数字信号处理期末综合实验报告

合集下载

数字信号处理实验报告

数字信号处理实验报告

实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。

2、熟悉离散信号和系统的时域特性。

3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。

4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。

二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。

2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。

信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。

根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。

三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。

(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。

数字信号处理综合实验

数字信号处理综合实验

数字信号处理综合实验一、实验目的本实验旨在通过数字信号处理技术的综合应用,加深对数字信号处理原理和方法的理解,提高学生的实际操作能力和问题解决能力。

二、实验原理数字信号处理是利用数字计算机对摹拟信号进行采样、量化和编码,然后进行数字运算和处理的技术。

本实验主要涉及以下几个方面的内容:1. 信号采集与预处理:通过摹拟信号采集电路将摹拟信号转换为数字信号,然后进行预处理,如滤波、降噪等。

2. 数字滤波器设计:设计和实现数字滤波器,包括FIR滤波器和IIR滤波器,可以对信号进行滤波处理,提取感兴趣的频率成份。

3. 时域和频域分析:对采集到的信号进行时域和频域分析,如时域波形显示、功率谱密度估计等,可以了解信号的时域和频域特性。

4. 信号重构与恢复:通过信号重构算法对采集到的信号进行恢复,如插值、外推等,可以还原信号的原始特征。

三、实验内容根据实验原理,本实验的具体内容包括以下几个部份:1. 信号采集与预处理a. 使用摹拟信号采集电路将摹拟信号转换为数字信号,并通过示波器显示采集到的信号波形。

b. 对采集到的信号进行预处理,如去除噪声、滤波等,确保信号质量。

2. 数字滤波器设计a. 设计并实现FIR滤波器,选择合适的滤波器类型和参数,对采集到的信号进行滤波处理。

b. 设计并实现IIR滤波器,选择合适的滤波器类型和参数,对采集到的信号进行滤波处理。

3. 时域和频域分析a. 对采集到的信号进行时域分析,绘制信号的时域波形图,并计算信号的均值、方差等统计指标。

b. 对采集到的信号进行频域分析,绘制信号的功率谱密度图,并计算信号的频域特性。

4. 信号重构与恢复a. 使用插值算法对采集到的信号进行重构,恢复信号的原始特征。

b. 使用外推算法对采集到的信号进行恢复,还原信号的原始特征。

四、实验步骤1. 搭建信号采集电路,将摹拟信号转换为数字信号,并通过示波器显示采集到的信号波形。

2. 对采集到的信号进行预处理,如去除噪声、滤波等,确保信号质量。

数字信号处理实验报告 (实验四)

数字信号处理实验报告 (实验四)

实验四 离散时间信号的DTFT一、实验目的1. 运用MA TLAB 计算离散时间系统的频率响应。

2. 运用MA TLAB 验证离散时间傅立叶变换的性质。

二、实验原理(一)、计算离散时间系统的DTFT已知一个离散时间系统∑∑==-=-Nk k N k k k n x b k n y a 00)()(,可以用MATLAB 函数frequz 非常方便地在给定的L 个离散频率点l ωω=处进行计算。

由于)(ωj e H 是ω的连续函数,需要尽可能大地选取L 的值(因为严格说,在MA TLAB 中不使用symbolic 工具箱是不能分析模拟信号的,但是当采样时间间隔充分小的时候,可产生平滑的图形),以使得命令plot 产生的图形和真实离散时间傅立叶变换的图形尽可能一致。

在MA TLAB 中,freqz 计算出序列{M b b b ,,,10 }和{N a a a ,,,10 }的L 点离散傅立叶变换,然后对其离散傅立叶变换值相除得到L l eH l j ,,2,1),( =ω。

为了更加方便快速地运算,应将L 的值选为2的幂,如256或者512。

例3.1 运用MA TLAB 画出以下系统的频率响应。

y(n)-0.6y(n-1)=2x(n)+x(n-1)程序: clf;w=-4*pi:8*pi/511:4*pi;num=[2 1];den=[1 -0.6];h=freqz(num,den,w);subplot(2,1,1)plot(w/pi,real(h));gridtitle(‘H(e^{j\omega}的实部’))xlabel(‘\omega/ \pi ’);ylabel(‘振幅’);subplot(2,1,1)plot(w/pi,imag(h));gridtitle(‘H(e^{j\omega}的虚部’))xlabel(‘\omega/ \pi ’);ylabel(‘振幅’);(二)、离散时间傅立叶变换DTFT 的性质。

数字信号处理实验报告_完整版

数字信号处理实验报告_完整版

实验1 利用DFT 分析信号频谱一、实验目的1.加深对DFT 原理的理解。

2.应用DFT 分析信号的频谱。

3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。

二、实验设备与环境 计算机、MATLAB 软件环境 三、实验基础理论1.DFT 与DTFT 的关系有限长序列 的离散时间傅里叶变换 在频率区间 的N 个等间隔分布的点 上的N 个取样值可以由下式表示:212/0()|()()01N jkn j Nk N k X e x n eX k k N πωωπ--====≤≤-∑由上式可知,序列 的N 点DFT ,实际上就是 序列的DTFT 在N 个等间隔频率点 上样本 。

2.利用DFT 求DTFT方法1:由恢复出的方法如下:由图2.1所示流程可知:101()()()N j j nkn j nN n n k X e x n eX k W e N ωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑ 由上式可以得到:IDFTDTFT( )12()()()Nj k kX e X k Nωπφω==-∑ 其中为内插函数12sin(/2)()sin(/2)N j N x eN ωωφω--= 方法2:实际在MATLAB 计算中,上述插值运算不见得是最好的办法。

由于DFT 是DTFT 的取样值,其相邻两个频率样本点的间距为2π/N ,所以如果我们增加数据的长度N ,使得到的DFT 谱线就更加精细,其包络就越接近DTFT 的结果,这样就可以利用DFT 计算DTFT 。

如果没有更多的数据,可以通过补零来增加数据长度。

3.利用DFT 分析连续信号的频谱采用计算机分析连续时间信号的频谱,第一步就是把连续信号离散化,这里需要进行两个操作:一是采样,二是截断。

对于连续时间非周期信号,按采样间隔T 进行采样,阶段长度M ,那么:1()()()M j tj nT a a a n X j x t edt T x nT e ∞--Ω-Ω=-∞Ω==∑⎰对进行N 点频域采样,得到2120()|()()M jkn Na a M kn NTX j T x nT eTX k ππ--Ω==Ω==∑因此,可以将利用DFT 分析连续非周期信号频谱的步骤归纳如下: (1)确定时域采样间隔T ,得到离散序列(2)确定截取长度M ,得到M 点离散序列,这里为窗函数。

