浙江省宁波市2019年普通高中保送生招生综合素质测试理科综合数学试题(无答案)
宁波市2019年科学普通高中保送生招生综合素质测试试卷解析版
宁波市2019年科学普通高中保送生招生综合素质测试试卷解析版一、选择题1.下列有关生活、地理等的说法中正确的是()A.某洗衣粉含有蛋白酶,能高效分解油污B.宇宙微波背景辐射是宇宙起源于热大爆炸的有力证据C.使用农家肥作肥料,其能量可以流向植物,实现了对能量的多级利用D.月食发生在农历初一,那时太阳、地球、月球恰好或几乎在一条直线上【答案】B【解析】【考点】日食和月食的成因,大爆炸宇宙论,能量流动和物质循环,酶及其催化作用【分析】(1)酶被称为生物催化剂,它的催化具有专一性、高效性,受温度、PH值影响等特点。
(2)1946 年,伽莫夫与他的两个学生—拉尔夫·阿尔菲和罗伯特·赫尔曼一道,首次将相对论和化学元素生成理论引入宇宙学,提出了热大爆炸宇宙学模型。
伽莫夫认为:宇宙最初开始于高温高密度的原始物质,温度超过几十亿度,那时的宇宙中充满的是辐射和基本粒子;随着宇宙膨胀,温度逐渐下降,物质逐渐凝聚成星云,再演化成今天的各种天体。
(3)生态系统中,物质是循环的,能量流动是单向的、逐级减少的(4)当月球运行到地球与太阳之间,月球遮住了太阳的一部分时,出现日偏食;月球只遮住了太阳的中心部分、在太阳周围还露出一圈日面时,出现日环食;太阳完全被遮住时,出现日全食。
【解答】A.酶的催化具有专一性,某洗衣粉含有蛋白酶,只能催化分解蛋白质类物质,而油污的主要成分是脂肪类物质,所以不能高效分解油污,说法错误。
B.宇宙微波背景辐射是宇宙起源于热大爆炸的有力证据,故说法正确。
C.使用农家肥作肥料,其物质成为植物的组成部分,植物中存储的能量来至于光合作用所固定的太阳能,故所法错误。
D.月食发生在农历十五,那时太阳、地球、月球恰好或几乎在一条直线上,月球运行到地球与太阳之间,月球遮住了太阳的一部分或全部而形成的,故说法错误。
故答案为:B2.下列说法正确的是()A.保持教室清洁与通风属于预防传染病中的保护易感人群B.解剖一朵花,观察其结构,在子房内看到的白色小颗粒是花药C.肺泡壁和毛细血管壁都由一层上皮细胞构成,有利于进行气体交换D.运动时骨骼肌产生热量增加,皮肤血管血流量增加,不利于散热【答案】C【解析】【考点】人体呼吸系统的结构和气体交换,体温的控制,花的结构,传染病的预防措施【分析】(1)传染病是由病原体引起的,能够在生物体之间传播的一种疾病,具有传染性和流行性等特点。
浙江省宁波市2019年科学普通高中保送生招生综合素质测试试卷及参考答案
浙江省宁波市2019年科学普通高中保送生招生综合素质测试试卷一、选择题(共6小题,每题4分,共24分)1. 下列有关生活、地理等的说法中正确的是( )A . 某洗衣粉含有蛋白酶,能高效分解油污B . 宇宙微波背景辐射是宇宙起源于热大爆炸的有力证据C . 使用农家肥作肥料,其能量可以流向植物,实现了对能量的多级利用D . 月食发生在农历初一,那时太阳、地球、月球恰好或几乎在一条直线上2. 下列说法正确的是( )A . 保持教室清洁与通风属于预防传染病中的保护易感人群B . 解剖一朵花,观察其结构,在子房内看到的白色小颗粒是花药C . 肺泡壁和毛细血管壁都由一层上皮细胞构成,有利于进行气体交换D . 运动时骨骼肌产生热量增加,皮肤血管血流量增加,不利于散热3. 下列实验操作规范且能达到目的是( )目的操作A 配制100克36%的浓盐酸将200克18%的稀盐酸加热蒸发100克水B 清洗碘升华实验所用试管先用酒精清洗,再用水清洗C 称取9.2克氢氧化钠固体托盘天平石盘加9克砝码,游码置于0.2克处,左盘加氢氧化钠固体至天平平衡D 检验溶液中是否含有CO 滴入稀硫酸,将产生的气体通入澄清石灰水中A . AB . BC . CD . D4. 如图所示,D 和D 是两个二极管。
二极管是一种具有单向导电性能的器材。
当有按图中箭头方向的电流通过二极管时,二极管的电阻为零;当有按图中箭头反方向的电流通过二极管时,二极管的电阻无穷大。
电阻R 、R 、R 的阻值均为10Ω,在a 、b 间接电压恒为6V 的电源。
当a 接电源正极,闭合开关S 时,流过开关的电流为I :当b 接电源正极,闭合开关S 时,流过开关的电流为l 。
则l 和l 分别是( )A . 1.8A 和0.2AB . 1.8A 和0.6AC . 0.4A 和0.6AD . 0.4A 和0.2A5. 把同种材料制成的甲、乙、丙三个实心正方体,放在水平桌面上,甲、乙、丙对桌面的压强分别为p 、p 和p 把甲、乙、丙按如图所示叠放在水平桌面上,则丙对桌面的压强为( )32-121231212123B .C .D .溶液分别逐滴加入到混有少量稀溶液中,所得沉淀的质量与加入的Ba (OH )溶液的质量变化有图a 、A . a 图第①阶段反应结束时,溶液中含有Cu 、NO 和SO B . 两种情况下,第①阶段生成的都是7. 红矾钠(Na Cr O ·2H O )是重要的基本化工原料,应用十分广泛。
2019年浙江省宁波市普通高中自主招生数学试卷及答案解析
(2)已知二次函数y=x2+4x+k是t≤x≤﹣2上的闭函数,求k和t的值;
(3)在(2)的情况下,设A为抛物线顶点,B为直线x=t上一点,C为抛物线与y轴的交点,若△ABC为等腰直角三角形,请直接写出它的腰长为.
11.(15分)如图1,P为第象限内一点,过P、O两点的⊙M交x轴正半轴于点A,交y轴正半轴于点B,∠OPA=45°.
A.23B.24C.25D.26
【解答】解:由图知“亮”记为数字1,“不亮”记为数字0,
则1=1×20,2=1×21+0×20,3=1×21+1×21,4=1×22+0×21+0×20,5=1×22+0×21+1×20,
∵●〇〇●●〇用数字表示为“011001”,
∴●〇〇●●〇表示的数为0×25+1×24+1×23+0×22+0×21+1×20=25,
6.(5分)关于x的不等式组 有且只有四个整数解,则a的取值范围是.
7.(5分)如图,矩形ABCD中分割出①②③三个等腰直角三角形,若已知EF的值,则可确定其中两个三角形的周长之差,这两个三角形的序号是.
