基于FPGA的直接数字频率合成技术设计
基于FPGA的直接数字频率合成器
攀枝花学院专科毕业设计(论文)摘要摘要技术的实现依赖于高速、高性能的数字器件,选用现场可编程器件FPGA作为目标器件,可利用其高速、高性能及可重构性,根据需要方便地实现各种比较复杂的调频、调相和调幅功能。
本设计给出了基于FPGA芯片的直接数字频率合成器(DDS)的设计方法。
因为微电子技术的不断发展,开发者能很容易地将整个应用系统实现在一片FPGA 中,从而实现片上系统(SoC)。
因此,用FPGA实现DDS就有了更广泛的现实意义,并在现代通信系统中具有良好的实用性。
本设计在介绍DDS工作原理的基础上,运用EDA技术,使用FPGA来实现一个DDS,频率控制字和相位控制字由凌阳单片机来完成。
关键词:直接数字频率合成器,现场可编程门阵列(FPGA),相位累加器,数/模转换器,凌阳单片机I攀枝花学院专科毕业设计(论文)ABSTRACTABSTRACTThe realization of technology depends on the high-speed , high-performance digital device, select to use on-the-spot programming device FPGA as the goal device, it can utilize its high speed , high performance and can reconstructing,it last various complicated frequency modulation, last looks and amplitude modulation function according to need conveniently. Originally design the design method to provide direct digital frequency synthesizer (DDS ) based on FPGA chip. Because of the constant development of the microelectric technique, the developer can employ the system to realize in a slice of FPGA entirely very much easily , thus it is systematic (SoC ) to realize on slice. So realize with FPGA DDS have extensive realistic meaning , and have good practicability in the modern communication systems.Originally design on the basis of introduction DDS operation principle, use EDA technology , use FPGA to realize one DDS, frequency control word and phase place control word finish by Ling Yang one-chip computer.Keywords:Direct Digital Frequency Synthesizer, FPGA, Phase Addition, DAC,SPCE061A.II目录摘要 (Ⅰ)ABSTRACT (Ⅱ)1绪论 (1)1.1课题背景 (1)1.2发展方向 (1)2方案设计与论证 (2)2.1方案设计 (2)2.2方案论证 (2)3 模组简介 (3)3.1 凌阳单片机介绍 (3)3.1 .1凌阳单片机61板简介 (3)3.1.2 SPCE061A单片机简介 (4)3.2.现场可编程门阵列(FPGA)简介 (7)3.3 VHDL简介 (8)3.3.1概述 (8)3.3.2 HDL的种类 (9)3.3.3 VHDL语言开发环境和硬件平台 (10)3.3.4 VHDL 程序结构 (10)3.4DAC 0832及应用 (11)3.4.1 DAC的内部结构 (11)3.4.2 DAC 0832的基本工作方式 (12)3.5滤波电路 (14)3.5.1、初步定义 (14)3.5.2、有源滤波电路的分类 (14)3.5.3、一阶有源滤波电路 (15)3.5.4、二阶有源滤波电路 (16)3.6 DSP简介 (16)4 DDS的工作原理 (18)4.1 DDS基本原理 (18)4.2 DDS的FPGA实现设计 (18)5 系统软件设计 (21)5.1系统控制部分 (21)5.2 按键控制部份 (25)5.3调试 (26)6 结论 (28)参考文献 (29)附录:部分元器件清单 (30)致谢 (31)1 绪论1.1课题背景1971年,美国学者J.Tierncy、C.M.Reader和B..Gold提出了以全数字技术从相位概念出发直接合成所需波形的一种新的频率合成原理。
