贵州省遵义市汇川区2018-2019学年八年级下期中数学试卷及答案(1)

合集下载

贵州省遵义市2018-2019学年八年级(下)期中考试数学试卷

贵州省遵义市2018-2019学年八年级(下)期中考试数学试卷

2018-2019学年八年级(下)期中数学试卷一.选择题(共12小题)1.下列式子是最简二次根式的是()A.B.C.D.2.下列各组三条线段组成的三角形是直角三角形的是()A.2,3,4 B.1,1,C.6,8,11 D.2,2,33.如图,在四边形ABCD中,BC∥AD,添加下列条件,不能判定四边形ABCD是平行四边形的是()A.AB=CD B.AB∥CD C.∠A=∠C D.BC=AD4.下列各式计算错误的是()A.(﹣)(+)=1 B.×=C.5﹣2=3 D.÷=35.如图,▱ABCD中,AB=3,BC=5,AE平分∠BAD交BC于点E,则CE的长为()A.1 B.2 C.3 D.46.如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°7.如图,在Rt△ABC中,∠B=90°,以AC为直径的圆恰好过点B,AB=8,BC=6,则阴影部分的面积是()A.100π﹣24 B.100π﹣48 C.25π﹣24 D.25π﹣488.如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.2.5 B.2C.D.9.用两块完全相同的直角三角形拼下列图形:一定能拼成的图形是()①等腰三角形;②等边三角形;③平行四边形;④菱形;⑤矩形;⑥正方形.A.①②⑤B.①③⑤C.③⑤⑥D.①③④10.如图,菱形的边长为2,∠ABC=45°,则点D的坐标为()A.(2,2)B.(2+,)C.(2,)D.(,)11.如图,已知圆柱底面的周长为6cm,圆柱高为3cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()cm.A.3B.6C.D.612.如图,▱ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,AB=,AC=2,BD =4,则AE的长为()A.B.C.D.二.填空题(共4小题)13.要使有意义,则x的取值范围是.14.若一个三角形的三边长分别为3,4,x,则使此三角形是直角三角形的x的值是.15.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根四尺,问折者高几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远.问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程.16.如图,点E、F是正方形ABCD内两点,且BE=AB,BF=DF,∠EBF=∠CBF,则∠BEF 的度数.三.解答题(共9小题)17.计算:4(﹣)﹣÷+(+1)2.18.已知a=+1,b=﹣1,求下列各式的值:(1)a2﹣2ab+b2(2)a2﹣b219.如图,AD⊥BC,垂足为D.如果CD=1,AD=2,BD=4,(1)求出AC、AB的长度;(2)△ABC是直角三角形吗?证明你的结论.20.请阅读下列材料:问题:现有5个边长为1的正方形,排列形式如图①,请把它们分割后拼接成一个新的正方形,要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.小东同学的做法是:设新正方形的边长为x(x>0),依题意,割补前后图形的面积相等,有x2=5,解得x=,由此可知新正方形的边长等于两个小正方形组成的矩形对角线的长,于是,画出如图②所示的分割线,拼出如图③所示的新正方形.请你参考小东同学的做法,解决如下问题:现有10个边长为1的正方形,排列形式如图④,请把它们分割后拼接成一个新的正方形,要求:在图④中画出分割线,并在图⑤的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.(说明:直接画出图形,不要求写分析过程.)21.先化简,再求值:a+,其中a=1010.如图是小亮和小芳的解答过程.(1)的解法是错误的,错误的原因在于未能正确地运用二次根式的性质:=(a<0);(2)先化简,再求值:x+2,其中x=﹣2019.22.已知,如图,在平行四边形ABCD中,BF平分∠ABC交AD于点F,AE⊥BF于点O,交BC于点E,连接EF.(1)求证:四边形ABEF是菱形;(2)若AE=12,BF=16,CE=5,求四边形ABCD的面积.23.已知,如图,△ABC中,∠A=90°,D是AC上一点,且∠ADB=2∠C,P是BC上任一点,PE⊥BD于E,PF⊥AC于F.(1)求证:CD=BD;(2)写出线段AB,PF和PE之间数量关系,并证明你的结论.24.观察、思考与验证(1)如图1是一个重要公式的几何解释,请你写出这个公式;(2)如图2所示,∠B=∠D=90°,且B,C,D在同一直线上.试说明:∠ACE=90°;(3)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(发表在1876年4月1日的《新英格兰教育日志》上),请你写出验证过程.25.如图,在平行四边形ABCD中,AC,BD相交于点O,AC=6,BD=8,∠AOD=65°,点E 在BO上,AF∥CE交BD于点F.(1)求证:四边形AFCE是平行四边形.(2)当点E在边BO上移动时,平行四边形AFCE能否为矩形?若能,此时BE的长为等于多少(直接写出结果)?若不能,请说明理由.(3)当点E在边BO上移动时,平行四边形AFCE能否为菱形?若能,此BE的长为等于多少(直接写出结果)?若不能,请说明理由.。

贵州省遵义市2018-2019学年八年级下期中数学试卷

贵州省遵义市2018-2019学年八年级下期中数学试卷

贵州省遵义市2018-2019学年八年级下期中数学试卷一、用心选一选(每小题3分,共48分,每小题给出的四个选项中,只有一个选项符合题意)1.点P(﹣2,1)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.下列调查中,最适合用普查方式的是()A.调查一批电视机的使用寿命情况B.调查某中学九年级一班学生的视力情况C.调查重庆市初中学生每天锻炼所用的时间情况D.调查重庆市初中学生利用网络媒体自主学习的情况3.在圆的面积公式S=πr2中,是常量的是()A.S B.πC.r D.S和r4.为了解全市1 600多万民众的身体健康状况,从中任意抽取1 000人进行调查,在这个问题中,这1 000人的身体状况是()A.总体B.个体C.样本D.样本容量5.点P(﹣3,4)关于原点的对称点是Q(3,m),则m的值是()A.﹣4 B.4 C.﹣3 D.36.将50个数据分成5组列出频数分布表,其中第一组的频数为6,第二组与第五组的频数和为20,第三组的频率为0.2,则第四组的频率为()A.4 B.14 C.0.28 D.507.函数y=中,自变量x的取值范围是()A.x≠0 B.x≥2 C.x>2且x≠0 D.x≥2且x≠08.如图是一局围棋比赛的几手棋.为记录棋谱方便,横线用数字表示,纵线用字母表示,这样,黑棋的位置可记为(B,2),白棋②的位置可记为(D,1),则白棋⑨的位置应记为()A.(C,5)B.(C,4)C.(4,C)D.(5,C)9.已知点A(1,2),AC⊥x轴,垂足为C,则点C的坐标为()A.(1,0)B.(0,1)C.(2,0)D.(0,2)10.点A(﹣4,3)和点B(﹣8,3),则A,B相距()A.4个单位长度B.12个单位长度C.10个单位长度D.8个单位长度11.点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A.(﹣3,0)B.(﹣1,6)C.(﹣3,﹣6)D.(﹣1,0)12.某校对八年级300名学生就“分组合作学习”方式的支持程度进行了调查,随机抽取了若干名学生进行调查,并制作统计图,据此统计图估计该校八年级支持“分组合作学习”方式的学生(含非常喜欢和喜欢两种情况)约为()A.180名B.210名C.240名D.270名13.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s 与t之间的函数关系如图所示.下列说法错误的是()A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度14.如图,在平面直角坐标系中,点B、C、E、在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,1),AC=2,则这种变换可以是()A.△ABC绕点C顺时针旋转90°,再向下平移3B.△ABC绕点C顺时针旋转90°,再向下平移1C.△ABC绕点C逆时针旋转90°,再向下平移1D.△ABC绕点C逆时针旋转90°,再向下平移315.如图,某个函数的图象由线段AB和BC组成,其中点A(0,),B (1,),C(2,),则此函数的最小值是()A.0 B.C.1 D.16.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2011次运动后,动点P的坐标是()A.B.C.D.二、填空题(每小题3分,共12分,答案写在题中的横线上)17.如果M(a,b),N(c,d)是平行于x轴的一条直线上的两点,那么b 与d的关系是________.18.若点A(m+2,3)与点B(﹣4,n+5)关于y轴对称,则m+n=________.19.如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O逆时针旋转90°至OA′,则点A′的坐标是________.20.在一次寻宝游戏中,寻宝人找到了如图所示的两个标志,点A(2,3)、B(4,1),这两个标志点到“宝藏”点的距离都是2,则“宝藏”点的坐标是________.三、答一答,相信你一定能行!(共包括6道大题,60分)21.拖拉机开始工作时,油箱中有油40升,如果工作每小时耗油4升,求:(1)油箱中的余油量Q(升)与工作时间t(时)的函数关系式及自变量的取值范围;(2)当工作5小时时油箱的余油量22.小明随机调查了若干市民租用公共自行车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如图统计图,请根据图中信息,解答下列问题:(1)这次被调查的总人数是多少?(2)试求表示A组的扇形圆心角的度数,并补全条形统计图.(3)如果骑自行车的平均速度为12km/h,请估算,在租用公共自行车的市民中,骑车路程不超过6km的人数所占的百分比.23.如图,A(﹣1,0),C(1,4),点B在x轴上,且AB=3.(1)求点B的坐标;(2)求△ABC的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标;若不存在,请说明理由.24.“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD和折线OABC表示“龟兔赛跑”时路程与时间的关系,请你根据图中给出的信息,解决下列问题.(1)填空:赛跑的全程是________米.(2)兔子在起初每分钟跑________米,乌龟每分钟爬________米.(3)乌龟用了________分钟追上了正在睡觉的兔子;(4)兔子醒来,以48千米/时的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了________分钟?.25.一只蚂蚁在一个半圆形的花坛的周边寻找食物,如图1,蚂蚁从圆心O 出发,按图中箭头所示的方向,依次匀速爬完下列三条线路:(1)线段OA、(2)半圆弧AB、(3)线段BO后,回到出发点.蚂蚁离出发点的距离S(蚂蚁所在位置与O点之间线段的长度)与时间t之间的图象如图2所示,问:(1)请直接写出:花坛的半径是________米,a=________.(2)当t≤2时,求s与t之间的关系式;(3)若沿途只有一处有食物,蚂蚁在寻找到食物后停下来吃了2分钟,并知蚂蚁在吃食物的前后,始终保持爬行且爬行速度不变,请你求出:①蚂蚁停下来吃食物的地方,离出发点的距离.②蚂蚁返回O的时间.(注:圆周率π的值取3)26.如图1,在平面直角坐标系中,点A,B的坐标分别是(﹣2,0),(4,0),现同时将点A、B分别向上平移2个单位长度,再向右平移2个单位长度,得到A,B的对应点C,D.连接AC、BD、CD.(1)点C的坐标为________,点D的坐标为________,四边形ABDC的面积为________.(2)在x轴上是否存在一点E,使得△DEC的面积是△DEB面积的2倍?若存在,请求出点E的坐标;若不存在,请说明理由.贵州省遵义市2018-2019学年八年级下期中数学试卷参考答案与试题解析一、用心选一选(每小题3分,共48分,每小题给出的四个选项中,只有一个选项符合题意)1.点P(﹣2,1)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据各象限点的坐标的特点解答.【解答】解:点P(﹣2,1)在第二象限.故选B.2.下列调查中,最适合用普查方式的是()A.调查一批电视机的使用寿命情况B.调查某中学九年级一班学生的视力情况C.调查重庆市初中学生每天锻炼所用的时间情况D.调查重庆市初中学生利用网络媒体自主学习的情况【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、调查一批电视机的使用寿命情况,调查局有破坏性,适合抽样调查,故A不符合题意;B、调查某中学九年级一班学生的视力情况,适合普查,故B符合题意;C、调查重庆市初中学生每天锻炼所用的时间情况,调查范围广,适合抽样调查,故C不符合题意;D、调查重庆市初中学生利用网络媒体自主学习的情况,适合抽样调查,故D不符合题意;故选:B.3.在圆的面积公式S=πr2中,是常量的是()A.S B.πC.r D.S和r【考点】常量与变量.【分析】根据常量、变量的定义,可得答案.【解答】解:在圆的面积公式S=πr2中,π是常量,S、r是变量,故选:B.4.为了解全市1 600多万民众的身体健康状况,从中任意抽取1 000人进行调查,在这个问题中,这1 000人的身体状况是()A.总体B.个体C.样本D.样本容量【考点】总体、个体、样本、样本容量.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体.在这个问题中,这1 000人的身体状况是样本.【解答】解:A、总体是全市1 600多万民众的身体健康状况的全体,错误;B、个体是所抽取的1 000人中每一个人的身体状况,错误;C、样本是所抽取的这1 000人的身体状况,正确;D、样本容量是1 000,错误.故选C.5.点P(﹣3,4)关于原点的对称点是Q(3,m),则m的值是()A.﹣4 B.4 C.﹣3 D.3【考点】关于原点对称的点的坐标.【分析】直接利用关于原点对称点的性质得出m的值.【解答】解:∵点P(﹣3,4)关于原点的对称点是Q(3,m),∴m=﹣4.故选:A.6.将50个数据分成5组列出频数分布表,其中第一组的频数为6,第二组与第五组的频数和为20,第三组的频率为0.2,则第四组的频率为()A.4 B.14 C.0.28 D.50【考点】频数(率)分布表.【分析】首先求得第三组的频数,则利用总数减去其它各组的频数就可求得,利用频数除以总数即可求解.【解答】解:第三组的频数是:50×0.2=10,则第四组的频数是:50﹣6﹣20﹣10=14,则第四组的频率为:=0.28.故选C.7.函数y=中,自变量x的取值范围是()A.x≠0 B.x≥2 C.x>2且x≠0 D.x≥2且x≠0【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣2≥0且x≠0,∴x≥2.故选:B.8.如图是一局围棋比赛的几手棋.为记录棋谱方便,横线用数字表示,纵线用字母表示,这样,黑棋的位置可记为(B,2),白棋②的位置可记为(D,1),则白棋⑨的位置应记为()A.(C,5)B.(C,4)C.(4,C)D.(5,C)【考点】坐标确定位置.【分析】根据黑棋的位置向右1个单位,向上2个单位为白棋⑨的位置写出坐标即可.【解答】解:∵黑棋的位置可记为(B,2),∴白棋⑨的位置应记为(C,4).故选B.9.已知点A(1,2),AC⊥x轴,垂足为C,则点C的坐标为()A.(1,0)B.(0,1)C.(2,0)D.(0,2)【考点】坐标与图形性质.【分析】易得点C在x轴,那么纵坐标为0,由AC⊥x轴可得点C的横坐标与点A的横坐标相同,那么可得点C的坐标.【解答】解:∵点A(1,2),AC⊥x轴,∴点C的横坐标为1,∵AC⊥x轴,垂足为C,∴点C的纵坐标为0,∴C(1,0),故选A.10.点A(﹣4,3)和点B(﹣8,3),则A,B相距()A.4个单位长度B.12个单位长度C.10个单位长度D.8个单位长度【考点】两点间的距离公式.【分析】先根据A,B两点的坐标确定AB平行于x轴,再根据同一直线上两点间的距离公式解答即可.【解答】解:∵点A和点B纵坐标相同,∴AB平行于x轴,AB=﹣4﹣(﹣8)=4.故选A.11.点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A.(﹣3,0)B.(﹣1,6)C.(﹣3,﹣6)D.(﹣1,0)【考点】坐标与图形变化-平移.【分析】根据平移时,坐标的变化规律“上加下减,左减右加”进行计算.【解答】解:根据题意,得点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,所得点的横坐标是﹣2﹣1=﹣3,纵坐标是﹣3+3=0,即新点的坐标为(﹣3,0).故选A.12.某校对八年级300名学生就“分组合作学习”方式的支持程度进行了调查,随机抽取了若干名学生进行调查,并制作统计图,据此统计图估计该校八年级支持“分组合作学习”方式的学生(含非常喜欢和喜欢两种情况)约为()A.180名B.210名C.240名D.270名【考点】用样本估计总体;条形统计图.【分析】用“分组合作学习”方式所占的百分比乘以该校八年级的总人数,即可得出答案.【解答】解:根据题意得:300×=210(名),答:该校八年级支持“分组合作学习”方式的学生约为210名.故选:B.13.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s 与t之间的函数关系如图所示.下列说法错误的是()A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度【考点】一次函数的应用.【分析】根据函数图象可知,小明40分钟爬山2800米,40~60分钟休息,60~100分钟爬山米,爬山的总路程为3800米,根据路程、速度、时间的关系进行解答即可.【解答】解:A、根据图象可知,在40~60分钟,路程没有发生变化,所以小明中途休息的时间为:60﹣40=20分钟,故正确;B、根据图象可知,当t=40时,s=2800,所以小明休息前爬山的平均速度为:2800÷40=70(米/分钟),故B正确;C、根据图象可知,小明在上述过程中所走的路程为3800米,故错误;D、小明休息后的爬山的平均速度为:÷=25(米/分),小明休息前爬山的平均速度为:2800÷40=70(米/分钟),70>25,所以小明休息前爬山的平均速度大于休息后爬山的平均速度,故正确;故选:C.14.如图,在平面直角坐标系中,点B、C、E、在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,1),AC=2,则这种变换可以是()A.△ABC绕点C顺时针旋转90°,再向下平移3B.△ABC绕点C顺时针旋转90°,再向下平移1C.△ABC绕点C逆时针旋转90°,再向下平移1D.△ABC绕点C逆时针旋转90°,再向下平移3【考点】坐标与图形变化-旋转;坐标与图形变化-平移.【分析】观察图形可以看出,Rt△ABC通过变换得到Rt△ODE,应先旋转然后平移即可.【解答】解:根据图形可以看出,△ABC绕点C顺时针旋转90°,再向下平移3个单位可以得到△ODE.故选:A.15.如图,某个函数的图象由线段AB和BC组成,其中点A(0,),B (1,),C(2,),则此函数的最小值是()A.0 B.C.1 D.【考点】函数的图象.【分析】根据函数图象的纵坐标,可得答案.【解答】解:由函数图象的纵坐标,得>>,故选:B.16.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2011次运动后,动点P的坐标是()A.B.C.D.【考点】规律型:点的坐标.【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2011除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【解答】解:∵第1次运动到点(1,1),第2次运动到点(2,0),第3次接着运动到点(3,2),第4次运动到点(4,0),第5次运动到点(5,1)…,∴运动后点的横坐标等于运动的次数,第2011次运动后点P的横坐标为2011,纵坐标以1、0、2、0每4次为一个循环组循环,∵2011÷4=502…3,∴第2011次运动后动点P的纵坐标是第503个循环组的第3次运动,与第3次运动的点的纵坐标相同,为2,∴点P.故选C.二、填空题(每小题3分,共12分,答案写在题中的横线上)17.如果M(a,b),N(c,d)是平行于x轴的一条直线上的两点,那么b 与d的关系是b=d.【考点】坐标与图形性质.【分析】根据平行于x轴的直线上的点的纵坐标相等解答即可.【解答】解:∵直线MN平行于x轴,∴点M,N的纵坐标相等,即b=d,故答案为:b=d.18.若点A(m+2,3)与点B(﹣4,n+5)关于y轴对称,则m+n=0.【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”列出方程求解即可.【解答】解:∵点A(m+2,3)与点B(﹣4,n+5)关于y轴对称,∴m+2=4,3=n+5,解得:m=2,n=﹣2,∴m+n=0,故答案为:0.19.如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O逆时针旋转90°至OA′,则点A′的坐标是(﹣4,3).【考点】坐标与图形变化-旋转.【分析】过点A作AB⊥x轴于B,过点A′作A′B′⊥x轴于B′,根据旋转的性质可得OA=OA′,利用同角的余角相等求出∠OAB=∠A′OB′,然后利用“角角边”证明△AOB和△OA′B′全等,根据全等三角形对应边相等可得OB′=AB,A′B′=OB,然后写出点A′的坐标即可.【解答】解:如图,过点A作AB⊥x轴于B,过点A′作A′B′⊥x轴于B′,∵OA绕坐标原点O逆时针旋转90°至OA′,∴OA=OA′,∠AOA′=90°,∵∠A′OB′+∠AOB=90°,∠AOB+∠OAB=90°,∴∠OAB=∠A′OB′,在△AOB和△OA′B′中,,∴△AOB≌△OA′B′(AAS),∴OB′=AB=4,A′B′=OB=3,∴点A′的坐标为(﹣4,3).故答案为:(﹣4,3).20.在一次寻宝游戏中,寻宝人找到了如图所示的两个标志,点A(2,3)、B(4,1),这两个标志点到“宝藏”点的距离都是2,则“宝藏”点的坐标是(2,1)和(4,3).【考点】坐标确定位置.【分析】根据题意首先确定原点的位置,进而得出“宝藏”的位置.【解答】解:如图所示:“宝藏”点的坐标是:(2,1)和(4,3).故答案为:(2,1)和(4,3).三、答一答,相信你一定能行!(共包括6道大题,60分)21.拖拉机开始工作时,油箱中有油40升,如果工作每小时耗油4升,求:(1)油箱中的余油量Q(升)与工作时间t(时)的函数关系式及自变量的取值范围;(2)当工作5小时时油箱的余油量【考点】根据实际问题列一次函数关系式.【分析】(1)由油箱中的余油量=原有油量﹣耗油量可求得函数解析式;(2)把自变量的值代入函数解析式求得相对应的函数值.【解答】解:(1)由题意可知:Q=40﹣4t(0≤t≤10);(2)把t=5时代入Q=40﹣4t得:油箱的余油量Q=20升.22.小明随机调查了若干市民租用公共自行车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如图统计图,请根据图中信息,解答下列问题:(1)这次被调查的总人数是多少?(2)试求表示A组的扇形圆心角的度数,并补全条形统计图.(3)如果骑自行车的平均速度为12km/h,请估算,在租用公共自行车的市民中,骑车路程不超过6km的人数所占的百分比.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据B类人数是19,所占的百分比是38%,据此即可求得调查的总人数;(2)利用360°乘以对应的百分比即可求解;(3)求得路程是6km时所用的时间,根据百分比的意义可求得路程不超过6km的人数所占的百分比.【解答】解:(1)调查的总人数是:19÷38%=50(人);(2)A组所占圆心角的度数是:360×=108°,C组的人数是:50﹣15﹣19﹣4=12.;(3)路程是6km时所用的时间是:6÷12=0.5(小时)=30(分钟),则骑车路程不超过6km的人数所占的百分比是:×100%=92%.23.如图,A(﹣1,0),C(1,4),点B在x轴上,且AB=3.(1)求点B的坐标;(2)求△ABC的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标;若不存在,请说明理由.【考点】坐标与图形性质;三角形的面积.【分析】(1)分点B在点A的左边和右边两种情况解答;(2)利用三角形的面积公式列式计算即可得解;(3)利用三角形的面积公式列式求出点P到x轴的距离,然后分两种情况写出点P的坐标即可.【解答】解:(1)点B在点A的右边时,﹣1+3=2,点B在点A的左边时,﹣1﹣3=﹣4,所以,B的坐标为(2,0)或(﹣4,0);(2)△ABC的面积=×3×4=6;(3)设点P到x轴的距离为h,则×3h=10,解得h=,点P在y轴正半轴时,P(0,),点P在y轴负半轴时,P(0,﹣),综上所述,点P的坐标为(0,)或(0,﹣).24.“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD和折线OABC表示“龟兔赛跑”时路程与时间的关系,请你根据图中给出的信息,解决下列问题.(1)填空:赛跑的全程是1500米.(2)兔子在起初每分钟跑700米,乌龟每分钟爬50米.(3)乌龟用了14分钟追上了正在睡觉的兔子;(4)兔子醒来,以48千米/时的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了28.5分钟?.【考点】一次函数的应用.【分析】(1)根据点D实际意义知全程的距离;(2)根据点A实际意义知兔子起初速度,由点D实际意义可知乌龟的速度;(3)利用兔子睡觉前行驶的路程是700米,结合乌龟的速度求出所用的时间;(4)根据比乌龟晚到了0.5分钟求出兔子走完全程的时间,再得出兔子醒来后奔跑所用时间,求解可得.【解答】解:(1)由图可知,赛跑的全程是1500米,故答案为:1500;(2)兔子在起初每分钟跑=700米,乌龟每分钟爬=50米,故答案为:700,50;(3)700÷50=14,∴乌龟用了14分钟追上了正在睡觉的兔子,故答案为:14;(4)∵48千米/时=800米/分钟,∴30+0.5﹣1﹣=28.5,∴兔子中间停下睡觉用了28.5分钟,故答案为:28.5.25.一只蚂蚁在一个半圆形的花坛的周边寻找食物,如图1,蚂蚁从圆心O 出发,按图中箭头所示的方向,依次匀速爬完下列三条线路:(1)线段OA、(2)半圆弧AB、(3)线段BO后,回到出发点.蚂蚁离出发点的距离S(蚂蚁所在位置与O点之间线段的长度)与时间t之间的图象如图2所示,问:(1)请直接写出:花坛的半径是4米,a=8.(2)当t≤2时,求s与t之间的关系式;(3)若沿途只有一处有食物,蚂蚁在寻找到食物后停下来吃了2分钟,并知蚂蚁在吃食物的前后,始终保持爬行且爬行速度不变,请你求出:①蚂蚁停下来吃食物的地方,离出发点的距离.②蚂蚁返回O的时间.(注:圆周率π的值取3)【考点】动点问题的函数图象.【分析】(1)根据圆上的点到圆心的距离等于半径可知S开始不变时的值即为花坛的半径,然后求出蚂蚁的速度,再根据时间=路程÷速度计算即可求出a;(2)设s=kt(k≠0),然后利用待定系数法求正比例函数解析式解答;(3)①根据蚂蚁吃食时离出发点的距离不变判断出蚂蚁在BO段,再求出蚂蚁从B爬到吃食时的时间,然后列式计算即可得解;②求出蚂蚁吃完食后爬到点O的时间,再加上11计算即可得解.【解答】解:(1)由图可知,花坛的半径是4米,蚂蚁的速度为4÷2=2米/分,a=(4+4π)÷2=(4+4×3)÷2=8;故答案为:4,8;(2)设s=kt(k≠0),∵函数图象经过点(2,4),∴2k=4,解得k=2,∴s=2t;(3)∵沿途只有一处食物,∴蚂蚁只能在BO段吃食物,11﹣8﹣2=1,∴蚂蚁从B爬1分钟找到食物,4﹣1×2=2(米),∴蚂蚁停下来吃食的地方距出发点2米,2÷2=1(分钟),11+1=12(分钟),∴蚂蚁返回O的时间为12分钟.26.如图1,在平面直角坐标系中,点A,B的坐标分别是(﹣2,0),(4,0),现同时将点A、B分别向上平移2个单位长度,再向右平移2个单位长度,得到A,B的对应点C,D.连接AC、BD、CD.(1)点C的坐标为(0,2),点D的坐标为(6,2),四边形ABDC的面积为12.(2)在x轴上是否存在一点E,使得△DEC的面积是△DEB面积的2倍?若存在,请求出点E的坐标;若不存在,请说明理由.【考点】坐标与图形变化-平移;坐标与图形性质;三角形的面积.【分析】(1)根据点平移的规律易得点C的坐标为(0,2),点D的坐标为(6,2);(2)设点E的坐标为(x,0),根据△DEC的面积是△DEB面积的2倍和三角形面积公式得到×6×2=2××|4﹣x|×2,解得x=1或x=7,然后写出点E的坐标.【解答】解:(1)∵点A,B的坐标分别是(﹣2,0),(4,0),现同时将点A、B分别向上平移2个单位长度,再向右平移2个单位长度得到A,B的对应点C,D,∴点C的坐标为(0,2),点D的坐标为(6,2);四边形ABDC的面积=2×(4+2)=12;故答案为:(0,2),(6,2),12;(2)存在.设点E的坐标为(x,0),∵△DEC的面积是△DEB面积的2倍,∴×6×2=2××|4﹣x|×2,解得x=1或x=7,∴点E的坐标为(1,0)和(7,0).。

