材料力学习题解答81
材料力学课后习题答案详细
变形厚的壁厚:
(R r) | (R r) | 30 0.009 29.991(mm)
[习题 2-11] 受轴向拉力 F 作用的箱形薄壁杆如图所示。已知该材料的弹性
常数为 E, ,试求 C 与 D 两点间的距离改
22
N 22 A
10 103 N 400mm 2
25MPa
33
N 33 A
10 103 N 400mm 2
25MPa
[习题 2-3] 试求图示阶梯状直杆横截面 1-1、2-2 和平 3-3 上的轴力,并作
轴力图。若横截面面积 A1 200mm2 , A2 300mm2 , A3 400mm2 ,并求各横截 面上的应力。
A1 11.503cm2 1150.3mm2
AE
N EA A
366.86 103 N 2 1150.3mm2
159.5MPa
EG
N EG A
357.62 103 N 2 1150.3mm2
155.5MPa
[习题 2-5] 石砌桥墩的墩身高 l 10m ,其横截面面尺寸如图所示。荷载
22
N 22 A2
10 103 N 300mm 2
33.3MPa
3
33
N 33 A
10 103 N 400mm 2
25MPa
[习题 2-4] 图示一混合屋架结构的计算简图。屋架的上弦用钢筋混凝土制
成。下面的拉杆和中间竖向撑杆用角钢构成,其截面均
为两个 75mm 8mm 的等边角钢。已知屋面承受集度为
材料力学习题解答81
30
40 sin( 60 ) 20 cos( 60 ) 2 20 0.866 20 0.5 7.32 MPa
30
80
习题27(b)图
27.如图所示各平面应力状态,各应力分量的单位为 MPa ,用解析法求指定截面上的正应力和切应力。 (b)
x y x y cos 2 xy sin 2 2 2 x y sin 2 xy cos 2 2
2) y 0, x 0
F
0
45
结论: 横力弯曲梁截面上的 剪力所产生的剪切变形 将使梁的截面产生微小 的翘曲效应。
2.58 45
y
h
b
1m
1m
2m
35.如图所示平面应力状态,各应力分量的单位为 MPa
3 材料的弹性模量 E 200 GPa ,泊松比 0.,求该点的应变分量
28.如图所示平面三角形单元体的斜面为自由表面, 角度 30 ,各应力分量的单位为MPa,求 x 和 xy 解:
x ? y 40 MPa xy ?
x
n
60
x y x y cos 2 xy sin 2 2 2 x y sin 2 xy cos 2 40 2 x 40 x 40 cos120 xy sin 120 0 2 2 x 40 40 sin 120 xy cos 120 0 xy x tan 120 2 2 x 40 x 40 40 cos120 x tan 120 sin 120 0 2 2 2 x 40 ( x 40)(0.5 1.732 0.866) 0
材料力学试题及答案
材料力学试题及答案一、选择题(每题2分,共20分)1. 材料力学中,下列哪一项不是基本力学性质?A. 弹性B. 塑性C. 硬度D. 韧性2. 材料在拉伸过程中,当应力达到屈服点后,材料将:A. 断裂B. 产生永久变形C. 恢复原状D. 保持不变3. 材料的弹性模量是指:A. 材料的密度B. 材料的硬度C. 材料的抗拉强度D. 材料在弹性范围内应力与应变的比值4. 根据材料力学的胡克定律,下列说法正确的是:A. 应力与应变成正比B. 应力与应变成反比C. 应力与应变无关D. 应力与应变成线性关系5. 材料的疲劳寿命是指:A. 材料的总寿命B. 材料在循环加载下达到破坏的周期数C. 材料的断裂寿命D. 材料的磨损寿命6. 材料的屈服强度是指:A. 材料在弹性范围内的最大应力B. 材料在塑性变形开始时的应力C. 材料的抗拉强度D. 材料的极限强度7. 材料的断裂韧性是指:A. 材料的硬度B. 材料的抗拉强度C. 材料抵抗裂纹扩展的能力D. 材料的屈服强度8. 材料力学中的泊松比是指:A. 材料的弹性模量B. 材料的屈服强度C. 材料在拉伸时横向应变与纵向应变的比值D. 材料的断裂韧性9. 在材料力学中,下列哪一项是衡量材料脆性程度的指标?A. 弹性模量B. 屈服强度C. 断裂韧性D. 泊松比10. 材料在受力过程中,当应力超过其极限强度时,将:A. 发生弹性变形B. 发生塑性变形C. 发生断裂D. 恢复原状答案1. C2. B3. D4. A5. B6. B7. C8. C9. C10. C试题二、简答题(每题10分,共30分)1. 简述材料力学中材料的三种基本力学性质。
2. 解释什么是材料的疲劳现象,并简述其对工程结构的影响。
3. 描述材料在拉伸过程中的四个主要阶段。
答案1. 材料的三种基本力学性质包括弹性、塑性和韧性。
弹性指的是材料在受到外力作用时发生变形,当外力移除后能够恢复原状的性质。
塑性是指材料在达到一定应力水平后,即使外力移除也无法完全恢复原状的性质。
材料力学习题及答案
材料力学-学习指导及习题答案第一章绪论1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M的力偶作用。
试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。
解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其大小等于M。
