)将放大电路中电容视作短路; (2)直流电源内阻很小,对交 流信号可视作短路。
vi
Ic Ii Ib vo
VCC 2.放 大电 路的 工作 过程 Ii vi vo vi Ib
若 vI = 20mV 使 iE = -1 mA,
当 = 0.98 时,
则 iC = iE = -0.98 mA, vO = -iC• RL = 0.98 V,
电压放大倍数
vO 0.98V AV 49 vI 20mV
4. 放大作用
若 vI = 20mV 使 iB = 20 uA
三极管符号
结构特点:
发射区的掺杂浓度最高; 集电区掺杂浓度低于发射区,且面积大;
基区很薄,一般在几个微米至几十个微米,且掺 杂浓度最低。
管芯结构剖面图
3.1.2 BJT的电流分配与放大原理
三极管的放大作用是在一定的外部条件控制下,通 以上看出,三极管内有两种载流子(自由 过载流子传输体现出来的。
共射极放大电路
直流通路
直流电源:内阻为零 , 电压变化 量为0
耦合电容:通交流、隔直流 直流电源和耦合电容对交流相当于短 路 交流通路
3.3 图解分析法
3.3.1 静态工作情况分析
用近似估算法求静态工作点
用图解分析法确定静态工作点
3.3.2 动态工作情况分析
交流通路及交流负载线
输入交流信号时的图解分析 BJT的三个工作区与波形失真 输出功率和功率三角形
vCE = 0V vCE 1V iB c+
iC
vBE - e VBB
b +
vCE
VCC
共射极放大电路
①死区 ②非线性区 ③线性区
3.1.3 BJT的特性曲线
2. 输出特性曲线
iB b + c + iC
iC=f(vCE) iB=const
vBE - e VBB
vCE
VCC
共射极放大电路
饱和区:iC明显受vCE控 制的区域,该区域内, 一般 vCE<0.7V( 硅管)。 截止区: iC接近零的 放大区: C平行于vCE轴的 此时, 发射结正偏,集 区域,相当 iB=0i 的曲 区域,曲线基本平行等距。 电结正偏或反偏电压很 线的下方。此时, 此时,发射结正偏,集电 小v 。 小于死区电压 。 BE 结反偏。
电压放大倍数
共射极放大电路 共射极放大电路
vO 0.98V AV 49 vI 20mV
BJT的电流分配与放大原理
综上所述,三极管的放大作用,主要是依 靠它的发射极电流能够通过基区传输,然后到 达集电极而实现的。 实现这一传输过程的两个条件是: (1)内部条件:发射区杂质浓度远大于基区
3.3.1 静态工作情况分析
静态
vi=0时,放大电路的工作状态,也称直流工作状态。 静态分析 确定放大电路的静态值IBQ、ICQ、VCEQ,即静 态工作点Q。静态工作点的位置直接影响放 大电路的质量。 计算法 静态分析方法 图解分析法 要借助于放大电路的直流通路, 直流通路是通过直流的通道。 只要将电路中的耦合电容和旁路 电容开路,即可得到直流通路。
Ic
vo
vo 与v i 的 相 v o 差 为 180
0
vi
vBE
VBE vCE VCE
t
当交流信号加到放大器输入端时,管子各点的电压和电流将在静
态值基础上叠加一交流分量, 电路中的信号既有直流又有交流。
3.交流通路及交流负载线
iC 斜率
由交流通路得纯交流负载线:
VCC Rc Q
1 Rc// RL 1 Rc
共射输出特性 动画五
特性曲线
判断三极管工作状态的依据: 饱和区: 发射结正偏,集电结正偏 截止区:
发射结反偏,集电结反偏
或: Ube0.5V(Si) |Ube | 0.2V(Ge) 放大区: 发射结正偏,集电结反偏
3.1.4 BJT的主要参数
1. 电流放大系数
(1)共发射极直流电流放大系数
IC
VCE
VCE=0 IC=VCC/Rc 作出直流负载线,它和输出特性曲线有
多个交点。只有与iB=IBQ对应的那条曲线 的交点才是静态工作点。
求两点
若改变IB,便可改变静态工作点的位 置,从而影响放大电路的放大质量。
3.3.2 动态工作情况分析
动态 输入信号vi≠0时放大电 路的工作状态,也称交
VCC
提供的,只是经过三极管的控制,使之转 换成信号能量,提供给负载。
2、基本放大电路的组成
组成原则: 1、发射结正偏,集电结反偏 2、输入信号能加到三极管上 3、输出信号能有效地传送到负载 4、不失真地放大信号 将变化的集电极电流 转换为电压输出 起放大作用 三 极 管T 负载电阻RC 、RL 偏置电路VBB 、Rb 耦合电容Cb1 、Cb2 电源VBB 、VCC 使三极管工作在线性区
(2) 共发射极交流电流放大系数 =IC/IBv