2018-2019学年贵州省遵义市八年级(下)期中数学试卷

2018-2019学年贵州省遵义市八年级(下)期中数学试卷

2018-2019学年贵州省遵义市八年级(下)期中数学试卷一、选择题:(本大题12个小题,每小题4分,共48分)每小题中只有一个答案是正确的.1.(4分)下列式子是最简二次根式的是()A.B.C.D.2.(4分)下列各组三条线段组成的三角形是直角三角形的是()A.2,3,4B.1,1,C.6,8,11D.2,2,33.(4分)如图,在四边形ABCD中,BC∥AD,添加下列条件,不能判定四边形ABCD是平行四边形的是()A.AB=CD B.AB∥CD C.∠A=∠C D.BC=AD4.(4分)下列各式计算错误的是()A.(﹣)(+)=1B.×=C.5﹣2=3D.÷=35.(4分)如图,▱ABCD中,AB=3,BC=5,AE平分∠BAD交BC于点E,则CE的长为()A.1B.2C.3D.46.(4分)如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°7.(4分)如图,在Rt△ABC中,∠B=90°,以AC为直径的圆恰好过点B,AB=8,BC=6,则阴影部分的面积是()A.100π﹣24B.100π﹣48C.25π﹣24D.25π﹣488.(4分)如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.2.5B.2C.D.9.(4分)用两块完全相同的直角三角形拼下列图形:一定能拼成的图形是()①等腰三角形;②等边三角形;③平行四边形;④菱形;⑤矩形;⑥正方形.A.①②⑤B.①③⑤C.③⑤⑥D.①③④10.(4分)如图,菱形的边长为2,∠ABC=45°,则点D的坐标为()A.(2,2)B.(2+,)C.(2,)D.(,)11.(4分)如图,已知圆柱底面的周长为6cm,圆柱高为3cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()cm.A.3B.6C.D.612.(4分)如图,▱ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,AB=,AC=2,BD=4,则AE的长为()A.B.C.D.二、填空题(本大题4个小题,每小题4分,共16分,请将每小题的答案填在答题卡中对应的横线上.)13.(4分)要使有意义,则x的取值范围是.14.(4分)若一个三角形的三边长分别为3,4,x,则使此三角形是直角三角形的x的值是.15.(4分)《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根四尺,问折者高几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远.问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程.16.(4分)如图,点E、F是正方形ABCD内两点,且BE=AB,BF=DF,∠EBF=∠CBF,则∠BEF的度数.三、解答题(本题共9小题,共86分,请写出必要的解答过程.)17.(6分)计算:4(﹣)﹣÷+(+1)2.18.(6分)已知a=+1,b=﹣1,求下列各式的值:(1)a2﹣2ab+b2(2)a2﹣b219.(8分)如图,AD⊥BC,垂足为D.如果CD=1,AD=2,BD=4,(1)求出AC、AB的长度;(2)△ABC是直角三角形吗?证明你的结论.20.(10分)请阅读下列材料:问题:现有5个边长为1的正方形,排列形式如图①,请把它们分割后拼接成一个新的正方形,要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.小东同学的做法是:设新正方形的边长为x(x>0),依题意,割补前后图形的面积相等,有x2=5,解得x=,由此可知新正方形的边长等于两个小正方形组成的矩形对角线的长,于是,画出如图②所示的分割线,拼出如图③所示的新正方形.请你参考小东同学的做法,解决如下问题:现有10个边长为1的正方形,排列形式如图④,请把它们分割后拼接成一个新的正方形,要求:在图④中画出分割线,并在图⑤的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.(说明:直接画出图形,不要求写分析过程.)21.(10分)先化简,再求值:a+,其中a=1010.如图是小亮和小芳的解答过程.(1)的解法是错误的,错误的原因在于未能正确地运用二次根式的性质:=(a<0);(2)先化简,再求值:x+2,其中x=﹣2019.22.(10分)已知,如图,在平行四边形ABCD中,BF平分∠ABC交AD于点F,AE⊥BF于点O,交BC于点E,连接EF.(1)求证:四边形ABEF是菱形;(2)若AE=12,BF=16,CE=5,求四边形ABCD的面积.23.(10分)已知,如图,△ABC中,∠A=90°,D是AC上一点,且∠ADB=2∠C,P是BC上任一点,PE⊥BD 于E,PF⊥AC于F.(1)求证:CD=BD;(2)写出线段AB,PF和PE之间数量关系,并证明你的结论.24.(12分)观察、思考与验证(1)如图1是一个重要公式的几何解释,请你写出这个公式;(2)如图2所示,∠B=∠D=90°,且B,C,D在同一直线上.试说明:∠ACE=90°;(3)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(发表在1876年4月1日的《新英格兰教育日志》上),请你写出验证过程.25.(14分)如图,在平行四边形ABCD中,AC,BD相交于点O,AC=6,BD=8,∠AOD=65°,点E在BO上,AF∥CE交BD于点F.(1)求证:四边形AFCE是平行四边形.(2)当点E在边BO上移动时,平行四边形AFCE能否为矩形?若能,此时BE的长为等于多少(直接写出结果)?若不能,请说明理由.(3)当点E在边BO上移动时,平行四边形AFCE能否为菱形?若能,此BE的长为等于多少(直接写出结果)?若不能,请说明理由.2018-2019学年贵州省遵义市八年级(下)期中数学试卷参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)每小题中只有一个答案是正确的.1.【解答】解:A、原式=2,不符合题意;B、原式=|m|,不符合题意;C、原式=,不符合题意;D、是最简二次根式,符合题意,故选:D.2.【解答】解:A、22+32≠42,不能构成直角三角形,故选项错误;B、12+12=()2,能构成直角三角形,故选项正确;C、62+82≠112,不能构成直角三角形,故选项错误;D、22+22≠32,不能构成直角三角形,故选项错误.故选:B.3.【解答】解:当BC∥AD,AB=CD时,不能判定四边形ABCD是平行四边形,故此选项符合题意;当AB∥CD,BC∥AD时,依据两组对边分别平行的四边形是平行四边形,能判定四边形ABCD是平行四边形,故B选项不合题意;当BC∥AD,∠A=∠C时,可得AB∥DC,依据两组对边分别平行的四边形是平行四边形,能判定四边形ABCD 是平行四边形,故C选项不合题意;当BC∥AD,BC=AD时,依据一组对边平行且相等的四边形是平行四边形,能判定四边形ABCD是平行四边形,故D选项不合题意;故选:A.4.【解答】解:A、原式=3﹣2=1,所以A选项的计算正确;A、原式==,所以B选项的计算正确;C、原式=3,所以C选项的计算错误;D、原式==3,所以D选项的计算正确.故选:C.5.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC=5,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BE=AB=3,∴CE=BC﹣BE=5﹣3=2,故选:B.6.【解答】解∵四边形ABCD是用两张等宽的纸条交叉重叠地放在一起而组成的图形,∴AB∥CD,AD∥BC,∴四边形ABCD是平行四边形(对边相互平行的四边形是平行四边形);过点D分别作BC,CD边上的高为AE,AF.则AE=AF(两纸条相同,纸条宽度相同);∵平行四边形ABCD中,S△ABC=S△ACD,即BC×AE=CD×AF,∴BC=CD,即AB=BC.故B正确;∴平行四边形ABCD为菱形(邻边相等的平行四边形是菱形).∴∠ABC=∠ADC,∠BAD=∠BCD(菱形的对角相等),故A正确;AB=CD,AD=BC(平行四边形的对边相等),故C正确;如果四边形ABCD是矩形时,该等式成立.故D不一定正确.故选:D.7.【解答】解:∵Rt△ABC中∠B=90°,AB=8,BC=6,∴AC===10,∴AC为直径的圆的半径为5,∴S阴影=S圆﹣S△ABC=25π﹣×6×8=25π﹣24.故选:C.8.【解答】解:由勾股定理可知,∵OB=,∴这个点表示的实数是.故选:D.9.【解答】解:根据题意,能拼出①等腰三角形、③平行四边形、⑤矩形.故选:B.10.【解答】解:过点D作DE⊥x轴于点E,∵菱形的边长为2,∠ABC=45°,∴CO=DC=2,∠DCE=45°,∴DE=DC•sin45°=,∴CE=,∴OE=2+,故点D的坐标为:(2+,).故选:B.11.【解答】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为6cm,圆柱高为3cm,∴AB=3cm,BC=BC′=3cm,∴AC2=32+32=18,∴AC=3cm,∴这圈金属丝的周长最小为2AC=6cm.故选:B.12.【解答】解:∵AC=2,BD=4,四边形ABCD是平行四边形,∴AO=AC=1,BO=BD=2,∵AB=,∴AB2+AO2=BO2,∴∠BAC=90°,∵在Rt△BAC中,BC===S△BAC=×AB×AC=×BC×AE,∴×2=AE,∴AE=,故选:D.二、填空题(本大题4个小题,每小题4分,共16分,请将每小题的答案填在答题卡中对应的横线上.)13.【解答】解:由题意得:4x﹣5≥0,解得:x≥,故答案为:x≥.14.【解答】解:设第三边为x(1)若4是直角边,则第三边x是斜边,由勾股定理,得32+42=x2,所以x=5;(2)若4是斜边,则第三边x为直角边,由勾股定理,得32+x2=42,所以x=;所以第三边的长为5或.15.【解答】解:设竹子折断处离地面x尺,则斜边为(10﹣x)尺,根据勾股定理得:x2+42=(10﹣x)2.故答案为x2+42=(10﹣x)2.16.【解答】解:连接CF,如图所示.∵四边形ABCD为正方形,∴AB=BC=CD,∠BCD=90.在△BCF和△DCF中,,∴△BCF≌△DCF(SSS),∴∠BCF=∠DCF=∠BCD=45°.∵BE=AB,∴BE=BC.在△BEF和△BCF中,,∴△BEF≌△BCF(SAS),∴∠BEF=∠BCF=45°.故答案为:45°.三、解答题(本题共9小题,共86分,请写出必要的解答过程.)17.【解答】解:原式=4﹣4﹣+3+2+1=2﹣8﹣4+4+2=2﹣6.18.【解答】解:(1)∵a=+1,b=﹣1,∴a﹣b=2,∴a2﹣2ab+b2=(a﹣b)2=22=4;(2)∵a=+1,b=﹣1,∴a﹣b=2,a+b=2,∴a2﹣b2=(a﹣b)(a+b)=2×=4.19.【解答】解:(1)∵CD=1,AD=2,BD=4,AD⊥BC,∴AC=;AB=2(2)∵AC=;AB=2,BC=CD+BD=5,∴AC2+AB2=BC2,∴△ABC是直角三角形.20.【解答】解:所画图形如图所示.说明:图1与图2中所画图形正确各得(2分).分割方法不唯一,正确者相应给分.21.【解答】解:(1)小亮的解法是错误的,错误的原因在于未能正确地运用二次根式的性质:=﹣a(a<0),故答案为:小亮;﹣a;(2)x+2,=x+2,=x+2×|x﹣2|,∵x=﹣2019,∴原式=x+2(﹣x+2),=x﹣2x+4,=﹣x+4,=2019+4,=2023.22.【解答】解:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AFB=∠FBE,∵BF平分∠ABC,∴∠ABF=∠EBF,∴∠AFB=∠ABF,∴AF=AB,∵AE⊥BF,∴∠AOB=∠EOB=90°,OB=OB,∠ABO=∠EBO,∴△ABO≌△EBO(ASA),∴AB=BE,∴AF=BE,又AF∥BE,∴四边形ABEF是平行四边形,∵AB=BE,∴平行四边形ABEF是菱形.(2)如图,作AG⊥BC于点G,∵四边形ABEF是菱形,OA=OE=AE=6,OB=OF=BF=8,∴AB==10,BE=10,设BG=x,则EG=BE﹣BG=10﹣x,∴在Rt△ABG和Rt△AEG中,根据勾股定理,得AG2=AB2﹣BG2=AE2﹣EG2即102﹣x2=122﹣(10﹣x)2解得x=,∴AG==.∴四边形ABCD的面积为:BC•AG=15×=144.23.【解答】证明:(1)在△BCD中,∠ADB=∠C+∠DBC,∵∠ADB=2∠C,∴∠C=∠DBC,∴CD=BD;(2)连接PD,则S△BCD=BD•PE+CD•PF=CD•AB,∵CD=BD,∴PE+PF=AB.24.【解答】(1)解:这个公式是完全平方公式:(a+b)2=a2+2ab+b2;理由如下:∵大正方形的边长为a+b,∴大正方形的面积=(a+b)2,又∵大正方形的面积=两个小正方形的面积+两个矩形的面积=a2+b2+ab+ab=a2+2ab+b2,∴(a+b)2=a2+2ab+b2;故答案为:(a+b)2=a2+2ab+b2;(2)证明:∵△ABC≌△CDE,∴∠BAC=∠DCE,∵∠ACB+∠BAC=90°,∴∠ACB+∠DCE=90°,∴∠ACE=90°;(3)证明:∵∠B=∠D=90°,∴∠B+∠D=180°,∴AB∥DE,即四边形ABDE是梯形,∴四边形ABDE的面积=(a+b)(a+b)=ab+c2+ab,整理得:a2+b2=c2.25.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AF∥CE,∴∠OAF=∠OCE,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴OE=OF,∴四边形AFCE是平行四边形;(2)平行四边形AFCE能为矩形.理由:∵四边形AFCE是平行四边形,∴当EF=AC=6时,平行四边形AFCE为矩形,∵OE=OF,OB=OD,∴BE=CF,∴2BE+EF=BD,即2BE+6=8,解得:BE=1,∴当BE=1时,平行四边形AFCE为矩形;(3)平行四边形AFCE不能为菱形.理由:∵四边形AFCE是平行四边形,且∠AOD=65°,即AC与BD不垂直,∴平行四边形AFCE不能为菱形.。

2018-2019学年第二学期期中质量检测八年级数学试题(带答案)

2018-2019学年第二学期期中质量检测八年级数学试题(带答案)

姓名: 班级: 考号: 考场: 座号: 密 封 线 内 不 要 答 题2018-2019学年第二学期期中质量检测八年级数学试题(时间 120分钟 分值 120分)一.选择题(本大题共10小题,每小题3分,共30分) 1.下列方程中,是关于x 的一元二次方程的是( ) A .ax 2+bx +c =0(a ,b ,c 为常数) B .x 2﹣x ﹣2=0 C .+﹣2=0D .x 2+2x =x 2﹣12.一元二次方程x 2+ax+a ﹣1=0的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根C .有实数根D .没有实数根3.如果关于x 的一元二次方程(m ﹣3)x 2+3x +m 2﹣9=0有一个解是0,那么m 的值是( )A .﹣3B .3C .±3D .0或﹣34.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则应邀请( )个球队参加比赛. A.6 B.7C.8D.95.若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为( )A.1B.2C.-1D.-26.已知点A(-3,y 1),B(2,y 2),C(3,y 3)在抛物线y =2x 2-4x +c 上,则y 1,y 2,y 3的大小关系是( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 2>y 3>y 17.某烟花厂为春节烟火晚会特别设计制作一种新型礼炮,这种礼炮的升空高度h(m )与飞行时间t(s )的关系式是h =-52t 2+20t +1,若这种礼炮点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( )A .3 sB .4 sC .5 sD .6 s 8.已知函数y =ax 2-2ax -1(a 是常数,a ≠0),下列结论正确的是( )A .当a =1时,函数图象过点(-1,1)B .当a =-2时,函数图象与x 轴没有交点C .若a >0,则当x ≥1时,y 随x 的增大而减小D .若a <0,则当x ≤1时,y 随x 的增大而增大9.在同一坐标系内,一次函数y =ax +b 与二次函数y =ax 2+8x +b 的图象可能是( )10. 如图,抛物线y =ax 2+bx +c(a≠0)与x 轴交于点A(-2,0),B(1,0), 直线x =-0.5与此抛物线交于点C ,与x 轴交于点M , 在直线上取点D ,使MD =MC ,连接AC ,BC ,AD ,BD , 某同学根据图象写出下列结论:①a-b =0;②当-2<x<1时,y>0;③四边形ACBD 是菱形; ④9a-3b +c>0,你认为其中正确的是( )A .②③④B .①②④C .①③④D .①②③ 第10题图二.填空题(本大题共8小题,其中11-14小题每小题3分,15-18题每小题4分,共28分) 11.如果y =(m ﹣2)是关于x 的二次函数,则m =__________.12. 如果一元二次方程x 2﹣4x+k =0经配方后,得(x ﹣2)2=1,那么k = . 13.若m 是方程2x 2+3x ﹣1=0的根,则式子4m 2+6m+2019的值为 .14. 已知抛物线c bx ax y ++=2经过点A(-2,7),B(6,7),C(3,-8),则该抛物线上纵坐标为-8的另一点的坐标是__________.15. 若函数y =(a -1)x 2-4x +2a 的图象与x 轴有且只有一个交点,则a 的值为 __________.16.已知关于x 的方程(k ﹣2)2x 2+(2k+1)x+1=0有实数根,则k 的取值范围是__________. 17.把二次函数y =12x 2+3x +52的图象向右平移2个单位后,再向上平移3个单位,所得的函数图象的顶点是__________.18.如图,抛物线的顶点为P(-2,2),与y 轴交于点A(0,3). 若平移该抛物线使其顶点P 沿直线移动到点P ′(2,-2), 点A 的对应点为A ′,则抛物线上PA 段扫过的区域(阴影部分)的面积为__________. 第18题图三.解答题(本大题共7小题,共62分)19.(8分)选择适当方法解下列方程(1)(3x﹣1)2=(x﹣1)2(2)3x(x﹣1)=2﹣2x20.(7分)已知关于x的一元二次方程x2+x+m﹣1=0.(1)当m=0时,求方程的实数根.(2)若方程有两个不相等的实数根,求实数m的取值范围.21.(8分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?22.(8分)为落实素质教育要求,促进学生全面发展,我市某中学2016年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2018年投资18.59万元.(1)求该学校为新增电脑投资的年平均增长率;(2)从2016年到2018年,该中学三年为新增电脑共投资多少万元?23.(9分)已知关于x的一元二次方程x2-(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求k的值.24.(10分)某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?25.(12分)在2016年巴西里约奥运会上,中国女排克服重重困难,凭借顽强的毅力和超强的实力先后战胜了实力同样超强的巴西队,荷兰队和塞尔维亚队,获得了奥运冠军,为祖国和人民争了光.如图,已知女排球场的长度OD为18米,位于球场中线处的球网AB的高度为2.24米,一队员站在点O处发球,排球从点O的正上方2米的C点向正前方飞去,排球的飞行路线是抛物线的一部分,当排球运行至离点O的水平距离OE为6米时,到达最高点F,以O为原点建立如图所示的平面直角坐标系.(1)当排球运行的最大高度为2.8米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)之间的函数关系式.(2)在(1)的条件下,这次所发的球能够过网吗?如果能够过网,是否会出界?请说明理由.(3)喜欢打排球的李明同学经研究后发现,发球要想过网,球运行的最大高度h(米)应满足h>2.32,但是他不知道如何确定h的取值范围,使排球不会出界(排球压线属于没出界),请你帮忙解决并指出使球既能过网又不会出界的h的取值范围.姓名: 班级: 考号: 考场: 座号: 密 封 线 内 不 要 答 题2018-2019学年第二学期期中质量检测八年级数学试题答案一.选择题(本大题共10小题,每小题3分,共30分)1. B2. C3. A4.B5. D6.B7.B8. D9. C 10.D二.填空题(本大题共8小题,其中11-14小题每小题3分,15-18题每小题4分,共28分)11. m=-1 12. 3 13. 2021 14. (1,-8) 15. -1或2或1 16. k ≥ 17. (-1,1) 18. 12三.解答题(本大题共7小题,共62分)19.(8分)解:(1)3x ﹣1=±(x ﹣1)………………………………………………1分 即3x ﹣1=x ﹣1或3x ﹣1=﹣(x ﹣1)……………………3分 所以x 1=0,x 2=;……………………4分(2)3x (x ﹣1)+2(x ﹣1)=0…………………………………1分(x ﹣1)(3x +2)=0x ﹣1=0或3x +2=0…………………3分 所以x 1=1,x 2=﹣.……………………4分20.解:(1)当m =0时,方程为x 2+x ﹣1=0. △=12﹣4×1×(﹣1)=5>0. ∴x =, ∴x 1=,x 2=.…………………4分(2)∵方程有两个不相等的实数根, ∴△>0即(﹣1)2﹣4×1×(m ﹣1) =1﹣4m +4 =5﹣4m >0 ∵5﹣4m >0∴m <.…………………7分21. (8分)解:设AB 的长度为x 米,则BC 的长度为(100-4x)米,根据题意得 (100-4x)x =400,解得x 1=20,x 2=5,………………4分 则100-4x =20或100-4x =80,∵80>25,∴x 2=5舍去, 即AB =20,BC =20,则羊圈的边长AB ,BC 分别是20米,20米。

2018-2019学年八年级(下)期中数学试卷1 解析版

2018-2019学年八年级(下)期中数学试卷1  解析版

2018-2019学八年级(下)期中数学试卷一.选择题(共10小题)1.下列性质中,菱形具有而平行四边形不具有的性质是()A.对边平行且相等B.对角线互相平分C.对角线互相垂直D.对角互补2.在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1B.C.2D.3.下列运算正确的是()A.2﹣=1B.+=C.×=4D.÷=2 4.如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠A=118°,则∠BCE=()A.28°B.38°C.62°D.72°5.若代数式有意义,则x的取值范围是()A.x>﹣1且x≠1B.x≥﹣1C.x≠1D.x≥﹣1且x≠1 6.如图,在一个高为3m,长为5m的楼梯表面铺地毯,则地毯长度为()A.7m B.8m C.9m D.10m7.如图,在▱ABCD中,对角线AC,BD相交于点O,点E,F分别是AB,AO的中点,连接EF,若EF=3,则BD的长为()A.6B.9C.12D.158.如图正方形ABCD中以CD为边向外作等边三角形CDE,连接AE、AC,则∠CAE度数为()A.15°B.30°C.45°D.20°9.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DH⊥AB于点H,则DH的长为()A.4.8cm B.5cm C.9.6cm D.10cm10.如图,已知长方形ABCD中,AD=6,AB=8,P是AD边上的点,将△ABP沿BP折叠,使点A落在点E上,PE、BE与CD分别交于点O、F,且OD=OE,则AP的长为()A.4.8B.5C.5.2D.5.4二.填空题(共4小题)11.计算3﹣的结果是.12.如图所示,数轴上点A所表示的数为a,则a的值是.13.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=7,则EF的长为.14.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,AB=1,点P为BC上任意一点,连接P A,以P A、PC为邻边作▱P AQC,连接PQ,则PQ的最小值为.三.解答题(共11小题)15.计算:(﹣2)×﹣616.先化简,再求值:(2﹣)÷,其中x=﹣3.17.若x、y都是实数,且y=++,求x2y+xy2的值.18.已知:如图,在△ABC中,AB=13,AC=20,AD=12,且AD⊥BC,垂足为点D,求BC的长.19.已知:如图,在▱ABCD中,E,F是对角线BD上两个点,且BE=DF.求证:AE=CF.20.如图,在四边形ABCD中,AB=AD=6,∠A=60°,BC=10,CD=8.(1)求∠ADC的度数;(2)求四边形ABCD的面积.21.如图,在矩形ABCD中,M为BC上的点,过点D作DE⊥AM于E,DE=DC=5,AE =2EM.(1)求证:BM=AE;(2)求BM的长.22.阅读理解材料:把分母中的根号化掉叫做分母有理化,例如:①==;②===+1等运算都是分母有理化.根据上述材料,(1)化简:(2)计算:+++…+.23.如图,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE,交BC于F.(1)求证:OE=CB;(2)如果OC:OB=1:2,OE=,求菱形ABCD的面积.24.如图,正方形ABCD中,M为BC上的点,E是AD的延长线的点,且AE=AM,过E 作EF⊥AM垂足为F,EF交DC于点N.(1)求证:AF=BM;(2)若AB=12,AF=5,求DE的长.25.【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)直接写出AM、AD、MC三条线段的数量关系:;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.参考答案与试题解析一.选择题(共10小题)1.下列性质中,菱形具有而平行四边形不具有的性质是()A.对边平行且相等B.对角线互相平分C.对角线互相垂直D.对角互补【分析】根据平行四边形的性质和菱形的性质对各选项进行判断.【解答】解:A、平行四边形的对边平行且相等,所以A选项错误;B、平行四边形的对角线互相平分,所以B选项错误;C、菱形的对角线互相垂直,平行四边形的对角线互相平分,所以C选项正确;D、平行四边形的对角相等,所以D选项错误.故选:C.2.在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1B.C.2D.【分析】根据勾股定理即可得到结论.【解答】解:在Rt△ABC中,∠B=90°,BC=1,AC=2,∴AB===,故选:B.3.下列运算正确的是()A.2﹣=1B.+=C.×=4D.÷=2【分析】根据二次根式的运算法则逐一计算可得.【解答】解:A.2﹣=,此选项错误;B.与不是同类二次根式,不能合并,此选项错误;C.×=×2=4,此选项正确;D.÷=,此选项错误;故选:C.4.如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠A=118°,则∠BCE=()A.28°B.38°C.62°D.72°【分析】由在平行四边形ABCD中,∠A=118°,可求得∠B的度数,又由CE⊥AB,即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴∠B=180°﹣∠A=180°﹣118°=62°,∵CE⊥AB,∴∠BCE=90°﹣∠B=28°.故选:A.5.若代数式有意义,则x的取值范围是()A.x>﹣1且x≠1B.x≥﹣1C.x≠1D.x≥﹣1且x≠1【分析】根据二次根式有意义的条件可得x+1≥0,根据分式有意义的条件可得x﹣1≠0,再解即可.【解答】解:由题意得:x+1≥0,且x﹣1≠0,解得:x≥﹣1,且x≠1,故选:D.6.如图,在一个高为3m,长为5m的楼梯表面铺地毯,则地毯长度为()A.7m B.8m C.9m D.10m【分析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,然后求得地毯的长度即可.【解答】解:由勾股定理得:楼梯的水平宽度==4,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,∴地毯的长度至少是3+4=7(m).故选:A.7.如图,在▱ABCD中,对角线AC,BD相交于点O,点E,F分别是AB,AO的中点,连接EF,若EF=3,则BD的长为()A.6B.9C.12D.15【分析】根据已知条件可以得到EF是△OAB的中位线,则OB=2EF=6,再利用平行四边形的性质得出BD即可.【解答】解:∵点E,F分别是AB,AO的中点,连接EF,EF=3,∴EF是△OAB的中位线,则OB=2EF=6,∵在▱ABCD中,∴BD=2OB=12,故选:C.8.如图正方形ABCD中以CD为边向外作等边三角形CDE,连接AE、AC,则∠CAE度数为()A.15°B.30°C.45°D.20°【分析】先利用正方形的性质得到DA=DC,∠CAD=45°,∠ADC=90°,利用等边三角形的性质得到DE=DC,∠CDE=60°,则DA=DE,∠ADE=150°,再根据等腰三角形的性质和三角形内角和计算出∠DAE=15°,然后计算∠CAD与∠DAE的差即可.【解答】解:∵四边形ABCD为正方形,∴DA=DC,∠CAD=45°,∠ADC=90°,∵△CDE为等边三角形,∴DE=DC,∠CDE=60°,∴DA=DE,∠ADE=90°+60°=150°,∴∠DAE=∠DEA,∴∠DAE=(180°﹣150°)=15°,∴∠CAE=45°﹣15°=30°.故选:B.9.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DH⊥AB于点H,则DH的长为()A.4.8cm B.5cm C.9.6cm D.10cm【分析】思想两个勾股定理求出菱形的边长,再利用菱形的面积的两种求法构建方程即可解决问题.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=4,OB=OD=3,∴AB=5cm,∴S菱形ABCD=AC•BD=AB•DH,∴DH==4.8.故选:A.10.如图,已知长方形ABCD中,AD=6,AB=8,P是AD边上的点,将△ABP沿BP折叠,使点A落在点E上,PE、BE与CD分别交于点O、F,且OD=OE,则AP的长为()A.4.8B.5C.5.2D.5.4【分析】由矩形的性质得出∠A=∠C=∠D=90°,CD=AB=8,BC=AD=6,由折叠的性质得出EP=AP,BE=AB=8,∠E=∠A=90°,由ASA证明△ODP≌△OEF,得出PD=FE,OP=OF,因此DF=EP=AP,设AP=x,则DF=x,FE=PD=6﹣x,得出CF=CD﹣DF=8﹣x,BF=BE﹣FE=x+2,在Rt△BCF中,由勾股定理得出方程,解方程即可.【解答】解:∵四边形ABCD是长方形,∴∠A=∠C=∠D=90°,CD=AB=8,BC=AD=6,由折叠的性质得:EP=AP,BE=AB=8,∠E=∠A=90°,在△ODP和△OEF中,,∴△ODP≌△OEF(ASA),∴PD=FE,OP=OF,∴DF=EP=AP,设AP=x,则DF=x,FE=PD=6﹣x,∴CF=CD﹣DF=8﹣x,BF=BE﹣FE=x+2,在Rt△BCF中,BC2+CF2=BF2,即62+(8﹣x)2=(x+2)2,解得:x=4.8;故选:A.二.填空题(共4小题)11.计算3﹣的结果是﹣.【分析】直接化简二次根式,进而合并得出答案.【解答】解:原式=3×﹣2=﹣2=﹣.故答案为:﹣.12.如图所示,数轴上点A所表示的数为a,则a的值是﹣.【分析】根据图形,利用勾股定理可以求得a的值.【解答】解:由图可得,a=﹣,故答案为:﹣.13.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=7,则EF的长为1.【分析】根据三角形中位线定理得到DE=BC=3.5,根据直角三角形的性质得到DF =AB=2.5,计算即可.【解答】解:∵DE是△ABC的中位线,∴DE=BC=3.5,DE∥BC,∵∠AFB=90°,D为AB的中点,∴DF=AB=2.5,∴EF=DE﹣DF=1,故答案为:1.14.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,AB=1,点P为BC上任意一点,连接P A,以P A、PC为邻边作▱P AQC,连接PQ,则PQ的最小值为.【分析】以P A,PC为邻边作平行四边形P AQC,由平行四边形的性质可知O是AC中点,PQ最短也就是PO最短,所以应该过O作BC的垂线P′O,根据垂线段最短即可解决问题;【解答】解:∵∠BAC=90°,∠B=60°,AB=1,∴BC=2AB=2,AC=,∵四边形APCQ是平行四边形,∴PO=QO,CO=AO=,∵PQ最短也就是PO最短,∴过O作BC的垂线OP′,∴则PQ的最小值为2OP′=2OC•sin30°=,故答案为:.三.解答题(共11小题)15.计算:(﹣2)×﹣6【分析】先算乘法,再合并同类二次根式即可.【解答】解:原式=3﹣2﹣3=﹣2.16.先化简,再求值:(2﹣)÷,其中x=﹣3.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=×=,把x=﹣3代入得:原式===1﹣2.17.若x、y都是实数,且y=++,求x2y+xy2的值.【分析】根据二次根式有意义的条件可得x=2,进而可得y的值,然后代入求值即可.【解答】解:由题意得:,解得:x=2,则y=,x2y+xy2=xy(x+y)=2(2+)=4+4.18.已知:如图,在△ABC中,AB=13,AC=20,AD=12,且AD⊥BC,垂足为点D,求BC的长.【分析】依据勾股定理,即可得到BD和CD的长,进而得出BC=BD+CD=21.【解答】解:∵AB=13,AC=20,AD=12,AD⊥BC,∴Rt△ABD中,BD===5,Rt△ACD中,CD===16,∴BC=BD+CD=5+16=21.19.已知:如图,在▱ABCD中,E,F是对角线BD上两个点,且BE=DF.求证:AE=CF.【分析】根据平行四边形的性质和全等三角形的判定和性质证明即可.【解答】证明:∵四边形ABCD为平行四边形,∴AB∥DC,AB=DC,∴∠ABE=∠CDF,又∵BE=DF,在△ABE与△CDF中,∴△ABE≌△CDF(SAS)∴AE=CF.20.如图,在四边形ABCD中,AB=AD=6,∠A=60°,BC=10,CD=8.(1)求∠ADC的度数;(2)求四边形ABCD的面积.【分析】(1)连接BD,根据AB=AD=6,∠A=60°,得出△ABD是等边三角形,求得BD=8,然后根据勾股定理的逆定理判断三角形BDC是直角三角形,从而求得∠ADC=150°;(2)根据四边形的面积等于三角形ABD和三角形BCD的和即可求得.【解答】解:(1)连接BD,∵AB=AD=6,∠A=60°,∴△ABD是等边三角形,∴BD=6,∠ADB=60°,∵BC=10,CD=8,则BD2+CD2=82+62=100,BC2=102=100,∴BD2+CD2=BC2,∴∠BDC=90°,∴∠ADC=150°;(2)S=S△ABD+S△BDC=AD•AD+BD•DC=×6××6+×8×6=9+24.21.如图,在矩形ABCD中,M为BC上的点,过点D作DE⊥AM于E,DE=DC=5,AE =2EM.(1)求证:BM=AE;(2)求BM的长.【分析】(1)由题意可证△AED≌△ABM,则结论可得.(2)在Rt△ABM中根据勾股定理可求EM的长,即可求AE的长.【解答】证明:(1)∵四边形ABCD是矩形∴AD∥BC,AB=CD,∠B=∠C=90°∴∠DAE=∠AMB∵CD=DE,CD=AB∴AB=DE,且∠ABC=∠AED=90°,∠DAE=∠AMB∴△ADE≌△ABM∴BM=AE(2)在Rt△ABM中,AM2=AB2+BM2.∴9EM2=25+4EM2.∴EM=∴AE=BM=222.阅读理解材料:把分母中的根号化掉叫做分母有理化,例如:①==;②===+1等运算都是分母有理化.根据上述材料,(1)化简:(2)计算:+++…+.【分析】(1)原式分母有理化,计算即可得到结果;(2)原式各自分母有理化化简后,合并即可得到结果.【解答】解:(1)原式==+;(2)原式=﹣1+﹣+…+﹣=﹣1.23.如图,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE,交BC于F.(1)求证:OE=CB;(2)如果OC:OB=1:2,OE=,求菱形ABCD的面积.【分析】(1)通过证明四边形OCEB是矩形来推知OE=CB;(2)利用(1)中的AC⊥BD、OE=CB,结合已知条件,在Rt△BOC中,由勾股定理求得CO=1,OB=2.然后由菱形的对角线互相平分和菱形的面积公式进行解答.【解答】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD.∵CE∥BD,EB∥AC,∴四边形OCEB是平行四边形,∴四边形OCEB是矩形,∴OE=CB;(2)解:∵由(1)知,AC⊥BD,OC:OB=1:2,∴BC=OE=.∴在Rt△BOC中,由勾股定理得BC2=OC2+OB2,∴CO=1,OB=2.∵四边形ABCD是菱形,∴AC=2,BD=4,∴菱形ABCD的面积是:BD•AC=4.24.如图,正方形ABCD中,M为BC上的点,E是AD的延长线的点,且AE=AM,过E 作EF⊥AM垂足为F,EF交DC于点N.(1)求证:AF=BM;(2)若AB=12,AF=5,求DE的长.【分析】(1)由正方形的性质可得∠ABC=90°,AD∥BC,由“AAS”可证△ABM≌△EF A,可得AF=BM;(2)由勾股定理可求AM=13,由全等三角形的性质可得AM=AE=13,即可求DE的长.【解答】证明:(1)∵四边形ABCD是正方形∴∠ABC=90°,AD∥BC∴∠EAF=∠AMB,∵∠AFE=∠ABC=90°,AE=AM,∴△ABM≌△EF A(AAS)∴AF=BM(2)∵在Rt△ABM中,AB=12,AF=BM=5∴AM==13∵△ABM≌△EF A,∴AM=AE=13,∵四边形ABCD是正方形,∴AB=AD,∴DE=AE﹣AD=13﹣12=125.【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)直接写出AM、AD、MC三条线段的数量关系:AM=AD+MC;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.【分析】(1)从平行线和中点这两个条件出发,延长AE、BC交于点N,如图1(1),易证△ADE≌△NCE,从而有AD=CN,只需证明AM=NM即可.(2)作F A⊥AE交CB的延长线于点F,易证AM=FM,只需证明FB=DE即可;要证FB=DE,只需证明它们所在的两个三角形全等即可.(3)在图2(1)中,仿照(1)中的证明思路即可证到AM=AD+MC仍然成立;在图2(2)中,采用反证法,并仿照(2)中的证明思路即可证到AM=DE+BM不成立.【解答】证明:延长AE、BC交于点N,如图1(1),∵四边形ABCD是正方形,∴AD∥BC.∴∠DAE=∠ENC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠ENC=∠MAE.∴MA=MN.在△ADE和△NCE中,∴△ADE≌△NCE(AAS).∴AD=NC.∴MA=MN=NC+MC=AD+MC.(2)AM=DE+BM成立.证明:过点A作AF⊥AE,交CB的延长线于点F,如图1(2)所示.∵四边形ABCD是正方形,∴∠BAD=∠D=∠ABC=90°,AB=AD,AB∥DC.∵AF⊥AE,∴∠F AE=90°.∴∠F AB=90°﹣∠BAE=∠DAE.在△ABF和△ADE中,∴△ABF≌△ADE(ASA).∴BF=DE,∠F=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠F AB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠F AB=∠F AM.∴∠F=∠F AM.∴AM=FM.∴AM=FB+BM=DE+BM.(3)①结论AM=AD+MC仍然成立.证明:延长AE、BC交于点P,如图2(1),∵四边形ABCD是矩形,∴AD∥BC.∴∠DAE=∠EPC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠EPC=∠MAE.∴MA=MP.在△ADE和△PCE中,∴△ADE≌△PCE(AAS).∴AD=PC.∴MA=MP=PC+MC=AD+MC.②结论AM=DE+BM不成立.证明:假设AM=DE+BM成立.过点A作AQ⊥AE,交CB的延长线于点Q,如图2(2)所示.∵四边形ABCD是矩形,∴∠BAD=∠D=∠ABC=90°,AB∥DC.∵AQ⊥AE,∴∠QAE=90°.∴∠QAB=90°﹣∠BAE=∠DAE.∴∠Q=90°﹣∠QAB=90°﹣∠DAE=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠QAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠QAB=∠QAM.∴∠Q=∠QAM.∴AM=QM.∴AM=QB+BM.∵AM=DE+BM,∴QB=DE.在△ABQ和△ADE中,∴△ABQ≌△ADE(AAS).∴AB=AD.与条件“AB≠AD“矛盾,故假设不成立.∴AM=DE+BM不成立.。