8.(5分)如图,△ABC中,MN∥BC交AB、AC于M、N,MN与△ABC内切圆相切,若△ABC周长为12,设BC=x,MN=y,则y与x的函数解析式为(不要求写自变量x的取值范围).
D.不能确定x1、x2、x3的大小
【解答】解:∵a1>a2>a3>0,
∴二次函数y1=a1(x+1)(x﹣2),y2=a2(x+1)(x﹣2),y3=a3(x+1)(x﹣2)开口大小为:y1<y2<y3.
2019年普通高等学校招生全国统一考试浙江卷(数学理)解析版
绝密★考试结束前2019年普通高等学校招生全国同一考试(浙江卷)数 学(理科)本试题卷分选择题和非选择题两部分.全卷共5页,选择题部分1至3页,非选择题部分4至5页.满分150分,考试时间120分钟.请考生按规定用笔将所有试题的答案涂、写在答题纸上.选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上.2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上.参考公式:如果事件A ,B 互斥,那么 柱体的体积公式()()()P A B P A P B +=+ V Sh =如果事件A ,B 相互独立,那么 其中S 表示柱体的底面积,h 表示柱体的高()()()P A B P A P B ⋅=⋅ 锥体的体积公式如果事件A 在一次试验中发生的概率是p ,那么 13V Sh =n 次独立重复试验中事件A 恰好发生k 次的概率 其中S 表示锥体的底面积,h 表示锥体的高()()()1,0,1,2,,n kk kn n P k C p p k n -=-= 球的表面积公式台体的体积公式 24πS R = ()1213V h S S = 球的体积公式其中12,S S 分别表示台体的上底、下底面积, 34π3V R =h 表示台体的高 其中R 表示球的半径一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|1<x<4},B={x|x 2-2x-3≤0},则A∩(C R B)=A.(1,4) B.(3,4) C.(1,3) D.(1,2)【解析】A=(1,4),B=(-3,1),则A∩(C R B)=(1,4).【答案】A2.已知i是虚数单位,则3+i1i-=A.1-2i B.2-i C.2+i D.1+2i【解析】3+i1i-=()()3+i1+i2=2+4i2=1+2i.【答案】D3.设a∈R,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0平行”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】当a=1时,直线l1:x+2y-1=0与直线l2:x+2y+4=0显然平行;若直线l1与直线l2平行,则有:211aa=+,解之得:a=1 or a=﹣2.所以为充分不必要条件.【答案】A4.把函数y=cos2x+1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图像是【解析】把函数y =cos2x +1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)得:y 1=cos x +1,向左平移1个单位长度得:y 2=cos(x —1)+1,再向下平移1个单位长度得:y 3=cos(x —1).令x =0,得:y 3>0;x =12π+,得:y 3=0;观察即得答案. 【答案】B5.设a ,b 是两个非零向量.A .若|a +b |=|a |-|b |,则a ⊥bB .若a ⊥b ,则|a +b |=|a |-|b |C .若|a +b |=|a |-|b |,则存在实数λ,使得a =λbD .若存在实数λ,使得a =λb ,则|a +b |=|a |-|b |【解析】利用排除法可得选项C 是正确的,∵|a +b |=|a |-|b |,则a ,b 共线,即存在实 数λ,使得a =λb .如选项A :|a +b |=|a |-|b |时,a ,b 可为异向的共线向量;选项B :若a ⊥b ,由正方形得|a +b |=|a |-|b |不成立;选项D :若存在实数λ,使得a =λb ,a ,b 可为同向的共线向量,此时显然|a +b |=|a |-|b |不成立. 【答案】C6.若从1,2,2,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有A .60种B .63种C .65种D .66种 【解析】1,2,2,…,9这9个整数中有5个奇数,4个偶数.要想同时取4个不同的数其和为偶数,则取法有: 4个都是偶数:1种;2个偶数,2个奇数:225460C C =种; 4个都是奇数:455C =种. ∴不同的取法共有66种. 【答案】D7.设S n 是公差为d (d ≠0)的无穷等差数列{a n }的前n 项和,则下列命题错误..的是 A .若d <0,则数列{S n }有最大项 B .若数列{S n }有最大项,则d <0C .若数列{S n }是递增数列,则对任意的n ∈N*,均有S n >0D .若对任意的n ∈N*,均有S n >0,则数列{S n }是递增数列【解析】选项C 显然是错的,举出反例:—1,0,1,2,3,….满足数列{S n }是递增数列,但是S n >0不成立. 【答案】C8.如图,F 1,F 2分别是双曲线C :22221x y a b-=(a ,b >0)的左右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平分线与x 轴交于点M .若|MF 2|=|F 1F 2|,则C 的离心率是 ABCD【解析】如图:|OB |=b ,|O F 1|=c .∴k PQ =bc,k MN =﹣b c.直线PQ 为:y =b c (x +c ),两条渐近线为:y =b a x .由()b y x c cb y xa ⎧⎪⎪⎨⎪⎪⎩=+=,得:Q (ac c a -,bc c a -);由()b y x c c b y xa ⎧⎪⎪⎨⎪⎪⎩=+=-,得:P (ac c a -+,bc c a +).∴直线MN 为:y -bc c a +=﹣b c (x -ac c a -+),令y =0得:x M =322c c a -.又∵|MF 2|=|F 1F 2|=2c ,∴3c =x M =322c c a -,解之得:2232a c e a==,即e. 【答案】B9.设a >0,b >0.A .若2223a b a b +=+,则a >bB .若2223a b a b +=+,则a <bC .若2223a b a b -=-,则a >bD .若2223a b a b -=-,则a <b【解析】若2223a b a b +=+,必有2222a ba b +>+.构造函数:()22x f x x =+,则()2ln 220x f x '=⋅+>恒成立,故有函数()22x f x x =+在x >0上单调递增,即a >b 成立.其余选项用同样方法排除. 【答案】A10.已知矩形ABCD ,AB =1,BC ∆ABD 沿矩形的对角线BD 所在的直线进行翻着,在翻着过程中,A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直【解析】最简单的方法是取一长方形动手按照其要求进行翻着,观察在翻着过程,即可知选项C 是正确的. 【答案】C绝密★考试结束前2019年普通高等学校招生全国同一考试(浙江卷)数 学(理科) 非选择题部分(共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上.2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑.二、填空题:本大题共7小题,每小题4分,共28分. 11.已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于___________cm 3.【解析】观察三视图知该三棱锥的底面为一直角三角 形,右侧面也是一直角三角形.故体积等于11312123⨯⨯⨯⨯=. 【答案】112.