1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ。
解:应力p与斜截面m-m的法线的夹角α=10°,故σ=p cosα=120×cos10°=118.2MPaτ=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正应力均为零。
试问杆件横截面上存在何种内力分量,并确定其大小。
图中之C点为截面形心。
解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×0.04×0.1/2=200×103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m1-4 板件的变形如图中虚线所示。
试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。
解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。
解:(a) F N AB=F, F N BC=0, F N,max=F(b) F N AB=F, F N BC=-F, F N,max=F(c) F N AB=-2 kN, F N2BC=1 kN, F N CD=3 kN, F N,max=3 kN(d) F N AB=1 kN, F N BC=-1 kN, F N,max=1 kN2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。
材料力学课后习题答案
2 2 Fl 2 4 Fl E (d1 d 2 ) d 2 d1 Ed 1 d 2
[习题 2-10] 受轴向拉力 F 作用的箱形薄壁杆如图所示。已知该材料的弹性常数为 E , ,试 求 C 与 D 两点间的距离改变量 CD 。
解:
'
(2)由变形能原理求 A 点的铅垂方向的位移
2 N12 l1 N 2 l2 1 F A 2 2 EA1 2 EA2 2 l2 1 N12 l1 N 2 ( ) F EA1 EA2
A
式中, l1 1000 / sin 45o 1414(mm) ; l 2 800 / sin 30 o 1600(mm)
解:墩身底面的轴力为:
N ( F G) F Alg
2-3 图
1000 (3 2 3.14 12 ) 10 2.35 9.8 3104.942(kN)
墩身底面积: A (3 2 3.14 12 ) 9.14(m 2 ) 因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
FN 2l 40 107 0.15 l2 4.76 EA2 210 109 12 106 从而得,Ax l2 4.76, Ay l2 2 l1 3 20.23 ( )
( 2)
V F Ay F1 l1 +F2 l2 0 Ay 20.33 ()
F 35kN 。已知杆 AB 和 AC 的直径分别为 d1 12mm 和 d 2 15mm ,钢的弹性模量
E 210GPa 。试求 A 点在铅垂方向的位移。 解: (1)求 AB、AC 杆的轴力 以节点 A 为研究对象,其受力图如图所示。 由平衡条件得出:
材料力学全部习题解答
弹性模量
b
E 2 2 0 M P a 2 2 0 1 0 9P a 2 2 0 G P a 0 .1 0 0 0
s
屈服极限 s 240MPa
强度极限 b 445MPa
伸长率 ll010000m ax2800
由于 280;故0该50 材0料属于塑性材料;
13
解:1由图得
弹性模量 E0 3.550110063700GPa
A x l10.938m m
节点A铅直位移
A ytan 4 l150co sl4 2503.589m m
23
解:1 建立平衡方程 由平衡方程
MB 0 FN1aFN22aF2a
FN 2 FN1
得: FN12F1N22F
l1
l2
2.建立补充方程
3 强度计算 联立方程1和方
程(2);得
从变形图中可以看出;变形几何关
l
l0
断面收缩率
AAA110000d22d22d2121000065.1900
由于 2故.4 属6 % 于 塑5 性% 材料;
15
解:杆件上的正应力为
F A
4F D2 -d2
材料的许用应力为
要求
s
ns
由此得
D 4Fns d2 19.87mm
s
取杆的外径为
D19.87m m
16
FN1 FN 2
Iz= I( za) I( zR ) =1 a2 4
2R4 a4 R 4 =
64 12 4
27
Z
解 a沿截面顶端建立坐标轴z;,y轴不变; 图示截面对z,轴的形心及惯性矩为
0 .1
0 .5
y d A 0 .3 5 y d y2 0 .0 5 y d y
材料力学试题及答案
材料力学试题及答案一、选择题1. 材料力学中,下列哪个参数是用来描述材料在受力时抵抗变形的能力?A. 弹性模量B. 屈服强度C. 抗拉强度D. 断裂韧性答案:A2. 以下哪种材料在受力后能够完全恢复原状?A. 弹性体B. 塑性体C. 粘弹性体D. 脆性体答案:A3. 应力集中现象主要发生在哪种情况下?A. 材料表面存在缺陷B. 材料内部存在孔洞C. 材料受到均匀分布的载荷D. 材料受到单一集中载荷答案:D4. 根据胡克定律,当应力不超过比例极限时,应力与应变之间的关系是:A. 线性的B. 非线性的C. 指数的D. 对数的答案:A5. 材料的疲劳破坏是指在何种条件下发生的?A. 单次超负荷B. 长期重复载荷C. 瞬间高温D. 腐蚀环境答案:B二、填空题1. 在简单的拉伸和压缩实验中,应力(σ)是力(F)与横截面积(A)的比值,即σ=______。
