电磁感应基础计算题
【物理】高中物理电磁感应经典习题(含答案)
【物理】高中物理电磁感应经典习题(含答案)题一题目:一个导线截面积为$2.5\times10^{-4}m^2$,长度为$0.3m$,放在磁感应强度为$0.5T$的均匀磁场中,将导线两端连接到一个电阻为$2\Omega$的电阻器上,求电阻器中的电流。
解析:根据电磁感应定律,导线中的感应电动势与导线长度、磁感应强度以及导线的运动速度有关。
在此题中,导线不运动,所以感应电动势为零。
因此,电路中的电流完全由电源提供,根据欧姆定律,可以使用$U=IR$求解电流。
答案:电路中的电流为0A。
题二题目:一个充满磁感应强度为$1T$的磁场的金属环,直径为$0.2m$,环的厚度可以忽略不计。
当磁场方向垂直于环的平面并向上时,将环从磁场中抽出后,环中的磁场强度变为多少?解析:根据法拉第电磁感应定律,当闭合回路中的磁通量发生变化时,环中会产生感应电动势导致感应电流的产生。
在此题中,环被抽出磁场后,磁通量减小,从而产生感应电动势。
根据安培环路定理和比奥-萨伐尔定律,感应电动势的方向与磁场的变化方向相反,因此感应电流会生成一磁场。
根据安培定律和环形线圈的磁场公式,可以计算出环中的新的磁场强度。
答案:环中的新磁场强度需要通过计算得出。
具体计算过程请参考相关物理教材或参考书籍。
题三题目:一根长度为$0.5m$的直导线与一个磁场相垂直,导线两端的电动势为$2V$,导线的电阻为$4\Omega$,求导线在磁场中运动的速度。
解析:根据电磁感应定律,导线中的感应电动势与导线长度、磁场强度以及导线的运动速度有关。
在此题中,导线的电动势和电阻已知,可以使用欧姆定律$U=IR$解出电流,并使用感应电动势的公式$E=Bvl$解出运动速度。
答案:导线在磁场中的运动速度需要通过计算得出。
具体计算过程请参考相关物理教材或参考书籍。
电磁感应计算题--基础
电磁感应计算题—计算题一.计算题(共7小题)1.如图所示,宽度为L=0.40m的足够长的平行光滑金属导轨固定在绝缘水平面上,导轨的一端连接阻值为R=2.0Ω的电阻.导轨所在空间存在竖直向下的匀强磁场,磁感应强度大小为B=0.40T.一根质量为m=0.1kg的导体棒MN放在导轨上与导轨接触良好,导轨和导体棒的电阻均可忽略不计.现用一平行于导轨的拉力拉动导体棒沿导轨向右匀速运动,运动速度v=0.50m/s,在运动过程中保持导体棒与导轨垂直.求:(1)导体棒MN中感应电流的方向;(2)闭合回路中产生的感应电流的大小;(3)作用在导体棒上的拉力的大小.2.如图所示,两根足够长的光滑金属导轨竖直放置,相距为L,一理想电流表与两导轨相连,匀强磁场与导轨平面垂直.磁感应强度为B,一质量为m、有效电阻为R的导体棒在距磁场上边界h处静止释放.导体棒进入磁场后,流经电流表的电流逐渐减小,最终稳定.整个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻.求:(1)稳定时的电流I;(2)电流稳定后,导体棒运动速度的大小v.3.如图所示,将边长为L、质量为m、电阻为R的正方形导线框竖直向上抛出,穿过宽度也为L、磁感应强度为B的匀强磁场,磁场的方向垂直纸面向里,线框向上离开磁场时的速度刚好是进入磁场时速度的一半,线框离开磁场后继续上升一段高度,并再次进入磁场时恰好做匀速运动,整个运动过程中始终存在着大小恒定的空气阻力,且有f=0.25mg,而线框始终保持在竖直平面内不发生转动.求(1)线框最终离开磁场时的速度;(2)线框在上升阶段刚离开磁场时的速度;(3)整个运动过程中线框产生的焦耳热Q.4.如图所示,水平放置的光滑平行金属轨道,电阻不计,导轨间距为L=2m,左右两侧各接一阻值为R=6Ω的电阻.两轨道内存垂直轨道平面向下的有界匀强磁场,一质量为m、电阻为r=2Ω的金属棒MN置于导轨上,与导轨垂直且接触良好,受到F=0.2v+3(N)(v为金属棒速度)的水平外力作用,从磁场的左边界由静止开始运动,用电压表测得电阻两端电压随时间均匀增大.(1)请推导说明金属棒做什么性质的运动.(2)求磁感应强度B的大小.5.如图示,光滑的U型导轨形成一个倾角为30°的斜面,导轨的水平间距为l=10cm,在斜面上有垂直斜面向上的匀强磁场,磁感应强度B=20T,一质量为m=2kg的导体棒在导轨上由静止释放,导体棒的电阻R=2Ω,导轨电阻不计,当小球沿斜面下滑S=6m时,导体棒获得最大速度.求(1)导体棒的最大速度,(2)从静止到小球获得最大速度过程中回路产生的焦耳热.6.如图所示,有两根足够长、不计电阻,相距L的平行光滑金属导轨cd、ef与水平面成θ角固定放置,底端接一阻值为R的电阻,在轨道平面内有磁感应强度为B的匀强磁场,方向垂直轨道平面斜向上.现有一平行于ce、垂直于导轨、质量为m、电阻为r的金属杆ab,在沿轨道平面向上的恒定拉力F作用下,从底端ce由静止沿导轨向上运动.求:(1)ab杆沿导轨上滑过程中所达到的最大速度v;(2)ab杆达到最大速度时电阻R消耗的电功率.7.有一边长为L=0.1m的正方形导线框,质量为m=1kg,由高度H=0.05m高处自由下落,如图所示.当导线框下边ab刚进入宽度也是L=0.1m的匀强磁场区域后,线圈以恒定速率穿越磁场,不计空气阻力.g=10m/s2,求:(1)ab边刚进入磁场时速度大小?(2)导线框在穿越磁场过程中产生的焦耳热Q?电磁感应计算题—基础一.计算题(共7小题)1.如图所示,宽度为L=0.40m的足够长的平行光滑金属导轨固定在绝缘水平面上,导轨的一端连接阻值为R=2.0Ω的电阻.导轨所在空间存在竖直向下的匀强磁场,磁感应强度大小为B=0.40T.一根质量为m=0.1kg的导体棒MN放在导轨上与导轨接触良好,导轨和导体棒的电阻均可忽略不计.现用一平行于导轨的拉力拉动导体棒沿导轨向右匀速运动,运动速度v=0.50m/s,在运动过程中保持导体棒与导轨垂直.求:(1)导体棒MN中感应电流的方向;(2)闭合回路中产生的感应电流的大小;(3)作用在导体棒上的拉力的大小.【解答】解:(1)由右手定则判断知,通过导体棒MN的电流方向N到M.(2)感应电动势为:E=BLv=0.4×0.40×0.5V=0.08V感应电流的大小为:I==A=0.04A;(3)导体棒匀速运动,安培力与拉力平衡,则有:F=F A=BIL=0.4×0.04×0.4N=0.0064N.2.图所示,两根足够长的光滑金属导轨竖直放置,相距为L,一理想电流表与两导轨相连,匀强磁场与导轨平面垂直.磁感应强度为B,一质量为m、有效电阻为R的导体棒在距磁场上边界h处静止释放.导体棒进入磁场后,流经电流表的电流逐渐减小,最终稳定.整个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻.求:(1)稳定时的电流I;(2)电流稳定后,导体棒运动速度的大小v.【解答】解:(1)当电流稳定时,导体棒做匀速直线运动,有:mg=BIL,解得I=.(2)电流稳定时,I=,又I=,解得v=.3.如图所示,将边长为L、质量为m、电阻为R的正方形导线框竖直向上抛出,穿过宽度也为L、磁感应强度为B的匀强磁场,磁场的方向垂直纸面向里,线框向上离开磁场时的速度刚好是进入磁场时速度的一半,线框离开磁场后继续上升一段高度,并再次进入磁场时恰好做匀速运动,整个运动过程中始终存在着大小恒定的空气阻力,且有f=0.25mg,而线框始终保持在竖直平面内不发生转动.求(1)线框最终离开磁场时的速度;(2)线框在上升阶段刚离开磁场时的速度;(3)整个运动过程中线框产生的焦耳热Q.【解答】解:(1)线框在下落阶段通过磁场过程中,始终做匀速运动,设其速度为v1,则有:mg=f+,解得:v1==(2)设线框在上升阶段离开磁场时的速度为v2,由动能定理,线框从离开磁场至上升到最高点的过程有:0﹣(mg+f)h=0﹣mv22…①线圈从最高点落至进入磁场瞬间,下落过程中有:(mg﹣f)h=mv12…②由①②得:v2=(3)设线框刚进入磁场时速度为v0,在向上穿越磁场过程中,产生焦耳热为Q1,由功能关系,则有:mv02﹣mv22=Q1+(mg+f)2L,而v0=2v2解得:Q1=线框在下落过程中,产生的焦耳热为:Q2=2(mg﹣f)L,解得:Q=Q1+Q2=+2(mg﹣f)L=,4.如图所示,水平放置的光滑平行金属轨道,电阻不计,导轨间距为L=2m,左右两侧各接一阻值为R=6Ω的电阻.两轨道内存垂直轨道平面向下的有界匀强磁场,一质量为m、电阻为r=2Ω的金属棒MN置于导轨上,与导轨垂直且接触良好,受到F=0.2v+3(N)(v为金属棒速度)的水平外力作用,从磁场的左边界由静止开始运动,用电压表测得电阻两端电压随时间均匀增大.(1)请推导说明金属棒做什么性质的运动.(2)求磁感应强度B的大小.(1)设金属棒左右两侧电阻阻值分别为R1、R2,则R1、R2的等效电阻为R==3Ω,【解答】解:设电阻两端电压为U、U随t的变化关系为U=kt,导体棒切割磁感线产生的感应电动势为E,通过导体棒的电流为I,导体棒所受安培力大小为F A,则:U=E﹣IrE=BLvI=解得:U=0.6BLv,结合U=kt可得:0.6BLv=kt,v∝t,故金属棒做初速度为零的匀加速直线运动(2)取金属棒为研究对象,根据牛顿第二定律可得:F﹣F A=maF A=BIL=0.2B2L2v解得:0.2v+3﹣0.2B2L2v=ma因导体棒做匀加速,故a与v无关,即:0.2v=0.2B2L2v解得:B==0.5T5.如图示,光滑的U型导轨形成一个倾角为30°的斜面,导轨的水平间距为l=10cm,在斜面上有垂直斜面向上的匀强磁场,磁感应强度B=20T,一质量为m=2kg的导体棒在导轨上由静止释放,导体棒的电阻R=2Ω,导轨电阻不计,当小球沿斜面下滑S=6m时,导体棒获得最大速度.求(1)导体棒的最大速度,(2)从静止到小球获得最大速度过程中回路产生的焦耳热.【解答】解:(1)当导体棒受力平衡时速度最大,根据平衡条件可得:30°=BIl,根据法拉第电磁感应定律和闭合电路的欧姆定律可得:,联立解得:v=5m/s;(2)由能量守恒得:mgs•sin30°=+Q,解得:Q=25J.6.如图所示,有两根足够长、不计电阻,相距L的平行光滑金属导轨cd、ef与水平面成θ角固定放置,底端接一阻值为R的电阻,在轨道平面内有磁感应强度为B的匀强磁场,方向垂直轨道平面斜向上.现有一平行于ce、垂直于导轨、质量为m、电阻为r的金属杆ab,在沿轨道平面向上的恒定拉力F作用下,从底端ce由静止沿导轨向上运动.求:(1)ab杆沿导轨上滑过程中所达到的最大速度v;(2)ab杆达到最大速度时电阻R消耗的电功率.【解答】解:(1)当ab杆沿导轨上滑达到最大速度v时,其受力如图所示:由平衡条件可知:F﹣F B﹣mgsinθ=0…①又F B=BIL…②而I=…③联立①②③式得:v=…④(2)ab杆达到最大速度时电流最大,故电阻R消耗的功率最大,有:P=I2R…⑤联立③④⑤得:P=;7.有一边长为L=0.1m的正方形导线框,质量为m=1kg,由高度H=0.05m高处自由下落,如图所示.当导线框下边ab刚进入宽度也是L=0.1m的匀强磁场区域后,线圈以恒定速率穿越磁场,不计空气阻力.g=10m/s2,求:(1)ab边刚进入磁场时速度大小?(2)导线框在穿越磁场过程中产生的焦耳热Q?【解答】解:(1)由动能定理可知:mgH=mv2解得v==m/s=1m/s.(2)由能量守恒可知:△E P=Q△E P=2mgL解得Q=2×10×0.1J=2J.。
电磁感应练习题初三
电磁感应练习题初三电磁感应是物理学中一个重要的概念,也是初中物理课程的重点内容之一。
下面我们来进行一些关于电磁感应的练习题,以帮助初三学生巩固和拓展对这一知识点的理解。
练习题一:一个长直导线中通过电流I,它产生的磁感应强度B为2.5 × 10^-4 T。
现有一条与长直导线平行的导线,两者距离为0.1 m,导线长度为0.5 m,通过的电流为5 A。
求这条导线在电磁感应中所受到的力。
解答:根据电磁感应的洛伦兹力公式F = BILsinθ,其中F为力,B为磁感应强度,I为电流,L为导线长度,θ为两者夹角。
将已知数据代入公式中,可得:F = (2.5 × 10^-4 T) × (5 A) × (0.5 m) × sinθ练习题二:一根长度为1.2 m的导线以速度2.5 m/s在磁感应强度为0.3 T的磁场中运动。
求导线在该磁场中感应出的电动势。
解答:根据电磁感应的法拉第电磁感应定律,感应电动势ε等于导线与磁感应强度的乘积再乘以导线运动的速度。
即ε = BvL,其中ε为感应电动势,B为磁感应强度,v为导线速度,L为导线长度。
将已知数据代入公式中,可得:ε = (0.3 T) × (2.5 m/s) × (1.2 m)练习题三:一个圆形线圈有100个匝,线圈的半径为5 cm,并且导线上的电流随时间变化,变化的速率为0.2 A/s。
求当时间为2 s时,该圆形线圈内感应出的电动势大小。
解答:根据电磁感应的法拉第电磁感应定律,感应电动势ε等于导线上的匝数N与磁感应强度的乘积再乘以导线上电流随时间变化的速率的绝对值。
即ε = NB |dI/dt|,其中ε为感应电动势,N为导线的匝数,B为磁感应强度,dI/dt为电流随时间变化的速率。
将已知数据代入公式中,可得:ε = (100 匝) × B × |0.2 A/s|练习题四:一个长度为1.5 m的导线以速度3 m/s穿过磁感应强度为0.5 T的磁场,导线的两端接在一个电阻为10 Ω的电阻器上。
电磁感应计算题及解答讲解