若程序框图如图所示,则该程序运行后输出的值是______________. 【解析】T ,i 关系如下图:【答案】112013.设公比为q (q >0)的等比数列{a n }的前n 项和为{S n }.若2232S a =+,4432S a =+,则q =______________.【解析】将2232S a =+,4432S a =+两个式子全部转化成用1a ,q 表示的式子. 即111233111113232a a q a q a a q a q a q a q +=+⎧⎨+++=+⎩,两式作差得:2321113(1)a q a q a q q +=-,即:2230q q --=,解之得:312q or q ==-(舍去). 【答案】3214.若将函数()5f x x =表示为()()()()250125111f x a a x a x a x =+++++++其中0a ,1a ,2a ,…,5a 为实数,则3a =______________. 【解析】法一:由等式两边对应项系数相等.即:545543315544310100a C a a a C a C a a =⎧⎪+=⇒=⎨⎪++=⎩. 法二:对等式:()()()()2550125111f x x a a x a x a x ==+++++++两边连续对x 求导三次得:2234560624(1)60(1)x a a x a x =++++,再运用赋值法,令1x =-得:3606a =,即310a =.【答案】1015.在∆ABC 中,M 是BC 的中点,AM =3,BC =10,则AB AC ⋅=______________. 【解析】此题最适合的方法是特例法.假设∆ABC 是以AB =AC 的等腰三角形,如图, AM =3,BC =10,AB =ACcos ∠BAC =3434102923434+-=⨯.AB AC ⋅=cos 29AB AC BAC ⋅∠=【答案】2916.定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离.已知曲线C 1:y =x 2+a 到直线l :y =x 的距离等于C 2:x 2+(y +4) 2 =2到直线l :y =x 的距离, 则实数a =______________.【解析】C 2:x 2+(y +4) 2 =2,圆心(0,—4),圆心到直线l :y =x的距离为:d ==C 2到直线l :y =x 的距离为d d r d '=-=另一方面:曲线C 1:y =x 2+a ,令20y x '==,得:12x =,曲线C 1:y =x 2+a 到直线l :y =x 的距离的点为(12,14a +),74d a '===⇒=. 【答案】7417.设a ∈R ,若x >0时均有[(a -1)x -1]( x 2-ax -1)≥0,则a =______________. 【解析】本题按照一般思路,则可分为一下两种情况: (A )2(1)1010a x x ax ≤⎧⎨≤⎩----, 无解; (B )2(1)1010a x x ax ≥⎧⎨≥⎩----, 无解. 因为受到经验的影响,会认为本题可能是错题或者解不出本题.其实在x >0的整个区间上,我们可以将其分成两个区间(为什么是两个?),在各自的区间内恒正或恒负.(如下答图) 我们知道:函数y 1=(a -1)x -1,y 2=x 2-ax -1都过定点P (0,1). 考查函数y 1=(a -1)x -1:令y =0,得M (11a -,0),还可分析得:a >1; 考查函数y 2=x 2-ax -1:显然过点M (11a -,0),代入得:211011a a a ⎛⎫--= ⎪--⎝⎭,解之得:a =,舍去a =a =【答案】a =三、解答题:本大题共5小题,共72分,解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分14分)在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin Bcos C . (Ⅰ)求tan C 的值;(Ⅱ)若a∆ABC 的面积.【解析】本题主要考察三角恒等变换,正弦定理,余弦定理及三角形面积求法等知识点。
2019年浙江省宁波市中考数学学业水平测试试卷附解析
2019年浙江省宁波市中考数学学业水平测试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,在A 、B 两座工厂之间要修建一条笔直的公路,从A 地测得B 地的走向是南偏东52°,现A 、B 两地要同时开工,若干天后公路准确对接,则B 地所修公路的走向应该是( )A .北偏西52°B .南偏东52°C .西偏北52°D .北偏西38°2.如图,用两根等长的钢条AC 和BD 交叉构成一个卡钳,可以用来测量工作内槽的宽度.设OA OB m OC OD ==,且量得CD b =,则内槽的宽AB 等于( ) A .mb B .m bC .b mD .1b m + 3.下列各数不能..与 1,3,2,成比例的是( ) A .32 B .23 C .322 D .64.如图所示,P 为□ABCD 内任意一点,分别记△PAB ,△PBC ,△PCD ,△PDA 的面积为S 1,S 2,S 3,S 4,则有 ( )A .S 1=S 4B .S 1+S 2=S 3+S 4C .S 1+S 3=S 2+S 4D .以上都不对5.下列计算中,正确的有( )(4)(9)496-⋅-=--=(4)(9)496-⋅-==;225454541-=+-=222254541-=A .1个B .2个C .3个D .4个 6.-5<x <5的非正整数x 是( ) A .-1B .0C .-2,-1,0D .1,-1,0 7.已知反比例函数2y x=,下列结论中,不正确...的是( ) A .图象必经过点(12), B .y 随x 的增大而减少C .图象在第三象限内D .若1x >,则2y <8. 在△ABC 中,如果∠A —∠B= 90°,那么△ABC 是( )A .直角三角形B .钝角三角形C .锐角三角形D .锐角三角形或钝角三角形9.同时向空中掷两枚质地完全相同的硬币,则出现同时正面朝上的概率为( )A . 41B .31C .21 D .1 10.若448n =,则n 等于( ) A .2 B . 4 C . 6 D . 811.小王照镜子时,发现T 恤衫上英文为“”,则T 恤衫上的英文实际是( )A .APPLEB .AqqELC .ELqqAD .ELPPA 二、填空题12.如图,点D 在以AC 为直径的⊙O 上,如果∠BDC=20°,那么∠ACB=________.13.如图,在⊙O 中,AB ∥CD ,则 = .BD (只需填一组相等的量即可).14.如图:矩形纸片ABCD ,AB=2,点E 在BC 上,且AE=EC .若将纸片沿AE 折叠,点B 恰好落在AC 上,则AC 的长是 .15.判断下列语句是否是命题(是的打“√”,不是的打“×”)(1)5<2. ( )(2)两个锐角之和大于直角. ( )(3)你能列举出100个命题吗? ( )(4)如果明天是星期二,那么今天是星期一. ( )(5)延长线段AB 到C ,使AC=2AB . ( )(6)三角形的三个内角的和等于l80°. ( )(7)两点确定一条直线. ( )16.已知点(32)M -,,将它先向左平移4个单位,再向上平移3个单位后得到点N ,则点N 的坐标是 .17.请指出下列问题哪些是普查,哪些是抽样调查.(1)为了解你所在学校的八年级所有学生完成作业的情况,对你全班所有学生进行调查;(2)为了解你所在班级学生的家庭收入情况,对你全班所有女生进行调查;(3)为了解你所在班级学生的体重情况,对你全班所有学生进行调查.18.如图,以直角三角形中未知边为边长的正方形的面积为.19.已知方程组3523x yy x=-⎧⎨=+⎩,用代入法消去x,可得方程.(不必化简).三、解答题20.一个口袋中有10个红球和若干个白球,请通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程.实验中总共摸了200次,其中有50次摸到红球.21.如图,在直角坐标系中,P是第一象限的点,其坐标是(3,y),且OP与x轴的正半轴的夹角α的正切值是43,求(1)y的值;(2)角α的正弦值.22.