倍数与因数1

合集下载

第一讲 倍数与因数

第一讲    倍数与因数

第一讲倍数与因数(一)例题精讲:1、五位数73□28能被9整除,□应填几?2、BA8919能被66整除,这个六位数是多少?3、期末考试六年级一班数学平均分是90分,总分是□95□,这个班有多少名学生?4、任意一个三位数连着写两回得到一个六位数,这个六位数一定能被7,11,13整除,为什么?5、已知一个两位数恰好是它的两个数字之和的6倍,求这个两位数?6、在298的后面填上一个三位数,使这个六位数能被476整除?7、一梯形面积为1400平方米,高为50米,若两底的米数都是整数且可被8整除,求两底。

(有几组解?)8、某校人数是一个三位数,平均每个班36人,若将全校人数的百位与十位数对调,则全校人数比实际少180人,那么该校最多可达多少人?练习:1、四位数841□能被2和3整除,□里应填___________.2、把789连续写___次,所组成的数能被9整除,并且这个数最小.3、四位数ab36=__________.36能同时被2,3,4,5,9整除,则ab4、把1,2,3这三个数字任意排列,可组成若干个三位数.在这些三位数中,能被11整除的是______________.5、同时能被3,4,5整除的最小四位数是____________。

6、从3,5,0,1这四个数字中任选3个组成没有重复数字且同时能被3,5整除的三位数有_____个.46,求x.7、一个三位数减去它的各个数位的数字之和,其差还是一个三位数x8、商店里有六箱货物,分别重15,16,18,19,20,31千克,两个顾客买走了其中五箱.已知一个顾客买的货物重量是另一个顾客的2倍,商店里剩下的一箱货重多少千克?9、三位数的百位,十位,个位数字分别是5,a,b将它接连重复写99次成为: 5⋅⋅⋅⋅⋅⋅,如果所组成之数能被91整除,这个三位数ab5abab5ab5是多少?99个5 ab第二讲倍数与因数(二)——质数、合数、分解质因数例题精讲:1、一个数是5个2,3个3,2个5,1个7的连乘积,这个数有几个因数?这个数的两位数因数中最大的是几?2、将21、30、65、126、143、169、275分成两组,使两组数的积相等。

一单元知识点(倍数与因数)

一单元知识点(倍数与因数)

第一单元倍数与因数本单元学习目标:1.掌握倍数和因数的意义。

2.掌握求一个数的倍数和因数的方法。

3.能运用倍数和因数的知识解决简单的数学问题。

4.熟练掌握并运用2 、3、5 的倍数的特征。

5.理解质数和合数的概念,并能判断一个数是质数还是合数。

6.学会用短除法分解质因数。

7.理解公因数和公倍数的概念,并能正确找两个数的公因数和公倍数。

8.学会用短除法求最大公因数和最小公倍数。

9.利用最大公因数和最小公倍数解决生活中的实际问题。

本单元知识点:一、倍数、因数(一)揭示自然数的概念1.0和1,2,3,4,5……这些数都是自然数。

2.在自然数中,数与数之间有许多非常有趣的联系,让我们在非零自然数1,2,3,4,5,•••中找一找。

(二)例1讲解,从中引出因数和倍数的意义假如a*b=c(a、b、c都是整数),那么我们称a和b 就是c的因数,称c为a和b的倍数。

4和9都是36的因数。

也可以说36是4和9的倍数。

强调倍数和因数不能单独存在!易错题型:1.因为18÷2=9,所以2是因数,18是倍数。

(解析:不对,因为倍数和因数不能单独存在。

)2.36是0.4的倍数,0.4是36的因数。

(解析:不对,因为0.4是小数,在说因数和倍数时只限于非0自然数。

)(三)讲解议一议和例2,找一个数的因数和倍数的方法1.找一个数的因数,可以利用乘法算式,按因数从小到大(从1开始)的顺序一组一组的找,这时,两个乘数都是积的因数。