答案:F/A2. 材料的韧性是指其在断裂前能够吸收的能量,通常通过______试验来测定。
答案:冲击3. 当材料在受力时发生塑性变形,且变形量随时间增加而增加,这种现象称为______。
答案:蠕变4. 剪切应力τ是剪切力(V)与剪切面积(A)的比值,即τ=______。
答案:V/A5. 材料的泊松比是指在单轴拉伸时,横向应变与纵向应变的比值,通常用希腊字母______表示。
答案:ν三、简答题1. 请简述材料弹性模量的定义及其物理意义。
答:弹性模量,又称杨氏模量,是指材料在弹性范围内抵抗形变的能力的量度。
它定义为应力与相应应变的比值。
物理意义上,弹性模量越大,表示材料在受力时越不易发生形变,即材料越硬。
2. 描述材料的屈服现象,并解释屈服强度的重要性。
答:屈服现象是指材料在受到外力作用时,由弹性状态过渡到塑性状态的过程。
在这个过程中,材料首先经历弹性变形,当应力达到某个特定值时,即使应力不再增加,材料也会继续发生显著的塑性变形。
屈服强度是衡量材料开始屈服的应力值,它对于工程设计和材料选择具有重要意义,因为它决定了结构在载荷作用下的安全性和可靠性。
材料力学练习题与答案-全
材料力学练习题与答案-全1.当T三Tp时,剪切虎克定律及剪应力互等定理。
A、虎克定律成立,互等定理不成立B、虎克定律不成立,互等定理成立(正确答案)C、均不成立D、二者均成立2.木榫接头,当受F力作用时,接头的剪切面积和挤压面积分别是A、ab,lcB、cb,lbC、lb,cb(正确答案)D、lc,ab3.在下列四种材料中,()不可以应用各向同性假设。
A、铸钢B、玻璃C、松木(正确答案)D、铸铁4.一细长压杆当轴向压力P达到临界压力Pcr时受到微小干扰后发生失稳而处于微弯平衡状态,此时若解除压力P,则压杆的微弯变形。
A、有所缓和B、完全消失(正确答案)C、保持不变D、继续增大;5.矩形截面偏心受压杆件发生变形。
A、轴向压缩、平面弯曲B、轴向压缩、平面弯曲、扭转C、轴向压缩、斜弯曲(正确答案)D、轴向压缩、斜弯曲、扭转6.当杆件处于弯扭组合变形时,对于横截面的中性轴有这样的结论,正确的是:A、一定存在(正确答案)B、不一定存在C、一定不存在7.梁在某一段内作用有向下的分布载荷时,在该段内它的弯矩图为。
A、上凸曲线;(正确答案)B、下凸曲线;C、带有拐点的曲线;D、斜直线8.图示结构中,AB为钢材,BC为铝,在P力作用下()A、AB段轴力大B、BC段轴力大C、轴力一样大(正确答案)D、无法判断9.圆截面的悬臂梁在自由端受集中力的作用,若梁的长度增大一倍,其他条件不变,最大挠度是原来的倍。
图片2.pngA、2B、16C、8(正确答案)D、410.托架由横梁与杆组成。
若将杆由位于梁的下方改为位于梁的上方,其他条件不变,则此托架的承载力。
A、提高(正确答案)B、降低C、不变D、不确定11.单位长度的扭转角e与()无关A、杆的长度(正确答案)B、扭矩C、材料性质D、截面几何性质12.矩形截面拉弯组合变形时,对于横截面的中性轴有以下的结论。
正确的是:。
A、过形心B、过形心且与ZC轴有一夹角;C、不过形心,与ZC轴平行;(正确答案)D、不过形心,与ZC轴有一夹角。
材料力学习题集(有答案)
绪论一、是非题1.1 材料力学主要研究杆件受力后变形与破坏的规律。
()1.2 内力只能是力。
()1.3 若物体各点均无位移,则该物体必定无变形。
()1.4 截面法是分析应力的基本方法。
()二、选择题1.5 构件的强度是指(),刚度是指(),稳定性是指()。
A. A. 在外力作用下构件抵抗变形的能力在外力作用下构件抵抗变形的能力B. B. 在外力作用下构件保持其原有的平衡状态的能力在外力作用下构件保持其原有的平衡状态的能力C. C. 在外力作用下构件抵抗破坏的能力在外力作用下构件抵抗破坏的能力1.6 根据均匀性假设,可认为构件的()在各点处相同。
A. A. 应力应力B. B. 应变应变C. C. 材料的弹性常数材料的弹性常数D. D. 位移位移1.7 下列结论中正确的是()A. A. 内力是应力的代数和内力是应力的代数和B. B. 应力是内力的平均值应力是内力的平均值C. C. 应力是内力的集度应力是内力的集度D. 内力必大于应力参考答案:1.1 √ 1.2 × 1.3 √ 1.4 × 1.5 C,A,B 1.6 C 1.7 C轴向拉压一、选择题1. 等截面直杆CD 位于两块夹板之间,如图示。
杆件与夹板间的摩擦力与杆件自重保持平衡。
设杆CD 两侧的摩擦力沿轴线方向均匀分布,且两侧摩擦力的集度均为q ,杆CD 的横截面面积为A ,质量密度为r ,试问下列结论中哪一个是正确的?(A) q gA r =;(B) 杆内最大轴力Nmax F ql =;(C) 杆内各横截面上的轴力N 2gAlF r =;(D) 杆内各横截面上的轴力N 0F =。
2. 低碳钢试样拉伸时,横截面上的应力公式N F A s =适用于以下哪一种情况? (A) 只适用于s ≤p s ;(B) 只适用于s ≤e s ;(C) 只适用于s ≤s s ;(D) 在试样拉断前都适用。
3. 在A 和B 两点连接绳索ACB ,绳索上悬挂物重P ,如图示。
材料力学习题及答案
材料力学-学习指导及习题答案第一章绪论1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M的力偶作用。