基于FPGA平台的数字频率合成器的设计和实现
基于FPGA平台的数字频率合成器的设计和实现数字频率合成技术是一种实现高精度频率合成的方法,具有广泛应用价值。
在数字频率合成中,FPGA是一种非常重要的平台,能够实现高速、高精度、可编程的数字频率合成。
本文将介绍基于FPGA平台的数字频率合成器的设计和实现。
一、FPGA简介FPGA是一种可以编程的数字集成电路,具有非常灵活的可编程性。
FPGA中包含了大量的逻辑单元、存储单元和输入输出接口,可以通过编程实现各种数字电路功能。
FPGA具有高速、高度集成、低功耗等优点,在数字电路的设计和实现中得到了广泛应用。
二、数字频率合成的基本原理数字频率合成是通过一组特定的频率合成器和相位加法器来合成所需要的频率。
首先,将参考频率和相位加法器连接起来,形成一个频率合成器。
然后,将输出频率与参考频率的比例进行数字控制,并将输出频率的相位与参考频率相位进行加法计算,最终输出要求的频率。
三、数字频率合成器的设计1. 参考频率生成模块参考频率生成模块是数字频率合成器的核心模块。
参考频率一般使用晶振作为输入信号,并通过频率除和锁相环等技术来产生高精度的参考频率。
在FPGA中,可以使用PLL、DCM等IP核来实现参考频率的生成。
2. 分频器分频器是将参考频率转化为所需的输出频率的模块,一般使用计数器实现。
在FPGA中,可以使用计数器IP核或使用Verilog等HDL语言来实现。
3. 相位加法器相位加法器用于将输出频率的相位和参考频率的相位相加。
在FPGA中,可以使用LUT(查找表)实现相位加法器。
4. 控制单元控制单元用于控制数字频率合成器的各个模块,并实现与外部设备的接口。
在FPGA中,可以使用微处理器或FPGA内部逻辑来实现控制单元。
四、数字频率合成器的实现数字频率合成器的实现需要进行数字电路设计和FPGA编程。
一般来说,可以采用Verilog或VHDL等硬件描述语言进行FPGA编程,实现各个模块的功能。
数字电路设计过程中,需要考虑到功耗、面积和时序等问题,同时需要进行仿真和验证。
基于FPGA的直接数字频率合成器的设计
第27卷第6期增刊 2006年6月仪 器 仪 表 学 报Chinese Journal of Scientific InstrumentVol.27No.6J une.2006 基于FPGA 的直接数字频率合成器的设计董国伟 李秋明 赵强 顾德英 汪晋宽(东北大学秦皇岛分校 秦皇岛 066004)摘 要 本文介绍了直接数字频率合成器(DDS )的基本组成及设计原理,给出了基于FP GA 的具体设计方案及编程实现方法。
仿真结果表明,该设计简单合理,使用灵活方便,具有良好的性价比。
关键词 直接数字频率合成器(DDS )FP GA 性价比Design of direct digital frequency synthesizer based on FPGADong Guowei Li Qiuming Zhao Qiang Gu Deying Wang Jinkuan(N ortheastern Universit y at Qinhuang dao ,Qinhuang dao 066004,China )Abstract The struct ure and principles of Direct Digital Frequency Synt hesizer is introduced.Also a detailed design and t he met hod of program realization based on FP GA are introduced.The result of simulation shows t hat t he design is simple and feasible ,convenient and flexible.Ratio for quality to price is high.K ey w ords direct digital frequency synt hesizer (DDS ) FP GA quality to price1 引 言直接数字频率合成器(简称DDS )是一种将直接合成所需波形的新的频率合成器,它具有频率分辨率高、相对带宽宽、转换速度快及相位噪声低的优点。
基于FPGA的直接数字频率合成器设计
基于FPGA的直接数字频率合成器设计王元华【摘要】本文将FPGA器件和DDS技术相结合,确定了FPGA器件的整体设计方案。
笔者利用FPGA器件规模大、设计灵活方便的特点,分析研究了用FPGA器件实现DDS系统的方法,并对其关键技术进行了优化处理,采用流水线结构的相位累加器设计和FPGA内嵌的波形存储器设计,在Quartus II软件中采用基于硬件描述语言(VHDL)的自顶向下的设计方法来完成仿真实验。