2.找一个数的倍数,用这个数和非零自然数相乘(从1开始,从小到大),所得的积就是这个数的倍数。

补充:1.一个数的因数个数是有限的,最小的因数是1,最大的因数是它本身。

2.一个数的倍数个数的无限的,最小的倍数是它本身,没有最大的倍数。

3.1是任一非零自然数的因数,也是任一非零自然数的最小因数。

4.除1以外的任何非零自然数至少有两个因数。

(1和它本身)5.一个数的因数都小于或等于它本身,一个数的倍数都大于或等于它本身。

倍数与因数知识点

倍数与因数知识点

倍数与因数知识点数学是一门抽象而精确的科学,其中倍数与因数是我们在学习数学时经常接触到的重要概念。

他们是数学中最基本的概念之一,对于我们的数学学习和日常生活中的应用都有着重要的意义。

本文将对倍数与因数的概念进行详细解析,并探讨其在实际中的应用。

一、倍数倍数是数学中最基本的概念之一。

我们先从定义出发,倍数指一个数能够被另一个数整除。

举个例子来说,对于数3来说,它的倍数便是3、6、9、12、15等等。

我们可以发现,这些倍数都可以被3整除,因此它们都是3的倍数。

在实际生活中,倍数的应用非常广泛。

比如我们去超市买水果,某种水果是每斤5元,那么如果我们买10斤这种水果,我们只需要计算10的倍数即可,即50元。

又如我们的家庭用电费一般是按照度数来收费的,如果我们的用电量是300度,那么我们只需要查找300的倍数来计算电费,这样可以大大简化计算过程。

二、因数与倍数相对应的概念便是因数。

所谓因数,是指能够整除一个数的数。

举个例子来说,对于数6来说,它的因数有1、2、3、6。

我们可以发现,这些因数都能够整除6,因此它们都是6的因数。

在数学中,因数也是非常重要的概念。

它在因式分解、最大公约数、最小公倍数等数学题型中经常出现。

比如我们要将一个数分解为几个乘法因子的积,这就需要我们找出这个数的所有因数。

又如在求两个数的最大公约数时,我们也需要找出它们的共同因数,然后找出最大的共同因数。

三、倍数与因数的关系倍数与因数是密切相关的,它们之间存在着一定的关系。

我们可以这样理解:一个数的所有倍数都是这个数的因数,而一个数的所有因数都是这个数的倍数。

举个简单的例子来说,对于数8来说,它的倍数有8、16、24、32等等,而它的因数有1、2、4、8。

我们可以发现,8的倍数都能够整除8,也就是8的因数;而8的因数都是能够被8整除的数,也就是8的倍数。

因此,倍数和因数是互相对应的,它们之间有着天然的联系。

在解决问题时,我们可以根据倍数与因数之间的关系进行转化,以便更好地理解和分析问题。

倍数与因数知识点

倍数与因数知识点

倍数与因数知识点两个正整数相乘,那么这两个数都叫做积的因数,那么因数和倍数之间的区分是什么呢?下面是为大家整理的关于〔小学〕〔数学〕中倍数与因数相关的学问点之间归纳,盼望对你们有关怀。

倍数与因数学问点整理一:一、因数与倍数的意义1、假如自然数乘自然数b等于c,即b=c,我们就说和b 是c的因数,c是和b的倍数。

2、一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身;一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。