试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。
解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其大小等于M。
1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ。
解:应力p与斜截面m-m的法线的夹角α=10°,故σ=p cosα=120×cos10°=118.2MPaτ=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正应力均为零。
试问杆件横截面上存在何种内力分量,并确定其大小。
图中之C点为截面形心。
解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×0.04×0.1/2=200×103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m1-4 板件的变形如图中虚线所示。
试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。
解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。
解:(a) F N AB=F, F N BC=0, F N,max=F(b) F N AB=F, F N BC=-F, F N,max=F(c) F N AB=-2 kN, F N2BC=1 kN, F N CD=3 kN, F N,max=3 kN(d) F N AB=1 kN, F N BC=-1 kN, F N,max=1 kN2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。
材料力学习题大全及答案
习题2-1图 习题2-2图习题2-3图 习题2-4图习题2-5图 习题2-6图材料力学习题大全及答案第1章 引 论1-1 图示矩形截面直杆,右端固定,左端在杆的对称平面内作用有集中力偶,数值为M 。
关于固定端处横截面A -A 上的内力分布,有四种答案,根据弹性体的特点,试分析哪一种答案比较合理。
正确答案是 C 。
1-2 图示带缺口的直杆在两端承受拉力F P 作用。
关于A -A 截面上的内力分布,有四种答案,根据弹性体的特点,试判断哪一种答案是合理的。
正确答案是 D 。
1-3 图示直杆ACB 在两端A 、B 处固定。
关于其两端的约束力有四种答案。
试分析哪一种答案最合理。
正确答案是 D 。
1-4 等截面直杆在两端承受沿杆轴线的拉力F P 。
关于杆中点处截面A -A 在杆变形后的位置(图中虚线所示),有四种答案,根据弹性体的特点,试判断哪一种答案是正确的。
正确答案是 D 。
1-5 图示等截面直杆在两端作用有力偶,数值为M ,力偶作用面与杆的对称面一致。
关于杆中点处截面A -A 在杆变形后的位置(对于左端,由A A '→;对于右端,由A A ''→),有四种答案,试判断哪一种答案是正确的。
正确答案是 C 。
习题2-1图习题2-2图习题2-3图习题2-4图1-6 等截面直杆,其支承和受力如图所示。
关于其轴线在变形后的位置(图中虚线所示),有四种答案,根据弹性体的特点,试分析哪一种是合理的。
正确答案是 C 。
第2章 杆件的内力分析2-1 平衡微分方程中的正负号由哪些因素所确定?简支梁受力及Ox 坐标取向如图所示。
试分析下列平衡微分方程中哪一个是正确的。
(A )d d Q x F d M(B )d d Q x F (C )d d Q x F (D )d d Q xF 2-2 对于图示承受均布载荷q 的简支梁,其弯矩图凸凹性与哪些因素相关?试判断下列四种答案中哪几种是正确的。
(完整版)材料力学课后习题答案
xx8-1 试求图示各杆的轴力,并指出轴力的最大值。
取 1-1 截面的左段;(2) (3) F N1取 2-2 截面的右段;F R用截面法求内力,取1-1、2-2、 3-3 截面;(1) (2) (3) (4)(5)(d)(1)取 1-1 截面的左段2;kN 取 2-2 截面的左段;取 3-3 截面的右段;轴力最大值: 用截面法求内力,取13kN 2 2kN33kN12 3F N11 31kN 21 32 F N33kN1-1、 2-2 截面;38-2 解:8-5 (2) (2) 取 1-1 截面的右段; 取 2-2 截面的右段F ;N112kN 22kN(5) 轴力最大值: 试画出 8-1所示各杆的轴力图。
(a) (b) (c) (d)F NF FN N(+)F图示阶梯形圆截面杆,承受F 轴N 向载荷(+) F 1=50 kN 与3kNF 2作用, 1kN (+) 1kN(-)(+) Fx AB 与 BC 段的直径分别为 x (-)1kN2kNd 1=20 mm 和 d 2=30 mm ,如欲使 AB 与 BC 段横截面上的正应力相同,试求载荷 F 2 之值。
(2) 求 1-1、 2-2 截面的正应力,利用正应力相同;8-7 图示木杆,承受轴向载荷 F=10 kN 作用,杆的横截面面积 A=1000 mm 2,粘接面的方位 角θ= 450,试计算该截面上的正应力与切应力,并画出应力的方向。
l 1l 2解: (1) 用截面法求 AB 、 BC 段的轴力;(2) 分段计F 算个杆向变形;FAC 杆缩短。
