Quantitative strain and stress measurements in GeSi dual channels
硫化橡胶与金属粘接拉伸剪切强度测定方法
硫化橡胶与金属粘接拉伸剪切强度测定方法The measurement method for adhesion strength between vulcanized rubber and metal through tension and shear force is widely used in various industries. This technique provides a quantitative assessment of the bonding strength between rubber and metal, allowing for quality control and optimization of adhesive materials and processes.金属与硫化橡胶之间的粘接拉伸剪切强度测定方法在各个行业中得到了广泛应用。
这种技术能够定量评估橡胶和金属之间的粘结强度,从而进行黏合材料和工艺的质量控制与优化。
To conduct the measurement, a test specimen is prepared by bonding a piece of vulcanized rubber to a metal substrate under controlled conditions. The dimensions of the test specimen should follow specific standards, ensuringaccurate and reproducible results. The bonded area shouldbe free from any contaminants or imperfections that could compromise the adhesion strength.为了进行测定,首先要在受控条件下将硫化橡胶块与金属基板粘接在一起,制备测试样品。
职业卫生与职业医学-常用英语词汇
《职业卫生与职业医学》常用英语词汇occupational health 职业卫生学industrial hygiene 工业卫生工程学Occupational hazard 职业性危害Occupational adverse effect/damage 职业性损害/损伤Occupational tolerance 职业耐受性Occupationalinjury/workinjury 工伤Occupationaldisorders 职业性疾患Occupationaldiseases 职业病Diagnosisofoccupational disease 职业病的诊断Emergencyrescuecenter 应急救援中心healthpromotion 健康促进compensabledisease 需赔偿的疾病work—relateddisease 工作有关疾病occupationalstigma 职业特征hostriskfactor 个体危险因素highriskgroup 高危人群occupationalhealthservice 职业卫生服务threelevelsofprevention 三级预防primary prevention 第一级预防secondaryprevention 第二级预防tertiaryprevention 第三级预防primaryhealthcare 初级卫生保健workphysio1ogy 工作(职业)生理学occupational psychology职业心理学ergonomics 人类工效学humanfactorsengineering 人机因素工程学mentalwork 脑力劳动physicalwork 体力劳动oxygendemand 氧需maximumoxygenuptake 氧上限oxygendebt 氧债steadystate 稳定状态intensity of work 工作强度shift work 轮班制dualclassificationofworkintensity 工作强度双重分级法static work/effort 静力作业isometric contraction 等长性收缩dynamic work 动态作业isotonic contraction 等张性收缩dynamic stereotype 动力定型occupational stress 职业性紧张stressor 紧张因素stress 紧张strainorstressreaction 紧张反应modifier 调节(缓解)因素person—environmentfitmodel 人一环境相适应模式jobdemands—controlmodel 工作需求一控制模式psychosocial stresses 社会心理紧张quantitative overload 超负荷quantitative underload 负荷不足work capacity 作业能力induction period 入门期steady period 稳定期fatigue period 疲劳期terminal motivation 终末激发training 锻炼exercise 练习fatigue 疲劳overstrain 过劳physical stress 体力紧张psychological strain 心理过劳mismatch 失衡micropause 工间小歇break 工间休息active rest 积极休息physicalstrain 体力过劳occupationalcumulativetraumaordisorders 职业蓄积性损伤或疾患flatfoot 扁平脚varicosityoflowerextremity 下肢静脉曲张abdominalhernia 腹疝kyphosis 驼背scoliosis 脊柱侧凸lowbackpain 下背痛lumbarinsufficiency 腰肌劳损lumbago 腰痛sciatica 坐骨神经痛temosynovitis 腱鞘炎occupationalcramp 职业性痉挛occupationalneurosis 职业性神经机能症writer'scramp 书写痉挛styloiditis 茎突炎epicondylitis 上踝炎periarthritis 关节周炎bursitis 滑囊炎Dupuytren’scontracture 掌挛缩病callus 胼胝singer’snodules 歌唱家小结节psychologicalstrain 心里过劳post—traumaticstressdisorder 外伤后紧张性精神病masspsychogenic illness 群体精神病video display terminal,VDT 视屏显示终端occupationalneckandupperextremitydisorder 职业性颈肩腕综合征computeroperatorsyndrome 电脑操作综合征dust 粉尘fume 烟vapor 蒸气gas 气体solid 固体liquid 液体mist 雾productivedust 生产性粉尘productivefume 生产性烟尘aerosol 气溶胶targetorgan 靶器官bloodbrainbarries 血脑屏障placentalbarries 胎盘屏障skinbarries 皮肤屏障absorption 吸收distribution 分布excretion 排泄blood/air partition coefficient 血/气分配系数lipid/water partition coefficient 脂/水分配系数biotransformation 生物转化depot 储存库acute poisoning 急性中毒subacute poisoning 亚急性中毒chronic poisoning 慢性中毒poison’s absorption 毒物的吸收lead 铅coproporphyrin,CP 粪卟啉freeerythrocyteprotoporphyrin,FEP 红细胞游离原卟啉zincprotoporphyrin,ZnPP 锌原卟啉一aminolaevulinic acid,一ALA —氨基一一酮戊酸transmmlganin 转锰素mercury 汞manganese 锰chromium 铬beryllium 铍zinc锌nickel 镍antimony 锑tin 锡phosphorus 磷arsenic 砷selenium 硒boron 硼irritant gas 刺激性气体chlorine 氯phosgene 光气ammonia 氨asphyxiating gas 窒息性气体organic solvents 有机溶剂benzene 苯toluene 甲苯xylene 二甲苯aniline 苯胺nitrobenzene 硝基苯carbon tetrachloride 四氯化碳vinyl chloride 氯乙烯acrylonitrile 丙烯腈styrene 苯乙烯butadiene 丁二烯carbon disulfide 二硫化碳phenols compound 酚类化物hippuric acid 马尿酸methyl hippuric acid 甲基马尿酸Heinz body 赫恩滋小体trinitrotoluene 三硝基甲苯aniline 阿尼林(苯胺)plastics 塑料synthetic fiber 合成纤维synthetic rubber 合成橡胶polymer 聚合物monomer 单体pesticide 农药insecticide 杀虫剂acaricide 杀螨剂nematocide 杀线虫剂molluscacide 杀软体动物剂rodenticide 杀鼠剂fungicide 杀菌剂herbicide 除草剂defoliant 脱叶剂plant growth regulator 植物生长调节剂organophosphorus pesticide 有机磷农药organophosphates 有机磷酸酯类thio--organophosphates 硫代有机磷酸酯类cholinesterase,ChE 胆碱酯酶acetylcholine,Ach 乙酰胆碱neurotoxic esterase,NTE 神经毒酯酶carbamates 氨基甲酸酯类carbaryl 西维因(胺甲奈)pneumoconiosis 尘肺inorganic dust 无机粉尘organic dust 有机粉尘mixed dust 混合性粉尘aerodynamic equivalent diameter,AED 空气动力学直径non—inhalable dust 非吸入性粉尘inhalable dust 可吸人性粉尘respirable dust 呼吸性粉尘impaction 撞击sedimentation 沉降diffusion 弥散interception 截留silicosis 矽肺silicatosis 硅酸盐肺carbon black pneumoconiosis 碳黑尘肺mixed dust pneumoconiosis 混合性尘肺metallic pneumoconiosis 金属尘肺byssinosis 棉尘症occupational allergic alveolitis 职业性变应性肺泡炎chronic obstructive pulmonary 非特异性慢性阻塞性肺病quartz 石英acute silicosis 速发型矽肺delayed silicosis 晚发型矽肺silanol group 硅烷醇基团hydrogen bond 氢键asbestos dust and asbestosis 石棉粉尘和石棉肺chrysotile 温石棉amphibole group 闪石类crocidolite 青石棉amosite 铁石棉anthophyllite 直闪石themolite 透闪石actinolite 阳闪石hornblende 角闪石ferruginous body 含铁小体coal worker's pneumoconiosis 煤工尘肺progressive massive fibrosis,PMF 进行性大块纤维化farmer’s lung 农民肺heat stress 热应激heat load 热负荷physiological heat strain 生理性热应激反应hyperthermia 过热heat acclimatization 热适应heat stress protein,HSP 热应激蛋白heat stroke 热射病sun stroke 日射病heat cramp 热痉挛heat exhaustion 热衰竭evaporation 蒸发radiation 辐射natural ventilation 自然通风mechanical ventilation 机械通风bends 屈肢症acclimatization 习服noise 噪声sound pressure 声压threshold of hearing 听阈threshold of paining 痛阈sound intensity 声强sound level 声级decibel,dB 分贝sound frequency 声频infrasonics 次声ultrasonics 超声octave band 频带loudness 响度loudness level 响度级equal loudness contours 等响曲线weighted sound level 计权声级speech interference level 语言干扰级impulsive noise 脉冲噪声steady state noise 稳态噪声auditory adaptation 听觉适应auditory fatigue 听觉疲劳temporary hearing threshold shift,TTS 暂时性听闻位移permanent hearing threshold shift,PTS 永久性听同位移hearing impairment 听力损伤noise—induced deafness 噪声性耳聋explosive deafness 暴震性耳聋vibration 振动vibrational frequency 振动频率displacement 位移amplitude 振幅velocity 速度acceleration 加速度peak value 峰值peak--to—peak value 峰一峰值average value 平均值natural frequency 固有频率resonance 共振resonant frequency 共振频率frequency weighted acceleration 频率计权加速度whole—body vibration 全身振动segmental vibration 局部振动hand—transmitted vibration 手传振动hand—arm vibration 手臂振动motion sickness 运动病Raynaud's phenomenon 雷诺氏现象Segmental vibrational disease 局部振动病Raynaud's phenomenon of occupational origin 职业性雷诺氏现象Vibrational white finger,VWF 振动性白指hand—arm vibrational syndrome,HA V 手臂振动综合征vibrationa disease 振动性疾病reduced comfort boundary 舒适界限降低fatigue—decreased proficiency 疲劳减效界限boundary exposure limit 承受极限nonionizing radiation 非电离辐射electromagnetic radiation 电磁辐射electromagnetic radiation spectrum 电磁辐射谱high frequency electromagnetic field 高频电磁场microwave 微波infrared radiation 红外辐射ultraviolet radiation 紫外辐射electro--ophthalmitis 电光性眼炎laser 激光ionizing radiation 电离辐射decompress 减压病al sickness 高空病mountain sickness 高山病occupational tumors 职业肿瘤occupationally carcinogenic factors 职业致癌因素chloro--methyl--methyl--ether 氯甲甲醚environmental monitoring 环境监测biological monitoring 生物学监测external exposure 外接触internal exposure 内接触health surveillance 健康监护pre—employment examination 就业前检查periodical examination 定期检查screening 筛检occupational epidemiology 职业流行病学association 联系causal relationship 因果关系exposure—response relationship 接触一反应关系exposure—effect relationship 接触一效应关系analytic epidemiologic study 分析性流行病学调查cross—sectional study 断面调查cohort study 队列调查prospective study 前瞻性调查historical prospective study 历史性前瞻调查retrospective cohort study 回顾性队列调查follow—up study/longitudinal study 纵向性随访研究case—control study 病例一对照调查retrospective study 回顾性调查relative risk,RR 相对危险度attributable risk,AR 归因危险度odds ratio,OR 比数比standardized mortality ratio,SMR 标化死亡比standardized incidence ratio,SIR 标化发病比proportional mortality ratio,PMR 比例死亡比toxicity 毒性risk 危险性risk assessment 危险度评定acceptable risk 可接受的危险度hazard identification 危害识别qualitative risk assessment 危险度的定性评定dose—response assessment 剂量一反应评定quantitative risk assessment 危险度的定量评定response 反应effect 效应uncertainty factor 不肯定因素exposure assessment 接触评定exposure estimation 接触估测risk characterization 危险度特征分析risk management 危险度管理generally regarded as safe level 一般认为安全的水平virtually safe dose,VSD 实际上安全剂量health standard 卫生标准exposure limit 接触限量maximum allowable concentration,MAC 最高容许浓度threshold limit value,TLV 阈限值threshold limit value--timeweighted average, TLV-TWA时间加权干均阈限值threshold limit value—shortterm exposurelimit, TLV-STEL 短时间接触阈限值thresholdlimit valueceiling,TLV--C 上限值permissibleexposurelimit,PEL 容许接触限值health—basedoccupationalexposurelimit 保证健康的职业接触限值maximumallowablebiologicalconcentration,MABC 最高容许生物浓度biologicalexposurelimit 生物学接触限值biologicalexposureindex,BEI 生物接触指数adverseeffect 有害效应technologicalfeasibility 技术上可行性economicfeasibility 经济上可行性industrialventilation 工业通风heat pressure 热压air dynamic pressure 风压fan 普通风扇spraying fan 喷雾风扇lighting 采光illumination 照明luminous flux 光通量brightness 亮度lighting coefficient,C 采光系数protective clothing 防护服regulation for occupational health 劳动卫生法规preventive health inspection 预防性卫生监督routine health inspection 经常性卫生监督occupational health of working women 妇女劳动卫生extrinsic allergic alveolitis 外源性变压性肺泡炎small scale industry 小工业confounding effects 混杂效应maximum oxygen intake 最大摄氧量heart rate,HR 心率stepping test 阶梯试验maximum permissible limit 最大容许限值pneumonometer 肺通气量仪validation 验证discriminant analysis 判别分析stepwise regression analysis 逐步回归分析方法Average Batch CV,ABCV 平均批变异系数Reference value 参考值Critical Value 临界值Equivalent continuous A—weighted sound pressure level 等效连续A声级。
铸造短语 英汉对照
短语1 数值模拟:numerical simulation2 力学性能:mechanical property3 铝合金:aluminum alloy4 应力分析:stress analysis5 钛合金:titanium alloy6 表面处理:surface treatment7 电磁场:electromagnetic field8 抗拉强度:tensile strength9 晶粒细化:grain refinement10 工艺参数:process parameter11 有机合成:organic synthesis12 表面质量:surface quality13 定向凝固:directional solidification14 生产管理:production management15 制备工艺:preparation technology16 拉伸强度:tensile strength17 冷轧:cold rolling18 速度场:Velocity Field19 电子束:Electron beam20 ANSYS软件:ANSYS software21 电磁搅拌:electromagnetic stirring22 铸铁:cast iron23 隔振:vibration isolation24 动力学仿真:Dynamic Simulation25 铜合金:copper alloy26 离心铸造:centrifugal casting27 色差:color difference28 金属基复合材料:metal matrix composites29 应变速率:Strain Rate30 气力输送:pneumatic conveying31 压铸:Die Casting32 金属氧化物:metal oxide33 正电子湮没:Positron annihilation34 热效率:heat efficiency35 凝固组织:solidification structure36 界面反应:interfacial reaction37 模具设计:mold design38 置换通风:displacement ventilation39 镁合金:Mg alloy40 熔模铸造:Investment Casting41 高铬铸铁:high chromium cast iron42 电磁力:electromagnetic force 43 生产实践:production practice44 AZ91D镁合金:AZ91D magnesium alloy45 机械振动:mechanical vibration46 机械系统:mechanical system47 温差:temperature Difference48 传热模型:heat transfer model49 耐磨性能:wear resistance50 硅溶胶:silica sol51 生产系统:production system52 色散关系:dispersion relation53 超声振动:ultrasonic vibration54 知识表达:knowledge representation55 真空系统:Vacuum system56 工艺控制:process control57 TiAl合金:TiAl alloy58 离心力:Centrifugal force59 连续铸造:Continuous Casting60 液压控制:Hydraulic control61 球墨铸铁:nodular cast iron62 流变模型:rheological model63 时效处理:aging treatment64 小波网络:wavelet network65 软件包:software package66 弹簧钢:spring steel67 冷却速率:cooling rate68 铸钢:Cast steel69 水平连铸:horizontal continuous casting70 技术改造:technological transformation71 脉冲电流:pulse current72 凝固过程:Solidification Process73 气缸盖:cylinder head74 制备技术:preparation technology75 复合形法:Complex method76 工艺分析:process analysis77 动力学建模:dynamic modeling78 消失模铸造:Lost Foam Casting79 真空干燥:vacuum drying80 余热:waste heat81 系统控制:system control82 铝硅合金:Al-Si Alloy83 响应面分析法:Response surface methodology84 铸造工艺:casting process85 气缸套:cylinder liner86 SIMPLE算法:SIMPLE algorithm87 工艺优化:technology optimization88 流场:fluid field89 工艺过程:Technological process90 氮化硼:boron nitride91 精密铸造:investment casting92 热循环:thermal cycling93 表面缺陷:Surface defects94 节能技术:energy-saving technology95 低压铸造:Low Pressure Casting96 界面结构:interface structure97 铁水:hot metal98 Al-Cu合金:Al-Cu alloy99 AZ91镁合金:AZ91 magnesium alloy 100 凝固模拟:Solidification simulation101 碳酸钾:potassium carbonate102 等离子弧:plasma arc103 抗裂性:crack resistance104 模锻:die forging105 冲蚀磨损:erosion wear106 注射成形:injection molding107 热压缩变形:hot compression deformation108 激光淬火:laser quenching109 超声检测:ultrasonic inspection110 磨球:Grinding ball111 冷变形:cold deformation112 强韧化:strengthening and toughening 113 气泡:air bubble114 保温时间:holding time115 白口铸铁:white cast iron116 电磁铸造:electromagnetic casting117 断口形貌:fracture morphology118 氢含量:hydrogen content119 浇注温度:pouring temperature120 锥齿轮:bevel gear121 灰铸铁:gray iron122 喷丸:shot peening123 排气系统:exhaust system124 水玻璃:Sodium silicate125 挤压铸造:Squeezing Casting126 密度分布:density distribution127 渣浆泵:slurry pump128 分型面:parting surface 129 A356合金:A356 alloy130 静磁场:static magnetic field131 网格剖分:mesh generation132 电磁连铸:electromagnetic continuous casting133 快速制造:rapid manufacturing134 压铸模:die-casting die135 韧性断裂:ductile fracture136 ADAMS软件:ADAMS software137 弯曲变形:bending deformation138 缸体:cylinder block139 变频控制:frequency conversion control 140 热应力场:thermal stress field141 压铸机:Die Casting Machine142 TiNi合金:TiNi alloy143 碳当量:carbon equivalent144 析出相:precipitated phase145 保温材料:thermal insulation material 146 对甲苯磺酸:p-toluene sulphonic acid 147 组织性能:microstructure and property 148 半固态成形:Semi-solid Forming149 TC4合金:TC4 alloy150 疲劳破坏:fatigue failure151 熔池:molten pool152 超声处理:ultrasonic treatment153 阀体:Valve Body154 压缩变形:Compression Deformation 155 扩散层:Diffusion layer156 缸套:cylinder liner157 铸钢件:steel casting158 性能计算:Performance calculation 159 缸盖:cylinder head160 微波炉:microwave oven161 浇注系统:pouring system162 Al-Zn-Mg-Cu合金:Al-Zn-Mg-Cu alloy 163 炉衬:furnace lining164 规则推理:rule-based reasoning165 在线控制:on-line control166 共晶碳化物:eutectic carbide167 振动频率:vibrational frequency168 TA15钛合金:TA15 titanium alloy169 Cr12MoV钢:Cr12MoV steel170 变形镁合金:wrought magnesium alloy 171 功率超声:power ultrasound172 TiAl基合金:TiAl-based alloy173 Box-Behnken设计:Box-behnken design 174 专业课:specialized course175 金相组织:metallurgical structure176 模具寿命:die life177 研究应用:research and application 178 Al-Mg合金:Al-Mg alloy179 成本优化:cost optimization180 变形激活能:deformation activation energy181 干燥工艺:drying technology182 合金铸铁:alloy cast iron183 模具材料:die material184 铸态组织:as-cast microstructure185 电磁制动:electromagnetic brake186 球铁:ductile iron187 侧架:side frame188 气缸体:cylinder block189 洛伦兹力:Lorentz Force190 微观组织演变:microstructure evolution 191 显微组织:microscopic structure192 共晶组织:Eutectic structure193 冶金质量:metallurgical quality194 热震稳定性:thermal shock resistance 195 强迫对流:forced convection196 切削加工:cutting process197 过共晶Al-Si合金:Hypereutectic Al-Si Alloy198 定量金相:quantitative metallography 199 磁感应强度:Magnetic Flux Density 200 半固态浆料:Semi-solid Slurry201 电磁泵:electromagnetic pump202 超声衰减:Ultrasonic attenuation203 加热时间:heating time204 半连续铸造:Semi-continuous Casting 205 液压站:Hydraulic station206 三元硼化物:ternary boride207 内应力:inner stress208 热裂纹:hot crack209 黄麻纤维:jute fiber210 泡沫陶瓷:foam ceramics211 砂型铸造:Sand casting212 油润滑:oil lubrication213 预热温度:preheating temperature 214 维氏硬度:Vickers Hardness215 高温合金:high-temperature alloy216 拉速:casting speed217 铝熔体:aluminum melt218 异型坯:beam blank219 高钒高速钢:high vanadium high speed steel220 静液挤压:hydrostatic extrusion221 等轴晶:equiaxed grain222 摩擦角:friction angle223 初生相:Primary Phase224 转向节:steering knuckle225 快速成型技术:rapid prototyping technology226 冷坩埚:Cold Crucible227 A357合金:A357 Alloy228 焊接结构:welding structure229 耦合场:coupled field230 AZ80镁合金:AZ80 magnesium alloy 231 止推轴承:thrust bearing232 铝镁合金:Al-Mg alloy233 真空熔炼:vacuum melting234 铝锂合金:aluminum-lithium alloy235 充型过程:filling process236 AZ61镁合金:AZ61 magnesium alloy 237 声流:Acoustic streaming238 金属凝固:metal solidification239 高速钢轧辊:high speed steel roll240 石墨形态:graphite morphology241 磁粉检测:Magnetic particle testing 242 颗粒级配:particle size distribution243 型砂:molding sand244 收缩率:shrinkage rate245 Mg-Li合金:Mg-Li alloy246 自动生产线:automatic production line 247 高频磁场:High Frequency Magnetic Field248 组织与性能:microstructure and property249 连续定向凝固:continuous unidirectional solidification250 充型:mold filling251 失效机制:failure mechanism252 梯度分布:gradient distribution253 制动鼓:Brake drum254 摄动分析:perturbation analysis255 铸造企业:foundry enterprise256 超声波振动:Ultrasonic vibration257 测量系统分析:measurement system analysis258 固溶处理:solution heat treatment259 冷却速度:cooling velocity260 固液混合铸造:solid-liquid mixed casting 261 温度场分布:temperature distribution 262 部分重熔:Partial Remelting263 工艺措施:technological measures264 变形量:deformation amount265 模糊优化设计:Fuzzy optimal design 266 零缺陷:zero defect267 重力分离:gravitational separation268 晶粒:crystal grain269 离心力场:centrifugal force field270 凝固行为:Solidification Behavior271 铝铜合金:Al-Cu alloy272 组织和性能:microstructure and property 273 复合板:composite plate274 Al-Fe合金:Al-Fe alloy275 马氏体不锈钢:martensite stainless steel 276 冷却装置:cooling device277 铝合金车轮:aluminum alloy wheel 278 热应力分析:thermal stress analysis 279 Al含量:Al content280 挤压比:extrusion ratio281 相似准则:similarity criterion282 热疲劳裂纹:thermal fatigue crack283 原子团簇:atomic cluster284 湿型砂:green sand285 AZ91D合金:AZ91D alloy286 6061铝合金:6061 aluminum alloy287 锻造工艺:forging technology288 铸铁件:Iron casting289 表面复合材料:Surface composites 290 盲孔法:blind-hole method291 加热功率:heating power292 铸造合金:Cast Alloy293 低铬白口铸铁:Low chromium white cast iron294 初生硅:primary silicon 295 热节:Hot Spot296 锡青铜:tin bronze297 ZL101合金:ZL101 alloy298 真空感应熔炼:vacuum induction melting299 薄带连铸:strip casting300 真空压铸:vacuum die casting301 缩孔:shrinkage hole302 等温处理:Isothermal Treatment303 平均晶粒尺寸:average grain size304 抽芯:core pulling305 离心浇铸:Centrifugal casting306 铸铁管:cast iron pipe307 感应线圈:induction coil308 冷却介质:Cooling medium309 气体压力:gas pressure310 船用柴油机:marine diesel311 高温强度:high-temperature strength 312 3Cr2W8V钢:3Cr2W8V steel313 缺陷预测:defect prediction314 工艺方案:process scheme315 温度均匀性:temperature uniformity 316 电磁离心铸造:electromagnetic centrifugal casting317 横向应力:transverse stress318 超声声速:ultrasonic velocity319 残留应力:residual stress320 固化工艺:curing process321 精铸:Investment Casting322 铝锭:aluminum ingot323 短路过渡:short circuit transfer324 反重力铸造:counter-gravity casting 325 感应电炉:induction furnace326 稀土Y:rare earth Y327 工艺因素:Technological factor328 双辊铸轧:twin roll casting329 凝固速率:solidification rate330 含氢量:Hydrogen Content331 钢锭:steel ingot332 浆料制备:slurry preparation333 η相:η phase334 衬板:lining board335 压铸件:die casting336 水口堵塞:nozzle clogging337 陶瓷型芯:ceramic core338 车间布局:workshop layout339 安全操作:safe operation340 铸造不锈钢:cast stainless steel341 压铸模具:die casting die342 热裂:Hot Crack343 失效形式:failure form344 成形机理:forming mechanism345 AlSi7Mg合金:AlSi7Mg Alloy346 铸件缺陷:casting defect347 银合金:silver alloys348 反应层:reaction layer349 镍基高温合金:Ni base superalloy350 薄带:thin strip351 覆膜砂:coated sand352 CAE技术:CAE Technique353 性能预测:property prediction354 液态金属:liquid metals355 熔模精密铸造:investment casting356 空气压力:air pressure357 ZA合金:ZA alloy358 凝固传热:Solidification and heat transfer 359 侧向分型:Side Parting360 高温塑性:Hot Ductility361 黑斑:black spot362 点火温度:ignition temperature363 旋压机:spinning machine364 Al-Ti-B中间合金:Al-Ti-B master alloy 365 减排:discharge reduction366 射线检测:radiographic inspection367 耐热:heat resistant368 2024铝合金:2024 aluminum alloy369 技术现状:technology status370 复合变质:complex modification371 蠕墨铸铁:vermicular iron372 机械搅拌:mechanical agitation373 保温炉:holding furnace374 成形技术:forming technology375 碳化硅颗粒:SiC particle376 可锻铸铁:malleable iron377 模型控制:model control378 改性水玻璃:modified sodium silicate 379 熔炼工艺:melting process380 焊补:repair welding 381 异常组织:abnormal structure382 组织细化:structure refinement383 防止措施:preventing measures384 铸渗:Casting infiltration385 BT20钛合金:BT20 titanium alloy386 直流电场:direct current field387 铸造应力:casting stress388 初晶Si:primary Si389 夹紧装置:clamping device390 均衡凝固:Proportional solidification 391 熔模精铸:investment casting392 空心叶片:hollow blade393 ZL201合金:ZL201 alloy394 温轧:warm rolling395 不均匀变形:inhomogeneous deformation396 呋喃树脂砂:furan resin sand397 纸浆:paper pulp398 半连铸:semi-continuous casting399 锻锤:forging hammer400 延伸率:elongation rate401 焊接修复:welding repair402 冶金结合:metallurgical bond403 技术对策:technical measures404 结晶器振动:Mold Oscillation405 厚壁:thick wall406 WC颗粒:WC particles407 预处理技术:pretreatment technology 408 金属零件:metal part409 特种铸造:special casting410 低熔点合金:low melting point alloy 411 水模实验:water model experiment 412 复合管:clad pipe413 插装阀:plug-in valve414 金相试样:Metallographic specimen 415 抗吸湿性:humidity resistance416 近液相线铸造:near-liquidus casting 417 新设计:new design418 电机转子:motor rotor419 CAE:computer aided