在如图的网格中有一个格点三角形ABC,请在图中画一个与△ABC•相似且相似比不等于1的格点三角形.BAC23.如图,已知 AB 是的直径,CD是弦,AE⊥CD,垂足为点 E,BF⊥CD,垂足为点 F,且AE= 3 cm,BF= 5 cm,若⊙O的半径为 5 cm,求 CD 的长.24.在某一电路中,保持电压不变,电流I(安培)与电阻R(欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培.(1)求I与R之间的函数关系式;(2)当电流I=0.5安培时,求电阻R的值.(1)I=10R ,(2)R=20欧姆.25.如图,已知反比例函数8yx=-和一次函数2y x=-+的图象交于A、B两点,求:(1)A、B 两点的坐标;(2)若O为坐标原点,求△AOB 的面积.26.如图,已知 BE⊥AD,CF⊥AD,且BE=CF. 请你判断 AD是△ABC的中线还是角平分线?并说明理由.27.在菱形ABCD中,∠A与∠B的度数比为1:2,周长是48cm.求:(1)两条对角线的长度;(2)菱形的面积.28.说出下列命题是假命题的理由:(1)同位角相等;(2)三角形的一个外角大于任何一个内角.29.某工厂2005年产品销售额为a万元,2006年、2007年平均每年的销售额增长m%,每年成本均为该年销售额的65%,税额和其他费用合计为该年销售额的15%.(1)用含a,m的代数式表示该工厂2006年、2007年的年利润;(2)若a=100万,m=10,则该工厂2007年的年利润为多少万元?30.如图所示,△ABC经相似变换后所得的像是△DEF.(1)线段AB与DE,AC与DF,BC与EF的大小关系如何?(2)∠A与∠D,∠B8与∠E,∠C与∠F的大小关系如何?(3)变换后所得的图形周长是原图形周长的多少倍?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.A3.D4.C5.A6.C7.B8.B9.A10.C11.A二、填空题12.70度13.⌒AC =⌒BD14.415.(1)√(2) √ (3)× (4)√ (5)× (6)√ (7) √16.(11)-, 17.(1)抽样调查;(2)抽样调查;(3)普查18.10019.2(35)3y y =-+三、解答题20.解法一:设口袋中有x 个白球, 由题意,得200501010=+x , 解得x =30. 答:口袋中约有30个白球.解法二:∵P (50次摸到红球)=4120050=,∴10÷41=40 .∴ 40-10=30 . 答:口袋中大约有30个白球. 21.(1)4;(2)54. 22.略23.过点O 作OG ⊥CD 于G ,连结 OC .∵OG 平分 CD ,即OG=GD ,∵AE ⊥CD ,BF ⊥CD ,OG ⊥CD ,∴AE ∥OG ∥BF ,∴OG 是梯形 AEFB 的中位线,11()(35)422OG AE BF =+=+=cm ,∴在 Rt △OCG 中,22543GC =-=, ∴CD= 2CG= 2×3 = 6cm.24.25.(1)由28y x y x =-+⎧⎪⎨=-⎪⎩得2280x x --=,解得:x 1 = 4,x 2 =-2 x 1 = 4时,y 1 =-2;x 2 =--2 时,y 2 =4,∴A 、B 坐标分别是(4,一2)和(—2,4).(2)设直线 AB 与 x 轴交于C.则点 C 的坐标为(2,0).112422622AOB AOC OBC s S s ∆∆∆=+==⨯⨯+⨯⨯=.26.中线,理由略27.(1)12cm ,123cm ;(2)723cm 228.(1)如图∠1与∠2是同位角,但∠1≠∠2;(2)90°的外角与它相邻的内角29.(1)2006年:%)1(2.0m a +;2007年:%)1(2.0m a +2;(2)24.2.30.(1)AB=12DE ,AC=12DF ,BC=12EF ;(2)∠A=∠D ,∠B=∠E ,∠C=∠F ;(3)2倍。
2019年高考数学(理)浙江卷试题含答案WORD精校版.docx
2019 年普通高等学校招生全国统一考试(浙江卷)数学一、选择题:本大题共10 小题,每小题 4 分,共 40 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U1,0,1,2,3,集合A0,1,2, B1,0,1,则Cu A B=A .1B .0,1C.1,2,3D.1,0,1,32.渐近线方程为x±y=0 的双曲线的离心率是2B . 1C.2D. 2A .2x3y403.若实数 x, y 满足约束条件3x y40 ,则z=3 x+2y的最大值是x y0A .1B . 1C. 10 D .124.祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V 柱体 =Sh,其中 S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位: cm),则该柱体的体积(单位:cm3)是A .158B .162C.182D. 3245.若 a>0 ,b>0 ,则“ a+b≤ 4”是“ ab≤ 4”的A .充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.在同一直角坐标系中,函数y = 1x, y=log a(x+1)(a>0 ,且 a≠1)的图象可能是a27.设 0< a< 1,则随机变量X 的分布列是则当 a 在( 0,1)内增大时,A .D (X)增大B .D( X)减小C.D ( X)先增大后减小 D .D( X)先减小后增大8.设三棱锥V–ABC 的底面是正三角形,侧棱长均相等,P 是棱 VA 上的点(不含端点).记直线PB 与直线 AC 所成的角为α,直线PB与平面ABC所成的角为β,二面角P–AC–B 的平面角为γ,则A .β<γ,α<γB .β<α,β<γC.β<α,γ<αD .α<β,γ<βx, x09.已知a,b R ,函数 f (x)1x31(a1)x2ax, x.若函数 y f ( x)ax b 恰有3个零点,032则A . a<–1, b<0B .a<–1, b>0C.a>–1, b<0D. a>–1, b>0 10.设 a,b∈R,数列 { a n} 满足 a1 =a, a n+1=a n2+b,b N ,则1时, a101时, a1010D .当 b=–4A .当 b= 2>10B .当 b= 4>10C.当 b=–2 时, a >10时, a10>10二、填空题:本大题共7 小题,多空题每题 6 分,单空题每题 4 分,共 36 分。
2019年浙江省宁波市普通高中自主招生数学试卷
2019年浙江省宁波市普通高中自主招生数学试卷一、选择题(每小题5分,共25分)1.(5分)用一排6盏灯的亮与不亮来表示数,已知如图分别表示了数1~5,则●〇〇●●〇表示的数是()A.23B.24C.25D.262.(5分)用11个相同的正方体堆积如图,在①②③④四个正方体中随机拿掉两个,结果左视图不变的概率是()A.B.C.D.3.(5分)如图入口进入,沿框内问题的正确判断方问,最后到达的是()A.甲B.乙C.丙D.丁4.(5分)三个关于x的方程:a1(x+1)(x﹣2)=1,a2(x+1)(x﹣2)=1,a3(x+1)(x ﹣2)=1,已知常数a1>a2>a3>0,若x1、x2、x3分别是按上顺序对应三个方程的正根,则下列判断正确的是()A.x1<x2<x3B.x1>x2>x3C.x1=x2=x3D.不能确定x1、x2、x3的大小5.(5分)如图正方形ABCD的顶点A在第二象限图象上,点B、点C分别在x轴、y 轴负半轴上,点D在第一象限直线y=x的图象上,若,则k的值为()A.﹣1B.C.D.﹣2二、填空题(每小题5分,共20分)6.(5分)关于x的不等式组有且只有四个整数解,则a的取值范围是.7.(5分)如图,矩形ABCD中分割出①②③三个等腰直角三角形,若已知EF的值,则可确定其中两个三角形的周长之差,这两个三角形的序号是.8.(5分)如图,△ABC中,MN∥BC交AB、AC于M、N,MN与△ABC内切圆相切,若△ABC周长为12,设BC=x,MN=y,则y与x的函数解析式为(不要求写自变量x的取值范围).9.(5分)平面直角坐标系中,⊙O交x轴正负半轴于点A、B,点P为⊙O外y轴正半轴上一点,C为第三象限内⊙O上一点,PH⊥CB交CB延长线于点H,已知∠BPH=2∠BPO,PH=15,CH=24,则tan∠BAC的值为.三、解答题(每小题15分,共30分)10.(15分)x、y是一个函数的两个变量,若当a≤x≤b时,有a≤y≤b(a<b),则称此函数为a≤x≤b上的闭函数.如y=﹣x+3,当x=1时y=2;当x=2时y=1,即当1≤x ≤2时,1≤y≤2,所以y=﹣x+3是1≤x≤2上的闭函数.(1)请说明是1≤x≤30上的闭函数;(2)已知二次函数y=x2+4x+k是t≤x≤﹣2上的闭函数,求k和t的值;(3)在(2)的情况下,设A为抛物线顶点,B为直线x=t上一点,C为抛物线与y轴的交点,若△ABC为等腰直角三角形,请直接写出它的腰长为.11.(15分)如图1,P为第象限内一点,过P、O两点的⊙M交x轴正半轴于点A,交y 轴正半轴于点B,∠OP A=45°.(1)求证:PO平分∠APB;(2)作OH⊥P A交弦P A于H.①若AH=2,OH+PB=8,求BP的长;②若BP=m,OH=n,把△POB沿y轴翻折,得到△P′OB(如图2),求AP′的长.。