2F8-22 图示桁架,杆 1与A 杆 2的横截面面积与材料均相B 同,在节点 A 处承受C 载荷 F 作用。
从解: 8-6 解: (1) 用截面法求出 F 11-1、2-2 截面的轴力;(2) 求 1-1、 2-2 截面的正应A 力 ,利用正应力相B 同 ;题 8-5 图所示圆截面杆,已知载荷 1F 1=200 kN ,F 2=1020 kN ,CAB 段的直径 d 1=40 mm ,如 欲使 AB 与 BC 段横截面上的正应力相同,试求 BC 段的直径。
材料力学习题及答案
材料力学习题一一、计算题1.(12分)图示水平放置圆截面直角钢杆(2ABC π=∠),直径mm 100d =,m l 2=,m N k 1q =,[]MPa 160=σ,试校核该杆的强度。
2.(12分)悬臂梁受力如图,试作出其剪力图与弯矩图。
3.(10分)图示三角架受力P 作用,杆的截面积为A ,弹性模量为E ,试求杆的内力和A 点的铅垂位移Ay δ。
4.(15分)图示结构中CD 为刚性杆,C ,D 处为铰接,AB 与DE 梁的EI 相同,试求E 端约束反力。
5. (15分) 作用于图示矩形截面悬臂木梁上的载荷为:在水平平面内P 1=800N ,在垂直平面内P 2=1650N 。
木材的许用应力[σ]=10MPa 。
若矩形截面h/b=2,试确定其尺寸。
三.填空题 (23分)1.(4分)设单元体的主应力为321σσσ、、,则单元体只有体积改变而无形状改变的条件是__________;单元体只有形状改变而无体积改变的条件是__________________________。
2.(6分)杆件的基本变形一般有______、________、_________、________四种;而应变只有________、________两种。
3.(6分)影响实际构件持久极限的因素通常有_________、_________、_________,它们分别用__________、_____________、______________来加以修正。
4.(5分)平面弯曲的定义为______________________________________。
5.(2分)低碳钢圆截面试件受扭时,沿 ____________ 截面破坏;铸铁圆截面试件受扭时,沿 ____________ 面破坏。
四、选择题(共2题,9分)2.(5分)图示四根压杆的材料与横截面均相同,试判断哪一根最容易失稳。
答案:( )材料力学习题二二、选择题:(每小题3分,共24分)1、危险截面是______所在的截面。
材料力学练习题及答案-全分析
材料⼒学练习题及答案-全分析学年第⼆学期材料⼒学试题(A 卷)⼀、选择题(20分)1、图⽰刚性梁AB 由杆1和杆2⽀承,已知两杆的材料相同,长度不等,横截⾯积分别为A 1和A 2,若载荷P 使刚梁平⾏下移,则其横截⾯⾯积()。
A 、A 1〈A 2B 、A 1 〉A 2C 、A 1=A 2D 、A 1、A 2为任意2、建⽴圆轴的扭转应⼒公式τρ=M ρρ/I ρ时需考虑下列因素中的哪⼏个?答:()(1)扭矩M T 与剪应⼒τρ的关系M T =∫A τρρdA (2)变形的⼏何关系(即变形协调条件)(3)剪切虎克定律(4)极惯性矩的关系式I T =∫A ρ2dAA 、(1)B 、(1)(2)C 、(1)(2)(3)D 、全部 3、⼆向应⼒状态如图所⽰,其最⼤主应⼒σ1=() A 、σ B 、2σ C 、3σ D 、4σ4、⾼度等于宽度两倍(h=2b)的矩形截⾯题号⼀⼆三四五六总分得分题⼀、3图题⼀、1图梁,承受垂直⽅向的载荷,若仅将竖放截⾯改为平放截⾯,其它条件都不变,则梁的强度()A、提⾼到原来的2倍B、提⾼到原来的4倍C、降低到原来的1/2倍D、降低到原来的1/4倍5. 已知图⽰⼆梁的抗弯截⾯刚度EI相同,若⼆者⾃由端的挠度相等,则P1/P2=()A、2B、4C、8题⼀、5图D、16⼆、作图⽰梁的剪⼒图、弯矩图。
(15分)⼆题图三、如图所⽰直径为d的圆截⾯轴,其两端承受扭转⼒偶矩m的作⽤。
设由实验测的轴表⾯上与轴线成450⽅向的正应变,试求⼒偶矩m之值、材料的弹性常数E、µ均为已知。
(15分)三题图四、电动机功率为9kW ,转速为715r/min ,⽪带轮直径D =250mm ,主轴外伸部分长度为l =120mm ,主轴直径d =40mm ,〔σ〕=60MPa ,⽤第三强度理论校核轴的强度。
(15分)五、重量为Q 的重物⾃由下落在图⽰刚架C 点,设刚架的抗弯刚度为EI ,试求冲击时刚架D 处的垂直位移。
材料力学课后习题答案
8-1 试求图示各杆的轴力,并指出轴力的最大值。
解:(a)(1) 用截面法求内力,取1-1、2-2截面;(2) 取1-1截面的左段;110 0 xN N FF F F F =-==∑(3) 取2-2截面的右段;(a(b)(c(d220 0 0xN N FF F =-==∑(4) 轴力最大值:max N F F=(b)(1) 求固定端的约束反力;0 20 xR R FF F F F F =-+-==∑(2) 取1-1截面的左段;110 0 xN N FF F F F =-==∑(3) 取2-2截面的右段;112220 0 xN R N R FF F F F F =--==-=-∑(4) 轴力最大值:max N F F=(c)(1) 用截面法求内力,取1-1、2-2、3-3截面;(2) 取1-1截面的左段;110 20 2 xN N FF F kN =+==-∑(3) 取2-2截面的左段;220 230 1 xN N FF F kN =-+==∑(4) 取3-3截面的右段;11330 30 3 xN N FF F kN =-==∑(5) 轴力最大值:max 3 N F kN=(d)(1) 用截面法求内力,取1-1、2-2截面;(2) 取1-1截面的右段;110 210 1 xN N FF F kN =--==∑(2) 取2-2截面的右段;312220 10 1 xN N FF F kN =--==-∑(5) 轴力最大值:max 1 N F kN =8-2 试画出8-1所示各杆的轴力图。