engineering420 交流变频:AC variable frequency421 下横梁:lower beam422 ZL102合金:ZL102 alloy423 模型参考控制:model reference control424 虚拟对象:virtual object425 加工图:processing maps426 立式离心铸造:vertical centrifugal casting427 抽芯机构:core pulling mechanism428 连铸连轧:casting and rolling429 残留强度:residual strength430 复合铸造:composite casting431 树脂砂:resin bonded sand432 AM60B镁合金:AM60B magnesium alloy 433 铸造CAE:casting CAE434 砂型:sand mould435 熔化:melting process436 高硼铸钢:high boron cast steel437 稳恒磁场:stable magnetic field438 Al-Ti-C晶粒细化剂:Al-Ti-C grain refiner 439 再生技术:regeneration technology 440 压铸工艺:die casting process441 管坯:tube billet442 厚大断面:Heavy section443 保护气体:protective gas444 性能特征:performance characteristics 445 Al-5%Fe合金:Al-5%Fe alloy446 半固态挤压:Semi-solid extrusion447 金属型铸造:Permanent mold casting 448 晶粒组织:grain structure449 综合经济效益:Comprehensive economic benefit450 半固态压铸:semi-solid die casting451 气膜:gas film452 硅酸乙酯:Ethyl Silicate453 自动化生产线:automatic production line454 Mg-Gd-Y-Zr合金:Mg-Gd-Y-Zr alloy455 渗透检测:Penetrant testing456 W-Cu复合材料:W-Cu composites457 存放时间:storage time458 ProCAST软件:ProCAST software459 滑板:sliding plate460 铸造铝合金:casting aluminum alloy 461 水玻璃砂:Water-glass Sand462 电脉冲:Electrical pulse463 蜡模:Wax Pattern464 悬浮铸造:suspension casting 465 D型石墨:D-type graphite466 工艺性能:technological performance 467 Al-1%Si合金:Al-1%Si alloy468 悬浮性:suspension property469 差压铸造:counter-pressure casting 470 工艺原理:process principle471 铸轧:continuous roll casting472 行波磁场:traveling magnetic field473 型壳:Shell Mold474 金属型:permanent mould475 脱模机构:demolding mechanism476 调压铸造:adjusted pressure casting 477 喷砂:sand blasting478 界面换热系数:interfacial heat transfer coefficient479 Al-Mg-Si-Cu合金:Al-Mg-Si-Cu alloy 480 电熔镁砂:fused magnesia481 充型速度:Filling Velocity482 泵体:pump body483 钢锭模:ingot mould484 Cu-Fe合金:Cu-Fe alloy485 辐射力:radiation force486 空化泡:Cavitation bubble487 渣池:slag pool488 原位生成:In-situ Synthesis489 热型连铸:heated-mold continuous casting490 缩松:dispersed shrinkage491 CO2气体保护焊:CO_2 arc welding 492 伺服控制系统:servo system493 端盖:End cover494 铸造技术:casting technology495 水力学模拟:Hydraulics simulation496 再生铝:secondary aluminum497 轴套:axle sleeve498 成形模具:forming die499 抗磨性能:Wear Resistance500 水模拟:water model501 快速铸造:rapid casting502 电磁软接触:electromagnetic soft-contact503 石膏型:plaster mold504 大型铸钢件:heavy steel casting505 移动磁场:traveling magnetic field506 轴承座:bearing seat507 混合稀土:rare earth508 铸态球铁:as-cast nodular iron509 砂芯:sand core510 铸造性能:casting properties511 真空差压铸造:vacuum counter-pressure casting512 玻璃模具:glass mold513 双联熔炼:duplex melting514 设备改进:improvement of equipment 515 铸坯质量:billet quality516 局部加压:Local Pressurization517 旧砂再生:used sand reclamation518 结晶速度:Crystallization rate519 壳体:shell body520 干强度:dry strength521 浇注系统设计:gating system design 522 慢压射:slow shot523 图像分析仪:image analysis system 524 温度曲线:Temperature profile525 水力效率:hydraulic efficiency526 单晶铜:single-crystal copper527 电渣重熔:electroslag refining528 铸造起重机:casting crane529 Cu-Cr合金:Cu-Cr alloys530 堆垛机:stacking machine531 巴氏合金:Babbitt alloy532 自抗扰控制器:auto-disturbance rejection controller(ADRC)533 陶瓷型:ceramic mold534 直流磁场:direct current magnetic field 535 漏气:air leakage536 泡沫陶瓷过滤器:foam ceramic filter 537 过共晶高铬铸铁:Hypereutectic High Cr Cast Iron538 壁厚差:wall thickness difference539 HPb59-1黄铜:HPb59-1 Brass540 旋转喷吹:Spinning Rotor541 水玻璃旧砂:used sodium silicate sand 542 冷却强度:cooling strength543 耐磨铸铁:wear resistant cast iron544 ZA35合金:ZA35 alloy545 钠基膨润土:sodium bentonite546 熔体净化:melt purification 547 油雾润滑:oil-mist lubrication548 初生α相:primary α phase549 铸造生产:foundry production550 高电位:High Potential551 钴基高温合金:cobalt base superalloy 552 Al-Zn-Mg-Cu-Zr合金:Al-Zn-Mg-Cu-Zr alloy553 水平连续铸造:Horizontal continuous casting554 自硬砂:no-bake sand555 微区分析:micro-area analysis556 顺序凝固:sequential solidification557 非枝晶组织:Non-dendritic microstructure558 反变形:reverse deformation559 铬青铜:Chromium bronze560 湿型铸造:green sand casting561 配料计算:burden calculation562 热-力耦合:Thermo-mechanical Coupling 563 浇注时间:Pouring time564 铸造速度:Casting velocity565 亚共晶铝硅合金:Hypoeutectic Al-Si Alloy566 搅拌功率:power consumption567 热电场:thermoelectricity field568 铸铝合金:cast aluminum alloy569 陶瓷型铸造:Ceramic mold casting570 热凝固:Thermal coagulation571 界面压力:interface pressure572 多尺度模拟:multiscale simulation573 输送链:Conveyor Chain574 关键措施:key measures575 冒口系统:Riser system576 开炉:blowing in577 铜锡合金:Cu-Sn alloy578 无铅黄铜:unleaded brass579 球墨铸铁管:ductile cast iron pipe580 二次枝晶间距:secondary dendrite arm spacing581 GA-BP网络:GA-BP network582 铝合金熔体:aluminum alloy melt583 生产条件:production conditions584 铬铁矿砂:chromite sand585 再生效果:regeneration effect586 导向叶片:Guide Vane587 金属管:Metal tube588 空心管坯:hollow billet589 超高强铝合金:ultra-high strength aluminum alloy590 流变曲线:flow curve591 蠕化剂:vermicularizing alloy592 波浪型倾斜板:wavelike sloping plate 593 凝固特性:solidification characteristics 594 磨头:grinding head595 反白口:reverse chill596 黑线:black line597 净化技术:purifying technology598 中间合金:master alloys599 捏合块:Kneading Block600 硅相:silicon phase601 低过热度浇注:low superheat pouring 602 3004铝合金:3004 aluminum alloy603 液态压铸:liquid die casting604 中频感应电炉:intermediate frequency induction electric furnace605 球墨铸铁件:Ductile iron casting606 凝固路径:solidification path607 喷枪:spraying gun608 ZL201铝合金:ZL201 aluminum alloy 609 质量改善:quality improvement610 气路:gas circuit611 补缩设计:Feeding design612 油底壳:Oil sump613 汽缸体:cylinder block614 CREM法:CREM process615 铸造机:Casting machine616 提高措施:improving measure617 SIMA法:SIMA method618 铬系白口铸铁:Chromium white cast iron 619 高合金钢:High alloy steels620 增压系统:pressurization system621 收缩缺陷:shrinkage defect622 卧式离心铸造:Horizontal Centrifugal Casting623 测控仪:measuring and controlling instrument624 精铸件:Investment Castings625 制动阀:Brake valve 626 金属成型:metal forming627 有机纤维:organic fiber628 大气采样器:air sampler629 钢支座:steel bearing630 低频磁场:low frequency magnetic field 631 破坏面:failure surface632 偏轨箱形梁:bias-rail box girder633 数值处理:data processing634 双辊薄带:twin-roll thin strip635 合成铸铁:Synthetic cast iron636 堆冷:stack cooling637 行星轧制:planetary rolling638 铸造缺陷:foundry defect639 二次冷却:second cooling640 炉衬材料:lining material641 弥散强化:dispersion hardening642 2D70铝合金:2D70 aluminum alloy 643 A356铝合金:A356 Al alloy644 元胞自动机方法:Cellular Automaton method645 铸造温度:casting temperature646 铸造涂料:Foundry coating647 耦合模拟:coupled simulation648 充型能力:Filling ability649 复合尼龙粉:nylon composite powder 650 改性纳米SiC粉体:modified SiC nano-powders651 炉外脱硫:external desulfurization652 绿色铸造:green casting653 净化方法:purification method654 制芯:Core making655 铸态球墨铸铁:as-cast ductile iron656 复合轧辊:compound roller657 冷隔:cold shut658 薄壁件:thin-wall part659 铸钢车轮:cast steel wheel660 铁水质量:quality of molten iron661 热物理性能:Thermo-physical properties 662 7050铝合金:7050 Al alloy663 半固态金属加工:semi-solid metal forming664 半固态铸造:semisolid casting665 表面反应:Surface reactions666 KBE:knowledge-based engineering(KBE)667 倾斜板:inclined plate668 弯销:dog-leg cam669 多边形效应:polygonal effect670 脱模剂:releasing agent671 铜包铝线:copper clad aluminum wire 672 球化衰退:nodularization degeneration 673 低过热度:low superheat674 升降机构:lifting mechanism675 SLS:selective laser sintering(SLS)676 溢流槽:spillway trough677 制浆技术:pulping technology678 浇注工艺:casting process679 变形行为:deformation behaviors680 转移涂料:transfer coating681 牵引速度:haulage speed682 WC/钢复合材料:WC/steel composites 683 泡沫模样:foam pattern684 皮下气孔:surface blowhole685 超高强度铝合金:ultrahigh strength aluminum alloy686 薄带铸轧:strip casting687 造型线:moulding line688 工具杆:tool rod689 铸锭组织:ingot microstructure690 复合变质剂:composite modifier691 发热剂:Heating Agent692 液相线半连续铸造:liquidus semi continuous casting693 Mg-Al-Zn合金:Mg-Al-Zn alloy694 洛仑兹力:Lorenz force695 散射比:scattering ratio696 翻转机构:turnover mechanism697 超声铸造:Ultrasonic Casting698 A356:A356 alloy699 Mg-Li-Al合金:Mg-Li-Al alloy700 复合磁场:electromagnetic field701 单缸机:single cylinder engine702 快速产品设计:Rapid Product Design 703 真空阀:Vacuum valve704 界面传热系数:Interfacial heat transfer coefficient705 液态金属冷却:liquid metal cooling 706 散射衰减:scattering attenuation707 电磁场频率:Electromagnetic Frequency 708 半连续铸锭:semicontinuous casting ingot709 凝固补缩:Solidification Feeding710 Mg-Zn合金:Mg-Zn alloy711 连铸-热轧区段:CC-HR region712 TC11钛合金:titanium alloy713 损坏机理:failure mechanism714 元素分布:Distribution of element715 原位TiC颗粒:in-situ TiC particles716 均匀化处理:uniform heat treatment 717 使用要求:application requirement718 初生相形貌:morphology of primary phase719 枝晶形貌:dendritic morphology720 铸造废弃物:foundry waste721 AZ91D:AZ91D Magnesium Alloy722 高压铸造:high pressure die casting 723 细化变质:Refinement and Modification 724 结疤:scale formation725 连续铸轧:continuous casting726 热变形行为:Thermal Deformation Behavior727 壳型铸造:shell mould casting728 消失模:evaporative pattern729 手机外壳:mobile phone shell730 热管技术:heat pipe731 水韧处理:water toughening process 732 阻燃镁合金:Ignition proof magnesium alloys733 除尘装置:dust collector734 悬浮率:suspending rate735 非线性估算法:nonlinear estimation method736 电解铝液:electrolytic aluminum melt 737 双金属复合:bimetal compound738 离心浇注:centrifugal pouring739 抗磨损:abrasion resistance740 薄壁铸件:thin-walled casting741 盖包法球化处理:tundish-cover nodulizing process742 无定形二氧化硅:amorphous silicon dioxide743 排气槽:air vent744 高铬白口铸铁:high chromium cast iron745 熔炼炉:smelting furnace746 过滤机理:Filtration mechanism747 汽车覆盖件模具:auto panel die748 低合金高强度钢:Low-alloy high-strength steel749 精铸模具:investment casting mould 750 铝板带:aluminum plate751 球状石墨:nodular graphite752 铸轧区:casting-rolling zone753 接线盒:junction box754 铁水净化剂:purifying agent for molten iron755 石墨块:graphite block756 优质铸件:high quality casting757 处理温度:treatment temperature758 高尔夫球头:golf head759 固相体积分数:solid volume fraction 760 纳米SiC颗粒:SiC nanoparticle761 检测仪器:testing instrument762 Mg17Al12相:Mg_(17)Al_(12) phase 763 攻关:tackling key problems764 硬化机理:Hardening mechanism765 真空吸铸:vacuum suction766 热分析技术:thermal analysis technology 767 高频调幅磁场:High Frequency Amplitude-modulated Magnetic Field768 坯料制备:blank production769 补缩通道:feeding channel770 水基涂料:water-based coating771 球铁件:Ductile Iron Castings772 稀土Er:rare earth Er773 陶瓷型壳:Ceramic shell774 精密电铸:precision electroforming 775 发气性:Gas evolution776 充型凝固:Mold Filling and solidification 777 铝带:aluminum strip778 新SIMA法:new SIMA method779 AZ91HP镁合金:AZ91HP magnesium alloy780 电子束冷床熔炼:electron beam cold hearth melting781 粘砂:metal penetration782 物理冶金学:physical metallurgy783 砂处理:Sand preparation 784 铸造裂纹:casting crack785 气冲造型:air impact molding786 金属模:metal mould787 磷共晶:phosphor eutectic788 近液相线半连续铸造:nearby liquidus semi-continuous casting789 液固反应:liquid-solid reaction790 呋喃树脂:furane resin791 汽缸盖:Cylinder Cap792 充型模拟:Simulation of mold filling 793 铸造工艺CAD:casting technology CAD 794 粘土砂:Clay sand795 冲天炉熔炼:cupola smelting796 射料充填过程:filling process797 半固态金属:semisolid metals798 大型铸件:heavy casting799 电机端盖:motor cover800 熔铸工艺:casting process801 加入方法:Joined technique802 区域熔化:zone melting803 真空除气:Vacuum Degassing804 相平衡热力学:phase equilibrium thermodynamics805 溢流系统:overflow system806 Al-Ti-C中间合金:Al-Ti-C master alloys 807 晶界碳化物:grain boundary carbide 808 净化装置:purification equipment809 液穴形状:sump shape810 铝合金铸造:Aluminum Alloy Casting 811 修模:Tool modification812 SKD61钢:SKD61 steel813 软化退火:Softening Annealing814 大齿轮:Large Gear815 合金渗碳体:Alloy cementite816 工艺性能试验:technological property tests817 硅碳比:Si/C ratio818 冷却曲线:Cooling Curves819 壁厚不均:non-uniform wall thickness 820 V法铸造:V process821 铸造系统:casting system822 电渣加热:electroslag heating823 残余内应力:residual stress824 表面清理:surface cleaning825 黄斑:macular region826 电磁振荡:Electromagnetic Oscillation 827 初始组织:initial structure828 气密性能:air permeability performance 829 电极调节:electrode adjustment830 气体速度:gas velocity831 抑制方法:suppressing method832 孔洞率:void ratio833 废品率:reject rate834 气动装置:pneumatic actuator835 应急发电机:emergency generator836 缺陷修复:Error repair837 有机高聚物:organic polymer838 理论成果:theoretical achievements 839 凝固曲线:Solidification curve840 元胞自动机法:cellular automaton841 ZL101铝合金:ZL101 Al alloy842 高韧性球墨铸铁:High toughness ductile iron843 搅拌方式:stirring method844 沉积坯尺寸:deposit dimension845 高锌镁合金:high zinc magnesium alloy 846 雕铣机:carves-milling machine847 铸造模拟:Casting simulation848 精益设计:lean design849 无余量精密铸造:Investment Casting 850 热顶铸造:hot-top casting851 羊油:mutton tallow852 压射速度:injection speed853 DOE试验:DOE experiment854 超声波振荡:ultrasonic oscillation855 酯固化:ester cured856 缸盖罩:cylinder head cover857 尺寸变化率:dimension variance rate 858 大型铸铁件:heavy iron castings859 单晶铜线材:copper single crystal wire 860 厚大断面球墨铸铁:heavy section ductile iron861 钛镍合金:Ti-Ni alloy862 实型铸造:Full Mold863 6082合金:6082 Alloy864 奥贝球铁:austenite-bainite nodular-iron 865 白口组织:white microstructure866 铸轧工艺参数:casting process parameters867 铸铁轧辊:cast iron milling roll868 强化处理:strengthen treatment869 半固态成型:semi-solid processing870 深腔:deep cavity871 耐热镁合金:Heat resistant magnesium alloys872 斜滑块:inclined sliding block873 回炉料:recycled scrap874 半固态坯:semi-solid billet875 感应熔炼:inductive melting876 链板:chain board877 含泥量:sediment percentage878 模料:mould material879 复合界面:compounded interface880 铸造方法:casting methods881 模温:mold temperature882 轻合金:light alloys883 增碳工艺:recarburation process884 定位装置:location equipment885 加压速率:pressurization rate886 半固态流变成形:Semi-solid Rheoforming887 复杂铸件:Complicated casting888 高强度灰铸铁:High strength grey cast iron889 针孔度:pinhole degree890 中频感应加热:intermediate frequency induction heating891 石墨转子:graphite rotor892 修磨机:Grinding machine893 动态顺序凝固:dynamic directional solidification894 针状组织:acicular structure895 粒度配比:particle size distribution896 铝合金壳体:aluminum alloy shell897 内冷铁:Internal chill898 铸件质量:quality of casting899 精炼效果:refining effect900 发动机缸体:cylinder body901 增碳剂:carburizing agent902 7005铝合金:7005Al alloys903 复合孕育:Multiple inoculations904 复合孕育剂:compound inoculation905 气孔缺陷:blowhole defect906 铁液质量:quality of molten iron907 钛铝合金:TiAl alloys908 7A09铝合金:7A09 aluminium alloy 909 SiC颗粒增强:SiC particle reinforcement 910 沉淀相:precipitated phases911 铝母线:aluminum bus912 凝固分数:solid fraction913 球化组织:spheroidized microstructure 914 蠕铁:vermicular iron915 组织均匀性:microstructure uniformity 916 压铸型:die-casting die917 镁合金压铸机:magnesium alloy die casting machine918 凝固微观组织:solidification microstructure919 灰铸铁件:Gray iron casting920 最大剪应力:ultimate shear stress921 热挤压成形:hot extrusion922 铝合金铸件:aluminium alloy cast923 抗湿性:humidity resistance924 耳子:rolling edge925 结合面:joint face926 推管:ejector sleeve927 黑点:black spot928 铝铸件:aluminum casting929 固相分数:Solid fraction930 快干硅溶胶:Quick-dry silica sol931 激冷铸铁:Chilled iron932 负压消失模铸造:Negative pressure EPC 933 LC9铝合金:LC9 aluminium alloy934 接触层:Contact layer935 工频炉:main frequency furnace936 消失模涂料:lost foam casting coating 937 高温均匀化:high temperature homogenization938 均热炉:pit furnace939 镁合金轮毂:magnesium wheel940 平砧:flat anvil941 铝合金扁锭:aluminum alloy slab942 凝固界面:solidifying interface943 低温冲击功:Low Temperature Impact Energy944 复合发泡剂:Composite Foaming Agent 945 交叉型芯:Crossed Core946 SCR连铸连轧:SCR continuous casting-rolling947 FS粉:FS powder948 AZ81镁合金:AZ81 alloy949 ZL109活塞:ZL109 piston950 掉砂:dropping sand951 型腔壁厚:cavity wall thickness952 铝件:aluminum part953 导向装置:guide mechanism954 彩色云图:color contour image955 柴油机缸体:Diesel engine cylinder block 956 圆盘铸锭机:casting wheel957 热风冲天炉:Hot-blast cupola958 充氧压铸:pore-free die casting959 铝钛硼细化剂:Al-Ti-B refiner960 保温冒口:Insulating riser961 共晶相:Eutectic phase962 夹砂:sand inclusion963 无冒口铸造:Riserless casting964 充芯连铸:continuous core-filling casting 965 熔体混合:melt mixing966 保护渣道:mold flux channel967 碱性酚醛树脂:alkaline phenolic resins 968 细深孔:Long-deep hole969 行星减速机:planetary reducer970 直接铸型制造:direct casting mold manufacturing971 引锭头:dummy bar head972 静置炉:holding furnace973 工艺出品率:process yield974 真空法:vacuum process975 石灰石砂:limestone sand976 整体浇注:monolithic casting977 混料工艺:mixing procedure978 螺旋套:screwy sheath979 胶凝机理:gelling mechanism980 覆砂铁型:permanent mould with sand facing981 球铁铸件:ductile iron casting982 成型率:molding rate983 球状组织:spherical structure984 电弧冷焊:arc cold welding985 钢液流场:flow field of molten steel。
聚合物加工流变学作业
关于聚合物挤出胀大的本构方程摘要:聚合物流体(含溶液、熔体)在流动过程中常常呈现出殊异于牛顿流体的行为,如:孔压误差、口模膨胀效应、包轴现象效应、剪切稀化或剪切增稠、弹性湍流等。
特别的,在挤出过程中,当高聚物熔体从口模中挤出时,会出现挤出物挤出模口后其横截面大于模口横截面的现象。
这种现象称之为挤出胀大。
正确理解挤出胀大现象,对于挤出成型至关重要。
一般研究途径有两条,一是从连续介质力学理论,用唯象学观点来描述; 二是运用流变学分子理论,根据微观离散的分子力学模型,用非平衡态统计力学和连续介质力学混合的方程,导出描述流体客观力学性质的本构方程。
本构方程定量描述了物质因受外力作用而偏离平衡态的响应, 即应力与应变速率的关系。
本文就聚合物挤出胀大的本构方程进行归纳总结。
关键词:挤出胀大,本构方程,流变学Abstract:Polymer fluid (including solution, melt) often appear different characteristic during flow process from the behavior of the Newtonian fluid. Such as, pore pressure error, mouth mode expansion effect, package shaft effect, shear thinning or shear thickening, elastic turbulence. Especially, When the polymer melt squeezed from the mouth mould during the extrusion processing, the extrudate extrusion die its cross section is greater than the phenomenon of die in cross section. This phenomenon is called extrusion swelling. Understanding the extrusion swell phenomenon is vital for extrusion molding. There are two general approach, one is the theory of continuum mechanics, described with phenomenological learning perspective. Another is rheology molecular theory, according to the microcosmic molecular mechanics model of discrete, export objectively describe fluid mechanics constitutive equation with the nonequilibrium statistical mechanics and continuum mechanics equations. The constitutive equation quantitative described the relationship between the stress and the strain ratematerial, due to external force and the response of the deviation from the equilibrium state. In this paper, the paper summarizes the constitutive equations of polymer extrusion swelling.Key words:Extrusion swelling, Constitutive equation, Rheology在聚合物熔体挤出过程中, 可观察到如下现象:挤出物的截面积大于口模的面积, 此即为挤出胀大。
土木工程类专业英文文献及翻译
PA VEMENT PROBLEMS CAUSEDBY COLLAPSIBLE SUBGRADESBy Sandra L. Houston,1 Associate Member, ASCE(Reviewed by the Highway Division)ABSTRACT: Problem subgrade materials consisting of collapsible soils are com- mon in arid environments, which have climatic conditions and depositional and weathering processes favorable to their formation. Included herein is a discussion of predictive techniques that use commonly available laboratory equipment and testing methods for obtaining reliable estimates of the volume change for these problem soils. A method for predicting relevant stresses and corresponding collapse strains for typical pavement subgrades is presented. Relatively simple methods of evaluating potential volume change, based on results of familiar laboratory tests, are used.INTRODUCTIONWhen a soil is given free access to water, it may decrease in volume,increase in volume, or do nothing. A soil that increases in volume is calleda swelling or expansive soil, and a soil that decreases in volume is called a collapsible soil. The amount of volume change that occurs depends on thesoil type and structure, the initial soil density, the imposed stress state, andthe degree and extent of wetting. Subgrade materials comprised of soils that change volume upon wetting have caused distress to highways since the be- ginning of the professional practice and have cost many millions of dollarsin roadway repairs. The prediction of the volume changes that may occur inthe field is the first step in making an economic decision for dealing withthese problem subgrade materials.Each project will have different design considerations, economic con-straints, and risk factors that will have to be taken into account. However,with a reliable method for making volume change predictions, the best design relative to the subgrade soils becomes a matter of economic comparison, anda much more rational design approach may be made. For example, typical techniques for dealing with expansive clays include: (1) In situ treatmentswith substances such as lime, cement, or fly-ash; (2) seepage barriers and/or drainage systems; or (3) a computing of the serviceability loss and a mod- ification of the design to "accept" the anticipated expansion. In order to makethe most economical decision, the amount of volume change (especially non- uniform volume change) must be accurately estimated, and the degree of road roughness evaluated from these data. Similarly, alternative design techniquesare available for any roadway problem.The emphasis here will be placed on presenting economical and simplemethods for: (1) Determining whether the subgrade materials are collapsible;and (2) estimating the amount of volume change that is likely to occur in the'Asst. Prof., Ctr. for Advanced Res. in Transp., Arizona State Univ., Tempe, AZ 85287.Note. Discussion open until April 1, 1989. To extend the closing date one month,a written request must be filed with the ASCE Manager of Journals. The manuscript for this paper was submitted for review and possible publication on February 3, 1988. This paper is part of the Journal of Transportation.Engineering, V ol. 