一、选择题1、如图所示,空间存在两个磁场,磁感应强度大小均为B,方向相反且垂直纸面,MN、PQ为其边界,OO’为其对称轴。
一导线折成变长为的正方形闭合回路abcd,回路在纸面内以恒定速度v o向右运动,当运动到关于OO’对称的位置时A.穿过回路的磁通量为零B.回路中感应电动势大小为C.回路中感应电流的方向为顺时针方向D.回路中ab边与cd边所受安培力方向相同2、如图8,在O点下方有一个具有理想边界的磁场,铜环在A点由静止释放向右摆至最高点B,不考虑空气阻力,则下列说法正确的是()A.A、B两点在同一水平线B.A点高于B点C.A点低于B点D.铜环将做等幅摆动二、计算题3、如图所示,两根质量均为m=2kg的金属棒垂直地放在光滑的水平导轨上,左右两部分导轨间距之比为1∶2,导轨间有大小相等但左右两部分方向相反的匀强磁场,CD棒电阻为AB棒电阻的两倍,不计导轨电阻,今用250N的水平力F向右拉CD棒,在CD棒运动0.5m的过程中,两棒上产生的焦耳热共为45J,此时CD棒速率为8m/s,立即撤去拉力F,设导轨足够长且两棒始终在不同磁场中运动,求:(1)撤去拉力F瞬间AB棒速度v A;(2)两棒最终匀速运动的速度v A′和v C′。
4、如图所示,光滑矩形斜面ABCD的倾角为,在其上放置一矩形金属线框,的边长,的边长,线框的质量,电阻,线框通过细线绕过定滑轮与重物相连,细线与斜面平行且靠近。
重物质量,离地面的高度为。
斜面上区域是有界匀强磁场,方向垂直于斜面向上,已知AB到的距离为,到的距离为,到CD的距离为,取。
现让线框从静止开始运动(开始时刻与AB边重合),发现线框匀速穿过匀强磁场区域,求:(1)区域内匀强磁场的磁感应强度B(2)线框在通过磁场区域过程中产生的焦耳热Q(3)通过计算分析画出线框从开始运动到边与CD边重合过程中线框的图象5、如图所示,半径为r的圆形导线框内有一匀强磁场,磁场方向垂直于导线框所在平面,导线框的左端通过导线接一对水平放置的平行的金属板,两极间的距离为d,板长为L。
(完整版)电磁感应经典例题
电磁感应考点清单1 电磁感应现象 感应电流方向(一)磁通量1.磁通量:穿过磁场中某个面的磁感线的条数叫做穿过这一面积的磁能量.磁通量简称磁通,符号为Φ,单位是韦伯(Wb ).2.磁通量的计算(1)公式Φ=BS此式的适用条件是:○1匀强磁场;○2磁感线与平面垂直.(2)如果磁感线与平面不垂直,上式中的S 为平面在垂直于磁感线方向上的投影面积.θsin S B •=Φ其中θ为磁场与面积之间的夹角,我们称之为“有效面积”或“正对面积”.(3)磁通量的方向性磁通量正向穿过某平面和反向穿过该平面时,磁通量的正负关系不同.求合磁通时应注意相反方向抵消以后所剩余的磁通量.(4)磁通量的变化12Φ-Φ=∆Φ∆Φ可能是B 发生变化而引起,也可能是S 发生变化而引起,还有可能是B 和S 同时发生变化而引起的,在确定磁通量的变化时应注意.(二)电磁感应现象的产生条件1.产生感应电流的条件:穿过闭合电路的磁通量发生变化.2.感应电动势的产生条件:无论电路是否闭合,只要穿过电路的磁通量发生变化, 这部分电路就会产生感应电动势.这部分电路或导体相当于电源.[例1] (2004上海,4)两圆环A 、B 置于同一水平面上,其中A 为均匀带电绝缘环,B 为导体环.当A 以如图13-36所示的方向绕中心转动的角速度发生变化时,B 中产生如图所示方向的感应电流.则( )图13-36A.A 可能带正电且转速减小B.A 可能带正电且转速增大C.A 可能带负电且转速减小D.A 可能带负电且转速增大[解析] 由题目所给的条件可以判断,感应电流的磁场方向垂直于纸面向外,根据楞次定律,原磁场的方向与感应电流的磁场相同时是减少的,环A 应该做减速运动,产生逆时针方向的电流,故应该带负电,故选项C 是正确的,同理可得B 是正确的.[答案] BC(三)感应电流的方向1.右手定则当闭合电路的部分导体切割磁感线时,产生的感应电流的方向可以用右手定则来进行判断.右手定则:伸开右手,使大拇指跟其余四指垂直,并且都跟手掌在一个平面内,让磁感线垂直穿入手心,大拇指指向导体运动方向,那么伸直四指指向即为感应电流的方向.[说明] 伸直四指指向还有另外的一些说法:○1感应电动势的方向;○2导体的高电势处.[例2](2004天津理综,20)图13-37中MN 、GH 为平行导轨,AB 、CD 为跨在导轨上的两根横杆,导轨和横杆均为导体.有匀强磁场垂直于导轨所在的平面,方向如图,用I 表示回路的电流.A.当AB 不动而CD 向右滑动时,0≠I 且沿顺时针方向B.当AB 向左、CD 向右滑动且速度大小相等时,I =0C.当AB 、CD 都向右滑动且速度大小相等时,I =0D.当AB 、CD 都向右滑动,且AB 速度大于CD 时,0≠I 且沿逆时针方向图13-37[解析] 当AB 不动而CD 向右滑动时,0≠I ,但电流方向为逆时针,A 错;当AB 向左,CD 向右滑动时,两杆产生的感应电动势同向,故0≠I ,B 错;当AB 和CD 都向右滑动且速度大小相等时,则两杆产生的感应电动势等值反向,故I =0,C 正确;当AB 和CD 都向右滑动,且AB 速度大于CD 时,0≠I ,但方向为顺时针,D 错误.[答案] C2.楞次定律(1)内容感应电流具有这样的方向:就是感应电流的磁场总是阻碍引起感应电流的磁通量的变化.注意:○1“阻碍”不是“相反”,原磁通量增大时,感应电流的磁场与原磁通量相反,“反抗”其增加;原磁通量减小时,感应电流的磁场与原磁通量相同,“补偿”其减小.即“增反减同”.○2“阻碍”也不是阻止,电路中的磁通量还是变化的,阻碍只是延缓其变化. ○3楞次定律的实质是“能量转化和守恒”,感应电流的磁场阻碍过程,使机械能减少,转化为电能.(2)应用楞次定律判断感应电流的步骤:○1确定原磁场的方向○2明确回路中磁通量变化情况.○3应用楞次定律的“增反减同”,确定感应电流磁场的方向.○4应用右手安培定则,确立感应电流方向.[例3] (2001上海综合,14)某实验小组用如图13-38所示的实验装置来验证楞次定律.当条形磁铁自上而下穿过固定的线圈时,通过电流计的感应电流方向是()A.a→G→bB.先a→G→b,后b→G→aC.b→G→aD.先b→G→a,后a→G→b图13-38[解析] ○1确定原磁场的方向:条形磁铁在穿入线圈的过程中,磁场方向向下.○2明确回路中磁通量变化情况:向下的磁通量增加.○3由楞次定律的“增反减同”可知:线圈中感应电流产生的磁场方向向上.○4应用右手安培定则可以判断感应电流的方向为逆时针(俯视)即:从b→G→a.同理可以判断:条形磁铁穿出线圈过程中,向下的磁通量减小,由楞次定律可得:线圈中将产生顺时针的感应电流(俯视),电流从a→G→b.[答案] D[评价] 该题目关键在于对楞次定律的理解和应用以及对“穿过”二字的正确理解,它包括穿入和穿出两个过程.(3)楞次定律的另一种表述楞次定律的另一种表达为:感应电流的效果,总是要反抗产生感应电流的原因.[说明] 这里产生感应电流的原因,既可以是磁通量的变化,也可以是引起磁通量变化的相对运动或回路的形变.○1当电路的磁通量发生变化时,感应电流的效果就阻碍变化−−变形为阻碍原磁通−→量的变化.○2当出现引起磁量变化的相对运动时,感应电流的效果就阻碍变化−−拓展为阻碍−→(导体间的)相对运动,即“来时拒,去时留”.○3当回路发生形变时,感应电流的效果就阻碍回路发生形变.○4当线圈自身的电流发生变化时,感应电流的效果就阻碍原来的电流发生变化. 总之,如果问题不涉及感应电流的方向,则从楞次定律的另类表述出发的分析方法较为简便.[例4] 如图13-19所示,光滑固定导轨M 、N 水平放置,两根导体棒P 、Q 平行放于导轨上,形成一个闭合回路,当一条形磁铁从高处下落接近回路时( )图13-39A.P 、Q 将互相靠拢B.P 、Q 将互相远离C.磁铁的加速度仍为gD.磁铁的加速度小于g[解析] 方法一:设磁铁下端为N 极,如图13-40所示,根据楞次定律可判断出P 、Q 中感应电流方向,根据左手定则可判断P 、Q 所受安培力的方向,可见P 、Q 将互相靠拢,由于回路所受安培力的合力向下,由牛顿第三定律,磁铁将受到向上的反作用力,从而加速度小于g .当S 极为下端时,可得到同样的结果.图13-40方法二:根据楞次定律的另一种表述——感应电流的效果总是要反抗产生感应电流的原因,本题的“原因”是回路中磁通量的增加.归根结底是磁铁靠近回路,“效果”便是阻碍磁通量的增加和磁铁的靠近,所以P 、Q 将互相靠近,且磁铁的加速度小于g .[答案] AD2 法拉第电磁感应定律 自感(一)法拉第电磁感应定律(1)内容:电磁感应中线圈里的感应电动势眼穿过线圈的磁通量变化率成正比.(2)表达式:t E ∆∆Φ=或tn E ∆∆Φ=. (3)说明:○1式中的n 为线圈的匝数,∆Φ是线圈磁通量的变化量,△t 是磁通量变化所用的时间.t ∆∆Φ又叫磁通量的变化率. ○2∆Φ是单位是韦伯,△t 的单位是秒,E 的单位是伏特. ○3t n E ∆∆Φ=中学阶段一般只用来计算平均感应电动势,如果t∆∆Φ是恒定的,那么E 是稳恒的.[例1] 有一面积为S =100cm 2金属环,电阻为R =0.1Ω,环中磁场变化规律如图13-41所示,且磁场方向垂直环面向里,在t 1到t 2时间内,环中感应电流的方向如何?通过金属环的电量为多少?图13-41[分析] 由楞次定律可判断感应电流的方向.感应电量的计算为 R t tR t R E t I Q ∆Φ=∆∆∆Φ=∆=∆=,仅由电路电阻和磁通量变化决定,与发生磁通量变化的时间无关,本题推导的感应电量的计算表达式可以直接使用.[解析] (1)由楞次定律,可以判断金属环中感应电流方向为逆时针方向.(2)由图可知:磁感应强度的变化率为1212t t B B t B --=∆∆ ○1 线圈中的磁通量的变化率: S t t B B S t B t •--=∆∆=∆∆Φ1212 ○2 环中形成感应电流tR R t R E I ∆∆Φ=∆∆Φ==/ ○3 通过金属环的电量:t I Q ∆= ○4由○1○2○3○4解得:1.010)1.02.0()(212-⨯-=-=R S B B Q C=0.1C. (二)导线切割磁感线的感应电动势1.公式:E=BLv2.导线切割磁感线的感应电动势公式的几点说明:(1)公式仅适用于导体上各点以相同的速度切割匀强的磁场的磁感线的情况.(2)公式中的B 、v 、L 要求互相两两垂直.当L ⊥B ,L ⊥v ,而v 与B 成θ夹角时,导线切割磁感线的感应电动势大小为θsin BLv E =.(3)适用于计算当导体切割磁感线产生的感应电动势,当v 为瞬时速度时,可计算瞬时感应电动势,当v 为平均速度时,可计算平均电动势.(4)若导体棒不是直的,θsin BLv E =中的L 为切割磁感线的导体棒的有效长度.如图13-42中,棒的有效长度有ab 的弦长.图13-42[例2] (2001上海物理,22)(13分)半径为a 的圆形区域内有均匀磁场,磁感应强度为B =0.2T ,磁场方向垂直纸面向里,半径为b 的金属圆环与磁场同心放置,磁场与环面垂直,其中a =0.4m ,b =0.6m ,金属环上分别接有灯L 1、L 2,两灯的电阻均匀为R 0=2Ω,一金属棒MN 与金属环接触良好,棒与环的电阻均忽略不计.(1)若棒以v 0=5m/s 的速率在环上向右匀速滑动,求棒滑过圆环直径00′的瞬间(如图13-43所示)MN 中的电动势和流过灯L 1的电流.图13-43(2)撤去中间的金属棒MN ,将右面的半圆环OL 2O ′以OO ′为轴向上翻转90°,若此时磁场随时间均匀变化,其变化率为s T t B /)/4(/π=∆∆,求L 1的功率.[解析] (1)棒通过圆环直径时切割磁感线的有效长度L =2a ,棒中产生的感应电动势为58.02.02⨯⨯===av B BLv E V=0.8V ○1 当不计棒和环的电阻时,直径OO ′两端的电压U =E =0.8V ,通过灯L 1电流的为 28.001==R U I A =0.4A. ○2 (2)右半圆环上翻90°后,穿过回路的磁场有效面积为原来的一半,221a S π=',磁场变化时在回路中产生的感应电动热为V V a t B S t E 23.04212=⨯=∆∆•'=∆∆Φ='ππ ○3 由L 1、L 2两灯相同,圆环电阻不计,所以每灯的电压均为E U '='21,L 1的功率为 2020211028.1)21(-⨯='='=R E R U P W. ○4 3.导体切割磁感线产生的感应电动势大小两个特例:(1)长为L 的导体棒在磁感应强度为B 的匀强磁场中以ω匀速转动,导体棒产生的感应电动势:⎪⎪⎪⎩⎪⎪⎪⎨⎧-===))((212121022212不同两段的代数和以任意点为轴时,)线速度(平均速度取中点位置以端点为轴时,(不同两段的代数和)以中点为轴时,L L B E L L B E E ωωω [例3] (2004两湖理综,19)一直升飞机停在南半球的地磁极上空.该处地磁场的方向竖直向上,磁感应强度为B ,直升飞机螺旋桨叶片的长度为l ,螺旋桨转动的频率为f ,顺着地磁场的方向看螺旋桨,螺旋桨顺时针方向转动.螺旋桨叶片的近轴端为a ,远轴端为b ,如图13-44所示.如果忽略a 到转轴中心线的距离,用ε表示每个叶片中的感应电动势,则( )A.B ft 2πε=,且a 点电势低于b 点电势B.B ft 22πε-=,且a 点电势低于b 点电势C.B ft 2πε=,且a 点电势高于b 点电势D.B ft 22πε=,且a 点电势高于b 点电势图13-44[解析] 对于螺旋桨叶片ab ,其切割磁感线的速度是其做圆周运动的线速度,螺旋桨不同点的线速度不同,但是满足R v ω=',可求其等效切割速度fl lv πω==2,运用法拉第电磁感应定律B ft Blv 2πε==,由右手定则判断电流的方向为由a 指向b ,在电源内部电流由低电势流向高电势,故选项A 是正确的.