贵州省遵义市八年级下学期数学期中考试试卷

贵州省遵义市八年级下学期数学期中考试试卷

贵州省遵义市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列二次根式中属于最简二次根式的是().A .B .C .D .2. (2分) (2017八下·鄂托克旗期末) 式子y= 中x的取值范围是()A . x≥0B . x≥0且x≠1C . 0≤x<1D . x>13. (2分) (2018八上·惠来月考) 以下列各组数为三边的三角形中不是直角三角形的是()A . 9、12、15B . 41、40、9C . 25、7、24D . 6、5、44. (2分) (2017八下·宁德期末) 下列各式中能用完全平方公式进行因式分解的是()A . x2+x+1B . x2+2x﹣1C . x2﹣1D . x2﹣6x+95. (2分)下列命题中正确的有()①相等的角是对顶角;②在同一平面内,若a∥b,b∥c,则a∥c;③同旁内角互补;④互为邻补角的两角的角平分线互相垂直.A . 0个B . 1个C . 2个D . 3个6. (2分)等腰三角形底边长10 cm,腰长为13,则此三角形的面积为()A . 40B . 50C . 60D . 707. (2分)(2019·广州模拟) 下列命题中,错误的是()A . 一组对边平行,另一组对边相等的四边形是平行四边形B . 矩形既是轴对称图形,又是中心对称图形C . 菱形的一条对角线平分一组对角D . 对角线相等且互相垂直平分的四边形是正方形8. (2分)(2012·山东理) 如图,在中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN 等于A .B .C .D .9. (2分) (2018八下·合肥期中) 如图,为了检验教室里的矩形门框是否合格,某班的四个学习小组用三角板和细绳分别测得如下结果,其中不能判定门框是否合格的是()A . AB=CD,AD=BC,AC=BDB . AC=BD,∠B=∠C=90°C . AB=CD,∠B=∠C=90°D . AB=CD,AC=BD10. (2分) (2018九下·盐都模拟) 如图①,在矩形 ABCD 中,动点 E 从点 A 出发,沿AB→BC 方向运动,当点 E 到达点 C 时停止运动.过点 E 作FE⊥AE,交 CD 于 F 点,设点 E 运动路程为 x,FC=y,图②表示 y 与 x 的函数关系的大致图像,则矩形 ABCD 的面积是()A .B . 5C . 6D .二、填空题 (共6题;共13分)11. (1分)(2018·秦淮模拟) 计算的结果是________.12. (1分) (2016七上·宜春期中) 若有理数a,b满足|a+3|+(b﹣2)2=0,则ab=________.13. (5分) (2017八下·扬州期中) 如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加________条件,才能保证四边形EFGH是矩形.14. (2分)(2016·文昌模拟) 如图,在▱ABCD中,AB=6cm,∠BCD的平分线交AD于点E,则DE=________cm.15. (2分) (2017八下·邗江期中) 如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC 至点D,使CD= BD,连接DM、DN、MN.若AB=6,则DN=________.16. (2分)(2019·丹东) 如图,在平面直角坐标系中,OA=1,以OA为一边,在第一象限作菱形OAA1B,并使∠AOB=60°,再以对角线OA1为一边,在如图所示的一侧作相同形状的菱形OA1A2B1 ,再依次作菱形OA2A3B2 , OA3A4B3 ,……,则过点B2018 , B2019 , A2019的圆的圆心坐标为________.三、解答题 (共9题;共61分)17. (5分) (2017八下·南通期末) 计算:(1);(2)18. (10分) (2020八上·沈阳期末) 如图是8×8的正方形网格,请在所给网格中按下列要求操作:(1)在网格中建立平面直角坐标系,使点A的坐标为(﹣2,4),点B的坐标为(﹣4,2);(2)在第二象限内的格点上画一点C,连接AC,BC,使△BC成为以AB为底的等腰三角形,且腰长是无理数.①此时点C的坐标为________,△ABC的周长为________(结果保留根号);②画出△ABC关于y轴对称的△A′B'C′(点A,B,C的对应点分别A',B',C′),并写出A′,B′,C′的坐标.________19. (5分)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.20. (5分)化简:(a﹣1)(a+1)﹣(a﹣1)2 .21. (2分) (2017八下·东莞期中) 已知,如图,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,且∠A=90°,求四边形ABCD的面积.22. (2分)已知:如图,在四边形ABCD中,AB=CD,BC=AD,点E、F在AC上,且AF=CE.求证:四边形BEDF 是平行四边形.23. (15分)(2016·海曙模拟) 定义:有一个内角为90°,且对角线相等的四边形称为准矩形.(1)①如图1,准矩形ABCD中,∠ABC=90°,若AB=2,BC=3,则BD=________;②如图2,直角坐标系中,A(0,3),B(5,0),若整点P使得四边形AOBP是准矩形,则点P的坐标是________;(整点指横坐标、纵坐标都为整数的点)(2)如图3,正方形ABCD中,点E、F分别是边AD、AB上的点,且CF⊥BE,求证:四边形BCEF是准矩形;(3)已知,准矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,当△ADC为等腰三角形时,请直接写出这个准矩形的面积是________.24. (10分)(2018·天津) 在平面直角坐标系中,四边形是矩形,点,点,点 .以点为中心,顺时针旋转矩形,得到矩形,点,,的对应点分别为,, .(1)如图①,当点落在边上时,求点的坐标;(2)如图②,当点落在线段上时,与交于点 .①求证;②求点的坐标.(3)记为矩形对角线的交点,为的面积,求的取值范围(直接写出结果即可).25. (7分)(2017·东胜模拟) 如图1,对称轴为直线x= 的抛物线经过B(2,0)、C(0,4)两点,抛物线与x轴的另一交点为A(1)求抛物线的解析式;(2)若点P为第一象限内抛物线上的一点,设四边形COBP的面积为S,求S的最大值;(3)如图2,若M是线段BC上一动点,在x轴是否存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共13分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共61分)17-1、17-2、18-1、18-2、19-1、20-1、21-1、22-1、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、。

贵州省遵义市2018-2019学年八年级(下)期中考试数学试卷 解析版

贵州省遵义市2018-2019学年八年级(下)期中考试数学试卷  解析版

2018-2019学年八年级(下)期中数学试卷一.选择题(共12小题)1.下列式子是最简二次根式的是()A.B.C.D.2.下列各组三条线段组成的三角形是直角三角形的是()A.2,3,4 B.1,1,C.6,8,11 D.2,2,33.如图,在四边形ABCD中,BC∥AD,添加下列条件,不能判定四边形ABCD是平行四边形的是()A.AB=CD B.AB∥CD C.∠A=∠C D.BC=AD4.下列各式计算错误的是()A.(﹣)(+)=1 B.×=C.5﹣2=3 D.÷=35.如图,▱ABCD中,AB=3,BC=5,AE平分∠BAD交BC于点E,则CE的长为()A.1 B.2 C.3 D.46.如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°7.如图,在Rt△ABC中,∠B=90°,以AC为直径的圆恰好过点B,AB=8,BC=6,则阴影部分的面积是()A.100π﹣24 B.100π﹣48 C.25π﹣24 D.25π﹣488.如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.2.5 B.2C.D.9.用两块完全相同的直角三角形拼下列图形:一定能拼成的图形是()①等腰三角形;②等边三角形;③平行四边形;④菱形;⑤矩形;⑥正方形.A.①②⑤B.①③⑤C.③⑤⑥D.①③④10.如图,菱形的边长为2,∠ABC=45°,则点D的坐标为()A.(2,2)B.(2+,)C.(2,)D.(,)11.如图,已知圆柱底面的周长为6cm,圆柱高为3cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()cm.A.3B.6C.D.612.如图,▱ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,AB=,AC=2,BD =4,则AE的长为()A.B.C.D.二.填空题(共4小题)13.要使有意义,则x的取值范围是.14.若一个三角形的三边长分别为3,4,x,则使此三角形是直角三角形的x的值是.15.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根四尺,问折者高几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远.问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程.16.如图,点E、F是正方形ABCD内两点,且BE=AB,BF=DF,∠EBF=∠CBF,则∠BEF 的度数.三.解答题(共9小题)17.计算:4(﹣)﹣÷+(+1)2.18.已知a=+1,b=﹣1,求下列各式的值:(1)a2﹣2ab+b2(2)a2﹣b219.如图,AD⊥BC,垂足为D.如果CD=1,AD=2,BD=4,(1)求出AC、AB的长度;(2)△ABC是直角三角形吗?证明你的结论.20.请阅读下列材料:问题:现有5个边长为1的正方形,排列形式如图①,请把它们分割后拼接成一个新的正方形,要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.小东同学的做法是:设新正方形的边长为x(x>0),依题意,割补前后图形的面积相等,有x2=5,解得x=,由此可知新正方形的边长等于两个小正方形组成的矩形对角线的长,于是,画出如图②所示的分割线,拼出如图③所示的新正方形.请你参考小东同学的做法,解决如下问题:现有10个边长为1的正方形,排列形式如图④,请把它们分割后拼接成一个新的正方形,要求:在图④中画出分割线,并在图⑤的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.(说明:直接画出图形,不要求写分析过程.)21.先化简,再求值:a+,其中a=1010.如图是小亮和小芳的解答过程.(1)的解法是错误的,错误的原因在于未能正确地运用二次根式的性质:=(a<0);(2)先化简,再求值:x+2,其中x=﹣2019.22.已知,如图,在平行四边形ABCD中,BF平分∠ABC交AD于点F,AE⊥BF于点O,交BC于点E,连接EF.(1)求证:四边形ABEF是菱形;(2)若AE=12,BF=16,CE=5,求四边形ABCD的面积.23.已知,如图,△ABC中,∠A=90°,D是AC上一点,且∠ADB=2∠C,P是BC上任一点,PE⊥BD于E,PF⊥AC于F.(1)求证:CD=BD;(2)写出线段AB,PF和PE之间数量关系,并证明你的结论.24.观察、思考与验证(1)如图1是一个重要公式的几何解释,请你写出这个公式;(2)如图2所示,∠B=∠D=90°,且B,C,D在同一直线上.试说明:∠ACE=90°;(3)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(发表在1876年4月1日的《新英格兰教育日志》上),请你写出验证过程.25.如图,在平行四边形ABCD中,AC,BD相交于点O,AC=6,BD=8,∠AOD=65°,点E 在BO上,AF∥CE交BD于点F.(1)求证:四边形AFCE是平行四边形.(2)当点E在边BO上移动时,平行四边形AFCE能否为矩形?若能,此时BE的长为等于多少(直接写出结果)?若不能,请说明理由.(3)当点E在边BO上移动时,平行四边形AFCE能否为菱形?若能,此BE的长为等于多少(直接写出结果)?若不能,请说明理由.参考答案与试题解析一.选择题(共12小题)1.下列式子是最简二次根式的是()A.B.C.D.【分析】利用最简二次根式定义判断即可.【解答】解:A、原式=2,不符合题意;B、原式=|m|,不符合题意;C、原式=,不符合题意;D、是最简二次根式,符合题意,故选:D.2.下列各组三条线段组成的三角形是直角三角形的是()A.2,3,4 B.1,1,C.6,8,11 D.2,2,3【分析】欲求证是否为直角三角形,利用勾股定理的逆定理即可.这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、22+32≠42,不能构成直角三角形,故选项错误;B、12+12=()2,能构成直角三角形,故选项正确;C、62+82≠112,不能构成直角三角形,故选项错误;D、22+22≠32,不能构成直角三角形,故选项错误.故选:B.3.如图,在四边形ABCD中,BC∥AD,添加下列条件,不能判定四边形ABCD是平行四边形的是()A.AB=CD B.AB∥CD C.∠A=∠C D.BC=AD【分析】依据平行四边形的判定方法,即可得到不能判定四边形ABCD是平行四边形的条件.【解答】解:当BC∥AD,AB=CD时,不能判定四边形ABCD是平行四边形,故此选项符合题意;当AB∥CD,BC∥AD时,依据两组对边分别平行的四边形是平行四边形,能判定四边形ABCD是平行四边形,故B选项不合题意;当BC∥AD,∠A=∠C时,可得AB∥DC,依据两组对边分别平行的四边形是平行四边形,能判定四边形ABCD是平行四边形,故C选项不合题意;当BC∥AD,BC=AD时,依据一组对边平行且相等的四边形是平行四边形,能判定四边形ABCD是平行四边形,故D选项不合题意;故选:A.4.下列各式计算错误的是()A.(﹣)(+)=1 B.×=C.5﹣2=3 D.÷=3【分析】根据平方差公式进行计算;根据二次根式的乘法法则对B进行判断;根据二次根式的加减法对C进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、原式=3﹣2=1,所以A选项的计算正确;A、原式==,所以B选项的计算正确;C、原式=3,所以C选项的计算错误;D、原式==3,所以D选项的计算正确.故选:C.5.如图,▱ABCD中,AB=3,BC=5,AE平分∠BAD交BC于点E,则CE的长为()A.1 B.2 C.3 D.4【分析】由平行四边形的性质得出BC=AD=5,AD∥BC,得出∠DAE=∠BEA,证出∠BEA =∠BAE,得出BE=AB,即可得出CE的长.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC=5,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BE=AB=3,∴CE=BC﹣BE=5﹣3=2,故选:B.6.如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°【分析】首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则四边形ABCD为菱形.所以根据菱形的性质进行判断.【解答】解∵四边形ABCD是用两张等宽的纸条交叉重叠地放在一起而组成的图形,∴AB∥CD,AD∥BC,∴四边形ABCD是平行四边形(对边相互平行的四边形是平行四边形);过点D分别作BC,CD边上的高为AE,AF.则AE=AF(两纸条相同,纸条宽度相同);∵平行四边形ABCD中,S△ABC=S△ACD,即BC×AE=CD×AF,∴BC=CD,即AB=BC.故B正确;∴平行四边形ABCD为菱形(邻边相等的平行四边形是菱形).∴∠ABC=∠ADC,∠BAD=∠BCD(菱形的对角相等),故A正确;AB=CD,AD=BC(平行四边形的对边相等),故C正确;如果四边形ABCD是矩形时,该等式成立.故D不一定正确.故选:D.7.如图,在Rt△ABC中,∠B=90°,以AC为直径的圆恰好过点B,AB=8,BC=6,则阴影部分的面积是()A.100π﹣24 B.100π﹣48 C.25π﹣24 D.25π﹣48【分析】先根据勾股定理求出AC的长,进而可得出以AC为直径的圆的面积,再根据S=S圆﹣S△ABC即可得出结论.阴影【解答】解:∵Rt△ABC中∠B=90°,AB=8,BC=6,∴AC===10,∴AC为直径的圆的半径为5,∴S阴影=S圆﹣S△ABC=25π﹣×6×8=25π﹣24.故选:C.8.如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.2.5 B.2C.D.【分析】本题利用实数与数轴的关系及直角三角形三边的关系(勾股定理)解答即可.【解答】解:由勾股定理可知,∵OB=,∴这个点表示的实数是.故选:D.9.用两块完全相同的直角三角形拼下列图形:一定能拼成的图形是()①等腰三角形;②等边三角形;③平行四边形;④菱形;⑤矩形;⑥正方形.A.①②⑤B.①③⑤C.③⑤⑥D.①③④【分析】此题需要动手操作或画图,用两块完全相同的直角三角形可以拼成平行四边形、矩形、等腰三角形.【解答】解:根据题意,能拼出①等腰三角形、③平行四边形、⑤矩形.故选:B.10.如图,菱形的边长为2,∠ABC=45°,则点D的坐标为()A.(2,2)B.(2+,)C.(2,)D.(,)【分析】直接利用菱形的性质结合锐角三角三角函数关系得出D点坐标即可.【解答】解:过点D作DE⊥x轴于点E,∵菱形的边长为2,∠ABC=45°,∴CO=DC=2,∠DCE=45°,∴DE=DC•sin45°=,∴CE=,∴OE=2+,故点D的坐标为:(2+,).故选:B.11.如图,已知圆柱底面的周长为6cm,圆柱高为3cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()cm.A.3B.6C.D.6【分析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【解答】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为6cm,圆柱高为3cm,∴AB=3cm,BC=BC′=3cm,∴AC2=32+32=18,∴AC=3cm,∴这圈金属丝的周长最小为2AC=6cm.故选:B.12.如图,▱ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,AB=,AC=2,BD =4,则AE的长为()A.B.C.D.【分析】由勾股定理的逆定理可判定△BAO是直角三角形,所以平行四边形ABCD的面积即可求出.【解答】解:∵AC=2,BD=4,四边形ABCD是平行四边形,∴AO=AC=1,BO=BD=2,∵AB=,∴AB2+AO2=BO2,∴∠BAC=90°,∵在Rt△BAC中,BC===S△BAC=×AB×AC=×BC×AE,∴×2=AE,∴AE=,故选:D.二.填空题(共4小题)13.要使有意义,则x的取值范围是x≥.【分析】根据二次根式有意义的条件可得4x﹣5≥0,再解即可.【解答】解:由题意得:4x﹣5≥0,解得:x≥,故答案为:x≥.14.若一个三角形的三边长分别为3,4,x,则使此三角形是直角三角形的x的值是5或.【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边4既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即4是斜边或直角边的两种情况,然后利用勾股定理求解.【解答】解:设第三边为x(1)若4是直角边,则第三边x是斜边,由勾股定理,得32+42=x2,所以x=5;(2)若4是斜边,则第三边x为直角边,由勾股定理,得32+x2=42,所以x=;所以第三边的长为5或.15.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根四尺,问折者高几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远.问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程x2+42=(10﹣x)2.【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x尺,则斜边为(10﹣x)尺,利用勾股定理解题即可.【解答】解:设竹子折断处离地面x尺,则斜边为(10﹣x)尺,根据勾股定理得:x2+42=(10﹣x)2.故答案为x2+42=(10﹣x)2.16.如图,点E、F是正方形ABCD内两点,且BE=AB,BF=DF,∠EBF=∠CBF,则∠BEF 的度数45°.【分析】连接CF,根据正方形的性质可得出AB=BC=CD、∠BCD=90,结合BF=DF、CF =CF即可利用全等三角形的判定定理SSS可证出△BCF≌△DCF,进而可得出∠BCF=45°,由BE=AB利用替换法可得出BE=BC,结合∠EBF=∠CBF、BF=BF利用全等三角形的判定定理SAS可证出△BEF≌△BCF,从而得出∠BEF=∠BCF=45°,此题得解.【解答】解:连接CF,如图所示.∵四边形ABCD为正方形,∴AB=BC=CD,∠BCD=90.在△BCF和△DCF中,,∴△BCF≌△DCF(SSS),∴∠BCF=∠DCF=∠BCD=45°.∵BE=AB,∴BE=BC.在△BEF和△BCF中,,∴△BEF≌△BCF(SAS),∴∠BEF=∠BCF=45°.故答案为:45°.三.解答题(共9小题)17.计算:4(﹣)﹣÷+(+1)2.【分析】先根据二次根式的乘除法则和完全平方公式计算,然后合并即可.【解答】解:原式=4﹣4﹣+3+2+1=2﹣8﹣4+4+2=2﹣6.18.已知a=+1,b=﹣1,求下列各式的值:(1)a2﹣2ab+b2(2)a2﹣b2【分析】(1)根据a、b的值,可以得到a﹣b的值,然后根据完全平方公式即可得到所求式子的值;(2)根据a、b的值,可以得到a﹣b、a+b的值,然后根据平方差公式即可得到所求式子的值.【解答】解:(1)∵a=+1,b=﹣1,∴a﹣b=2,∴a2﹣2ab+b2=(a﹣b)2=22=4;(2)∵a=+1,b=﹣1,∴a﹣b=2,a+b=2,∴a2﹣b2=(a﹣b)(a+b)=2×=4.19.如图,AD⊥BC,垂足为D.如果CD=1,AD=2,BD=4,(1)求出AC、AB的长度;(2)△ABC是直角三角形吗?证明你的结论.【分析】(1)根据勾股定理解答即可;(2)根据勾股定理的逆定理解答即可.【解答】解:(1)∵CD=1,AD=2,BD=4,AD⊥BC,∴AC=;AB=2(2)∵AC=;AB=2,BC=CD+BD=5,∴AC2+AB2=BC2,∴△ABC是直角三角形.20.请阅读下列材料:问题:现有5个边长为1的正方形,排列形式如图①,请把它们分割后拼接成一个新的正方形,要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.小东同学的做法是:设新正方形的边长为x(x>0),依题意,割补前后图形的面积相等,有x2=5,解得x=,由此可知新正方形的边长等于两个小正方形组成的矩形对角线的长,于是,画出如图②所示的分割线,拼出如图③所示的新正方形.请你参考小东同学的做法,解决如下问题:现有10个边长为1的正方形,排列形式如图④,请把它们分割后拼接成一个新的正方形,要求:在图④中画出分割线,并在图⑤的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.(说明:直接画出图形,不要求写分析过程.)【分析】参考小东同学的做法,可得新正方形的边长为,由此可知新正方形的边长等于三个小正方形组成的矩形对角线的长.于是,画出分割线,拼出新正方形即可.【解答】解:所画图形如图所示.说明:图1与图2中所画图形正确各得(2分).分割方法不唯一,正确者相应给分.21.先化简,再求值:a+,其中a=1010.如图是小亮和小芳的解答过程.(1)小亮的解法是错误的,错误的原因在于未能正确地运用二次根式的性质:=﹣a(a<0);(2)先化简,再求值:x+2,其中x=﹣2019.【分析】(1)根据二次根式的性质可得答案;(2)根据二次根式的性质化简=﹣x+2,再进一步化简x+2(﹣x+2),然后再代入x的值即可.【解答】解:(1)小亮的解法是错误的,错误的原因在于未能正确地运用二次根式的性质:=﹣a(a<0),故答案为:小亮;﹣a;(2)x+2,=x+2,=x+2×|x﹣2|,∵x=﹣2019,∴原式=x+2(﹣x+2),=x﹣2x+4,=﹣x+4,=2019+4,=2023.22.已知,如图,在平行四边形ABCD中,BF平分∠ABC交AD于点F,AE⊥BF于点O,交BC于点E,连接EF.(1)求证:四边形ABEF是菱形;(2)若AE=12,BF=16,CE=5,求四边形ABCD的面积.【分析】(1)根据平行四边形的性质,和BF平分∠ABC,可得AB=AF,再证明△ABO≌△EBO得AB=BE,开证明四边形ABEF是菱形;(2)可以作AG⊥BC于点G,根据勾股定理求得平行四边形ABCD的高AG,即可求得其面积.【解答】解:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AFB=∠FBE,∵BF平分∠ABC,∴∠ABF=∠EBF,∴∠AFB=∠ABF,∴AF=AB,∵AE⊥BF,∴∠AOB=∠EOB=90°,OB=OB,∠ABO=∠EBO,∴△ABO≌△EBO(ASA),∴AB=BE,∴AF=BE,又AF∥BE,∴四边形ABEF是平行四边形,∵AB=BE,∴平行四边形ABEF是菱形.(2)如图,作AG⊥BC于点G,∵四边形ABEF是菱形,OA=OE=AE=6,OB=OF=BF=8,∴AB==10,BE=10,设BG=x,则EG=BE﹣BG=10﹣x,∴在Rt△ABG和Rt△AEG中,根据勾股定理,得AG2=AB2﹣BG2=AE2﹣EG2即102﹣x2=122﹣(10﹣x)2解得x=,∴AG==.∴四边形ABCD的面积为:BC•AG=15×=144.23.已知,如图,△ABC中,∠A=90°,D是AC上一点,且∠ADB=2∠C,P是BC上任一点,PE⊥BD于E,PF⊥AC于F.(1)求证:CD=BD;(2)写出线段AB,PF和PE之间数量关系,并证明你的结论.【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ADB=∠C+∠DBC,然后求出∠C=∠DBC,再根据等角对等边可得CD=BD;(2)连接PD,利用△BCD的面积列式求解即可得到PE+PF=AB.【解答】证明:(1)在△BCD中,∠ADB=∠C+∠DBC,∵∠ADB=2∠C,∴∠C=∠DBC,∴CD=BD;(2)连接PD,则S△BCD=BD•PE+CD•PF=CD•AB,∵CD=BD,∴PE+PF=AB.24.观察、思考与验证(1)如图1是一个重要公式的几何解释,请你写出这个公式(a+b)2=a2+2ab+b2;(2)如图2所示,∠B=∠D=90°,且B,C,D在同一直线上.试说明:∠ACE=90°;(3)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(发表在1876年4月1日的《新英格兰教育日志》上),请你写出验证过程.【分析】(1)由大正方形面积的两种计算方法即可得出结果;(2)由全等三角形的性质得出∠BAC=∠DCE,再由角的互余关系得出∠ACB+∠DCE=90°,即可得出结论;(3)先证明四边形ABDE是梯形,由四边形ABDE的面积的两种计算方法即可得出结论.【解答】(1)解:这个公式是完全平方公式:(a+b)2=a2+2ab+b2;理由如下:∵大正方形的边长为a+b,∴大正方形的面积=(a+b)2,又∵大正方形的面积=两个小正方形的面积+两个矩形的面积=a2+b2+ab+ab=a2+2ab+b2,∴(a+b)2=a2+2ab+b2;故答案为:(a+b)2=a2+2ab+b2;(2)证明:∵△ABC≌△CDE,∴∠BAC=∠DCE,∵∠ACB+∠BAC=90°,∴∠ACB+∠DCE=90°,∴∠ACE=90°;(3)证明:∵∠B=∠D=90°,∴∠B+∠D=180°,∴AB∥DE,即四边形ABDE是梯形,∴四边形ABDE的面积=(a+b)(a+b)=ab+c2+ab,整理得:a2+b2=c2.25.如图,在平行四边形ABCD中,AC,BD相交于点O,AC=6,BD=8,∠AOD=65°,点E 在BO上,AF∥CE交BD于点F.(1)求证:四边形AFCE是平行四边形.(2)当点E在边BO上移动时,平行四边形AFCE能否为矩形?若能,此时BE的长为等于多少(直接写出结果)?若不能,请说明理由.(3)当点E在边BO上移动时,平行四边形AFCE能否为菱形?若能,此BE的长为等于多少(直接写出结果)?若不能,请说明理由.【分析】(1)由在平行四边形ABCD中,AF∥CE,易证得△AOF≌△COE,则可得OE=OF,又由OA=OC,即可判定四边形AFCE是平行四边形.(2)当EF=AC时,平行四边形AFCE为矩形,由AC=6,BD=8,即可求得此时BE的长;(3)由∠AOD=65°,可得AC与BD不垂直,即可得平行四边形AFCE不能为菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AF∥CE,∴∠OAF=∠OCE,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴OE=OF,∴四边形AFCE是平行四边形;(2)平行四边形AFCE能为矩形.理由:∵四边形AFCE是平行四边形,∴当EF=AC=6时,平行四边形AFCE为矩形,∵OE=OF,OB=OD,∴BE=CF,∴2BE+EF=BD,即2BE+6=8,解得:BE=1,∴当BE=1时,平行四边形AFCE为矩形;(3)平行四边形AFCE不能为菱形.理由:∵四边形AFCE是平行四边形,且∠AOD=65°,即AC与BD不垂直,∴平行四边形AFCE不能为菱形.。