114, No. 6, November, 1988. ASCE, ISSN 0733-947X/88/0006-0673/$1.00 + $.15 per page. Paper No. 22902.673field for the collapsible soils. Then this information will place the engineerin a position to make a rational design decision. Collapsible soils are fre-quently encountered in an arid climate. The depositional process and for-mation of these soils, and methods for identification and evaluation of theamount of volume change that may occur, will be discussed in the following sections.COLLAPSIBLE SOILSFormation of Collapsible SoilsCollapsible soils have high void ratios and low densities and are typically cohesionless or only slightly cohesive. In an arid climate, evaporation greatly exceeds rainfall. Consequently, only the near-surface soils become wettedfrom normal rainfall. It is the combination of the depositional process andthe climate conditions that leads to the formation of the collapsible soil.Although collapsible soils exist in nondesert regions, the dry environment inwhich evaporation exceeds precipitation is very favorable for the formationof the collapsible structure.As the soil dries by evaporation, capillary tension causes the remainingwater to withdraw into the soil grain interfaces, bringing with it soluble salts,clay, and silt particles. As the soil continues to dry, these salts, clays, andsilts come out of solution, and "tack-weld" the larger grains together. Thisleads to a soil structure that has high apparent strength at its low, naturalwater content. However, collapse of the "cemented" structure may occurupon wetting because the bonding material weakens and softens, and the soilis unstable at any stress level that exceeds that at which the soil had been previously wetted. Thus, if the amount of water made available to the soilis increased above that which naturally exists, collapse can occur at fairlylow levels of stress, equivalent only to overburden soil pressure. Additionalloads, such as traffic loading or the presence of a bridge structure, add tothe collapse, especially of shallow collapsible soil. The triggering mechanismfor collapse, however, is the addition of water.Highway Problems Resulting from Collapsible SoilsNonuniform collapse can result from either a nonhomogeneous subgradedeposit in which differing degrees of collapse potential exist and/or from nonuniform wetting of subgrade materials. When differential collapse ofsubgrade soils occurs, the result is a rough, wavy surface, and potentiallymany miles of extensively damaged highway. There have been several re-ported cases for which differential collapse has been cited as the cause of roadway or highway bridge distress. A few of these in the Arizona and New Mexico region include sections of 1-10 near Benson, Arizona, and sectionsof 1-25 in the vicinity of Algadonas, New Mexico (Lovelace et al. 1982; Russman 1987). In addition to the excessive waviness of the roadway sur- face, bridge foundations failures, such as the Steins Pass Highway bridge,1-10, in Arizona, have frequently been identified with collapse of foundation soils.Identification of Collapsible SoilsThere have been many techniques proposed for identifying a collapsiblesoil problem. These methods range from qualitative index tests conducted on674disturbed samples, to response to wetting tests conducted on relatively un- disturbed samples, to in situ meausrement techniques. In all cases, the en- gineer must first know if the soils may become wetted to a water content above their natural moisture state, and if so, what the extent of the potential wetted zone will be. Most methods for identifying collapsible soils are only qualitative in nature, providing no information on the magnitude of the col- lapse strain potential. These qualitative methods are based on various func- tions of dry density, moisture content, void ratio, specific gravity, and At- terberg limits.In situ measurement methods appear promising in some cases, in that many researchers feel that sample disturbance is greatly reduced, and that a more nearly quantitative measure of collapse potential is obtainable. However,in situ test methods for collapsible soils typically suffer from the deficien-cy of an unknown extent and degree of wetting during the field test. This makes a quantitative measurement difficult because the zone of material being influenced is not well-known, and, therefore, the actual strains, in- duced by the addition of stress and water, are not well-known. In addition, the degree of saturation achieved in the field test is variable and usually unknown.Based on recently conducted research, it appears that the most reliable method for identifying a collapsible soil problem is to obtain the best quality undisturbed sample possible and to subject this sample to a response to wet- ting test in the laboratory. The results of a simple oedometer test will indicate whether the soil is collapsible and, at the same time, give a direct measureof the amount of collapse strain potential that may occur in the field. Potential problems associated with the direct sampling method include sample distur- bance and the possibility that the degree of saturation achieved in the field will be less than that achieved in the laboratory test.The quality of an undisturbed sample is related most strongly to the arearatio of the tube that is used for sample collection. The area ratio is a measure of the ratio of the cross-sectional area of the sample collected to the cross- sectional area of the sample tube. A thin-walled tube sampler by definition has an area ratio of about 10-15%. Although undisturbed samples are best obtained through the use of thin-walled tube samplers, it frequently occurs that these stiff, cemented collapsible soils, especially those containing gravel, cannot be sampled unless a tube with a much thicker wall is used. Samplers having an area ratio as great as 56% are commonly used for Arizona col- lapsible soils. Further, it may take considerable hammering of the tube to drive the sample. The result is, of course, some degree of sample distur- bance, broken.bonds, densification, and a correspondingly reduced collapse measured upon laboratory testing. However, for collapsible soils, which are compressive by definition, the insertion of the sample tube leads to local shear failure at the base of the cutting edge, and, therefore, there is less sample disturbance than would be expected for soils that exhibit general shear failure (i.e., saturated clays or dilative soils). Results of an ongoing studyof sample disturbance for collapsible soils indicate that block samples some- times exhibit somewhat higher collapse strains compared to thick-walled tube samples. Block samples are usually assumed to be the very best obtainable undisturbed samples, although they are frequently difficult-to-impossible to obtain, especially at substantial depths. The overall effect of sample distur- bance is a slight underestimate of the collapse potential for the soil.675译文:湿陷性地基引起的路面问题作者:...摘要:在干旱环境中,湿陷性土壤组成的路基材料是很常见的,干旱环境中的气候条件、沉积以及风化作用都有利于湿陷性土的形成。
岩土工程词汇英汉词汇表
1 / 36
岩土博客
岩土工程中英文词汇表
tectonic analysis 构造分析 trend surface analysis 趋势面分析 analysis of strain 应变分析 analysis of stress 应力分析 analytic balance 分析天平 anchor 锚 cable anchor 索锚 ground anchor 地锚 anchorage 地锚 anchor bolt 锚栓 andesite 安山岩 angle 角,角度 angle of contact 接触角 angle of dilatancy 剪胀角 angle of external friction 外摩擦角 angle of internal friction 内摩擦角 apparent angle of internal friction 表观
内摩擦角 angle of obliquity (应力的〕倾角 angle of repose 休止角 angle of rupture 破裂角 angle of shearing strength 剪切角 angle of true internal friction 真内擦角 slop angle 坡角 anticline 背斜 anti-flocculation 反絮凝作用 apparatus 仪器,设备 box shear apparatus 盒式剪切仪 consolidation apparatus 固结仪 expansion apparatus 膨胀仪
电路板中英文专业术语词汇(N-Z)
电路板专业词汇(N-Z)N.C.数值控制.Nail Head钉头.Near IR近红外线.Negative负片,钻尖的第一面外缘变窄.Negative Etch-back反回蚀.Negative Stencil负性感光膜.Negative-Acting Resist负性作用之阻剂.Network纲状元件.Newton牛顿.Newton Ring 牛顿环.Newtonian Liquid牛顿流体.Nick缺口.N-Methyl Pyrrolidine (NMP)N-甲基四氢哔咯.Noble Metal Paste贵金属印膏.Node节点.Nodule节瘤.Nomencleature标示文字符号.Nominal Cured Thickness标示厚度.Non-Circular Land非圆形孔环焊垫.Non-flammable非燃性.Non-wetting不沾锡.Normal Concentration (Strength)标准浓度,当量浓度.Normal Distribution常态分布.Novolac酯醛树脂.Nucleation , Nucleating核化.Numerical Control数值控制.Nylon尼龙.*****O*****Occlusion吸藏.Off-Contact架空.Offset第一面大小不均.OFHC(Oxyen Free High Conductivity)无氧高导电铜.Ohm欧姆.Oilcanning盖板弹动.OLB(Outer Lead Bond)外引脚结合.Oligomer寡聚物.Omega Meter离子污染检测仪.Omega Wave振荡波.On-Contact Printing密贴式印刷.Opaquer不透明剂,遮光剂.Open Circuits断线.Optical Comparater光学对比器(光学放大器.)Optical Density光密度.Optical Inspection光学检验.Optical Instrument光学仪器.Organic Solderability Preservatives (OSP)有机保焊剂. Osmosis渗透.Outgassing出气,吹气.Outgrowth悬出,横出,侧出.Output产出,输出.Overflow溢流.Overhang总悬空.Overlap 钻尖点分离.Overpotantial(Over voltage)过电位,过电压. Oxidation氧化.Oxygen Inhibitor氧化抑制剂.Ozone Depletion臭氧层耗损.*****P*****Packaging封装,构装.Pad焊垫,圆垫.Pad Master圆垫底片.Pads Only Board唯垫板.Palladium钯.Panel制程板.Panel Plating全板镀铜.Panel Process全板电镀法.Paper Phenolic纸质酚醛树脂(板材).Parting Agent脱膜剂.Passivation钝化,钝化外理.Passive Device (Component)被动组件(零件)Paste膏,糊.Pattern板面图形.Pattern Plating线路电镀.Pattern Process线路电镀法.Peak Voltage峰值电压.Peel Strength抗撕强度.Periodic Reverse (PR) Current周期性反电流. Peripheral周边附属设备.Permeability透气性,导磁率.Permittivity诱电率,透电率.pH Value酸碱值.Phase相.Phase Diagram相图.Phenolic酚醛树脂.Photofugitive感光褪色.Photographic film感光成像之底片.Photoinitiator感光启始剂.Photomask光罩.Photoplotter, Plotter光学绘图机.Photoresist光阻.Photoresist Chemical Machinning (Milling)光阻式化学(铣刻)加工. Phototool底片.Pick and Place拾取与放置.Piezoelectric压电性.Pin 插脚,插梢,插针.Pin Grid Array (PGA)矩阵式针脚对装.Pinhole针孔.Pink Ring粉红圈.Pitch跨距,脚距,垫距,线距.Pits凹点.Plain Weave平织.Plasma电浆.Plasticizers可塑剂,增塑剂.Plated Through Hole镀通孔.Platen热盘.Plating镀.Plotting标绘.Plowing犁沟.Plug插脚,塞柱.Ply层,股.Pneumatic Stretcher气动拉伸器.Pogo Pin伸缩探针.Point 钻尖.Point Angle钻尖面.Point Source Light点状光源.Poise泊."粘滞度"单位=1dyne*sec/cm2.Polar Solvent极性溶剂.Polarity电极性.Polarization分极,极化.Polarizing Slot偏槽.Polyester Films聚酯类薄片.Polymer Thick Film (PTF)厚膜糊.Polymerization聚合.Polymide(PI)聚亚醯胺.Popcorn Effect爆米花效应.Porcelain瓷材,瓷面.Porosity Test疏孔度试验.Positive Acting Resist正性光阻剂.Post Cure后续硬化,后烤.Post Separation后期分离,事后公离.Pot Life运用期,锅中寿命.Potting铸封,模封.Power Supply电源供应器.Preform 预制品.Preheat预热.Prepreg胶片,树脂片.Press Plate钢板.Press-Fit Contact挤入式接触.Pressure Foot 压力脚.Pre-tinning预先沾锡.Primary Image线路成像.Print Through压透,过度挤压..Probe探针.Process Camera制程用照像机.Process Window操作范围.Production Master生产底片.Profile轮廓,部面图,升温曲线图棱线.Propagation传播.Propagation Delay传播延迟.Puddle Effect水坑效应.Pull Away拉离.Pulse Plating脉冲电镀法.Pumice Powder 浮石粉.Punch冲切.Purge, Purging净空,净洗.Purple Plague紫疫(金与铝的共化物层).Pyrolysis热裂解,高温分解.*****Q*****Quad Flat Pack (QFP)方扁形封装体.Qualification Agency资格认证机构.Qualification Inspection资格检验.Qualified Products List合格产品(供应者)名单.Qualitative Analysis定性分析.Quality Conformance Test Circuitry (Coupon)品质符合之试验线路(样板). Quantitative Analysis定量分析.Quench 淬火,骤冷.Quick Disconnect快速接头.Quill纬纱绕轴.*****R*****Rack 挂架.Radial Lead放射状引脚.Radio Frequency Interference (RFI)射频干扰.Rake Angle抠角,耙角.Rated Temperature, Voltage额定温度,额定电压. Reactance电抗.Real Estate底材面,基板面.Real Time System 实时系统.Reclaiming再生,再制.Rediometer辐射计,光度计.Reel to Reel卷轮(盘)式操作.Reference Dimension参考尺度.Reference Edge参考边缘.Reflection反射.Reflow Soldering重熔焊接,熔焊.Refraction折射.Refractive Index折射率.Register Mark对准用标记.Registration对准度.Reinforcement补强物.Rejection剔退,拒收.Relamination(Re-Lam)多层板压合.Relaxation松弛.缓和.Relay继电器.Release Agent, Release Sheets脱模剂,离模剂. Reliability可靠度,可信度.Relief Angle浮角.Repair修理.Resin Coated Copper Foil背胶铜箔.Resin Content胶含量,树脂含量.Resin Flow胶流量,树脂流量.Resin Recession树脂下陷.Resin Rich Area 多胶区,树脂丰富区.Resin Smear胶(糊)渣.Resin Starve Area缺胶区,树脂缺乏区.Resist阻膜,阻剂.Resistivity电阻系数,电阻率.Resistor电阻器,电阻.Resistor Drift电阻漂移.Resistor Paste电阻印膏.Resolution解像,解像度,分辨率.Resolving Power解析(像)力,分辨力.Reverse Current Cleaning反电流(电解)清洗. Reverse Etchback反回蚀.Reverse Image负片影像(阻剂).Reverse Osmosis (RO)反(逆渗透).Reversion反转,还原.Revision修正版.改订版.Rework(ing)重工,再加工.Rhology流变学,流变性质.Ribbon Cable圆线缆带.Rigid-Flex Printed Board硬软合板.Ring 套环.Rinsing水洗,冲洗.Ripple纹波(指整流器所输出电流中不稳定成分). Rise Time上升时间.Roadmap 线路与零件之布局图.Robber辅助阴极.Roller Coating辊轮涂布.Roller Coating滚动涂布法.Roller Cutter辊切机.Roller Tinning辊锡法,滚锡法.Rosin松香.Rotary Dip Test摆动沾锡试验.Routing切外型.Runout偏转,累绩距差.Rupture迸裂.*****S*****Sacrificial Protection牺牲性保护层.Salt Spray Test盐雾试验.Sand Blast喷砂.Saponification皂化作用.Saponifier皂化剂.Satin Finish缎面处理.Scaled Flow Test比例流量实验.Schemetic Diagram电路概略图.ScoringV型刻槽.Scratch刮痕.Screen Printing纲版印刷.Screenability纲印能力.Scrubber磨刷机,磨刷器.Scum透明残膜.Sealing封孔.Secondary Side第二面 .Seeding下种.Selective Plating选择性电镀.Self-Extinguishing自熄性.Selvage布边.Semi-Additive Process半加成制程.Semi-Conductor半导体.Sensitizing敏化.Separable Component Part可分离式零件.Separator Plate隔板, 钢板.Sequential Lamination接续性压合法.Sequestering Agent螯合剂.Shadowing阴影,回蚀死角.Shank钻针柄部.Shear Strength 抗剪强度.Shelf Life储龄.Shield遮蔽.Shore Hardness萧氏硬度.Short短路.Shoulder Angle肩斜角.Shunt分路.Side Wall侧壁.Siemens电阻值.Sigma (Standard Deviation)标准差.Signal讯号.Silane硅烷.Silica Gel硅胶砂.Silicon硅.Silicone硅铜.Silk Screen纲版印刷,丝纲印刷.Silver Migration银迁移.Silver Paste 银膏.Single-In-Line Package(SIP)单边插脚封装体.Sintering烧结.Sizing上胶,上浆.Sizing上浆处理.Skin Effect集肤效应(高频下,电流在传递时多集中在导体表面,使得道线内部通过电流甚少, 造成内部导体浪费,并也使得表面导体部分电阻升高.Skip Printing, Skip Plating漏印,漏镀.Skip Solder 缺锡, 漏焊.Slashing浆经.Sleeve Jint套接.Sliver边丝,边余.Slot, Slotting槽口.Sludge于泥.Slump塌散.Slurry稠浆,悬浮浆.Small Hole小孔.Smear胶渣.Smudging锡点沾污.Snap-off弹回高度.Socket插座.Soft Contact轻触.Soft Glass 软质玻璃(铅玻璃).Solder焊锡.Solder Ball锡球.Solder Bridging锡桥.Solder Bump 焊锡凸块.Solder Column Package锡柱脚封装法. Solder Connection焊接.Solder Cost焊锡着层.Solder Dam锡堤.Solder Fillet填锡.Solder Levelling喷锡,热风整平.Solder Masking(S/M)防焊膜绿漆.Solder Paste锡膏.Solder Plug锡塞(柱).Solder Preforms预焊料.Solder Projection焊锡突点.Solder Sag 焊锡垂流物.Solder Side焊锡面.Solder Spatter溅锡.Solder Splash贱锡.Solder Spread Test散锡试验.Solder Webbing锡纲.Solder Webbing锡纲.Solder Wicking渗锡,焊锡之灯芯效应. Solderability可焊性.Soldering软焊,焊接.Soldering Fluid, Soldering Oil助焊液,护焊油. Solid Content固体含量,固形分.Solidus Line固相线.Spacing间距.Span跨距.Spark Over闪络.Specific Heat 比热.Specification (Spec)规范,规格.Specimen样品,试样.Spectrophotometry分光光度计检测法. Spindle主轴,钻轴.Spinning Coating自转涂布.Splay斜钻孔.Spray Coating喷着涂装.Spur底片图形边缘突出.Sputtering溅射.Squeege刮刀.Stagger Grid蹒跚格点.Stalagometer滴管式表面张力计.Stand-off Terminals直立型端子.Starvation缺胶.Static Eliminator静电消除器.Steel Rule Die(钢)刀模.Stencil版膜.Step and Repeat逐次重复曝光.Step Plating梯阶式镀层.Step Tablet阶段式曝光表.Stiffener补强条(板).Stop Off防镀膜, 阻剂.Strain变形,应变.Strand绞(指由许多股单丝集束并旋扭而成的丝束).Stray Current迷走电流, 散杂电流(在电镀槽系统中,其直流电由整流器所提供,应在阳极板与被镀件之间的汇电杆与槽体液体中流通,但有时少部分电流也可能会从槽体本身或加热器上迷走,漏失).Stress Corrosion应力腐蚀.Stress Relief消除应力.Strike预镀.Stringing拖尾.Stripline条线.Stripper剥除液(器).Substractive Process减成法.Substrate底材.Supper Solder超级焊锡.Supported Hole(金属)支助通孔.Surface Energy表面能.Surface Insulation Resistance表面绝缘电阻.Surface Mount Device 表面粘装组件.Surface Mounting Technology (SMT)表面粘装技术. Surface Resistivity表面电阻率.Surface Speed钻针表面速度.Surface Tension表面张力.Surfactant表面润湿剂.Surge突流,突压.Swaged Lead压扁式引脚.Swelling Agents, Sweller膨松剂.Swimming 线路滑离.Synthetic Resin合成树脂.*****T*****Tab接点,金手指.Taber Abraser泰伯磨试器.Tackiness粘着性, 粘手性.Tape Automatic Bonding (TAB)卷带自动结合.Tape Casting 带状铸材.Tape Test撕胶带试验.Tape Up Master原始手贴片.Taped Components卷带式连载组件.Taper Pin Gauge锥状孔规.Tarnish污化.Tarnish 污化, 污着.Teflon铁氟龙(聚4氟乙烯).Telegraphing浮印,隐印.Temperature Profile温度曲线.Template模板.Tensile Strength抗拉强度.Tensiomenter张力计.Tenting盖孔法.Terminal端子.Terminal Clearance端子空环.Tetra-Etch氟树脂蚀粗剂.Tetrafunctional Resin四功能树脂.Thermal Coefficient of Expansion (TCE)热膨胀系数. Thermal Conductivity导热率.Thermal Cycling热循环,热震荡.Thermal Mismstch感热失谐.Thermal Relief散热式镂空.Thermal Via导热孔.Thermal Zone感热区.Thermocompression Bonding热压结合. Thermocouple热电偶.Thermode发热体.Thermode Soldering热模焊接法. Thermogravimetric Analysis, (TGA)热重分析法. Thermomechanical Analysis (TMA)热机分析法. Thermoplastic热塑性.Thermosetting热固性.Thermosonic Bonding热超音波结合.Thermount聚醯胺短纤席材.Thermo-Via导热孔.Thick Film Circuit厚膜电路.Thief辅助阳极.Thin Copper Foil薄铜箔.Thin Core薄基板.Thin Film Technology薄膜技术.Thin Small Outline Package(TSOP)薄小型绩体电路器.Thinner调薄剂.Thixotropy抗垂流性,摇变性.Three Point Bending三点压弯试验.Three-Layer Carrier三层式载体.Threshold Limit Value (TLV)极限值.Through Hole Mounting通孔插装.Through Put物流量,物料通过量.Throwing Power分布力.Tie Bar分流条.Tin Drift锡量漂飘失.Tin Immersion浸镀锡.Tin Pest锡疫(常见白色金属锡为"β锡",当温度低于13.2℃时则β锡将逐渐转变成粉末状灰色"α锡"称为"锡疫".Tin Whishers锡须.Tinning热沾焊锡.Tolerance公差.Tombstoning墓碑效应.Tooling Feature工具标示物.Topography表面地形.Torsion Strength抗扭强度.Touch Up触修,简修.Trace 线路,导线.Traceability追溯性,可溯性.Transducer转能器.Transfer Bump移用式突块.Transfer Laminatied Circuit转压式线路.Transfer Soldering移焊法.Transistor晶体管.Translucency半透性.Transmission Line传输线.Transmittance透光率.Treament, Treating含浸处理.Treeing枝状镀物,镀须.Trim修整, 精修.Trim Line裁切线.Trimming修整,修边.True Position真位.Tungsten钨Tungsten Carbide碳化钨.Turnkey System包办式系统.Turret Solder Terminal塔立式焊接端子.Twill Weave斜织法.Twist板扭.Two Layer Carrier两层式载体.UL Symbol(UL.为Under-Writers 保俭业试验所标志. Laboratories,INC)Ultimate Tensile Strength (UTS)极限抗拉强度. Ultra High Frequency (UHF)超高频率.Ultra Violet Curing (UV Curing)紫外线硬化. Ultrasonic Bonding超音波结合.Ultrasonic Cleaning超音波清洗.Ultrasonic Soldering超音波焊接.Unbalanced Transmission Line非平衡式传输线. Undercut, Undercutting侧蚀.Underplate底镀层.Universal Tester汛用型电测机.Unsupported Hole非镀通孔.Urea尿素.Urethane胺基甲酸乙脂.*****V*****Vacuoles焊洞.Vacuum Evaporation(or Deposition)真空蒸镀法. Vacuum Lamination真空压合.Van Der Waals Force凡得华力.Vapor Blasting蒸汽喷砂.Vapor Degreasing蒸汽除油法.Vapor Phase Soldering气相焊接.Varnish凡力水,清漆(树脂之液态单体).V-cutV型切槽.Very Large-Scale Integration(VLSI)极大绩体电路器. Via Hole 导通孔.Vickers Hardness维氏硬度.Viscosity粘滞度,粘度.Vision Systems视觉系统.Visual Examination目视检验.Void 破洞,空洞.Volatile Content挥发份含量.Voltage电压.Voltage Breakdown崩溃电压.Voltage Drop 电压降落.Voltage Efficiency电压效率.Voltage Plane电压层.Voltage Plane Clearance电压层的空环.Volume Resistivity体绩电阻率.Volume Resistivity体绩电阻率.Volumetric Analysis容量分析法.Vulcanization交联,硫化.Wafer晶圆.Waive暂准过关,暂不检查. Warp Size 浆经处理.Warp, Warpage板弯.Washer垫圈.Waste Treatment废弃处理. Water Absorption吸水性. Water Break水膜破散,水破. Water Mark水印.Watt瓦特.Watts Bath瓦兹镀镍液.Wave Guide导波管.Wave Soldering波焊. Waviness 波纹,波度.Wear Resistance耐磨性,耐磨度. Weatherability耐候性.Weave Eposure织纹显露. Weave Texture织纹隐现.Web蹼部.Wedge Bond 楔形结合点. Wedge Void楔形缺口(破口). Weft Yarn纬纱.Welding熔接.Wet Blasting湿喷砂.Wet Lamination湿压膜法.Wet Process湿式制程.Wetting Agent润湿剂.Wetting Balance沾锡天平. Wetting Balance沾锡,沾湿. Whirl Brush旋涡式磨刷法. Whirl Coating旋涡涂布法. Whisker晶须.White Residue白色残渣.White Spot白点.Wicking灯蕊效应.Window操作范围,传动齿孔. Wiping Action 滑动接触(导电). Wire Bonding打线结合.Wire Gauge线规.Wire Lead金属线脚.Wire Pattern布线图形.Wire Wrap绕线互连.Working Master工作母片.Working Time (Life)堪用时间.Workmanship 手艺,工艺水平,制作水准.Woven Cable扁平编线.Wrinkle皱折, 皱纹.Wrought Foil锻碾金属箔.*****X*****X AxisX轴.X-Ray X光.X-Ray FluorescenceX萤光.*****Y*****Yarn纱线.Y-AxisY轴.Yield良品率,良率,产率.Yield Point屈服点.*****Z*****Z-AxisZ轴.Zero Centering中心不变(叠合法).Zig-Zag In-Line Package (ZIP)炼齿状双排脚封装件.。
国家计量校准规范目录