[答案] A(2)面积为S 的矩形线圈在匀强磁场B 中以角速度ω绕线圈平面内的任意轴匀速转动,产生的感应电动势:⎪⎩⎪⎨⎧===θωθωsin 0BS E E BS E 时,为线圈平面与磁感线夹角时,线圈平面与磁感线垂直时,线圈平面与磁感线平行 (三)自感1.自感现象:当导体中的电流发生变化,导体本身就产生感应电动势,这个电动势总是阻碍导体中原来的电流的变化,这种由于导体本身电流发生变化而产生的电磁感应现象,叫自感现象.2.自感现象的应用(1)通电自感:通电瞬间自感线圈处相当于断路.(2)断电自感:断电时自感线圈处相当于电源.○1当线圈中电阻≥灯丝电阻时,灯缓慢熄灭; ○2当线圈中电阻<灯丝电阻时,灯闪亮后缓慢熄灭. 3.增大线圈自感系数的方法(1)增大线圈长度(2)增多单位长度上匝数(3)增大线圈截面积(口径)(4)线圈中插入铁芯4.日光灯(1)日光灯电路的组成和电路图:○1灯管:日光灯管的两端各有一个灯丝,灯管内有微量的氩和汞蒸气,灯管内涂有荧光粉.两个灯丝之间的气体导电荷发出紫外线,激发管壁上的荧光粉发出可见光.但要使管内气体导电所需电压比200V 的电源电压高得多.○2镇流器:ⅰ)结构:线圈和铁芯.ⅱ)原理:自感.ⅲ)作用:灯管启动时提供一个瞬时高压,灯管工作时降压限流.○3启动器ⅰ) 结构:电容、氖气、静触片、U形动触片、管脚、外壳.ⅱ)原理:热胀冷缩. ⅲ)作用:先接通电路,再瞬间断开电路,使镇流器产生瞬间高压.(2)日光灯电路的工作过程:合上开关,电源电压220V加在启动器两极间→氖气放电发出辉光→辉光产生的热量,使U形动触片膨胀伸长,与静触片接触接通电路→镇流器和灯丝中通过电流→氖气停止放电→动静触片分离→切断电路→镇流器产生瞬间高压,与电源电压加在一起,加在灯管两端→灯管中气体放电→日光灯发光.(3)日光灯启动后正常工作时,启动器断开,电流从灯管中通过.镇流器产生自感电动势起降压限流作用.3 电磁感应规律的综合应用法拉第电磁感应定律是电磁学的重点内容之一,其综合了力、热、静电场、直流电路、磁场等许多内容,反映在以下几个方面:1.因导体在切割运动或电路中磁通量的变化,产生感应电流,使导体受到安培力的作用,从而直接影响到导体或线圈的运动.[例1] (2002粤豫大综合,30)如图13-45所示,在一均匀磁场中有一U形导线框abcd,线框处于水平面内,磁场与线框平面垂直,R为一电阻,ef为垂直于ab的一根导体杆,它可在ab、cd上无摩擦地滑动.杆ef及线框中导线的电阻都可不计.开始时,给ef一个向右的初速度,则()A.ef将减速向右运动,但不是匀减速B.ef将匀减速向右运动,最后停止C.ef将匀速向右运动D.ef将往返运动图13-45[解析] 给ef一个向右的初速度,则ef产生感应电动势,回路中产生感应电流.由楞次定律可以判断,ef受到一个向左的安培力的作用而减速,随着ef的速度减小,ef产生的感应电动势减小,回路的感应电流减小,安培力减小,因此可以判断ef 是做加速度逐渐减小的减速运动.因此可知选项A 是正确的.[答案] A[例2] (2004北京理综,23)如图13-46甲所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L .M 、P 两点间接有阻值R 的电阻.一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直,整套装置处于磁感应强度为B 的匀强磁场中,磁场方向的垂直斜面向下.导轨和金属杆的电阻可忽略.让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.13-46 (1)由b 向a 方向看到的装置如图13-46乙所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图;(2)在加速下滑过程中,当ab 杆的速度大小为v 时,求此时ab 杆中的电流及其加速度的大小;(3)求在下滑过程中,ab 杆可以达到的速度最大值.[解析] (1)重力mg ,竖直向下;支撑力N ,垂直斜面向上;安培力F ,沿斜面向上.(2)当ab 杆速度为v 时,感应电动势E =B lv ,此时电路中电流RBlv R E I ==. ab 杆受到安培力Rv L B BIL F 22==, 根据牛顿运动定律,有Rv L B mg F mg ma 22sin sin -=-=θθ, mRv L B g a 22sin -=θ. (3)当θsin 22mg Rv L B =时,ab 杆达到最大速度v m .22sin L B mgR v m θ=. 2.以电磁感应现象为核心,综合力学各种不同的规律(如机械能、动量、牛顿运动定律)等内容形成的综合类问题.电学部分思路:将产生感应电动势的那部分电路等效为电源,如果在一个电路中切割磁感线的是几部分但又互相联系,可等效成电源的串并联,分析内外电路结构,应用闭合电路欧姆定律和部分电路欧姆定律理顺电学量之间的关系.力学部分思路:分析通电导体的受力情况及力的效果,应用牛顿定律、动量定理、动量守恒、动能定理、机械能守恒等规律理顺力学量之间的关系.[例3] (2001京春季,20)(12分)两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为l .导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图13-47所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0.若两导体棒在运动中始终不接触,求:图13-47(1)在运动中产生的焦耳热最多是多少?(2)当ab 棒的速度变为初速度的43时,cd 棒的加速度是多少? [解析] ab 棒向cd 棒运动时,两棒和导轨构成的回路面积变小,磁通量发生变化,于是产生感应电流.ab 棒受到与运动方向相反的安培力作用做减速运动,cd 棒则在安培力作用下做加速运动.在ab 棒的速度大于cd 棒的速度时,回路总有感应电流,ab 棒继续减速,cd 棒继续加速.两棒速度达到相同后,回路面积保持不变,磁通量不变化,不产生感应电流,两棒以相同的速度v 做匀速运动.(1)从初始至两棒达到速度相同的过程中,两棒总动量守恒,有mv mv 20= ○1根据能量守恒,整个过程中产生的总热量2022041)2(2121mv v m mv Q =-=○2 (2)设ab 棒的速度变为初速度的43时,cd 棒的速度为v ′,则由动量守恒可知v m v m mv '+=0043 ○3 此时回路中的感应电动势和感应电流分别为Bl v v E )43(0'-= ○4 R I 2ε= ○5此时cd 棒所受的安培力IBl F = ○6 cd 棒的加速度mF a = ○7 由以上各式,可得mRv l B a 4022=. ○8 3.电磁感应中的能量转化问题电磁感应过程实质是不同形式的能量转化的过程,电磁感应过程中产生的感应电流在磁场中必定受到安培力作用.因此要维持安培力存在,必须有“外力”克服安培力做功.此过程中,其他形式的能转化为能.“外力”克服安培力做多少功,就有多少其他形式的能转化为电能.当感应电流通过用电器时,电能又转化为其他形式的能.同理,安培力做功的过程,是电能转化为其他形式的能的过程,安培力做多少功就有多少电能转化为其他形式的能.因此电能求解思路主要有三种:○1利用克服安培力求解:电磁感应中产生的电能等于克服安培力所做的功. ○2得用能量守恒求解:开始的机械能总和与最后的机械能总和之差等于产生的电能.○3利用电路特征来求解:通过电路中所产生的电能来计算. [例4] 把一个矩形线圈从有理想边界的匀强磁场中匀速拉出(如图13-48),第一次速度为v 1,第二次速度为v 2且v 2=2v 1,则两种情况下拉力的功之比W 1/W 2= ,拉力的功率之比P 1/P 2= ,线圈中产生焦耳热之比Q 1/Q 2= .[解析] 设线圈的ab 边长为L ,bc 边长为L ′,整个线圈的电阻为R ,把ab 边拉出磁场时,cd 边以速度v 匀速运动切割磁感线产生感应电动势Blv E =.其电流方向从c 指向d ,线圈中形成的感应电流R BLv R E I == cd 边所受的安培力Rv L B BIL F 22== 为了维持线圈匀速运动,所需外力大小为Rv L B BIL F F 22=='= 因此拉出线圈过程外力的功v RL L B L F W '='=22 外力的功率222v RL B Fv P == 线圈中产生的焦耳热W v R L L B v L R R v L B Rt I Q ='='•==2222222由上面得出的W 、P 、Q 的表达式可知,两情况拉力的功、功率、线圈中的焦耳热之比分别为1∶2、1∶4、1∶2.[评价] 从题中可以看出,安培力做的功,与电路的消耗的电能是相同的.[例5] (2004河南理综,24)图13-49中a 1b 1c 1d 1和a 2b 2c 2d 2为在同一竖直面内的金属导轨,处在磁感应强度为B 的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里.导轨的a 1b 1段与a 2b 2段是竖直的,距离为l 1;c 1d 1段与c 2d 2段也是竖直的,距离为l 2.x 1y 1与x 2y 2为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为m 1和m 2,它们都垂直于导轨并与导轨保持光滑接触.两杆与导轨构成的回路的总电阻为R .F 为作用于金属杆x 1y 1上的竖直向上的恒力.已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路电阻上的热功率.[解析] 设杆向上运动的速度为v ,因杆的运动,两杆与导轨构成的回路的面积减少,从而磁通量也减少,由法拉第电磁感应定律,回路中的感应电动势的大小v l l B E )(12-=回路中的电流RE I = 电流沿顺时针方向,两金属杆都要受到安培力作用,作用于杆x 1y 1的安培力为 11BIlF =(方向向上)作用于杆x 2y 2的安培力为22BIl F =(方向向下)当杆匀速运动时,根据牛顿第二定律有02121=-+--F F g m g m F解以上各式[]2122211221)()()()(l l B Rg m m F v l l B g m m F I -+-=-+-=作用于两杆的重力功率的大小gv m m P )(21+=电阻上的热功率.)()()()()(21221212122212R l l B g m m F Q g m m R l l B g m m F P RI Q ⎥⎦⎤⎢⎣⎡-+-=+-+-== 4.电磁感应中的图象问题电磁感应中常涉及磁感应强度B 、磁通量Φ、感应电动势E 和感应电流I 随时间t 变化的图象,即B -t 图象、Φ-t 图象、E -t 图象和I -t 图象.对于切割磁感线产生感应电动势和感应电流的情况,还常涉及感应电动势E 和感应电流I 随线圈位移x 变化的图象,即E -x 图象和I -x 图象.这些图象问题大体上可分为两类:○1由给定的电磁感应过程选出或画出正确的图象. ○2由给定的有关图象分析电磁感应过程,求解相应的物理量. 不管是何种类型,电磁感应中的图象问题常需利用右手定则、楞次定律和法拉第电磁感应定律等规律分析解决.[例6] (2004内蒙理综,19)一矩形线圈位于一随时间t 变化的匀强磁场内,磁场方向垂直线圈所在的平面(纸面)向里,如图13-50所示.以I 表示线圈中的感应电流,以图中的线圈上所示方向的电流为正,则图13-51的I -t 图正确的是( )图13-50图13-51[解析] 由图象可知,在0到1秒的时间内,磁感应强度均匀增大,那么感应电流的方向为逆时针方向,与图示电流方向相反,为负值,排除B 、C 选项.根据法拉第电磁感应定律,其大小t S B t ∆•∆=∆∆Φ=ε,Rt S B R E I •∆•∆==为一定值,在2到3秒和4到5秒内,磁感应强度不变,磁通量不变,无感应电流生成,D 错误,所以A 选项感应强度不变,磁通量不变,无感应电流生成,D 错误,所以A 选项正确.[答案] A。
初中电磁感应专题练习(含详细答案)
初中电磁感应专题练习(含详细答案)
一、选择题
1. 一个导线在磁场中匀速向右移动,感应电动势的方向如何?
A. 由左向右
B. 由右向左
C. 没有感应电动势
D. 无法确定
答案:B
2. 带电粒子在磁场中匀速运动,运动轨迹如何?
A. 直线运动
B. 圆形运动
C. 抛物线运动
D. 双曲线运动
答案:B
二、计算题
1. 一个弯曲的导线长为10cm,导线中有一个电流I=2A,若在
导线处有一个磁感应强度为B=3T的磁场,求电动势的大小为多少?
解答:
$\mathcal{E}=Blv=\frac{1}{2}Blv=\frac{1}{2}Blsin\theta=\frac{1}{2} \times 3 \times 0.1 \times 2=\frac{3}{20}$V。
三、简答题
1. 什么是电磁感应?
电磁感应是指导体中的电子受到磁场的作用从而在导体两端产
生的电动势。
2. 什么是法拉第电磁感应定律?