2019年浙江省宁波市高中保送生考试【科学】试题及答案
宁波市2019年普通高中保送数学卷及答案
宁波市2019年普通高中保送生招生综合素质测试数学卷一.选择题(每小题5分,共25分)1.用一排6盏灯的亮与不亮表示数,已知如图分别表示1~5,则●○○●●○表示的数是A.23 B.24 C.25 D.262.用11个相同的正方体堆积如图,在①②③④四个正方体中随机拿掉两个,结果左视图不变的概率是A.56B.23C.12D.133.按下图入口进入,沿框内问题的正确判断方向,最后到达的是“两条对角线分别平分两组对角的四边形是菱形”是否真命题“有两边及第三边上的高对应相等的两个三角形全等”是否真命题丁乙丙甲A.甲B.乙C.丙D.丁4.三个关于x的方程1(1)(2)1a x x+-=、2(1)(2)1a x x+-=、3(1)(2)1a x x+-=,已知常数123a a a>>>,若123,,x x x分别是按上述顺序对应方程的正根,则下列判断正确的是A.123x x x<<B.123x x x>>C.123x x x==D.不能确定123,,x x x的大小5.如图正方形ABCD的顶点A在第二象限kyx=图像上,点B、C分别在x轴、y轴负半轴上,点D在第一象限y=x的图形上,若2=3S阴影则k的值为A.-1 B.43-C.53-D.-2●●●●●○1●●●●○●2●●●●○○3●●●○●●4●●●○●○5二.填空题(每小题5分,共20分)6.关于x 的不等式组2551132x a x x x +>⎧⎪--⎨≤-⎪⎩有且只有四个整数解,则a 的取值范围是 . 7.如图矩形ABCD 中分割出①②③三个等腰直角三角形,若已知EF 分值,则可确定其中两个三角形的周长之差,这两个三角形的序号是 .8.如图,△ABC 中MN ∥BC 交AB 、AC 于M 、N ,MN 与△ABC 内切圆相切,若△ABC 的周长为12,设BC =x ,MN =y ,则y 关于x 的函数解析式为 .(不要求写自变量x 范围)9.平面直角坐标系中,○O 交x 轴负半轴于点A 、B ,点P 为○O 外y 轴正半轴上一点,C 为第三象限内○O 上一点,PH ⊥CB 交CB 延长线于点H ,已知∠BPH =2∠BPO ,PH =15,CH =24,则tan ∠BAC 的值为 .三.简答题(每小题15分,共30分)10.x 、y 是一个函数的两个变量,若当a x b ≤≤时,有a y b ≤≤(a <b ),则称此函数为a x b ≤≤上的闭函数.如y =-x +3,当x =1时y =2;当x =2时y =1,即当12x ≤≤时,12y ≤≤,所以y =-x +3是12x ≤≤上的闭函数.(1)请说明30y x=是130x ≤≤上的闭函数.M F BC D A G E AC B N①②③(2)已知二次函数24y x x k =++是2t x ≤≤-上的闭函数,求k 和t 的值.(3)在(2)的情况下,设A 为抛物线顶点,B 是直线x =t 上一点,C 为y 轴上一点,若△ABC 为等腰直角三角形,请直接写出它的腰长为 .11.如图(1),P 为第一象限内一点,过P 、O 两点的○M 交x 轴正半轴于点A ,交y 轴正半轴于点B ,∠OP A =45°.(1.)求证:PO 平分∠APB .(2)作OH ⊥P A 交弦P A 于H .①若AH =2,OH +PB =8,求BP 的长.②若BP =m ,OH =n ,把△POB 沿y 轴翻折,得到△'P OB (如图2),求'AP 的长.答案:。
浙江省宁波市2019年高考模拟考试卷理数
宁波市2019年高考模拟考试数学(理科)试卷本试题卷分选择题和非选择题两部分.全卷共4页, 选择题部分1至2页, 非选择题部分3至4页.满分150分, 考试时间120分钟.请考生按规定用笔将所有试题的答案涂、写在答题纸上.第Ⅰ卷(选择题部分 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合M ={x |1122x -<<},N ={x | x 2 ≤ x },则M ∩N = (A )1[1,)2- (B )1(,1]2- (C )1[0,)2(D )1(,0]2-2.设a >1>b >0,则下列不等式中正确的是(A )(-a )7<(-a )9 (B )b - 9<b - 7 (C )11lg lg a b > (D )11ln ln a b>3.已知R α∈,cos 3sin αα+=,则tan2α= (A )43 (B )34 (C )34- (D )43-4.若某程序框图如图所示,则输出的n 的值是 (A )3 (B )4 (C )5 (D )6 5.设,m n 是两条不同的直线,,αβ是两个不同的平面, 则下列命题中正确..的是 (A )若//,m n αβ⊥且αβ⊥,则m n ⊥ (B )若,m n αβ⊥⊥且m n ⊥,则αβ⊥ (C )若/,/n m αβ⊥且n β⊥,则//m α (D )若,m n αβ⊂⊂且//m n ,则//αβ 6.已知某锥体的三视图(单位:cm )如图所示,则该锥体的体积为 (A )23cm (B )43cm(C )63cm (D )83cm 7.251(1)(2)x x--的展开式的常数项是 (A )48 (B )﹣48 (C )112 (D )﹣1128.袋子里有3颗白球,4颗黑球,5颗红球.由甲、乙、丙三人依次各抽取一个球,抽取后不放回.若每颗球被抽到的机会均等,则甲、乙、丙三人所得之球颜色互异的概率是 (A )14 (B )13 (C )27 (D )3119.已知实系数二次函数()f x 和()g x 的图像均是开口向上的抛物线,且()f x 和()g x 均有两个不同的零点.则“()f x 和()g x 恰有一个共同的零点”是“()()f x g x +有两个不同的零点”的 (A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件(D )既不充分也不必要条件10.设F 1、F 2是椭圆Γ的两个焦点,S 是以F 1为中心的正方形,则S 的四个顶点中能落在椭圆Γ上(第4题图)(第6题图)正视图侧视图俯视图的个数最多有(S 的各边可以不与Γ的对称轴平行)(A )1个 (B )2个 (C )3个 (D )4个第Ⅱ卷(非选择题部分 共100分)二、填空题:本大题共7小题, 每小题4分, 共28分. 11.已知复数z 满足22z z +-= i (其中i 是虚数单位),则z = ▲ . 12.设25z x y =+,其中实数,x y 满足68x y ≤+≤且20x y -≤-≤,则z 的取值范围是 ▲ .13.已知抛物线23x y =上两点,A B 的横坐标恰是方程2510x x ++=的两个实根,则直线AB 的方程是 ▲ .14.口袋中装有大小质地都相同、编号为1,2,3,4,5,6的球各一只.现从中一次性随机地取出两个球,设取出的两球中较小的编号为X ,则随机变量X 的数学期望是 ▲ .15.已知直线10x y --=及直线50x y --=截圆C 所得的弦长均为10,则圆C 的面积是 ▲ .16.