JJF 1001-1998 通用计量术语及定义General Terms in Metrology and Their DefinitionsJJF 1002-1998 国家计量检定规程编定规则The Rules forDeafting Nationl Metrological verification RegulationJJF 1004-2004 流量计量名词术语及定义Metrological Terms and Their Definitions for Flow Rate JJF 1005-2005 标准物质常用术语和定义Terms and Difinitions Used in Reference Materials JJF 1006-1994 一级标准物质技术规范Technical Norm of Primary Reference MaterialsJJF 1007-1987 温度计量名词术语(试行)Temperature Metrological Terms and Their Definitions JJF 1007-2007 温度计量名词术语(试行)Temperature Metrological Terms and Their Definitions JJF 1008-1987 压力计量名词术语及定义Pressure Metrological Terms and Their Definitions JJF 1008-2008 压力计量名词术语及定义Pressure Metrological Terms and Their Definitions JJF 1009-2006 容量计量术语及定义Metrological Terms and Definittions for CapacityJJF 1010-1987 长度计量名词术语及定义Length Metological Terms and Their DefinitionsJJF 1011-2006 力值与硬度计量术语及定义Terminology and Definitions for Metrology of Force and HardnessJJF 1012-2007 常用湿度计量名词术语(试行)General Terms for Humidity MeasurementJJF 1013-1989 磁学计量常用名词术语及定义(试行)Terms in Common Use and Their Difinition for the Magneic MetrologyJJF 1014-1989 罐内液体石油产品计量技术规范Technical Norm of the Measurement of Liquid Petroleum Products in T andsJJF 1015-2002 计量器具型式评价和型式批准通用规范General Norm for Pattren Evaluation and Pattern Approval of Measuring InstrumentsJJF 1016-2002 计量器具型式评价大纲编写导则The Rules for Drafting Program of Pattern Evaluation of Measuring InstrumentsJJF 1017-1990 使用硫酸铈-亚铈剂量计测量γ射线水吸收剂量标准方法Standard Method for Using the Ceric-Cerous Sulfate Dosimeter to Measure γ-ray Absorted Dose in WaterJJF 1018-1990 使用重铬酸钾(银)剂量计测量γ射线水吸收剂量标准方法Standard Method for Using the Potassium(silver)Dichromate Dosimeter to Measure γ-ray Absorbed Dose in WaterJJF 1019-1990 60Co远距离治疗束吸收剂量的邮寄监测方法Postcheck Method for 60Co radiothorapy Beam Absorbed DoseJJF 1020-1990 r射线辐射加工剂量保证监测方法Dose Assurence Monitoring Method for γ-Ray Radiation Processing LevelJJF 1021-1990 产品质量检验机构计量认证技术考核规范The Technical Examination Norm for Metrology Accreditation of Testing Unit for Testing of Product QualityJJF 1022-1991 计量标准命名规范The Technical Norm of Designation for Metrological StaandardJJF 1023-1991 常用电学计量名词术语(试行)Greneral Metrological Terms for electrical MeasurementJJF 1023-2008 常用电学计量名词术语(试行)Greneral Metrological Terms for electrical MeasurementJJF 1024-2006 计量器具的可靠性分析Reliability Analysis for Measuring InstrumentsJJF 1024-2008 计量器具的可靠性分析Reliability Analysis for Measuring InstrumentsJJF 1025-1991 机械秤改装规范Technical Norm of Machine Scale RemakeJJF 1025-2008 机械秤改装规范Technical Norm of Machine Scale RemakeJJF 1026-1991 光子和高能电子束吸收剂量测定方法Absorbed Dose Determination in Poton andElectron BeamsJJF 1026-2008 光子和高能电子束吸收剂量测定方法Absorbed Dose Determination in Poton and Electron BeamsJJF 1028-1991 使用重铬酸钾银剂量计测量r射线水吸收剂量标准方法Standard Method for Using the Silver Dichromate Dosimeter to Measure γ-Ray Absorbed Dose in WaterJJF 1029-1991 电子探针定量分析用标准物质研制规范The Technical Norm for Development of Cerified Reference Materied Used in Quantitative Analysis of Electron MicroprobeJJF 1030-1998 恒温槽技术性能测试规范Measurement and Test Norm of Thermostatic Bath's Technological CharacteristicJJF 1031-1992 依法管理的物理化学计量器具分类规范The chassifical Norm of Physical and Chemical Measuring Instruments Managed by Metrogical LosJJF 1032-2005 光学辐射计量名词及定义(试行)Terminology and definitions for optical Radiation MeasurementJJF 1033-2003* 计量标准考核规范Rule for the Examination of Measurement Standard[过期] JJF 1033-2008 计量标准考核规范Rule for the Examination of Measurement Standard[更新] JJF 1034-2005 声学计量名词及定义(试行)Metrological Terms and their Definitions for Acoustics JJF 1035-2006 电离辐射计量术语及定义Ionizing Radiation Metrological TermsJJF 1036-1993 交流电能表检定装置试验规范Test Norm of Verification Equipment for AC Electrical Energy MeterJJF 1037-1993 线列固体图像传感器特性参数测试技术规范Technical Norm of measurement and Test of Characteristic Parameters for Linear Solid State Image SensorsJJF 1038-1993 直流电阻计量保证方案技术规范(试行)Technical Specification of MAP for D C resistanceJJF 1039-1993 同轴功率计量保证方案技术规范(试行)T.S.of MAP for Coaxial PowerJJF 1040-1993 射频衰减计量保证方案技术规范(试行)T.S.of MAP for Radio AttenuationJJF 1041-1993 磁性材料磁参数计量保证方案技术规范(试行)T.S. of MAP for Propertise of Magnetic MaterialsJJF 1042-1993 直流电动势计量保证方案技术规范(试行)T.S. of MAP for DC EMF'SJJF 1043-1993 维氏硬度计量保证方案技术规范(试行)T.S. of MAP for Veckers HardnessJJF 1044-1993 放射性核素活度计量保证方案技术规范(试行)T.S. of Map for Activity of RadionuclidesJJF 1045-1993 长度(量块)计量保证方案技术规范(试行)T.S. of MAP for Length of Gauge Block JJF 1046-1994 金属电阻应变计的工作特性技术规范T.S. of Performance Characteristics of Metallic Resistance Strain GaugesJJF 1047-1994 磁耦合直流电流测量变换器校准规范Calibratiom Specification for Magnetical Coupling MeasuringJJF 1048-1995 数据采集系统校准规范C.S.of Data Acguisition SystemJJF 1049-1995 温度传感器动态响应校准规范C.S.of Temperature Sensor's Dynamic Response JJF 1050-1996 工作用热传导真空计校准规范C.S.of Working Thermal Conducting Vacuum GaugeJJF 1051-1996 工作计量器具命名与分类代码规范Norm of Designation for Working Measuring Instrument and its Classification CadeJJF 1052-1996 气流式纤维细度测定仪的校准规范C.S.of Fibre Fineness Tester of Airflow Method JJF 1053-1996 负荷传感器动态特性校准规范C.S.of Dynamic Characteristic of Load CellJJF 1054-1996 人血清无机成分分析结果评定规范Evaluation Specification for Analysis Result of Inorganic Composition in SerumJJF 1056-1998 燃油加油机税控装置技术规范The Technical Norm For Revenue control Device of Fuel DispenserJJF 1057-1998 数字存储示波器校准规范C.S.of Digital Storage OscilloscopeJJF 1059-1999* 测量不确定度评定与表示Evaluation and Expression of Uncertainty in MeasurementJJF 1061-1999 税控燃油加油机制造许可证考核规范The Examination Specification of Manufacturing Competence for Fuel Dispensers with Revenue FunctionJJF 1062-1999 电离真空计校准规范C.S.of Ionization Vacuum GaugeJJF 1063-2000 石油螺纹单项参数检查仪校准规范C.S.for Instruments of Thread Inspection Of Casing,Tubing Line Pipe and New Rotary Shouldered ConnectionJJF 1064-2004 坐标测量机校准规范C.S.for Coordinate Measuring MachinesJJF 1065-2000 射频通信测试校准规范C.S.for RF Communication Test SetJJF 1066-2000 测长机校准规范C.S.for Length Measuring InstrumentsJJF 1067-2000 工频电压比例标准装置校准规范C.S.for Sets of Voltage Ratio Standards at Power FrequencyJJF 1068-2000 工频电流比例标准装置校准规范C.S.for Sets of Current Ratio Standards at Power FrequencyJJF 1069-2007 法定计量检定机构考核规范Rules for the Examination of the Service of Legal Metrological VerificationJJF 1070-2005 定量包装商品净含量计量检验规则Rules of Metrological Testing for Net Quantity of Products in Prepackages with Fixed ContentJJF 1071-2000 国家计量校准规范编写规则The Rules for Drafting National Calibration SpecificationsJJF 1072-2000 齿厚卡尺校准规范C.S.for Gear Tooth CalipersJJF 1073-2000 高频Q表校准规范C.S.for HF Q-MetersJJF 1074-2001 酒精密度-浓度测量用表Measurement T ables for Density-Concentration of AlcoholJJF 1075-2001 钳形电流表校准规范C.S.of Clamp AmmetersJJF 1076-2001 湿度传感器校准规范C.S.of Humidity SensorsJJF 1077-2002 测微准直望远镜校准规范C.S.for Micro-alignment TelescopesJJF 1078-2002 光学测角比较仪校准规范C.S.for Optcal Comparators for Angle Measurements JJF 1079-2002 阴极射线管彩色分析仪校准规范C.S.for Cathode Ray Tube(CRT)Color Analyzers JJF 1080-2002 (-50~90)℃黑体辐射源校准规范C.S.for Blackbody Radiators in (-50~90)℃JJF 1081-2002 垂准仪校准规范C.S.for Plumb InstrumentsJJF 1082-2002 平板仪校准规范C.S.for Plane T ablesJJF 1083-2002 光学倾斜仪校准规范C.S.for Optical ClinometersJJF 1084-2002 框式水平仪和条式水平仪校准规范C.S.for Frame Levels and Shaft LevelsJJF 1085-2002 水平尺校准规范C.S.for Level RulesJJF 1087-2002 直流大电流测量过程控制技术规范T.S.for Measurement Control System for Heavy Direct CurrentJJF 1088-2002 外径千分尺(测量范围500mm~3000mm)校准规范C.S.for Micrometers with Measuring Range form 500mm~3000mmJJF 1089-2002 滚动轴承径向游隙测量仪校准规范C.S.for Instruments for Measuring Radial Clearance of Rolling BearingJJF 1090-2002 非金属建材塑限测定仪校准规范C.S.for Nonmetal Building Materials Plastic Measuring InstrumentsJJF 1091-2002 测量内尺寸千分尺校准规范C.S.for Micrometers for Measuring Inside Dimension JJF 1092-2002 光切显微镜校准规范C.S.for Light Section MicroscopesJJF 1093-2002 投影仪校准规范C.S.for ProjectorsJJF 1094-2002 测量仪器特性评定技术规范T.S.for Evaluation of the Characteristics of Measuring InstrumentsJJF 1095-2002 电容器介质损耗测量仪校准规范C.S.for Capacitor Dielectric Loss MetersJJF 1096-2002 引申计标定器校准规范C.S.for Calibrator of ExtensometersJJF 1097-2003 平尺校准规范C.S.for Calibration Specification for Staight EdgesJJF 1098-2003 热电偶、热电阻自动测量系统校准规范 C.S.for Auto-measuring System of Thermocouples and Resistance ThermometersJJF 1099-2003 表面粗糙度比较样块校准规范C.S.of Roughness Comparison SpecimensJJF 1100-2003 平面等厚干涉仪校准规范C.S.for Flat Equal Thickness InterferometersJJF 1101-2003 环境试验设备温度、湿度校准规范C.S.for the Equipment of Environmental Testing for Temperature and HumidityJJF 1102-2003 内径表校准规范C.S.for Bore Dial IndicatorsJJF 1103-2003 万能试验机计算机数据采集系统评定Evaluation for Computerized Data Acquisition Systems of Universal Testing MachinesJJF 1104-2003 国家计量检定系统表编写规则Rule for Drafting National Verification Scheme JJF 1105-2003 触针式表面粗糙度测量仪校准规范 C.S.for Contact(Stylus) Instruments of Surface Roughness Measurement by the Profile MethodJJF 1106-2003 眼镜产品透射比测量装置校准规范C.S.for Transmittance Measuring Equipment for Ophthalmic ProductsJJF 1107-2003 测量人体温度的红外温度计校准规范 C.S.for Infrared Thermometers for Measurement of Human TemperatureJJF 1108-2003 石油钻具接头螺纹工作量规、圆螺纹套管工作量规和油管螺纹工作量规校准规范C.S.for working Gauge of Rotary Shouldered Connections,Round Thread Casing and TubingJJF 1109-2003 跳动检查仪校准规范C.S.for Concentricity TestersJJF 1110-2003 建筑工程质量检测器组校准规范C.S.for Coustruction Quality Tester SetsJJF 1111-2003 调制度测量仪校准规范C.S.of ModulationJJF 1112-2003 计量检测体系确认规范Rules for Confirmation of Metrology Testing System JJF 1113-2004 轴承套圈角度表针件测量仪校准规范C.S.of Angle Measuring Instument for Bearing RingJJF 1114-2004 光学、数显分度台校准规范C.S.for Optical & Digital Dividing T ablesJJF 1115-2004 光电轴角编码器校准规范C.S.for Photoelectric Shaft EncodersJJF 1116-2004 线加速度计的精密离心机校准规范C.S.for Linear Accelerometer Used Precision CentrifugerJJF 1117-2004 测量仪器比对规范Specification for Comparison of Measuring InstrumentJJF 1118-2004 全球定位系统(GPS)接收机(测地型和导航型)校准规范C.S.for Global positioning System (GPS) ReceiverJJF 1119-2004 电子水平尺校准规范C.S.for Electronic Level MeterJJF 1120-2004 热电离同位素质谱计校准规范 C.S.for Thermal Ionizatiog Isotope Mass SpectrometersJJF 1121-2004 手持式齿距比较仪校准规范C.S.for Hand-hold Pitch ComparatorJJF 1122-2004 齿轮螺旋线测量仪器校准规范C.S.for Gear Helix Measuring InstrumentsJJF 1123-2004 基圆齿距比较仪校准规范C.S.for Base Circle Pitch ComparaorJJF 1124-2004 齿轮渐开线测量仪器校准规范C.S.for Gear Involute Measuring InstumentsJJF 1125-2004 滚刀检查仪校准规范C.S.for Calibration Specification for Gear Hob TesterJJF 1126-2004 超声波测厚仪校准规范C.S.for Ulrasonic Thickness InstrumentJJF 1127-2004 射频阻抗/材料分析仪校准规范C.S.for RF Impedance/Material AnalyzersJJF 1128-2004 矢量信号分析仪校准规范C.S.for Vector Signal AnalyzersJJF 1129-2005 尿液分析仪校准规范C.S.of Urine AnalyzersJJF 1130-2005 几何量测量设备校准中的不确定度评定指南Guide to the Estimation of Uncertainty in Calibration of Geometrical Measuring EquipmentJJF 1131-2005 TDMA-GSM数字移动通信综合测试仪校准规范 C.S.for TDMA-GSM Radio Communication TestersJJF 1132-2005 组合式角度尺校准规范C.S.for Combined Type Angle RulesJJF 1133-2005 X射线荧光光谱法黄金含量分析仪校准规范C.S.of Gold Gauge Utilizing X-ray Fluorescence SpectometryJJF 1134-2005 专用工作测力机校准规范C.S.for Working Force Measuring Machines for Special PurposesJJF 1135-2005 化学分析测量不确定度评定Evaluation of Uncertainty in Chemical Analysis MeasurementJJF 1136-2005 音准仪校准规范C.S.of TonometersJJF 1137-2005 传声器前置放大器校准规范C.S.for Microphone PremplifiersJJF 1138-2005 铣刀磨后检查仪校准规范C.S.for the Testers of Sharpened Milling CutterJJF 1139-2005 计量器具检定周期确定原则和方法Principle and Method for Determination Verification Period of Measuring InstrumentsJJF 1140-2006 直角式检查仪校准规范C.S.for Square TestersJJF 1141-2006 汽车转向角检验台校准规范D.S.for Turning Angle Testers for AutomobileJJF 1142-2006 建筑声学分析仪校准规范C.S.for Building Acoustics AnalyzersJJF 1143-2006 混响室声学特性校准规范C.S.for Acoustic Performance of Reverberation Rooms JJF 1144-2006 电磁骚扰测量接收机校准规范C.S.for EMI Testing ReceiversJJF 1145-2006 驻极体传声器测试仪校准规范C.S.for Electret Microphone InstrumentsJJF 1146-2006 消声水池声学特性校准规范C.S.for Acoustic Characteristics of Anechoic Water T andJJF 1147-2006 消声室和半消声室声学特性校准规范C.S.for Acoustic Performance of Anechoic Rooms and Hemi-anechoic RoomsJJF 1148-2006 角膜接触镜检测仪校准规范C.S.for Test Devices of Contact LensesJJF 1149-2006 心脏除颤器和心脏除颤监护仪校准规范C.S.for Cardiac Defibrillators & Cardiac Defibrillator-monitorsJJF 1150-2006 光电探测器相对光谱响应度校准规范C.S.for Relative Spectral Responsivity for Photoelectric DetectorsJJF 1151-2006 车轮动平衡机校准规范C.S.for Wheel Dynamic BalancersJJF 1152-2006 任意波发生器校准规范C.S.for Arbitrary Waveform GeneratorJJF 1153-2006 冲击加速度计(绝对法)校准规范C.S.for Shock Accelermeters(Absolute Method) JJF 1154-2006 四轮定位仪校准规范C.S.for Four-wheel alignmenterJJF 1155-2006 30MHz~1.0GHz功率吸收钳校准规范C.S.for Absorbing Clamp in the Range of 30MHz to 1.0GHzJJF 1156-2006 振动冲击转速计量术语及定义Terminology and Definitons for Measurement of Vibration,Shock and Rotating VelocityJJF 1157-2006 测量放大器校准规范C.S.for Measuring AmplifiersJJF 1158-2006 稳定同位素气体质谱仪校准规范C.S.for Stable Istope Gas Mass Spectrometer JJF 1159-2006 四极杆电感耦合等离子体质谱仪校准规范C.S.for Quadrupole Inductively Coupled Plasma Mass SpectometersJJF 1160-2006 中小规模数字集成电路测试设备校准规范C.S.of Small & Medium Scale Integrated Circuit Testing SystemJJF 1161-2006 催化燃烧式甲烷测定器型式评价大纲Program of Pattern Evalation of Heating Catalytic methane alarm DetectorJJF 1162-2006 粉尘采样器型式评价大纲Program of Pattern Evaluation of Dust SamplerJJF 1163-2006 光干涉式甲烷测定器型式评价大纲Program of Pattern Evaluation of Methane Detector of Interferometer TypeJJF 1164-2006 台式气相色谱-质谱联用仪校准规范C.S.for Bench Top Gsa Chromatography-Mass SpectrometerJJF 1165-2007 信纳表校准规范Calibration Specification for SINAD MetersJJF 1166-2007 激光扫平仪校准规范Calibration Specification for Rotating LasersJJF 1167-2007 杂音计校准规范Calibration Specification for PsophometersJJF 1168-2007 便携式制动性能测试仪校准规范Calibration Specification for Portable Braking Peffomance Tester for Motor VehiclesJJF 1169-2007 汽车制动操纵力计校准规范Calibration Specification for Manipulationg Force Tester for Automotive BrakeJJF 1170-2007 负温度系数低温电阻温度计校准规范JJF 1171-2007 温度巡回检测仪校准规范Calibration Specification for Temperature Itinerant Detecting InstrumentJJF 1172-2007 挥发性有机化合物光离子化检测仪校准规范Calibration Specification for Volatile Organic Compounds Photo Ionization DetectorsJJF 1173-2007 测量接受机校准规范C.S. of Measuring ReceiversJJF 1174-2007 数字信号发生器校准规范C.S. for Digital Signal GeneratorJJF 1175-2007 试验筛校准规范Calibration Specification for Test SievesJJF 1176-2007 (0~1500)℃钨铼热电偶校准规范Calibration Specification for(0~1500)℃Tungsten-Rhenium ThermocouplesJJF 1177-2007 CDMA数字移动通信综合测试仪校准规范 C.S. of CDMA Digital Radio Communication TestersJJF 1178-2007 用于标准铂电阻温度计固定点装置校准规范JJF 1179-2007 集成电路高温动态老化系统校准规范 C.S. of High Temperature Dynamic IC Burn-in SystemJJF 1180-2007 时间频率计量名词术语及定义Glossary and Definition of Time and Frequency MetrologyJJF 1181-2007 衡器计量名词术语及定义Weighing Instrument Terms in Metrology and TheirDefinitionsJJF 1182-2007 计量器具软件测评指南Guide for Software Testing of Measuring Insturmenes JJF 1183-2007 温度变送器校准规范Calibration Specification of the Temperature Transmitter JJF 1184-2007 热电偶检定炉温度场测试技术规范Testing Specification of Temperature Uniformity in Thermocouple Calibration FurnacesJJF 1185-2007 速度型滚动轴承振动测量仪校准规范Calibration Specification for Vibrometer(Velocity)of Rolling BearingsJJF 1186-2007 标准物质认定证书和标签内容编写规则The Rules for Drafting of Contents for Certificates and Labels of Certified Reference MaterialsJJF 1187-2008 热像仪校准规范Calibration Specification for Thermal ImagersJJF 1188-2008 无线电计量名词术语及定义Terms and Their Definitions for Radio Measurement JJF 1189-2008 测长仪校准规范C.S. for Length Measuring InstrumentJJF 1190-2008 尘埃粒子计数器校准规范Calibration Specification Airborne Particle counter JJF 1191-2008 测听室声学特性校准规范JJF 1192-2008 汽车悬架装置检测台校准规范Calibration Specification for Automotive Suspension TesterJJF 1193-2008 非接触式汽车速度计校准规范C.S.for Non-contact Automotive SpeedmeterJJF 1194-2008 轮胎强度及脱圈试验机校准规范C.S. of Tester for Tyre Strength and Bead Unseating ResistanceJJF 1195-2008 轮胎耐久性及轮胎高速性能转鼓试验机校准规范 C.S.of Drum Tester for Tyre Endurance and High Speed TestJJF 1196-2008 机动车方向盘转向力—转向角检测仪校准规范C.S.of Motor Vehicle Testers for Steering Force and Steering AngleJJF 1197-2008 光纤色散测试仪校准规范C.S.of Optical Fiber Chromatic Dispersion Test Sets JJF 1198-2008 通信用可调谐激光源校准规范 C.S.of Tunable Laser Source for TelecommunicationsJJF 1199-2008 通信用光衰减器校准规范C.S.of Optical Attenuator for Telecommunications JJF 1200-2008 声频功率放大器校准规范C.S.for Audio-frequency Power AmplifiersJJF 1201-2008 助听器测试仪校准规范C.S.for Hearing Aids Measurement InstrumentsJJF 1202-2008 驻极体传声器校准规范C.S.for Electret MicrophonesJJF 1203-2008 电声产品(扬声器类)功率寿命试验仪校准规范 C.S.for Electro-acoustic Products(Loudspeakers)Power Life-span Measurement EquipmentsJJF 1204-2008 TD-SCDMA数字移动通信综合测试仪校准规范C.S.for TD-SCDMA Digital Radio Communication TestersJJF 1205-2008 谐波和闪烁分析仪校准规范C.S.for Harmonious and Flicker Analysis system JJF 1206-2008 频率标准与数字时钟的远程校准校准规范JJF 1207-2008 针规、三针校准规范C.S. for Cylindrical Measuring PinJJF 1208-2008 沥青针入度仪校准规范Calibration Specification for Apparatus for Determining Penetration of Bituminus MaterialsJJF 1209-2008 齿轮齿距测量仪校准规范Calibration Specification for Gear Pitch Measuring InstrumentsJJF 1210-2008 低速转台校准规范C.S.for Rate T ableJJF 1211-2008 激光粒度分析仪校准规范C.S.of Static Light Scattering Particle Size Analyzer JJF 1212-2008 便携式动态轴重仪校准规范C.S.of Portable Weighing Instruments for Axle ofVehicle in MotionJJF 1213-2008 肺功能仪校准规范C.S.for the Pulmonary Function Measuring Instrument JJF 1214-2008 长度基线场校准规范Specification of Base line and Base net Calibration JJF 1215-2009 整体式内镜千分尺(6000mm~10000mm)校准规范JJF 1216-2009 音波式皮带张力计校准规范JJF 1217-2009 高频电刀校准规范JJF 1218-2009 标准物质研制报告编写规则。
男人和女人谁的责任更重英语作文
男人和女人谁的责任更重英语作文Title: The Interwoven Responsibilities of Men and Women: A Comparative AnalysisThe discourse on whether men or women bear heavier responsibilities is a topic steeped in nuance, cultural variance, and evolving socio-economic dynamics. Rather than a straightforward verdict, the reality is a complex tapestry where the threads of responsibility are intricately interwoven, reflecting distinct yet complementary roles for both genders.In many societies, historical and traditional roles have cast women as the anchors of family and home life. This role, while profoundly meaningful, comes with significant responsibilities, including nurturing children, managing households, and often acting as the emotional bedrock of the family structure. These duties require an immense amount of emotional labor, time management, and multitasking prowess, all of which can be incredibly taxing yet may not always receive due recognition.Men, conversely, have traditionally been positioned as the primary breadwinners. This role entails a distinctive set of pressures, including providing financial stability amidst economic uncertainties, advancing professionally to ensure long-term financial security for their families, and oftenshouldering the expectations of being the 'strong' figure both emotionally and physically. The strain of these expectations can lead to a silent struggle to maintain composure and stability, sometimes at the cost of personal well-being.However, the advent of more egalitarian societies has blurred these once rigidly defined roles. Today, the concept of shared responsibilities is increasingly becoming the norm, as women make significant strides in professional realms and men take on a more active role in domestic and child-rearing duties. This shift not only diffuses the burden of responsibilities but also enriches the quality of life by allowing for a more balanced and fulfilling existence.Yet, despite these advancements, disparities persist. Women, even in progressive societies, often find themselves disproportionately tasked with household and familial duties even while holding down jobs, a phenomenon termed the'second shift.' Meanwhile, men face their own set of challenges, including the societal pressure to conform to ideals of masculinity that can stifle emotional expression and prevent them from seeking help when needed.It is imperative to recognize that neither gender's responsibilities can be deemed more substantial than theother; they are merely different facets of the collective endeavor of sustaining functional and nurturing societies. Instead of a competitive comparison, recognizing the unique challenges and empathizing with the distinct forms of stress each gender encounters could foster a more supportive and cooperative approach to societal responsibilities.In conclusion, the deliberation over who bears more significant responsibilities between men and women transitions from a quantitative assessment to a qualitative appreciation of their respective roles. Both genders endure distinctive strains and assumptions within their societally ascribed roles. The progression lies in the evolving understanding and acceptance of shared responsibilities, where the measure of responsibility is not weighed but rather understood as integral components of the societal machinery that require cooperation, respect, and mutual support. Only then can we move towards a harmonious society where the scales of responsibility are balanced not by weight, but by the diverse and shared contributions of men and women.。
构造地质学专业词汇