解:(a)(b)(c)F(d)8-5 图示阶梯形圆截面杆,承受轴向载荷F 1=50 与F 2作用,与段的直径分别为d 1=20 mm 和d 2=30 mm ,如欲使与段横截面上的正应力相同,试求载荷F 2之值。
解:(1) 用截面法求出1-1、2-2截面的轴力;11212 N N F F F F F ==+(2) 求1-1、2-2截面的正应力,利用正应力相同;311215010159.210.024N F MPa A σπ⨯===⨯⨯132221225010159.210.034N F F MPa A σσπ⨯+====⨯⨯262.5F kN ∴=8-6 题8-5图所示圆截面杆,已知载荷F 1=200 ,F 2=100 ,段的直径d 1=40 mm ,如欲使与段横截面上的正应力相同,试求段的直径。
材料力学习题大全及答案
习题2-1图 习题2-2图习题2-3图 习题2-4图习题2-5图 习题2-6图材料力学习题大全及答案第1章 引 论1-1 图示矩形截面直杆,右端固定,左端在杆的对称平面内作用有集中力偶,数值为M 。
关于固定端处横截面A -A 上的内力分布,有四种答案,根据弹性体的特点,试分析哪一种答案比较合理。
正确答案是 C 。
1-2 图示带缺口的直杆在两端承受拉力F P 作用。
关于A -A 截面上的内力分布,有四种答案,根据弹性体的特点,试判断哪一种答案是合理的。
正确答案是 D 。
1-3 图示直杆ACB 在两端A 、B 处固定。
关于其两端的约束力有四种答案。
试分析哪一种答案最合理。
正确答案是 D 。
1-4 等截面直杆在两端承受沿杆轴线的拉力F P 。
关于杆中点处截面A -A 在杆变形后的位置(图中虚线所示),有四种答案,根据弹性体的特点,试判断哪一种答案是正确的。
正确答案是 D 。
1-5 图示等截面直杆在两端作用有力偶,数值为M ,力偶作用面与杆的对称面一致。
关于杆中点处截面A -A 在杆变形后的位置(对于左端,由A A '→;对于右端,由A A ''→),有四种答案,试判断哪一种答案是正确的。
正确答案是 C 。
习题2-1图习题2-2图习题2-3图习题2-4图1-6 等截面直杆,其支承和受力如图所示。
关于其轴线在变形后的位置(图中虚线所示),有四种答案,根据弹性体的特点,试分析哪一种是合理的。
正确答案是 C 。
第2章 杆件的内力分析2-1 平衡微分方程中的正负号由哪些因素所确定?简支梁受力及Ox 坐标取向如图所示。
试分析下列平衡微分方程中哪一个是正确的。
(A )d d Q x F d M(B )d d Q x F (C )d d Q x F (D )d d Q xF 2-2 对于图示承受均布载荷q 的简支梁,其弯矩图凸凹性与哪些因素相关?试判断下列四种答案中哪几种是正确的。
材料力学课后习题答案
..8-1 试求图示各杆的轴力,并指出轴力的最大值。
解:(a)(1) 用截面法求内力,取1-1、2-2截面;(2) 取1-1截面的左段; 110 0 xN N FF F F F =-==∑(3) 取2-2截面的右段;220 0 0xN N FF F =-==∑(4) 轴力最大值:max N F F =(b)(1) 求固定端的约束反力;0 20 xR R FF F F F F =-+-==∑(2) 取1-1截面的左段;(a)(c)(d)N 1F RF N 1110 0 xN N FF F F F =-==∑(3) 取2-2截面的右段;220 0 xN R N R FF F F F F =--==-=-∑(4) 轴力最大值:max N F F =(c)(1) 用截面法求内力,取1-1、2-2、3-3截面;(2) 取1-1截面的左段;110 20 2 xN N FF F kN =+==-∑(3) 取2-2截面的左段;220 230 1 xN N FF F kN =-+==∑(4) 取3-3截面的右段;330 30 3 xN N FF F kN =-==∑(5) 轴力最大值:max 3 N F kN =(d)(1) 用截面法求内力,取1-1、2-2截面;FRF N 21 1F N 1N 2F N 3(2) 取1-1截面的右段;110 210 1 xN N FF F kN =--==∑(2) 取2-2截面的右段;220 10 1 xN N FF F kN =--==-∑(5) 轴力最大值:max 1 N F kN =8-2 试画出8-1所示各杆的轴力图。
解:(a)(b)(c) (d)FN 1F N 2FFFFF 1kN8-5 图示阶梯形圆截面杆,承受轴向载荷F 1=50 kN 与F 2作用,AB 与BC 段的直径分别为d 1=20 mm 和d 2=30 mm ,如欲使AB 与BC 段横截面上的正应力相同,试求载荷F 2之值。
(完整版)材料力学习题册答案..