法拉第电磁感应定律指出,当导体中的磁力线发生变化时,沿
着导体的任意闭合回路中就会产生感应电动势,其大小与磁通量的
变化率成正比,方向满足楞次定律。
3. 什么是楞次定律?
楞次定律指出,当导体内有感应电流时,该电流所发出的磁场的方向是这样的,即它所引起的磁通量的变化总是阻碍引起这种变化的原因。
4. 什么情况下会产生感应电流?
当导体在磁场中发生运动或被磁场线穿过而发生变化时,就会在导体中产生感应电流。
电磁感应计算题及解答
电磁感应一、选择题1、如图所示,空间存在两个磁场,磁感应强度大小均为B,方向相反且垂直纸面,MN、PQ为其边界,OO’为其对称轴。
一导线折成变长为的正方形闭合回路abcd,回路在纸面内以恒定速度v o向右运动,当运动到关于OO’对称的位置时A.穿过回路的磁通量为零B.回路中感应电动势大小为C.回路中感应电流的方向为顺时针方向D.回路中ab边与cd边所受安培力方向相同2、如图8,在O点下方有一个具有理想边界的磁场,铜环在A点由静止释放向右摆至最高点B,不考虑空气阻力,则下列说法正确的是()A.A、B两点在同一水平线B.A点高于B点C.A点低于B点D.铜环将做等幅摆动二、计算题3、如图所示,两根质量均为m=2kg的金属棒垂直地放在光滑的水平导轨上,左右两部分导轨间距之比为1∶2,导轨间有大小相等但左右两部分方向相反的匀强磁场,CD棒电阻为AB棒电阻的两倍,不计导轨电阻,今用250N的水平力F向右拉CD棒,在CD棒运动0.5m的过程中,两棒上产生的焦耳热共为45J,此时CD棒速率为8m/s,立即撤去拉力F,设导轨足够长且两棒始终在不同磁场中运动,求:(1)撤去拉力F瞬间AB棒速度v A;(2)两棒最终匀速运动的速度v A′和v C′。
4、如图所示,光滑矩形斜面ABCD的倾角为,在其上放置一矩形金属线框,的边长,的边长,线框的质量,电阻,线框通过细线绕过定滑轮与重物相连,细线与斜面平行且靠近。
重物质量,离地面的高度为。
斜面上区域是有界匀强磁场,方向垂直于斜面向上,已知AB到的距离为,到的距离为,到CD的距离为,取。
现让线框从静止开始运动(开始时刻与AB边重合),发现线框匀速穿过匀强磁场区域,求:(1)区域内匀强磁场的磁感应强度B(2)线框在通过磁场区域过程中产生的焦耳热Q(3)通过计算分析画出线框从开始运动到边与CD边重合过程中线框的图象5、如图所示,半径为r的圆形导线框内有一匀强磁场,磁场方向垂直于导线框所在平面,导线框的左端通过导线接一对水平放置的平行的金属板,两极间的距离为d,板长为L。
电磁感应定律典型计算题
.电磁感应定律典型计算题一、计算题(本大题共41小题,共410.0分)1.如图,不计电阻的U形导轨水平放置,导轨宽l=0.5m,左端连接阻值为0.4Ω的电阻R.在导轨上垂直于导轨放一电阻为0.1Ω的导体棒MN ,并用水平轻绳通过定滑轮吊着质量为m=2.4g的重物,图中L=0.8m.开始重物与水平地面接触并处于静止.整个装置处于竖直向上的匀强磁场中,磁感强度B0=0.5T,并且以的规律在增大.不计摩擦阻力.求至少经过多长时间才能将重物吊起?(g=10m/s2)2.在如图甲所示的电路中,螺线管匝数n=1500匝,横截面积S=20cm2.螺线管导线电阻r=1.0Ω,R1=4.0Ω,R2=5.0Ω,C=30μF.在一段时间内,穿过螺线管的磁场的磁感应强度B按如图乙所示的规律变化.求:(1)求螺线管中产生的感应电动势;(2)闭合S,电路中的电流稳定后,求电阻R1的电功率;(3)S断开后,求流经R2的电量.3.如图甲所示,回路中有一个C=60μF的电容器,已知回路的面积为1.0×10-2m 2,垂直穿过回路的磁场的磁感应强度B随时间t的变化图象如图乙所示,求:(1)t=5s时,回路中的感应电动势;(2)电容器上的电荷量.4.如图甲所示,一个圆形线圈的匝数n=1 000,线圈面积S=300cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,线圈处在有一方向垂直线圈平面向里的圆形磁场中,圆形磁场的面积S0=200cm2,磁感应强度随时间的变化规律如图乙所示.求:(1)第4秒时线圈的磁通量及前4s内磁通量的变化量(2)前4s内的感应电动势和前4s内通过R的电荷量;(3)线圈电阻r消耗的功率.5.如图所示,一个圆形线圈的匝数n=1000,线圈面积S=200cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图所示;求:(1)前4s内的感应电动势(2)前5s内的感应电动势.6.如图所示,电阻不计的足够长光滑平行金属导轨倾斜放置,两导轨间距为L,导轨平面与水平面之间的夹角为α,下端接有阻值为R的电阻.质量为m、电阻为r的导体棒ab与固定轻质弹簧连接后放在导轨上,整个装置处于磁感应强度大小为B、方向垂直于导轨平面向上的匀强磁场中,开始时导体棒ab处于锁定状态且弹簧处于原长.某时刻将导体棒解锁并给导体棒一个沿导轨平面向下的初速度v0使导体棒ab沿导轨平面运动,整个运动过程中导体棒始终与导轨垂直并保持良好接触,弹簧的劲度系数为k且弹簧的中心轴线与导轨平行,导体棒运动过程中弹簧始终处于弹性限度内,重力加速度为g.(1)若导体棒的速度达到最大时弹簧的劲度系数k与其形变量x、导体棒ab的质量之间的关系为k=,求导体棒ab的速度达到最大时通过电阻R的电流大小;(2)若导体棒ab第一次回到初始位置时的速度大小为v,求此时导体棒ab的加速度大小;(3)若导体最终静止时弹簧的弹性势能为E p,求导体棒从开始运动直到停止的过程中,.电阻R上产生的热量.7.如图所示,两根足够长固定平行金属导轨位于倾角θ=30°的斜面上,导轨上、下端各接有阻值R=20Ω的电阻,导轨电阻忽略不计,导轨宽度L=2m,在整个导轨平面内都有垂直于导轨平面向上的匀强磁场,磁感应强度B=1T.质量m=0.1kg、连入电路的电阻r=10Ω的金属棒ab在较高处由静止释放,当金属棒ab下滑高度h=3m时,速度恰好达到最大值v=2m/s.金属棒ab在下滑过程中始终与导轨垂直且与导轨良好接触g取10m/s2.求:(1)金属棒ab由静止至下滑高度为3m的运动过程中机械能的减少量.(2)金属棒ab由静止至下滑高度为3m的运动过程中导轨上端电阻R中产生的热量.8.如图所示,有一磁感应强度大小为B的水平匀强磁场,其上下水平边界的间距为H;磁场的正上方有一长方形导线框,其长和宽分别为L、d(d<H),质量为m,电阻为R.现将线框从其下边缘与磁场上边界间的距离为h处由静止释放,测得线框进入磁场的过程所用的时间为t.线框平面始终与磁场方向垂直,线框上下边始终保持水平,重力加速度为g.求:(1)线框下边缘刚进入磁场时线框中感应电流的大小和方向;(2)线框的上边缘刚进磁场时线框的速率v1;(3)线框下边缘刚进入磁场到下边缘刚离开磁场的全过程中产生的总焦耳热Q.9.如图所示,相距L=0.4m、电阻不计的两平行光滑金属导轨水平放置,一端与阻值R=0.15Ω的电阻相连,导轨处于磁感应强度B=0.5T的匀强磁场中,磁场方向垂直于导轨平面.质量m=0.1kg、电阻r=0.05Ω的金属棒置于导轨上,并与导轨垂直.t=0时起棒在水平外力F作用下以初速度v0=2m/s、加速度a=1m/s2沿导轨向右匀加速运动.求:(1)t=2s时回路中的电流;(2)t=2s时外力F大小;(3)第2s内通过棒的电荷量.10.如图所示,面积为0.2m2的100匝线圈处在匀强磁场中,磁场方向垂直于线圈平面,已知磁感应强度随时间变化的规律为B=0.2t T,定值电阻R1=6Ω,线圈电阻R2=4Ω.求:(1)回路的感应电动势;(2)a、b两点间的电压.11.如图甲所示,有一面积S=100cm2,匝数n=100匝的闭合线圈,电阻为R=10Ω,线圈中磁场变化规律如图乙所示,磁场方向垂直纸面向里为正方向,求:(1)t=1s时,穿过每匝线圈的磁通量为多少?(2)t=2s内,线圈产生的感应电动势为多少?12.如图所示,两根光滑的平行金属导轨MN、PQ处于同一水平面内,相距L=0.5m,导轨的左端用R=3Ω的电阻相连,导轨电阻不计,导轨上跨接一电阻r=1Ω的金属杆ab,质量m=0.2kg,整个装置放在竖直向上的匀强磁场中,磁感应强度B=2T,现对杆施加水平向右的拉力F=2N,使它由静止开始运动,求:(1)杆能达到的最大速度多大?(2)若已知杆从静止开始运动至最大速度的过程中,R上总共产生了10.2J的电热,则此过程中金属杆ab的位移多大?(3)接(2)问,此过程中流过电阻R的电量?经历的时间?13.如图甲所示,光滑的平行水平金属导轨MN、PQ相距L,在M点和P点间连接一个阻值为R的电阻,一质量为m、电阻为r、长度也刚好为L的导体棒ab垂直搁在导轨上,在导体棒的右侧导轨间加一有界匀强磁场,磁场方向垂直于导轨平面,宽度为d0,磁感应强度为B,设磁场左边界到导体棒的距离为d.现用一个水平向右的力F拉导体棒,使它由静止开始运动,棒离开磁场前已做匀速直线运动,与导轨始终保持良好接触,导轨电阻不计,水平力F与位移x的关系图象如图乙所示,F0已知.求:.(1)导体棒ab离开磁场右边界时的速度.(2)导体棒ab通过磁场区域的过程中整个回路所消耗的电能.(3)d0满足什么条件时,导体棒ab进入磁场后一直做匀速运动?14.如图所示,在宽为0.5m的平行导轨上垂直导轨放置一个有效电阻为r=0.6Ω的导体棒,在导轨的两端分别连接两个电阻R1=4Ω、R2=6Ω,其他电阻不计.整个装置处在垂直导轨向里的匀强磁场中,如图所示,磁感应强度 B=0.1T.当直导体棒在导轨上以v=6m/s的速度向右运动时,求:直导体棒两端的电压和流过电阻R1和R2的电流大小.15.如图所示,宽为L的光滑导轨与水平面成θ角,匀强磁场垂直导轨平面向上,磁感应强度为B,质量为m、电阻为r的金属杆ab沿导轨下滑,导轨下端的定值电阻为R,导轨的电阻不计,试求:(1)杆ab沿导轨下滑时的稳定速度的大小;(2)杆ab稳定下滑时两端的电势差.16.如图所示,竖直放置的足够长的光滑平行金属导轨,间距为l=0.50m,导轨上端接有电阻R=0.80Ω,导轨电阻忽略不计.空间有一水平方向的有上边界的匀强磁场,磁感应强度大小为B=0.40T,方向垂直于金属导轨平面向外.质量为m=0.02kg、电阻r=0.20Ω的金属杆MN,从静止开始沿着金属导轨下滑,下落一定高度后以v=2.5m/s的速度进入匀强磁场中,在磁场下落过程中金属杆始终与导轨垂直且接触良好.已知重力加速度为g=10m/s2,不计空气阻力,求在磁场中,(1)金属杆刚进入磁场区域时加速度;(2)若金属杆在磁场区域又下落h开始以v0匀速运动,求v 0大小.17.竖直放置的光滑U形导轨宽0.5m,电阻不计,置于很大的磁感应强度是1T的匀强磁场中,磁场垂直于导轨平面,如图所示,质量为10g,电阻为1Ω的金属杆PQ无初速度释放后,紧贴导轨下滑(始终能处于水平位置).问:(1)到通过PQ的电量达到0.2c时,PQ下落了多大高度?(2)若此时PQ正好到达最大速度,此速度多大?(3)以上过程产生了多少热量?18.如图甲所示,平行金属导轨与水平面的夹角为θ=37°,导轨间距为L=1m,底端接有电阻R=6Ω,虚线00'下方有垂直于导轨平面向下的匀强磁场.现将质量m=1kg、电阻r=3Ω的金属杆ab从00'上方某处静止释放,杆下滑4m过程中(没有滑到底端)始终保持与导轨垂直且良好接触,杆的加速度a与下滑距离s的关系如图乙所示.(sin37°=0.6,cos37°=0.8,g=10m/s2,其余电阻不计)求:(1)金属杆ab与导轨间的动摩擦因数μ(2)磁感应强度B的大小.19.如图,在竖直平面内有金属框ABCD,B=0.1T的匀强磁场垂直线框平面向外,线框电阻不计,框间距离为0.1m.线框上有一个长0.1m的可滑动的金属杆ab,已知金属杆质量为0.2g,金属杆电阻r=0.1Ω,电阻R=0.2Ω,不计其他阻力,求金属杆ab匀速下落时的速度.20.一个面积为0.2m2的100匝线圈处在匀强磁场中,磁场方问垂直于线圈平面,已知磁感应强度随时间变化的规律为B=(2+0.2t)T,定值电阻R=6Ω,线圈电阻r=4Ω,求:(1)线圈中磁通量的变化率和回路的感应电动势;(2)a、b两点间电压U ab..21.一线圈匝数为N、电阻为r,在线圈外接一阻值为2r的电阻R,如图甲所示.线圈内有垂直纸面向里的匀强磁场,磁通量Φ随时间t变化的规律如图乙所示.求0至t0时间内:(1)线圈中产生的感应电动势大小;(2)通过R的感应电流大小和方向;(3)电阻R中感应电流产生的焦耳热.22.金属框架平面与磁感线垂直,金属与框架的电阻忽略,电流计内阻R=20Ω,磁感强度B=1T,导轨宽L=50cm,棒以2m/s的速度作切割磁感线运动,那么(1)电路中产生的感应电动势为多少伏?(2)电流的总功率为多少瓦?(3)为了维持金属棒作匀速运动,外力F的大小为多少牛?23.如图所示,导轨是水平的,其间距l1=0.5m,ab杆与导轨左端的距离l2=0.8m,由导轨与ab杆所构成的回路电阻为0.2Ω,方向垂直导轨平面向下的匀强磁场的磁感应强度B=1T,滑轮下挂一重物质量0.04kg,ah杆与导轨间的摩擦不计,现使磁场以=0.2T/s的变化率均匀地增大,问:当t为多少时,M刚离开地面?