数字信号处理实验报告1

数字信号处理实验报告1

《数字信号处理》实验报告实验一:数字低通、高通滤波器实验实验二:数字带通、带阻滤波器实验系别:信息科学与技术系专业班级:电子信息工程0902班学生姓名:王俊知(053)同组学生:成绩:指导教师:刘海龙(实验时间:20年月日——20年月日)华中科技大学武昌分校实验一数字低通、高通滤波器实验1、实验目的使学生了解和熟悉软件Matlab的使用,了解数字低通、高通滤波器零极点的作用及数字低通、高通滤波器的幅频特性和相频特性。

使学生熟悉整数型滤波器的设计。

2、实验内容与步骤1、在计算机上运行Matlab软件,根据滤波器的参数,用Matlab软件设计出数字低通、高通滤波器、画出数字低通、高通滤波器的幅频特性和相频特性的程序,或按照范例程序进行修改,运行程序,观察滤波器的零极点分布图、幅频特性和相频特性图。

2、改变滤波器的零极点分布,再运行程序,观察幅频特性和相频特性的不同,滤波器的通带有什么改变。

3、再次修改程序,输入数字信号,使其通过滤波器,并画出输入、输出滤波器的数字信号波形,运行程序。

观看输入、输出滤波器的数字信号波形,仔细观察其区别。

3、实验设备1、实验场所:信息科学与技术系实验室机房。

2、硬件设备:计算机若干(由学生人数定)。

3、实验软件:Matlab。

整系数低通滤波器程序如下:clear all;clc;close all;m=10;for i=1:m+1if i==1B(i)=1;elseif i==m+1B(i)=-1;else B(i)=0;endendendA=[1,-1];N=8192;[H,f]=freqz(B,A,N);plot(f*25/pi,abs(H));grid;figure,plot(f*25/pi,angle(H));grid;figure,zplane(B,A);k=0:N-1;f=2*k/N;load('C:\MATLAB7\work\RawData.mat');x=rawdata(1,1:N);w=filter(B,A,x);figure;plot(x);title('输入信号');figure;plot(w);title('输出信号');滤波器的幅频特性和相频特性曲线、零极点分布、输入、输出滤波器的数字信号波形图:整系数高通滤波器程序如下:clear all;clc;close all;m=10;for i=1:m+1if i==1B(i)=1;elseif i==m+1B(i)=-1;else B(i)=0;endendendA=[1,1];N=8192;[H,f]=freqz(B,A,N);plot(f*25/pi,abs(H));grid;figure,plot(f*25/pi,angle(H));grid;figure,zplane(B,A);k=0:N-1;f=2*k/N;load('C:\MATLAB7\work\RawData.mat');x=rawdata(1,1:N);w=filter(B,A,x);figure;plot(x);title('输入信号');figure;plot(w);title('输出信号');滤波器的幅频特性和相频特性曲线、零极点分布、输入、输出滤波器的数字信号波形图:改变参数clear all;clc;close all;m=11;for i=1:m+1if i==1B(i)=1;elseif i==m+1B(i)=1;else B(i)=0;endendendA=[1,1];N=8192;[H,f]=freqz(B,A,N);plot(f*25/pi,abs(H));grid;figure,plot(f*25/pi,angle(H));grid; figure,zplane(B,A);k=0:N-1;f=2*k/N;load('C:\MATLAB7\work\RawData.mat'); x=rawdata(1,1:N);w=filter(B,A,x);figure;plot(x);title('输入信号'); figure;plot(w);title('输出信号');正负120度零点抵消程序如下:clear all;clc;close all;m=24;for i=1:m+1if i==1B(i)=1;elseif i==m+1B(i)=-1;else B(i)=0;endendendA=[1,1,1];N=8192;[H,f]=freqz(B,A,N);plot(f*25/pi,abs(H));grid;figure,plot(f*25/pi,angle(H));grid;figure,zplane(B,A);k=0:N-1;f=2*k/N;load('C:\MATLAB7\work\RawData.mat');x=rawdata(1,1:N);w=filter(B,A,x);figure;plot(x);title('输入信号');figure;plot(w);title('输出信号');滤波器的幅频特性和相频特性曲线、零极点分布、输入、输出滤波器的数字信号波形图:正负60度零点抵消程序如下:clear all;clc;close all;m=24;for i=1:m+1if i==1B(i)=1;elseif i==m+1B(i)=-1;else B(i)=0;endendendA=[1,-1,1];N=8192;[H,f]=freqz(B,A,N);plot(f*25/pi,abs(H));grid;figure,plot(f*25/pi,angle(H));grid;figure,zplane(B,A);k=0:N-1;f=2*k/N;load('C:\MATLAB7\work\RawData.mat');x=rawdata(1,1:N);w=filter(B,A,x);figure;plot(x);title('输入信号');figure;plot(w);title('输出信号');滤波器的幅频特性和相频特性曲线、零极点分布、输入、输出滤波器的数字信号波形图:实验二数字带通、带阻滤波器实验1、实验目的使学生了解数字带通、带阻滤波器设计原理及数字带通、带阻滤波器的幅频特性和相频特性。

数字信号处理实验报告实验三

数字信号处理实验报告实验三

实验三:用FFT 对信号做频谱分析1 实验目的学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便正确应用FFT 。

2 实验原理用FFT 对信号做频谱分析是学习数字信号处理的重要内容。

经常需要进行谱分析的信号是模拟信号和时域离散信号。

对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。

频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是N /2π,因此要求D N ≤/2π。

可以根据此式选择FFT 的变换区间N 。

误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时离散谱的包络才能逼近于连续谱,因此N 要适当选择大一些。

周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT ,得到的离散谱才能代表周期信号的频谱。

如果不知道信号周期,可以尽量选择信号的观察时间长一些。

对模拟信号进行谱分析时,首先要按照采样定理将其变成时域离散信号。

如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。

3 实验步骤及内容(1)对以下序列进行谱分析。

⎪⎩⎪⎨⎧≤≤-≤≤-=⎪⎩⎪⎨⎧≤≤-≤≤+==其它nn n n n n x 其它n n n n n n x n R n x ,074,330,4)(,074,830,1)()()(3241 选择FFT 的变换区间N 为8和16 两种情况进行频谱分析。

分别打印其幅频特性曲线。

并进行对比、分析和讨论。

(2)对以下周期序列进行谱分析。

4()c o s 4x n n π= 5()c o s (/4)c o s (/8)x n n n ππ=+ 选择FFT 的变换区间N 为8和16 两种情况分别对以上序列进行频谱分析。