贵州省遵义市八年级(下)期中数学试卷

贵州省遵义市八年级(下)期中数学试卷

八年级(下)期中数学试卷题号一二三四总分得分一、选择题(本大题共12小题,共36.0分)1.在直角三角形中,∠C=90°,已知两直角边为5cm,12cm,则斜边长为( )A. 17cmB. 13cmC. 15cmD. 18cm2.已知下列三个数是直角三角形的三边的长度,能组成直角三角形的是( )A. 3cm,9cm,7cmB. 2cm,3cm,4cmC. 1cm,D. 4cm,5cm,6cm3.三角形三边为6,8,10,则最短边上的高为( )A. 8B. 6C. 5D. 104.△ABC三边之比为3:4:5,其周长24,则△ABC的面积为( )A. 20B. 24C. 12D. 6.85.一个直角三角形的直角边是24,斜边是25,则斜边上的高为( )A. 7B.C. 168D. 256.一个直角三角形有两边长为3cm,4cm,则这个三角形的另一边为( )A. 5cmB. cmC. 7cmD. 5cm或cm7.边长为6的等边三角形的面积为( )A. 18B. 18C. 6D. 98.△ABC的三边长为a,b,c,已知a:b=1:2,且斜边c=2,则△ABC的周长为( )A. 3B. 5C. 6D. 69.在Rt△ABC中,∠C=90°,以一直角边和斜边为边长的正方形是面积分别为25,324,则第三边为边长的正方形的面积是( )A. 225B. 369C. 289D. 29910.三边长分别是下列长度的三角形中,不是直角三角形的是( )A. 2,3,B. 2,3,C. 3,4,5D. 5,12,1311.如果三条线段m,n,b满足b2=(m+n)(m-n),那么这三条线段组成的三角形是( )A. 等腰三角形B. 以b为斜边的直角三角形C. 等边三角形D. 以m为斜边的直角三角形12.如图,一个圆柱的高为10cm,底面半径为2cm,一只蚂蚁从圆柱高的中点A处到B点的最短爬行距离是( )A. 10cmB. 15cmC. cmD. cm二、填空题(本大题共6小题,共24.0分)13.已知等腰直角三角形的两边分别是2,2,则这个直角三角形的面积是______.14.已知一个直角三角形的两边的长分别是4和5,则第三边长为______.15.已知a,b,c为三角形的三边,若有(a+c)2=b2+2ac,则这个三角形的形状是______三角形.16.若一个直角三角形的一条直角边为12cm,另一条直角边长比斜边短4cm,则斜边长为______.17.已知+3|b-13|+(c2-24c+144)=0,则以a,b,c为边的三角形的形状是______.18.如图:将一个长方形ABCD一边对折,使B点落在AD上交AB于F点,折痕CE交AB于E点,长方形的AB=8,AD=10,则△AEF的面积是______.三、计算题(本大题共1小题,共8.0分)19.如图:在平面直角坐标系中有两点A(-5,0),B(0,4),求A,B两点的距离.四、解答题(本大题共8小题,共82.0分)20.(1)在Rt△ABC中,∠C=90°,已知两边a=5,b=6,求斜边c的长度?(2)在Rt△ABC中,∠C=90°,已知一直角边a=7,斜边c=12,求另一直角边b的长度?21.有理数可以在数轴上表示出来,实数与数轴上的点成一一对应,A点表示的数是,利用同样方法,在数轴上表示出来.22.如图:在等腰直角三角形ABC中,∠C=90°,腰长为15,将直角边AC沿AE折叠,使C点落在AB的F点处,求CE的长度.23.如图:在3×3的网格中,每个网格的边长为1的单位长,求△ABC的各边长.24.在直角三角形ABC中,∠C=90°,∠A=30°,AB=24,CD⊥AB于D,求BC和CD的长.25.如图:在Rt△ABC和Rt△BDE中,∠C=90°,∠D=90°,AC=BD=a,BC=DE=b,AB=BE=c,试利用图形证明勾股定理.26.如图,在四边形ABCD中,AB=8cm,BC=6cm,AD=20cm,CD=10,且AB⊥BC于B,求四边形ABCD的面积.27.边长为4的正方形ABCD中,E,F,G,H分别是边AB,BC,CD,DA上的四等分点,连结EF,FG,GH,HE.(1)求EH的长;(2)求证:∠EHG=90°;(3)正方形EFGH的面积.答案和解析1.【答案】B【解析】解:由勾股定理得,斜边长==13(cm),故选:B.根据勾股定理计算即可.本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.2.【答案】C【解析】解:A、32+72≠92,故不是直角三角形;B、22+32≠42,故不是直角三角形;C、12+()2=()2,故是直角三角形;D、42+52≠62,故不是直角三角形.故选:C.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.【答案】A【解析】解:∵62+82=102,∴这个三角形是直角三角形,这个三角形的最短边是6,则最短边上的高为8,故选:A.根据勾股定理的逆定理可以判断这个三角形是直角三角形,根据三角形的高的概念解答即可.本题考查的是勾股定理的逆定理的应用,掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解题的关键,注意三角形的高的概念的理解要正确.4.【答案】B【解析】解:设三角形的三边是3x,4x,5x,则3x+4x+5x=24,解得x=2∴三角形的三边是6,8,10,∵62+82=102,∴△ABC为直角三角形,∴三角形的面积=×6×8=24.故选:B.设三角形的三边是3x,4x,5x,根据周长公式可求得三边的长,根据勾股定理的逆定理判定三角形的形状,再根据面积公式即可求得其面积.考查了勾股定理的逆定理,能够根据三边的比值和周长计算三角形的三边,再根据勾股定理的逆定理判定三角形的形状,从而计算其面积即可.5.【答案】B【解析】解:设斜边上的高h,由勾股定理得,直角三角形的另一条直角边==7,则×24×7=×25×h,解得,h=,故选:B.根据勾股定理求出直角三角形的另一条直角边的长,根据三角形的面积公式计算即可.本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.6.【答案】D【解析】解:(1)若把两边都看作是直角边,那么据已知和勾股定理,设第三边长为xcm ,则:x2=32+42=25,∴x=5;(2)若把4cm长的边看作斜边,设第三边长为xcm,则:x2+32=42,x2=42-32=7,∴x=.故选:D.根据勾股定理分两种情况解答,一是把两边长都看作直角边,二是把4cm长边看作斜边,根据勾股定理计算即可.本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.7.【答案】D【解析】解:过A作AD⊥BC,∵△ABC为等边三角形,边长为6,∴BD=CD=3,在Rt△ABD中,根据勾股定理得:AD==3,则S△ABC=BC•AD=9,故选:D.求出等边三角形一边上的高,即可确定出面积.此题考查了等边三角形的性质,以及勾股定理,熟练掌握等边三角形的性质是解本题的关键.8.【答案】C【解析】解:设a=x,b=2x,由勾股定理可得:c=,∵斜边c=2,∴x=2,∴a=2,b=4,所以△ABC的周长为6+2,故选:C.根据勾股定理得出c=x,进而得出三角形的三边,进而解答即可.此题考查勾股定理问题,关键是根据勾股定理得出c=x.9.【答案】D【解析】解:根据勾股定理得:以斜边为边长的正方形的面积等于以直角三角形的两条直角边为边长的正方形的面积和,即C=A+B,因为A=25,C=324,所以则以另一直角边为边长的正方形B的面积为324-25=299.故选:D.根据勾股定理可知:以斜边为边长的正方形的面积等于以直角三角形的两条直角边为边长的正方形的面积和.本题考查勾股定理的实际应用,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.10.【答案】B【解析】解:A、22+()2=32,符合勾股定理的逆定理,是直角三角形;B、22+()2≠32,不符合勾股定理的逆定理,不是直角三角形;C、32+42=52,符合勾股定理的逆定理,是直角三角形;D、52+122=132,符合勾股定理的逆定理,是直角三角形.故选:B.根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形.本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.11.【答案】D【解析】解:∵b2=(m+n)(m-n),∴b2=m2-n2,∴b2+n2=m2,∴这三条线段组成的三角形是以m为斜边的直角三角形.故选:D.如果在一个三角形中,有两条边的平方和等于第三边的平方,那么这个三角形是直角三角形.本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.12.【答案】D【解析】解:在Rt△ABC中,AC=5,BC=2π,∴一只蚂蚁从圆柱高的中点A处到B点的最短爬行距离是AB=cm,故选:D.根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径即可.此题主要考查了平面展开图,最短路径问题,做此类题目先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.13.【答案】2【解析】解:由于斜边是最大的一条边,∴该等腰三角形的斜边为2,∴该等腰三角形的两直角边为2,∴该等腰三角形的面积为:2故答案为:2根据等腰三角形的性质即可求出答案.本题考查等腰三角形的性质,解题的关键是熟练运用等腰三角形的性质,本题属于基础题型.14.【答案】3或【解析】解:当一直角边、斜边为4和5时,第三边==3;当两直角边长为4和5时,第三边=;故答案为:3或.根据勾股定理解答即可,要分类讨论:当一直角边、斜边为4和5时;当两直角边长为4和5时.本题主要考查了勾股定理,要熟悉勾股定理的计算同时要注意分类讨论.15.【答案】直角【解析】解:(a+c)2=b2+2ac,可得:a2-b2+c2=0,所以三角形是直角三角形,故答案为:直角利用完全平方公式展开后计算,利用勾股定理的逆定理解答即可.本题主要考查勾股定理的逆定理,解题的关键是利用完全平方公式展开后计算.16.【答案】20cm【解析】解:设斜边长为xcm,则另一条直角边长为(x-4)cm,由勾股定理得,122+(x-4)2=x2,解得,x=20,则斜边长为20cm,故答案为:20cm.设斜边长为xcm,根据勾股定理列方程,解方程即可.本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.17.【答案】直角三角形【解析】解:∵+3|b-13|+(c2-24c+144)=0,+3|b-13|+(c-12)2=0,∴a-5=0,b-13=0,c-12=0,∴a=5,b=13,c=12,∴a2+c2=b2,∴以a、b、c为边的三角形是直角三角形.故答案为:直角三角形.根据算术平方根,绝对值,偶次方求出a、b、c的值,求出a2+c2=b2,根据勾股定理的逆定理判断即可.本题考查了算术平方根,绝对值,偶次方,勾股定理的逆定理的应用,解此题的关键是求出a2+c2=b2.18.【答案】6【解析】解:由翻折的性质可知:BE=EF,BC=CF=10.在Rt△DFC中,FD===6,∴AF=4.设AE=x,则EF=BE=8-x.在Rt△AEF中,由勾股定理得:x2+42=(8-x)2,解得:x=3,∴S△AEF=AE•AF=×3×4=6.故答案为:6.先依据翻折的性质得到BE=EF,CB=FC,然后依据勾股定理求得DF的长,从而得到AF 的长,设AE=x,则EF=BE=8-x,接下来,在Rt△AEF中,由勾股定理可求得x的值,最后,依据三角形的面积公式求解即可.本题主要考查的是翻折变换、矩形的性质,勾股定理的应用,依据勾股定理列出关于x 的方程是解题的关键.19.【答案】解:A,B两点的距离==.【解析】直接利用两点间的距离公式计算.本题考查了两点间的距离公式:设有两点A(x1,y1),B(x2,y2),则这两点间的距离为AB=.20.【答案】解:(1)∵在Rt△ABC中,∠C=90°,a=5,b=6,∴斜边c==;(2)∵在Rt△ABC中,∠C=90°,一直角边a=7,斜边c=12,∴另一直角边b==.【解析】(1)由勾股定理求出斜边c即可;(2)由勾股定理求出直角边b即可.本题考查了勾股定理;熟练掌握勾股定理是解决问题的关键,注意c是斜边.21.【答案】解:如图所示,点B表示的数是.【解析】根据题意可以在数轴上画出表示的点,本题得以解决.本题考查实数与数轴、算术平方根、画图,解答本题的关键是明确题意,画出相应的图形.22.【答案】解:∵在等腰直角三角形ABC中,∠C=90°,腰长为15,∴AB===15,∵将直角边AC沿AE折叠,使C点落在AB的F点处,∴AC=AF=15,CE=CF,∠C=∠AFE=90°,∴BF=AB-AF=15-15,∠EFB=180°-∠AFE=90°,∴∠FEB=180°-∠B-∠BFE=180°-45°-90°=45°,∴∠FEB=∠B,∴EF=BF,∵EF=CE,∴CE=BF=15-15.【解析】先根据勾股定理求出AB的长,再由将直角边AC沿AE折叠,使C点落在AB 的F点处,得到AC=AF=15,CE=CF,∠C=∠AFE=90°,求出BF=AB-AF=15-15,∠EFB=180°-∠AFE=90°,求出∠FEB=180°-∠B-∠BFE=45°,进而得到∠FEB=∠B,根据等角对等边得到EF=BF,即可解答.本题考查了翻折问题,解决本题的关键是由翻折得到相等的边与角.23.【答案】解:AC==,BC==,AB==.【解析】直接利用网格结合勾股定理分析得出答案.此题主要考查了勾股定理,正确借助网格计算是解题关键.24.【答案】解:∵在直角三角形ABC中,∠C=90°,∠A=30°,AB=24,∴∠B=180°-90°-30°=60°,BC=AB=12,∵CD⊥AB,∴∠BDC=90°,∴∠BCD=180°-∠BDC-∠B=180°-90°-60°=30°,∴BD=BC==6,在Rt△BDC中,由勾股定理得:CD===6.【解析】根据含30°角的直角三角形的性质求出BC,再根据含30°角的直角三角形的性质求出BD,根据勾股定理求出CD即可.本题考查了含30°角的直角三角形性质和勾股定理,能熟记含30°角的直角三角形的性质是解此题的关键.25.【答案】证明:∵∠C=90°,∠D=90°,AC=BD=a,BC=DE=b,AB=BE=c,∵Rt△ACB≌Rt△BDE,∴∠ABC=∠BED,∠BAC=∠EBD,∵∠ABC+∠DBE=90°,∴∠ABE=90°,三个Rt△其面积分别为ab,ab和c2.直角梯形的面积为(a+b)(a+b).由图形可知:(a+b)(a+b)=ab+ab+c2,整理得(a+b)2=2ab+c2,a2+b2+2ab=2ab+c2,∴a2+b2=c2.【解析】由图知,梯形的面积等于三个直角三角形的面积之和,用字母表示出来,化简后,即证明勾股定理.考查了勾股定理的证明,此题主要利用了三角形的面积公式:底×高÷2,梯形的面积公式:(上底+下底)×高÷2证明勾股定理.26.【答案】解:连结AC,在△ABC中,AB⊥BC,∴∠B=90°,AB=8cm,BC=6cm,∴AC=10cm,在△ACD中,∵AD=20cm,CD=10,AC=10cm,∴CD2+AC2=AD2,∴△ACD是直角三角形,∴S△ADC=×10×10=50(cm2),∵S△ABC=×AB×BC=24(cm2),∴四边形ABCD的面积=S△ABC+S△ACD=24+50(cm2).【解析】连接AC,根据勾股定理求出AC,根据勾股定理的逆定理求出△CAD是直角三角形,分别求出△ABC和△CAD的面积,即可得出答案.本题考查了勾股定理,勾股定理的逆定理的应用,解此题的关键是能求出△ABC和△CAD 的面积,注意:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形.27.【答案】解:(1)∵ABCD是正方形∴AB=AD=CD=BC=4,∠A=∠D=∠C=∠B=90°∵E,F,G,H分别是边AB,BC,CD,DA上的四等分点∴BE=AH=DG=CF=1,AE=DH=CG=BF=3Rt△AEH中:EH==(2)∵∠A=∠D,AH=DG,AE=DH∴△AHE≌△HDG∴EH=HG,∠AHE=∠HGD∵∠HGD+∠DHG=90°∴∠AHE+∠DHG=90°∴∠EHG=90°(3)∵∠A=∠D=∠C=∠B=90°BE=AH=DG=CF=1,AE=DH=CG=BF=3∴△AHE≌△EFB≌△GFC≌△DHG∴HE=EF=HG=GF∴EFGH为菱形且∠EHG=90°∴EFGH为正方形∴S EFGH=EH2=10【解析】(1)根据题意得:AH=CF=1,AE=CG=3则可求EH的长.(2)由题意可证△AEH≌△DHG,可得∠AHE=∠HGD,则结论可证.(3)先证EFGH为正方形,再由EH=,可求其面积.本题考查了正方形的性质和判定,全等三角形的判定,勾股定理,关键是熟练运用全等三角形的判定.。

贵州省遵义市汇川区汇仁中学八年级(下)期中数学试卷

贵州省遵义市汇川区汇仁中学八年级(下)期中数学试卷
12.C; 二.用心填一填(每小题 4 分,共 24 分)
13.6 ; 14. ﹣ ; 15.80cm2; 16.
; 17.8; 18.3;
三、耐心解一解(本大题满分 90 分)
19.
; 20.
; 21.
; 22.
; 23.
; 24.
; 25.

26.
; 27.菱形;
声明:试题解析著 作权属菁优网 所有,未经书 面同意,不得 复制发布
A.34
B.26
C.8.5
D.6.5
7.(3 分)以下各组线段为边长能组成直角三角形的是( )
A.4、5、6
B.2、 、4
C.11、12、13
D.5,12,13
8.(3 分)下列各式是最简二次根式的是( )
A.
B.
C.
D.
9.(3 分)下列各式计算正确的是( )
A. + =
B.5 ﹣3 =2
C.( + )÷2= + =7
的中点,若 AC+BD=24 厘米,△OAB 的周长是 18 厘米,则 EF=
厘米.
三、耐心解一解(本大题满分 90 分) 19.(10 分)计算: (1) ÷ ﹣ × +
第2页(共5页)
(2)(3 +2 )(3 ﹣2 )﹣( ﹣ )2. 20.(8 分)已知:如图,在 Rt△ABC 中,∠ACB=90°,CD 平分∠ACB,DE⊥BC,DF
3.(3 分)下列计算正确的是( )
A.
B. + =
C. ﹣ = D.
4.(3 分)如图所示,在数轴上点 A 所表示的数为 a,则 a 的值为( )
A.﹣1﹣ 5.(3 分)若