%Combining the FPGA device with the DDS technology,the design scheme of the FPGA device is described in this paper.The FPGA device has the features of large in scale and design flexible,the method of implementing DDS system based on the FPGA device is analyzed,and the key technology is optimized,including pipeline structures of phase accumulator and the embed waveform memory of FPGA.The simulation experiment is completed using VHDL with the top-down design methods in Quartus II software.【期刊名称】《电气电子教学学报》【年(卷),期】2012(034)005【总页数】3页(P52-54)【关键词】DDS;FPGA;仿真【作者】王元华【作者单位】齐鲁师范学院物理系,山东济南250200【正文语种】中文【中图分类】TN741直接数字频率合成或DDS(Direct Digital Frequeney Synthesis)技术是近年发展起来的一种新的频率合成技术[1]。
最新-基于FPGA的直接数字频率合成器的设计和实现 精品
基于FPGA的直接数字频率合成器的设计和实现摘要介绍了利用的器件150实现直接数字频率合成器的工作原理、设计思想、电路结构和改进优化方法。
关键词直接数字频率合成现场可编程门阵列直接数字频率合成,即,一般简称是从相位概念出发直接合成所需要波形的一种新的频率合成技术。
目前各大芯片制造厂商都相继推出采用先进工艺生产的高性能和多功能的芯片其中应用较为广泛的是公司的985系列,为电路设计者提供了多种选择。
然而在某些场合,专用的芯片在控制方式、置频速率等方面与系统的要求差距很大,这时如果用高性能的器件设计符合自己需要的电路就是一个很好的解决方法。
1是公司着眼于通信、音频处理及类似场合的应用而推出的器件芯片系列,总的来看将会逐步取代10系列,成为首选的中规模器件产品。
它具有如下特点11采用查找表和嵌入式阵列块相结合的结构,特别适用于实现复杂逻辑功能存储器功能,例如通信中应用的数字信号处理、多通道数据处理、数据传递和微控制等。
2典型门数为1万到10万门,有多达49152位的每个有4096位。
3器件内核采用25电压,功耗低,能够提供高达250的双向功能,完全支持33和66的局部总线标准。
4具有快速连续式延时可预测的快速通道互连;具有实现快速加法器、计数器、乘法器和比较器等算术功能的专用进位链和实现高速多扇入逻辑功能的专用级连接。
150具有典型门数50000门,逻辑单元2880个,嵌入系统块10个,完全符合单片实现电路的要求。
因此采用它设计电路,设计工具为的下一代设计工具软件。
范文先生网收集整理1电路工作原理图1所示是一个基于的电路的工作原理框图。
的工作原理是以数控振荡器的方式产生频率、相位可控制的正弦波。
电路一般包括基准时钟、频率累加器、相位累加器、幅度相位转换电路、转换器和低通滤波器。
基于FPGA的直接数字频率合成器设计.
JIANGSU UNIVERSITY OF TECHNOLOGY FPGA技术实验报告基于FPGA的直接数字频率合成器设计学院:电气信息工程学院专业:电子信息工程班级:姓名:学号:指导教师:戴霞娟、陈海忠时间: 2015年9月17日1目录1.功能要求 (2)2. 方案设计及原理框图 (2)2.1 方案设计 (2)2.2 原理框图 (3)2.2.1输入电路 (3)2.2.2FPGA电路 (3)2.2.3D/A转换电路 (4)3. 硬件电路设计及原理分析 (4)3.1 硬件电路图 (4)3.2 原理分析 (5)3.3 DAC0832转换器 (5)3.4 LM358芯片 (5)4.程序模块设计、仿真结果及分析...................... 错误!未定义书签。
4.1顶层模块 (6)4.2分频模块 (6)4.3 时钟模块........................................ 错误!未定义书签。
4.4正弦波产生模块................................... 错误!未定义书签。
4.5三角波产生模块................................... 错误!未定义书签。
4.6方波产生模块..................................... 错误!未定义书签。
4.7锯齿波产生模块................................... 错误!未定义书签。
4.8波形选择模块..................................... 错误!未定义书签。
5. 软硬件调试 (20)5.1软件调试 (22)5.2硬件调试 (22)6.调试结果说明 (25)7.心得体会 (25)8.参考文献 (25)附录 (26)1.功能要求通过本课题训练,使学生掌握使用FPGA实现频率合成的方法。