(g取10m/s2)24.如图(甲)所示,光滑且足够长的平行金属导轨MN、PQ固定在同一水平面上,两导轨间的距离L=1m,定值电阻R 1=6Ω,R2=3Ω,导轨上放一质量为m=1kg的金属杆,杆的电阻r=2Ω,导轨的电阻不计,整个装置处于磁感应强度为B=0.8T的匀强磁场中,磁场的方向垂直导轨平面向下.现用一拉力F沿水平方向拉杆,使金属杆以一定的初速度开始运动.图(乙)所示为通过R1中电流的平方I12随时间t的变化关系图象,求:(1)5s末金属杆的速度;(2)金属杆在t时刻所受的安培力;(3)5s内拉力F所做的功.25.在光滑绝缘水平面上,电阻为0.1Ω、质量为0.05kg的长方形金属框abcd,以10m/s的初速度向磁感应强度B=0.5T、方向垂直水平面向下、范围足够大的匀强磁场滑去.当金属框进入磁场到达如图所示位置时,已产生1.6J的热量.(1)求出在图示位置时金属框的动能.(2)求图示位置时金属框中感应电流的功率.(已知ab边长L=0.1m)26.如图所示,两平行金属导轨之间的距离为L=0.6m,两导轨所在平面与水平面之间的夹角为θ=37°,电阻R的阻值为1Ω(其余电阻不计),一质量为m=0.1kg的导体棒横放在导轨上,整个装置处于匀强磁场中,磁感应强度为B=0.5T,方向垂直导轨平面斜向上,已知导体棒与金属导轨间的动摩擦因数为μ=0.3,今由静止释放导体棒,当通过导体棒的电荷量为1.8C时,导体棒开始做匀速直线运动.已知:sin37°=0.6,cos37°=0.8,重力加速度g=10m/s2,求:(1)导体棒匀速运动的速度;(2)求导体从静止开始到匀速过程中下滑的距离S.(3)导体棒下滑s的过程中产生的电能.27.如图甲所示,一个圆形线圈的匝数n=1000,线圈面积S=200cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间的变化规律如图乙所示.求:(1)请说明线圈中的电流方向;(2)前4s内的感应电动势;.(3)前4s内通过R的电荷量.28.如图所示,水平方向的匀强磁场呈带状分布,两区域磁感应强度不同,宽度都是L,间隔是2L.边长为L、质量为m、电阻为R的正方形金属线框,处于竖直平面且与磁场方向垂直,底边平行于磁场边界,离第一磁场的上边界的距离为L.线框从静止开始自由下落,当线框穿过两磁场区域时恰好都能匀速运动.若重力加速度为g,求:(1)第一个磁场区域的磁感应强度B1;(2)线框从开始下落到刚好穿过第二磁场区域的过程中产生的总热量Q.29.如图所示,框架的面积为S,匀强磁场的磁感应强度为B.试求:①框架平面与磁感应强度B垂直时,穿过框架平面的磁通量为多少?②若框架绕OO′转过60°,则穿过框架平面的磁通量为多少?③在此过程中,穿过框架平面的磁通量的变化量大小为多少?30.如图所示,一U形光滑金属框的可动边AC棒长L=1m,电阻为r=1Ω.匀强磁场的磁感强度为B=0.5T,AC以v=8m/s的速度水平向右移动,电阻R=7Ω,(其它电阻均不计).求:(1)电路中产生的感应电动势的大小.(2)通过R的感应电流大小.(3)AC两端的电压大小.31.如图,光滑平行的水平金属导轨MN、PQ相距l,在M点和P点间接一个阻值为R 的电阻,在两导轨间OO1O1′O′矩形区域内有垂直导轨平面竖直向下、宽为d的匀强磁场,磁感强度为B.一质量为m,电阻为r的导体棒ab,垂直搁在导轨上,与磁场左边界相距d0.现用一大小为F、水平向右的恒力拉ab棒,使它由静止开始运动,棒ab在离开磁场前已经做匀速直线运动(棒ab与导轨始终保持良好的接触,导轨电阻不计).求:(1)棒ab在离开磁场右边界时的速度;(2)棒ab通过磁场区的过程中整个回路所消耗的电能.32.如图所示,两足够长平行光滑的金属导轨MN、PQ相距为L,导轨平面与水平面夹角α=30°,导轨电阻不计.磁感应强度为B的匀强磁场垂直导轨平面向上,两根长为L的完全相同的金属棒ab、cd垂直于MN、PQ放置在导轨上,且与导轨接触良好,每根棒的质量均为m、电阻均为R.现对ab施加平行导轨向上的恒力F,当ab向上做匀速直线运动时,cd保持静止状态.(1)求力F的大小及ab运动速度v的大小.(2)若施加在ab上的力的大小突然变为2mg,方向不变,则当两棒运动的加速度刚好相同时回路中的电流强度I和电功率P分别为多大?33.如图甲所示,abcd是位于竖直平面内的正方形闭合金属线框,金属线框的质量为m,电阻为R,在金属线框的下方有一匀强磁场区域,MN和PQ是匀强磁场区域的水平边界.并与线框的bc边平行,磁场方向垂直于线框平面向里.现使金属线框从MN上方某一高度处由静止开始下落,如图乙是金属线框由开始下落到完全穿过匀强磁场区域瞬间的v-t图象,图中字母均为已知量.重力加速度为g,不计空气阻力.求:(1)金属线框的边长;(2)金属线框在进入磁场的过程中通过线框截面的电量;(3)金属线框在0~t4时间内安培力做的总功.34.如图所示,一对光滑的平行金属导轨固定在同一水平面内,导轨间距为L,左端接有阻值为R的电阻,一质量为m、电阻为r的金属棒MN垂直放置在导轨上,整个装置置于竖直向上的匀强磁场中.当.棒以速度v匀速运动时,加在棒上的水平拉力大小为F1;若改变水平拉力的大小,让棒以初速度v做匀加速直线运动,当棒匀加速运动的位移为x时,速度达到3v.己知导轨足够长且电阻不计,棒在运动过程中始终与导轨垂直且两端与导轨保待良好接触.(1)求磁场的磁感应强度大小;(2)在金属棒的速度由v变为3v的匀加速运动过程中,拉力对金属棒做的功为W F,求这一过程回路产生的电热为多少?(3)通过计算写出金属棒匀加速直线运动时所需外力F随时间t变化的函数关系式.35.相距为L的两光滑平行导轨与水平面成θ角放置.上端连接一阻值为R的电阻,其他电阻不计.整个装置处在方向竖直向上的匀强磁场中,磁感强度为B,质量为m,电阻为r的导体MN,垂直导轨放在导轨上,如图所示.由静止释放导体MN,求:(1)MN可达的最大速度v m;(2)MN速度v=时的加速度a;(3)回路产生的最大电功率P m.36.如图,MN、PQ两条平行的光滑金属轨道与水平面成θ角固定,轨距为d.空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B.P、M间接有阻值为3R的电阻.Q、N间接有阻值为6R的电阻,质量为m的金属杆ab水平放置在轨道上,其有效电阻为R.现从静止释放ab,当它沿轨道下滑距离s时,达到最大速度.若轨道足够长且电阻不计,重力加速度为g.求:(1)金属杆ab运动的最大速度;(2)金属杆ab运动的加速度为gsinθ时,金属杆ab消耗的电功率;(3)金属杆ab从静止到具有最大速度的过程中,通过6R的电量;(4)金属杆ab从静止到具有最大速度的过程中,克服安培力所做的功.37.如图所示,竖直放置的光滑平行金属导轨MN、PQ相距L=1m,在M点和P点间接有一个阻值为R=0.8Ω的电阻,在两导轨间的矩形区域OO1O1′O′内有垂直导轨平面向里、高度h=1.55m的匀强磁场,磁感应强度为B=T,一质量为m=0.5kg的导体棒ab垂直资料地搁在导轨上,与磁场的上边界相距h0=0.45m,现使ab棒由静止开始释放,下落过程中,棒ab与导轨始终保持良好接触且保持水平,在离开磁场前已经做匀速直线运动,已知导体棒在导轨间的有效电阻由0.2Ω,导轨的电阻不计,g取10m/s2.(1)ab棒离开磁场的下边届时的速度大小;(2)ab棒从静止释放到离开磁场下边届的运动过程中,其速度达到2m/s时的加速度大小和方向;(3)ab棒在通过磁场区的过程中产生的焦耳热.38.如图所示PQ、MN为足够长的两平行金属导轨,它们之间连接一个阻值R=8Ω的电阻;导轨间距为L=1m;一质量为m=0.1kg,电阻r=2Ω,长约1m的均匀金属杆水平放置在导轨上,它与导轨的滑动摩擦因数μ=,导轨平面的倾角为θ=30°在垂直导轨平面方向有匀强磁场,磁感应强度为B=0.5T,今让金属杆AB由静止开始下滑,下滑过程中杆AB与导轨一直保持良好接触,杆从静止开始到杆AB恰好匀速运动的过程中经过杆的电量q=l C,求:(1)当AB下滑速度为2m/s时加速度的大小(2)AB 下滑的最大速度(3)从静止开始到AB匀速运动过程R上产生的热量.39.如图所示,“U”形导线框固定在水平面上,右端放有质量为m的金属棒ab,ab与导轨间的动摩擦因数为μ,它们围成的矩形边长分别为L1、L2,回路的总电阻为R.从t=0时刻起,在竖直向上方向加一个随时间均匀增加的磁场B=kt,那么(1)在磁场均匀增加过程,金属棒ab电流方向?(2)时间t为多大时,金属棒开始移动?(最大静摩擦力fm近似为滑动摩擦力f滑)40.如图所示,在光滑绝缘的水平面上有一个用均匀导体围成的正方形线框abcd,其边长为L,总电阻为R.边界MN的右侧有垂直于纸面向里的匀强磁场,磁感应强度为B.线框在大小为F的恒力作用下向右运动,其中ab边保持与MN平行.当线框以速度v0进入磁场区域时,它恰好做匀速运动.在线框进入磁场的过程中,求:高中物理试卷第12页,共13页.(1)线框ab边产生的感应电动势E的大小;(2)线框a、b两点的电势差;(3)线框中产生的焦耳热.41.如图所示,宽度为L=0.2m的足够长的平行光滑金属导轨固定在绝缘水平面上,导轨的一端连接阻值为R=1Ω的电阻.导轨所在空间存在竖直向下的匀强磁场,磁感应强度大小为B=0.5T.一根质量为m=10g的导体棒MN放在导轨上与导轨接触良好,导轨和导体棒的电阻均可忽略不计.现用一平行于导轨的拉力拉动导体棒沿导轨向右匀速运动,运动速度v=10m/s,在运动过程中保持导体棒与导轨垂直.求:(1)在闭合回路中产生的感应电流的大小.(2)作用在导体棒上的拉力的大小.(3)当导体棒移动30cm时撤去拉力,求:从撤去拉力至棒停下来过程中电阻R上产生的热量.资料。
电磁感应典型题目(含答案)
电磁感应的典型计算1 如图所示,一与水平面夹角为θ=37°的倾斜平行金属导轨,两导轨足够长且相距L=0.2m,另外两根水平金属杆MN和PQ的质量均为m=0.01kg,可沿导轨无摩擦地滑动,MN杆和PQ杆的电阻均为R=0.2Ω(倾斜金属导轨电阻不计),MN杆被两个垂直于导轨的绝缘立柱挡住,整个装置处于匀强磁场内,磁场方向垂直于导轨平面向上,磁感应强度B=1.0T.PQ杆在恒定拉力F作用下由静止开始向上加速运动,拉力F垂直PQ杆沿导轨平面向上,当运动位移x=0.1 m时PQ杆达到最大速度,此时MN杆对绝缘立柱的压力恰好为零(g取10m/s2,sin 37°=0.6 ,cos 37°=0.8).求:(1) PQ杆的最大速度v m, (2)当PQ杆加速度时,MN杆对立柱的压力;(3)PQ杆由静止到最大速度过程中回路产生的焦耳热Q.解:(1)PQ达到最大速度时,关于电动势为:E m=BLv m,感应电流为:I m=REm2,根据MN杆受力分析可得:mg sinθ=BI m L,联立解得:v m=22sin2LBRmg=0.6m/s;(2)当PQ的加速度a=2 m/s2 时,对PQ根据牛顿第二定律可得:F-mg sinθ-BIL=ma,对MN根据共点力的平衡可得:BIL+F N-mg sinθ=0,PQ达到最大速度时,有:F-mg sinθ-BI m L=0,联立解得:F N=0.02N,根据牛顿第三定律可得对立柱的压力F N=0.02N;(3)PQ由静止到最大速度的过程中,根据功能关系可得:F x =221mmv+mgx sinθ+Q,解得:Q=4.2×10-3 J.答:(1)PQ杆的最大速度为0.6m/s;(2)当PQ杆加速度a=2m/s2时,MN杆对立柱的压力为0.02N (3)PQ杆由静止到最大速度回路产生的焦耳热为4.2×10-3 J.2 如图所示,平行金属导轨与水平面间夹角均为θ=37°,导轨间距为lm,电阻不计,导轨足够长.两根金属棒 ab 和a′b′的质量都是0.2kg,电阻都是1Ω,与导轨垂直放置且接触良好,金属棒a′b′和导轨之间的动摩擦因数为0.5,设金属棒a′b′受到的最大静摩擦力等于滑动摩擦力.金属棒ab和导轨无摩擦,导轨平面PMKO处存在着垂直轨道平面向上的匀强磁场,导轨平面PMNQ处存在着沿轨道平面向上的匀强磁场,磁感应强度B的大小相同.用外力让a′b′固定不动,将金属棒ab由静止释放,当ab下滑速度达到稳定时,整个回路消耗的电功率为18W.求:(1)ab 棒达到的最大速度;(2)ab棒下落了 30m 高度时,其下滑速度已经达到稳定,此过程中回路电流产生的焦耳热Q;(3)在ab棒下滑过程中某时刻将a′b′固定解除,为确保a′b′始终保持静止,则a′b′固定解除时ab棒的速度大小满足什么条件?( g=10m/s2,sin37°=0.6,cos37°=0.8 )解:(1)ab 棒达到最大速度时做匀速运动,其重力功率等于整个回路消耗的电功率,则有:mg sinθ•v m=P电,则得:ab棒的最大速度为:v m==m/s=15m/s;由P电==,得:B==T=0.4T(2)根据能量守恒得:mgh=Q+则得:Q=mgh-=0.2×10×30J-×0.2×152 =37.5 J(3)将a′b′固定解除,为确保a′b′始终保持静止,则对于a′b′垂直于斜面方向有:N=mg cos37°+BIL,平行于斜面方向有:mg sin37°≤f m=μN解得:I ≥2A对于ab棒:E=I•2R,E=BLv,则得:v=≥m/s=10m/s故ab的速度应满足的条件是:10m/s≤v≤15m/s答:(1)ab 棒达到的最大速度是15m/s;(2)ab棒下落了30m 高度时,其下滑速度已经达到稳定,此过程中回路电流产生的焦耳热Q是37.5J;(3)在ab棒下滑过程中某时刻将a′b′固定解除,为确保a′b′始终保持静止,则a′b′固定解除时ab棒的速度大小满足的条件是10m/s≤v≤15m/s3 如图所示,两电阻不计的足够长光滑平行金属导轨与水平面夹角为θ,导轨间距为L,所在平面的正方形区域abcd内存在有界匀强磁场,磁感应强度为B,方向垂直斜面向上.将甲乙两电阻阻值相同、质量均为m的相同金属杆如图放置在导轨上,甲金属杆处在磁场的上边界,甲乙相距L.静止释放两金属杆的同时,在甲金属杆上施加一个沿着导轨向下的外力F,使甲金属杆在运动过程中始终做沿导轨向下的匀加速直线运动,加速度大小g sinθ,乙金属杆刚进入磁场时,发现乙金属杆作匀速运动.(1)求乙刚进入磁场时的速度(2)甲乙的电阻R为多少;(3)乙刚释放时t=0,写出从开始释放到乙金属杆离开磁场,外力F随时间t的变化关系;(4 )若从开始释放到乙金属杆离开磁场,乙金属杆中共产生热量Q,试求此过程中外力F对甲做的功.解:⑴在乙尚未进入磁场中的过程中,甲、乙的加速度相同,设乙刚进入磁场时的速度v乙刚进入磁场时,对乙由根据平衡条件得(2)设乙从释放到刚进入磁场过程中做匀加速直线运动所需要的时间为设乙从进入磁场过程至刚离开磁场的过程中做匀速直线运动所需要的时间为设乙离开磁场时,甲的速度设甲从开始释放至乙离开磁场的过程中的位移为x根据能量转化和守恒定律得:4 如图所示,倾斜角θ=30°的光滑倾斜导体轨道(足够长)与光滑水平导体轨道连接。