倍数和因数是互相依存的。

0是任何整数的倍数。

3、怎样找一个数的因数?就是从1和它本身开始。

一组一组从小到大的相乘,积要是这个数。

4、怎样确定一个数有几个因数?从1和它本身开始。

一组一组从小到大的相乘,相同的只算一个。

二、2、5、3的倍数的特征1、2的倍数特征个位上是0、2、4、6、8的数都是2的倍数。

2、5的倍数的特征个位上是0或5的数是5的倍数。

3、3的倍数的特征各位上的数字的和是3的倍数,这个数就是3的倍数。

三、偶数与奇数自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。

依据这个定义,我们可以说自然数分为偶数和奇数两类。

四、质数和合数1、质数一个数,假如只有1和他本身两个因数,这样的数叫做质数(或素数)。

如2、3、5、7都是质数。

最小的质数是2,除2外,全部的质数都是奇数。

2、合数一个数,假如除了1和它本身还有别的因数(合数的因数至少有3个),这样的数叫做合数。

最小的合数是4。

3、1既不是质数,也不是合数。

所以我们可以说质数和合数都是自然数,但不能说自然数分为质数和合数,只能说它分为质数、合数、1和0。

4、在自然数中,最小的奇数是(1),最小的质数是(2),最小的合数是(4)。

5、质数只有(2)个因数,它们分别是(1)和(它本身)。

一个合数至少有(3)个因数,(1)既不是质数,也不是合数。

自然数中,既是质数又是偶数的是(2)。

倍数和因数的重要知识点必记

倍数和因数的重要知识点必记

因数与倍数的重要知识点1.因数、倍数概念:如果a×b=c(a、b、c都是不为0的整数)我们就说a和b都是c的因数c是a的倍数也是b的倍数。

倍数和因数是相互依存的。

2.一个数的因数个数是有限的,最小因数是1,最大因数是它本身。

一个数的倍数个数是无限的,最小倍数是它本身,没有最大倍数。

3.2、3、5倍数的特征。

(1)2的倍数的特征:个位上是0、2、4、6、8的数,都是2的倍数,是2的倍数的数叫做偶数;不是2的倍数的数叫做奇数。

(2)3的倍数的特征:一个数各位数上的和是3的倍数这个数是3的倍数。

(3)个位上是0、5的数都是5的倍数。

4.质数和合数。

(1)一个数,如果只有1和它本身两个因数,这样的数叫做质数(素数)。

最小的质数是2。

(2)一个数,除了1和它本身还有别的因数,这样的因数叫做合数。

最小的合数是4,合数至少有三个因数。

(3)1既不是质数,也不是合数。

5.质因数和分解质因数。

(1)每个合数都可以写成几个质数相乘的形式。

其中每个质数都是这个合数的因数,叫做这个合数的质因数。

(2)把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

例:30=2×3×56.最大公因数和最小公倍数。

(1)几个数公有的因数,叫做这几个数的公因数,其中最大的一个,叫做这几个数的最大公因数。

(2)几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。

7.互质数:公因数只有1的两个数,叫做互质数。

8.100以内质数:2、3、5、7、11、13、17、19、23、29、31、41、43、47、53、59、61、67、71、73、79、83、89、93、979.13的倍数:26、39、52、65、78、91、104、11717的倍数:34、51、68、85、102、119、136、15319的倍数:38、57、76、95、114、133、152、171。

因数和倍数知识点归纳

因数和倍数知识点归纳

第二单元因数和倍数知识点归纳一、因数和倍数1.因数、倍数的意义:如果α×b二c(α、b、c都是不为0的整数),那么α、b就是c的因数,c就是α、b的倍数。

(1)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

(2)一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。

2.因数与倍数的关系:因数和倍数是相互依存的概念,二者不能单独存在。

3.找一个数的因数的方法:(1)列乘法算式找;(2)列除法算式找。

4.找一个数的倍数的方法:(1)列乘法算式找一个数的倍数,就是用这个数依次与非零自然数相乘,所得积就是这个数的倍数;(2)列除法算式找。

5.表示一个数的因数和倍数的方法:(1)列举法;(2)集合法。

二、2、5、3的倍数的特征1、2的倍数的特征:个位上是O,2,4,6,8的数都是2的倍数。

2、奇数和偶数的意义:在自然数中,是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数。

3、奇数、偶数的运算性质:奇数+奇数=偶数偶数+偶数=偶数奇数+偶数=奇数奇数-奇数=偶数偶数-偶数=偶数奇数-偶数=奇数奇数×奇数=奇数奇数×偶数=偶数偶数×偶数=偶数4、5的倍数的特征:个位上是0或5的数都是5的倍数。