分别打印其幅频特性曲线。

并进行对比、分析和讨论。

(3)对模拟周期信号进行谱分析6()cos8cos16cos20x t t t t πππ=++选择 采样频率Hz F s 64 ,变换区间N=16,32,64 三种情况进行谱分析。

数字信号处理实验报告 3

数字信号处理实验报告 3

数字信号处理实验报告姓名:班级:通信学号:实验名称:频域抽样定理验证实验类型:验证试验指导教师:实习日期:2013.频域采样定理验证实验一. 实验目的:1. 加深对离散序列频域抽样定理的理解2.了解由频谱通过IFFT 计算连续时间信号的方法3.掌握用MATLAB 语言进行频域抽样与恢复时程序的编写方法 4、用MATLAB 语言将X(k)恢复为X(z)及X(e jw )。

二. 实验原理:1、1、频域采样定理: 如果序列x(n)的长度为M ,频域抽样点数为N ,则只有当频域采样点数N ≥M 时,才有x N (n)=IDFT[X(k)]=x(n),即可由频域采样X(k)无失真的恢复原序列 x(n)。

2、用X(k)表示X(z)的内插公式:∑-=-----=10111)(1)(N k kNN zWz k X Nz X内插函数: zWzkNNN z 1k111)(-----=ϕ频域内插公式:∑-=-=10)2()()(N Kj k Nk X e X πωϕω频域内插函数:e N j N N )21()2sin()2sin(1)(--=ωωωωϕ三. 实验任务与步骤:实验一:长度为26的三角形序列x(n)如图(b)所示,编写MATLAB 程序验证频域抽样定理。

实验二:已知一个时间序列的频谱为X(e jw )=2+4e -jw +6e -j2w +4e -j3w +2e -j4w分别取频域抽样点数N为3、5和10,用IPPT计算并求出其时间序列x(n),用图形显示各时间序列。

由此讨论原时域信号不失真地由频域抽样恢复的条件。

实验三:由X32(k)恢复X(z)和X(e jw)。

四.实验结论与分析:实验一:源程序:M=26;N=32;n=0:M; %产生M长三角波序列x(n)xa=0:floor(M/2);xb= ceil(M/2)-1:-1:0; xn=[xa,xb];Xk=fft(xn,512); %1024点FFT[x(n)], 用于近似序列x(n)的TF X32k=fft(xn,32); %32点FFT[x(n)]x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n)X16k=X32k(1:2:N); %隔点抽取X32k得到X16(K)x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n)subplot(3,2,2);stem(n,xn,'.');box ontitle('(b) 三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20])k=0:511;wk=2*k/512;subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200])k=0:N/2-1;subplot(3,2,3);stem(k,abs(X16k),'.');box ontitle('(c) 16点频域');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200])n1=0:N/2-1;subplot(3,2,4);stem(n1,x16n,'.');box ontitle('(d) 16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20]) k=0:N-1;subplot(3,2,5);stem(k,abs(X32k),'.');box on title('(e) 32点频域采样');xlabel('k'); ylabel('|X_3_2(k)|');axis([0,16,0,200]) n1=0:N-1;subplot(3,2,6);stem(n1,x32n,'.');box on title('(f) 32点IDFT[X_3_2(k)]');xlabel('n'); ylabel('x_3_2(n)');axis([0,32,0,20])结果如下所示:实验一分析:序列x(n)的长度M=26,由图中可以看出,当采样点数N=16<M 时,x 16(n)确实等于原三角序列x(n)以16为周期的周期延拓序列的主值序列。

数字信号处理实验报告完整版[5篇模版]

数字信号处理实验报告完整版[5篇模版]

数字信号处理实验报告完整版[5篇模版]第一篇:数字信号处理实验报告完整版实验 1利用 T DFT 分析信号频谱一、实验目的1.加深对 DFT 原理的理解。

2.应用 DFT 分析信号的频谱。

3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。

二、实验设备与环境计算机、MATLAB 软件环境三、实验基础理论T 1.DFT 与与 T DTFT 的关系有限长序列的离散时间傅里叶变换在频率区间的N 个等间隔分布的点上的 N 个取样值可以由下式表示:212 /0()|()()0 1Nj knjNk NkX e x n e X k k Nπωωπ--====≤≤-∑由上式可知,序列的 N 点 DFT ,实际上就是序列的 DTFT 在 N 个等间隔频率点上样本。

2.利用 T DFT 求求 DTFT方法 1 1:由恢复出的方法如下:由图 2.1 所示流程可知:101()()()Nj j n kn j nNn n kX e x n e X k W eNωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑由上式可以得到:IDFT DTFT第二篇:数字信号处理实验报告JIANGSUUNIVERSITY OF TECHNOLOGY数字信号处理实验报告学院名称:电气信息工程学院专业:班级:姓名:学号:指导老师:张维玺(教授)2013年12月20日实验一离散时间信号的产生一、实验目的数字信号处理系统中的信号都是以离散时间形态存在的,所以对离散时间信号的研究是数字信号的基本所在。

而要研究离散时间信号,首先需要产生出各种离散时间信号。

使用MATLAB软件可以很方便地产生各种常见的离散时间信号,而且它还具有强大绘图功能,便于用户直观地处理输出结果。

通过本实验,学生将学习如何用MATLAB产生一些常见的离散时间信号,实现信号的卷积运算,并通过MATLAB中的绘图工具对产生的信号进行观察,加深对常用离散信号和信号卷积和运算的理解。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告郑州航空工业管理学院《数字信号处理》实验报告专业电子信息工程学号姓名实验一 数字滤波器的结构一、 实验目的(1) 加深对数字滤波器分类与结构的了解;(2) 明确数字滤波器的基本结构及其相互间的转换方法;(3) 掌握用MATLAB 进行数字滤波器各种结构相互间转换的子函数及程序编写方法。

二、 实验原理一个离散LSI 系统可用系统函数来表示;()()()12001212120z 11M m M m m M N N kN k k b z Y b b z b z b z H z X z a z a z a za z ----=----=++++===+++++∑∑ 也可用差分方程来表示:()()()10N Mk m k m y n a y n k b x n m ==+-=-∑∑当k a 至少有一个不为0时,则在有限z 平面上存在极点,表示一个IIR 数字滤波器;当k a 全都为0时,系统不存在极点,表示一个FIR 系统。

IIR 数字滤波器的基本结构分为直接Ⅰ型、直接Ⅱ型、级联型和并联型。

FIR 数字滤波器的基本结构分为横截型、级联型、并联型、、线性相位型和频率抽样型。

三、 实验仪器微型计算机、MATLAB四、 实验内容(1) 已知一个IIR 系统的系统函数为()1231230.10.40.40.110.30.550.2z z z H z z z z -------+-=+++ 将其从直接型转换为级联型和并联型结构,并画出各种结构的流程图。