(完整版)力-电电磁感应计算题精选——含答案,推荐文档
1、如图(a)两相距L=0.5m的平行金属导轨固定于水平面上,导轨左端与阻值R=2Ω的电阻连接,导轨间虚线右侧存在垂直导轨平面的匀强磁场,质量m=0.2kg的金属杆垂直于导轨上,与导轨接触良好,导轨与金属杆的电阻可忽略,杆在水平向右的恒定拉力作用下由静止开始运动,并始终与导轨垂直,其v-t图像如图(b)所示,在15s时撤去拉力,同时使磁场随时间变化,从而保持杆中电流为0,求:(1)金属杆所受拉力的大小为F;(2)0-15s匀强磁场的磁感应强度大小为;(3)15-20s内磁感应强度随时间的变化规律。
2、如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L=0.2m,长为2d,d=0.5m,上半段d导轨光滑,下半段d导轨的动摩擦因素为μ=,导轨平面与水平面的夹角为θ=30°.匀强磁场的磁感应强度大小为B=5T,方向与导轨平面垂直.质量为m=0.2kg的导体棒从导轨的顶端由静止释放,在粗糙的下半段一直做匀速运动,导体棒始终与导轨垂直,接在两导轨间的电阻为R=3Ω,导体棒的电阻为r=1Ω,其他部分的电阻均不计,重力加速度取g=10m/s2,求:(1)导体棒到达轨道底端时的速度大小;(2)导体棒进入粗糙轨道前,通过电阻R上的电量q;(3)整个运动过程中,电阻R产生的焦耳热Q.3、如图甲所示,两根足够长、电阻不计的光滑平行金属导轨相距为L1=1m,导轨平面与水平面成θ=30角,上端连接阻值R=1.5Ω的电阻;质量为m=0.2kg、阻值r=0.5Ω的金属棒ab放在两导轨上,距离导轨最上端为L2=4m,棒与导轨垂直并保持良好接触。
整个装置处于一匀强磁场中,该匀强磁场方向与导轨平面垂直,磁感应强度大小随时间变化的情况如图乙所示。
为保持ab棒静止,在棒上施加了一平行于导轨平面的外力F, g=10m/s2求:(1)当t=2s时,外力F1的大小;(2)当t=3s前的瞬间,外力F2的大小和方向;(3)请在图丙中画出前4s外力F随时间变化的图像(规定F方向沿斜面向上为正);4、如图33-11甲所示,一足够长阻值不计的光滑平行金属导轨MN、PQ之间的距离L=1.0 m,NQ两端连接阻值R=1.0 Ω的电阻,磁感应强度为B的匀强磁场垂直于导轨所在平面向上,导轨平面与水平面间的夹角θ=30°.一质量m=0.20 kg、阻值r=0.50 Ω的金属棒垂直于导轨放置并用绝缘细线通过光滑的定滑轮与质量M=0.60 kg的重物P 相连.细线与金属导轨平行.金属棒沿导轨向上滑行的速度v与时间t之间的关系如图33-11乙所示,已知金属棒在0~0.3 s内通过的电量是0.3~0.6 s内通过电量的,g=10 m/s2,求:甲乙图33-11(1)0~0.3 s内棒通过的位移;(2)金属棒在0~0.6 s内产生的热量.5、如图甲所示,水平面上的两光滑金属导轨平行固定放置,间距d =0.5 m ,电阻不计,左端通过导线与阻值R =2 W 的电阻连接,右端通过导线与阻值R L =4 W 的小灯泡L 连接.在CDEF 矩形区域内有竖直向上的匀强磁场,CE 长l =2 m ,有一阻值r =2 W 的金属棒PQ 放置在靠近磁场边界CD 处.CDEF 区域内磁场的磁感应强度B 随时间变化如图22乙所示.在t =0至t =4s 内,金属棒PQ 保持静止,在t =4s 时使金属棒PQ 以某一速度进入磁场区域并保持匀速运动.已知从t =0开始到金属棒运动到磁场边界EF 处的整个过程中,小灯泡的亮度没有发生变化,求:(1)通过小灯泡的电流.(2)金属棒PQ 在磁场区域中运动的速度大小.参考答案一、计算题1、(1)0.24N ;(2)0.4T ;(3)(2)在10—15s时间段杆在磁场中做匀速运动,因此有以F=0.24N,μmg=0.16N代入解得B0=0.4T(3)由题意可知在15—20s时间段通过回路的磁通量不变,设杆在15—20s内运动距离为d,15s后运动的距离为x B(t)L(d+x)=B0Ld其中d=20mx=4(t-15)-0.4(t-15)2由此可得2、考点:导体切割磁感线时的感应电动势;电磁感应中的能量转化..专题:电磁感应——功能问题.分析:(1)研究导体棒在粗糙轨道上匀速运动过程,受力平衡,根据平衡条件即可求解速度大小.(2)进入粗糙导轨前,由法拉第电磁感应定律、欧姆定律和电量公式结合求解电量.(3)导体棒在滑动时摩擦生热为Q f=2μmgdcosθ,再根据能量守恒定律求解电阻产生的焦耳热Q.解答:解:(1)导体棒在粗糙轨道上受力平衡:由 mgsin θ=μmgcos θ+BIL得:I=0.5A由BLv=I(R+r)代入数据得:v=2m/s(2)进入粗糙导轨前,导体棒中的平均电动势为: ==导体棒中的平均电流为: ==所以,通过导体棒的电量为:q=△t==0.125C(3)由能量守恒定律得:2mgdsin θ=Q电+μmgdcos θ+mv2得回路中产生的焦耳热为:Q电=0.35J所以,电阻R上产生的焦耳热为:Q=Q电=0.2625J答:(1)导体棒到达轨道底端时的速度大小是2m/s;(2)导体棒进入粗糙轨道前,通过电阻R上的电量q是0.35C;(3)整个运动过程中,电阻R产生的焦耳热Q是0.2625J.点评:本题实质是力学的共点力平衡与电磁感应的综合,都要求正确分析受力情况,运用平衡条件列方程,关键要正确推导出安培力与速度的关系式,分析出能量是怎样转化的.3、【知识点】导体切割磁感线时的感应电动势;闭合电路的欧姆定律;法拉第电磁感应定律;电磁感应中的能量转化.J2 L2 L3【答案解析】(1)0;(2)0.5N,方向沿斜面向下;(3)如图所示.解析:(1)当t=2s时,回路中产生的感应电动势为:E=,B2=1T,应电流为:I=;根据楞次定律判断可知,ab所受的安培力沿轨道向上;ab棒保持静止,受力平衡,设外力沿轨道向上,则由平衡条件有:mgsin30°-B2IL1-F1=0可解得:F1=mgsin30°-B2IL1=0.2×10×sin30°-1×1×1=0(2)当t=3s前的瞬间,由图可知,B3=1.5T,设此时外力沿轨道向上,则根据平衡条件得:F2+B3IL1-mg sin30°=0则得:F2=mg sin30°-B3IL1=0.2×10×sin30°-1.5×1×1=-0.5N,负号说明外力沿斜面向下.(3)规定F方向沿斜面向上为正,在0-3s内,根据平衡条件有:mgsin30°-BIL1-F=0而B=0.5t(T)则得:F=mgsin30°-BIL1=0.2×10×sin30°-0.5T×1×1=1-0.5T(N)当t=0时刻,F=1N.在3-4s内,B不变,没有感应电流产生,ab不受安培力,则由平衡条件得:F=mgsin30°=0.2×10×sin30°N=1N画出前4s外力F随时间变化的图象如图所示.【思路点拨】(1)由图知,0-3s时间内,B均匀增大,回路中产生恒定的感应电动势和感应电流,根据法拉第电磁感应定律和欧姆定律求出感应电流,由平衡条件求解t=2s时,外力F1的大小.(2)与上题用同样的方法求出外力F2的大小和方向.(3)由B-t图象得到B与t的关系式,根据平衡条件得到外力F与t的关系式,再作出图象.解决本题的关键掌握法拉第电磁感应定律、平衡条件、安培力公式和能量守恒定律等等电磁学和力学规律,得到解析式,再画图象是常用的思路,要多做相关的训练.4、解析:(1)金属棒在0.3~0.6 s内通过的电量是q1=I1t1=金属棒在0~0.3 s内通过的电量q2==由题知q1=q2,代入解得x2=0.3 m.(2)金属棒在0~0.6 s内通过的总位移为x=x1+x2=vt1+x2,代入解得x=0.75 m根据能量守恒定律Mgx-mgx sinθ-Q=(M+m)v2代入解得Q=2.85 J由于金属棒与电阻R串联,电流相等,根据焦耳定律Q=I2Rt,得到它们产生的热量与电阻成正比,所以金属棒在0~0.6 s内产生的热量Q r=Q=1.9 J.答案:(1)0.3 m (2)1.9 J5、【解析】(1)在t=0至t=4s内,金属棒PQ保持静止,磁场变化导致电路中产生感应电动势.电路为r与R并联,再与R L 串联,电路的总电阻=5Ω①此时感应电动势=0.5×2×0.5V=0.5V ②通过小灯泡的电流为:=0.1A ③(2)当棒在磁场区域中运动时,由导体棒切割磁感线产生电动势,电路为R与R L并联,再与r串联,此时电路的总电阻=2+Ω=Ω④由于灯泡中电流不变,所以灯泡的电流I L=0.1A,则流过棒的电流为=0.3A ⑤电动势⑥解得棒PQ在磁场区域中v=1m/s。
电磁感应经典例题及解析
电磁感应经典例题及解析电磁感应是电磁学中的重要概念,也是我们日常生活中常常会遇到的现象。
在电磁感应的过程中,磁场的变化会导致电场的产生,进而引发电流的产生。
这一原理广泛应用于发电机、变压器等电磁设备中。
下面我们来看一些经典的电磁感应例题,并对其进行解析。
例题1:一个磁感强度为0.2 T的匀强磁场,以2 m/s的速度向垂直于磁场的方向移动,求导体中感应电动势的大小。
解析:根据电磁感应的原理,导体中感应电动势的大小等于磁感强度与导体的速度的乘积,即E = Bv。
将已知数据代入计算,E = 0.2 T × 2 m/s = 0.4 V。
例题2:一个圆形线圈的半径为10 cm,磁感强度为0.5 T的磁场垂直于线圈的平面,在0.2 s内磁场的强度从0.2 T增加到0.6 T,求线圈中感应电流的大小。
解析:根据电磁感应的原理,感应电流的大小等于感应电动势与电阻的比值,即I = ε/R。
感应电动势可以通过磁场的变化率来计算,即ε = -dφ/dt。
其中,φ表示磁通量。
磁通量的大小等于磁感强度与线圈面积的乘积,即φ = Bπr^2。
将已知数据代入计算,φ = 0.2 T ×π× (0.1 m)^2 = 0.02π Tm^2。
对磁通量关于时间的导数,即dφ/dt,可以计算为(0.6 T - 0.2 T)/0.2 s = 2 T/s。
因此,感应电动势的大小为ε = -2 T/s。
线圈的电阻需要另外给定,才能计算感应电流的大小。
通过以上例题的解析,我们可以看到,在电磁感应问题中,需要根据已知条件来计算磁通量的变化率,从而得到感应电动势的大小。
最后,根据电路中的电阻情况,可以计算出感应电流的大小。
电磁感应是电磁学中的重要概念,掌握电磁感应的原理和应用,对于理解和应用电磁学的知识具有重要意义。
通过解析经典的电磁感应例题,可以加深对电磁感应原理的理解,提高解决实际问题的能力。
电磁感应练习题及
电磁感应练习题及解答电磁感应练习题及解答电磁感应是物理学中的一个重要概念,涉及到电磁场的变化过程中电场和磁场相互作用产生的现象。
它在日常生活和科学研究中都有广泛的应用。
下面是一些电磁感应练习题及解答,供大家进行练习。
1. 一根长导线以速度v从北向南方向通过均匀磁场B,该导线的两端分别连接一个电阻为R的电灯泡。
求当导线通过磁场过程中,电灯泡亮起的时间。
解答:根据法拉第电磁感应定律,导线通过磁场时产生感应电动势,导致电流流过电灯泡。
所以,在导线通过磁场期间,电灯泡会一直亮起。
因此,电灯泡亮起的时间等于导线通过磁场的时间。
2. 一个长方形线圈的边长为a和b,放置在匀强磁场B中,使得长方形线圈的法线与磁场方向垂直。