贵州省遵义市汇川区八年级下期中数学试卷及答案

贵州省遵义市汇川区八年级下期中数学试卷及答案

贵州省遵义市汇川区八年级(下)期中数学试卷一.细心选一选.(每小题3分,共36分)1.要使二次根式有意义,字母x的取值必须满足()A.x≥0 B.C.D.2.下列运算错误的是()A. +=B.•=C.÷=D.(﹣)2=23.下列四组线段中,可以构成直角三角形的是()A.1.5,2,2.5 B.4,5,6 C.2,3,4 D.1,,34.若等边△ABC的边长为2cm,那么△ABC的面积为()A. cm2B.2cm2C.3cm2D.4cm25.若x=﹣3,则等于()A.﹣1 B.1 C.3 D.﹣36.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是()A.40cm B.20cm C.20cm D.10cm7.如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB 的面积为10,那么DC的长是()A.4 B.3 C.5 D.4.58.若直角三角形两边分别是3和4,则第三边是()A.5 B.C.5或D.无法确定9.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=12,则HE等于()A.24 B.12 C.6 D.810.若,则x的值等于()A.4 B.±2 C.2 D.±411.若的整数部分为x,小数部分为y,则的值是()A.B.C.1 D.312.给出下列命题:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;②三角形的三边a、b、c满足a2+c2=b2,则∠C=90°;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④△ABC中,若 a:b:c=1:2:,则这个三角形是直角三角形.其中,正确命题的个数为()A.1个B.2个C.3个D.4个二.用心填一填(每小题4分,共24分)13.已知一直角三角形,两边长为3和4,则斜边上的中线长为.14.如图,在△ABC中,∠ACB=90°,CD是AB边上的中线,若CD=3,则AB= .15.若a<<b,且a、b是两个连续的整数,则a b= .16.四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需满足的条件是(横线只需填一个你认为合适的条件即可)17.若x,y为实数,且满足|x﹣3|+=0,则()2018的值是.18.已知a、b、c是△ABC的三边长且c=5,a、b满足关系式+(b﹣3)2=0,则△ABC的形状为三角形.三、耐心解一解(本大题满分90分)19.计算:(1)9+5﹣3;(2)2;(3)()2016(﹣)2015.20.若x,y为实数,且|x+2|+=0,求()2011.21.如图,四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.22.先化简,再求值:÷,其中x=.23.如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8,求AC的长.24.已知如图在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF,求证:∠AED=∠CFB.25.如图,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于点E.求证:四边形AECD是菱形.26.如图,四边形ABCD、DEFG都是正方形,连接AE,CG.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.27.已知Rt△ABD中,边AB=OB=1,∠ABO=90°问题探究:(1)以AB为边,在Rt△ABO的右边作正方形ABC,如图(1),则点O与点D 的距离为.(2)以AB为边,在Rt△ABO的右边作等边三角形ABC,如图(2),求点O 与点C的距离.问题解决:(3)若线段DE=1,线段DE的两个端点D,E分别在射线OA、OB上滑动,以DE为边向外作等边三角形DEF,如图(3),则点O与点F的距离有没有最大值,如果有,求出最大值,如果没有,说明理由.2016-2017学年贵州省遵义市汇川区八年级(下)期中数学试卷参考答案与试题解析一.细心选一选.(每小题3分,共36分)1.要使二次根式有意义,字母x的取值必须满足()A.x≥0 B.C.D.【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件可得2x+3≥0,再解不等式即可.【解答】解:由题意得:2x+3≥0,解得:x≥﹣,故选:D.2.下列运算错误的是()A. += B.•= C.÷= D.(﹣)2=2【考点】78:二次根式的加减法;75:二次根式的乘除法.【分析】根据同类二次根式的合并,二次根式的乘除法则,分别进行各选项的判断即可.【解答】解:A、与不是同类二次根式,不能直接合并,故本选项正确;B、×=,计算正确,故本选项错误;C、÷=,计算正确,故本选项错误;D、(﹣)2=2,计算正确,故本选项错误;故选A.3.下列四组线段中,可以构成直角三角形的是()A.1.5,2,2.5 B.4,5,6 C.2,3,4 D.1,,3【考点】KS:勾股定理的逆定理.【分析】根据勾股定理的逆定理求出两小边的平方和和大边的平方,看看是否相等即可.【解答】解:A、1.52+22=2.52,即三角形是直角三角形,故本选项正确;B、42+52≠62,即三角形不是直角三角形,故本选项错误;C、22+32≠42,即三角形不是直角三角形,故本选项错误;D、12+()2≠32,即三角形不是直角三角形,故本选项错误;故选A.4.若等边△ABC的边长为2cm,那么△ABC的面积为()A. cm2B.2cm2C.3cm2D.4cm2【考点】KQ:勾股定理;KK:等边三角形的性质.【分析】注意三角形的面积的计算方法,首先要作出三角形的高,根据勾股定理就可求出高的长,三角形的面积就很容易求出.【解答】解:作出三角形的高,则高是=,所以三角形的面积是×2×=cm2;故选A.5.若x=﹣3,则等于()A.﹣1 B.1 C.3 D.﹣3【考点】7A:二次根式的化简求值.【分析】x=﹣3时,1+x<0, =﹣1﹣x,再去绝对值.【解答】解:当x=﹣3时,1+x<0,=|1﹣(﹣1﹣x)|=|2+x|=﹣2﹣x=1.故选B.6.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是()A.40cm B.20cm C.20cm D.10cm【考点】KV:平面展开﹣最短路径问题.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:根据两点之间线段最短,把正方体展开,可知由A处向B处爬行,所走的最短路程是20cm.故选C.7.如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB 的面积为10,那么DC的长是()A.4 B.3 C.5 D.4.5【考点】KQ:勾股定理;K3:三角形的面积.【分析】根据Rt△ABC中,∠C=90°,可证BC是△DAB的高,然后利用三角形面积公式求出BC的长,再利用勾股定理即可求出DC的长.【解答】解:∵在Rt△ABC中,∠C=90°,∴BC⊥AC,即BC是△DAB的高,∵△DAB的面积为10,DA=5,∴DA•BC=10,∴BC=4,∴CD===3.故选B.8.若直角三角形两边分别是3和4,则第三边是()A.5 B.C.5或D.无法确定【考点】KQ:勾股定理.【分析】题干中没有明确指出边长为4的边是直角边还是斜边,所以我们需要分类讨论,(1)边长为4的边为直角边;(2)边长为4的边为斜边.【解答】解:(1)边长为4的边为直角边,则第三边即为斜边,则第三边的长为: =5;(2)边长为4的边为斜边,则第三边即为直角边,则第三边的长为: =.故第三边的长为5或cm.故选C.9.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=12,则HE等于()A.24 B.12 C.6 D.8【考点】KX:三角形中位线定理;KP:直角三角形斜边上的中线.【分析】利用三角形中位线定理知DF=AC;然后在直角三角形AHC中根据“直角三角形斜边上的中线等于斜边的一半”即可将所求线段EH与已知线段DF联系起来了.【解答】解:∵D、F分别是AB、BC的中点,∴DF是△ABC的中位线,∴DF=AC(三角形中位线定理);又∵E是线段AC的中点,AH⊥BC,∴EH=AC,∴EH=DF=12,故选B.10.若,则x的值等于()A.4 B.±2 C.2 D.±4【考点】78:二次根式的加减法.【分析】方程左边化成最简二次根式,再解方程.【解答】解:原方程化为=10,合并,得=10=2,即2x=4,x=2.故选C.11.若的整数部分为x,小数部分为y,则的值是()A.B.C.1 D.3【考点】78:二次根式的加减法.【分析】因为的整数部分为1,小数部分为﹣1,所以x=1,y=﹣1,代入计算即可.【解答】解:∵的整数部分为1,小数部分为﹣1,∴x=1,y=﹣1,∴=﹣(﹣1)=1.故选:C.12.给出下列命题:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;②三角形的三边a、b、c满足a2+c2=b2,则∠C=90°;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④△ABC中,若 a:b:c=1:2:,则这个三角形是直角三角形.其中,正确命题的个数为()A.1个B.2个C.3个D.4个【考点】O1:命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5或,故本选项错误;②三角形的三边a、b、c满足a2+c2=b2,则∠B=90°,故本选项错误;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形,故本选项正确;④△ABC中,若 a:b:c=1:2:,则这个三角形是直角三直角三角形,故本选项正确.其中,正确命题的个数为2个;故选B.二.用心填一填(每小题4分,共24分)13.已知一直角三角形,两边长为3和4,则斜边上的中线长为或2 .【考点】KP:直角三角形斜边上的中线;KQ:勾股定理.【分析】分为两种情况,当3和4是直角边时,当4是斜边,3是直角边时,求出斜边,根据直角三角形斜边上中线性质求出即可.【解答】解:当3和4是直角边时,斜边为: =5,斜边上中线为;当4是斜边,3是直角边时,斜边上的中线为2;故答案为:或2.14.如图,在△ABC中,∠ACB=90°,CD是AB边上的中线,若CD=3,则AB= 6 .【考点】KP:直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD.【解答】解:∵∠ACB=90°,CD是AB边上的中线,∴AB=2CD=2×3=6.故答案为:6.15.若a<<b,且a、b是两个连续的整数,则a b= 8 .【考点】2B:估算无理数的大小.【分析】先估算出的范围,即可得出a、b的值,代入求出即可.【解答】解:∵2<<3,∴a=2,b=3,∴a b=8.故答案为:8.16.四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需满足的条件是AD=BC(或AD∥BC)(横线只需填一个你认为合适的条件即可)【考点】L6:平行四边形的判定.【分析】在已知一组对边平行的基础上,要判定是平行四边形,则需要增加另一组对边平行,或平行的这组对边相等,或一组对角相等均可.【解答】解:根据平行四边形的判定方法,知需要增加的条件是AD=BC或AB∥CD或∠A=∠C或∠B=∠D.故答案为AD=BC(或AB∥CD).17.若x,y为实数,且满足|x﹣3|+=0,则()2018的值是 1 .【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】直接利用偶次方的性质以及绝对值的性质得出x,y的值,进而得出答案.【解答】解:∵|x﹣3|+=0,∴x=3,y=﹣3,∴()2018=(﹣1)2018=1.故答案为:1.18.已知a、b、c是△ABC的三边长且c=5,a、b满足关系式+(b﹣3)2=0,则△ABC的形状为直角三角形.【考点】KS:勾股定理的逆定理;1F:非负数的性质:偶次方;23:非负数的性质:算术平方根.【分析】根据二次根式和偶次方的非负性求出a、b的值,根据勾股定理的逆定理判断即可.【解答】解:∵ +(b﹣3)2=0,∴a﹣4=0,b﹣3=0,解得:a=4,b=3,∵c=5,∴a2+b2=c2,∴∠C=90°,即△ABC是直角三角形,故答案为:直角.三、耐心解一解(本大题满分90分)19.计算:(1)9+5﹣3;(2)2;(3)()2016(﹣)2015.【考点】79:二次根式的混合运算.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)利用二次根式的乘除法则运算;(3)先利用积的乘方得到原式=[(+)(﹣)]2015•(+),然后利用平方差公式计算.【解答】解:(1)原式=9+10﹣12=7;(2)原式=2×2×2×=;(3)原式=[(+)(﹣)]2015•(+)=(5﹣6)2015•(+)=﹣(+)=﹣﹣.20.若x,y为实数,且|x+2|+=0,求()2011.【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x+2=0,y﹣2=0,解得,x=﹣2,y=2,所以,()2011=(﹣1)2011=﹣1.21.如图,四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.【考点】LN:中点四边形.【分析】连接BD,再利用三角形中位线定理可得FG∥BD,FG=BD,EH∥BD,EH= BD.进而得到FG∥EH,且FG=EH,可根据一组对边平行且相等的四边形是平行四边形证出结论.【解答】证明:如图,连接BD.∵F,G分别是BC,CD的中点,所以FG∥BD,FG=BD.∵E,H分别是AB,DA的中点.∴EH∥BD,EH=BD.∴FG∥EH,且FG=EH.∴四边形EFGH是平行四边形.22.先化简,再求值:÷,其中x=.【考点】6D:分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式÷=•=,当x=时,原式==.23.如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8,求AC的长.【考点】KQ:勾股定理;KO:含30度角的直角三角形.【分析】在RT△ABC中,利用直角三角形的性质,结合已知条件易求∠A=30°,进而再利用30°的角所对的直角边等于斜边的一半,易求BC,再利用勾股定理可求AC.【解答】解:如右图所示,在RT△ABC中,∠C=90°,∠B=60°,∴∠A=30°,又∵AB=8,∴BC=4,∴AC==4.24.已知如图在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF,求证:∠AED=∠CFB.【考点】L5:平行四边形的性质.【分析】由四边形ABCD是平行四边形,得到AD=BC.AD∥BC,根据平行线的性质得到∠DAC=∠BCF,推出△ADE≌△BCF,根据全等三角形的性质即可得到结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC.AD∥BC,∴∠DAC=∠BCF,在△ADE与△BCF中,,∴△ADE≌△BCF,∴∠AED=∠CFB.25.如图,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于点E.求证:四边形AECD是菱形.【考点】L9:菱形的判定;LH:梯形.【分析】首先证明四边形AECD是平行四边形,再由AB∥CD,得∠EAC=∠DCA,AC平分∠BAD,得∠DAC=∠CAE,从而得到∠ACD=∠DAC,即AD=DC,有一组邻边相等的平行四边形是菱形.【解答】证明:∵AB∥CD,CE∥AD,∴四边形AECD是平行四边形.∵AC平分∠BAD,∴∠BAC=∠DAC,又∵AB∥CD,∴∠ACD=∠BAC=∠DAC,∴AD=DC,∴四边形AECD是菱形.26.如图,四边形ABCD、DEFG都是正方形,连接AE,CG.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.【考点】KD:全等三角形的判定与性质;LE:正方形的性质.【分析】可以把结论涉及的线段放到△ADE和△CDG中,考虑证明全等的条件,又有两个正方形,∴AD=CD,DE=DG,它们的夹角都是∠ADG加上直角,故夹角相等,可以证明全等;再利用互余关系可以证明AE⊥CG.【解答】(1)证明:如图,∵AD=CD,DE=DG,∠ADC=∠GDE=90°,又∵∠CDG=90°+∠ADG=∠ADE,∴△ADE≌△CDG(SAS).∴AE=CG.(2)猜想:AE⊥CG.证明:如图,设AE与CG交点为M,AD与CG交点为N.∵△ADE≌△CDG,∴∠DAE=∠DCG.又∵∠ANM=∠CND,∴△AMN∽△CDN.∴∠AMN=∠ADC=90°.∴AE⊥CG.27.已知Rt△ABD中,边AB=OB=1,∠ABO=90°问题探究:(1)以AB为边,在Rt△ABO的右边作正方形ABC,如图(1),则点O与点D 的距离为.(2)以AB为边,在Rt△ABO的右边作等边三角形ABC,如图(2),求点O 与点C的距离.问题解决:(3)若线段DE=1,线段DE的两个端点D,E分别在射线OA、OB上滑动,以DE为边向外作等边三角形DEF,如图(3),则点O与点F的距离有没有最大值,如果有,求出最大值,如果没有,说明理由.【考点】LO:四边形综合题.【分析】(1)如图1中,连接OD,在Rt△ODC中,根据OD=计算即可.(2)如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.在Rt△OCE中,根据OC=计算即可.(3)如图3中,当OF⊥DE时,OF的值最大,设OF交DE于H,在OH上取一点M,使得OM=DM,连接DM.分别求出MH、OM、FH即可解决问题.【解答】解:(1)如图1中,连接OD,∵四边形ABCD是正方形,∴AB=BC=CD=AD=1,∠C=90°在Rt△ODC中,∵∠C=90°,OC=2,CD=1,∴OD===.故答案为.(2)如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.∵∠FBE=∠E=∠CFB=90°,∴四边形BECF是矩形,∴BF=CF=,CF=BE=,在Rt△OCE中,OC===.(3)如图3中,当OF⊥DE时,OF的值最大,设OF交DE于H,在OH上取一点M,使得OM=DM,连接DM.∵FD=FE=DE=1,OF⊥DE,∴DH=HE,OD=OE,∠DOH=∠DOE=22.5°,∵OM=DM,∴∠MOD=∠MDO=22.5°,∴∠DMH=∠MDH=45°,∴DH=HM=,∴DM=OM=,∵FH==,∴OF=OM+MH+FH=++=.∴OF的最大值为.。

贵州省遵义市汇川区2018-2019学年八年级下期中数学测试卷(附详细答案)

贵州省遵义市汇川区2018-2019学年八年级下期中数学测试卷(附详细答案)

2018-2019学年贵州省遵义市汇川区八年级(下)期中数学测试卷一.细心选一选.(每小题3分,共36分)1.要使二次根式有意义,字母x的取值必须满足()A.x≥0 B.C.D.2.下列运算错误的是()A. +=B.•= C.÷=D.(﹣)2=23.下列四组线段中,可以构成直角三角形的是()A.1.5,2,2.5 B.4,5,6 C.2,3,4 D.1,,34.若等边△ABC的边长为2cm,那么△ABC的面积为()A.cm2 B.2cm2 C.3cm2 D.4cm25.若x=﹣3,则等于()A.﹣1 B.1 C.3 D.﹣36.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是()A.40cm B.20cm C.20cm D.10cm7.如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是()A.4 B.3 C.5 D.4.58.若直角三角形两边分别是3和4,则第三边是()A.5 B.C.5或D.无法确定9.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=12,则HE等于()A.24 B.12 C.6 D.810.若,则x的值等于()A.4 B.±2 C.2 D.±411.若的整数部分为x,小数部分为y,则的值是()A.B.C.1 D.312.给出下列命题:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;②三角形的三边a、b、c满足a2+c2=b2,则∠C=90°;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④△ABC中,若a:b:c=1:2:,则这个三角形是直角三角形.其中,正确命题的个数为()A.1个B.2个C.3个D.4个二.用心填一填(每小题4分,共24分)13.已知一直角三角形,两边长为3和4,则斜边上的中线长为.14.如图,在△ABC中,∠ACB=90°,CD是AB边上的中线,若CD=3,则AB=.15.若a<<b,且a、b是两个连续的整数,则a b=.16.四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需满足的条件是(横线只需填一个你认为合适的条件即可)17.若x,y为实数,且满足|x﹣3|+=0,则()2018的值是.18.已知a、b、c是△ABC的三边长且c=5,a、b满足关系式+(b﹣3)2=0,则△ABC 的形状为三角形.三、耐心解一解(本大题满分90分)19.计算:(1)9+5﹣3;(2)2;(3)()2016(﹣)2015.20.若x,y为实数,且|x+2|+=0,求()2011.21.如图,四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.22.先化简,再求值:÷,其中x=.23.如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8,求AC的长.24.已知如图在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF,求证:∠AED=∠CFB.25.如图,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于点E.求证:四边形AECD是菱形.26.如图,四边形ABCD、DEFG都是正方形,连接AE,CG.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.27.已知Rt△ABD中,边AB=OB=1,∠ABO=90°问题探究:(1)以AB为边,在Rt△ABO的右边作正方形ABC,如图(1),则点O与点D的距离为.(2)以AB为边,在Rt△ABO的右边作等边三角形ABC,如图(2),求点O与点C的距离.问题解决:(3)若线段DE=1,线段DE的两个端点D,E分别在射线OA、OB上滑动,以DE为边向外作等边三角形DEF,如图(3),则点O与点F的距离有没有最大值,如果有,求出最大值,如果没有,说明理由.2016-2017学年贵州省遵义市汇川区八年级(下)期中数学试卷参考答案与试题解析一.细心选一选.(每小题3分,共36分)1.要使二次根式有意义,字母x的取值必须满足()A.x≥0 B.C.D.【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件可得2x+3≥0,再解不等式即可.【解答】解:由题意得:2x+3≥0,解得:x≥﹣,故选:D.2.下列运算错误的是()A. +=B.•= C.÷=D.(﹣)2=2【考点】78:二次根式的加减法;75:二次根式的乘除法.【分析】根据同类二次根式的合并,二次根式的乘除法则,分别进行各选项的判断即可.【解答】解:A、与不是同类二次根式,不能直接合并,故本选项正确;B、×=,计算正确,故本选项错误;C、÷=,计算正确,故本选项错误;D、(﹣)2=2,计算正确,故本选项错误;故选A.3.下列四组线段中,可以构成直角三角形的是()A.1.5,2,2.5 B.4,5,6 C.2,3,4 D.1,,3【考点】KS:勾股定理的逆定理.【分析】根据勾股定理的逆定理求出两小边的平方和和大边的平方,看看是否相等即可.【解答】解:A、1.52+22=2.52,即三角形是直角三角形,故本选项正确;B、42+52≠62,即三角形不是直角三角形,故本选项错误;C、22+32≠42,即三角形不是直角三角形,故本选项错误;D、12+()2≠32,即三角形不是直角三角形,故本选项错误;故选A.4.若等边△ABC的边长为2cm,那么△ABC的面积为()A.cm2 B.2cm2 C.3cm2 D.4cm2【考点】KQ:勾股定理;KK:等边三角形的性质.【分析】注意三角形的面积的计算方法,首先要作出三角形的高,根据勾股定理就可求出高的长,三角形的面积就很容易求出.【解答】解:作出三角形的高,则高是=,所以三角形的面积是×2×=cm2;故选A.5.若x=﹣3,则等于()A.﹣1 B.1 C.3 D.﹣3【考点】7A:二次根式的化简求值.【分析】x=﹣3时,1+x<0,=﹣1﹣x,再去绝对值.【解答】解:当x=﹣3时,1+x<0,=|1﹣(﹣1﹣x)|=|2+x|=﹣2﹣x=1.故选B.6.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是()A.40cm B.20cm C.20cm D.10cm【考点】KV:平面展开﹣最短路径问题.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:根据两点之间线段最短,把正方体展开,可知由A处向B处爬行,所走的最短路程是20cm.故选C.7.如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是()A.4 B.3 C.5 D.4.5【考点】KQ:勾股定理;K3:三角形的面积.【分析】根据Rt△ABC中,∠C=90°,可证BC是△DAB的高,然后利用三角形面积公式求出BC的长,再利用勾股定理即可求出DC的长.【解答】解:∵在Rt△ABC中,∠C=90°,∴BC⊥AC,即BC是△DAB的高,∵△DAB的面积为10,DA=5,∴DA•B C=10,∴BC=4,∴CD===3.故选B.8.若直角三角形两边分别是3和4,则第三边是()A.5 B.C.5或D.无法确定【考点】KQ:勾股定理.【分析】题干中没有明确指出边长为4的边是直角边还是斜边,所以我们需要分类讨论,(1)边长为4的边为直角边;(2)边长为4的边为斜边.【解答】解:(1)边长为4的边为直角边,则第三边即为斜边,则第三边的长为:=5;(2)边长为4的边为斜边,则第三边即为直角边,则第三边的长为:=.故第三边的长为5或cm.故选C.9.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=12,则HE等于()A.24 B.12 C.6 D.8【考点】KX:三角形中位线定理;KP:直角三角形斜边上的中线.【分析】利用三角形中位线定理知DF=AC;然后在直角三角形AHC中根据“直角三角形斜边上的中线等于斜边的一半”即可将所求线段EH与已知线段DF联系起来了.【解答】解:∵D、F分别是AB、BC的中点,∴DF是△ABC的中位线,∴DF=AC(三角形中位线定理);又∵E是线段AC的中点,AH⊥BC,∴EH=AC,∴EH=DF=12,故选B.10.若,则x的值等于()A.4 B.±2 C.2 D.±4【考点】78:二次根式的加减法.【分析】方程左边化成最简二次根式,再解方程.【解答】解:原方程化为=10,合并,得=10=2,即2x=4,x=2.故选C.11.若的整数部分为x,小数部分为y,则的值是()A.B.C.1 D.3【考点】78:二次根式的加减法.【分析】因为的整数部分为1,小数部分为﹣1,所以x=1,y=﹣1,代入计算即可.【解答】解:∵的整数部分为1,小数部分为﹣1,∴x=1,y=﹣1,∴=﹣(﹣1)=1.故选:C.12.给出下列命题:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;②三角形的三边a、b、c满足a2+c2=b2,则∠C=90°;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④△ABC中,若a:b:c=1:2:,则这个三角形是直角三角形.其中,正确命题的个数为()A.1个B.2个C.3个D.4个【考点】O1:命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5或,故本选项错误;②三角形的三边a、b、c满足a2+c2=b2,则∠B=90°,故本选项错误;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形,故本选项正确;④△ABC中,若a:b:c=1:2:,则这个三角形是直角三直角三角形,故本选项正确.其中,正确命题的个数为2个;故选B.二.用心填一填(每小题4分,共24分)13.已知一直角三角形,两边长为3和4,则斜边上的中线长为或2.【考点】KP:直角三角形斜边上的中线;KQ:勾股定理.【分析】分为两种情况,当3和4是直角边时,当4是斜边,3是直角边时,求出斜边,根据直角三角形斜边上中线性质求出即可.【解答】解:当3和4是直角边时,斜边为:=5,斜边上中线为;当4是斜边,3是直角边时,斜边上的中线为2;故答案为:或2.14.如图,在△ABC中,∠ACB=90°,CD是AB边上的中线,若CD=3,则AB=6.【考点】KP:直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD.【解答】解:∵∠ACB=90°,CD是AB边上的中线,∴AB=2CD=2×3=6.故答案为:6.15.若a<<b,且a、b是两个连续的整数,则a b=8.【考点】2B:估算无理数的大小.【分析】先估算出的范围,即可得出a、b的值,代入求出即可.【解答】解:∵2<<3,∴a=2,b=3,∴a b=8.故答案为:8.16.四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需满足的条件是AD=BC(或AD∥BC)(横线只需填一个你认为合适的条件即可)【考点】L6:平行四边形的判定.【分析】在已知一组对边平行的基础上,要判定是平行四边形,则需要增加另一组对边平行,或平行的这组对边相等,或一组对角相等均可.【解答】解:根据平行四边形的判定方法,知需要增加的条件是AD=BC或AB∥CD或∠A=∠C或∠B=∠D.故答案为AD=BC(或AB∥CD).17.若x,y为实数,且满足|x﹣3|+=0,则()2018的值是1.【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】直接利用偶次方的性质以及绝对值的性质得出x,y的值,进而得出答案.【解答】解:∵|x﹣3|+=0,∴x=3,y=﹣3,∴()2018=(﹣1)2018=1.故答案为:1.18.已知a、b、c是△ABC的三边长且c=5,a、b满足关系式+(b﹣3)2=0,则△ABC 的形状为直角三角形.【考点】KS:勾股定理的逆定理;1F:非负数的性质:偶次方;23:非负数的性质:算术平方根.【分析】根据二次根式和偶次方的非负性求出a、b的值,根据勾股定理的逆定理判断即可.【解答】解:∵ +(b﹣3)2=0,∴a﹣4=0,b﹣3=0,解得:a=4,b=3,∵c=5,∴a2+b2=c2,∴∠C=90°,即△ABC是直角三角形,故答案为:直角.三、耐心解一解(本大题满分90分)19.计算:(1)9+5﹣3;(2)2;(3)()2016(﹣)2015.【考点】79:二次根式的混合运算.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)利用二次根式的乘除法则运算;(3)先利用积的乘方得到原式=[(+)(﹣)]2015•(+),然后利用平方差公式计算.【解答】解:(1)原式=9+10﹣12=7;(2)原式=2×2×2×=;(3)原式=[(+)(﹣)]2015•(+)=(5﹣6)2015•(+)=﹣(+)=﹣﹣.20.若x,y为实数,且|x+2|+=0,求()2011.【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x+2=0,y﹣2=0,解得,x=﹣2,y=2,所以,()2011=(﹣1)2011=﹣1.21.如图,四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.【考点】LN:中点四边形.【分析】连接BD,再利用三角形中位线定理可得FG∥BD,FG=BD,EH∥BD,EH=BD.进而得到FG∥EH,且FG=EH,可根据一组对边平行且相等的四边形是平行四边形证出结论.【解答】证明:如图,连接BD.∵F,G分别是BC,CD的中点,所以FG∥BD,FG=BD.∵E,H分别是AB,DA的中点.∴EH∥BD,EH=BD.∴FG∥EH,且FG=EH.∴四边形EFGH是平行四边形.22.先化简,再求值:÷,其中x=.【考点】6D:分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式÷=•=,当x=时,原式==.23.如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8,求AC的长.【考点】KQ:勾股定理;KO:含30度角的直角三角形.【分析】在RT△ABC中,利用直角三角形的性质,结合已知条件易求∠A=30°,进而再利用30°的角所对的直角边等于斜边的一半,易求BC,再利用勾股定理可求AC.【解答】解:如右图所示,在RT△ABC中,∠C=90°,∠B=60°,∴∠A=30°,又∵AB=8,∴BC=4,∴AC==4.24.已知如图在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF,求证:∠AED=∠CFB.【考点】L5:平行四边形的性质.【分析】由四边形ABCD是平行四边形,得到AD=BC.AD∥BC,根据平行线的性质得到∠DAC=∠BCF,推出△ADE≌△BCF,根据全等三角形的性质即可得到结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC.AD∥BC,∴∠DAC=∠BCF,在△ADE与△BCF中,,∴△ADE≌△BCF,∴∠AED=∠CFB.25.如图,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于点E.求证:四边形AECD是菱形.【考点】L9:菱形的判定;LH:梯形.【分析】首先证明四边形AECD是平行四边形,再由AB∥CD,得∠EAC=∠DCA,AC平分∠BAD,得∠DAC=∠CAE,从而得到∠ACD=∠DAC,即AD=DC,有一组邻边相等的平行四边形是菱形.【解答】证明:∵AB∥CD,CE∥AD,∴四边形AECD是平行四边形.∵AC平分∠BAD,∴∠BAC=∠DAC,又∵AB∥CD,∴∠ACD=∠BAC=∠DAC,∴AD=DC,∴四边形AECD是菱形.26.如图,四边形ABCD、DEFG都是正方形,连接AE,CG.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.【考点】KD:全等三角形的判定与性质;LE:正方形的性质.【分析】可以把结论涉及的线段放到△ADE和△CDG中,考虑证明全等的条件,又有两个正方形,∴AD=CD,DE=DG,它们的夹角都是∠ADG加上直角,故夹角相等,可以证明全等;再利用互余关系可以证明AE⊥CG.【解答】(1)证明:如图,∵AD=CD,DE=DG,∠ADC=∠GDE=90°,又∵∠CDG=90°+∠ADG=∠ADE,∴△ADE≌△CDG(SAS).∴AE=CG.(2)猜想:AE⊥CG.证明:如图,设AE与CG交点为M,AD与CG交点为N.∵△ADE≌△CDG,∴∠DAE=∠DCG.又∵∠ANM=∠CND,∴△AMN∽△CDN.∴∠AMN=∠ADC=90°.∴AE⊥CG.27.已知Rt△ABD中,边AB=OB=1,∠ABO=90°问题探究:(1)以AB为边,在Rt△ABO的右边作正方形ABC,如图(1),则点O与点D的距离为.(2)以AB为边,在Rt△ABO的右边作等边三角形ABC,如图(2),求点O与点C的距离.问题解决:(3)若线段DE=1,线段DE的两个端点D,E分别在射线OA、OB上滑动,以DE为边向外作等边三角形DEF,如图(3),则点O与点F的距离有没有最大值,如果有,求出最大值,如果没有,说明理由.【考点】LO:四边形综合题.【分析】(1)如图1中,连接OD,在Rt△ODC中,根据OD=计算即可.(2)如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.在Rt△OCE中,根据OC=计算即可.(3)如图3中,当OF⊥DE时,OF的值最大,设OF交DE于H,在OH上取一点M,使得OM=DM,连接DM.分别求出MH、OM、FH即可解决问题.【解答】解:(1)如图1中,连接OD,∵四边形ABCD是正方形,∴AB=BC=CD=AD=1,∠C=90°在Rt△ODC中,∵∠C=90°,OC=2,CD=1,∴OD===.故答案为.(2)如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.∵∠FBE=∠E=∠CFB=90°,∴四边形BECF是矩形,∴BF=CF=,CF=BE=,在Rt△OCE中,OC===.(3)如图3中,当OF⊥DE时,OF的值最大,设OF交DE于H,在OH上取一点M,使得OM=DM,连接DM.∵FD=FE=DE=1,OF⊥DE,∴DH=HE,OD=OE,∠DOH=∠DOE=22.5°,∵OM=DM,∴∠MOD=∠MDO=22.5°,∴∠DMH=∠MDH=45°,∴DH=HM=,∴DM=OM=,∵FH==,∴OF=OM+MH+FH=++=.∴OF的最大值为.。