(2) 已知一个FIR 系统的系统函数为()12340.20.8850.212+0.212+0.885H z z z z z ----=++for i=1:2:N-1Brow=r(i:1:i+1,:); %取出一对留数Arow=p(i:1:i+1,:); %取出一对对应的极点%二个留数极点转为二阶子系统分子分母系数[Brow,Arow]=residuez(Brow,Arow,[]);B(fix((i+1)/2),:)=real(Brow);%取Brow的实部,放入系数矩阵B的相应行A(fix((i+1)/2),:)=real(Arow);%取Arow的实部,放入系数矩阵A的相应行endendnum =[8 -4 11 -2];den =[1 -1.25 0.75 -0.125];[C,B,A]=dir2par(num,den)C =16B =-16.0000 20.00008.0000 0A =1.0000 -1.0000 0.50001.0000 -0.2500 0五、试验结果分析实验二 用冲激响应不变法设计IIR 数字滤波器一、 实验目的(1) 加深对冲激响应不变法设计IIR 数字滤波器的基本原理的理解;(2) 掌握用冲激响应不变法设计数字低通、带通滤波器的设计;(3) 了解MATLAB 有关冲激响应不变法的常用子函数。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告实验一 信号的产生及傅立叶分析(设计性)一 实验目的1 学会利用计算机仿真信号。

2 理解信号采样思想。

3学会信号的频谱分析方法。

二 实验原理奈奎斯特抽样定理:要想抽样后能够不失真的还原出原信号,则抽样频率必须大于两倍信号谱的最高频率。

离散傅立叶变换(DFT ): 正变换反变换)(n x 和)(k X 都是点数为N 的有限长序列。

实质上有限长序列都是作为周期序列的一个周期来表示的,都隐含有周期性意义。

三 实验内容1 几种常用序列(如正弦、矩形、指数序列等)的产生。

1.用stem 函数来画出序列的波形,通过改变N 和s 得值来改变时间长度、抽样频率 N=500;k=0:N; s=0.03;X=5*sin(s*pi*k);plot(k,X,k,zeros(1,N+1));Xlabel('k'); Ylabel('X[k]'); title('余弦序列');10)()]([)(1-≤≤==∑--=N k Wn x n x DFT k X N n nk N10)(1)]([)(1-≤≤==∑--=-N n Wk X Nk X IDFT n x N k nk N2.指数序列 clear ;clc%c :指数序列的幅度 %a :指数序列的底数%k1:绘制序列的起始序号 %k2:绘制序列的终止序号c=1;a=0.75;k1=0;k2=20;k=k1:k2; x=c*(a.^k);stem(k,x);%'filled'Xlabel('k'); Ylabel('x');title('Ö¸ÊýÐòÁÐ');3各种序列t=0:0.01:1;k=1:200;x1=0.1*exp(-2*t); %指数序列 x2=2*cos(2*pi*4*t); %余弦序列 x3=[ones(1,10) zeros(1,90) ones(1,10) zeros(1,90)]; subplot(3,1,1); plot(t,x1); title('指数序列'); subplot(3,1,2); plot(t,x2); title('余弦序列'); subplot(3,1,3); plot(k,x3); title('矩形序列');kX [k ]kx指数信号余弦信号矩形信号4 编程实现序列的离散傅里叶变换(DFT),输入x(n),输出X(k)并且对于不同序列(如矩形序列等)做DFT.clear; clck=0:31; x1=2*((0.75).^k);subplot 321; stem(k,x1); title('指数序列');y1=fft(x1,32);subplot 322; stem(k,y1); title('指数序列DFT');k=0:31; x2=sin(k);subplot 323; stem(k,x2); title('正弦序列Sin(k)');y2=fft(x2,32);subplot 324; stem(k,y2); title('正弦序列DFT');x3=[ones(1,8) zeros(1,8) ones(1,8) zeros(1,8)];subplot 325; stem(k,x3); title('矩形序列');y3=fft(x3,32);subplot 326; stem(k,y3); title('矩形序列DFT');指数序列指数序列DFT正弦序列Sin(k)010203040正弦序列DFT矩形序列矩形序列DFT实验二 快速傅立叶变换FFT 及频谱分析(设计性)一 实验目的1 进一步加深对DFT 算法原理和基本性质的理解2 熟悉FFT 算法原理和FFT 的子程序应用3 学习用FFT 对连续时间信号进行频谱分析的方法,了解可能出现的分析误差及原因二 实验原理(参考P187,P189)FFT 只是DFT 的一种快速算法,利用FFT 可减少运算量,提高速度。

数字信号处理期末综合实验报告

数字信号处理期末综合实验报告

数字信号处理综合实验报告实验题目:基于Matlab的语音信号去噪及仿真专业名称:学号:姓名:日期:报告内容:一、实验原理1、去噪的原理1.1 采样定理在进行模拟/数字信号的转换过程中,当采样频率fs.max大于信号中,最高频率fmax的2倍时,即:fs.max>=2fmax,则采样之后的数字信号完整地保留了原始信号中的信息,一般实际应用中保证采样频率为信号最高频率的5~10倍;采样定理又称奈奎斯特定理。

1924年奈奎斯特(Nyquist>就推导出在理想低通信道的最高大码元传输速率的公式: 理想低通信道的最高大码元传输速率=2W*log2 N (其中W是理想低通信道的带宽,N是电平强度>为什么把采样频率设为8kHz?在数字通信中,根据采样定理, 最小采样频率为语音信号最高频率的2倍b5E2RGbCAP频带为F的连续信号f(t>可用一系列离散的采样值f(t1>,f(t1±Δt>,f(t1±2Δt>,...来表示,只要这些采样点的时间间隔Δt≤1/2F,便可根据各采样值完全恢复原来的信号f(t>。

这是时域采样定理的一种表述方式。

p1EanqFDPw时域采样定理的另一种表述方式是:当时间信号函数f(t>的最高频率分量为fM时,f(t>的值可由一系列采样间隔小于或等于1/2fM的采样值来确定,即采样点的重复频率f≥2fM。

图为模拟信号和采样样本的示意图。

DXDiTa9E3d时域采样定理是采样误差理论、随机变量采样理论和多变量采样理论的基础。

对于时间上受限制的连续信号f(t><即当│t│>T 时,f(t>=0,这里T=T2-T1是信号的持续时间),若其频谱为F<ω),则可在频域上用一系列离散的采样值 RTCrpUDGiT<1-1)5PCzVD7HxA采样值来表示,只要这些采样点的频率间隔<1-2)jLBHrnAILg。