在△ABC 中,∠C=90︒,点M 满足3BM MC =,则sin ∠BAM 的最大值是 ▲ .17.已知点O 是△ABC 的外接圆圆心,且AB=3,AC=4.若存在非零实数....x 、y ,使得AO x AB y AC =+,且21x y +=,则cos ∠BAC = ▲ .三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤. 18.(本题满分14分) 在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,且sin 5B c =,11cos 14B =.(I )求角A 的大小;(II )设BC 边的中点为D ,AD =ABC ∆的面积.19.(本小题满分14分)设等差数列{}n a 的前n 项和为n S ,且248,40a S ==.数列{}n b 的前n 项和为n T ,且230n n T b -+=,n N *∈. (I )求数列{}n a ,{}n b 的通项公式;(II )设⎩⎨⎧=为偶数为奇数n b n a c n n n , 求数列{}n c 的前n 项和n P .20.(本题满分15分)如图所示,PA ⊥平面ABCD ,△ABC 为等边三角形,PA AB =,AC ⊥CD ,M 为AC 中点.(I )证明:BM ∥平面PCD ;(II )若PD 与平面PAC 所成角的正切值,求二面角C -PD -M 的正切值.PABCDM(第20题图)21.(本题满分15分)已知椭圆Γ:22221(0)x y a b a b +=>>的离心率为12,其右焦点F 与椭圆Γ的左顶点的距离是3.两条直线12,l l 交于点F ,其斜率12,k k 满足1234k k =-.设1l 交椭圆Γ于A 、C两点,2l 交椭圆Γ于B 、D 两点. (I )求椭圆Γ的方程;(II )写出线段AC 的长AC 关于1k 的函数表达式,并求四边形ABCD 面积S 的最大值.22.(本题满分14分)已知R λ∈,函数(1)()ln 1x f x x x λλ-=-+-,其中[1,)x ∈+∞.(Ⅰ)当2λ=时,求()f x 的最小值;(Ⅱ)在函数ln y x =的图像上取点(,ln )n P n n ()n N *∈,记线段P n P n +1的斜率为k n ,12111n nS k k k =+++.对任意正整数n ,试证明: (ⅰ)(2)2n n n S +<; (ⅱ)(35)6n n n S +>.宁波市2019年高考模拟试卷数学(理科)参考答案说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容制订相应的评分细则.二、对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容与难度,可视影响的程度决定后续部分的给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.选择题和填空题不给中间分.一、选择题:本题考查基本知识和基本运算。
2019年普通高等学校招生全国统一考试数学试题卷浙江卷(附带答案及详细解析)
绝密★启用前2019年普通高等学校招生全国统一考试浙江卷数学 试题卷本试卷共5页,23题(含选考题)。
全卷满分150分。
考试用时120 分钟。
★祝考试顺利★注意事项:1.答题前, 先将白己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在 答题卡上的指定位置。
2. 选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写 在试卷、草稿纸和答题卡上的非答题区域均无效。
3. 非选择题的作答:用黑色签字笔直接答在答题卡.上对应的答题区域内。
写在试卷、草稿纸 和答题卡,上的非答题区域均无效。
4.选考题的作答: 先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答 题卡.上对应的答题区域内,写在试卷、草稿纸和答题卡.上的非答题区域均无效。
.5.考试结束后, 请将本试卷和答题卡-并上交。
一、选择题:本大题共10小题,每小题4分,共40分。
(共10题;共40分) 1.已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则 ∁U A ∩B =( )A. {-1}B. {0,1}C. {-1,2,3}D. {-1,0,1,3} 2.渐近线方程为x±y=0的双曲线的离心率是( ) A. √22B. 1C. √2D. 2 3.若实数x ,y 满足约束条件 {x −3y +4≥03x −y −4≤0x +y ≥0,则z=3x+2y 的最大值是( ) A. -1 B. 1 C. 10 D. 124.祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=sh,其中s是柱体的底面积,h是柱体的高。
若某柱体的三视图如图所示,则该柱体的体积是()A. 158B. 162C. 182D. 325.若a>0,b>0,则“a+b≤4“是“ab≤4”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件6.在同一直角坐标系中,函数y= 1a ,y=log a(x+ 12),(a>0且a≠1)的图像可能是()A. B.C. D.7.设0<a<1随机变量X的分布列是则当a在(0,1)内增大时()A. D(X)增大B. D(X)减小C. D(X)先增大后减小D. D(X)先减小后增大8.设三棱锥V-ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点,(不含端点),记直线PB与直线AC所成角为α.直线PB与平面ABC所成角为β.二面角P-AC-B的平面角为γ。
2019年宁波市理综word资料10页
2019年宁波市高三“十校联考”理科综合能力测试试题说明:命题学校:效实中学奉化中学1、本试卷分选择题和非选择题两部分,共300分,考试时间150分钟。
2、请将答案全部填写在答题卡上。
选择题部分共20小题,每小题6分,共120分。
相对原子质量(原子量):H-1 N-14 O-16 S-32一、选择题(本题共17小题。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下表是人体成熟红细胞中与血浆中的K+和Mg2+在不同条件下的含量比较,据表分析不.正确..是()A.鱼滕酮对K+的载体的生理功能有抑制作用,也抑制了Mg2+载体的生理功能B.鱼滕酮可能是通过抑制红细胞的需氧呼吸,从而影响K+和Mg2+的运输C.乌本苷抑制K+的载体的生理功能而不影响Mg2+的载体的生理功能D.正常情况下血浆中K+和Mg2+均通过主动运输进入红细胞2.英国科学家利用生物工程技术,发明了一种名为“我的皮肤”的生物活性绷带,为皮肤烧伤病人带来福音。
该活性绷带的原理是先采集一些细胞逐渐“释放”到伤口处,并促进新生皮肤层生长,达到愈合伤口的目的。
下列有关叙述中,不正确...的是()A.人的皮肤烧伤后容易引起感染,主要是由于非特异性免疫机能受损导致的B.种植在膜片上细胞样本最好选择来自本人的干细胞C.膜片能否将细胞顺利“释放”到伤口与患者自身皮肤愈合,与两者细胞膜上的糖蛋白有关D.若采用异体皮肤移植会导致排导反应,主要是由于机体特意性免疫产生相应的抗体对移植皮肤细胞的杀伤作用导致的3. 现有甲、乙两种植株(均为二倍体纯种),其中甲种植株的光合作用能力高于乙的植株,但乙种植株很适宜在盐碱地种植。
要利用甲、乙两植株各自优势,培育出高产、耐盐的植株,有多种生物技术手段可以利用。
下列所采用的技术手段中不可行的是()A.利用植物体细胞杂交技术,可获得满足要求的四倍体杂种目的植株B.将乙种植株耐盐基因导入到甲种植株的受精卵中,可培育出目的植株C.两种植株杂交后,得到的F1再利用单倍体育种技术可较快获得纯种的植株D.诱导两植株的花粉融合并培育成幼苗,后用秋水仙素处理,可培育出目的植株4.伦敦大学医学院成功对一对丈夫家族有乳腺病发史的夫妇的后代进行胚胎筛选,并排除了后代携带致癌基因的隐患。
1904宁波市数学试卷
.