求长方形线圈在匀强磁场中的磁通量。
解答:根据法拉第电磁感应定律,在匀强磁场中,线圈的磁通量可以通过以下公式计算:Φ = B * A * cosθ,其中B表示磁场强度,A表示线圈的面积,θ表示磁场方向与线圈法线方向之间的夹角。
由于线圈的法线与磁场方向垂直,θ为0,所以磁通量Φ = B * A。
3. 在一个闭合导线中有一个直径为d的圆环,该圆环的电阻为R。
当一个恒定的磁场B垂直于圆环平面时,求圆环上感应的电动势。
解答:根据法拉第电磁感应定律,当磁场的变化导致一个闭合回路中的磁通量发生改变时,会在回路中产生感应电动势。
在这个问题中,磁场是恒定的,所以不会产生感应电动势。
4. 一个导线带有电流I,在该导线旁边有另一条导线,它们平行。
第二条导线的长度为L,并且距离第一条导线的距离为d。
求第二条导线中感应的电动势。
解答:当电流从第一条导线中流过时,会在周围产生磁场。
第二条导线因为位于磁场中,所以会感受到这个磁场产生的磁通量的改变。
根据法拉第电磁感应定律,第二条导线中的感应电动势可以通过以下公式计算:ε = -dΦ/dt,其中Φ表示磁通量的变化率。
在这个问题中,需要计算第二条导线中的磁通量的变化率,并由此得出感应电动势。
电磁感应计算题集锦
电磁感应计算题集锦九、电场1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)常见电容器〔见第二册P111〕14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/215.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m注:(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;十、恒定电流1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω•m),L:导体的长度(m),S:导体横截面积(m2)}4.闭合电路欧姆定律:I=E/(r +R)或E=Ir+ IR (纯电阻电路);E=U内 +U外;E=U外 + I r ;(普通适用){I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}7.纯电阻电路和非纯电阻电路8.电源总动率P总=IE;电源输出功率P出=IU;电源效率η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}9.电路的串/并联:串联电路(P、U与R成正比) 并联电路(P、I与R成反比)10.欧姆表测电阻11.伏安法测电阻1、电压表和电流表的接法2、滑动变阻器的两种接法注:(1)单位换算:1A=103mA=106μA;1kV=103V=106mV;1MΩ=103kΩ=106Ω(2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;半导体和绝缘体的电阻率随温度升高而减小。
根据磁感应定律计算题专题训练
根据磁感应定律计算题专题训练
根据磁感应定律(法拉第电磁感应定律),当导体中的磁通量
发生变化时,会在导体中产生感应电动势。
根据该定律,我们可以
通过一系列计算题来加深对该定律的理解和应用。
以下是一些根据磁感应定律的计算题目,供您进行专题训练:
1. 题目:一个半径为 10cm 的圆形线圈,其平面与一个磁感应
强度为 0.05 T 的均匀磁场垂直,线圈有 1000 个匝。
求当线圈绕过
磁场中心轴转动 20 圈时,线圈中的感应电动势的变化量。
2. 题目:一个磁感应强度为0.1 T 的均匀磁场与一条导线垂直,导线的长度为 2 m。
如果导线以 10 m/s 的速度从垂直于磁场的位置
移动到与磁场平行的位置,求导线两端的感应电动势。
3. 题目:一个磁感应强度为 0.2 T 的均匀磁场与一条导线夹角
为 30°,导线的长度为 5 m。
当导线上的电流为 2 A 时,求导线两
端的感应电动势。
以上题目需要根据磁感应定律进行计算,您可以使用法拉第电磁感应定律的公式来求解。
请确保在计算过程中注意单位的转换和计算的准确性。
通过解答这些题目,您可以进一步熟练地应用磁感应定律进行计算和分析。
祝您训练顺利,希望以上信息对您有所帮助!。
电磁感应实验练习题计算磁场变化引起的感应电动势
电磁感应实验练习题计算磁场变化引起的感应电动势对于电磁感应实验中计算磁场变化引起的感应电动势,我们需要首先了解电磁感应的基本原理。
根据法拉第电磁感应定律,当磁场的变化穿过一定的导体回路时,会产生感应电动势。
感应电动势的计算公式为:ε = -N ∆Φ/∆t其中,ε表示感应电动势,N表示线圈的匝数,∆Φ表示磁通量的变化量,∆t表示磁场变化的时间。
下面,我们通过练习题来计算磁场变化引起的感应电动势。
练习题一:一个螺线管有100个匝,截面积为0.01平方米。
当磁感应强度从0.2特斯拉增加到0.6特斯拉,变化所用的时间为2秒。
求在这个过程中产生的感应电动势。
解答一:根据感应电动势的计算公式,我们可以得到:N = 100A = 0.01平方米∆B = 0.6特斯拉 - 0.2特斯拉 = 0.4特斯拉∆t = 2秒感应电动势ε = -N ∆Φ/∆t而磁通量Φ可以表示为磁感应强度B乘以面积A,即∆Φ = BΔA ∆Φ = ∆B * A = 0.4特斯拉 * 0.01平方米 = 0.004特斯拉·平方米代入计算公式,得到:ε = -N ∆Φ/∆t= -100 * 0.004特斯拉·平方米 / 2秒= -0.2伏特答案:在这个过程中,产生的感应电动势为0.2伏特。
练习题二:一个平行板电容器的板间距离为0.02米,两个平行板上的电压为5伏特。
当板间的磁感应强度发生变化时,感应电动势为多少?解答二:根据感应电动势的计算公式,我们可以得到:N = 1(由于只有一对平行板)A = 0.02平方米∆B = 变化后的磁感应强度 - 变化前的磁感应强度 = B2 - B1∆t = 1秒(假设变化所用的时间为1秒)感应电动势ε = -N ∆Φ/∆t在这个情况下,磁通量Φ仍然可以表示为磁感应强度B乘以面积A,即∆Φ = BΔA∆Φ = ∆B * A = (B2 - B1) * 0.02平方米代入计算公式,得到:ε = -N ∆Φ/∆t= -(B2 - B1) * 0.02平方米 / 1秒= -0.02(B2 - B1)伏特答案:在这个过程中,感应电动势为-0.02(B2 - B1)伏特。
电磁感应计算题及答案
电磁感应计算题及答案1.如图29所示,金属框架与水平面成30°角,匀强磁场的磁感强度B=0.4T,方向垂直框架平面向上,金属棒长l=0.5m,重量为0.1N,可以在框架上无摩擦地滑动,棒与框架的总电阻为2Ω,运动时可认为不变,问:(1)要棒以2m/s的速度沿斜面向上滑行,应在棒上加多大沿框架平面方向的外力?(2)当棒运动到某位置时,外力突然消失,棒将如何运动?(3)棒匀速运动时的速度多大?(4)达最大速度时,电路的电功率多大?重力的功率多大?2.如图30所示,导轨是水平的,其间距l1=0.5m,ab杆与导轨左端的距离l2=0.8m,由导轨与ab杆所构成的回路电阻为0.2Ω,方向垂直导轨平面向下的匀强磁场的磁感应强度B=1T,滑轮下挂一重物质量0.04kg,ah杆与导轨间的摩擦不计,现使磁场以=0.2T/s的变化率均匀地增大,问:当t为多少时,M刚离开地面?3.如图31所示,平行金属导轨的电阻不计,ab、cd的电阻均为R,长为l,另外的电阻阻值为R,整个装置放在磁感强度为B的匀强磁场中,当ab、cd以速率v向右运动时,通过R的电流强度为多少?4.固定在匀强磁场中的正方形导线框abcd各边长为l,其中ab是一段电阻为R的均匀电阻丝,其余三边均为电阻可忽略的铜线,磁感应强度为B,方向垂直纸面向里,现有一段与ab完全相同的电阻丝PQ 架在导线框上,如图32所示,以恒定的速度v从ad滑向bc,当PQ滑过5.两根相距0.2m的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感强度B=0.2T,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=0.25Ω,回路中其余部分的电阻可不计,已知金属细杆在平行于导轨的拉力的作用下,沿导轨朝相反方向匀速平移,速率大小都是v=0.5m/s,如图33所示,不计导轨上的摩擦,求:(1)作用于每条金属细杆的拉力;(2)求两金属细杆在间距增加0.10m的滑动过程中共产生的热量6.电阻为R的矩形导线框abcd,边长ab=l,ad=h,质量为m,自某一高度自由落下,通过一匀强磁场,磁场方向垂直纸面向里,磁场区域的宽度为h,如图34所示,若线框恰好以恒定速度通过磁场,线框内产生的焦耳热是多少?7.如图35所示,导线框abcd固定在竖直平面内,bc段的电阻为R,其他电阻均可忽略,ef是一电阻可忽略的水平放置的导体杆,杆长为l,质量为m,杆的两端分别与ab和cd保持良好接触,又能沿它们无摩擦地滑动,整个装置放在磁感强度为B的匀强磁场中,磁场方向与框面垂直,现用一恒力F竖直向上拉ef,当ef匀速上升时,其速度的大小为多少?答案1.0.09N,减速,2.5m/s0.125J,0.125J2.5s 3.2BLv/3R4.9BLv/nR,向左5.3.2×10-2N 1.28×10-2J6.2mgh 7.R(F-mg)/B2l2。
电磁学练习题电磁感应与楞次定律题目
电磁学练习题电磁感应与楞次定律题目电磁学练习题 - 电磁感应与楞次定律在电磁学中,电磁感应和楞次定律是重要的概念。
本文将以练习题的形式,帮助读者更好地理解和应用电磁感应和楞次定律。
题目一:导线弯曲的磁感应强度计算一根长度为l的直导线放置在均匀磁场中,使其成半径为R的圆弧。
磁场的磁感应强度为B,导线电流为I。
计算导线两端的感应电动势的大小。
解析:根据电磁感应的楞次定律,导线两端的感应电动势可以通过以下公式计算:ε = -dφ/dt其中,ε代表感应电动势,dφ/dt代表磁通量的变化率。
通过画出导线圆弧的示意图,我们可以看到,导线所围成的面积是一个扇形。
磁通量Φ可以表示为:Φ = B * S其中,B代表磁感应强度,S代表导线圆弧所围成的面积。
导线两端的感应电动势可以为:ε = -d(B*S)/dt由于导线的形状不会改变,导线圆弧所围成的面积S是常数。
因此,我们可以将其提出来:ε = -S * d(B)/dt但是,由于磁场的磁感应强度是常数,即dB/dt = 0,所以导线两端的感应电动势为零。
答案:导线两端的感应电动势的大小为零。
题目二:螺线管中感应电动势计算一根长度为l、匝数为N的理想螺线管的截面半径为R。
磁感应强度为B,螺线管的一端与一个电阻相连。
当磁场的磁感应强度发生变化时,电阻上产生的感应电动势为多少?解析:根据电磁感应的楞次定律,感应电动势可以通过以下公式计算:ε = -dφ/dt其中,ε代表感应电动势,dφ/dt代表磁通量的变化率。
在螺线管中,场源磁感应强度B可以表示为:B = μ₀ * N * I / l其中,μ₀代表真空中的磁导率,N代表理想螺线管的匝数,I代表电流,l代表螺线管的长度。
螺线管的磁通量Φ可以表示为:Φ = B * A其中,A代表螺线管的横截面积。
由于螺线管的截面积A是常数,所以可以得到:dφ/dt = d(B*A)/dt= (d(B)/dt) * A将B的表达式代入上述公式中,得到:dφ/dt = (d(μ₀ * N * I / l)/dt) * A= (μ₀ * N * (dI/dt) / l) * A螺线管两端的感应电动势可以表示为:ε = -dφ/dt= -(μ₀ * N * (dI/dt) / l) * A答案:螺线管两端的感应电动势为-(μ₀ * N * (dI/dt) / l) * A。
电磁波感应基础练习题
电磁波感应基础练习题问题一有一根长度为2.5米的导体,被一个相对于导体以1.5m/s的速度垂直地拉开。
导体与外磁场呈垂直平面,磁感应强度为0.4 T。
求导体两端产生的感应电动势大小。
解答:根据法拉第电磁感应定律,导体两端的感应电动势大小与导体在磁场中运动的速度和磁感应强度有关,可以使用下式计算:ε = B * l * v其中,ε 表示感应电动势的大小B 表示磁感应强度l 表示导体的长度v 表示导体的速度代入已知量进行计算:ε = 0.4 T * 2.5 m * 1.5 m/s = 1.5 V所以,导体两端产生的感应电动势大小为1.5伏特。
问题二一个圆形线圈的电感为0.05 H,当通过线圈的电流发生变化时,线圈两端产生的感应电动势大小为10 V。
求电流变化的速率。
解答:根据楞次定律,感应电动势的大小与电感、电流变化的速率有关,可以使用下式计算:ε = -L * δI/δt其中,ε 表示感应电动势的大小L 表示电感δI/δt 表示电流变化的速率代入已知量进行计算:10 V = -0.05 H * δI/δt解方程可得:δI/δt = -10 V / -0.05 H = 200 A/s所以,电流变化的速率为200安/秒。