-遵义市汇川区八年级下期中数学试卷含答案解析.doc

-遵义市汇川区八年级下期中数学试卷含答案解析.doc

2016-2017学年贵州省遵义市汇川区八年级(下)期中数学试卷一.细心选一选.(每小题3分,共36分)1.要使二次根式有意义,字母x的取值必须满足()A.x≥0 B.C.D.2.下列运算错误的是()A. +=B.•= C.÷=D.(﹣)2=23.下列四组线段中,可以构成直角三角形的是()A.1.5,2,2.5 B.4,5,6 C.2,3,4 D.1,,34.若等边△ABC的边长为2cm,那么△ABC的面积为()A.cm2 B.2cm2 C.3cm2 D.4cm25.若x=﹣3,则等于()A.﹣1 B.1 C.3 D.﹣36.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是()A.40cm B.20cm C.20cm D.10cm7.如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB 的面积为10,那么DC的长是()A.4 B.3 C.5 D.4.58.若直角三角形两边分别是3和4,则第三边是()A.5 B.C.5或D.无法确定9.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=12,则HE等于()A.24 B.12 C.6 D.810.若,则x的值等于()A.4 B.±2 C.2 D.±411.若的整数部分为x,小数部分为y,则的值是()A.B.C.1 D.312.给出下列命题:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;②三角形的三边a、b、c满足a2+c2=b2,则∠C=90°;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④△ABC中,若a:b:c=1:2:,则这个三角形是直角三角形.其中,正确命题的个数为()A.1个B.2个C.3个D.4个二.用心填一填(每小题4分,共24分)13.已知一直角三角形,两边长为3和4,则斜边上的中线长为.14.如图,在△ABC中,∠ACB=90°,CD是AB边上的中线,若CD=3,则AB=.15.若a<<b,且a、b是两个连续的整数,则a b=.16.四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需满足的条件是(横线只需填一个你认为合适的条件即可)17.若x,y为实数,且满足|x﹣3|+=0,则()2018的值是.18.已知a、b、c是△ABC的三边长且c=5,a、b满足关系式+(b﹣3)2=0,则△ABC的形状为三角形.三、耐心解一解(本大题满分90分)19.计算:(1)9+5﹣3;(2)2;(3)()2016(﹣)2015.20.若x,y为实数,且|x+2|+=0,求()2011.21.如图,四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.22.先化简,再求值:÷,其中x=.23.如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8,求AC的长.24.已知如图在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF,求证:∠AED=∠CFB.25.如图,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于点E.求证:四边形AECD是菱形.26.如图,四边形ABCD、DEFG都是正方形,连接AE,CG.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.27.已知Rt△ABD中,边AB=OB=1,∠ABO=90°问题探究:(1)以AB为边,在Rt△ABO的右边作正方形ABC,如图(1),则点O与点D的距离为.(2)以AB为边,在Rt△ABO的右边作等边三角形ABC,如图(2),求点O 与点C的距离.问题解决:(3)若线段DE=1,线段DE的两个端点D,E分别在射线OA、OB上滑动,以DE为边向外作等边三角形DEF,如图(3),则点O与点F的距离有没有最大值,如果有,求出最大值,如果没有,说明理由.2016-2017学年贵州省遵义市汇川区八年级(下)期中数学试卷参考答案与试题解析一.细心选一选.(每小题3分,共36分)1.要使二次根式有意义,字母x的取值必须满足()A.x≥0 B.C.D.【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件可得2x+3≥0,再解不等式即可.【解答】解:由题意得:2x+3≥0,解得:x≥﹣,故选:D.2.下列运算错误的是()A. +=B.•= C.÷=D.(﹣)2=2【考点】78:二次根式的加减法;75:二次根式的乘除法.【分析】根据同类二次根式的合并,二次根式的乘除法则,分别进行各选项的判断即可.【解答】解:A、与不是同类二次根式,不能直接合并,故本选项正确;B、×=,计算正确,故本选项错误;C、÷=,计算正确,故本选项错误;D、(﹣)2=2,计算正确,故本选项错误;故选A.3.下列四组线段中,可以构成直角三角形的是()A.1.5,2,2.5 B.4,5,6 C.2,3,4 D.1,,3【考点】KS:勾股定理的逆定理.【分析】根据勾股定理的逆定理求出两小边的平方和和大边的平方,看看是否相等即可.【解答】解:A、1.52+22=2.52,即三角形是直角三角形,故本选项正确;B、42+52≠62,即三角形不是直角三角形,故本选项错误;C、22+32≠42,即三角形不是直角三角形,故本选项错误;D、12+()2≠32,即三角形不是直角三角形,故本选项错误;故选A.4.若等边△ABC的边长为2cm,那么△ABC的面积为()A.cm2 B.2cm2 C.3cm2 D.4cm2【考点】KQ:勾股定理;KK:等边三角形的性质.【分析】注意三角形的面积的计算方法,首先要作出三角形的高,根据勾股定理就可求出高的长,三角形的面积就很容易求出.【解答】解:作出三角形的高,则高是=,所以三角形的面积是×2×=cm2;故选A.5.若x=﹣3,则等于()A.﹣1 B.1 C.3 D.﹣3【考点】7A:二次根式的化简求值.【分析】x=﹣3时,1+x<0,=﹣1﹣x,再去绝对值.【解答】解:当x=﹣3时,1+x<0,=|1﹣(﹣1﹣x)|=|2+x|=﹣2﹣x=1.故选B.6.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是()A.40cm B.20cm C.20cm D.10cm【考点】KV:平面展开﹣最短路径问题.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:根据两点之间线段最短,把正方体展开,可知由A处向B处爬行,所走的最短路程是20cm.故选C.7.如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB 的面积为10,那么DC的长是()A.4 B.3 C.5 D.4.5【考点】KQ:勾股定理;K3:三角形的面积.【分析】根据Rt△ABC中,∠C=90°,可证BC是△DAB的高,然后利用三角形面积公式求出BC的长,再利用勾股定理即可求出DC的长.【解答】解:∵在Rt△ABC中,∠C=90°,∴BC⊥AC,即BC是△DAB的高,∵△DAB的面积为10,DA=5,∴DA•BC=10,∴BC=4,∴CD===3.故选B.8.若直角三角形两边分别是3和4,则第三边是()A.5 B.C.5或D.无法确定【考点】KQ:勾股定理.【分析】题干中没有明确指出边长为4的边是直角边还是斜边,所以我们需要分类讨论,(1)边长为4的边为直角边;(2)边长为4的边为斜边.【解答】解:(1)边长为4的边为直角边,则第三边即为斜边,则第三边的长为:=5;(2)边长为4的边为斜边,则第三边即为直角边,则第三边的长为:=.故第三边的长为5或cm.故选C.9.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=12,则HE等于()A.24 B.12 C.6 D.8【考点】KX:三角形中位线定理;KP:直角三角形斜边上的中线.【分析】利用三角形中位线定理知DF=AC;然后在直角三角形AHC中根据“直角三角形斜边上的中线等于斜边的一半”即可将所求线段EH与已知线段DF联系起来了.【解答】解:∵D、F分别是AB、BC的中点,∴DF是△ABC的中位线,∴DF=AC(三角形中位线定理);又∵E是线段AC的中点,AH⊥BC,∴EH=AC,∴EH=DF=12,故选B.10.若,则x的值等于()A.4 B.±2 C.2 D.±4【考点】78:二次根式的加减法.【分析】方程左边化成最简二次根式,再解方程.【解答】解:原方程化为=10,合并,得=10=2,即2x=4,x=2.故选C.11.若的整数部分为x,小数部分为y,则的值是()A.B.C.1 D.3【考点】78:二次根式的加减法.【分析】因为的整数部分为1,小数部分为﹣1,所以x=1,y=﹣1,代入计算即可.【解答】解:∵的整数部分为1,小数部分为﹣1,∴x=1,y=﹣1,∴=﹣(﹣1)=1.故选:C.12.给出下列命题:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;②三角形的三边a、b、c满足a2+c2=b2,则∠C=90°;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④△ABC中,若a:b:c=1:2:,则这个三角形是直角三角形.其中,正确命题的个数为()A.1个B.2个C.3个D.4个【考点】O1:命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5或,故本选项错误;②三角形的三边a、b、c满足a2+c2=b2,则∠B=90°,故本选项错误;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形,故本选项正确;④△ABC中,若a:b:c=1:2:,则这个三角形是直角三直角三角形,故本选项正确.其中,正确命题的个数为2个;故选B.二.用心填一填(每小题4分,共24分)13.已知一直角三角形,两边长为3和4,则斜边上的中线长为或2.【考点】KP:直角三角形斜边上的中线;KQ:勾股定理.【分析】分为两种情况,当3和4是直角边时,当4是斜边,3是直角边时,求出斜边,根据直角三角形斜边上中线性质求出即可.【解答】解:当3和4是直角边时,斜边为:=5,斜边上中线为;当4是斜边,3是直角边时,斜边上的中线为2;故答案为:或2.14.如图,在△ABC中,∠ACB=90°,CD是AB边上的中线,若CD=3,则AB= 6.【考点】KP:直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD.【解答】解:∵∠ACB=90°,CD是AB边上的中线,∴AB=2CD=2×3=6.故答案为:6.15.若a<<b,且a、b是两个连续的整数,则a b=8.【考点】2B:估算无理数的大小.【分析】先估算出的范围,即可得出a、b的值,代入求出即可.【解答】解:∵2<<3,∴a=2,b=3,∴a b=8.故答案为:8.16.四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需满足的条件是AD=BC(或AD∥BC)(横线只需填一个你认为合适的条件即可)【考点】L6:平行四边形的判定.【分析】在已知一组对边平行的基础上,要判定是平行四边形,则需要增加另一组对边平行,或平行的这组对边相等,或一组对角相等均可.【解答】解:根据平行四边形的判定方法,知需要增加的条件是AD=BC或AB∥CD或∠A=∠C或∠B=∠D.故答案为AD=BC(或AB∥CD).17.若x,y为实数,且满足|x﹣3|+=0,则()2018的值是1.【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】直接利用偶次方的性质以及绝对值的性质得出x,y的值,进而得出答案.【解答】解:∵|x﹣3|+=0,∴x=3,y=﹣3,∴()2018=(﹣1)2018=1.故答案为:1.18.已知a、b、c是△ABC的三边长且c=5,a、b满足关系式+(b﹣3)2=0,则△ABC的形状为直角三角形.【考点】KS:勾股定理的逆定理;1F:非负数的性质:偶次方;23:非负数的性质:算术平方根.【分析】根据二次根式和偶次方的非负性求出a、b的值,根据勾股定理的逆定理判断即可.【解答】解:∵ +(b﹣3)2=0,∴a﹣4=0,b﹣3=0,解得:a=4,b=3,∵c=5,∴a2+b2=c2,∴∠C=90°,即△ABC是直角三角形,故答案为:直角.三、耐心解一解(本大题满分90分)19.计算:(1)9+5﹣3;(2)2;(3)()2016(﹣)2015.【考点】79:二次根式的混合运算.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)利用二次根式的乘除法则运算;(3)先利用积的乘方得到原式=[(+)(﹣)]2015•(+),然后利用平方差公式计算.【解答】解:(1)原式=9+10﹣12=7;(2)原式=2×2×2×=;(3)原式=[(+)(﹣)]2015•(+)=(5﹣6)2015•(+)=﹣(+)=﹣﹣.20.若x,y为实数,且|x+2|+=0,求()2011.【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x+2=0,y﹣2=0,解得,x=﹣2,y=2,所以,()2011=(﹣1)2011=﹣1.21.如图,四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.【考点】LN:中点四边形.【分析】连接BD,再利用三角形中位线定理可得FG∥BD,FG=BD,EH∥BD,EH=BD.进而得到FG∥EH,且FG=EH,可根据一组对边平行且相等的四边形是平行四边形证出结论.【解答】证明:如图,连接BD.∵F,G分别是BC,CD的中点,所以FG∥BD,FG=BD.∵E,H分别是AB,DA的中点.∴EH∥BD,EH=BD.∴FG∥EH,且FG=EH.∴四边形EFGH是平行四边形.22.先化简,再求值:÷,其中x=.【考点】6D:分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式÷=•=,当x=时,原式==.23.如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8,求AC的长.【考点】KQ:勾股定理;KO:含30度角的直角三角形.【分析】在RT△ABC中,利用直角三角形的性质,结合已知条件易求∠A=30°,进而再利用30°的角所对的直角边等于斜边的一半,易求BC,再利用勾股定理可求AC.【解答】解:如右图所示,在RT△ABC中,∠C=90°,∠B=60°,∴∠A=30°,又∵AB=8,∴BC=4,∴AC==4.24.已知如图在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF,求证:∠AED=∠CFB.【考点】L5:平行四边形的性质.【分析】由四边形ABCD是平行四边形,得到AD=BC.AD∥BC,根据平行线的性质得到∠DAC=∠BCF,推出△ADE≌△BCF,根据全等三角形的性质即可得到结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC.AD∥BC,∴∠DAC=∠BCF,在△ADE与△BCF中,,∴△ADE≌△BCF,∴∠AED=∠CFB.25.如图,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于点E.求证:四边形AECD是菱形.【考点】L9:菱形的判定;LH:梯形.【分析】首先证明四边形AECD是平行四边形,再由AB∥CD,得∠EAC=∠DCA,AC平分∠BAD,得∠DAC=∠CAE,从而得到∠ACD=∠DAC,即AD=DC,有一组邻边相等的平行四边形是菱形.【解答】证明:∵AB∥CD,CE∥AD,∴四边形AECD是平行四边形.∵AC平分∠BAD,∴∠BAC=∠DAC,又∵AB∥CD,∴∠ACD=∠BAC=∠DAC,∴AD=DC,∴四边形AECD是菱形.26.如图,四边形ABCD、DEFG都是正方形,连接AE,CG.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.【考点】KD:全等三角形的判定与性质;LE:正方形的性质.【分析】可以把结论涉及的线段放到△ADE和△CDG中,考虑证明全等的条件,又有两个正方形,∴AD=CD,DE=DG,它们的夹角都是∠ADG加上直角,故夹角相等,可以证明全等;再利用互余关系可以证明AE⊥CG.【解答】(1)证明:如图,∵AD=CD,DE=DG,∠ADC=∠GDE=90°,又∵∠CDG=90°+∠ADG=∠ADE,∴△ADE≌△CDG(SAS).∴AE=CG.(2)猜想:AE⊥CG.证明:如图,设AE与CG交点为M,AD与CG交点为N.∵△ADE≌△CDG,∴∠DAE=∠DCG.又∵∠ANM=∠CND,∴△AMN∽△CDN.∴∠AMN=∠ADC=90°.∴AE⊥CG.27.已知Rt△ABD中,边AB=OB=1,∠ABO=90°问题探究:(1)以AB为边,在Rt△ABO的右边作正方形ABC,如图(1),则点O与点D的距离为.(2)以AB为边,在Rt△ABO的右边作等边三角形ABC,如图(2),求点O 与点C的距离.问题解决:(3)若线段DE=1,线段DE的两个端点D,E分别在射线OA、OB上滑动,以DE为边向外作等边三角形DEF,如图(3),则点O与点F的距离有没有最大值,如果有,求出最大值,如果没有,说明理由.【考点】LO:四边形综合题.【分析】(1)如图1中,连接OD,在Rt△ODC中,根据OD=计算即可.(2)如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.在Rt△OCE中,根据OC=计算即可.(3)如图3中,当OF⊥DE时,OF的值最大,设OF交DE于H,在OH上取一点M,使得OM=DM,连接DM.分别求出MH、OM、FH即可解决问题.【解答】解:(1)如图1中,连接OD,∵四边形ABCD是正方形,∴AB=BC=CD=AD=1,∠C=90°在Rt△ODC中,∵∠C=90°,OC=2,CD=1,∴OD===.故答案为.(2)如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.∵∠FBE=∠E=∠CFB=90°,∴四边形BECF是矩形,∴BF=CF=,CF=BE=,在Rt△OCE中,OC===.(3)如图3中,当OF⊥DE时,OF的值最大,设OF交DE于H,在OH上取一点M,使得OM=DM,连接DM.∵FD=FE=DE=1,OF⊥DE,∴DH=HE,OD=OE,∠DOH=∠DOE=22.5°,∵OM=DM,∴∠MOD=∠MDO=22.5°,∴∠DMH=∠MDH=45°,∴DH=HM=,∴DM=OM=,∵FH==,∴OF=OM+MH+FH=++=.∴OF的最大值为.。

贵州省遵义市汇川区八年级下期中数学试卷及答案

贵州省遵义市汇川区八年级下期中数学试卷及答案

贵州省遵义市汇川区八年级(下)期中数学试卷一.细心选一选.(每小题3分,共36分)1.要使二次根式有意义,字母x的取值必须满足()A.x≥0 B.C.D.2.下列运算错误的是()A. +=B.•=C.÷=D.(﹣)2=23.下列四组线段中,可以构成直角三角形的是()A.1.5,2,2.5 B.4,5,6 C.2,3,4 D.1,,34.若等边△ABC的边长为2cm,那么△ABC的面积为()A. cm2B.2cm2C.3cm2D.4cm25.若x=﹣3,则等于()A.﹣1 B.1 C.3 D.﹣36.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是()A.40cm B.20cm C.20cm D.10cm7.如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是()A.4 B.3 C.5 D.4.58.若直角三角形两边分别是3和4,则第三边是()A.5 B.C.5或D.无法确定9.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=12,则HE等于()A.24 B.12 C.6 D.810.若,则x的值等于()A.4 B.±2 C.2 D.±411.若的整数部分为x,小数部分为y,则的值是()A.B.C.1 D.312.给出下列命题:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;②三角形的三边a、b、c满足a2+c2=b2,则∠C=90°;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④△ABC中,若 a:b:c=1:2:,则这个三角形是直角三角形.其中,正确命题的个数为()A.1个B.2个C.3个D.4个二.用心填一填(每小题4分,共24分)13.已知一直角三角形,两边长为3和4,则斜边上的中线长为.14.如图,在△ABC中,∠ACB=90°,CD是AB边上的中线,若CD=3,则AB= .15.若a<<b,且a、b是两个连续的整数,则a b= .16.四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需满足的条件是(横线只需填一个你认为合适的条件即可)17.若x,y为实数,且满足|x﹣3|+=0,则()2018的值是.18.已知a、b、c是△ABC的三边长且c=5,a、b满足关系式+(b﹣3)2=0,则△ABC的形状为三角形.三、耐心解一解(本大题满分90分)19.计算:(1)9+5﹣3;(2)2;(3)()2016(﹣)2015.20.若x,y为实数,且|x+2|+=0,求()2011.21.如图,四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.22.先化简,再求值:÷,其中x=.23.如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8,求AC的长.24.已知如图在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF,求证:∠AED=∠CFB.25.如图,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于点E.求证:四边形AECD是菱形.26.如图,四边形ABCD、DEFG都是正方形,连接AE,CG.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.27.已知Rt△ABD中,边AB=OB=1,∠ABO=90°问题探究:(1)以AB为边,在Rt△ABO的右边作正方形ABC,如图(1),则点O与点D 的距离为.(2)以AB为边,在Rt△ABO的右边作等边三角形ABC,如图(2),求点O与点C的距离.问题解决:(3)若线段DE=1,线段DE的两个端点D,E分别在射线OA、OB上滑动,以DE 为边向外作等边三角形DEF,如图(3),则点O与点F的距离有没有最大值,如果有,求出最大值,如果没有,说明理由.2016-2017学年贵州省遵义市汇川区八年级(下)期中数学试卷参考答案与试题解析一.细心选一选.(每小题3分,共36分)1.要使二次根式有意义,字母x的取值必须满足()A.x≥0 B.C.D.【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件可得2x+3≥0,再解不等式即可.【解答】解:由题意得:2x+3≥0,解得:x≥﹣,故选:D.2.下列运算错误的是()A. +=B.•=C.÷=D.(﹣)2=2【考点】78:二次根式的加减法;75:二次根式的乘除法.【分析】根据同类二次根式的合并,二次根式的乘除法则,分别进行各选项的判断即可.【解答】解:A、与不是同类二次根式,不能直接合并,故本选项正确;B、×=,计算正确,故本选项错误;C、÷=,计算正确,故本选项错误;D、(﹣)2=2,计算正确,故本选项错误;故选A.3.下列四组线段中,可以构成直角三角形的是()A.1.5,2,2.5 B.4,5,6 C.2,3,4 D.1,,3【考点】KS:勾股定理的逆定理.【分析】根据勾股定理的逆定理求出两小边的平方和和大边的平方,看看是否相等即可.【解答】解:A、1.52+22=2.52,即三角形是直角三角形,故本选项正确;B、42+52≠62,即三角形不是直角三角形,故本选项错误;C、22+32≠42,即三角形不是直角三角形,故本选项错误;D、12+()2≠32,即三角形不是直角三角形,故本选项错误;故选A.4.若等边△ABC的边长为2cm,那么△ABC的面积为()A. cm2B.2cm2C.3cm2D.4cm2【考点】KQ:勾股定理;KK:等边三角形的性质.【分析】注意三角形的面积的计算方法,首先要作出三角形的高,根据勾股定理就可求出高的长,三角形的面积就很容易求出.【解答】解:作出三角形的高,则高是=,所以三角形的面积是×2×=cm2;故选A.5.若x=﹣3,则等于()A.﹣1 B.1 C.3 D.﹣3【考点】7A:二次根式的化简求值.【分析】x=﹣3时,1+x<0, =﹣1﹣x,再去绝对值.【解答】解:当x=﹣3时,1+x<0,=|1﹣(﹣1﹣x)|=|2+x|=﹣2﹣x=1.故选B.6.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是()A.40cm B.20cm C.20cm D.10cm【考点】KV:平面展开﹣最短路径问题.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:根据两点之间线段最短,把正方体展开,可知由A处向B处爬行,所走的最短路程是20cm.故选C.7.如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是()A.4 B.3 C.5 D.4.5【考点】KQ:勾股定理;K3:三角形的面积.【分析】根据Rt△ABC中,∠C=90°,可证BC是△DAB的高,然后利用三角形面积公式求出BC的长,再利用勾股定理即可求出DC的长.【解答】解:∵在Rt△ABC中,∠C=90°,∴BC⊥AC,即BC是△DAB的高,∵△DAB的面积为10,DA=5,∴DA•BC=10,∴BC=4,∴CD===3.故选B.8.若直角三角形两边分别是3和4,则第三边是()A.5 B.C.5或D.无法确定【考点】KQ:勾股定理.【分析】题干中没有明确指出边长为4的边是直角边还是斜边,所以我们需要分类讨论,(1)边长为4的边为直角边;(2)边长为4的边为斜边.【解答】解:(1)边长为4的边为直角边,则第三边即为斜边,则第三边的长为: =5;(2)边长为4的边为斜边,则第三边即为直角边,则第三边的长为: =.故第三边的长为5或cm.故选C.9.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=12,则HE等于()A.24 B.12 C.6 D.8【考点】KX:三角形中位线定理;KP:直角三角形斜边上的中线.【分析】利用三角形中位线定理知DF=AC;然后在直角三角形AHC中根据“直角三角形斜边上的中线等于斜边的一半”即可将所求线段EH与已知线段DF联系起来了.【解答】解:∵D、F分别是AB、BC的中点,∴DF是△ABC的中位线,∴DF=AC(三角形中位线定理);又∵E是线段AC的中点,AH⊥BC,∴EH=AC,∴EH=DF=12,故选B.10.若,则x的值等于()A.4 B.±2 C.2 D.±4【考点】78:二次根式的加减法.【分析】方程左边化成最简二次根式,再解方程.【解答】解:原方程化为=10,合并,得=10=2,即2x=4,x=2.故选C.11.若的整数部分为x,小数部分为y,则的值是()A.B.C.1 D.3【考点】78:二次根式的加减法.【分析】因为的整数部分为1,小数部分为﹣1,所以x=1,y=﹣1,代入计算即可.【解答】解:∵的整数部分为1,小数部分为﹣1,∴x=1,y=﹣1,∴=﹣(﹣1)=1.故选:C.12.给出下列命题:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;②三角形的三边a、b、c满足a2+c2=b2,则∠C=90°;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④△ABC中,若 a:b:c=1:2:,则这个三角形是直角三角形.其中,正确命题的个数为()A.1个B.2个C.3个D.4个【考点】O1:命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5或,故本选项错误;②三角形的三边a、b、c满足a2+c2=b2,则∠B=90°,故本选项错误;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形,故本选项正确;④△ABC中,若 a:b:c=1:2:,则这个三角形是直角三直角三角形,故本选项正确.其中,正确命题的个数为2个;故选B.二.用心填一填(每小题4分,共24分)13.已知一直角三角形,两边长为3和4,则斜边上的中线长为或2 .【考点】KP:直角三角形斜边上的中线;KQ:勾股定理.【分析】分为两种情况,当3和4是直角边时,当4是斜边,3是直角边时,求出斜边,根据直角三角形斜边上中线性质求出即可.【解答】解:当3和4是直角边时,斜边为: =5,斜边上中线为;当4是斜边,3是直角边时,斜边上的中线为2;故答案为:或2.14.如图,在△ABC中,∠ACB=90°,CD是AB边上的中线,若CD=3,则AB= 6 .【考点】KP:直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD.【解答】解:∵∠ACB=90°,CD是AB边上的中线,∴AB=2CD=2×3=6.15.若a<<b,且a、b是两个连续的整数,则a b= 8 .【考点】2B:估算无理数的大小.【分析】先估算出的范围,即可得出a、b的值,代入求出即可.【解答】解:∵2<<3,∴a=2,b=3,∴a b=8.故答案为:8.16.四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需满足的条件是AD=BC(或AD∥BC)(横线只需填一个你认为合适的条件即可)【考点】L6:平行四边形的判定.【分析】在已知一组对边平行的基础上,要判定是平行四边形,则需要增加另一组对边平行,或平行的这组对边相等,或一组对角相等均可.【解答】解:根据平行四边形的判定方法,知需要增加的条件是AD=BC或AB∥CD或∠A=∠C或∠B=∠D.故答案为AD=BC(或AB∥CD).17.若x,y为实数,且满足|x﹣3|+=0,则()2018的值是 1 .【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】直接利用偶次方的性质以及绝对值的性质得出x,y的值,进而得出答案.【解答】解:∵|x﹣3|+=0,∴x=3,y=﹣3,∴()2018=(﹣1)2018=1.18.已知a、b、c是△ABC的三边长且c=5,a、b满足关系式+(b﹣3)2=0,则△ABC的形状为直角三角形.【考点】KS:勾股定理的逆定理;1F:非负数的性质:偶次方;23:非负数的性质:算术平方根.【分析】根据二次根式和偶次方的非负性求出a、b的值,根据勾股定理的逆定理判断即可.【解答】解:∵ +(b﹣3)2=0,∴a﹣4=0,b﹣3=0,解得:a=4,b=3,∵c=5,∴a2+b2=c2,∴∠C=90°,即△ABC是直角三角形,故答案为:直角.三、耐心解一解(本大题满分90分)19.计算:(1)9+5﹣3;(2)2;(3)()2016(﹣)2015.【考点】79:二次根式的混合运算.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)利用二次根式的乘除法则运算;(3)先利用积的乘方得到原式=[(+)(﹣)]2015•(+),然后利用平方差公式计算.【解答】解:(1)原式=9+10﹣12=7;(2)原式=2×2×2×=;(3)原式=[(+)(﹣)]2015•(+)=(5﹣6)2015•(+)=﹣(+)=﹣﹣.20.若x,y为实数,且|x+2|+=0,求()2011.【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x+2=0,y﹣2=0,解得,x=﹣2,y=2,所以,()2011=(﹣1)2011=﹣1.21.如图,四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.【考点】LN:中点四边形.【分析】连接BD,再利用三角形中位线定理可得FG∥BD,FG=BD,EH∥BD,EH=BD.进而得到FG∥EH,且FG=EH,可根据一组对边平行且相等的四边形是平行四边形证出结论.【解答】证明:如图,连接BD.∵F,G分别是BC,CD的中点,所以FG∥BD,FG=BD.∵E,H分别是AB,DA的中点.∴EH∥BD,EH=BD.∴FG∥EH,且FG=EH.∴四边形EFGH是平行四边形.22.先化简,再求值:÷,其中x=.【考点】6D:分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式÷=•=,当x=时,原式==.23.如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8,求AC的长.【考点】KQ:勾股定理;KO:含30度角的直角三角形.【分析】在RT△ABC中,利用直角三角形的性质,结合已知条件易求∠A=30°,进而再利用30°的角所对的直角边等于斜边的一半,易求BC,再利用勾股定理可求AC.【解答】解:如右图所示,在RT△ABC中,∠C=90°,∠B=60°,∴∠A=30°,又∵AB=8,∴BC=4,∴AC==4.24.已知如图在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF,求证:∠AED=∠CFB.【考点】L5:平行四边形的性质.【分析】由四边形ABCD是平行四边形,得到AD=BC.AD∥BC,根据平行线的性质得到∠DAC=∠BCF,推出△ADE≌△BCF,根据全等三角形的性质即可得到结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC.AD∥BC,∴∠DAC=∠BCF,在△ADE与△BCF中,,∴△ADE≌△BCF,∴∠AED=∠CFB.25.如图,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于点E.求证:四边形AECD是菱形.【考点】L9:菱形的判定;LH:梯形.【分析】首先证明四边形AECD是平行四边形,再由AB∥CD,得∠EAC=∠DCA,AC平分∠BAD,得∠DAC=∠CAE,从而得到∠ACD=∠DAC,即AD=DC,有一组邻边相等的平行四边形是菱形.【解答】证明:∵AB∥CD,CE∥AD,∴四边形AECD是平行四边形.∵AC平分∠BAD,∴∠BAC=∠DAC,又∵AB∥CD,∴∠ACD=∠BAC=∠DAC,∴AD=DC,∴四边形AECD是菱形.26.如图,四边形ABCD、DEFG都是正方形,连接AE,CG.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.【考点】KD:全等三角形的判定与性质;LE:正方形的性质.【分析】可以把结论涉及的线段放到△ADE和△CDG中,考虑证明全等的条件,又有两个正方形,∴AD=CD,DE=DG,它们的夹角都是∠ADG加上直角,故夹角相等,可以证明全等;再利用互余关系可以证明AE⊥CG.【解答】(1)证明:如图,∵AD=CD,DE=DG,∠ADC=∠GDE=90°,又∵∠CDG=90°+∠ADG=∠ADE,∴△ADE≌△CDG(SAS).∴AE=CG.(2)猜想:AE⊥CG.证明:如图,设AE与CG交点为M,AD与CG交点为N.∵△ADE≌△CDG,∴∠DAE=∠DCG.又∵∠ANM=∠CND,∴△AMN∽△CDN.∴∠AMN=∠ADC=90°.∴AE⊥CG.27.已知Rt△ABD中,边AB=OB=1,∠ABO=90°问题探究:(1)以AB为边,在Rt△ABO的右边作正方形ABC,如图(1),则点O与点D的距离为.(2)以AB为边,在Rt△ABO的右边作等边三角形ABC,如图(2),求点O与点C的距离.问题解决:(3)若线段DE=1,线段DE的两个端点D,E分别在射线OA、OB上滑动,以DE 为边向外作等边三角形DEF,如图(3),则点O与点F的距离有没有最大值,如果有,求出最大值,如果没有,说明理由.【考点】LO:四边形综合题.【分析】(1)如图1中,连接OD,在Rt△ODC中,根据OD=计算即可.(2)如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.在Rt△OCE中,根据OC=计算即可.(3)如图3中,当OF⊥DE时,OF的值最大,设OF交DE于H,在OH上取一点M,使得OM=DM,连接DM.分别求出MH、OM、FH即可解决问题.【解答】解:(1)如图1中,连接OD,∵四边形ABCD是正方形,∴AB=BC=CD=AD=1,∠C=90°在Rt△ODC中,∵∠C=90°,OC=2,CD=1,∴OD===.故答案为.(2)如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.∵∠FBE=∠E=∠CFB=90°,∴四边形BECF是矩形,∴BF=CF=,CF=BE=,在Rt △OCE 中,OC===.(3)如图3中,当OF ⊥DE 时,OF 的值最大,设OF 交DE 于H ,在OH 上取一点M ,使得OM=DM ,连接DM .∵FD=FE=DE=1,OF ⊥DE ,∴DH=HE ,OD=OE ,∠DOH=∠DOE=22.5°,∵OM=DM ,∴∠MOD=∠MDO=22.5°,∴∠DMH=∠MDH=45°,∴DH=HM=,∴DM=OM=,∵FH==,∴OF=OM+MH+FH=++=.∴OF 的最大值为.。