5、3的倍数的特征:一个数各个数位上的数字的和是3的倍数,这个数就是3的倍数。

三、质数和合数1.质数和合数的意义:一个数如果只有1和它本身两个因数,这样的叫做质数(或素数);一个数如果除了1和它本身还有别的因数,这样的数叫做合数。

2.分解质因数:把一个合数用几个质数相乘的形式表示出来,就是分解质因数。

3.质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的质因数。

4.分解质因数的方法:(l)枝状图式分解法;(2)短除法。

因数倍数知识点

因数倍数知识点

1、因数:因数的个数是有限的,最小的因数是1,最大的因数是它本身。

倍数:倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。

在讨论因数和倍数时,一般不讨论0.2、2的倍数特点:末尾是0、2、4、6、8。

3的倍数特点:各个数位上的数之和是3的倍数。

5的倍数特点:末尾是0、5。

既是2的倍数又是5的倍数特点:末尾是0。

3、奇数:不是2的倍数,末尾是1、3、5、7、9。

偶数:是2的倍数,末尾是0、2、4、6、8。

最小的奇数是1;最小的偶数是0;最小的非零偶数是2.奇数+奇数=偶数;偶数+偶数=偶数;奇数-奇数=偶数;偶数-偶数=偶数。

奇数-偶数=奇数;奇数+偶数=奇数。

两个相同类型的数加减结果是偶数,两个不同类型的数加减结果是奇数。

4、质数:只有1和它本身两个因数的数,叫作质数(素数)。

合数:除了1和它本身还有其他因数的数,叫作合数。

最小的质数是2;最小的合数是4;1既不是质数又不是合数。

质数有两个因数;合数有至少3个因数。

5、分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

6、除了2以外的偶数都是合数。

7、0是最小的自然数。

8、末尾是0:除了零都是合数;末尾是1:21,51,81,91,111,121.末尾是2:除了2都是合数;末尾是3: 33,63,93,123是合数。

末尾是4:都是合数。

末尾是5:除了5都是合数。

末尾是6:都是合数。

末尾是7: 27、57、77、87末尾是8:都是合数。

末尾是9: 39、49、69、99、169。

9、三角形面积=底×高÷2 平行四边形面积=底×高S=ah÷2 S=ah梯形面积=(上底+下底)×高÷2S=(a+b)×h÷2组合图形面积的求解方法:分割法、添补法。

10、把一个平行四边形沿着(高)分割成两部分,通过(割补法)可以把这两部分拼成一个(长方形),它的(长)等于平行四边形的(底),它的(宽)等于平行四边形的(高)。

第五讲 因数与倍数(一)

第五讲 因数与倍数(一)

6946943471735第五讲 因数与倍数(一)如果说前四讲的知识点对于大家来说还是有点难得话,那么今天大家就会感觉很轻松啦。

原因有三,第一:暑期课程中的分解质因数那讲,大家已经对因数、倍数有所了解;第二:有的老师在讲前期课程时都有过补充最大公因数,最小公倍数的概念和求法(如方程组的加减法);第三:本学期学校课程里也已经介绍过因数、倍数。

所以这讲大家不会觉得很陌生。

但这些知识只能算是因数、倍数的最基本的知识点(如最大公因数与最小公倍数求法)。

而如何灵活运用这些知识点去解决实际问题大家可能还欠缺一点。

今天,我们就开始系统的学习因数与倍数,并将知识点拓展,以解决更多实际问题。

大家或许已经注意到,本讲是因数与倍数(一),也就是说今天讲的只是其概念,求法以及简单的运用,到后面我们还会再见到因数与倍数(二),会在本讲的基础之上继续学习因数,倍数中更多的性质,即解题规律。

所以今天我们的学习大致可分为如下两项。

因数的认知(概念,最大公因数及其求法)因数因数的应用倍数的认知(概念,最小公倍数及其求法)倍数倍数的应一、因数与倍数的认知1、概念:在整除那一讲我们学过,若自然数a,b,c 满足关系式a b=c 没有余数,则我们说a,b 满足整除关系,同时我们也就定义出a=b c 。