构造地质学专业词汇Chapter 1 Basic Conceptgeometry 几何学incline 倾斜,斜坡,斜面undeformed 无形变的portray 描绘reconstruct 重建,改造,推想interpretation 解释, 阐明, 口译, 通译stratigraphic 地层学的bed 岩层stratum (pl. strata) 岩层bedded 成层的bedding 层理bedding planes 层面formation 组deposit 存放,堆积,沉淀isopachytes 等厚线surface 表面,外表,水面diastem 沉积暂停期sedimentation 沉淀,沉降non-sequence 间断不连续faunaltilt .(使)倾斜, (使)翘起discordance 不调和,不和volcanogenic 火山(生成)的synonymous 同义的- 2 -构造地质学专业词汇cessation 停止,终止paraconformity 似整合,沉积间断outcrop 露出地面的岩层disconformity 假整合,平行不整合cross bedding 交错层理graded bedding 粒级层理unconformity 角度不整合overstep 踏过,逾越,超出...的限度basal 基础的,基本的,基部的truncate 截去尖端,修剪overstep 超覆nonconformity 非整合onlap 上超,超覆transgression 海侵,海进offlap 退覆regression 海退toplap 顶超downlap 下超strike 走向dip 倾角true dip 真倾角foliation 面理compass bearing 罗盘方位azimuth 方位,方位角apparent dip 视倾角given 特定的,假设的- 3 -构造地质学专业词汇stereogram 极射(赤面投影)图plunge 倾伏角orthogonal 直角的,直交的pitch 侧倾角clinometer 测斜仪structure contour 构造等高线form lines 形态线form line contour 形态等高线isopachyte 等厚线borehole 钻孔,地上凿洞feather edge 尖灭subcrop 隐伏露头intersection 交叉点outliers 外露层topographic 地形上的inliers 内露层down plunge projection 俯瞰倾伏投影diagrammatic 图表的,概略的palinspastic 复原再造balanced section 平衡剖面- 4 -构造地质学专业词汇Chapter 2 Faults and Fracture fracture 破裂fault 断层joint 节理hanging wall 上盘cohesion 结合,凝聚foot wall 下盘dilationalcalcite 方解石aqueous 水的, 水成的hade 断层倾斜余角nomenclature 命名法,术语strike-slip fault 走滑断层dip-slip fault 倾滑断层wrench fault 平推断层tear fault 平推断层transcurrent fault 横推断层heave 平错throw 落差normal fault 正断层reverse 逆断层dyke 沟,渠,堤坝thrust 冲断层lay fault 滞后断层sinistral 左旋- 5 -构造地质学专业词汇dextral 右旋left-lateral 左行ritht-lateral 右行fault brecci 断层角砾brittle 易碎的, 脆弱的ductile 易延展的, 易教导的, 柔软的fault gouge 断层泥flinty 坚硬的,强硬的plateystreaky 有斑点的, 有条纹的, 容易变的striate 有条纹的, 有细槽的crush breccia 压碎角砾岩cataclasite 碎裂岩cataclasis 碎裂作用mylonite 糜棱岩blastomylonite 变余糜棱岩ultramylonite 超糜棱岩pseudotachylite 假玄武玻璃slickensides 擦痕面slickenside striation 擦痕groove 擦槽,凹槽flexure 屈曲,弯曲部分,打褶slickenline 擦线slickenfibre 擦痕纤维normal drag 正牵引nappe- 6 -构造地质学专业词汇reverse drag 逆牵引synthetic faults 次级同向断层,同级断层antithetic faults 次级反向断层,相反断层graben 地堑horst 都垒splay fault 入字形,八字形,人字形断层系transfer fault 转换断层transform fault 转换断层staircase fault 阶状断层ramp 断坡flat 断坪detachment 拆离imbricate 边缘重叠成瓦状decollement 滑脱convergent 会聚性的, 收敛的piggyback sequence 背驮式逆冲顺序overstep sequence 超覆式逆冲顺序imbricate zone 叠瓦带roof thrust 顶板逆冲断层floor thrust 底板逆冲断层duplex 双层结构horses 断片sole thrust 基底逆冲断层,冲断层基底活动面fold plunge 褶皱倾伏角back thrust 背冲,反冲pop-up 冲起- 7 -构造地质学专业词汇triangle zone 三角带listric fault 犁式断层rollever anticline 滚动背斜listric fan 犁式扇extensional duplex 伸展双层构造half-graben 半地堑pull-apart basin 拉分盆地rift 裂缝, 裂口, 断裂divergent 分歧的tabular 扁平的, 表格式的, 平坦的perpendicular 垂直的,正交的transtension 转换拉伸扭张作用transpression 转换压缩扭压作用flower structure 花状构造inversion 反转positive inversion 正反转negative inversion 负反转sheet joint (顺)层节理席状节理- 8 -构造地质学专业词汇Chapter 3 Foldsfold 褶曲hinge 枢纽limb 翼hinge line 枢纽线cylindrical fold 圆柱状褶皱axial plane 轴平面fold axis 褶轴axial surface 轴(曲)面inter-limb angle 翼间角neutral fold 中性褶皱fold angle 褶角wavelength 波长inflexion point 拐点amplitude 波幅fold axial trace 褶皱轴迹antiform 背形synform 向形neutral fold 中性褶曲anticline 背斜syncline 向斜upright folds 直立褶皱inclined folds 倾斜褶皱overfolds 倒立褶皱crest 脊- 9 -构造地质学专业词汇trough 槽gentle fold 平缓褶皱open fold 开阔褶皱close fold 中常褶皱tight fold 紧闭褶皱isoclined fold 同斜褶皱fold profile 褶曲剖面parallel fold 平行褶皱ovthogonal thickness 垂直层面厚度concentric fold 同心褶皱centre fo curvature 曲率中心similar fold 相似褶皱chevron fold 尖棱褶皱accordion fold 棱角褶皱kink band 膝折带dip isogon 等斜线symmetric fold 对称褶皱asymmetruc fold 不对称褶皱nonocline 等斜vergence 倒向parasiteic folds 寄生褶皱enveloping surface 包络面harmonic folds 协调褶皱disharmonic folds 不协调褶皱conjugate folds 共轭褶皱box fold 箱状褶皱- 10 -构造地质学专业词汇polyclinal fold 多斜褶皱cylindroidal fold 圆柱状褶皱non-cylindrol fold 非圆柱状褶皱pericline 围斜构造brachyanticline 短轴背斜brachysyncline] 短轴向斜dome 穹窿basin 盆地culmination 轴隆区depression 轴陷区凹陷interference 干涉superimpose fold 叠加褶皱interferene structure 干涉构造dome and basin 穹盆(相间)crescent and mushroom 新月形,蘑菇形double zigzag 双之字buckling 纵弯作用bending 横弯作用flexural slip 弯滑kinking 膝折shear zone 剪切带slide 滑动,滑移- 11 -构造地质学专业词汇Chapter 4 Foliation,Lineation and Fabric folliation 面理beddign folliation 顺层面理lineation 线理fabric 组构cleavage 劈理schistosity 片理slaty cleavage 板劈理fracture cleavage 破劈理crenulation cleavage 褶劈理solution cleavage 溶解劈理penetrative 透入性non-pentrative 非透入性spaced cleavage 间隔劈理gneisose banding 片麻状条带gneissosity 片麻理tetrahedron [晶]四面体conglomerate 聚结mica 云母hornblende 角闪石mudstone 泥岩specimen 标本,样品,样本muscovite 白云母clay 粘土,泥土- 12 -构造地质学专业词汇lensoid 透镜状的,透镜状结构aggregate 集合体,集合的,聚合的slate 板岩slab 厚平板,厚片microlithou 微劈石hydraulic fracturing 水压破裂作用pressure solution 压溶stylolite 缝合线metamorphic segregation 变质析离作用meamorphic defferentiation 变质分异作用augen gniss 眼球状片麻岩shape fabric 形态组构intrafolial fold 面理内褶皱rootless intrafolial fold 面理内无根褶皱lamination 迭片结构elongation lineation 伸长线理symmetric 相称性的, 均衡的asymmetric 不均匀的, 不对称的nullion structure 窗棂构造fissility 易裂性,分裂性lithology 岩石学, 岩性shale 页岩, 泥板岩limestone 石灰石schist 片岩augen 眼球状体paragneiss 副片麻岩- 13 -构造地质学专业词汇orthogneiss 正片麻岩Intrafolial folds 面理褶皱crenulation cleavage 细褶皱劈理mullion 竖框, 直棂, 放射状框Cuspate-lobate folds 尖圆褶皱Mineral lineations 矿物线理growth anisotropy 生长各向异性boudin 石香肠boudinage 石香肠构造pinch-and-swell 肿缩石香肠chocolate-table structure 巧克力方盘构造fabric 组构homogeneous 均匀heterogeneous 非均匀stacking fault 堆垛层错sub-grain boundary 亚颗粒边界undulose extinction 波状消光deformation band 变形带lattice 格子deformation lamellae 变形纹deformation twinning 变形双晶- 14 -构造地质学专业词汇Chapter 5 Stressdeformation 变形geometrical 几何学的, 几何的force 力Confining pressure 围压stress 应力newton 牛顿pascal 帕斯卡bar 巴kilbar 千巴normal stress 正应力shear stress 剪应力principal stress planes 主应力面principal stress axes 主应力轴stress axial cross 应力轴十字hydrostatic stress 静水应力deviatoric stress 偏斜应力lithostatic stress 静岩压力trajectory 轨道,轨线stress field 应力场stress fragectories 应力迹线- 15 -构造地质学专业词汇Chapter 6 Strainstrain 应变dilation 体变膨胀度distortion 畸变形变homogeneous strain 均匀应变inhomogeneous strain 非均匀应变extension 伸长应变shear strain 剪应变elongation 伸长度shortening 缩短率infinitesimal 无限小stretch 长度比factor 系数strain ellipse 应变椭圆principal strain 主应变strain ellipsoid 应变椭球coaxial strain 共轴应变pure shear 纯剪切simple shear 简单剪切prolate ellipsoid 长椭球体Constrictional strainFlattening strainablate ellipsid 扁椭球体progressive deformation 渐进变形- 16 -构造地质学专业词汇Prolate ellipsoid 扁长椭球体Oblate ellipsoid 扁平椭球体coaxial 共轴的finite strain 有限应变infinitesimal strain 无穷小应变growth fibre 生长纤维crack-seal mechanism 裂隙焊封机制Chapter 7 Stress and Strain in Materialselastic strain 弹性应变Hooke's law 虎克定律young,s modulus 杨氏模量elasticityy 弹性compressibility 压缩率viscous strain 粘度性应变elastoviscons 弹粘性plastic 塑性yield stress 屈服应力viscoelastic 粘弹性- 17 -构造地质学专业词汇delayed recovery 迟滞回复brittle 脆性ductile 韧性yield strength 屈服强度failure strength 破坏强度ultimate strength 极限强度confining pressure 围压extrapolate 外推,推断marble 大理石feldspar 长石creep 蠕变primary creep 初期蠕变secondary creep 二期蠕变tertiary creep 三期蠕变cataclasis 碎裂作用grain boundary sliding 颗粒边界活动intracrystalling plasticity 晶内塑性dislocation glide 位错滑移dislocation creep 位错蠕变strain hardening 应变硬化diffusive mass transfer 扩散质量迁移solution creep 溶解蠕变pressure solution 压溶crystal plasticity 晶质塑性superplasticity 超塑性coble creep 柯勃尔蠕变- 18 -构造地质学专业词汇nabareo-herring creep 纳巴罗-赫林蠕变deformation map 变形图coldworking 冷加工hotworking polygonization 热加工多边形化annealing 退火Chapter 8 Determination of Strain in Rocksmorphology 形态学determination of strain 应变测量quantitative evaluation 定量估算total strain 全应变bulk strain 总应变strain trajectory 应变迹线strain marker 应变标志shaly 页岩的ooids 鲕粒oolitic limestone 鲕粒灰岩- 19 -构造地质学专业词汇spherulite 球粒vesicle 气泡volcanic rock 火山岩reduction spot 退色斑spherulite 球粒fossil 化石recrystallization spot 重结晶斑点hornfels 角岩concretion 结核thin section 薄片centre-to-centre method 心对心法atypical 非典型的deformed conglomerate 变形砾石bilaterally symmetrical fossil 两侧对称化石strain determination in threedimensions三维应变测量superimposition of strain 应变叠加- 20 -构造地质学专业词汇Chapter 9 faulting and stressbrittle failure 脆性破坏stress criteria of brittlestrength脆性强度应力准则angle of internal friction 内摩擦角Mohr failure envelope 莫尔破坏包络线coulomb failure 库伦破坏准则diabase 辉绿岩dolerite 辉绿岩,粗粒玄武岩Griffith failure criterion 格里菲斯破坏准则Griffith-murrell failurecriterion格里菲斯-穆雷尔破坏准则slip 滑动seismic fault 发震断层aseismic fault 无震断层stick-slip 粘滑focal-plane solution 震源面解fault-plane solution 断层面解auxiliary plane 辅助面- 21 -构造地质学专业词汇Chapter 10 strain in folds and shear zonebuckling 纵弯作用tangential longitudinal strain 切面纵应变cleavage refraction 劈里折射Card-decksheath fold 等鞘褶皱disharmonic fold 不谐和褶曲S-C structure S-C 构造σ-structure σ构造δ-structure δ构造Stereographic projectionSterographic projection 极射赤平投影Orientation 方位Projection sphere 投影球Great circle 大圆Primitive circle 基圆Lower-hemisphere projection 下半球投影Cyclographic trace 圆弧Sterographic net 赤平投影网Equatorial plane 赤平面Wulff net 吴氏网Schmidt net 施密特网- 22 -构造地质学专业词汇Equal angual projection 等角度投影Equal area projection 等面积投影Longitude great circle 经线大圆Latitude small circle 纬线小圆Diameter 直径Pole 极点Normal 法线Sterogram 极射赤平投影图Density distribution 密度分布Contour diagram 等密图Preferred orientation 优选方位Plotted points 投点Center counter 中心密度计Peripheral counter 边缘密度计Pole diagram 极点图Point diagram (投)点图。
安捷伦纳米压痕仪G200用户手册说明书
Features and Benefits• Simple determination of indenter area function and frame stiffness• Accurate, repeatable results compliant with ISO 14577 standard• Electromagnetic actuation allows unparalleled dynamic range in force and displacement• Confi gurable for routine testing or new applications• Modular options for high-speed, scratch, high-temperature, and dynamic testing• Outstanding software with real-time experimental control, easy test protocol development, and precision drift compensation Applications• Semiconductor, thin fi lms,MEMs (wafer applications)• Hard coatings, DLC fi lms• Composite materials,fi bers, polymers• Metals, ceramics• Lead-free solder• Biomaterials, biological andartifi cial tissue OverviewThe culmination of decades of research and development, the Agilent Nano Indenter G200 is the world’s most accurate, fl exible, and user-friendly instrument for nanoscale mechanical testing. Electromagnetic actuation allows the Nano Indenter G200 to achieve unparalleled dynamic range in force and displacement.The Nano Indenter G200 enables users to measure Young’s modulus and hardness in compliance with ISO 14577. The G200 also enables measurement of deformation over six orders of magnitude (from nanometers to millimeters). Furthermore, modular options can be added to accommodate a variety of applications. The capabilities of the G200 can be extended to facilitate high-speed mechanical-properties mapping, frequency-specifi c testing, quantitative scratch and wear testing, integrated probe-based imaging, high-temperature testing, expanded load capacity up to10N, and customizable test protocols. With the Nano Indenter G200, users are able to quantify the relationship between structure, properties, and performance of their materials quickly and easilywith minimal sample preparation.The user-friendly design of the G200 simplifi es training requirements — standard tests can be run on the same day the instrument is installed. EveryG200 is backed by highly responsive Agilent Technologies customer service personnel. Knowledgeableand experienced regional applications engineers are available to guide users through more advanced testing, provide outstanding technical support, and offer unmatched applications expertise.Agilent Nano Indenter G200Data SheetPrecise mechanical testing in the micro- tonano-range of loads and displacements.Figure 1. Schematic diagram of the actuatingand sensing mechanisms of the NanoIndenter G200.2to enhance its actual displacementmeasurement capability. Using standard methods, the displacement resolution of the DCM II is 0.0002nm (0.2 picometers). Even more importantly, real-world testing shows that the noise levels are typically less than an angstrom, ensuring the best resolution of any indenter on the market today. The DCM II has the lowest noise fl oor of any instrument of its type.Continuous StiffnessMeasurement (CSM) OptionIn conventional quasi-static indentation testing, the stiffness of contact is determined by analyzing the force vs. displacement curve during unloading. This depth-sensing method provides a single measurement for the given indentation depth. The AgilentContinuous Stiffness Measurement (CSM) technique, which is compatible with both the XP and the DCM II indentation heads, satisfi es application requirements that must take intoaccount dynamic effects, such as strain rate and frequency.The CSM option offers a means of separating the in-phase and out-of-phase components of the load-displacement history. This separation provides an accuratemeasurement of the location of initial surface contact and continuous measurement of contact stiffness asa function of depth or frequency, thus eliminating the need for unloading cycles.This makes CSM a powerful tool not only for stiff materials such as metals, alloys, and ceramics but also fortime-dependent materials like polymers, structural composites, and biomedical materials.The state-of-the-art CSM option provides the only means available to both fully characterize dynamic properties in the nanometer range and accurately characterize viscoelastic materials providing values such asstorage modulus. Indentation tests using CSM can be controlled with a constant strain rate, a critical test parameter for material systems such as pure metals or low-melting-point alloys, and polymer fi lms and fi lm / substrate systems.Ultra-Fast Express Test OptionDesigned for exclusive use with the G200, Agilent’s new Express Test option allows 100 indents to be performed at 100 different surface sites in 100 seconds! Highly versatile, easy-to-use Express Test methods are ideal forapplications that involve metals, glasses, ceramics, structural polymers, thin fi lms, and low-k materials. And now with NanoSuite 6.2 users can automatically generate histograms and 3D mechanical-properties maps. Graphs and supporting data are easily exported to Excel. In order to achieve these revolutionary measurements, the G200 must be confi gured with a DCM II indentation head, Agilent’s NanoVision stage option, and the new Express Test option.Lateral Force Measurement (LFM) OptionThere are several additionalperformance-extending Nano Indenter G200 options available for use with the standard XP indentation head. The Agilent Lateral Force Measurement(LFM) option provides three-dimensional quantitative analysis for scratch testing, wear testing, and MEMS probing. This option enables force detection in the XAdvanced DesignAll nanoindentation experiments rely on the accuracy of the fundamental load and the displacement data, requiring the highest precision control of load applied to the sample. The Nano Indenter G200 is powered by electromagnetic actuation-based force transducers to ensure precise measurements. The instrument’s unique design avoids lateral displacement artifacts.Among the many benefi ts of the Nano Indenter G200 design are convenient access to the entire sample tray,excellent sample positioning accuracy, easy viewing of the sample position and the sample work area, and simplicity in sample height adjustment to speed test throughput. A modular controller design is optimized for future upgrading. In addition, the G200 conforms toISO 14577 to ensure data integrity, gives users the ability to program experiments with each force transducer and switch between them at any time, and has an optimized lateral footprint to conserve lab spaceNew Enhanced DynamicContact Module II OptionThe Nano Indenter G200 standard confi guration utilizes the Agilent XP indentation head, which delivers <0.01nm displacement resolution and >500µm maximum indentation depth. To extend the range of load-displacement experimentation to the surface contact level, the G200 can be equipped with the new Agilent Dynamic Contact Module II (DCM II) option. This option offers all of the impressive performance afforded by Agilent’s original DCM option as well as several new advantages, including 3x higher loading capability (30mN max load), easy tip exchange for quick removal and installation of application-specifi c tips, and a full 70µm range of indenter travel.With the DCM II option, researchers can study not only the fi rst few nanometers of an indentation into the surface of a material, but even the pre-contact mechanics. At this scale, the noise level of the indentation system is optimizedFigure 2. This SEM image shows indents made at the base of a cantilever beam. The Nano Indenter G200 is uniquely suited for testing both MEMS and component materials for two reasons. First, the actuating and sensing mechanisms allow an unparalleled combination of range and resolution. Second, the controlling software is test-method based — there is no confi guration or calibration of hardware.3and Y directions to examine shear forces. Tribological studies benefi t greatly from the LFM option for determination of the critical load and coeffi cient of friction over the scratch length.High Load OptionThe capabilities of the Nano Indenter G200 can also be enhanced via the Agilent High Load option. Designed for use with the standard XP indentation head, this option expands the load capabilities of the Nano Indenter G200 up to 10N of force, allowing the complete mechanical characterization of ceramics, bulk metals, andcomposites. The High Load option has been engineered to avoid sacrifi cing the instrument’s load and displacement resolutions at low forces while seamlessly engaging at the point in the test protocol when extra force is required.Heating Stage Option This option, which is compatible with the standard XP indentation head, facilitates the study of materials of interest as they are heated from room temperature to as high as 350ºC. To ensure reliable data, the system’s software compensates for drift associated with heating.New Enhanced NanoSuite 6.2 Professional SoftwareEvery Nano Indenter G200 comes withAgilent NanoSuite 6.2 Professionalsoftware, a premium-performancepackage that gives researchers inscientifi c and industrial settings anunprecedented combination of speed,fl exibility, and ease of use. NanoSuite 6.2 offers a variety of prewritten testmethods, including an exclusivenanoindentation technique for makingsubstrate-independent measurements of thin fi lm materials, several noveltechniques for testing polymers,and improved scratch test methods.Agilent’s fi eld-proven method for testingin compliance with ISO 14577, theinternational standard for indentation testing, is provided as well.NanoSuite 6.2 includes a fully integrated tool that greatly simplifi es thedetermination of indenter area functionand load-frame stiffness. Once a ratherinvolved and time-consuming endeavor,this process now requires only a coupleof mouse-clicks within the NanoSuite 6.2 program. Prewritten methods for testing gels (DCM II indentation head and CSM option required) and for measuring strain-rate sensitivity (XP indentationhead and CSM option required) areincluded in NanoSuite 6.2.Additional new capabilities allow a standard batch of tests comprising 25 or more samples to be set up in 5minutes or less, 2D and 3D graphs, and histograms to be plotted on-screenand exported directly to Microsoft Excel while preserving all labels and scales,and sample fi les to be organized byproject and subproject. NanoSuite 6.2 also provides Microsoft Windows 7(32-bit) compliance for current systems and a convenient PDF printer to replace hardware printers.As in the package’s previous iteration, an intuitive interface allows users to set up and run experiments quickly— changing test parameters as often as desired — with just a few clicks. NanoSuite 6.2 offers support of small force/displacement measurements,surface topology, stiffness mapping, scratch tests, and more. Versatile imaging capabilities, a survey scanning option, and streamlined test method development help researchers get from testing to results in record time.NanoVision OptionThe Agilent NanoVision option for the Nano Indenter G200 is used to probe the surface of a sample, generating a 3D map of the surface. Backed by decades of nanomechanical testing experience, the NanoVision nanomechanical microscopy option delivers quantitative imaging by coupling a linear electromagnetic actuation-basedindentation head with a closed-loop nanopositioning stage. NanoVision allows users to create quantitative high-resolution images using a Nano Indenter G200, target indentation test sites with nanometer-scale precision, and examine residual impressions in order to quantify material response phenomena such as pile-up, deformed volume, and fracture toughness. This option also lets users target and characterize individual phases of complex materials.Nanoindentation instruments from Agilent Technologies conform to the ISO 14577 standard (Metallic materials — Instrumented indentation test forhardness and materials parameters), delivering confi dence in test accuracy andrepeatability. These state-of-the-art solutions ensure reliable, high-precisionmeasurement of nanomechanical properties for research and industry.Figure 3. Fracture toughness by Nanoindentation. Left image: A 24 x 24µm scan of a 1200nm deep indent in silica. Crack features accentuated. Right image: An enlarged image of the indent taken straight from the NanoSuite 6.2 review page.Agilent Nano Indenter G200 SpecificationsStandard XP Indentation HeadDisplacement resolution <0.01nmTotal indenter travel 1.5mmMaximum indentation depth >500µmLoad application Coil / magnet assembly Displacement measurement Capacitance gaugeLoading capabilityMaximum load (standard) 500mNMaximum load with DCM II option 30mNMaximum load with High Load option 10NLoad resolution 50nNContact force <1.0µNLoad frame stiffness ~5 x 106N/mIndentation placementUseable surface area 100mm x 100mmPosition control Automated remote with mouse Positioning accuracy 1µmMicroscopeVideo screen 25x (x objective mag.)Objective 10x and 40xDCM II Indentation Head OptionDisplacement resolution 0.0002nm (0.2 picometers) Range of indenter travel 70µmLoading column mass <150mgLoad application Coil / magnet assembly Displacement measurement Capacitance gaugeTypical leaf spring stiffness ~100N/mTypical damping coeffi cient 0.02Ns/mTypical resonant frequency 120HzLateral stiffness 80,000N/mLoading capabilityMaximum load 30mN (13gm)Load resolution 3nN (0.3µgm)LFM OptionMaximum lateral force >250mNLateral resolution <2µNMaximum scratch distance >100mmScratch speed 100nm/s up to 2mm/sHigh Load OptionMaximum force 10NLoad resolution ≤1mNMaximum indentation depth ≥500µmDisplacement resolution 0.01nmFrame stiffness ≥5 x 106N/mNanoVision OptionX-Y scan range 100µm x 100µmZ scan range Indentation head dependent Positioning accuracy ≤2nmResonant frequency >120Hz Nano Mechanical Systems from Agilent TechnologiesAgilent Technologies, the premier measurement company, offers high-precision, modular nano-measurement solutions for research, industry, and education. Exceptional worldwide support is provided by experienced application scientists and technical service personnel. Agilent’s leading-edge R&D laboratories ensure the continued, timely introduction and optimization of innovative, easy-to-use nanomechanical system technologies. /find/nanoindenter AmericasCanada (877) 894 4414 Latin America 305 269 7500 United States (800) 829 4444Asia Pacifi cAustralia 1 800 629 485 China 800 810 0189Hong Kong 800 938 693India 1 800 112 929 Japan 0120 (421) 345 Korea 080 769 0800 Malaysia 1 800 888 848 Singapore 180****8100T aiwan 0800 047 866 Thailand 1 800 226 008 Europe & Middle EastAustria 43(0)136****1571 Belgium 32 (0) 2 404 93 40 Denmark 45 70 13 15 15 Finland 358 (0) 10 855 2100 France 0825 010 700**0.125 €/minute Germany 49 (0) 7031 464 6333 Ireland 1890 924 204Israel 972-3-9288-504/544 Italy 39 02 92 60 8484 Netherlands 31 (0) 20 547 2111 Spain 34 (91) 631 3300 Sweden 0200-88 22 55 Switzerland 0800 80 53 53 United Kingdom 44 (0) 118 9276201 Other European Countries:/fi nd/contactus Product specifi cations and descriptions in this document subject to change without notice.© Agilent Technologies, Inc. 2013 Printed in USA, March 1, 20135990-4172EN Rev.E。