练习1 绪论及基本概念1-1 是非题(1)材料力学是研究构件承载能力的一门学科。
( 是 )(2)可变形固体的变形必须满足几何相容条件,即变形后的固体既不可以引起“空隙”,也不产生“挤入”现象。
(是 )(3)构件在载荷作用下发生的变形,包括构件尺寸的改变和形状的改变。
( 是 ) (4)应力是内力分布集度。
(是 )(5)材料力学主要研究构件弹性范围内的小变形问题。
(是 ) (6)若物体产生位移,则必定同时产生变形。
(非 ) (7)各向同性假设认为,材料沿各个方向具有相同的变形。
(F )(8)均匀性假设认为,材料内部各点的力学性质是相同的。
(是)(9)根据连续性假设,杆件截面上的内力是连续分布的,分布内力系的合力必定是一个力。
(非) (10)因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。
(非 )1-2 填空题(1)根据材料的主要性质对材料作如下三个基本假设:连续性假设 、均匀性假设 、 各向同性假设 。
(2)工程中的 强度 ,是指构件抵抗破坏的能力; 刚度 ,是指构件抵抗变形的能力。
(3)保证构件正常或安全工作的基本要求包括 强度 , 刚度 ,和 稳定性 三个方面。
(4)图示构件中,杆1发生 拉伸 变形,杆2发生 压缩 变形, 杆3发生 弯曲 变形。
(5)认为固体在其整个几何空间内无间隙地充满了物质,这样的假设称为 连续性假设 。
根据这一假设构件的应力,应变和位移就可以用坐标的 连续 函数来表示。
(6)图示结构中,杆1发生 弯曲 变形,构件2发生 剪切 变形,杆件3发生 弯曲与轴向压缩组合。
变形。
(7)解除外力后,能完全消失的变形称为 弹性变形 ,不能消失而残余的的那部分变形称为 塑性变形 。
(8)根据 小变形 条件,可以认为构件的变形远 小于 其原始尺寸。
1-3 选择题(1)材料力学中对构件的受力和变形等问题可用连续函数来描述;通过试件所测得的材料的力学性能,可用于构件内部的任何部位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主应力:
2) y 0, x 0
y x sin 2 xy cos 2 0 2 xy cos 2 0 45
2 xy 2 x x 2 x 6 Fxy h2 4 y 2 2 2 1 ( ) xy [1 1 ( ) [1 1 ( ) ] 3 2 2 2 x bh 4 xy 2 0 x x 2 6 Fxy h2 4 y 2 2 2 3 ( ) xy 3 [1 1 ( ) ] 2 2 bh 4 xy
x ? y 40 MPa xy ?