即:a 是b 与c 的倍数,b 与c 是a 的因数。

因此因数总是成对出现的。

如:24的因数有1和24;2和12;3和8;4和6…(1)若干个数都有的因数我们叫做这几个数的公因数。

如:42,54还有60的公因数有2,3还有6。

(2)在公因数中最小的都为1,没有研究价值,所以我们只研究最大公因数(公因数中最大的那个)。

如:42,54,60这三个数的最大公因数记为:(42,54,60)=6(3)若干个数都有的倍数我们叫做这几个数的公倍数。

如:12的倍数有:12,24,36….10的倍数有:10,20,30….则12和10的公倍数有60,120,180….。

倍数和因数的认识(1)

倍数和因数的认识(1)

从小到大连续写5个,后面加上省略号即可 3的倍数: 3 6 9 12 15 …… ; 2的倍数: 2 4 6 8 10 …… ; 5的倍数: 5 10 15 20 25 …… ;
请观察3、2、5的倍数,从下面三个方面你有什么发现?
比一比,一个数最小的倍数,你有什么发现?
找一找,一个数最大的倍数,你有什么发现?
12×1=12 12÷12=1
12是1的倍数 12是12的倍数 12是12的因数 1是12的因数
下面有几道算式,请同学们说说哪个数是 哪个数的倍数,哪个数是哪个数的因数,可以 吗?
11×4=44 12×5=60 24÷4=6
请你说出12的 所有 因数。
请先在练习纸上写出12的所有因数, 写完后同桌讨论,最后汇报结果。
排: 48最小的因数 号: 每人学号的倍数
赠票
每排最多容纳50人
研究的数都是自然数 并且除 0以外 (除0以外的自然数)
用12个边长是1cm的正方形拼成一个 长方形,想一想,每排摆几个?可以摆几排 ?
如果请你用一道算式,来把你所要摆的长方形 的形状表示出来,行吗?
1
2
3
4×3=12 12÷3=4
把6划去,把前面的因数相加1+2+3=6, 又回到了6本身,正是因为这样的数非常特别, 所以数学家把这样特点的数称为是完美数。
第二个完美数比20大,比30小, 而且还是一个双数
1……6 2……28 3……496 4……8128 5……33550336 6……8589869056
思考题
1-100这100个数,猜一猜哪个数 的因数最多?
6×2=12 12÷6=2
12×1=12 12÷12=1
42 12÷12=1

2第一单元 倍数与因数

2第一单元  倍数与因数

第一单元倍数与因数一、单元教材分析本单元是在学生学过整数的认识、整数的四则计算、小数、分数、负数的认识等知识的基础上展开学习的。

本单元的学习内容主要包括认识自然数和整数,倍数与因数,找倍数;2,5,3的倍数的特征;找因数;质数与合数,奇数与偶数等知识。

这些知识点学习是以后学习公倍数与公因数、约分、通分、分数四则运算等知识的重要基础。

二、单元教学目标1、使学生经历探索数的有关特征的活动,认识自然数,认识倍数与因数,能找出10以内某个自然数在100以内的全部倍数,能找出100以内某个自然数的所有因数。