贵州省遵义市汇川区2018年八年级下期中数学试卷及答案

贵州省遵义市汇川区2018年八年级下期中数学试卷及答案

2016-2017学年贵州省遵义市汇川区八年级(下)期中数学试卷一.细心选一选.(每小题3分,共36分)1.要使二次根式有意义,字母x的取值必须满足()A.x≥0 B.C.D.2.下列运算错误的是()A. +=B.•=C.÷=D.(﹣)2=23.下列四组线段中,可以构成直角三角形的是()A.1.5,2,2.5 B.4,5,6 C.2,3,4 D.1,,34.若等边△ABC的边长为2cm,那么△ABC的面积为()A. cm2B.2cm2C.3cm2D.4cm25.若x=﹣3,则等于()A.﹣1 B.1 C.3 D.﹣36.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是()A.40cm B.20cm C.20cm D.10cm7.如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是()A.4 B.3 C.5 D.4.58.若直角三角形两边分别是3和4,则第三边是()A.5 B.C.5或D.无法确定9.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=12,则HE 等于()A.24 B.12 C.6 D.810.若,则x的值等于()A.4 B.±2 C.2 D.±411.若的整数部分为x,小数部分为y,则的值是()A.B.C.1 D.312.给出下列命题:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;②三角形的三边a、b、c满足a2+c2=b2,则∠C=90°;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④△ABC中,若 a:b:c=1:2:,则这个三角形是直角三角形.其中,正确命题的个数为()A.1个B.2个C.3个D.4个二.用心填一填(每小题4分,共24分)13.已知一直角三角形,两边长为3和4,则斜边上的中线长为.14.如图,在△ABC中,∠ACB=90°,CD是AB边上的中线,若CD=3,则AB= .15.若a<<b,且a、b是两个连续的整数,则a b= .16.四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需满足的条件是(横线只需填一个你认为合适的条件即可)17.若x,y为实数,且满足|x﹣3|+=0,则()2018的值是.18.已知a、b、c是△ABC的三边长且c=5,a、b满足关系式+(b﹣3)2=0,则△ABC 的形状为三角形.三、耐心解一解(本大题满分90分)19.计算:(1)9+5﹣3;(2)2;(3)()2016(﹣)2015.20.若x,y为实数,且|x+2|+=0,求()2011.21.如图,四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.22.先化简,再求值:÷,其中x=.23.如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8,求AC的长.24.已知如图在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF,求证:∠AED=∠CFB.25.如图,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于点E.求证:四边形AECD 是菱形.26.如图,四边形ABCD、DEFG都是正方形,连接AE,CG.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.27.已知Rt△ABD中,边AB=OB=1,∠ABO=90°问题探究:(1)以AB为边,在Rt△ABO的右边作正方形ABC,如图(1),则点O与点D的距离为.(2)以AB为边,在Rt△ABO的右边作等边三角形ABC,如图(2),求点O与点C的距离.问题解决:(3)若线段DE=1,线段DE的两个端点D,E分别在射线OA、OB上滑动,以DE为边向外作等边三角形DEF,如图(3),则点O与点F的距离有没有最大值,如果有,求出最大值,如果没有,说明理由.2016-2017学年贵州省遵义市汇川区八年级(下)期中数学试卷参考答案与试题解析一.细心选一选.(每小题3分,共36分)1.要使二次根式有意义,字母x的取值必须满足()A.x≥0 B.C.D.【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件可得2x+3≥0,再解不等式即可.【解答】解:由题意得:2x+3≥0,解得:x≥﹣,故选:D.2.下列运算错误的是()A. +=B.•=C.÷=D.(﹣)2=2【考点】78:二次根式的加减法;75:二次根式的乘除法.【分析】根据同类二次根式的合并,二次根式的乘除法则,分别进行各选项的判断即可.【解答】解:A、与不是同类二次根式,不能直接合并,故本选项正确;B、×=,计算正确,故本选项错误;C、÷=,计算正确,故本选项错误;D、(﹣)2=2,计算正确,故本选项错误;故选A.3.下列四组线段中,可以构成直角三角形的是()A.1.5,2,2.5 B.4,5,6 C.2,3,4 D.1,,3【考点】KS:勾股定理的逆定理.【分析】根据勾股定理的逆定理求出两小边的平方和和大边的平方,看看是否相等即可.【解答】解:A、1.52+22=2.52,即三角形是直角三角形,故本选项正确;B、42+52≠62,即三角形不是直角三角形,故本选项错误;C、22+32≠42,即三角形不是直角三角形,故本选项错误;D、12+()2≠32,即三角形不是直角三角形,故本选项错误;故选A.4.若等边△ABC的边长为2cm,那么△ABC的面积为()A. cm2B.2cm2C.3cm2D.4cm2【考点】KQ:勾股定理;KK:等边三角形的性质.【分析】注意三角形的面积的计算方法,首先要作出三角形的高,根据勾股定理就可求出高的长,三角形的面积就很容易求出.【解答】解:作出三角形的高,则高是=,所以三角形的面积是×2×=cm2;故选A.5.若x=﹣3,则等于()A.﹣1 B.1 C.3 D.﹣3【考点】7A:二次根式的化简求值.【分析】x=﹣3时,1+x<0, =﹣1﹣x,再去绝对值.【解答】解:当x=﹣3时,1+x<0,=|1﹣(﹣1﹣x)|=|2+x|=﹣2﹣x=1.故选B.6.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是()A.40cm B.20cm C.20cm D.10cm【考点】KV:平面展开﹣最短路径问题.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:根据两点之间线段最短,把正方体展开,可知由A处向B处爬行,所走的最短路程是20cm.故选C.7.如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是()A.4 B.3 C.5 D.4.5【考点】KQ:勾股定理;K3:三角形的面积.【分析】根据Rt△ABC中,∠C=90°,可证BC是△DAB的高,然后利用三角形面积公式求出BC的长,再利用勾股定理即可求出DC的长.【解答】解:∵在Rt△ABC中,∠C=90°,∴BC⊥AC,即BC是△DAB的高,∵△DAB的面积为10,DA=5,∴DA•BC=10,∴BC=4,∴CD===3.故选B.8.若直角三角形两边分别是3和4,则第三边是()A.5 B.C.5或D.无法确定【考点】KQ:勾股定理.【分析】题干中没有明确指出边长为4的边是直角边还是斜边,所以我们需要分类讨论,(1)边长为4的边为直角边;(2)边长为4的边为斜边.【解答】解:(1)边长为4的边为直角边,则第三边即为斜边,则第三边的长为:=5;(2)边长为4的边为斜边,则第三边即为直角边,则第三边的长为: =.故第三边的长为5或cm.故选C.9.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=12,则HE 等于()A.24 B.12 C.6 D.8【考点】KX:三角形中位线定理;KP:直角三角形斜边上的中线.【分析】利用三角形中位线定理知DF=AC;然后在直角三角形AHC中根据“直角三角形斜边上的中线等于斜边的一半”即可将所求线段EH与已知线段DF联系起来了.【解答】解:∵D、F分别是AB、BC的中点,∴DF是△ABC的中位线,∴DF=AC(三角形中位线定理);又∵E是线段AC的中点,AH⊥BC,∴EH=AC,∴EH=DF=12,故选B.10.若,则x的值等于()A.4 B.±2 C.2 D.±4【考点】78:二次根式的加减法.【分析】方程左边化成最简二次根式,再解方程.【解答】解:原方程化为=10,合并,得=10=2,即2x=4,x=2.故选C.11.若的整数部分为x,小数部分为y,则的值是()A.B.C.1 D.3【考点】78:二次根式的加减法.【分析】因为的整数部分为1,小数部分为﹣1,所以x=1,y=﹣1,代入计算即可.【解答】解:∵的整数部分为1,小数部分为﹣1,∴x=1,y=﹣1,∴=﹣(﹣1)=1.故选:C.12.给出下列命题:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;②三角形的三边a、b、c满足a2+c2=b2,则∠C=90°;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④△ABC中,若 a:b:c=1:2:,则这个三角形是直角三角形.其中,正确命题的个数为()A.1个B.2个C.3个D.4个【考点】O1:命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5或,故本选项错误;②三角形的三边a、b、c满足a2+c2=b2,则∠B=90°,故本选项错误;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形,故本选项正确;④△ABC中,若 a:b:c=1:2:,则这个三角形是直角三直角三角形,故本选项正确.其中,正确命题的个数为2个;故选B.二.用心填一填(每小题4分,共24分)13.已知一直角三角形,两边长为3和4,则斜边上的中线长为或2 .【考点】KP:直角三角形斜边上的中线;KQ:勾股定理.【分析】分为两种情况,当3和4是直角边时,当4是斜边,3是直角边时,求出斜边,根据直角三角形斜边上中线性质求出即可.【解答】解:当3和4是直角边时,斜边为: =5,斜边上中线为;当4是斜边,3是直角边时,斜边上的中线为2;故答案为:或2.14.如图,在△ABC中,∠ACB=90°,CD是AB边上的中线,若CD=3,则AB= 6 .【考点】KP:直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD.【解答】解:∵∠ACB=90°,CD是AB边上的中线,∴AB=2CD=2×3=6.故答案为:6.15.若a<<b,且a、b是两个连续的整数,则a b= 8 .【考点】2B:估算无理数的大小.【分析】先估算出的范围,即可得出a、b的值,代入求出即可.【解答】解:∵2<<3,∴a=2,b=3,∴a b=8.故答案为:8.16.四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需满足的条件是AD=BC (或AD∥BC)(横线只需填一个你认为合适的条件即可)【考点】L6:平行四边形的判定.【分析】在已知一组对边平行的基础上,要判定是平行四边形,则需要增加另一组对边平行,或平行的这组对边相等,或一组对角相等均可.【解答】解:根据平行四边形的判定方法,知需要增加的条件是AD=BC或AB∥CD或∠A=∠C或∠B=∠D.故答案为AD=BC(或AB∥CD).17.若x,y为实数,且满足|x﹣3|+=0,则()2018的值是 1 .【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】直接利用偶次方的性质以及绝对值的性质得出x,y的值,进而得出答案.【解答】解:∵|x﹣3|+=0,∴x=3,y=﹣3,∴()2018=(﹣1)2018=1.故答案为:1.18.已知a、b、c是△ABC的三边长且c=5,a、b满足关系式+(b﹣3)2=0,则△ABC 的形状为直角三角形.【考点】KS:勾股定理的逆定理;1F:非负数的性质:偶次方;23:非负数的性质:算术平方根.【分析】根据二次根式和偶次方的非负性求出a、b的值,根据勾股定理的逆定理判断即可.【解答】解:∵ +(b﹣3)2=0,∴a﹣4=0,b﹣3=0,解得:a=4,b=3,∵c=5,∴a2+b2=c2,∴∠C=90°,即△ABC是直角三角形,故答案为:直角.三、耐心解一解(本大题满分90分)19.计算:(1)9+5﹣3;(2)2;(3)()2016(﹣)2015.【考点】79:二次根式的混合运算.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)利用二次根式的乘除法则运算;(3)先利用积的乘方得到原式=[(+)(﹣)]2015•(+),然后利用平方差公式计算.【解答】解:(1)原式=9+10﹣12=7;(2)原式=2×2×2×=;(3)原式=[(+)(﹣)]2015•(+)=(5﹣6)2015•(+)=﹣(+)=﹣﹣.20.若x,y为实数,且|x+2|+=0,求()2011.【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x+2=0,y﹣2=0,解得,x=﹣2,y=2,所以,()2011=(﹣1)2011=﹣1.21.如图,四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.【考点】LN:中点四边形.【分析】连接BD,再利用三角形中位线定理可得FG∥BD,FG=BD,EH∥BD,EH=BD.进而得到FG∥EH,且FG=EH,可根据一组对边平行且相等的四边形是平行四边形证出结论.【解答】证明:如图,连接BD.∵F,G分别是BC,CD的中点,所以FG∥BD,FG=BD.∵E,H分别是AB,DA的中点.∴EH∥BD,EH=BD.∴FG∥EH,且FG=EH.∴四边形EFGH是平行四边形.22.先化简,再求值:÷,其中x=.【考点】6D:分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式÷=•=,当x=时,原式==.23.如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8,求AC的长.【考点】KQ:勾股定理;KO:含30度角的直角三角形.【分析】在RT△ABC中,利用直角三角形的性质,结合已知条件易求∠A=30°,进而再利用30°的角所对的直角边等于斜边的一半,易求BC,再利用勾股定理可求AC.【解答】解:如右图所示,在RT△ABC中,∠C=90°,∠B=60°,∴∠A=30°,又∵AB=8,∴BC=4,∴AC==4.24.已知如图在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF,求证:∠AED=∠CFB.【考点】L5:平行四边形的性质.【分析】由四边形ABCD是平行四边形,得到AD=BC.AD∥BC,根据平行线的性质得到∠DAC=∠BCF,推出△ADE≌△BCF,根据全等三角形的性质即可得到结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC.AD∥BC,∴∠DAC=∠BCF,在△ADE与△BCF中,,∴△ADE≌△BCF,∴∠AED=∠CFB.25.如图,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于点E.求证:四边形AECD 是菱形.【考点】L9:菱形的判定;LH:梯形.【分析】首先证明四边形AECD是平行四边形,再由AB∥CD,得∠EAC=∠DCA,AC平分∠BAD,得∠DAC=∠CAE,从而得到∠ACD=∠DAC,即AD=DC,有一组邻边相等的平行四边形是菱形.【解答】证明:∵AB∥CD,CE∥AD,∴四边形AECD是平行四边形.∵AC平分∠BAD,∴∠BAC=∠DAC,又∵AB∥CD,∴∠ACD=∠BAC=∠DAC,∴AD=DC,∴四边形AECD是菱形.26.如图,四边形ABCD、DEFG都是正方形,连接AE,CG.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.【考点】KD:全等三角形的判定与性质;LE:正方形的性质.【分析】可以把结论涉及的线段放到△ADE和△CDG中,考虑证明全等的条件,又有两个正方形,∴AD=CD,DE=DG,它们的夹角都是∠ADG加上直角,故夹角相等,可以证明全等;再利用互余关系可以证明AE⊥CG.【解答】(1)证明:如图,∵AD=CD,DE=DG,∠ADC=∠GDE=90°,又∵∠CDG=90°+∠ADG=∠ADE,∴△ADE≌△CDG(SAS).(2)猜想:AE⊥CG.证明:如图,设AE与CG交点为M,AD与CG交点为N.∵△ADE≌△CDG,∴∠DAE=∠DCG.又∵∠ANM=∠CND,∴△AMN∽△CDN.∴∠AMN=∠ADC=90°.∴AE⊥CG.27.已知Rt△ABD中,边AB=OB=1,∠ABO=90°问题探究:(1)以AB为边,在Rt△ABO的右边作正方形ABC,如图(1),则点O与点D的距离为.(2)以AB为边,在Rt△ABO的右边作等边三角形ABC,如图(2),求点O与点C的距离.问题解决:(3)若线段DE=1,线段DE的两个端点D,E分别在射线OA、OB上滑动,以DE为边向外作等边三角形DEF,如图(3),则点O与点F的距离有没有最大值,如果有,求出最大值,如果没有,说明理由.【考点】LO:四边形综合题.【分析】(1)如图1中,连接OD,在Rt△ODC中,根据OD=计算即可.(2)如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.在Rt△OCE中,根据OC=(3)如图3中,当OF⊥DE时,OF的值最大,设OF交DE于H,在OH上取一点M,使得OM=DM,连接DM.分别求出MH、OM、FH即可解决问题.【解答】解:(1)如图1中,连接OD,∵四边形ABCD是正方形,∴AB=BC=CD=AD=1,∠C=90°在Rt△ODC中,∵∠C=90°,OC=2,CD=1,∴OD===.故答案为.(2)如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.∵∠FBE=∠E=∠CFB=90°,∴四边形BECF是矩形,∴BF=CF=,CF=BE=,在Rt△OCE中,OC===.(3)如图3中,当OF⊥DE时,OF的值最大,设OF交DE于H,在OH上取一点M,使得OM=DM,连接DM.∵FD=FE=DE=1,OF⊥DE,∴DH=HE,OD=OE,∠DOH=∠DOE=22.5°,∵OM=DM,∴∠MOD=∠MDO=22.5°,∴∠DMH=∠MDH=45°,∴DH=HM=,∴DM=OM=,∵FH==,∴OF=OM+MH+FH=++=.∴OF的最大值为.。

2019年遵义市八年级数学下期中试卷附答案

2019年遵义市八年级数学下期中试卷附答案

2019年遵义市八年级数学下期中试卷附答案一、选择题1.下列函数中,是一次函数的是( )A .11y x =+B .y=﹣2xC .y=x 2+2D .y=kx+b (k 、b 是常数) 2.小明搬来一架 3.5 米长的木梯,准备把拉花挂在 2.8 米高的墙上,则梯脚与墙脚的距离为( )A .2.7 米B .2.5 米C .2.1 米D .1.5 米3.下列二次根式中,最简二次根式是( )A .10B .12C .12D .84.如图,在矩形ABCD 中,AB=2,BC=3.若点E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 交AE 于点F ,则BF 的长为( )A .3102B .310C .105D .3555.如图,在菱形ABCD 中,AB =6,∠ABC =60°,M 为AD 中点,P 为对角线BD 上一动点,连接PA 和PM ,则PA +PM 的最小值是( )A .3B .2C .3D .66.如图所示□ABCD ,再添加下列某一个条件, 不能判定□ABCD 是矩形的是( )A .AC=BDB .AB ⊥BC C .∠1=∠2D .∠ABC=∠BCD 7.对于次函数21y x =-,下列结论错误的是( ) A .图象过点()0,1-B .图象与x 轴的交点坐标为1(,0)2C .图象沿y 轴向上平移1个单位长度,得到直线2y x =D .图象经过第一、二、三象限8.如图,在正方形ABCD 外侧,作等边三角形ADE ,AC 、BE 相交于点F ,则∠CFE 为()A .150°B .145°C .135°D .120°9.如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD ,若测得A ,C 之间的距离为12cm ,点B ,D 之间的距离为16m ,则线段AB 的长为( )A .9.6cmB .10cmC .20cmD .12cm10.为了研究特殊四边形,李老师制作了这样一个教具(如图1):用钉子将四根木条钉成一个平行四边形框架ABCD ,并在A 与C 、B 与D 两点之间分别用一根橡皮筋拉直固定,课上,李老师右手拿住木条BC ,用左手向右推动框架至AB ⊥BC (如图2)观察所得到的四边形,下列判断正确的是( )A .∠BCA =45°B .AC =BD C .BD 的长度变小 D .AC ⊥BD11.如图,在Rt ABC △中,90B ∠=︒,6AB =,9BC =,将ABC △折叠,使点C 与AB 的中点D 重合,折痕交AC 于点M ,交BC 于点N ,则线段BN 的长为( )A .3B .4C .5D .6 12.下列各式中一定是二次根式的是( ) A 23-B 2(0.3)-C 2-D x 二、填空题13.如图,已知在Rt △ABC 中,AB =AC =3,在△ABC 内作第1个内接正方形DEFG ;然后取GF 的中点P ,连接PD 、PE ,在△PDE 内作第2个内接正方形HIKJ ;再取线段KJ 的中点Q ,在△QHI 内作第3个内接正方形…,依次进行下去,则第2019个内接正方形的边长为_____.14.一次函数的图像经过点A (3,2),且与y 轴的交点坐标是B (0,2- ),则这个一次函数的函数表达式是________________.15.如图,E 、F 分别是平行四边形ABCD 的边AB 、CD 上的点,AF 与DE 相交于点P,BF 与CE 相交于点Q,若215APD S cm ∆=,225BQC S cm ∆=,则阴影部分的面积为__________2cm .16.函数26y x =+的自变量x 的取值范围是_________. 17.如图,在ABC ∆中,D 、E 分别为AB 、AC 的中点,点F 在DE 上,且AF CF ⊥,若3AC =,5BC =,则DF =__________.18.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点A 作AE ⊥BD ,垂足为点E ,若∠EAC =2∠CAD ,则∠BAE =__________度.19.2a =3b =,用含,a b 0.54,结果为________.20.已知矩形ABCD 如图,AB =4,BC =3P 是矩形内一点,则ABP CDP S S ∆∆+=______________.三、解答题21.计算:123101010234+-. 22.如图1,在菱形ABCD 中,8AB =,83BD =,点P 是BD 上一点,点Q 在AB 上,且PA PQ =,设PD x =.(1)当PA AB ⊥时,如图2,求PD 的长;(2)设AQ y =,求y 关于x 的函数关系式及其定义域;(3)若BPQ ∆是以BQ 为腰的等腰三角形,求PD 的长.23.如图,在平面直角坐标系中,一次函数y=kx+b 的图象经过点A (﹣2,6),且与x 轴相交于点B ,与正比例函数y=3x 的图象相交于点C ,点C 的横坐标为1.(1)求k 、b 的值;(2)若点D 在y 轴负半轴上,且满足S △COD =13S △BOC ,求点D 的坐标.24.观察下列各式及验证过程: 11122323-=,验证211121223232323-===⨯⨯, 1111323438⎛⎫-= ⎪⎝⎭,验证2111131323423423438⎛⎫-=== ⎪⨯⨯⨯⨯⎝⎭, 11114345415⎛⎫-= ⎪⎝⎭,验证21111414345345345415⎛⎫-=== ⎪⨯⨯⨯⨯⎝⎭, (1)按照上述三个等式及其验证过程中的基本思想,猜想111456⎛⎫- ⎪⎝⎭的变形结果并进行验证.(2)针对上述各式反映的规律,写出用n (n 为自然数,且n ≥2)表示的等式,不需要证明.25.小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50分才乘上缆车,缆车的平均速度为180米/分,设小亮出发x 分后行走的路程为y 米.图中的折线表示小亮在整个行走过程中y 随x 的变化关系.(1)小亮行走的总路程是_________米,他途中休息了___________分;(2)分别求出小亮在休息前和休息后所走的路程段上的步行速度;(3)当小颖到达缆车终点时,小亮离缆车终点的路程是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B 【解析】A、y=1x+1不是一次函数,故错误;B、y=-2x是一次函数,故正确;C、y=x2+2是二次函数,故错误;D、y=kx+b(k、b是常数),当k=0时不是一次函数,故本选项错误,故选B.2.C解析:C【解析】【分析】仔细分析题意得:梯子、地面、墙刚好形成一直角三角形,梯高为斜边,利用勾股定理解此直角三角形即可.【详解】=2.1(米).故选C.【点睛】本题考查了勾股定理的应用.善于提取题目的信息是解题以及学好数学的关键.3.A解析:A【解析】【分析】根据最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,结合选项求解即可.【详解】A是最简二次根式,本选项正确.B=C=A=不是最简二次根式,本选项错误.故选A.【点睛】本题考查了最简二次根式的知识,解答本题的关键在于掌握最简二次根式的概念,对各选项进行判断.4.B解析:B【解析】【分析】根据S △ABE =12S 矩形ABCD =3=12•AE•BF ,先求出AE ,再求出BF 即可. 【详解】如图,连接BE .∵四边形ABCD 是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt △ADE 中,AE=22AD DE +=2231+=10, ∵S △ABE =12S 矩形ABCD =3=12•AE•BF , ∴BF=310. 故选:B .【点睛】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.5.C解析:C【解析】【分析】首先连接AC ,交BD 于点O ,连接CM ,则CM 与BD 交于点P ,此时PA+PM 的值最小,由在菱形ABCD 中,AB=6,∠ABC=60°,易得△ACD 是等边三角形,BD 垂直平分AC ,继而可得CM ⊥AD ,则可求得CM 的值,继而求得PA+PM 的最小值.【详解】解:连接AC ,交BD 于点O ,连接CM ,则CM 与BD 交于点P ,此时PA+PM 的值最小,∵在菱形ABCD 中,AB=6,∠ABC=60°,∴∠ADC=∠ABC=60°,AD=CD=6,BD 垂直平分AC ,∴△ACD 是等边三角形,PA=PC ,∵M 为AD 中点,∴DM=AD=3,CM ⊥AD ,∴CM==3, ∴PA+PM=PC+PM=CM=3. 故选:C .【点睛】此题考查了最短路径问题、等边三角形的判定与性质、勾股定理以及菱形的性质.注意准确找到点P 的位置是解此题的关键. 6.C解析:C【解析】【分析】根据矩形的判定定理逐项排除即可解答.【详解】解:由对角线相等的平行四边形是矩形,可得当AC=BD 时,能判定口ABCD 是矩形; 由有一个角是直角的平行四边形是矩形,可得当AB ⊥BC 时,能判定口ABCD 是矩形; 由平行四边形四边形对边平行,可得AD//BC ,即可得∠1=∠2,所以当∠1=∠2时,不能判定口ABCD 是矩形;由有一个角是直角的平行四边形是矩形,可得当∠ABC=∠BCD 时,能判定口ABCD 是矩形.故选答案为C .【点睛】本题考查了平行四边形是矩形的判定方法,其方法有①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线互相平分且相等的四边形是矩形.7.D解析:D【解析】【分析】根据一次函数的性质对D 进行判断;根据一次函数图象上点的坐标特征对A 、B 进行判断;根据一次函数的几何变换对C 进行判断.【详解】A 、图象过点()0,1-,不符合题意;B 、函数的图象与x 轴的交点坐标是1(,0)2,不符合题意;C 、图象沿y 轴向上平移1个单位长度,得到直线2y x =,不符合题意;D、图象经过第一、三、四象限,符合题意;故选:D.【点睛】本题考查了一次函数的性质、一次函数图象上点的坐标特征和一次函数图象的几何变换,属于基础题.8.D解析:D【解析】【分析】根据正方形的性质及全等三角形的性质求出∠ABE=15°,∠BAC=45°,再求∠BFC,即可得出∠CFE.【详解】∵四边形ABCD是正方形,∴AB=AD,又∵△ADE是等边三角形,∴AE=AD=DE,∠DAE=60°,∴AB=AE,∴∠ABE=∠AEB,∠BAE=90°+60°=150°,∴∠ABE=(180°-150°)÷2=15°,又∵∠BAC=45°,∴∠BFC=45°+15°=60°,∴∠CFE=180°-∠BFC=120°故选:D.【点睛】本题主要是考查正方形的性质和等边三角形的性质,本题的关键是求出∠ABE=15°. 9.B解析:B【解析】【分析】作AR⊥BC于R,AS⊥CD于S,根据题意先证出四边形ABCD是平行四边形,再由AR=AS推出BC=CD得平行四边形ABCD是菱形,再根据根据勾股定理求出AB即可.【详解】作AR⊥BC于R,AS⊥CD于S,连接AC、BD交于点O.由题意知:AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵两个矩形等宽,∴AR=AS,∵AR•BC=AS•CD,∴BC=CD,∴平行四边形ABCD 是菱形,∴AC ⊥BD ,在Rt △AOB 中,∵OA =12 AC =6cm ,OB =12BD =8cm , ∴AB =2268+ =10(cm ),故选:B .【点睛】本题主要考查菱形的判定和性质,证得四边形ABCD 是菱形是解题的关键.10.B解析:B【解析】【分析】根据矩形的性质即可判断;【详解】解:∵四边形ABCD 是平行四边形,又∵AB ⊥BC ,∴∠ABC =90°,∴四边形ABCD 是矩形,∴AC =BD .故选B .【点睛】本题考查平行四边形的性质.矩形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.11.B解析:B【解析】【分析】由折叠的性质可得DN CN =,根据勾股定理可求DN 的长,即可求BN 的长.【详解】D Q 是AB 中点,6AB =,3AD BD ∴==,根据折叠的性质得,DN CN =,9BN BC CN DN ∴=-=-,在Rt DBN V 中,222DN BN DB =+,22DN DN∴=-+,(9)9∴=DN5BN∴=,4故选B.【点睛】本题考查了翻折变换,折叠的性质,勾股定理,熟练运用折叠的性质是本题的关键.12.B解析:B【解析】二次根式要求被开方数为非负数,易得B为二次根式.故选B.二、填空题13.3×122018【解析】【分析】首先根据勾股定理得出BC的长进而利用等腰直角三角形的性质得出DE的长再利用锐角三角函数的关系得出EIKI=PFEF=12即可得出正方形边长之间的变化规律得出答案即可【解析:【解析】【分析】首先根据勾股定理得出BC的长,进而利用等腰直角三角形的性质得出DE的长,再利用锐角三角函数的关系得出,即可得出正方形边长之间的变化规律,得出答案即可.【详解】∵在Rt△ABC中,AB=AC=3,∴∠B=∠C=45°,BC=AB=6,∵在△ABC内作第一个内接正方形DEFG;∴EF=EC=DG=BD,∴DE=BC=2,∵取GF的中点P,连接PD、PE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第三个内接正方形…依次进行下去,∴,∴EI=KI=HI,∵DH=EI,∴HI =DE =()2﹣1×3, 则第n 个内接正方形的边长为:3×()n ﹣1.故第2019个内接正方形的边长为:3×()2018.故答案是:3×()2018.【点睛】考查了正方形的性质以及数字变化规律和勾股定理等知识,根据已知得出正方形边长的变化规律是解题关键.14.y=x-2【解析】【分析】一次函数关系式y=kx+b 将AB 两点坐标代入解一元一次方程组可求kb 的值确定一次函数关系式【详解】设一次函数关系式y=kx+b 将A (32)B (0-2)代入得解得一次函数解析解析:y=43x-2. 【解析】【分析】一次函数关系式y=kx+b ,将A 、B 两点坐标代入,解一元一次方程组,可求k 、b 的值,确定一次函数关系式.【详解】设一次函数关系式y=kx+b ,将A (3,2)、B (0,-2)代入,得 322k b b +⎧⎨-⎩==,解得432k b ⎧⎪⎨⎪-⎩==, 一次函数解析式为y=43x-2. 故答案为:y=43x-2. 【点睛】此题考查利用待定系数法求一次函数解析式,解题关键在于利用待定系数法进行求解. 15.40【解析】【分析】作出辅助线因为△ADF 与△DEF 同底等高所以面积相等所以阴影图形的面积可解【详解】如图连接EF∵△ADF 与△DEF 同底等高∴S=S即S−S=S−S即S=S=15cm同理可得S=S解析:40【解析】【分析】作出辅助线,因为△ADF与△DEF同底等高,所以面积相等,所以阴影图形的面积可解.【详解】如图,连接EF∵△ADF与△DEF同底等高,∴SADFV =S DEFV即SADFV −S DPFV=S DEFV−S DPFV,即S APDV =S EPFV=15cm2,同理可得S BQCV =S EFQV =25cm2,∴阴影部分的面积为S EPFV +S EFQV =15+25=40cm2.故答案为40.【点睛】此题考查平行四边形的性质,解题关键在于进行等量代换.16.x>-3【解析】【分析】根据被开方数大于等于0分母不等于0列式计算即可得解【详解】解:由题意得2x+6>0解得x>-3故答案为x>-3【点睛】本题考查了函数自变量的范围一般从三个方面考虑:(1)当函解析:x>-3.【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】解:由题意得,2x+6>0,解得x>-3.故答案为x>-3.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.17.1【解析】【分析】根据三角形中位线定理求出DE根据直角三角形的性质求出EF计算即可【详解】解:∵DE分别为ABAC的中点∴DE=BC=25∵AF⊥CFE为AC的中点∴EF=AC=15∴DF=DE﹣E解析:1【解析】【分析】根据三角形中位线定理求出DE,根据直角三角形的性质求出EF,计算即可.【详解】解:∵D、E分别为AB、AC的中点,∴DE=12BC=2.5,∵AF⊥CF,E为AC的中点,∴EF=12AC=1.5,∴DF=DE﹣EF=1,故答案为:1.【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.18.5°【解析】【分析】【详解】四边形ABCD是矩形AC=BDOA=OCOB=ODOA=OB═OC∠OAD=∠ODA∠OAB=∠OBA∠AOE=∠OAD+∠ODA=2∠OA D∠EAC=2∠CAD∠EAO解析:5°【解析】【分析】【详解】Q四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OA=OB═OC,∴∠OAD=∠ODA,∠OAB=∠OBA,∴∠AOE=∠OAD+∠ODA=2∠OAD,Q∠EAC=2∠CAD,∴∠EAO=∠AOE,Q AE⊥BD,∴∠AEO=90°,∴∠AOE=45°,∴∠OAB=∠OBA=67.5°,即∠BAE=∠OAB ﹣∠OAE=22.5°.考点:矩形的性质;等腰三角形的性质.19.【解析】【分析】将化简后代入ab 即可【详解】解:∵∴故答案为:【点睛】本题考查了二次根式的乘除法法则的应用解题的关键是将化简变形本题属于中等题型 解析:310ab 【解析】【分析】 0.54化简后,代入a ,b 即可.【详解】 545469363230.54100⨯⨯==== 2a =3b =, 30540.1=ab 故答案为:310ab . 【点睛】 0.54化简变形,本题属于中等题型.20.【解析】【分析】根据三角形的面积公式求出△APD 和△BPC 的面积相加即可得出答案【详解】过点P 作MN∥AD 交AB 于点N 交CD 于点M 如图∴AB∥CDAD∥BCAD=BC=AB=CD=4∴S△APB+S 解析:83【解析】【分析】根据三角形的面积公式求出△APD 和△BPC 的面积,相加即可得出答案.【详解】过点P 作MN ∥AD ,交AB 于点N ,交CD 于点M .如图,∴AB∥CD,AD∥BC,AD=BC=3AB=CD=4,∴S△APB+S△DPC=12×AB×PN+12CD×PM=12×4×PN +12×4×PM =12×4×(PM+PN)=12×4×4383.故答案为:3【点睛】本题考查了矩形的性质和三角形的面积公式,主要考查学生的计算能力和观察图象的能力.三、解答题21510 12【解析】【分析】本题考查了同类二次根式的加法,系数相加二次根式不变.【详解】原式12351010 23412⎛=+-=⎝【点睛】本题主要考查了实数中同类二次根式的运算能力,.22.(1)PD=833(2)3x-8(833≤x≤1633)(3)3【解析】【分析】(1)先根据菱形的边长和对角线的长得到∠ABO =30°,再根据PA AB⊥,求出AP的长,故可得到DP的长;(2)作HP⊥AB,根据AP=PQ,得到AH=QH=12y,BH=8-12y,BP=BD-DP=83再根据(1)可得HP=4312x,在Rt△BPH中,BP2=HB2+HP2,化简即可求解,再求出x的取值范围;(3)根据题意作图,由等腰三角形的性质可得△AQP是等边三角形,故可得到DP的长.【详解】(1)∵8AB =,BD =∴BO=12BD ⊥BD故=4=12AB ∴∠ABO =30°=∠ADO ∵PA AB ⊥∴∠APB =90°-∠ABO =60°故∠PAD=∠APB -∠ADO =30°即∠PAD=∠ADO∴DP=AP设AP=x ,则BP=2x ,在Rt △ABP 中,BP 2=AB 2+AP 2即(2x )2=82+x 2解得故PD ; (2)作HP ⊥AB ,∵AP=PQ∴AH=QH=12y ∴BH=BQ+QH=(8-y)+12y =8-12y ,BP=BD-DP=由(1)可得HP=12BP =12x 在Rt △BPH 中,BP 2=HB 2+HP 2即()2=(8-12y )2+(12x)2∵>0,8-12y >0,12x >0∴化简得∵0≤8∴x ≤x∴y 关于x 的函数关系式是≤x );(3)如图,若BPQ∆是以BQ为腰的等腰三角形,则∠QPB=∠QBP=30°,∴∠AQP=∠QPB+∠QBP=60°∵∠BAP=90°-∠QBP=60°,∴△APQ是等边三角形,∠APQ=60°∴∠QPB +∠APQ=90°,则AP⊥BP,故O点与P点重合,∴PD=DO=12BD=43.【点睛】此题主要考查菱形的性质综合,解题的关键是熟知菱形的性质及含30度的直角三角形的性质.23.(1)k=-1,b=4;(2)点D的坐标为(0,-4).【解析】【分析】【详解】分析:(1)利用一次函数图象上点的坐标特征可求出点C的坐标,根据点A、C的坐标,利用待定系数法即可求出k、b的值;(2)利用一次函数图象上点的坐标特征可求出点B的坐标,设点D的坐标为(0,m)(m<0),根据三角形的面积公式结合S△COD=13S△BOC,即可得出关于m的一元一次方程,解之即可得出m的值,进而可得出点D的坐标.详解:(1)当x=1时,y=3x=3,∴点C的坐标为(1,3).将A(﹣2,6)、C(1,3)代入y=kx+b,得:263k bk b-+=⎧⎨+=⎩,解得:14kb=-⎧⎨=⎩.(2)当y=0时,有﹣x+4=0,解得:x=4,∴点B的坐标为(4,0).设点D的坐标为(0,m)(m<0),∵S△COD=13S△BOC,即﹣12m=13×12×4×3,解得:m=-4,∴点D的坐标为(0,-4).点睛:本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标,利用待定系数法求出k、b的值;(2)利用三角形的面积公式结合结合S△COD=13S△BOC,找出关于m的一元一次方程.24.(1)见解析;(2)见解析.【解析】【分析】(1)类比题目中所给的运算方法即可解答;(2)观察题目所给的算式,根据算式总结出一般规律即可求解.【详解】(1====;(2=n为自然数,且n≥2) .【点睛】本题是阅读理解题,能够从所给的案例中找出相应的规律是解决该类题型的关键. 25.(1)3600,20;(2)65(米/分),55(米/分);(3)1100(米).【解析】【分析】(1)根据图象可知小亮走的总路程和中途休息的时间;(2)根据图象可知休息前走了30分钟,1950米,休息后走了30分钟,3600-1950米,由此根据速度公式进行求解即可;(3)先求出缆车到达终点所需时间,从而求出小亮行走的时间,最后根据题意求出当小颖到达缆车终点时,小亮离缆车终点的路程.【详解】(1)根据图象可知:小亮行驶的总路程为3600m,中途休息时间为:50﹣30=20min,故答案为;3600,20;(2)观察图象可知小亮休息前走了30分钟,1950米,所以小亮休息前的速度为:19506530=(米/分),小亮休息后的速度为:36001950558050-=-(米/分),答:小亮休息前的速度为65米/分,休息后的速度为55米/分;(3)缆车到山顶的线路长为3600÷2=1800米,缆车到达终点所需时间为1800÷180=10分钟,小颖到达缆车终点时,小亮行走的时间为10+50=60分钟,80-60=20(分),∴小颖到达终点时,小亮离缆车终点的路程为:20⨯55=1100(米),答:当小颖到达缆车终点时,小亮离缆车终点的路程是1100米.【点睛】本题考查了函数的图象,弄清题意,读懂图象,根据图象提供的信息进行解答是关键.。