数字信号处理实验报告 (3)

数字信号处理实验报告 (3)

武汉工程大学实验报告实验课程数字信号处理一、实验目的(1)加深对离散傅里叶变换(DFT)基本概念的理解。

(2)了解有限长序列傅里叶变换(DFT)与周期序列傅里叶级数(DFS)、离散时间傅里叶变换(DTFT)的联系。

(3)掌握用MA TLAB语言进行离散傅里叶变换和逆变换的方法。

二、实验内容1.有限长序列的傅里叶变换(DFT)和逆变换(IDFT)2.有限长序列DFT与周期序列DFS的联系3.有限长序列DFT与离散时间傅里叶变换DTFT的联系三、实验环境MA TLAB7.0四丶:实验内容、原理描述及实验结果1.离散时间信号的表示离散时间信号定义为一时间函数,它只在某些离散的瞬时给出函数值,而在其他处无定义。

因此,它是时间上不连续按一定先后次序排列的一组数的集合,故称为时间序列,简称序列,通常表示为{x(n)} -∞<n<+∞(1)单位抽样序列用Matlab编写的实验程序n0=0;n1=-5;n2=5;n=[n1:n2];nc=length(n);x=zeros(1,nc);for i=1:ncif n(i)==n0x(i)=1;endendstem(n,x)xlabel('n');ylabel('x(n)');title('单位抽样序列');grid(2)单位阶跃序列用Matlab编写编写的生成单位阶跃序列的函数n0=0;n1=-5;n2=5;n=[n1:n2];x=[(n-n0)>=0];stem(n,x)xlabel('n');ylabel('x(n)');title('单位阶跃序列');grid图形如下(3)指数序列程序代码如下:n=[0:20];x=(0.78).^n;stem(n,x)xlabel('n');ylabel('x(n)');title('指数序列'); grid图形如下:(4)正余弦序列用matlab编写正弦序列x(n)=5sin(0.1πn+π/3)函数的程序。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告实验一离散信号的产生及运算完成者:陈骁学号:38152101日期:2010年11月16日实验一 离散信号的产生及运算一、实验目的1.复习和巩固数字信号处理中离散信号的产生和运算2.学习和掌握用MATLAB 产生离散信号的方法3.学习和掌握用MATLAB 对离散信号进行运算二、实验原理1. 用MATLAB 函数产生离散信号信号是数字信号处理的最基本内容。

没有信号,数字信号处理就没了工作对象。

MATLAB7.0内部提供了大量的函数,用来产生常用的信号波形。

例如,三角函数(sin,cos ),指数函数(exp ),锯齿波函数(sawtooth ), 随机数函数(rand )等。

⑴ 产生被噪声污染的正弦信号用随机数函数产生污染的正弦信号。

⑵ 产生单位脉冲序列和单位阶跃序列按定义,单位脉冲序列为001,()0,n n n n n n σ=⎧-=⎨≠⎩单位阶跃序列为001,()0,n n u n n n n ≥⎧-=⎨<⎩。

⑶ 矩形脉冲信号:在MATLAB 中用rectpuls 函数来表示,其调用形式为: y=rectpuls(t,width),用以产生一个幅值为1,宽度为width,相对于t=0 点左右对称的矩形波信号,该函数的横坐标范围由向量t 决定,是以t=0 为中心向左右各展开width/2 的范围,width 的默认值为1。

例:以t=2T(即t-2×T=0)为对称中心的矩形脉冲信号的MATLAB 源程序如下:(取T=1)t=0:0.001:4;T=1;ft=rectpuls(t-2*T,2*T);plot(t,ft);grid on; axis([0 4 –0.5 1.5]);⑷周期性矩形波(方波)信号在MATLAB 中用square 函数来表示,其调用形式为:y=square(t,DUTY),用以产生一个周期为2π、幅值为±1 的周期性方波信号,其中的DUTY参数表示占空比,即在信号的一个周期中正值所占的百分比。

数字信号处理实验报告 (3)

数字信号处理实验报告 (3)

数字信号处理实验报告13050Z011305024237数字信号处理实验报告实验一 采样定理(2学时) 内容:给定信号为()exp()cos(100**)x t at at π=-,其中a 为学号, (1)确定信号的过采样和欠采样频率(2)在上述采样频率的条件下,观察、分析、记录频谱,说明产生上述现象的原因。

基本要求:验证采样定理,观察过采样和欠采样后信号的频谱变化。

a=37; %1305024237 fs=10000; %抽样频率 t=0:1/fs:0.05;x1=exp(-a*t).*cos(100*pi*a*t);N=length(x1); %信号时域横轴向量 k=(0:N-1); %信号频域横轴向量 Y1=fft(x1); Y1=fftshift(Y1); subplot(2,1,1); plot(t,x1);hold on ; stem(t,x1,'o'); subplot(2,1,1); plot(k,abs(Y1)); gtext('1305024237');051015201305024237 刘德文a=37; %1305024237 fs=800; %抽样频率 t=0:1/fs:0.05;x1=exp(-a*t).*cos(100*pi*a*t);N=length(x1); %信号时域横轴向量 k=floor(-(N-1)/2:(N-1)/2); %信号频域横轴向量 Y1=fft(x1); Y1=fftshift(Y1); subplot(2,1,1); plot(t,x1);hold on ; stem(t,x1,'o'); subplot(2,1,2); plot(k,abs(Y1)); title('1305024237 ');0.0050.010.0150.020.0250.030.0350.040.0450.05-20-15-10-50510152005101305024237 刘德文实验二 信号谱分析(2学时) 内容: 给定信号为:(1)()cos(100**)x t at π= (2)()exp()x t at =-(3)()exp()cos(100**)x t at at π=-其中a 为实验者的学号,记录上述各信号的频谱,表明采样条件,分析比较上述信号频谱的区别。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理 实验报告实验一 序列的傅立叶变换一、实验目的1.进一步加深理解DFS,DFT 算法的原理;2.研究补零问题;3.快速傅立叶变换(FFT )的应用。

二、 实验步骤1.复习DFS 和DFT 的定义,性质和应用;2熟悉MATLAB 语言的命令窗口、编程窗口和图形窗口的使用;3利用提供的程序例子编写实验用程序;4.按实验内容上机实验,并进行实验结果分析;5.写出完整的实验报告,并将程序附在后面。

三、 实验内容1.周期方波序列的频谱试画出下面四种情况下的的幅度频谱, 并分析补零后,对信号频谱的影响。

2.有限长序列x(n)的DFT (1)取x(n)(n=0:10)时,画出x(n)的频谱X(k) 的幅度;(2)将(1)中的x(n)以补零的方式,使x(n)加长到(n:0~100)时,画出x(n)的频谱X(k) 的幅度;(3)取x(n)(n:0~100)时,画出x(n)的频谱X(k) 的幅度。