x
n
60
x y x y cos 2 xy sin 2 2 2 x y sin 2 xy cos 2 40 2 x 40 x 40 cos120 xy sin 120 0 2 2 x 40 40 sin 120 xy cos 120 0 xy x tan 120 2 2 x 40 x 40 40 cos120 x tan 120 sin 120 0 2 2 2 x 40 ( x 40)(0.5 1.732 0.866) 0
2) y 0, x 0
F
0
45
结论: 横力弯曲梁截面上的 剪力所产生的剪切变形 将使梁的截面产生微小 的翘曲效应。
2.58 45
y
h
b
1m
1m
2m
35.如图所示平面应力状态,各应力分量的单位为 MPa
3 材料的弹性模量 E 200 GPa ,泊松比 0.,求该点的应变分量
40MPa ,则杆件的拉力 F 是多少? 解: x y x y cos 2 sin 2 xy 2 2 x y sin 2 xy cos 2 2 80 x y 0 xy 0 89.4 MPa 2 cos 0.8944 x x cos 2 cos 2 2 2 F 89.4 MPa sin 2 sin cos A 2
40
80 40 80 40 cos( 2 60 ) 2 2
50
80
30
60 20 (0.5) 50 MPa
80 40 60 sin 120 2 20 0.866 17.32 MPa
28.如图所示平面三角形单元体的斜面为自由表面, 角度 30 ,各应力分量的单位为MPa,求 x 和 xy 解:
x , y , xy 。
解:
x 100 MPa y 80 MPa
xy 50 MPa
80
50
100
根据广义虎克定律有:
x y
1 1 6 ( x y ) ( 100 0 . 3 80 ) 380 10 380 3 E 200 10 1 1 6 ( y x ) ( 80 0 . 3 100 ) 250 10 250 E 200 103 1 2(1 ) 2(1 0.3) 6 xy xy 50 650 10 650 G E 200 103
x y x y cos 2 xy sin 2 2 2 x y sin 2 xy cos 2 2
20
40
30
30
30
x 40 MPa
xy 20 MPa
y 0
20
40 40 cos( 60 ) 20 sin( 60 ) 2 2
40 tan 0.5 80
F 89.4 40 80 286.2 103 N 286 kN
26.565
F 286 kN
32*. 如图所示宽 b 20 mm 、高
h 60 mm
的矩形截面悬臂梁,
在自由端受竖直向下的集中力 F
xy
40[1 (0.5 1.5)] x 120 MPa 1 0.5 1.5
xy
120 40 tan 120 69.3 MPa 2
29.如图所示平面正三角形单元体的应力分量的单位 为MPa,求 1 和 2 以及该应力状态的主应力。 解:
xy 0
20 kN 作用,考虑剪力的影响。
(1)试求任意截面 x 处距中性轴 y(0 y 30 mm) 处的主应力和主方向。 (2)绘出中间截面自上而下各点主平面方位变化的图形。 解: (1)
M ( x) Fx
FS ( x) F
F
M ( x) y 12 Fxy Iz bh 3 x FS ( x) S ' ( y ) 2m bI z h 1 h b h h S ' ( y ) b( y ) [ y ( y )] ( y )( y ) z y 2 2 2 2 2 2 b h2 ( y2 ) b 2 4 F h2 3F 2 2 ( y2 ) ( h 4 y ) 3 2I z 4 2bh
80
x y x y cos 2 xy sin 2 2 2 2 x y sin 2 xy cos 2 2 x y x y x y sin 60 1 cos 60 80 2 2 2 x y x y x y sin 300 2 cos 300 80 2 2 2
E 40 GPa ,泊松比 0.25 ,
qy
qx 50 N/mm 。求 q y 是多大。
解:
q a q y x x x a 1 1 x ( x y ) E E 1 1 y ( y x ) E E xy 0
xy
x
32 10 103 500 81.6 MPa 3 3.14 50
x 81.6 MPa
xy 40.8 MPa
26.如图所示各结构,在A处截取一个单元体,试计 算单元体微分面上的应力。 (b)
A
10 kN
xy
T 16T Wp d 3
50
5 kN m
xy
36.如图所示简单扭转圆轴,其直径为d,材料的弹性 模量为E,泊松比为 ,在圆轴表面 45 方向测得线 应变 45 ,求扭矩m 的大小。
解:
m
m
m 16m 3 W p d
45
45 sin( 2 45 )
45 sin( 2 45 )
(2)
h2 4 y 2 tan 2 4 xy
1 h2 4 y 2 arctan 2 4 xy
x 1m
602 4 y 2 1 900 1) y 0, x 0 tan 2 ( y) 4000 y 1000 y 1 900 y 30 mm tan 2 ( 30) 0 0 1000 30 1 900 y 15 mm tan 2 ( 15) 0.045 2.58 1000 15
80
1
80
x 80 ( x 80) 0.5 160
x 80 MPa
i, j
x y x y 2 2 ( ) xy 2 2
1 2 0
1 2 80 MPa
3 0
30. 一宽 b 40 mm 、高 h 80 mm 的矩形截面杆件受简单 拉伸作用,如果其某个截面上的正应力 80MPa ,切应力
F
(C)
RB (a b) Fa
a
A
h
h
Fa RB ab FS RB Fa ab
b
RA
RB
xy k
FS 3 Fa 1 2 2 ( a b) h A
xy
xy
3Fa 2(a b)h 2
27.如图所示各平面应力状态,各应力分量的单位为 MPa ,用解析法求指定截面上的正应力和切应力。 (a)
45
Байду номын сангаас
1 ( 45 45 ) 1 E E 1 16m 3 E d
Ed 3 m 45 16(1 )
37.如图所示,正方形平板厚度
45 150。材料的弹性模量
2 mm ,在水平和竖直方向
分别受均布载荷 q x 和 q y 作用,在对角线上有一应变片,读数为
x y x y cos 2 xy sin 2 2 2 x y sin 2 xy cos 2 2
n
40
60
80
30
60
60
x 80 MPa
xy 0
y 40 MPa
17.32
7.32
40
30
20 20 0.5 20 0.866 47.32 MPa
47.32
40
30
40 sin( 60 ) 20 cos( 60 ) 2 20 0.866 20 0.5 7.32 MPa
30
80
习题27(b)图
27.如图所示各平面应力状态,各应力分量的单位为 MPa ,用解析法求指定截面上的正应力和切应力。 (b)
qy
xy 0
qx