2019-2020学年遵义市汇川区八年级下期中数学测试卷(附答案)(已纠错)

2019-2020学年遵义市汇川区八年级下期中数学测试卷(附答案)(已纠错)

2019-2020学年贵州省遵义市汇川区八年级(下)期中测试卷数学一.细心选一选.(每小题3分,共36分)1.要使二次根式有意义,字母x的取值必须满足()A.x≥0 B.C.D.2.下列运算错误的是()A. +=B.•= C.÷=D.(﹣)2=23.下列四组线段中,可以构成直角三角形的是()A.1.5,2,2.5 B.4,5,6 C.2,3,4 D.1,,34.若等边△ABC的边长为2cm,那么△ABC的面积为()A.cm2 B.2cm2 C.3cm2 D.4cm25.若x=﹣3,则等于()A.﹣1 B.1 C.3 D.﹣36.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是()A.40cm B.20cm C.20cm D.10cm7.如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是()A.4 B.3 C.5 D.4.58.若直角三角形两边分别是3和4,则第三边是()A.5 B.C.5或D.无法确定9.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=12,则HE等于()A.24 B.12 C.6 D.810.若,则x的值等于()A.4 B.±2 C.2 D.±411.若的整数部分为x,小数部分为y,则的值是()A.B.C.1 D.312.给出下列命题:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;②三角形的三边a、b、c满足a2+c2=b2,则∠C=90°;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④△ABC中,若a:b:c=1:2:,则这个三角形是直角三角形.其中,正确命题的个数为()A.1个B.2个C.3个D.4个二.用心填一填(每小题4分,共24分)13.已知一直角三角形,两边长为3和4,则斜边上的中线长为.14.如图,在△ABC中,∠ACB=90°,CD是AB边上的中线,若CD=3,则AB=.15.若a<<b,且a、b是两个连续的整数,则a b=.16.四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需满足的条件是(横线只需填一个你认为合适的条件即可)17.若x,y为实数,且满足|x﹣3|+=0,则()2018的值是.18.已知a、b、c是△ABC的三边长且c=5,a、b满足关系式+(b﹣3)2=0,则△ABC的形状为三角形.三、耐心解一解(本大题满分90分)19.计算:(1)9+5﹣3;(2)2;(3)()2016(﹣)2015.20.若x,y为实数,且|x+2|+=0,求()2011.21.如图,四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.22.先化简,再求值:÷,其中x=.23.如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8,求AC的长.24.已知如图在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF,求证:∠AED=∠CFB.25.如图,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于点E.求证:四边形AECD是菱形.26.如图,四边形ABCD、DEFG都是正方形,连接AE,CG.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.27.已知Rt△ABD中,边AB=OB=1,∠ABO=90°问题探究:(1)以AB为边,在Rt△ABO的右边作正方形ABC,如图(1),则点O与点D的距离为.(2)以AB为边,在Rt△ABO的右边作等边三角形ABC,如图(2),求点O与点C的距离.问题解决:(3)若线段DE=1,线段DE的两个端点D,E分别在射线OA、OB上滑动,以DE为边向外作等边三角形DEF,如图(3),则点O与点F的距离有没有最大值,如果有,求出最大值,如果没有,说明理由.2019-2020学年贵州省遵义市汇川区八年级(下)期中数学试卷参考答案与试题解析一.细心选一选.(每小题3分,共36分)1.要使二次根式有意义,字母x的取值必须满足()A.x≥0 B.C.D.【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件可得2x+3≥0,再解不等式即可.【解答】解:由题意得:2x+3≥0,解得:x≥﹣,故选:D.2.下列运算错误的是()A. +=B.•= C.÷=D.(﹣)2=2【考点】78:二次根式的加减法;75:二次根式的乘除法.【分析】根据同类二次根式的合并,二次根式的乘除法则,分别进行各选项的判断即可.【解答】解:A、与不是同类二次根式,不能直接合并,故本选项正确;B、×=,计算正确,故本选项错误;C、÷=,计算正确,故本选项错误;D、(﹣)2=2,计算正确,故本选项错误;故选A.3.下列四组线段中,可以构成直角三角形的是()A.1.5,2,2.5 B.4,5,6 C.2,3,4 D.1,,3【考点】KS:勾股定理的逆定理.【分析】根据勾股定理的逆定理求出两小边的平方和和大边的平方,看看是否相等即可.【解答】解:A、1.52+22=2.52,即三角形是直角三角形,故本选项正确;B、42+52≠62,即三角形不是直角三角形,故本选项错误;C、22+32≠42,即三角形不是直角三角形,故本选项错误;D、12+()2≠32,即三角形不是直角三角形,故本选项错误;故选A.4.若等边△ABC的边长为2cm,那么△ABC的面积为()A.cm2 B.2cm2 C.3cm2 D.4cm2【考点】KQ:勾股定理;KK:等边三角形的性质.【分析】注意三角形的面积的计算方法,首先要作出三角形的高,根据勾股定理就可求出高的长,三角形的面积就很容易求出.【解答】解:作出三角形的高,则高是=,所以三角形的面积是×2×=cm2;故选A.5.若x=﹣3,则等于()A.﹣1 B.1 C.3 D.﹣3【考点】7A:二次根式的化简求值.【分析】x=﹣3时,1+x<0,=﹣1﹣x,再去绝对值.【解答】解:当x=﹣3时,1+x<0,=|1﹣(﹣1﹣x)|=|2+x|=﹣2﹣x=1.故选B.6.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是()A.40cm B.20cm C.20cm D.10cm【考点】KV:平面展开﹣最短路径问题.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:根据两点之间线段最短,把正方体展开,可知由A处向B处爬行,所走的最短路程是20cm.故选C.7.如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是()A.4 B.3 C.5 D.4.5【考点】KQ:勾股定理;K3:三角形的面积.【分析】根据Rt△ABC中,∠C=90°,可证BC是△DAB的高,然后利用三角形面积公式求出BC的长,再利用勾股定理即可求出DC的长.【解答】解:∵在Rt△ABC中,∠C=90°,∴BC⊥AC,即BC是△DAB的高,∵△DAB的面积为10,DA=5,∴DA•BC=10,∴BC=4,∴CD===3.故选B.8.若直角三角形两边分别是3和4,则第三边是()A.5 B.C.5或D.无法确定【考点】KQ:勾股定理.【分析】题干中没有明确指出边长为4的边是直角边还是斜边,所以我们需要分类讨论,(1)边长为4的边为直角边;(2)边长为4的边为斜边.【解答】解:(1)边长为4的边为直角边,则第三边即为斜边,则第三边的长为:=5;(2)边长为4的边为斜边,则第三边即为直角边,则第三边的长为:=.故第三边的长为5或cm.故选C.9.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=12,则HE等于()A.24 B.12 C.6 D.8【考点】KX:三角形中位线定理;KP:直角三角形斜边上的中线.【分析】利用三角形中位线定理知DF=AC;然后在直角三角形AHC中根据“直角三角形斜边上的中线等于斜边的一半”即可将所求线段EH与已知线段DF联系起来了.【解答】解:∵D、F分别是AB、BC的中点,∴DF是△ABC的中位线,∴DF=AC(三角形中位线定理);又∵E是线段AC的中点,AH⊥BC,∴EH=AC,∴EH=DF=12,故选B.10.若,则x的值等于()A.4 B.±2 C.2 D.±4【考点】78:二次根式的加减法.【分析】方程左边化成最简二次根式,再解方程.【解答】解:原方程化为=10,合并,得=10=2,即2x=4,x=2.故选C.11.若的整数部分为x,小数部分为y,则的值是()A.B.C.1 D.3【考点】78:二次根式的加减法.【分析】因为的整数部分为1,小数部分为﹣1,所以x=1,y=﹣1,代入计算即可.【解答】解:∵的整数部分为1,小数部分为﹣1,∴x=1,y=﹣1,∴=﹣(﹣1)=1.故选:C.12.给出下列命题:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;②三角形的三边a、b、c满足a2+c2=b2,则∠C=90°;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④△ABC中,若a:b:c=1:2:,则这个三角形是直角三角形.其中,正确命题的个数为()A.1个B.2个C.3个D.4个【考点】O1:命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5或,故本选项错误;②三角形的三边a、b、c满足a2+c2=b2,则∠B=90°,故本选项错误;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形,故本选项正确;④△ABC中,若a:b:c=1:2:,则这个三角形是直角三直角三角形,故本选项正确.其中,正确命题的个数为2个;故选B.二.用心填一填(每小题4分,共24分)13.已知一直角三角形,两边长为3和4,则斜边上的中线长为或2.【考点】KP:直角三角形斜边上的中线;KQ:勾股定理.【分析】分为两种情况,当3和4是直角边时,当4是斜边,3是直角边时,求出斜边,根据直角三角形斜边上中线性质求出即可.【解答】解:当3和4是直角边时,斜边为:=5,斜边上中线为;当4是斜边,3是直角边时,斜边上的中线为2;故答案为:或2.14.如图,在△ABC中,∠ACB=90°,CD是AB边上的中线,若CD=3,则AB=6.【考点】KP:直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD.【解答】解:∵∠ACB=90°,CD是AB边上的中线,∴AB=2CD=2×3=6.故答案为:6.15.若a<<b,且a、b是两个连续的整数,则a b=8.【考点】2B:估算无理数的大小.【分析】先估算出的范围,即可得出a、b的值,代入求出即可.【解答】解:∵2<<3,∴a=2,b=3,∴a b=8.故答案为:8.16.四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需满足的条件是AD=BC(或AD∥BC)(横线只需填一个你认为合适的条件即可)【考点】L6:平行四边形的判定.【分析】在已知一组对边平行的基础上,要判定是平行四边形,则需要增加另一组对边平行,或平行的这组对边相等,或一组对角相等均可.【解答】解:根据平行四边形的判定方法,知需要增加的条件是AD=BC或AB∥CD或∠A=∠C或∠B=∠D.故答案为AD=BC(或AB∥CD).17.若x,y为实数,且满足|x﹣3|+=0,则()2018的值是1.【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】直接利用偶次方的性质以及绝对值的性质得出x,y的值,进而得出答案.【解答】解:∵|x﹣3|+=0,∴x=3,y=﹣3,∴()2018=(﹣1)2018=1.故答案为:1.18.已知a、b、c是△ABC的三边长且c=5,a、b满足关系式+(b﹣3)2=0,则△ABC 的形状为直角三角形.【考点】KS:勾股定理的逆定理;1F:非负数的性质:偶次方;23:非负数的性质:算术平方根.【分析】根据二次根式和偶次方的非负性求出a、b的值,根据勾股定理的逆定理判断即可.【解答】解:∵ +(b﹣3)2=0,∴a﹣4=0,b﹣3=0,解得:a=4,b=3,∵c=5,∴a2+b2=c2,∴∠C=90°,即△ABC是直角三角形,故答案为:直角.三、耐心解一解(本大题满分90分)19.计算:(1)9+5﹣3;(2)2;(3)()2016(﹣)2015.【考点】79:二次根式的混合运算.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)利用二次根式的乘除法则运算;(3)先利用积的乘方得到原式=[(+)(﹣)]2015•(+),然后利用平方差公式计算.【解答】解:(1)原式=9+10﹣12=7;(2)原式=2×2×2×=;(3)原式=[(+)(﹣)]2015•(+)=(5﹣6)2015•(+)=﹣(+)=﹣﹣.20.若x,y为实数,且|x+2|+=0,求()2011.【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x+2=0,y﹣2=0,解得,x=﹣2,y=2,所以,()2011=(﹣1)2011=﹣1.21.如图,四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.【考点】LN:中点四边形.【分析】连接BD,再利用三角形中位线定理可得FG∥BD,FG=BD,EH∥BD,EH=BD.进而得到FG∥EH,且FG=EH,可根据一组对边平行且相等的四边形是平行四边形证出结论.【解答】证明:如图,连接BD.∵F,G分别是BC,CD的中点,所以FG∥BD,FG=BD.∵E,H分别是AB,DA的中点.∴EH∥BD,EH=BD.∴FG∥EH,且FG=EH.∴四边形EFGH是平行四边形.22.先化简,再求值:÷,其中x=.【考点】6D:分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式÷=•=,当x=时,原式==.23.如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8,求AC的长.【考点】KQ:勾股定理;KO:含30度角的直角三角形.【分析】在RT△ABC中,利用直角三角形的性质,结合已知条件易求∠A=30°,进而再利用30°的角所对的直角边等于斜边的一半,易求BC,再利用勾股定理可求AC.【解答】解:如右图所示,在RT△ABC中,∠C=90°,∠B=60°,∴∠A=30°,又∵AB=8,∴BC=4,∴AC==4.24.已知如图在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF,求证:∠AED=∠CFB.【考点】L5:平行四边形的性质.【分析】由四边形ABCD是平行四边形,得到AD=BC.AD∥BC,根据平行线的性质得到∠DAC=∠BCF,推出△ADE≌△BCF,根据全等三角形的性质即可得到结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC.AD∥BC,∴∠DAC=∠BCF,在△ADE与△BCF中,,∴△ADE≌△BCF,∴∠AED=∠CFB.25.如图,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于点E.求证:四边形AECD是菱形.【考点】L9:菱形的判定;LH:梯形.【分析】首先证明四边形AECD是平行四边形,再由AB∥CD,得∠EAC=∠DCA,AC平分∠BAD,得∠DAC=∠CAE,从而得到∠ACD=∠DAC,即AD=DC,有一组邻边相等的平行四边形是菱形.【解答】证明:∵AB∥CD,CE∥AD,∴四边形AECD是平行四边形.∵AC平分∠BAD,∴∠BAC=∠DAC,又∵AB∥CD,∴∠ACD=∠BAC=∠DAC,∴AD=DC,∴四边形AECD是菱形.26.如图,四边形ABCD、DEFG都是正方形,连接AE,CG.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.【考点】KD:全等三角形的判定与性质;LE:正方形的性质.【分析】可以把结论涉及的线段放到△ADE和△CDG中,考虑证明全等的条件,又有两个正方形,∴AD=CD,DE=DG,它们的夹角都是∠ADG加上直角,故夹角相等,可以证明全等;再利用互余关系可以证明AE⊥CG.【解答】(1)证明:如图,∵AD=CD,DE=DG,∠ADC=∠GDE=90°,又∵∠CDG=90°+∠ADG=∠ADE,∴△ADE≌△CDG(SAS).∴AE=CG.(2)猜想:AE⊥CG.证明:如图,设AE与CG交点为M,AD与CG交点为N.∵△ADE≌△CDG,∴∠DAE=∠DCG.又∵∠ANM=∠CND,∴△AMN∽△CDN.∴∠AMN=∠ADC=90°.∴AE⊥CG.27.已知Rt△ABD中,边AB=OB=1,∠ABO=90°问题探究:(1)以AB为边,在Rt△ABO的右边作正方形ABC,如图(1),则点O与点D的距离为.(2)以AB为边,在Rt△ABO的右边作等边三角形ABC,如图(2),求点O与点C的距离.问题解决:(3)若线段DE=1,线段DE的两个端点D,E分别在射线OA、OB上滑动,以DE为边向外作等边三角形DEF,如图(3),则点O与点F的距离有没有最大值,如果有,求出最大值,如果没有,说明理由.【考点】LO:四边形综合题.【分析】(1)如图1中,连接OD,在Rt△ODC中,根据OD=计算即可.(2)如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.在Rt△OCE中,根据OC=计算即可.(3)如图3中,当OF⊥DE时,OF的值最大,设OF交DE于H,在OH上取一点M,使得OM=DM,连接DM.分别求出MH、OM、FH即可解决问题.【解答】解:(1)如图1中,连接OD,∵四边形ABCD是正方形,∴AB=BC=CD=AD=1,∠C=90°在Rt△ODC中,∵∠C=90°,OC=2,CD=1,∴OD===.故答案为.(2)如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.∵∠FBE=∠E=∠CFB=90°,∴四边形BECF是矩形,∴BF=CF=,CF=BE=,在Rt△OCE中,OC===.(3)如图3中,当OF⊥DE时,OF的值最大,设OF交DE于H,在OH上取一点M,使得OM=DM,连接DM.∵FD=FE=DE=1,OF⊥DE,∴DH=HE,OD=OE,∠DOH=∠DOE=22.5°,∵OM=DM,∴∠MOD=∠MDO=22.5°,∴∠DMH=∠MDH=45°,∴DH=HM=,∴DM=OM=,∵FH==,∴OF=OM+MH+FH=++=.∴OF的最大值为.。

遵义市八年级下学期数学期中考试试卷

遵义市八年级下学期数学期中考试试卷

遵义市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共10题,每小题3分,共30分) (共10题;共30分)1. (3分)若有意义,则m能取的最小整数是()A . m=0B . m=1C . m=2D . m=32. (3分) (2018九上·扬州月考) 一元二次方程的根是()A .B .C . ,D . ,3. (3分)单词“HUNAN”的五个字母中,既是轴对称图形又是中心对称图形的字母是()A . HB . UC . AD . N4. (3分)把化简后得()A .B .C .D .5. (3分)用配方法解下列方程,其中应在方程左右两边同时加上4的是()A . x2﹣2x=5B . x2+4x=5C . 2x2﹣4x=5D . 4x2+4x=56. (3分)用反证法证明“a<b”时应假设()A . a>bB . a≤bC . a=bD . a≥b7. (3分)(2019·荆州) 在一次体检中,甲、乙、丙、丁四位同学的平均身高为1.65米,而甲、乙、丙三位同学的平均身高为1.63米,下列说法一定正确的是()A . 四位同学身高的中位数一定是其中一位同学的身高B . 丁同学的身高一定高于其他三位同学的身高C . 丁同学的身高为1.71米D . 四位同学身高的众数一定是1.658. (3分) (2019九上·平遥月考) 宾馆有50间房供游客居住,当每间房每天定价为180元时,宾馆会住满;当每间房每天的定价每增加10元时,就会空闲一间房如果有游客居住,宾馆需对居住的每间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价定为x元,则有()A . (180+x-20)(50- )=10890B . (x-20)(50- )=10890C . x(50- )-50×20=10890D . (x+180)(50- )-50×20=108909. (3分)(2016·台州) 如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是()A .B .C .D .10. (3分)一组按规律排列的多项式:a+b,a2-b3 , a3+b5 , a4-b7 ,…,其中第10个式子是()A . a10+b19B . a10-b19C . a10-b17D . a10-b21二、填空题(本大题共10题,每小题3分,共30分) (共10题;共30分)11. (3分)(2017·江阴模拟) 在一次信息技术考试中,某兴趣小组8名同学的成绩(单位:分)分别是:7,10,9,8,7,9,9,8,则这组数据的中位数是________.12. (3分) (2017八下·杭州月考) 已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是________13. (3分)(2018·宜宾模拟) 某商品的原价为100元,如果经过两次降价,且每次降价的百分率都是m,那么该商品现在的价格是________元(结果用含m的代数式表示).14. (3分)如图,已知四边形ABCD中,AB∥CD,若不添加任何辅助线,请添加一个条件:________,使四边形ABCD是平行四边形.(只需填一个即可)15. (3分)(2018九上·孝感月考) 若是方程的两个实数根,且,则的值为________.16. (3分)(2018·成华模拟) 已知:在平行四边形ABCD中,点E在DA的延长线上,AE= AD,连接CE 交BD于点F,则的值是________.17. (3分) (2019八下·诸暨期中) 当x=________时,代数式6x2+15x+12的值等于21.18. (3分)如果,那么x的取值范围是________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年贵州省遵义市汇川区八年级(下)期中数学试卷
一.细心选一选.(每小题3分,共36分)
1.要使二次根式有意义,字母x的取值必须满足()
A.x≥0B.C.D.
2.下列运算错误的是()
A.+=B.•=C.÷=D.(﹣)2=2
3.下列四组线段中,可以构成直角三角形的是()
A.1.5,2,2.5B.4,5,6C.2,3,4D.1,,3
4.若等边△ABC的边长为2cm,那么△ABC的面积为()
A.cm2B.2cm2C.3cm2D.4cm2
5.若x=﹣3,则等于()
A.﹣1B.1C.3D.﹣3
6.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是()
A.40cm B.20cm C.20cm D.10cm
7.如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是()
A.4B.3C.5D.4.5
8.若直角三角形两边分别是3和4,则第三边是()
A.5B.C.5或D.无法确定
9.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=12,则HE等于()。

相关文档
最新文档