CE=const
(3) 共基极直流电流放大系数 ≈IC/IE (4)共基极交流电流放大系数 α =IC/IE VCB=const
3.1.4 BJT的主要参数
2. 极间反向电流 (1) 集电极基极间反向饱和电流ICBO 发射极开路时,集电结的反向饱和电流。 (2) 集电极发射极间的反向饱和电流ICEO ICEO=(1+ )ICBO
传输到集电极的电流 即 设 发射极注入电流 通常 IC >> ICBO
I nC IE
IC 则有 IE
IC IB
1
、 为电流放大系数,只
与管子的结构尺寸和掺杂 浓度有关,与外加电压无 关。一般 = 0.90.99, >> 1
载流子的传输过程
3. 三极管的三种组态
杂质浓度,且基区很薄。
(2)外部条件:发射结正向偏置,集电结反
向偏置。
3.1.3 BJT的特性曲线
1. 输入特性曲线
iB=f(vBE) vCE=const
(1) 当vCE=0V时,相当于发射结的正向伏安特性曲线。 (2) 当vCE≥1V时, vCB= vCE - vBE>0,集电结已进入反偏状 态,开始收集电子,基区复合减少,同样的vBE下IB减小, 特性曲线右移。
3.1.1 BJT的结构简介
半导体三极管的结构示意图如下图所示。它有两种 集电极,用C或c 发射极, 用 E或e 类型 :NPN 型和PNP型。 表示(Collector)。 集电区 发射区 表示(Emitter ); 两种类型的三极管
基区 发射结(Je) 集电结 基极,用B或b表示( Base(Jc) )
ICBO
uA 即输出特性曲 + 线IB=0那条曲线所 对应的Y坐标的数 值。 ICEO也称为集 电极发射极间穿透 电流。
b
c e
b c
ICEO
uA +
V e CC Ie =0
ICEO
VCC
3.1.4 BJT的主要参数
3. 极限参数 (1)集电极最大允许电流ICM 当集电极电流增加时, 就要下 降,当值下降到线性放大区值的 2/3时所对应的最大集电极电流。
给输出信号提供能量
起隔直作用
对交流起耦合的作用 发射结正偏,极电结反偏
3.2 共 射极放 大电路
3、简单工作原理
Vi=0
Vi=Vsint
工作点合适
工作点偏低
4. 放大电路的静态和动态
静态:输入信号为零时,放大电 路的工作状态,也称直流工作状态。
Байду номын сангаас
电路处于静态时,三极管各电极
的电压、电流在特性曲线上确定为 一点,称为静态工作点,常称为Q点.
3.1 半导体三极管(BJT)
BJT是通过一定的工艺,将两个PN结结合在一 起的器件。由于两个PN结之间的相互影响,使BJT 表现出不同于单个PN结的特性而具有电流放大作 用,从而使PN结的应用发生了质的飞跃。
3.1.1 BJT的结构简介
3.1.2 BJT的电流分配与放大原理 3.1.3 BJT的特性曲线 3.1.4 BJT的主要参数
IC>ICM时,并不表示三极管会损坏。只是管子的
放大倍数降低。 (2)集电极最大允许功率损耗PCM PCM= ICVCE (3) 反向击穿电压 V(BR)CBO>V(BR)CEO>V(BR) EBO
由PCM、 ICM和V(BR)CEO在输出特性曲线上可以 确定过损耗区、过电流区和击穿区。
输出特性曲线上的过损耗区和击穿区
作出直流负载线,直流负载线和输入 特性曲线的交点即是静态工作点Q,由 Q可确定IBQ、VBEQ
VBE
2. 图解法
(1)由输入特性曲线和输入直流负 载线求IBQ、VBEQ (2)由输出特性曲线和输出直流负 载线求ICQ、VCEQ
VCC
IB VBE
VCE=VCC-ICRc → 直流负载线
IC=0 VCE=VCC
学习指导 3.1 半导体三极管(BJT) 3.2 共射极放大电路 3.3 图解分析法 3.4 小信号模型分析法 3.5 放大电路的工作点稳定问题 3.6 共集电极电路和共基极电路 3.7 放大电路的频率响应 3.8 多级放大电路 小结
学习目标: 1、掌握BJT的电流分配关系、放大条件及放大工作原理; 2、掌握静态、动态、直流通路、交流通路、频率特性及温 度漂移等基本概念; 3、掌握结合具体电路进行合理近似的估算法; 4、学会用图解法分析放大电路的静态、动态工作情况; 5、熟练掌握运用小信号模型等效电路法计算放大电路的动 态性能指标; 6、熟练掌握共射(包括工作点稳定电路)、共集和共基放 大电路的工作原理及特点; 7、掌握放大电路频率特性的相关概念; 8、会画出近似波特图; 9、定性了解多级放大电路频带宽度与单级的关系 。 10、多级放大电路的分析