要求学生根据正弦波形发生器的设计实例,举一反三,设计多功能波形发生器。
基于FPGA的直接数字频率合成器
基于FPGA的直接数字频率合成器
李运升
【期刊名称】《电子制作》
【年(卷),期】2014(0)6
【摘要】在设计信号发生器时,采用通用数字电路元件设计电子线路的方法具有很多的缺点,比如移植性差、周期长和成本高等。
在本文中,运用了EDA技术对电路进行了设计,所使用的信号发生器输出信号的频率分布在20Hz~20KHz之间,幅度的峰-峰值范围分布在0.3V~5V的范围之间,而两路信号之间的相位差则分布在0°~359°之间。
本文主要研究分析了基于FPGA的直接数字频率合成器(DDS)的性能。
运用设置多组累加器初值(K1)和初始相位值(K2),就能够获得调节两路相同频率在正弦信号条件下的相位差,从而得出相对应的频率和幅值、相位的具有一定可调性的正弦波信号,然后就可利用MAX+plusI 进行演示,从而得出模拟的结果。
【总页数】2页(P14-14,4)
【作者】李运升
【作者单位】胜利石油工程有限公司钻井工艺研究院随钻测控技术研究所山东东营 257017
【正文语种】中文
【相关文献】
1.基于 Parallel -CORDIC 的高精度高速度直接数字频率合成器的 FPGA 实现 [J],
2.基于FPGA的直接数字频率合成器设计 [J], 胡鹏飞;沈力;韩锋
3.基于FPGA的直接数字频率合成器的设计 [J], 平淞元;
4.基于FPGA的直接数字频率合成器的设计 [J], 平淞元
5.基于FPGA的直接数字频率合成器 [J], 杨雪;陈雪勇
因版权原因,仅展示原文概要,查看原文内容请购买。
基于FPGA的直接数字频率合成器设计
1JANGSU UNIVERSITY OF TECHNOLOGY FPGA技术实验报告基于FPGA的直接数字频率合成器设计学院:电气信息工程学院专业:电子信息工程班级:姓名:学号:指导教师:戴霞娟、陈海忠时间: 2015.9.241目录绪论.......................................................................................... 错误!未定义书签。
一、背景与意义 (2)二、设计要求与整体设计 (2)2.1 设计要求 (2)2.2 数字信号发生器的系统组成 (3)2.3 DDS技术 (3)三、硬件电路设计及原理分析 (4)3.1 硬件电路设计图 (4)3.2 设计原理 (5)四、程序模块设计、仿真结果及分析 (5)4.1顶层模块设计 (6)4.2分频模块设计 (6)4.3时钟模块设计 (11)4.4数据选择模块设计 (12)4.5正弦波产生模块设计........................................................ 错误!未定义书签。
4.6三角波产生模块设计 (15)4.7方波产生模块设计............................................................ 错误!未定义书签。
4.8锯齿波模块设计 (18)五、软硬件调试 (21)5.1正弦波 (22)5.2锯齿波 (22)5.3方波 (23)5.4三角 (23)六、调试结果说明及故障分析 (24)七、心得体会 (24)八、参考文献 (25)九、附录 (25)绪论直接数字频率合成技术(DirectDigitalFrequencySynthesi,即DDFS一般简称DDS)是从相位直接合成所需波形的一种新的频率合成技术。
近年来,直接数字频率合成器由于其具有频率分辨率高、频率变换速度快、相位可连续变化等特点,在数字通信系统中已被广泛采用。
基于FPGA的直接数字频率合成器的设计本科设计
基于FPGA的直接数字频率合成器的设计本科设计毕业设计论文基于FPGA的直接数字频率合成器的设计摘要在频率合成领域,常用的频率合成技术有直接模拟合成、模拟锁相环、小数分频锁相环等,直接数字频率合成(Direct Digital Frequency Synthesis ,DDFS,简称DDS)是近年来的新的频率合成技术。
本文介绍了直接数字频率合成器的基本组成及设计原理,给出了基于FPGA的具体设计方案及编程实现方法。
仿真结果表明,该设计简单合理,使用灵活方便,通用性好,可写入各种FPGA 芯片,最高可将频率提高100万倍。
具有良好的性价比。