问题三一个平行板电的极板面积为0.02平方米,极板间的距离为0.01米。
当电的电荷发生变化时,电两极板之间产生的感应电动势大小为4 V。
求电荷变化的速率。
解答:根据电感感应定律,感应电动势的大小与电的电荷变化速率有关,可以使用下式计算:ε = -∆Q/∆t其中,ε 表示感应电动势的大小∆Q/∆t 表示电荷变化的速率代入已知量进行计算:4 V = -∆Q/∆t解方程可得:∆Q/∆t = -4 C/s所以,电荷变化的速率为-4库仑/秒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 如图所示,MN 、PQ 是两条彼此平行的金属导轨,水平放置,匀强磁场的磁感线垂直导轨平面。
导轨左端连接一阻值R =1.5Ω的电阻,电阻两端并联一电压表,在导轨上垂直导轨跨接一金属杆ab ,ab 的质量m =0.1kg ,电阻为r =0.5,ab 与导轨间动摩擦因数μ=0.5,导轨电阻不计。
现用大小恒定的力F =0.7N 水平向右拉ab 运动,经t=2s 后,ab 开始匀速运动,此时,电压表的示数为0.3V 。
求:(1)ab 匀速运动时,外力F 的功率(2)从ab 开始运动到ab 匀速运动的过程中,通过电路中的电量2. 用电阻为18Ω的均匀导线弯成图9-5中直径D=0.80m 的封闭金属圆环,环上AB 弧所对圆心角为60°,将圆环垂直于磁感线方向固定在磁感应强度B=0.50T 的匀强磁场中,磁场方向垂直于纸面向里。
一根每米电阻为1.25Ω的直导线PQ ,沿圆环平面向左以3.0m/s 的速度匀速滑行(速度方向与PQ 垂直),滑行中直导线与圆环紧密接触(忽略接触处的电阻),当它通过环上A 、B 位置时,求: (1)直导线AB 段产生的感应电动势,并指明该段直导线中电流的方向。
(2)此时圆环上发热损耗的电功率。
3. 如图所示,在磁感应强度为0.4T 的匀强磁场中,让长为0.5m 、电阻为0.1Ω的导体ab 在金属框上以10m/s 的速度向右匀速滑动,如电阻R1=6Ω,R2=4Ω,其他导线上的电阻可忽略不计,求:(1)导体ab 中的电流强度与方向;(2)为使ab 棒匀速运动,外力的机械功率; 4. 如图所示,两根足够长的平行光滑导轨,竖直放置在匀强磁场中,磁场的方向与导轨所在的平面垂直,金属棒PQ 两端套在导轨上且可以自由滑动,电源的电动势为3V ,电源内阻与金属棒的电阻相等,其余部分电阻不计。
当开关S 接触a 端时,金属棒恰好可以静止不动,那么,当开关S 接触b ,(1)金属棒在运动的过程中产生的最大感应电动势为多少?(2)当金属棒的加速度为g/2时,感应电动势为多大?5. 如图所示,两根电阻不计,间距为l 的平行金属导轨,一端接有阻值为R 的电阻,导轨上垂直搁置一根质量为m 、电阻为r 的金属棒,整个装置处于竖直向上磁感强度为B 的匀强磁场中.现给金属棒施一冲量,使它以初速v0向左滑行.设棒与导轨间的动摩擦因数为 ,金属棒从开始运动到停止的整个过程中,通过电阻R 的电量为q .求:(导轨足够长)(1)金属棒沿导轨滑行的距离;(2)在运动的整个过程中消耗的电能.6. 相距为L 的两光滑平行导轨与水平面成θ角放置。
上端连接一阻值为R 的电阻,其他电阻不计。
整个装置处在方向竖直向上的匀强磁场中,磁感强度为B ,质量为m ,电阻为r 的导体MN ,垂直导轨放在导轨上,如图25所示。
由静止释放导体MN ,求:(1)MN 可达的最大速度vm ;(2)回路产生的最大电功率Pm7. 如图所示,面积为0.2m2的100匝线圈A 处在匀强磁场中,磁场方向垂直线圈纸面,磁感应强度随时间变化规律如图B —t 所示,设向内为B 的正方向,已知R1=4Ω,R2=6Ω,R3=10Ω,电容C=30μF ,线圈A 电阻不计,求:(1)闭合K 后,通过R2的电流强度的大小和方向?B8. 如图所示,在倾角为θ的光滑斜面上,存在着两个磁感应强度相等的匀强磁场,方向一个垂直斜面向上,另一个垂直斜面向下,宽度均为L ,一个质量为m ,边长为L 的正方形线框以速度v 刚进入上边磁场时,即恰好做匀速直线运动,求:(1)当ab 边刚越过ff ˊ时,线框的加速度多大?方向如何? (2)当ab 到达gg ˊ与ff ˊ中间位置时,线框又恰好作匀速运动,求线框从开始进入到ab 边到达gg ˊ与ff ˊ中间位置时,产生的热量是多少?9. 如图所示,竖直平行导轨间距l=20cm ,导轨顶端接有一电键K 。
导体棒ab 与导轨接触良好且无摩擦,ab 的电阻R=0.4Ω,质量m=10g ,导轨的电阻不计,整个装置处在与轨道平面垂直的匀强磁场中,磁感强度B=1T 。
当ab 棒由静止释放0.8s 后,突然接通电键,不计空气阻力,设导轨足够长。
求ab 棒的最大速度和最终速度的大小。
(g 取10m/s2)10. 电阻r=0.5Ω的金属导体PQ, 在两根相互平行的金属滑轨上滑动. 金属滑轨的左端接定值电阻R=1.5Ω, 平行滑轨间距离为L=0.2m, 垂直滑轨平面加匀强磁场, 磁场感应强度B=0.1T, 方向如图所示, 当金属导体PQ 沿滑轨运动时, 电阻R 上流过0.1A的电流, 方向自下而上. 求此时PQ 的运动速度大小和方向.11. 如图所示,MM’和NN‘为足够长的光滑斜面导轨,斜面的倾角θ=30°,导轨相距d ,上端M 和N 用导线相连,并处于垂直斜面向上的均匀磁场中,磁场的磁感强度的大小随时间t 的变化规律为Bt=kt(k 为常量)。
从质量为m 的金属棒ab 垂直导轨放在M 、N 附近由静止开始沿导轨下滑计时,当ab 通过的路程为L 时,速度恰好达到最大,此时磁场的磁感强度的大小为B1。
设金属棒的有效电阻为R ,导轨和导线的电阻不计,求:(1)金属棒达到的最大速度vm=?(2)金属棒从静止开始沿导轨下滑L 的过程中所产生的热量Q 是多少?12. 如图,与水平面倾角为α=37°的光滑平行导轨间距离为L=1m ,处于竖直向上的匀强磁场中,其下端接有一阻值为R=1Ω的电阻.磁场的磁感应强度为B=1T .金属杆ab 横跨在导轨上,在t=0时,在平行于导轨平面的外力F 作用下,从导轨底端自静止开始,沿杆向上以加速度a=1m/s2匀加速运动,杆的电阻r=0.2Ω,质量为m=0.1kg ,导轨的电阻忽略不计,且足够长.(sin37°=0.6 cos37°=0.8 g=10m/s2)求:(1)杆在导轨上的最大速度;(2)杆在导轨上达到最大速度时,电路中电流的总功率;(3)若杆从开始起动到杆到达最大速度的过程中,安培力所做的功是重力的一半,求这过程中外力F 所做的功.R13. 如图所示,无限长金属导轨ac 、bd 固定在倾角为θ=53°的光滑绝缘斜面上,轨道间距L ,底部接一阻值为R 的电阻,上端开口。
垂直斜面向上的匀强磁场的磁感应强度B 。
一质量为m、长度可认为L、电阻为R/2的金属棒MN 与导轨接触良好,MN 与导轨间动摩擦因数μ=1/3,电路中其余电阻不计。
现用一质量为3m 的物体P通过一不可伸长的轻质细绳绕过光滑的定滑轮与MN 相连,绳与斜面平行.由静止释放P,不计空气阻力,当P下落高度h 时,MN开始匀速运动(运动中MN始终垂直导轨)。
(1)求MN棒沿斜面向上运动的最大速度。
(2)MN棒从开始运动到匀速运动的这段时间内电阻R 上产生的焦耳和流过电阻R 的总电量各是多少?14. 如图所示,宽L=1m 、倾角030θ=的光滑平行导轨与电动势E=3.0V 、内阻r=0.5Ω的电池相连接,处在磁感应强度B =、方向竖直向上的匀强磁场中。
质量m=200g 、电阻R=1Ω的导体ab 从静止开始运动。
不计期于电阻,且导轨足够长。
试计算:(1)若在导体ab 运动t=3s 后将开关S 合上,这时导体受到的安培力是多大?加速度是多少?(2)导体ab 的收尾速度是多大?(3)当达到收尾速度时,导体ab 的重力功率、安培力功率、电功率以及回路中焦耳热功率各是多少?15. 如图所示,倾角θ=30º、宽度L=1m 的足够长的“U ”形平行光滑金属导轨固定在磁感应强度B =1T ,范围足够大的匀强磁场中,磁场方向垂直于斜面向下。
用平行于轨道的牵引力拉一根质量m =0.2㎏、电阻R =1Ω的垂直放在导轨上的金属棒a b ,使之由静止开始沿轨道向上运动。
牵引力做功的功率恒为6W ,当金属棒移动2.8m 时,获得稳定速度,在此过程中金属棒产生的热量为5.8J ,不计导轨电阻及一切摩擦,取g=10m/s2。
求:(1)金属棒达到稳定时速度是多大?(2)金属棒从静止达到稳定速度时所需的时间多长?16. 如图所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L 。
M 、P 两点间接有阻值为R 的电阻。
一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直。
整套装置处于匀强磁场中,磁场方向垂直于斜面向上。
导轨和金属杆的电阻可忽略。
让金属杆ab 沿导轨由静止开始下滑,经过足够长的时间后,金属杆达到最大速度vm ,在这个过程中,电阻R 上产生的热为Q 。
导轨和金属杆接触良好,它们之间的动摩擦因数为μ,且μ<tan θ。
已知重力加速度为g 。
(1)求磁感应强度的大小;(2)金属杆在加速下滑过程中,当速度达到m v 31时,求此时杆的加速度大小;(3)求金属杆从静止开始至达到最大速度的过程中下降的高度。
17. 如图所示,水平U 形光滑框架,宽度为1m ,电阻忽略不计,导体ab 质量是0.2kg ,电阻是0.1Ω,匀强磁场的磁感应强度B=0.1T ,方向垂直框架向上,现用1N 的外力F 由静止拉动ab 杆,当ab 的速度达到1m/s 时,求此时刻(1)ab 杆产生的感应电动势的大小;(2)ab 杆的加速度的大小?(3)ab 杆所能达到的最大速度是多少?18. 图14中MN 和PQ 为竖直方向的两平行长直金属导轨,间距l 为0.40m ,电阻不计。
导轨所在平面与磁感应强度B 为0.50T 的匀强磁场垂直。
质量m 为6.0×10-3kg .电阻为1.0Ω的金属杆ab 始终垂直于导轨,并与其保持光滑接触。
导轨两端分别接有滑动变阻器和阻值为3.0Ω的电阻R1。
当杆ab 达到稳定状态时以速率v 匀速下滑,整个电路消耗的电功率P 为0.27W ,重力加速度取10m/s 2,试求速率v 和滑动变阻器接入电路部分的阻值R2。
19.如图所示,倾角θ=30︒、宽为L =1 m 的足够长的U 形光滑金属框固定在磁感应强度B =1 T 、范围足够大的匀强磁场中,磁场方向垂直导轨平面斜向上,现用一平行于导轨的牵引力F ,牵引一根质量为m =0.2 kg ,电阻R =1 Ω的金属棒ab ,由静止开始沿导轨向上移动。
(金属棒ab 始终与导轨接触良好且垂直,不计导轨电阻及一切摩擦)问:(1)若牵引力是恒力,大小为9 N ,则金属棒达到的稳定速度v1多大?(2)若牵引力的功率恒定,大小为72 W ,则金属棒达到的稳定速度v2多大?(3)若金属棒受到向上的拉力在斜面导轨上达到某一速度时,突然撤去拉力,从撤去拉力到棒的速度为零时止,通过金属棒的电量为0.48 C ,金属棒发热为1.12 J ,则撤力时棒的速度v3多大?20.如图所示,有两根足够长、不计电阻,相距L 的平行光滑金属导轨cd 、ef 与水平面成θ角固定放置,底端连一电阻R ,在轨道平面内有磁感应强度为B 的匀强磁场,方向垂直轨道平面斜向上.现有一平行于ce 、垂直于导轨、质量为m 、电阻不计的金属杆ab ,在沿轨道平面向上的恒定拉力F 作用下,从底端ce 由静止沿导轨向上运动,当ab 杆速度达到稳定后,撤去拉力F ,最后ab 杆又沿轨道匀速回到ce 端.已知ab 杆向上和向下运动的最大速度相等.求:拉力F 和杆ab 最后回到ce 端的速度v.21.如图所示,cd 、ef 是两根电阻不计的光滑金属导轨,其所在平面与水平面之间的夹角为60°,将两导轨用开关S 连接,在两导轨间有垂直于导轨平面向上的匀强磁场,磁感应强度为B ,可在导轨上自由滑动的金属棒长L ,质量为m ,电阻为R ,设导轨足够长,则:(1)先将开关S 断开,金属棒ab 由静止开始释放后,经过多长时间S接通,ab 必将做匀速运动?(2)若先将开关S 闭合,将金属棒由静止开始释放,在运动过程中ab上的最大热功率为多大?b P22.如图所示,两根平行光滑金属导轨PQ 和MN 相距d=0.5m ,它们与水平方向的倾角为α(sin α=0.6),导轨的上方跟电阻R=4Ω相连,导轨上放一个金属棒,金属棒的质量为m =0.2kg 、电阻为r=2Ω.整个装置放在方向竖直向上的匀强磁场中,磁感应强度B =1.2T .金属棒在沿斜面方向向上的恒力作用下由静止开始沿斜面向上运动,电阻R 消耗的最大电功率P=1W.(g=10m/s2)求:(1)恒力的大小;(2)恒力作功的最大功率.23.两根足够长的光滑平行导轨与水平面的夹角θ=30°,宽度L=0.2m ,导轨间有与导轨平面垂直的匀强磁场,磁感应强度B=0.5T ,如图所示,在导轨间接有R=0.2Ω的电阻,一质量m=0.01kg 、电阻不计的导体棒ab ,与导轨垂直放置,无初速释放后与导轨保持良好接触并能沿导轨向下滑动。