利用FFT 进行谱分析3.已知:模拟信号以t=0.01n(n=0:N-1)进行采样,求N 点DFT 的幅值谱。

请分别画出N=45; N=50;N=55;N=60时的幅值曲线。

四、 实验数据分析)8cos(5)4sin(2)(t t t x ππ+=)52.0cos()48.0cos()(n n n x ππ+=1.周期方波序列的频谱分析首先定义一个功能函数dfsfunction[Xk]=dfs(xn,N)n=[0:1:N-1];k=[0:1:N-1];WN=exp(-j*2*pi/N);nk=n'*k;WNnk=WN.^nk;Xk=xn*WNnk;(1)L=5,N=20;%题1.(1)L=5;N=20;%对于(2),(3),(4)问,只要修改L,N的数值就好。

n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(1)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)');title('DFS of SQ.wave:L=5,N=20');subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');(2)L=5,N=40;(3).L=5,N=60(4)L=7,N=60;结果分析:虽然周期序列不存在FT,但是一个周期序列可以利用其DFS系数X(k)表示它的频谱分布规律,从以上各频谱图可以看出,随着补零点数的增加,周期序列的谐波次数越来越多,其频谱的包络线越来越平滑连续,更能反映幅度值随时间的变化。

数字信号处理实验报告

数字信号处理实验报告

物理与电子电气工程学院实验报告课程名称:数字信号处理院系:物理与电子电气工程学院专业:电子信息科学与技术班级:学号:姓名:物理与电子电气工程学院实验报告实验报告(1)实验名称实验一离散时间信号分析实验日期2013.10.19 指导教师(2)绘制单位跃阶)u序列(n解:MATLAB程序如下:>> n=-10:10;>> x=[zeros(1,10),ones(1,11)]; >> stem(n,x,'fill')>> grid on(4)正弦型序列)35sin()(ππ+=n A n x解:MATLAB 程序如下: >> n=-10:10; >> w=pi/5; >> ph=pi/3; >> A=2;(2)2()1(2)()(-+-+-+=n n n n n h δδδδ解:MATLAB 程序如下: >> n=-10:10;>> x=[zeros(1,10),1,2,1,2,zeros(1,7)]; >> stem(n,x,'fill') >> grid on(2)实现任意序列(2)()(-+=n n n h δδ解:MATLAB 程序如下:>> n=-10:10;>> x=[zeros(1,10),1,2,1,2,zeros(1,7)]; >> y=circshift(x,[0,-4]); %左移四位>> stem(n,y,'fill') >> grid on(4)实现任意序列)(=n x (2)2()1(2)()(+-+-+=n n n n n h δδδδ解:MATLAB 程序如下:x=[zeros(1,10),1,2,1,2,zeros(1,7)];>> y=[zeros(1,10),1,2,3,4,5,zeros(1,6)]; >> k=x+y; %两数列相加(5)实现任意序列)(=n x δ(2)2()1(2)()(-+-+-+=n n n n n h δδδδ解:MATLAB 程序如下:>> n=-10:10;>> x=[zeros(1,10),1,2,1,2,zeros(1,7)]; >> y=[zeros(1,10),1,2,3,4,5,zeros(1,6)]; >> k=x.*y; %实现两序列的积 >> stem(n,k,'fill')(6)分别实现()(=n n x δ(2)2()1(2)()(-+-+-+=n n n n n h δδδδ解:MATLAB 程序如下: ①>> n=-10:10;②>> n=-10:10;>> x=[zeros(1,10),1,2,1,2,zeros(1,7)];>> y=cumsum(x); %%实现函数自身的累加(由左向右累加)>> stem(n,y,'fill')>> grid on实验一实验心得:首先,第一次实验,我又开始重拾MATLAB方法。

数字信号处理 实验报告

数字信号处理    实验报告

数字信号处理实验报告实验一 信号、系统及系统响应一、实验目的(1) 熟悉连续信号经理想采样前后的频谱变化关系, 加深对时域采样定理的理解。

(2) 熟悉时域离散系统的时域特性。

(3) 利用卷积方法观察分析系统的时域特性。

(4) 掌握序列傅里叶变换的计算机实现方法, 利用序列的傅里叶变换对连续信号、 离散信号及系统响应进行频域分析。

二、实验原理与方法 1. 时域采样定理:对一个连续信号xa(t)进行理想采样的过程如下: xa1(t)=xa(t)p(t)其中xa1(t)为xa(t)的理想采样,p(t)为周期冲击脉冲。

xa1(t)的傅里叶变换Xa1(j Ω)为:11()[()]m Xa j Xa j m s T +∞=-∞Ω=Ω-Ω∑表明Xa1(j Ω)为Xa(j Ω)的周期延拓,其延拓周期为采样角频率(s Ω=2π/T )。

离散信号和系统在时域均可用序列来表示。

2. LTI 系统的输入输出关系: y(n)=x(n)*h(n)=()()m x m h n m +∞=-∞-∑()()()j j j Y e X e H e ωωω=三、实验内容1. 分析采样序列的特性。

1) 取模拟角频w=70.7*pi rad/s ,采样频率fs=1000Hz>2w ,发现无频谱混叠现象。

2) 改变采样频率, fs=300 Hz<2w ,频谱产生失真。

3) 改变采样频率, fs=200Hz<2w,频谱混叠,产生严重失真2. 时域离散信号、系统和系统响应分析。

1) 观察信号xb(n)和系统hb(n)的时域和频域特性;利用线性卷积求信号xb(n)通过系统hb(n)的响应y(n),比较所求响应y(n)和hb(n)的时域及频域特性,注意它们之间有无差别,绘图说明,并用所学理论解释所得结果。