无创左室压力-应变环定量评估经皮冠状动脉介入治疗患者心肌做功情况
·临床研究·无创左室压力-应变环定量评估经皮冠状动脉介入治疗患者心肌做功情况张鹏英薛婷陈允安任斐袁春苗于明赵静张洁摘要目的探讨无创左室压力-应变环(LV-PSL)定量评估冠状动脉粥样硬化性心脏病(CAD)患者经皮冠状动脉介入治疗(PCI)前后心肌做功的应用价值。
方法前瞻性选取在我院择期行PCI的CAD患者30例(病例组)和同期健康体检者30例(对照组),应用改良双平面Simpson法测量两组左室舒张末期容积(LVEDV)、左室收缩末期容积(LVESV)及左室射血分数(LVEF),于二维斑点追踪超声心动图(2D-STE)心肌自动功能成像模式下评估左室整体纵向应变(GLS),无创LV-PSL评估左室整体做功指数(GWI)、整体有效做功(GCW)、整体无效做功(GWW)和整体做功效率(GWE),比较对照组与病例组PCI术前、术后3d各参数差异;分析GWI、GCW、GWW、GWE与LVEF和GLS的相关性。
结果与对照组比较,病例组PCI术前、术后3d LVEDV、LVESV、GWW均明显升高,LVEF、GLS、GWI、GCW、GWE均明显降低,差异均有统计学意义(均P<0.05);与病例组PCI术前比较,术后3d GWW明显降低,GWE明显升高,差异均有统计学意义(均P<0.05),而LVEDV、LVESV、LVEF、GLS、GWI、GCW均无明显变化。
GWI、GCW、GWW、GWE与LVEF和GLS 均显著相关(均P=0.00)。
结论无创LV-PSL技术可定量评估CAD患者PCI前后左室心肌做功,为准确评价CAD对心肌功能的影响,以及PCI术后短期内心肌功能的恢复效果提供了一种新方法。
关键词左室压力-应变环;心肌做功;冠状动脉粥样硬化性心脏病;经皮冠状动脉介入治疗[中图法分类号]R445.1;R825.4[文献标识码]AQuantitative assessment of myocardial work in patients undergoing percutaneous coronary intervention by non-invasive left ventricularpressure-strain loopZHANG Pengying,XUE Ting,CHEN Yun’an,REN Fei,YUAN Chunmiao,YU Ming,ZHAO Jing,ZHANG JieDepartment of Ultrasound,the Affiliated Lianyungang Hospital of Xuzhou Medical University,Jiangsu222000,ChinaABSTRACT Objective To explore the application value of non-invasive left ventricular pressure-strain loop(LV-PSL)in quantitative assessment of myocardial work before and after percutaneous coronary intervention(PCI)in patients with coronary artery disease(CAD).Methods Thirty CAD patients(case group)who underwent PCI in our hospital and30healthy subjects(control group)were prospectively selected.The left ventricular end-diastolic volume(LVEDV),left ventricular end-systolic volume(LVESV)and left ventricular ejection fraction(LVEF)were calculated by modified biplane Simpson method. The left ventricular global longitudinal strain(GLS)was measured by the two-dimensional speckle tracking echocardiography (2D-STE)myocardial automated functional imaging.The left ventricular global myocardial work index(GWI),global myocardial constructive work(GCW),global myocardial wasted work(GWW)and global myocardial work efficiency(GWE)were assessed by non-invasive LV-PSL.The differences of those parameters were compared between the control group and the case group before and3d after surgery.And the correlations of GWI,GCW,GWW,GWE with LVEF and GLS were analyzed.Results Compared with the control group,the LVEDV,LVESV and GWW of the case group were significantly increased before基金项目:连云港市卫生计生科技项目(201805);连云港市第一人民医院医疗技术扶持项目作者单位:222000江苏省连云港市,徐州医科大学附属连云港医院超声科(张鹏英、薛婷、陈允安、于明、赵静、张洁),心血管内科(任斐);连云港市第一人民医院灌南院区超声科(袁春苗)通讯作者:张洁,Email:**************冠状动脉粥样硬化性心脏病(coronary artery disease,CAD)一直是全球非传染性疾病死亡的主要原因[1]。
stresses and strains 词组
stresses and strains 词组Stresses and strains是工程学和生物医学工程中常用的术语,用于描述物体或生物体在受到外部作用力时的变形和应力的变化。
这些作用力可以来自各种来源,包括重力、压力、摩擦力、冲击力等。
在材料科学中,应力是指物体内部力场的变化,而应变则表示物体形状或尺寸的变化。
在人体生物学中,应力与应变与许多生物机制和疾病相关,因此对它们的研究具有重要意义。
一、应力与应变的基本概念应力是指单位面积上承受的力,通常用希腊字母σ表示。
应变则表示物体形状或尺寸的变化,通常用希腊字母ε表示。
当物体受到外部作用力时,其内部会产生应力,而应力的大小和分布会影响物体的变形行为。
如果应力过大,物体可能会发生破裂或损坏。
相反,如果应力的分布合理,物体可以承受更大的外部作用力而不会发生显著的变形或损坏。
二、应力的来源应力的来源可以来自许多不同的因素,包括重力、压力、摩擦力、冲击力等。
在工程学中,结构设计必须考虑各种因素产生的应力,以确保结构的安全性和稳定性。
在生物医学中,生物体也会受到各种外部作用力的影响,如肌肉收缩、关节运动等,这些都会产生应力。
此外,生物体内的化学反应和细胞生长也会产生应力与应变。
三、应力和变形的测量方法应力和变形的测量方法在工程学和生物医学工程中非常重要。
常用的测量方法包括机械测量法、光学测量法、电子显微镜法等。
在人体生物学中,应力和变形的测量方法通常需要使用特殊的设备和方法,以确保安全性和可靠性。
四、应力和应变与疾病的关系应力和应变与许多疾病的发生和发展密切相关。
在生物力学中,骨骼疾病(如骨质疏松症)和肌肉骨骼疾病(如关节炎)都与应力和应变有关。
此外,生物体内的细胞生长和组织修复也受到应力和应变的影响。
因此,了解应力和变形的变化对于预防和治疗许多疾病具有重要意义。
总之,应力和应变是物体和生物体在受到外部作用力时的基本属性。
了解应力的来源、测量方法以及与疾病的关系对于工程学和生物医学工程具有重要意义。
定量菌株的制备流程
定量菌株的制备流程The preparation of a quantitative bacterial strain is a crucial processin biological research. 定量菌株的制备是生物研究中至关重要的过程。
It involves several steps including bacterial culture, counting, and dilution. 这涉及几个步骤,包括细菌培养、计数和稀释。
The goal is to obtain a known concentration of bacterial cells for further experiments. 目标是获得已知浓度的细菌细胞以用于进一步的实验。
The process requires careful attention to detail and a sterile working environment. 这个过程需要对细节的仔细注意以及一个无菌的工作环境。
Firstly, the preparation of a quantitative bacterial strain begins with obtaining a pure culture of the desired strain. 首先,定量菌株的制备始于获得所需菌株的纯培养物。
This involves streaking the bacteria onto an appropriate agar plate and incubating it under the suitable growth conditions. 这涉及将细菌划线于适当的琼脂平板上,并在适宜的生长条件下培养。
After the pure culture is obtained, the next step is to grow the bacterial culture to the desired cell density. 获得纯培养物后,下一步是将细菌培养至所需的细胞密度。
生理性拉应力通过Nell-1
第 50 卷第 1 期2024年 1 月吉林大学学报(医学版)Journal of Jilin University(Medicine Edition)Vol.50 No.1Jan.2024DOI:10.13481/j.1671‑587X.20240101生理性拉应力通过Nell-1/Ihh信号通路对ATDC5软骨细胞分化的调控作用董紫薇1,2, 齐慧川1,2, 马俊2, 薛晴1,2, 聂瑾涵1,2, 于航1,2, 胡敏1(1. 吉林大学口腔医院正畸科,吉林长春130021;2. 吉林省牙发育及颌骨重塑与再生重点实验室,吉林长春130021)[摘要]目的目的:探讨生理性拉应力对软骨细胞分化的调控作用,并阐明其相关信号通路机制。
方法方法:体外培养软骨ATDC5细胞,应用四点弯曲细胞力学加载仪对其施加生理性拉应力,首先分为对照组和拉应力组(2 000 μstrain/2 h组),另分为不同力值(1 000、2 000和3 000 μstrain)加力时间为2 h和力值为2 000 μstrain不同加力时间(1、2和4 h)组,同时设未加力的细胞为对照组,采用实时荧光定量PCR(RT-qPCR)法检测各组细胞中Ⅱ型胶原(Col-Ⅱ)、Ⅹ型胶原(Col-Ⅹ)、聚集蛋白聚糖(Aggrecan)、性别决定区Y框蛋白9(SOX9)、血管内皮生长因子(VEGF)、增殖细胞核抗原(PCNA)、Nel样1型分子(Nell-1)、Runt相关转录因子2(Runx2)、印度刺猬因子(Ihh)、补缀同源物1(Ptch-1)、GLI家族锌指蛋白1(Gli-1)和刺猬因子相互作用蛋白1(Hhip-1)mRNA表达水平,采用Western blotting法检测各组细胞中Nell-1、Runx2和Ihh蛋白表达水平。
ATDC5细胞分为对照组、环巴胺组、拉应力组和环巴胺+拉应力组,采用RT-qPCR法检测各组细胞中Nell-1、Ihh、Ptch-1、Gli-1和Hhip-1 mRNA表达水平,采用Western blotting法检测各组细胞中Nell-1和Ihh蛋白表达水平。
高灵敏度离子皮肤手指关节角度传感器的设计
Vol.55 No.3Mar.2021第55卷第3期20213西安交通大学学报JOURNAL OF XI'AN JIAOTONG UNIVERSITY高灵敏度离子皮肤手指关节角度传感器的设计倪娜】,薛晓敏2,张陵3,王垠?'.西安建筑科技大学理学院,710055,西安;2.西安交通大学土木工程系,710049,西安;3.西安交通大学航天航空学院,710049,西安;4.西安理工大学工程力学系,710048 ,西安)摘要:为解决柔性传感器监测手指关节运动时灵敏度、测量范围及阈值有限的问题,设计并制备了一种多介电层(3层)结构形式的离子皮肤手指关节角度传感器。
该传感器由多个硅橡胶薄膜和高保水性的离子凝胶电极构成,当穿戴传感器的手指关节弯曲时,根据应变引起其电容信号的变化, 可测得手指关节弯曲角度。
构建多介电层结构形式的离子皮肤应变传感理论模型;推导多介电层离子皮肤手指关节角度传感器的角度传感理论模型;测试传感器输出与手指关节角度关系。
实验结果表明,传感器角度传感理论模型与测试结果吻合较好;传感器灵敏度为单介电层离子皮肤手指 关节角度传感器的3. 5倍,测量范围囊括手指关节从展平到完全弯曲状态角度,阈值小于1°,具有 灵敏度高、测量范围广和阈值低的特性。
离子皮肤多介电层的结构形式及理论模型对康复训练患者及微操纵机械手的精准测量具有较好应用前景。
关键词:康复训练;指关节运动;柔性传感器;离子皮肤;关节角度中图分类号:O39;TP212. 9 文献标志码:ADOI : 10. 7652/xjtuxb202103019 文章编号:0253-987X (2021)03-0164-11OSIDHighly Sensitive Ionic Skin for Measuring Finger Joint AnglesNI Na 1, XUE Xiaomin 2, ZHANG Ling 3, WANG Yin 4(1 School of Science , Xi'an University of Architecture and Technology , Xi'an 710055, China ;2. Department of Civil Engineering, Xi ? an Jiaotong University, Xi'an 710049, China ;3. School of Aerospace , Xi ? an Jiaotong University , Xi'an 710049, China ;4.DepartmentofEngineering Mechanics !Xi 'an UniversityofTechnology !Xi 'an710048!China )Abstract : Aflexiblecapacitivesensorbasedon multi-layer (three-layer )dielectricsisproposedtomeasurefingerjointangle with wide range and low threshold.The sensor consists of silicon rubberfilmsandionicconductors withexce l ent waterretention.Whenafingeradherentthe sensorisbent !thefingerjointanglecanbeobtainedfromthechangeincapacitanceinducedbythestrain.Thestrainsensingprincipleofthesensorisinvestigatedwithexperimentsandtheory. The theoretical model to describe the relationship between input (finger joint angle ) and output(changein capacitance ) is proposed on the basis ofthe strain sensing principle.Then the quantitativerelationshipisverifiedbyexperiments !andtheresultsareinagoodagreementwiththetheoreticalmodel.Theresultsshowthatthesensitivityofthemulti-layersensoris3.5times higherthanthatofthesingle-layersensorcomposedofadielectricandtwoionicconductors !and that this multi-layer sensor has the abilityto measure the angles of the finger joint from straightto fully bended state with a resolution less than 1°. Therefore , this multi-layer sensor has the收稿日期:2020-09-15# 作者简介:倪娜(1987-),女,讲师;薛晓敏(通信作者),女,副教授。
斑点追踪超声心动图在心肌梗死模型大鼠检查中的应用及其意义
斑点追踪超声心动图在心肌梗死模型大鼠检查中的应用及其意义张莹莹;闫媛媛;史海宏【摘要】目的:探讨斑点追踪超声心动图在心肌梗死模型大鼠检查中的意义,阐明斑点追踪超声心动图对鉴定大鼠心肌梗死的可靠性和应用价值.方法:将50只大鼠随机分为假手术组和模型组,每组25只,采用缺血预处理方法建立心肌梗死模型.对2组大鼠进行斑点追踪超声心动图检查,分析心肌缺血后大鼠超声心动图变化,采用Masson染色观察大鼠心脏组织形态表现,计算心肌梗死面积百分率.结果:与假手术组比较,模型组大鼠建模前超声心动图各指标比较差异均无统计学意义(P>0.05).与假手术组比较,模型组大鼠左心室射血分数(EF)和环向应变(CS)、心脏前间隔CS峰值、前壁CS峰值、前侧壁CS峰值、收缩期CS峰值和前壁径向应变(RS)均明显降低(P<0.05),前壁标准化到达CS峰值时间(TTP)明显增加(P<0.05).Masson染色,假手术组大鼠心肌组织无异常改变,未见梗死灶;模型组大鼠心肌梗死面积百分率为(4.52±1.41)%,均位于心脏前壁,为小面积的心肌细胞病变.结论:由斑点追踪超声心动图RS和T T P可确定心肌梗死及其附近区域,可定量检测大鼠心肌梗死部位.斑点追踪超声心动图可用于临床快速诊断心肌梗死及确定梗死面积.【期刊名称】《吉林大学学报(医学版)》【年(卷),期】2019(045)004【总页数】6页(P882-886,后插3)【关键词】斑点追踪超声心动图;心肌梗死;梗死面积;心脏组织形态;大鼠【作者】张莹莹;闫媛媛;史海宏【作者单位】郑州大学附属郑州中心医院超声医学科,河南郑州450006;郑州大学附属郑州中心医院超声医学科,河南郑州450006;郑州大学附属郑州中心医院超声医学科,河南郑州450006【正文语种】中文【中图分类】R445.1心肌梗死是一类由于冠状动脉缺血缺氧引起心肌坏死、最终导致猝死(急性)和心肌重塑(慢性)的疾病,严重威胁人类生命,影响患者生活质量[1-2]。
构造地质学专业词汇
构造地质学专业词汇Chapter 1 Basic Conceptgeometry几何学incline倾斜,斜坡,斜面undeformed无形变的portray描绘reconstruct重建,改造,推想interpretation解释,阐明,口译,通译stratigraphic地层学的bed岩层stratum(pl.strata)岩层bedded成层的bedding层理bedding planes层面formation组deposit存放,堆积,沉淀isopachytes等厚线surface表面,外表,水面diastem沉积暂停期sedimentation沉淀,沉降non-sequence间断不连续faunaltilt.(使)倾斜,(使)翘起discordance不调和,不和volcanogenic火山(生成)的synonymous同义的cessation停止,终止paraconformity似整合,沉积间断outcrop露出地面的岩层disconformity假整合,平行不整合cross bedding交错层理graded bedding粒级层理unconformity角度不整合overstep踏过,逾越,超出...的限度basal基础的,基本的,基部的truncate截去尖端,修剪overstep超覆nonconformity非整合onlap上超、超覆transgression海侵、海进offlap退覆regression海退toplap顶超downlap下超strike走向dip倾角true dip真倾角foliation面理compass bearing罗盘方位azimuth方位,方位角apparent dip视倾角given特定的,假设的stereogram极射(赤面投影)图plunge倾伏角orthogonal直角的,直交的pitch侧倾角clinometer测斜仪structure contour构造等高线form lines形态线form line contour形态等高线isopachyte等厚线borehole钻孔,地上凿洞feather edge尖灭subcrop隐伏露头intersection交叉点outliers外露层topographic地形上的inliers内露层down plunge projection俯瞰倾伏投影diagrammatic图表的,概略的palinspastic复原再造balanced section平衡剖面Chapter 2 Faults and Fracturefracture破裂fault断层joint节理hanging wall上盘cohesion结合,凝聚foot wall下盘dilational calcite方解石aqueous水的,水成的hade断层倾斜余角nomenclature命名法,术语strike-slip fault走滑断层dip-slip fault倾滑断层wrench fault平推断层tear fault平推断层transcurrent fault横推断层heave平错throw落差normal fault正断层reverse逆断层dyke沟,渠,堤坝thrust冲断层lay fault滞后断层sinistral左旋dextral右旋left-lateral左行ritht-lateral右行fault brecci断层角砾brittle易碎的,脆弱的ductile易延展的,易教导的,柔软的fault gouge断层泥flinty坚硬的,强硬的platey streaky有斑点的,有条纹的,容易变的striate有条纹的,有细槽的crush breccia压碎角砾岩cataclasite碎裂岩cataclasis碎裂作用mylonite糜棱岩blastomylonite变余糜棱岩ultramylonite超糜棱岩pseudotachylite假玄武玻璃slickensides擦痕面slickenside striation擦痕groove擦槽,凹槽flexure屈曲,弯曲部分,打褶slickenline擦线slickenfibre擦痕纤维normal drag正牵引nappereverse drag逆牵引synthetic faults次级同向断层,同级断层antithetic faults次级反向断层,相反断层graben地堑horst地垒splay fault入字形、八字形、人字形断层系transfer fault转换断层transform fault转换断层staircase fault阶状断层ramp断坡flat断坪detachment拆离imbricate边缘重叠成瓦状decollement滑脱convergent会聚性的,收敛的piggyback sequence背驮式逆冲顺序overstep sequence超覆式逆冲顺序imbricate zone叠瓦带roof thrust顶板逆冲断层floor thrust底板逆冲断层duplex双层结构horses断片sole thrust基底逆冲断层,冲断层基底活动面fold plunge褶皱倾伏角back thrust背冲,反冲pop-up冲起triangle zone三角带listric fault犁式断层rollever anticline滚动背斜listric fan犁式扇extensional duplex伸展双层构造half-graben半地堑pull-apart basin拉分盆地rift裂缝,裂口,断裂divergent分歧的tabular扁平的,表格式的,平坦的perpendicular垂直的,正交的transtension转换拉伸扭张作用transpression转换压缩扭压作用flower structure花状构造inversion反转positive inversion正反转negative inversion负反转sheet joint(顺)层节理席状节理Chapter 3 Foldsfold褶曲hinge枢纽limb翼hinge line枢纽线cylindrical fold圆柱状褶皱axial plane轴平面fold axis褶轴axial surface轴(曲)面inter-limb angle翼间角neutral fold中性褶皱fold angle褶角wavelength波长inflexion point拐点amplitude波幅fold axial trace褶皱轴迹antiform背形synform向形neutral fold中性褶曲anticline背斜syncline向斜upright folds直立褶皱inclined folds倾斜褶皱overfolds倒立褶皱crest脊trough槽gentle fold平缓褶皱open fold开阔褶皱close fold中常褶皱tight fold紧闭褶皱isoclined fold同斜褶皱fold profile褶曲剖面parallel fold平行褶皱ovthogonal thickness垂直层面厚度concentric fold同心褶皱centre fo curvature曲率中心similar fold相似褶皱chevron fold尖棱褶皱accordion fold棱角褶皱kink band膝折带dip isogon等斜线symmetric fold对称褶皱asymmetruc fold不对称褶皱nonocline等斜vergence倒向parasiteic folds寄生褶皱enveloping surface包络面harmonic folds协调褶皱disharmonic folds不协调褶皱conjugate folds共轭褶皱box fold箱状褶皱polyclinal fold多斜褶皱cylindroidal fold圆柱状褶皱non-cylindrol fold非圆柱状褶皱pericline围斜构造brachyanticline短轴背斜brachysyncline]短轴向斜dome穹窿basin盆地culmination轴隆区depression轴陷区凹陷interference干涉superimpose fold叠加褶皱interferene structure干涉构造dome and basin穹盆(相间) crescent and mushroom新月形,蘑菇形double zigzag双之字buckling纵弯作用bending横弯作用flexural slip弯滑kinking膝折shear zone剪切带slide滑动,滑移Chapter 4 Foliation,Lineation and Fabricfolliation面理beddign folliation顺层面理lineation线理fabric组构cleavage劈理schistosity片理slaty cleavage板劈理fracture cleavage破劈理crenulation cleavage褶劈理solution cleavage溶解劈理penetrative透入性non-pentrative非透入性spaced cleavage间隔劈理gneisose banding片麻状条带gneissosity片麻理tetrahedron[晶]四面体conglomerate聚结mica云母hornblende角闪石mudstone泥岩specimen标本,样品,样本muscovite白云母clay粘土,泥土lensoid透镜状的,透镜状结构aggregate集合体,集合的,聚合的slate板岩slab厚平板,厚片microlithou微劈石hydraulic fracturing水压破裂作用pressure solution压溶stylolite缝合线metamorphic segregation变质析离作用meamorphic defferentiation变质分异作用augen gniss眼球状片麻岩shape fabric形态组构intrafolial fold面理内褶皱rootless intrafolial fold面理内无根褶皱lamination迭片结构elongation lineation伸长线理symmetric相称性的,均衡的asymmetric不均匀的,不对称的nullion structure窗棂构造fissility易裂性,分裂性lithology岩石学,岩性shale页岩,泥板岩limestone石灰石schist片岩augen眼球状体paragneiss副片麻岩orthogneiss正片麻岩Intrafolial folds面理褶皱crenulation cleavage细褶皱劈理mullion竖框,直棂,放射状框Cuspate-lobate folds尖圆褶皱Mineral lineations矿物线理growth anisotropy生长各向异性boudin石香肠boudinage石香肠构造pinch-and-swell肿缩石香肠chocolate-table structure巧克力方盘构造fabric组构homogeneous均匀heterogeneous非均匀stacking fault堆垛层错sub-grain boundary亚颗粒边界undulose extinction波状消光deformation band变形带lattice格子deformation lamellae变形纹deformation twinning变形双晶Chapter 5 Stressdeformation变形geometrical几何学的,几何的force力Confining pressure围压stress应力newton牛顿pascal帕斯卡bar巴kilbar千巴normal stress正应力shear stress剪应力principal stress planes主应力面principal stress axes主应力轴stress axial cross应力轴十字hydrostatic stress静水应力deviatoric stress偏斜应力lithostatic stress静岩压力trajectory轨道、轨线stress field应力场stress fragectories应力迹线Chapter 6 Strainstrain应变dilation体变膨胀度distortion畸变形变homogeneous strain均匀应变inhomogeneous strain非均匀应变extension伸长应变shear strain剪应变elongation伸长度shortening缩短率infinitesimal无限小stretch长度比factor系数strain ellipse应变椭圆principal strain主应变strain ellipsoid应变椭球coaxial strain共轴应变pure shear纯剪切simple shear简单剪切prolate ellipsoid长椭球体Constrictional strainFlattening strain ablate ellipsid扁椭球体progressive deformation渐进变形Prolate ellipsoid扁长椭球体Oblate ellipsoid扁平椭球体coaxial共轴的finite strain有限应变infinitesimal strain无穷小应变growth fibre生长纤维crack-seal mechanism裂隙焊封机制Chapter 7 Stress and Strain in Materialselastic strain弹性应变Hooke's law虎克定律young,s modulus杨氏模量elasticityy弹性compressibility压缩率viscous strain粘度性应变elastoviscons弹粘性plastic塑性yield stress屈服应力viscoelastic粘弹性delayed recovery迟滞回复brittle脆性ductile韧性yield strength屈服强度failure strength破坏强度ultimate strength极限强度confining pressure围压extrapolate外推,推断marble大理石feldspar长石creep蠕变primary creep初期蠕变secondary creep二期蠕变tertiary creep三期蠕变cataclasis碎裂作用grain boundary sliding颗粒边界活动intracrystalling plasticity晶内塑性dislocation glide位错滑移dislocation creep位错蠕变strain hardening应变硬化diffusive mass transfer扩散质量迁移solution creep溶解蠕变pressure solution压溶crystal plasticity晶质塑性superplasticity超塑性coble creep柯勃尔蠕变nabareo-herring creep纳巴罗-赫林蠕变deformation map变形图coldworking冷加工hotworking polygonization热加工多边形化annealing退火Chapter 8 Determination of Strain in Rocksmorphology形态学determination of strain应变测量quantitative evaluation定量估算total strain全应变bulk strain总应变strain trajectory应变迹线strain marker应变标志shaly页岩的ooids鲕粒oolitic limestone鲕粒灰岩spherulite球粒vesicle气泡volcanic rock火山岩reduction spot退色斑spherulite球粒fossil化石recrystallization spot重结晶斑点hornfels角岩concretion结核thin section薄片centre-to-centre method心对心法atypical非典型的deformed conglomerate变形砾石bilaterally symmetrical fossil两侧对称化石strain determination in threedimensions三维应变测量superimposition of strain应变叠加Chapter 9 faulting and stressbrittle failure脆性破坏stress criteria of brittlestrength脆性强度应力准则angle of internal friction内摩擦角Mohr failure envelope莫尔破坏包络线coulomb failure库伦破坏准则diabase辉绿岩dolerite辉绿岩,粗粒玄武岩Griffith failure criterion格里菲斯破坏准则Griffith-murrell failurecriterion格里菲斯-穆雷尔破坏准则slip滑动seismic fault发震断层aseismic fault无震断层stick-slip粘滑focal-plane solution震源面解fault-plane solution断层面解auxiliary plane辅助面Chapter 10 strain in folds and shear zonebuckling纵弯作用tangential longitudinal strain切面纵应变cleavage refraction劈里折射Card-deck sheath fold等鞘褶皱disharmonic fold不谐和褶曲S-C structure S-C构造σ-structureσ构造δ-structureδ构造Stereographic projection Sterographic projection极射赤平投影Orientation方位Projection sphere投影球Great circle大圆Primitive circle基圆Lower-hemisphere projection下半球投影Cyclographic trace圆弧Sterographic net赤平投影网Equatorial plane赤平面Wulff net吴氏网Schmidt net施密特网Equal angual projection等角度投影Equal area projection等面积投影Longitude great circle经线大圆Latitude small circle纬线小圆Diameter直径Pole极点Normal法线Sterogram极射赤平投影图Density distribution密度分布Contour diagram等密图Preferred orientation优选方位Plotted points投点Center counter中心密度计Peripheral counter边缘密度计Pole diagram极点图Point diagram(投)点图。
全尺寸深井钻井模拟装置对钻井技术发展的影响