关键词直接数字频率合成器(DDS) FPGADesign of direct digital frequency synthesizer based on FPGAAbstract In Frequency domain, the common Synthesis technology has Direct simulation, phase lock loop simulation, decimal Frequency and phase lock loop, Direct Digital Frequency Synthesis (as some DDFS, Digital, referred to as spurious bio-synthesis) in recent years is the new Frequency Synthesis technology. The structure and principles of Direct Digital Frequency Synthesizer is introduced. Also a detailed design and the method of program realization based on FPGA are introduced. The result of simulation shows that the design is simple and feasible, convenient and flexible, high universality, writeable various FPGA chip, the highest frequency can be 100 million times. Ratiofor quality to price.Keywords Direct Digital frequency Synthesizer(DDS) FPGA前言在频率合成领域,常用的频率合成技术有直接模拟合成、模拟锁相环、小数分频锁相环等,直接数字频率合成(DDS)是近年来的新的频率合成技术。
基于FPGA的直接数字频率合成器的设计
2011年4月皖西学院学报A pr.,2011第27卷第2期Jo urnal o f West Anhui U niv er sity Vo l.27 NO.2基于FPGA 的直接数字频率合成器的设计常红霞,陈初侠,周 平(巢湖学院,安徽巢湖238000)摘 要:基于F PG A 器件EP1K30Q C208芯片,采用V H DL 设计实现了一个相位、频率均可控制的数字频率合成器,并在ZY11EDA 13BE 试验系统中完成硬件测试。
经实验验证,输出波形达到了技术要求,性能良好,控制方便,证明了基于FPG A 的DDS 设计的可靠性和可行性。
关键词:F PG A;VH DL ;D DS中图分类号:T N92 文献标识码:A 文章编号:1009-9735(2011)02-0082-03*频率控制是现代通信技术中很重要的一环,能够获得宽带(频率控制范围宽)、快速(转换时间快)、精细(分辨率高)、杂散小(频谱纯)的频率控制信号,一直是通信领域中的一个重要研究内容。
直接数字频率合成(DDS)是一种基于全数字技术,从相位概念出发直接合成所需波形的一种频率合成技术。
1 设计原理直接数字频率合成技术是根据奈奎斯特采样定律对正弦信号进行采样,将所得的波形以相位幅度相对应的数据存储在定制好的ROM 表格中。
频率合成时,相位累加器在参考时钟的作用下对时钟脉冲进行计数,同时将累加器输出的累加相位与频率控制字K 预置的相位增量相加,以相加后的结果形成正弦查找表的地址;取出表中与该相位对应的单元中的波形数据值,由D/A 转换器输出模拟信号,再经低通滤波器平滑,得到符合要求的模拟信号[1]。
具体组成如图1。
图1 DDS 的基本组成框图假设参考时钟信号的频率为f c ,频率预置与调节电路生产的控制字为K 位,累加器为N 位,波形的幅度数据值为D 位,那么根据采样定理有:DDS 的输出频率:f 0=f c K /2N 式(1-1)DDS 输出的最低频率K=1时f 0=f c /2N 式(1-2)DDS 输出的最高频率由Ny quist 采样定理决定,即f 0=f c /2,K 的最大值为2N 。
基于FPGA的直接数字频率合成器的设计实现
2004年8月第10卷第3期安庆师范学院学报(自然科学版)J ourna l of Anq ing Te a che rs Co lle ge(Na tura l S c ie nce)Aug.2004Vo l.10NO.3ΞΞΞ基于FPGA的直接数字频率合成器的设计实现朱钰铧(安徽电子信息职业技术学院, 安徽蚌埠233060) 摘 要:介绍了用A ltera公司的FPGA器件(FL EX10K20)实现直接数字频率合成器的工作原理、设计思路及如何与M atlab软件接口进行设计验证。
关键词:数字频率合成;存储器;低通滤波器;电路中图分类号: TN741 文献标识码:A 文章编号:1007-4260(2004)03-0029-03 1.DD S电路的工作原理目前高速实时信号生成的热点问题是直接数字频率合成(DD S),其基本结构可以分为相位累加型DD S和数据存储型DD S。
直接数字频率合成器(D irect D ig ita l Syn thesizer)是从相位概念出发直接合成所需波形的一种频率合成技术。
一个直接数字频率合成器由基准时钟、相位累加器、波形ROM、D A转换器和低通滤波器(L PF)构成。
DD S的原理框图如图1所示:其中K为频率控制字、f c为基准时钟,N为相位累加器的字长,D为ROM数据位及D A转换器的字长。