2) 观察系统ha(n)对信号xc(n)的响应特性。

可发现:信号通过系统,相当于x(n)与系统函数h(n)卷积,时域卷积即对应频域函数相乘。

数字信号处理实验报告

数字信号处理实验报告

实验一:频谱分析与采样定理 subplot(3,1,1),stem(t,x2);title('指数信号'); subplot(3,1,2),stem(f1,y2);title('指数信号频谱'); subplot(3,1,3),plot(f2,y21);title('指数信号频谱'); %%%%%%%%%%%%%%%%%%%%%%%%% x3=x1.*x2; y3=T*abs(fft(x3)); y31=fftshift(y3); figure(3), subplot(3,1,1),stem(t,x3);title('两信号相乘'); subplot(3,1,2),stem(f1,y3);title('两信号相乘频谱'); subplot(3,1,3),plot(f2,y31);title('两信号相乘频谱'); 实验结果: T=1/10000,������������ =10000,L=0.10
1/ 5
实验二:卷积定理 Y2=fft(y2); Z2=X2.*Y2; z2=ifft(Z2); figure(3), subplot(321),stem(x2);title('x2'); subplot(322),stem(real(X2));title('X2'); subplot(323),stem(y2);title('y2'); subplot(324),stem(real(Y2));title('Y2'); subplot(325),stem(z2);title('z2'); subplot(326),stem(real(Z2));title('Z2'); N=6; x3=[x zeros(1,N-length(x))]; y3=[y zeros(1,N-length(y))]; X3=fft(x3); Y3=fft(y3); Z3=X3.*Y3; z3=ifft(Z3); figure(4), subplot(321),stem(x3);title('x3'); subplot(322),stem(real(X3));title('X3'); subplot(323),stem(y3);title('y3'); subplot(324),stem(real(Y3));title('Y3'); subplot(325),stem(z3);title('z3'); subplot(326),stem(real(Z3));title('Z3'); N=8; x4=[x zeros(1,N-length(x))]; y4=[y zeros(1,N-length(y))]; X4=fft(x4); Y4=fft(y4); Z4=X4.*Y4; z4=ifft(Z4); figure(5), subplot(321),stem(x4);title('x4'); subplot(322),stem(real(X4));title('X4'); subplot(323),stem(y4);title('y4'); subplot(324),stem(real(Y4));title('Y4'); subplot(325),stem(z4);title('z4'); subplot(326),stem(real(Z4));title('Z4'); %N=6 时
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字信号处理综合实验报告实验题目:基于Matlab的语音信号去噪及仿真专业名称:学号:姓名:日期:报告内容:一、实验原理1、去噪的原理1.1 采样定理在进行模拟/数字信号的转换过程中,当采样频率fs.max大于信号中,最高频率fmax的2倍时,即:fs.max>=2fmax,则采样之后的数字信号完整地保留了原始信号中的信息,一般实际应用中保证采样频率为信号最高频率的5~10倍;采样定理又称奈奎斯特定理。

1924年奈奎斯特(Nyquist)就推导出在理想低通信道的最高大码元传输速率的公式: 理想低通信道的最高大码元传输速率=2W*log2 N (其中W是理想低通信道的带宽,N是电平强度)为什么把采样频率设为8kHz?在数字通信中,根据采样定理, 最小采样频率为语音信号最高频率的2倍频带为F的连续信号f(t)可用一系列离散的采样值f(t1),f(t1±Δt),f(t1±2Δt),...来表示,只要这些采样点的时间间隔Δt≤1/2F,便可根据各采样值完全恢复原来的信号f(t)。

这是时域采样定理的一种表述方式。

时域采样定理的另一种表述方式是:当时间信号函数f(t)的最高频率分量为fM时,f(t)的值可由一系列采样间隔小于或等于1/2fM的采样值来确定,即采样点的重复频率f≥2fM。

图为模拟信号和采样样本的示意图。

时域采样定理是采样误差理论、随机变量采样理论和多变量采样理论的基础。

对于时间上受限制的连续信号f(t)(即当│t│>T时,f(t)=0,这里T=T2-T1是信号的持续时间),若其频谱为F(ω),则可在频域上用一系列离散的采样值(1-1)采样值来表示,只要这些采样点的频率间隔(1-2)。

1.2 采样频率采样频率,也称为采样速度或者采样率,定义了每秒从连续信号中提取并组成离散信号的采样个数,它用赫兹(Hz)来表示。

采样频率的倒数是采样周期或者叫作采样时间,它是采样之间的时间间隔。

通俗的讲采样频率是指计算机每秒钟采集多少个声音样本,是描述声音文件的音质、音调,衡量声卡、声音文件的质量标准。

采样频率只能用于周期性采样的采样器,对于非周期性采样的采样器没有规则限制。

采样频率的常用的表示符号是fs。

通俗的讲采样频率是指计算机每秒钟采集多少个声音样本,是描述声音文件的音质、音调,衡量声卡、声音文件的质量标准。

采样频率越高,即采样的间隔时间越短,则在单位时间内计算机得到的声音样本数据就越多,对声音波形的表示也越精确。

采样频率与声音频率之间有一定的关系,根据采样定理,只有采样频率高于声音信号最高频率的两倍时,才能把数字信号表示的声音还原成为原来的声音。

这就是说采样频率是衡量声卡采集、记录和还原声音文件的质量标准。

采样位数和采样率对于音频接口来说是最为重要的两个指标,也是选择音频接口的两个重要标准。

无论采样频率如何,理论上来说采样的位数决定了音频数据最大的力度范围。

每增加一个采样位数相当于力度范围增加了6dB。

采样位数越多则捕捉到的信号越精确。

对于采样率来说你可以想象它类似于一个照相机,44.1kHz意味着音频流进入计算机时计算机每秒会对其拍照达441000次。

显然采样率越高,计算机摄取的图片越多,对于原始音频的还原也越加精确2、数字滤波器设计的基本原理1.1 FIR数字滤波器的设计FIR:有限脉冲响应滤波器。

有限说明其脉冲响应是有限的。

与IIR相比,它具有线性相位、容易设计的优点。

这也就说明,IIR滤波器具有相位不线性,不容易设计的缺点。

而另一方面,IIR却拥有FIR所不具有的缺点,那就是设计同样参数的滤波器,FIR比IIR需要更多的参数。

这也就说明,要增加DSP的计算量。

DSP需要更多的计算时间,对DSP的实时性有影响。

FIR滤波器的设计比较简单,就是要设计一个数字滤波器去逼近一个理想的低通滤波器。

通常这个理想的低通滤波器在频域上是一个矩形窗。

根据傅里叶变换我们可以知道,此函数在时域上是一个采样函数。

通常此函数的表达式为:sa(n)=sin(n)/n(1-3)但是这个采样序列是无限的,计算机是无法对它进行计算的。

故我们需要对此采样函数进行截断处理。

也就是加一个窗函数。

就是传说中的加窗。

也就是把这个时域采样序列去乘一个窗函数,就把这个无限的时域采样序列截成了有限个序列值。

但是加窗后对此采样序列的频域也产生了影响:此时的频域便不在是一个理想的矩形窗,而是成了一个有过渡带,阻带有波动的低通滤波器。

通常根据所加的窗函数的不同,对采样信号加窗后,在频域所得的低通滤波器的阻带衰减也不同。

通常我们就是根据此阻带衰减去选择一个合适的窗函数。

如矩形窗、汉宁窗、汉明窗、BLACKMAN窗、凯撒窗等。

1.2 IIR数字滤波器的设计对于数字高通、带通滤波器的设计,通用方法为双线性变换法。

可以借助于模拟滤波器的频率转换设计一个所需类型的过渡模拟滤波器,再经过双线性变换将其转换策划那个所需的数字滤波器。

具体设计步骤如下:(1)确定所需类型数字滤波器的技术指标。

(2)将所需类型数字滤波器的边界频率转换成相应的模拟滤波器的边界频率,转换公式为Ω=2/T tan(0.5ω) (1-4)(3)将相应类型的模拟滤波器技术指标转换成模拟低通滤波器技术指标。