全尺寸深井钻井模拟装置对钻井技术发展的影响西德尼·格林【摘要】缩短钻井周期是降低深井钻井成本和钻井风险的关键,这需要钻井新技术、新工艺、新材料、新工具的研究与应用,这必然要很大程度上依赖于大量的室内试验.斯伦贝谢Terra Tek钻完井实验室有全球最先进的全尺寸钻井模拟试验装置,在30多年间做了大量的模拟试验,试验结果对钻井技术发展、钻头设计、钻井液体系优选及性能优化起到了积极的促进作用.在介绍Terra Tek全尺寸钻井模拟试验装置的组成及主要功能的基础上,分析了该实验室在美国岩石力学协会钻井论坛、冲击钻井及深井钻井模拟试验中取得的主要成果,并介绍了该实验室在页岩气地层特点、开发技术和井眼稳定等方面取得的研究进展.%Deep-well drilling is essential for oil and gas recovery, and in many ways drives the advancement in energy recovery for unconventional and difficult reservoirs. Furthermore,as the world moves more toward unconventional oil and to gas,more and more reliance is placed on drilling. This is particularly truefor gas,as more length of drilled hole-much greater lengths of drilled hole-will be required for the same amount of BTU's recovered. Drilling is often the key to economic success and risk reduction. Advancements are being made in drill bits,in drilling muds,and drilling techniques. Unfortunately we cannot "see"the drilling operation at great depths,and must rely on experimentation trial-and-error to a large extent.The field drilling is to some extent a "free" laboratory,and indeed advancements are being made via this field laboratory and trial-an-error experimentation. Unfortunately, there are limitations with this approach,and the introduction of newinnovations tends to be slow and limited. However,the Schlumberger TerraTek Drilling and Completions Laboratory offers an opportunity for quantitative measurements that greatly add to the field laboratory observations. The TerraTek Drilling and Completions Laboratory is the most advanced facility in the world for full-scale drilling experimentation, simulating great depths. The TerraTek facility has been operated for nearly three decades and is well recognized for its contributions to drilling advancements. This paper reviews this world recognized facility,and notes some important observations.【期刊名称】《石油钻探技术》【年(卷),期】2011(039)003【总页数】5页(P1-5)【关键词】深井钻井;钻井模拟;页岩钻井【作者】西德尼·格林【作者单位】斯伦贝谢创新中心,犹他盐湖城84108;犹他大学工学院,犹他盐湖城84108【正文语种】中文【中图分类】TE21Drilling is a key operation for the energy industry[1-2].Even though progress is being made on drill bits,drilling muds,and drilling techniques[3-6]①private communications:Rapid excavation program,USAAdvanced Research Projects Agency,1968-1970,USA Dept.ofDefense.②Sidney Green.Recent advancement in understanding deep drilling:Univ.of Utah Metallurgical EngineeringSeminar,Utah,Nov.2008.,new innovations tend to be slow[7].The TerraTek Drilling and Completions Laboratory contributes to drilling advancements by providing quantitative measurements that greatly add to the field laboratory observations[8-10].Drilling instantaneous penetration rate decreases with increasing depth due to increasing rock stress and borehole pressure,and the corresponding affects on rock behavior and chip removal[4].Days from initiation of drilling(from “spudding the well”)are shown horizontally and the depth of the well is shown vertically in reference [5].As the depth increases,the rate of penetration greatly decreases,and can be as low as one or a few feet per hour for some harder-stronger rock formations or for soft shale formations that tend toward bit balling and difficult cuttings removal.It is well know that rocks becomes stronger and show apparent ductile behavior as the stresses increase at greater depths[11]-which contribute to lower penetration rates.This apparent ductile behavior is shown inFig.1,which is a bottom-hole pattern from a TerraTek drilled sandstone under high pressures[4].Thi s was drilled with a roller cone “button” bit,and the bit tooth indentations are clearly visible.Fig.2 shows laboratory instantaneous penetration rate drilling into competent sandstone with a roller cone bit and low weightmud[4,10,12].Obviously,drilling at atmospheric conditions will not simulate deep drilling[13-14].The TerraTek Drilling Research Laboratory has a drilling tower(Fig.3).Full-scale drilling is possible with a rotary table with variable speed control and servo-controlled bit weight to about 500 000 pounds drill stem load(bit weight and pressure vessel pressure load).The mud pump,with about 2000 horsepower variable stroke pumping possible.Mud pressure is “choked” using tungsten-carbide variable control chokes to control borehole pressure to as high as 20 000 psi(using modified fluid ends for the high pressure pumping)[4].The control room is shown in Fig.3,which allows remote operations of bit weight,rotary speed,and mud flow.All data are recorded digitally versus time.This laboratory has been operated since the mid 1970’s,and has conducted thousands of drilling tests.Cylindrical rock samples up to nearly two feet diameter and about five feet in length are sealed with robber jackets(to prevent the confining pressure fluid intrusion).The rock samples are inserted into a wellbore simulator pressure vessel,shown in Fig.4.A ‘polished’ drill shaft is sealed with a double seal system,allowing mud to grease and grease to atmosphere pressure drops.This innovative design has been uses in many,many tests to high pressures and has proven very reliable(The rotary swivel-not shown in detail here-also uses a specially designed seal arrangement to seal pressures up to 20 000 psi mud pressures).Many different drill bits and drill muds have been used in research andengineering programs over the years.Some typical bits of various configurations have been tested,such as roller cone bit,7-blade PDT bit,4-blade PDT bit,impregnated diamond bit[10].The TerraTek drilling laboratory has made a significant contribution to the development of drill bits.First,with the development of roller cone milled tooth and tungsten carbide insert bits [4].TerraTek tested new seals and lubricants,new bearing designs,new high-temperature metals for geothermal drilling,and improved tungsten carbide inserts.For the PDC fixed cutter drill bits,TerraTek was a major contributor in the development.In the early stages of PDC cutter development in the 1970-1980’s nearly all newly developed PDC bits were test drilled at TerraTek [10].New designs of PDC cutters continue to be tested at TerraTek.Equally for drilling muds,TerraTek has been a laboratory to quantitatively define mud designs and mud additives on instantaneous penetration rates in various rocks[12].The deep-well drilling simulations have been invaluable in the development of novel drilling considerations[15].For examples,vibration drilling,high mud pressure jet drilling[16],spark drilling,cavitating drilling enhancement,down-hole chain cutter bits,bullet enhanced drilling,offset non-centered bits,conical reamers,particle drilling(“Particle Drilling” is a commercial product),hammer drilling,mud-hammer development,ultra high-speed drilling,thermal spalling drilling,rock melting drilling,and even rocket-motor drilling are some of the novel designs tested in the TerraTek Drilling and Completions Laboratory[17-18].ARMA Forum The American Rock MechanicsAssociation(“ARMA”)Drilling Forum brought together experts from mining,civil engineering,tunneling,geothermal energy recovery,and oil and gas recovery[19].This was a review and update from the USA National Research Council,“Drilling for Energy Resources”,1976Report[13](Chaired by Sidney Green)and the follow-on report “Drilling and Excavation Technologies for the Future”,1994 Report[14].The conclusions[19] from the ARMA Forum are:1)rock destruction,which include “drilling”/rock breaking,power to bit/cutters(like motors),drilling fluids,instrumentation on bit/cutter;2)borehole or excavationintegrity;3)look ahead of drilling/mon drilling related technologies from different industries emerged during the Forum.The benefit of each specific industry drawing on another industry’s technology became quite clear.These conclusions shown in the “Summary From Forum” are most worthy of considerat ion.Impact Drilling The benefits of impact drilling-hammer drilling-for deep well drilling have been considered since work in the 1960’s[3],and have most recently been considered as more reliable mud hammers have become available[9].The Society of Petroleum Engineers paper with senior author Sidney Green is in reference [20].The nature of the rock destruction is shown schematically in Fig.4(taken from the reference[20]).Clearly there is substantial difference between roller cone bit drilling and fixed cutter bit drilling.Hammer drilling has been considered using “button” bits(i.e.bits with tungsten carbideinserts as cutters),illustrated on the left side of Fig.5.However,recent work is being performed to consider hammer drilling with unconventional PDC fixed cutter bits,illustrated on the right side of Fig.5.Historically PDC fixed cutter bits have not had sufficient toughness to withstand the impact of the hammer drilling.New PDC designs and tougher PDC materials may provide some opportunity for hammer drilling with PDC cutters. Conclusions from the program[20] are:1)improvements require better understanding of rock breakage and chip removal under impact loading;2)pressure and strain rate significantly increase the required impact load to reach the DCF force;3)first stress wave seems to contributes most of the rock breakage;4)impacts that exceed the DCF are critical-higher impacts are primarily wasted energy-increased blow rates are more effective.Deep Drilling Challenges The TerraTek Drilling and Completions Laboratory several years ago completed a major program for the USA Department of Energy with joint-industry support,on ultra-deep drilling [5,10].The results are noted in reference[5].Dr.Arnis Judzis was senior author in this presentation with other participants,including Sidney Green. For the Deep Drilling Performance program,TerraTek conducted drilling tests to over 10 000 psi borehole pressures.This was the first time such full-scale,high pressure tests had ever been conducted in thelaboratory.Various drilling fluids were considered,including Cesium Formate,water based and oil based conventional muds,and clear mineral oil.The test program was conducted over about three years and cost inexcess of three million USA dollars.The deep drilling challengesare[5]:1)rock strength increases with increased pressure at depth;2)rocks become more “ductile” and bit balling tendencies increase;3)high overbalance(borehole pressure -pore pressure)results in greater chip hold down;4)high density increased viscosity,lower spurt-loss fluids are required;5)chemical effects of fluid-rock interaction at high-pressure and high-temperature are not understood.Fig.6 shows drilling results from the program[5].The horizontal axis shows borehole pressures and the vertical axis shows the instantaneous penetration rate for specific weight on bit,RPM,and mud flow conditions.The presentation here is intended to show the trend;more details are available in the paper.Tight shale gas and oil recovery are a proven opportunity that clearly will have a major impact on world energy.Drilling continues as a major cost,and drilling advancements will play a major role in providing sustainability.Nearly all tight shale wells are horizontal,with long horizontal sections.Multi-laterals drilled from the same drill pad are a reality,and offer a smaller environmental footprint as well as potential cost reduction.For tight shales drilling,the issue is typically cost reduction,not cutting the rock faster for well drilling.Technology advancement will continue to be the key to cost reduction.Rock Formations Tight shales are well cemented mudstone/siltstone formations of very fine grain size and relative high clay content.The clays are generally quite mature,and hence the rock does not exhibit problemsof more conventional shale drilling,including bit balling and problems of cuttings removal from the bit face.The tight shales are not conventional “shale” drilling.The formations tend to be both vertically and horizontally heterogeneous and anisotropic(in terms of stiffness parameters and strength).Borehole stability problems tend to be minimal,with primary concern in the angle build region as the drilling progresses from vertical tohorizontal.Anisotropic borehole analysis clearly shows that the angle build is the highest stress region for borehole breakout,as opposed to the horizontal section③Private Communication,Jeff Lund./Head,Drilling & Completions Laboratory,Schlumberger TerraTek,2011..Operators have experimented with short radius and long radius angle build.Most drilling uses long radius drilling to facilitate later completionprocedures(i.e.casing,cementing,logging,perforating,and fracturing).New Technologies Drilling guidance is extensively used to land the horizontal section at the proper horizon,and to maintain the drill hole within a designated zone.Most shale wells are rotary steered,and design of the optimum drill bit for rotary steerable drilling tends to be the key bit concern.Rotary steerable drilling is relatively new,a little over a decade old,and bits have moved from downhole motor drilling to rotary steerable drilling bits.Shales drill relatively fast,upwards of one hundred feed per hour penetration rates.The banking of cuttings in the horizontal section is an issue,and cuttings circulation from the horizontal section is often of concern-rotary drilling assists better cuttings removal by tending toremove the cuttings banks that may form in the horizontal hole.Generally weight on bit is not a problem,even for long horizontal sections;PDC fixed cutter bits tend to cut the shales quite well.Premium PDC cutters are typically used,and drill bits typically will drill the entire horizontalsection(five thousand feet or more).Nearly all bits are rented④Private Communication,Roberto Suarez-Rivera,Schlumberger Innovation Center and Chai Deendayalu,Schlumberger TerraTek,2011..Logging while drilling is rapidly advancing;horizontal borehole characterization is difficult as conventional logging is seldom performed because of the risk of logging tool loss or damage.A few horizontal coring runs have been made,with conventional drill-pipe rotary coring.More emphasis is being placed on cuttings analysis,and new technology is being developed to provide larger rock samples as well as better cuttings depth location.Sidewall coring has not yet advanced to horizontal sections. Shale Drilling Borehole Issues Quality of the borehole is important,and lower vibration drill bits are continually being pursued.Water based drilling muds would be environmentally desirable,but oil based muds tend to provide complete borehole stability even in delicate formations and even in the angle build region.Drilling induced borehole fractures do occur,and are an issue.Such drilling induced fractures can make log interpretations difficult or impossible for mapping formation fractures.New innovations may lead to seismic-while-drilling in order to characterize the formations some distance away from the borehole;however,no such seismic-while-drilling is currently known.Well construction costs can exceed one hundred million dollars for a single well in some cases,while in other cases the cost may be only one or a few million dollars but still result in the largest percent of the total cost to drill,complete,and bring a well onto production.And even more importantly,is the risk associated with drilling time-shorter drilling times invariably leads to lower risks.Drilling is critical from a cost point of view and from a risk point of view.Tests at the TerraTek Drilling and Completions Laboratory have been shown to closely simulate field drilling.The tests give quantitative results to augment the field observations,and have made major contributions to drilling boratory full-scale,deep drilling simulation tests are very important for further advancements of drilling.TerraTek recent tests have shown that the role of the drilling mud is not well understood.Rock-fluid interaction overall is not well understood and may be a primary consideration in further understanding the role of drilling muds.Drilling required for tight shale gas and oil recovery is a major cost and is critical for advancing the technology.Rock cutting(i.e.the instantaneous penetration rate)is generally not an issue,but borehole location(nding the horizontal borehole),building angle without borehole stability problems,staying within desired geology,and providing a clean borehole are critical.And,most importantly,environmental considerations are extremely critical.Multi-laterals drilled from the same vertical well and drilling pad,longer horizontal sections,environmental satisfactory drillingfluids,and less air pollution during drilling are all critical.The author would like to note others that have contributed and are involved in the TerraTek Drilling and Completions Laboratory.Mr.Alan Black,now retired from the Schlumberger,TerraTek Drilling and Completions Laboratory,was the head of the group for many years while much of the work was performed over the past three decades;he has much knowledge and experience with the laboratory development and the work mentioned herein.Mr.Black was continually involved with the drilling laboratory development and operations,and has published widely results from the laboratory’s operations.Dr.Arnis Judzis,Vice President of TerraTek,a Schlumberger company,has published widely in the drilling area,including Drilling and Completions Laboratory work over the past decade.Prior to this,he was involved for over two decades in drilling activities for a large producer.Mr.Jeff Lund is the current Division Head of the TerraTek Drilling and Completions Laboratory and has much experience with drill bit and drill cutter design and manufacturing.He was previously associated with both a major drill bit manufacturer and a PDC cutter manufacturer.Thanks are given to Dr.Shu Jiang,Univ.of Utah Energy & Geoscience Institute,who was very helpful in the presentation of this paper.He is recognized in the area of tight shale geology,and in currently involved with basins geology analysis,petroleum systems and with basins modeling.【相关文献】[1] Sidney Green.Lower costs are essential for deep oil well drilling:ASME-OMAE,San Diego,A,Jun.11,2007[C].[2] Stephen Willson,Ken Armagost.Drilling & Completions-Striving for the Par-5 “Hole in One”[J].JPT,2004,56(5):34-36.[3] Sidney Green.Rock fragmentation workshop[R].USA National Science Foundation,Report NSF 256-1976,Snowbird,Utah USA,1976.[4] Walker B H,Black A D,Klauber W P,et al.Roller-bit penetration rate response as a function of rock properties and well depth[R].SPE 15620,1986.[5] Arnis Judzis,Ronald G Bland,David A Curry,et al.Optimization of deep drilling performance:benchmark testing drives ROP improvements for bits and drillingfluids[R].SPE 105885,2007.[6] Judzis A,Boucher M,Mc Cammon J,et al.Investigation of smaller-footprint drilling system:ultra-high rotary-speed diamond drilling has potential for reduced energy requirements[R].IADC/SPE 99020,2006.[7] Sidney Green.Future technology:whose job is it?:SPE AnnualMeeting,Dallas,Texas,USA,Oct.,2005[C].[8] Alan D Black,Ronald G Bland,David A Curry,et al.Optimization of deep drilling performance with improvements in drill bit and drilling fluid design[R].IADC/SPE 112731,2008.[9] Gordon A Tibbitts,Roy C Long,Brian E Miller,et al.World’s first benchmarking of drilling mud hammer performance at depth conditions[R].IADC/SPE 74540,2002. [10] Sidney Green,Arnis Judzis.Recent advancements in understanding deepdrilling:presented at Louisiana State University,Baton Rouge,Louisiana USA,Nov.,2008[C].[11] Sidney Green.Experimental techniques for rock properties characterization:University of Utah,Mechanical Engineering Seminar,Salt Lake City,Utah,USA,Jan 25,2010[C].[12] Black A D,Dearing H L,O’Brien Goins,et al.Effect of pore pressure and mud filtration on drilling rates in a permeable sandstone[J].JPT,1985,37(9):1671-1681.[13] Sidney Green.Drilling for energy resources[R].USA National Academy of Engineers,Report NAE E-155-1978.[14] Neville Cook.Drilling and excavation technologies for the future[M].WashingtonD.C.:National Academy press,1994,NRC 2256.[15] Sidney Green.Ultra-deep drilling simulator[R].Morgantown,WV:Contract PI,USA Dept.of Energy,NETL,2007.[16] David Summers.Water jet rock cutting[R].Oxford,UK:Oxford University Press,1974.[17] William C Maurer.Novel drilling techniques[M].Oxford,New York:Pergamon Press,1968.[18] William C Maurer.Advanced drilling techniques[M].TX,USA:Pergamon Press,1980.[19] Sidney Green.An inter-discipline,inter-industry search for common knowledge:American Rock Mechanics Association:Drilling TechnologyForum,Chicago,Illinois,USA,Sept 13-14,2007[C].[20] Sidney Green,Judzis A,Curry D,et al.Single cutter impact tests investigate deep-well hammer-drilling performance[R].SPE 97173,2005.。
测控技术与仪器专业英语单词句子整理 (1)