相位累加器在时钟f c的控制下以步长K作累加,输出N位二进制码作为波形ROM的地址,对波形ROM进行寻址,波形ROM输出的幅码S(n)经D A转换器变成阶梯波S(t),再经低通滤波器平滑后就可以得到合成的信号波形了。
合成的信号波形形状取决于波形ROM中存放的幅码,因此用DD S可以产生任意波形。
2.DD S电路的设计实现本文将设计完成一个频率和相位均可控制的具有正弦或余弦(当相位为90度时,即为余弦)输出的DD S,频率和相位值的预置与调节由键盘输入,累加器的字长N为10位,波形存储器的地址长度为1000,波形存储器输出的幅码位数为8位,D A转换器选用DA C0832,低通滤波器(L PF)采用压控电压源二阶低通滤波器,并且频率和相位值各由3位数码管指示。
基于FPGA的直接数字频率合成器的设计实现
基于FPGA的直接数字频率合成器的设计实现概述直接数字频率合成技术(Direct Digital Frequency Synthesis,即DDFS,一般简称DDS),是从相位概念出发直接合成所需要波形的一种新的频率合成技术。
目前各大芯片制造厂商都相继推出采用先进CMOS 工艺生产的高性能、多功能的DDS 芯片,为电路设计者提供了多种选择。
然而在某些场合,专用DDS 芯片在控制方式、置频速率等方面与系统的要求差距很大,这时如果用高性能的FPGA 器件来设计符合自己需要的DDS 电路,就是一个很好的解决方法。
ACEX 1K 器件是Altera 公司着眼于通信、音频处理及类似场合的应用而推出的芯片系列,总的来看将会逐步取代FLEX 10K 系列,成为首选的中规模器件产品。
它具有如下优点:* 高性能。
ACEX 1K 器件采用查找表(LUT)和EAB(嵌入式阵列块)相结合的结构,特别适用于实现复杂逻辑功能和存储器功能,例如通信中应用的DSP、多通道数据处理、数据传递和微控制等。
* 高密度。
典型门数为1 万到10 万门,有多达49,152 位的RAM(每个EAB 有4,096 位RAM)。
* 系统性能。
器件内核采用2.5V 电压,功耗低,能够提供高达250MHz的双向I/O 功能,完全支持33MHz 和66MHz 的PCI 局部总线标准。
* 灵活的内部互联。
具有快速连续式、延时可预测的快速通道互连;能提供实现快速加法器、计数器、乘法器和比较器等算术功能的专用进位链和实现高速多扇入逻辑功能的专用级联链。
本次设计采用的是ACEX EP1K50,典型门数50000 门,逻辑单元2880 个,嵌。
基于FPGA的直接数字频率合成技术设计
基于FPGA的直接数字频率合成技术设计直接数字频率合成(DirectDigitalFraquencySyn-thesis即DDFS,一般简称DDS)是从相位概念出发直接合成所需波形的一种新的频率合成技术。
它在相对带宽、频率转换时间、相位连续性、正交输出、高分辨率以及集成化等一系列性能指标方面已远远超过了传统频率合成技术。
当累加器的N很大时,最低输出频率可达Hz、mHz甚至μHz。
也就是说:DDS的最低合成频率接近于零频。
如果fc为50MHz, 那么当N为48位时,其分辨率可达179nHz。
转换时间最快可达10ns的量级,这都是传统频率合成所不能比拟的。
但它的不足之处是最高工作频率会受限、噪声和杂波不够理想。
本设计采用ALTERA公司的FPGA芯片EP1K30TC-144来实现DDS技术。
EP1K30芯片属ALTERA公司的ACEX系列,该系列是ALTERA公司着眼于通信、音频处理及类似场合应用而推出的FPGA器件系列芯片,它采用0.22/0.18微米混合工艺,密度从10000门到100000门。
所有ACEX系列器件均兼容64bit、66MHz的PCI,并支持锁相环电路。
ACEX1K采用查找表(LUT)和EAB(嵌入式阵列块)相结合的结构,可用来实现存储器、专用逻辑功能和通用逻辑功能,每个EBA能提供4096比特的存储空间,每个LE包含4个输入LUT、一个可编程的触发器、进位链和一个层叠链。
合理运用进位链能够提高系统运行速度。
EP1K30TC-144的最大系统门数为119000,它有1728个逻辑宏单元数和5个嵌入式阵列块,最大可提供2kB的ROM/RAM位,因而可完全满足DDS设计的要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于FPGA的直接数字频率合成技术设计
以下是关于基于FPGA的直接数字频率合成技术设计,希望内容对您有帮助,感谢您得阅读。
实践证明:用FPGA设计DDS电路较采用专用DDS芯片更为灵活。
因为,只要改变FPGA中的ROM数据,DDS就可以产生任意波形,因而具有相当大的灵活性。
相比之下:FPGA的功能完全取决于设计需求,可以复杂也可以简单,而且FPGA芯片还支持在系统现场升级,虽然在精度和速度上略有不足,但也能基本满足绝大多数系统的使用要求。
另外,将DDS设计嵌入到FPGA芯片所构成的系统中,其系统成本并不会增加多少,而购买专用芯片的价格则是前者的很多倍。
因此,采用FPGA来设计DDS系统具有很高的性价比。
·。