(4)设计模拟低通滤波器。

(5)通过频率变换将模拟低通转换成相应类型的过渡模拟滤波器。

(6)采用双线性变换法将相应类型的过渡模拟滤波器转换成所需类型的数字滤波器。

我们知道,脉冲响应不变法的主要缺点是会产生频谱混叠现象,使数字滤波器的频响偏离模拟滤波器的频响特性。

为了克服之一缺点,可以采用双线性变换法。

二、实验步骤其大概流程框图可如下表示:(图2-1)图2-11.滤波器的设计。

利用窗函数法设计FIR滤波器的步骤。

如下:(1)根据对阻带衰减及过渡带的指标要求,选择串窗数类型(矩形窗、三角窗、汉宁窗、哈明窗、凯塞窗等),并估计窗口长度N。

先按照阻带衰减选择窗函数类型。

原则是在保证阻带衰减满足要求的情况下,尽量选择主瓣的窗函数。

(2)构造希望逼近的频率响应函数。

(3)计算h(n).。

(4)加窗得到设计结果。

接下来,我们根据语音信号的特点给出有关滤波器的技术指标:低通滤波器的性能指标:fp=1000Hz,fc=1200Hz,As=50db ,Ap=1dB高通滤波器的性能指标:fp=3500Hz,fc=4000Hz,As=50dB,Ap=1dB在Matlab中,可以利用函数fir1设计FIR滤波器,利用Matlab中的函数freqz画出各步步器的频率响应。

MATLAB信号处理工具箱函数cheblap,cheblord和cheeby1是切比雪夫I 型滤波器设计函数。

我们用到的是cheeby1函数,其调用格式如下:[B,A]=cheby1(N,Rp,wpo,’ftypr’)[B,A]=cheby1(N,Rp,wpo,’ftypr’,’s’)利用模拟滤波器设计IIR数字低通滤波器的步骤:如下:(1)确定数字低通滤波器的技术指标:通带边界频率、通带最大衰减,阻带截止频率、阻带最小衰减。

(2)将数字低通滤波器的技术指标转换成相应的模拟低通滤波器的技术指标。

(3)按照模拟低通滤波器的技术指标设计及过渡模拟低通滤波器。

(4)用双线性变换法,模拟滤波器系统函数转换成数字低通滤波器系统函数。

MATLAB信号处理工具箱函数cheblap,cheblord和cheeby1是切比雪夫I 型滤波器设计函数。

我们用到的是cheeby1函数,其调用格式如下:[B,A]=cheby1(N,Rp,wpo,’ftypr’)[B,A]=cheby1(N,Rp,wpo,’ftypr’,’s’)函数butter,cheby1和ellip设计IIR滤波器时都是默认的双线性变换法,所以在设计滤波器时只需要代入相应的实现函数即可。

2.语音信号的录制。

单击自己的电脑开始程序,选择所有程序,接着选择附件,再选择录音。

自己录入语音信号,然后保存在MATLAB文件夹里面,命名为“chenghaijie1.wav”。

3.在MATLAB平台上读入语音信号、绘制频谱图并回放原始语音信号。

利用MATLAB中的wavread命令来读入(采集)语音信号,将它赋值给某一向量。

[y,fs,bits]=wavread(' [N1 N2]);用于读取语音,采样值放在向量y中,fs表示采样频率(Hz),bits表示采样位数。

[N1 N2]表示读取从N1点到N2点的值(若只有一个N的点则表示读取前N点的采样值。

4. 利用matlab函数randn编程加入一段随机噪音信号,再利用设计的FIR 和IIR滤波器去噪,分别绘制去噪后的频谱图、回放语音信号与原始信号的频谱图、原始语音信号比较,并且比较两种滤波器的优缺点和得出语音信号的频段。

三、实验结果下面我们将给出设计FIR数字滤波器的主要程序和图像。

FIR高通滤波程序见附录2;FIR高通滤波图像:(图2—3)00.20.40.60.81图2—3 FIR 高通滤波器下面我们将给出IIR 数字滤波器的主要程序。

IIR 低通滤波器程序见附录3;IIR 低通滤波器图像:(图2—4)00.20.40.60.811.21.4IIR 低通滤波器图2—4 IIR 低通滤波器IIR 滤波器高通程序见附录4;IIR 滤波器高通图像:(图2—5)02000400060008000100001200000.20.40.60.81IIR 高通滤波器用cheby1设计图2—5 IIR 高通滤波器原始语音信号的回放及频谱分析程序:见附录5;原始语音信号及其频谱分析图像、运行程序可以听到原始信号的回放:(图2—6)图2—6 原始语音信号及其频谱分析图像利用randn 函数把一段随机噪音信号加入原始语音信号的信号处理过程程序:见附录6;加噪后语音信号的时域波形、频谱图:(图2—7)(图2—7)加噪后语音信号的时域波形、频谱图利用FIR低通滤波器法去噪程序:见附录7;FIR滤波器去噪前与去噪后语音信号的时域波形、频谱图:(图2—8)(图2—8)FIR滤波器去噪前与去噪后语音信号的时域波形、频谱图利用IIR低通滤波器法去噪程序:见附录8;IIR滤波器去噪前与去噪后语音信号的时域波形、频谱图:(图2—9)(图2—9)IIR滤波器去噪前与去噪后语音信号的时域波形、频谱图四、实验分析1. 由(图2—8)FIR滤波器去噪前与去噪后语音信号的时域波形、频谱图和(图2—9)IIR滤波器去噪前与去噪后语音信号的时域波形、频谱图可看出原始语音信号和加噪语音信号时域波形和频谱图的区别。

加噪后的语音信号的时域波形比原始语音信号要模糊得多,频谱图则是在频率5000Hz以后出现了明显的变化。

再通过滤波前的信号波形和频谱图的对比,可以明显看出滤波后的波形开始变得清晰了,有点接近原始信号的波形图了。

相关文档
最新文档