1.acquisition of information 信息采集2.object of measurement 测量目标3.measurand 被测物理量,被测对象4.measurement result 测量结果5.qualitative measurement 质量测量6.quantitative measurement 数量测量7.measurement process 测量过程8.theorem 定理,法则9.hypothesis 假说,假设,学说10.single-value 单值11.monotonic function 单调函数12.measurement constitute 测量组成13.physical quantity 物理量14.electrical potential difference 电势差15.electrical current 电流16.electrical resistance 电阻17.capacitance 电容18.inductance 感应系数19.frequency 频率20.mutual induction 互感21.thermostat 自动调温器22.parasitic quantity 寄生量,附加量23.random errors 随机误差24.systematic errors 系统误差25.OSP oscilloscope 示波器26.rms root-mean-square 均方根27.quantitative data 定量数据28.qualitative data 定性数据29.empirical data 经验数据30.processed data 已处理过的数据31.theoretical calculations 理论计算32.theoretical model 理论模型33.data processing 数据处理34.data reduction 数据简化35.measurement strategy 测量策略36.frequency spectrum 频谱37.coherent sampling 相干采样38.amplitude distribution function 振幅分布函数39.multiplex 多路操作40.inaccurate calibration 不准确的刻度41.mismatched impedance 不匹配的阻抗42.response-time error 反应时间误差43.histogram 直方图,柱状图,矩形图44.observational data 观测数据45.descriptive statistic 描述性统计46.statistical inference 统计性推论47.distribution of value 数据分布48.sample mean 样本均值49.performance check 性能检查50.tolerance limit 公差极限51.lower range limit 范围下限52.upper range limit 范围上限53.dead band 死区54.measured variable 被测变量55.sinusoidal signal 正弦信号56.amount of drift 漂移量57.recovery time 回复时间58.saturation effect 饱和效应59.zero drift 零点漂移60.sensitivity drift 敏感性漂移61.static characteristics 静态特征62.hysteresis 滞后现象63.tabular form 表格形式64.graphical form 图解形式65.controller 控制器66.sensor 传感器67.closed-loop 闭环68.open-loop 开环69.feedback 反馈70.regulator system 调节器系统71.follow-up system 随动系统72.actuator 执行器73.numerical control 数值控制74.batch control 批量控制75.sequential control 连续控制76.time-sequential control 时间顺序控制77.event-sequential control 事件顺序控制78.block diagram 方框图79.phase difference 相位差80.phase angle 相位角81.direct current 直流82.frequency response 频率响应83.control mode 控制模型84.proportional mode 比例模型85.integral mode 积分模型86.derivative mode 微分模型87.manual control 手动控制88.external signal 外部信号89.on-off control 开关控制90.bumpless transfer 无扰动切换91.pattern recognition 模式识别92.tagging of instrument 仪器标志93.general instrument symbol 通用仪器标志94.control valve 控制阀95.level transmitter 液位变送器96.maintenance tracking 跟踪维护97.material handling 原料处理puter-assisted simulation 计算机辅助仿真99.hierarchical structure 递阶结构,层次结果100.myriad clone 大量复制101.relay 继电器102.Boolean programming method 布尔编程方法103.LCD liquid crystal display 液晶104.internal register 内部寄存器105.arithmetic unit 算术单元106.logic unit 逻辑单元107.operation manual 操作指南108.system integrator 系统集成器109.industrial relay 工业继电器110.system expansion 系统扩展er manual 用户手册puter analysis 计算机分析113.power assist 辅助动力114.master control 主控制115.process progress 进程patibility 兼容性munication standard 通信标准118.ISO international standards organization 国际标准化组织119.OSI open systems interconnection 开放式系统互联munication network architecture 通信网络层munication sophistication 通信混合系统122.allowable bandwidth 允许的带宽123.fieldbus 现场总线124.interoperability 互用性,协同工作的能力125.distributed real-time system 分布式实时系统126.pyramidal model 金字塔模型127.operational architecture 操作体系结构128.horizontal traffic 水平通信129.vertical traffic 垂直通信130.robustness 鲁棒性131.QoS quality of service 服务质量132.A TC air traffic control 空中交通管制133.barometric 大气压力134.altermetry 测高学135.troposphere 对流层136.galaxy 银河系137.luminous flux 光通量138.pupil 瞳孔139.retina 视网膜140.acceleration 加速度141.velocity 速度142.temperature 温度143.gravitational 重力的144.impedance 阻抗,全阻抗145.hybrid 混合物146.strain 过度疲劳,紧张,张力,应变147.thermometer 温度计,体温计148.calibrate 校准149.bandwidth 带宽150.mapping 映射,绘制……地图,计划151.lubricating oil 润滑油152.heuristic 启发式的153.parameter 参数,参量154.spectrum 光,光谱155.vibration 振动156.collision 碰撞,冲突157.phase 相位158.encoding 译码器,编码器159.decoding 解码器160.multiplexing 多路技术161.protocol 协议,草案162.truckline 主干163.duplex 双工164.router 路由器165.gateway 网关166.interact 互相作用,互相影响167.stack 栈,堆栈168.CIM computer integrated manufacturing 计算机集成制造169.PC personal computer 个人电脑170.PLC programmable logic controller 可编程逻辑控制器171.I/O input/output 输入/输出172. CNC computer numerical control 计算机数字控制系统173.CRT cathode ray tube 阴极射线管174.CPU control processing unit 中央处理器175.DC direct current 直流176.AC alternating current 交流177.ASCII American standard code for information interchange 美国信息交换标准码178.IEC international electro technical commission 国际电工委员会179.MAP manufacturing automation protocol 制造自动化协议180.SDS smart distributed system 分布式智能系统181.signal transducer 信号变送器182.temperature transducer 温度变送器183.flow transmitter 流量变送器184.pressure transmitter 压力变送器1.In the following, we will define measurement as the acquisition of information in the form of measurement result,concerning characteristics, states or phenomena (the measurand) of the world that surrounds us, observed with the aid of measurement systems (instruments).在下文中,我们将测量定义为以测量结果表现形式的信息采集,包括周围世界的性质,状态、现象(被测量)通过测量系统观察获得。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Materials Science and Engineering B124–125(2005)118–122Quantitative strain and stress measurements in Ge/Si dual channelsgrown on a Si0.5Ge0.5virtual substrateN.Cherkashin a,∗,M.J.H¨y tch a,E.Snoeck a,A.Claverie a,J.M.Hartmann b,Y.Bogumilowicz ca CEMES-CNRS,29rue J.Marvig,31055Toulouse,Franceb CEA-DRT,LETI/D2NT,CEA—GRE,17avenue des Martyrs,38054Grenoble Cedex,Francec STMicroelectronics,850rue Jean Monnet,38921Crolles Cedex,FranceAbstractThe incorporation of compressive strained Ge/tensile strained Si bi-layers in the active regions of MOSFETs is a promising route for creating ultimate Si-based devices due to the considerable increase of the mobility of spatially confined holes/electrons.The main challenge in device application is to be able to control and manipulate strain within such thin layers.This paper reports on quantitative measurements of strain in a structure consisting of a8nm Ge/5nm Si heterostructure grown by chemical vapour deposition on top of a relaxed Si0.5Ge0.5buffer layer. Geometric phase analysis of high resolution TEM images is used to measure the strain within Ge and Si layers.The in-plane stress within each layer is deduced.Experimental results are compared with the predictions of elasticity theory and discussed in terms of effect of defect formation.©2005Elsevier B.V.All rights reserved.Keywords:Heterostructures;MOSFETs;Quantitative;Strain1.IntroductionThe incorporation of materials such as SiGe in the active regions of MOSFETs is a promising route for creating ulti-mate Si-based devices[1].By growing compressive strained Ge/tensile strained Si bi-layers on Si1−x Ge x virtual substrates, the mobility of spatially confined holes/electrons is consider-ably increased[2,3].Indeed,strain determines the alignment of energy bands at the interfaces thus influencing the confinement energy of electrons and holes in quantum wells.Strain modifies the local crystal symmetry and consequently allows the possibil-ity of influencing the recombination rates of electrons and holes in device structures.The main challenge with such complex het-erostructures is to be able to control and manipulate strain within each layer.Any strain relaxation(induced by defect generation,sur-face corrugation[4–6],diffusion through interfaces and etc.) would cause carrier delocalization and mobility loss,leading to severe degradation of device performance.It is therefore essen-∗Corresponding author.E-mail address:nikolay@cemes.fr(N.Cherkashin).tial to develop a method giving quantitative information on strain within nanometer thick layers.Existing strain measurement techniques like X-ray diffrac-tion and micro-Raman spectroscopy[7]have spatial resolutions on the orders of microns that restricts their application.On the other hand,convergent-beam electron diffraction(CBED)com-bined with the very small electron probe has proved versatile for analyzing strain in nanoscale devices[8].However,this method provides only discrete measurements of strain from point to point and often needs complicated simulations to interpret results. Geometric phase analysis(GPA)of high resolution transmission electron microscopy(HRTEM)images overcomes these limita-tions with direct mapping of continuous strain distributions and comparatively simple analysis[9,10].Here,we report on quantitative measurements of strain by means of GPA in a structure consisting of a8.5nm Ge/5.1nm Si bi-layers grown by reduced pressure chemical vapour deposi-tion(RP-CVD)on top of a relaxed Si0.5Ge0.5buffer layer.GPA consists in measuring the displacement of the crystalline lattice across the layers,compared with the reference Si0.5Ge0.5buffer layer,by Fourierfiltering of a cross-sectional HRTEM image. The in-plane stress within each layer is deduced.Experimen-tal results are compared with the elasticity theory predictions0921-5107/$–see front matter©2005Elsevier B.V.All rights reserved. doi:10.1016/j.mseb.2005.08.054N.Cherkashin et al./Materials Science and Engineering B124–125(2005)118–122119and discussed in terms of defect formation.Particular attention is paid to the characterisation of defects within these layers by weak beam TEM imaging.2.Experimental detailsThe Si0.49Ge0.51virtual substrate was grown by RP-CVD at 850◦C and consists of,starting from the Si(001)substrate, a5m-thick SiGe layer with a Ge content gradually increas-ing from a few%to51%,a0.8m-thick relaxed Si0.49Ge0.51 layer.After some polishing,a8nm c-Ge/5nm t-Si bi-layer was deposited on top(see[11]for more details).TEM samples were prepared for cross sectional(CS)imaging along the[110]directions and for plan-view(PV)imaging along the[001]directions using the standard techniques involving mechanical grinding followed by ion milling.Different TEM methods were used for characterising the structure:(1)Weak beam darkfield(WBDF)imaging with g=2–20and004in(110)CS and(001)PV was used to visualize extended defects[12].(2)Bright Field Off-Bragg imaging was used to distinguish thelayers of different Ge contents(SiGe,Ge,Si,oxide)[13].For this,the specimen was tilted away from the zone axis keeping the interface planes parallel to the electron beam.(3)HRTEM was performed to image the atomic columns in thestructure and thus identify the defect structure,measure the interface roughness and deduce the in-plane stress within the Ge and Si strained layers[9,10].A Jeol2010operating at200keV was used to acquire images using techniques(1)and(2).A CM30Philips operating at 300keV was used for HRTEM related work(3).Fig.2.Off Bragg BF images showing the near surface region.3.Results and discussionA typical WBDF image of the structure is presented in Fig.1a.A dislocation network is seen extending from the Si substrate and up to5m.Dislocations are either parallel(see Fig.1,marked by white arrows)or perpendicular to the electron beam direction [110](see Fig.1,marked by black arrows).The upper position of the dislocation network has been extracted from the positions of the dislocations parallel to the electron beam(see Fig.1b) which probability to be“seen”does not depend on the TEM specimen thickness.From such measurements it can be deduced that the graded layer where dislocations stand is roughly5m-thick.Meanwhile,the crystalline part free of defects on top including the relaxed constant composition Si0.49Ge0.51layer and the c-Ge/t-Si bi-layer is of about0.8m thick.Fig.2is an off-Bragg BF image showing the top layers of the sample.In this image,the darker the layer,the larger the Z and/or the atomic density.From this image the different layer thickness can be measured with an accuracy of about0.5nm.The thickness of the Ge strained layer,the Si strained layer andthe Fig.1.WBDF images showing the depth-distribution of dislocations within the graded SiGe layer.Dislocations ending at the TEM specimen surface are marked by white arrows.Dislocation lines lying within the image plane are marked by black arrows.(a)Overall structure of the sample and(b)upper region of the dislocations network.Note that only parallel dislocations are seen in the upper part of the image.120N.Cherkashin et al./Materials Science and Engineering B124–125(2005)118–122Fig.3.WBDF image showing defects at the SiGe/Ge*interface. native oxide are8.5,5.1and1.7nm,respectively.The interfaces areflat(±0.5nm range)except around defects.WBDF images of the near surface area(Figs.3and4)of the sample show that there are defects within the strained layers.A small number are dislocation loops pinned at,or close,to the SiGe/Ge strained layer interface(Fig.3).Stacking faults are also observed in the Si strained layer(see Fig.4a)and originate from the Ge/Si interface.The structure of these defects has been unambiguously determined by HRTEM(see Fig.4b)and PV (001)WBDF imaging(Fig.5)as being mostly{111}half-loops with dislocation ends at the surface.The density of{111} stacking faults in the Si strained layer seems to be considerably higher than that of dislocation loops at the SiGe/Ge strained layer interface.The size of such defects varies from5to60nm and the surface density is about6×1010cm−2.No misfit dislocations are detected in the50m2area.It is interesting to note that the interstitial defect located within the tensile Si layer helps relax the strain in this layer through the projection of its Burgers vector(1/3[111])onto the interface plane.The occurrence of such defects leads to local distortions of the matrix and to“bulbs”on the surface.Strain measurements are obtained from images such as Fig.6a following the GPA method[9,10].From a Fourier transform of HRTEM micrograph,two[1–11]and[−111]Fig.5.WBDF(001)PV image with g=220showing high density of dislocation half-loops(see the insertion)marked by arrows.reflections are chosen to reconstruct two phase images, P g(r)=−2πg.u(r),with g1=[002](Fig.6b)and g2=[−220] (Fig.6c)and u(r)the displacementfield.Taking the Si0.5Ge0.5 lattice as the reference(P g(r)=0),the phase image,P g(r),gives the component of the displacementfield,u(r),in the direction of the reciprocal lattice vector,g.A gradient in the phase parallel to g indicates a change in the local lattice parameter.The intensity profile in the[002]phase image and across the SiGe/Ge*/Si*structure,P g1(r),normalized by2π,is shown in Fig.6b(note that P g1(z)phase image was unwrapped to over-come0/2πphase jump).As seen in Fig.6b,the phase shift linearly decreases from0(region I,SiGe/Ge*interface)down to−0.7(region II,Ge*/Si*interface).It then changes slope and linearly increases up to−0.2(region III,Si*/surface oxide inter-face).Such a phase gradient reflects the homogeneous expansion and compression of the Ge*and Si*lattices in the z direction, respectively.In turn,linear slopes indicate a negligible effect of strain relaxation in the direction[110]parallel to the elec-tron beam that might appear at thin regions of a TEM specimen (typically within20–50nm range).Indeed,one would expect to observe non-linear behavior of P g1(z)if such strainrelaxation Fig.4.(a)WBDF image showing{111}stacking faults and(b)HRTEM image of a(111)stacking fault originating from the Ge*/Si*interface.N.Cherkashin et al./Materials Science and Engineering B124–125(2005)118–122121Fig.6.(a)original HRTEM image,(b)Phase shift image P g1(z),g1=[002]with intensity profile across the structure,(c)Phase image P g2(z),g2=[−220].has occurred as the effect should become more pronounced at a longer distance off the interfaces.The structure SiGe/Ge/Si is self-prevented from a relaxation due to the fact that tensile Si tends to shrink while compressive Ge tends to expand in the[110]direction thus leading to the preservation of bi-axial strain even at thin regions of a TEM specimen.The phase imageP g2(z),g2=[−220]is presented in Fig.6c.The brighter con-trast in the image of the Ge*layer in comparison with the SiGe matrix reflects that the in-plane lattice parameter is somewhat larger in Ge*than in the SiGe layer.This shows that partial relaxation of the Ge*layer has occurred,probably because of the defects at the SiGe/Ge*interface.The[002]phase profile across the SiGe/Ge*/Si*structure, P002(z)shown in Fig.6b can be used to obtain the strain com-ponentSiGe relative to SiGe[9,10]:εSiGe zz =c Ge∗,Si∗−a SiGe=−a SiGe∇z P0024π(1)where c Ge∗,Si∗is the lattice constant of Ge*or Si*in the[001] direction,a SiGe is the lattice constant of Si0.49Ge0.51and∇z P002 the phase gradient along[001].The map of the strainεSiGezz calculated from the local phasegradient is shown in Fig.7.It is seen that in the z,i.e.the [001]direction,the Ge*layer is under expansion(average valueεSiGe zz =+2.8%)while the Si*layer is under compression(aver-age valueεSiGezz =−3%).There is also a difference in abruptness between the two inter-faces.The Ge*/Si*interface appears sharp(in terms of strain) while the SiGe/Ge*interface is slightly smoother.εSiGe xx would be zero if no relaxation had occurred in the layersand is very small here.From theεSiGezz andεSiGexxcomponents measured by the GPAmethod,we can calculate the strain componentsεSi xx,εGe xx,εSi zz,εGe xx of the strained layers given by:εSi∗,Ge∗xx =a Ge∗,Si∗−a Si,Gea Si,Ge=a SiGe−a Si,Gea Si,Ge(2)εSi∗,Ge∗zz=c Ge∗,Si∗−a Si,Gea Si,Ge=(εSiGezz+1)εSi∗,Ge∗xx+εSiGezz(3)and the in-plane stressesσGe11andσSi11given by:σSi,Ge11=c Si,Ge11εSi∗,Ge∗xx+c Si,Ge12(εSi∗,Ge∗xx+εSi∗,Ge∗)(4)where c Ge12=4.4×1010Pa,c Ge22=12.6×1010Pa,c Si12=6.4×1010Pa and c Si12=16.6×1010Pa are the elastic constants of GeandSi.Fig.7.Strainfield image,εSiGezz,with the SiGe lattice as a reference,togetherwith the profile drawn across the interfaces.122N.Cherkashin et al./Materials Science and Engineering B124–125(2005)118–122 Table1Experimental and theoretical results of strain and stress calculationAA Ge SiεGe xx(%)εGe zz(%)εGe11(GPa)εSi xx(%)εSi zz(%)εSi11(GPa)Experimental−1.5+1.1−2.15+1.3−1.0+2.3Theoretical−2.0+1.4−2.79+2.1−1.6+3.78The following values have been used for the lattice parame-ters a Si=0.5431nm,a Ge=0.5.658nm,a SiGe=0.5545nm.Thelattice parameter of Si0.5Ge0.5was calculated using Vegard’slaw[3].These data can be compared to predictions from the elasticitytheory assuming that no relaxation has occurred in the strainedlayers.The theoretical value ofεSi∗,Ge∗zzis given by:εSi∗,Ge∗zz =−2c12c22εSi∗,Ge∗xx(5)The results of the measurements together with these theoretical values are presented in Table1.The in-plane stress measured within the Ge*layer is less than the theoretical value for no relaxation.This is a clear indication that the Ge*layer is slightly relaxed and might be related to the presence of some defects at the SiGe/Ge*interface.In turn,the in-plane lattice param-eter of Ge*is somewhat larger than that of Si0.5Ge0.5.This should lead to an increase of the in-plane stress within the Si* layer and,consequently,increase the probability of defect cre-ation.This is indeed observed,as the stress values measured in Si*are less than expected for no relaxation and the Si*layer contains dense array of half-loops.This stress increase is how-ever apparently not compensated by the defects seen in the Si* layer.Although the SiGe surface was polished before Ge deposition [11],few defects seen at the SiGe/Ge*interface(see Fig.3)could be created due to residual roughness of the SiGe surface(Fig.2, marked by an arrow).Meanwhile,as the Ge layer surface is always found to beflat(Fig.2),it is tempting to propose that due to the compressive stress within the Ge*layer being less than the tensile stress within the Si*layer,{111}stacking faults are formed during Si deposition.The lattice of the underlying Si0.49Ge0.51buffer layer causes the contraction of the in-plane Ge lattice equal to the expansion of the in-plane Si lattice.This would lead to an ideal compensa-tion of the compressive in-plane stressσGe11by the tensile stress σSi11,thus giving:σGe11+σSi11=0(6) only if the elastic constants of Si and Ge were the same.As c12,c22are different for Ge and Si,this equilibrium does not occur for a buffer layer of Si0.5Ge0.5.This should happen for a particular Ge content x which we have determined from eq.6 and4by calculation a SiGe.We have found that if x is less than 42.5%then the Ge*layer will be more stressed in compression than the Si*layer is stressed in expansion(σGe11>−σSi11).The opposite situation is observed if the Ge content is larger than 42.5%(σGe11<−σSi11)as we experimentally observed(Table1). Thus,to balance the stress found in the Ge and Si layers(σGe11=−σSi11),a Si1−x Ge x virtual substrate with x=42.5%should be selected.4.ConclusionsIn this paper,we have demonstrated that it is possible to grow at850◦C high quality Si1−x Ge x virtual substrate with x up to 50%and to achieve a high degree of symmetrical compensa-tion of in-plane compressive/tensile stress in pairs of strained Ge/Si thin layers subsequently grown on the top of such a vir-tual substrate.We have carried out quantitative measurements of strain on a structure consisting of strained8.5nm-thick Ge and 5.1nm-thick Si pared with elastic theory assuming no relaxation,the compressive stresses within the Ge*layer are lower by20%and the tensile stresses within the Si*layer lower by40%.Such partial relaxation is due to the creation of structural defects at the SiGe/Ge*interface.The tensile stress increase in the Si*layer is partly compensated by creation of high density of{111}dislocation half-loops.The nanometer scale measure-ment of strain in SiGe/Ge/Si heterostructures using GPA makes it a powerful tool for the characterization of active region in MOSFETs.AcknowledgementThis work was partly supported by the Integrated Project NanoCMOS funded by the European Union.References[1]D.W.Greve,Mater.Sci.Eng.B87(2001)271–276.[2]M.L.Lee,E.A.Fitggerald,Appl.Phys.Lett.83(2003)4202–4204.[3]M.A.Herman,Cryst.Res.Technol.34(5–6)(1999)583–595.[4]N.F.Izyumskaya,V.S.Avrutin,A.F.Vyatkin,Solid-state Electron.48(2004)1265–1278.[5]L.Vescan,S.Wickenhauser,Solid-State Electron.48(2004)1279–1284.[6]J.Tersoff,F.K.LeGoues,Phys.Rev.Lett.72(22)(1994)3570–3573.[7]X.H.Zheng,H.Chen,Y.K.Li,Q.huang,J.M.Zhou,J.Cryst.Growth264(2004)104–109.[8]F.Wu, A.Armigliato,R.Balboni,S.Frabboni,Micron31(2000)211–216.[9]M.J.Hytch, E.Snoeck,R.Kilaas,Ultramicroscopy74(1998)131–146.[10]E.Snoeck,B.Warot,H.Ardhuin,A.Rocher,M.J.Casanove,R.Kilaas,M.J.Hytch,Thin Solid Films319(1998)157–162.[11]Y.Bogumilowicz,J.M.Hartmann,N.Cherkashin,A.Claverie,G.Rol-land,T.Billon,Mater.Sci.Eng.124–125(2005)113.[12]D.B.Williams, C.B.Carter,Transmission electron microscopy,3,Plenum Press,New York and London,1996,pp.421–438.[13]D.B.Williams, C.B.Carter,Transmission electron microscopy,3,Plenum Press,New York and London,1996,pp.450–453.。