知道什么是质数、合数,使学生经历2、5、3的倍数的特征的探索过程,知道的其特征,知道奇数和偶数。

2、使学生经历将一些实际问题抽象为数与代数问题的过程,发展学生的抽象思维。

在探索过程中,发展实践能力与创新精神。

能综合运用所学的知识和技能解决问题,发展应用意识。

3、在探索活动中,体会观察、分析、归纳、猜想、验证等过程,体验数学问题的探索性和挑战性。

积极参与数学学习活动,对数学有好奇心与求知欲。

形成质疑和独立思考的习惯。

三、单元教学重点因数与倍数;2,5,3的倍数的特征;奇数与偶数;质数与合数。

四、单元教学难点在探索过程中,能根据解决问题的需要,收集有关信息,进行分析、归纳、发现数的特征。

五、单元课时划分13课时第一课时数的世界教学内容认识自然数和整数,倍数和因数。

(第2-3页)教学目标1、结合具体情境,认识自然数和整数,联系乘法认识倍数和因数。

初步探索找一个数的倍数的方法,能在1——100的自然数中,找出10以内某数的所有倍数。

2、学生经历探索认识倍数和因数的含义,能对生活中有关的数字作出合理的解释。

在教师帮助下,初步学会选择有用的信息进行简单地归纳与类比,发展合情推理能力。

3、在老师、同学的帮助下,对身边与数学有关的某些事物有好奇心,参与数学活动,体验数学与日常生活密切联系。

教学重点、难点探究倍数和因数,倍数和因数的关系的理解教学过程一、结合“水果店”情境图,认识自然数和整数。

倍数与因数 概念总结

倍数与因数   概念总结

《倍数与因数》概念总结1、在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。

(一般不包括0)。

2、整除:被除数、除数、商都是整数,没有余数。

除尽:没有余数,但被除数、除数、商可以是小数、分数或整数。

3、求一个因数的方法:⑴列乘法算式⑵列除法算式4、一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身,1的因数是1,它是所有非零自然数的因数。

5、一个数的倍数的个数是无限的,最小的倍数它本身,没有最大的倍数。

6、如果两个数都是一个数的倍数,那么这两个数的和也是这个数的倍数。

7、整数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。

8、0是最小的偶数,没有最大的偶数;1是最小的奇数,没有最大的奇数。

9、①个位上是0或5的数都是5的倍数。

②个位上是0、2、4、6、8的数都是2的倍数。

③一个数各个数位上的数的和是3的倍数,这个数就是3的倍数。

④个位上是0的数既是2的倍数又是5的倍数。

⑤个位上是0且各位数字的和是3的倍数,那么这个数既是2的倍数又是3和5的倍数。

⑥能被2和3同时整除的数的特征:个位上是0、2、4、6、8,且各个数位上的数字之和是3的倍数。

⑦能被3和5同时整除数的特征:个位上是0或5,且各个数位上的数字之和是3的倍数。

10、各位数位上数字之和是9的倍数,这个数就是9的倍数。

是9的倍数一定是3的倍数。

但是3的倍数不一定是9的倍数。

11、偶数+偶数=偶数偶数-偶数=偶数偶数×偶数=偶数偶数+奇数=奇数偶数-奇数=奇数偶数×奇数=偶数奇数+奇数=偶数奇数-偶数=奇数奇数×奇数=奇数奇数-奇数=偶数无论多少个偶数相加都是偶数偶数个奇数相加是偶数奇数个奇数相加是奇数12、1个数,如果只有1和它本身两个因数,叫质数。

13、1个数,如果除了1和它本身还有别的因数,叫合数。

14、1不是质数也不是合数,自然数除了1外,不是质数就是合数。

因数与倍数知识点

因数与倍数知识点

因数和倍数1.因数和倍数的描述:谁是谁的因数,谁是谁的倍数。

判断方法:大数是小数的倍数,小数是大数的因数。

例如:2和6是12的因数。

12是2的倍数,也是6的倍数。

2.一个数的最小因数是1,最大的因数是它本身。

一个数的因数的个数是有限的。

3.一个数的最小倍数是它本身,没有最大的倍数。

一个数的倍数的个数是无限的。

4.因数<或=它本身;倍数>或=它本身;最大的因数=最小的倍数=它本身5.自然数中,是2的倍数的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。