12.已知 (1+
1)(1− 2x)7 x
=
1 x
+
a0
ห้องสมุดไป่ตู้
+
a1x
+
a2 x2
+
a7 x7 ,则 a2 =
;a0 + a1 + + a7 =
.
13.已知随机变量 X 的分布列如下表:
X
−1
0
1
P
1
5 − 5b
b2
3
43
则b =
; EX =
.
14.已知函数 f (x) = 2sin(x +)( 0, ) 图象的相邻两条对称轴之间的距离为 ,将
2
2
f (x) 的图象向左平移 个单位长度后,得到函数 g(x) 的图象.若函数 g(x) 为偶函数,则 3
的值为
,此时函数 f (x) 在区间 (0, ) 上的值域是
.
3
15.戊戌年结束,己亥年伊始,小康,小梁,小谭,小杨,小刘,小林六人分成四组,其中两个
组各 2 人,另两个组各 1 人,分别奔赴西南联大,西北联大,金陵大学,燕京大学参加演讲,
宁波市 2019 年高考模拟考试数学试卷
一、选择题:本大题共 10 小题,每小题 4 分,共 40 分.在每小题给出的四个选项中,只有一 项是符合题目要求的.
1.已知集合 A = x 0 x 7 , B = x x2 − 8x + 7 0 ,则 A B = ( )
A.[0,1]
B.{7}
则不同的分配方案有
种(用数字作答).
2x − y + 2 0
16.若变量
x,
2019年浙江省宁波市中考数学试卷(,无答案)
2019年浙江省宁波市中考数学试卷(word版,无答案)一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1.(4分)﹣2的绝对值为()A.﹣B.2 C.D.﹣2 2.(4分)下列计算正确的是()A.a3+a2=a5B.a3•a2=a6C.(a2)3=a5D.a6÷a2=a4 3.(4分)宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资为1526000000元人民币.数1526000000用科学记数法表示为()A.1.526×108B.15.26×108C.1.526×109D.1.526×1010 4.(4分)若分式有意义,则x的取值范围是()A.x>2 B.x≠2C.x≠0D.x≠﹣2 5.(4分)如图,下列关于物体的主视图画法正确的是()A.B.C.D.6.(4分)不等式>x的解为()A.x<1 B.x<﹣1 C.x>1 D.x>﹣1 7.(4分)能说明命题“关于x的方程x2﹣4x+m=0一定有实数根”是假命题的反例为()A.m=﹣1 B.m=0 C.m=4 D.m=5 8.(4分)去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数(单位:千克)及方差S2(单位:千克2)如表所示:甲乙丙丁24 24 23 20S2 2.1 1.9 2 1.9今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是()A.甲B.乙C.丙D.丁9.(4分)已知直线m∥n,将一块含45°角的直角三角板ABC按如图方式放置,其中斜边BC与直线n交于点D.若∠1=25°,则∠2的度数为()A.60°B.65°C.70°D.75°10.(4分)如图所示,矩形纸片ABCD中,AD=6cm,把它分割成正方形纸片ABFE和矩形纸片EFCD后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB的长为()A.3.5cm B.4cm C.4.5cm D.5cm 11.(4分)小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下()A.31元B.30元C.25元D.19元12.(4分)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和二、填空题(每小题4分,共24分)13.(4分)请写出一个小于4的无理数:.14.(4分)分解因式:x2+xy=.15.(4分)袋中装有除颜色外其余均相同的5个红球和3个白球.从袋中任意摸出一个球,则摸出的球是红球的概率为.16.(4分)如图,某海防哨所O发现在它的西北方向,距离哨所400米的A处有一艘船向正东方向航行,航行一段时间后到达哨所北偏东60°方向的B处,则此时这艘船与哨所的距离OB约为米.(精确到1米,参考数据:≈1.414,≈1.732)17.(4分)如图,Rt△ABC中,∠C=90°,AC=12,点D在边BC 上,CD=5,BD=13.点P是线段AD上一动点,当半径为6的⊙P与△ABC的一边相切时,AP的长为.18.(4分)如图,过原点的直线与反比例函数y=(k>0)的图象交于A,B两点,点A在第一象限.点C在x轴正半轴上,连结AC交反比例函数图象于点D.AE为∠BAC的平分线,过点B作AE的垂线,垂足为E,连结DE.若AC=3DC,△ADE的面积为8,则k的值为.三、解答题(本大题有8小题,共78分)19.(6分)先化简,再求值:(x﹣2)(x+2)﹣x(x﹣1),其中x=3.20.(8分)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有5个小等边三角形已涂上阴影,请在余下的空白小等边三角形中,按下列要求选取一个涂上阴影:(1)使得6个阴影小等边三角形组成一个轴对称图形.(2)使得6个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)21.(8分)今年5月15日,亚洲文明对话大会在北京开幕.为了增进学生对亚洲文化的了解,某学校开展了相关知识的宣传教育活动.为了解这次宣传活动的效果,学校从全校1200名学生中随机抽取100名学生进行知识测试(测试满分100分,得分均为整数),并根据这100人的测试成绩,制作了如下统计图表.100名学生知识测试成绩的频数表成绩a(分)频数(人)50≤a<60 1060≤a<70 1570≤a<80 m80≤a<90 4090≤a≤10015由图表中给出的信息回答下列问题:(1)m=,并补全频数直方图;(2)小明在这次测试中成绩为85分,你认为85分一定是这100名学生知识测试成绩的中位数吗?请简要说明理由;(3)如果80分以上(包括80分)为优秀,请估计全校1200名学生中成绩优秀的人数.22.(10分)如图,已知二次函数y=x2+ax+3的图象经过点P(﹣2,3).(1)求a的值和图象的顶点坐标.(2)点Q(m,n)在该二次函数图象上.①当m=2时,求n的值;②若点Q到y轴的距离小于2,请根据图象直接写出n的取值范围.23.(10分)如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.24.(10分)某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车.小聪周末到该风景区游玩,上午7:40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林.离入口处的路程y(米)与时间x(分)的函数关系如图2所示.(1)求第一班车离入口处的路程y(米)与时间x(分)的函数表达式.(2)求第一班车从入口处到达塔林所需的时间.(3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)25.(12分)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.26.(14分)如图1,⊙O经过等边△ABC的顶点A,C(圆心O在△ABC内),分别与AB,CB的延长线交于点D,E,连结DE,BF⊥EC交AE于点F.(1)求证:BD=BE.(2)当AF:EF=3:2,AC=6时,求AE的长.(3)设=x,tan∠DAE=y.①求y关于x的函数表达式;②如图2,连结OF,OB,若△AEC的面积是△OFB面积的10倍,求y的值.。
数学答案—宁波市二模20.05
1° (*)对任意 x (0, ) 有意义, a 0
9分
2° 若(*)对任意 x (0, ) 恒成立,则 0 a 1 .
高三数学 答案 7—6
特别地,在(*)中令 x 1 可得1 ln a 1 1 a 2+ ln a 1 2 0 .
a 1 a
a a 1
注意到 h(a) 2+ ln a 1 2 在 a (0, ) 单调增,且 h(1) 0 , a a 1
3
3 12 3 12
14. 4 ; y 2 10 x 5
15. 540
16. [1, 10]
8 17.
5
16.提示:设 m f x, 则 gm t .由 f x 图像知,要使得恰有三个零点,则方程
gm t 存在两个实根 m1, m2 ,满足1 m1 3, m2 3 或者1 m1 3, 2 m2 1,结 合 gx 的图像,得1 t 10 .
宁波市 2019 学年第二学期高考适应性考试参考答案
第Ⅰ卷(选择题共 40 分)
一、选择题:本大题共 10 小题,每小题 4 分,共 40 分.在每小题给出的四个选项中,只
有一项是符合题目要求的.杭州小姜小范小张提供
1. D 2. C 3. C 4. B 5. B 6.A 7.D 8. C 9. A 10. D
2t 2 2
2
代入 x2 y2 1 可得 4
x2 [tx 2(h t2 )]2 4 0
整理可得
(1 t2 )x2 4t(h t2 )x 4[(h t2 )2 1] 0
4分
7分 8分
依题意, 16t2 (h t2 )2 16(1 t2 )[(h t 2 )2 1] 0 ,
n 1)
n(n 1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宁波市2019年普通高中保送生招生综合素质测试试题卷
理科综合数学试题
考生须知:
1.数学有3个大题,11个小题,满分为75分。
2.答题时,选择題在对应的选项位置用2B 铅笔涂黑、涂满;非选择题必须使用黑色字迹钢笔或签字笔书写,答案必须按照题号顺序在答题卷各题目规定区域内作答,做在试题卷上或超岀答题区域书写的答案无效。
3.请将姓名、毕业学校、中考报名序号、试场号、座位号填写在规定位置上。
一、选择题(每小题5分,共25分)
1.用一排6盏灯的亮与不亮米表示数,已知如图分别表示了数1~5,则●○○●●○表示的数是
A.23
B.24
C.25
D.26
2.用11个相同的正方体堆积如图,在①②③④四个正方体中随机拿掉两个,结果左视图不变的概率是
A.65
B.32
C.21
D.3
1 3.按下图入口进入,沿框内问题的正确判断方问,最后到达的是
A.甲
B.乙
C.丙
D.丁
4.三个关丁x 的方程:()()()()()()1211211
21321=-+=-+=-+x x a x x a x x a ,,,已知常数0321>>>a a a ,若321x x x 、、分别是按上顺序对应三个方程的正根,则下列判断正确的是
A.321x x x <<
B.321x x x >>
C.321x x x ==
D.不能确定321x x x 、、的大小
5.如图正方形ABCD 的顶点A 在第二象限x k y =
图像上,点B 、点C 分别在x 轴、y 轴负半轴上,点D 在第一象限直线x y =的图像上,若3
2=阴影S ,则k 的值为
A.1-
B.34-
C.3
5- D.2- 二、填空题(每小题5分,共20分)
6.关于x 的不等式组⎪⎩⎪⎨⎧--≤-+1213
552x x x a x >有且只有四个整数解,则a 的取值范围是______. 7.如图矩形ABCD 中分割出①②③三个等腰直角三角形,若已知EF 的值,则可确定其中两个角形的周长之差,这两个三角形的序号是
________.
8.如图△ABC 中,MN ∥BC 交AB 、AC 于M 、N ,MN 与ΔABC 内切圆相切,若△ABC 周长为12,设BC=,x MN=,y 则y 与x 的函数解析式为__________(不要求写自变量x 的取值范围).
9.平面直角坐标系巾中,⊙O 交x 轴正负半轴于点A 、B ,点P 为⊙O 外y 轴正半轴上一点,C 为第三象限内⊙O 上一点,PH ⊥CB 交CB 延长线于点H ,已知∠BPH=2∠BPO ,P=15,CH=24,则tan ∠BAC 的值为_________.
三、解答题(每小题15分,共30分)
10.y x 、是一个函数的两个变量,若当b x a ≤≤时,有(),<b a b y a ≤≤则称此函数为
b x a ≤≤上的闭函数。
如,
3+-=x y 当1=x 时2=y ;当2=x 时1=y ,即当21≤≤x 时, ,21≤≤y 所以3+-=x y 是21≤≤x 上的闭函数。
(1)请说明x
y 30=是301≤≤x 上的闭函数; (2)已知二次函数k x x y ++=42是2-≤≤x t 上的闭函数,求k 和t 的值;
(3)在(2)的情况下,设A 为抛物线顶点,B 为直线t x =上一点,C 为y 轴上一点,若△ABC 为等腰直角三
角形,请直接写出它的腰长为______________.
11.如图1,P 为第象限内一点,过P 、O 两点的⊙M 交x 轴正半轴于点A ,交y 轴正半轴于点B ,∠OPA=45°.
(1)求证:PO 平分∠APB ;
(2)作OH ⊥PA 交弦PA 于H:
①若AH=2,OH+PB=8,求BP 的长;
②若BP=m ,OH=n ,把△POB 沿y 轴翻折,得到OB P '△(如图2),求'AP 的长。