不是2的倍数的数叫奇数。

也就是个位上是1、3、5、7、9的数。

6.自然数分成偶数和奇数,最小的偶数是0,最小的奇数是1。

7.奇数+/- 偶数=奇数奇数+/- 奇数=偶数偶数+/-偶数=偶数。

8.个位上是0、2、4、6、8的数是2的倍数。

个位上是0或5的数,是5的倍数。

一个数各位上的数的和是3的倍数,这个数就是3的倍数。

9.个位上是0的数,既是2的倍数,又是5的倍数。

既是2和5的倍数,又是3的倍数的最小三位数是120。

最大的两位数是90.10.同时满足2.3.5的倍数,实际是求2×3×5=30的倍数。

11.一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。

一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。

(至少3个因数)12.1既不是质数,也不是合数。

最小的质数是2,最小的合数是4。

13.按因数的个数划分为:自然数分为质数、合数、1和0 。

按2的倍数划分:自然数分为偶数、奇数。

14.100以内找质数、合数的技巧:看是否是2、3、5、7、11、13…的倍数,是的就是合数,不是的就是质数。

20以内的质数:2、3、5、7、11、13、17、19 。

15.每个合数都可以由几个质数相乘得到,质数相乘一定得合数。

1。

倍数和因数知识点

倍数和因数知识点

倍数和因数知识点一、因数和倍数:因数的特征一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。

倍数的特征一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。

一个数:最大的因数=最小的倍数=它本身一个数的因数的求法:从1和它本身开始,一组一组地按顺序找,找到重复即可。

一个数的倍数的求法:依次乘以自然数1、2、3、4……;或每次加这个数。

二、2,3,5的倍数特征2的倍数特征:个位上是0,2,4,6,8。

5的倍数特征:个位上是0或5。

3的倍数特征:各个数位上的数字的和是3的倍数。

9的倍数:类似3既是2的倍数又是5的倍数(一定是10的倍数)特征:个位上是0。

奇数的个位:1、3、5、7、9偶数的个位:2、4、6、8、0一个自然数不是奇数就是偶数能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是(),最小的三位数是(),最大的三位数是()。

三、质数与合数和1质数:如果只有1和它本身两个因数,这样的数叫作质数(或素数)。

合数:一个数,除了1和它本身还有别的因数(最少3个),这样的数叫作合数。

20以内的质数:2、3、5、7、11、13、17、19。

最小的质数是2。

除2以外的所有质数都是奇数。

2既是奇数又是质数。

20以内的合数:4、6、8、9、10、12、14、15、16、18、20最小的合数是4。

20以内既是奇数又是合数的是(9、15)自然数按照因数的个数分类:1个因数。

(1)1既不是质数,也不是合数。

2个因数(质数)2个以上因数(合数)=最少3个因数一个数不是质数就是合数是错误的。

四、最大公因数和最小公倍数3种关系1、互质关系:两个数的公因数只有1的两个自然数,叫做互质数;(1)两个不同的质数互质;(2和11)(2)相邻的两个自然数互质;(7和8)a-b=1还可以写成a=b+1,a-1=b(b是非0自然数)(3)相邻的两个奇数;(7和9)a-b=2(b是奇数)(4)1和任何自然数互质;(5)一个质数和另一个不是倍数的数是互质;(7和20,5和21)(6)不含相同质因数的两个合数互质;(如8和15,4和21)互质两数最大公因数是1,最小公倍数是它们的积。

因数和倍数的知识点整理

因数和倍数的知识点整理

因数和倍数的知识点整理因数和倍数是数学中常见的概念,它们在我们的日常生活中起着重要的作用。

本文将从因数和倍数的定义、性质和应用等方面进行详细介绍,帮助读者更好地理解和应用这两个概念。

一、因数的定义和性质1.1 因数的定义一个数如果能被另一个数整除,我们就称这个数为另一个数的因数。

例如,6能被2整除,因此2是6的因数。

1.2 因数的性质(1)一个数的因数一定不能大于这个数本身。

(2)一个数的因数一定不能小于1。

(3)一个数的因数都是整数。

1.3 最大公因数和最小公倍数最大公因数是指两个或多个数公有的最大的因数,最小公倍数是指两个或多个数公有的最小的倍数。

最大公因数和最小公倍数在数学中有着广泛的应用。

二、倍数的定义和性质2.1 倍数的定义一个数如果能被另一个数整除,我们就称这个数为另一个数的倍数。

例如,12是6的倍数,因为12能被6整除。

2.2 倍数的性质(1)一个数的倍数一定能被这个数整除。

(2)一个数的倍数都是整数。

三、因数和倍数的应用3.1 因数的应用(1)判断一个数是否为质数:如果一个数只有1和它本身两个因数,那么这个数就是质数。

(2)简化分数:将分子和分母的最大公因数约去,可以得到最简分数。

(3)求一个数的所有因数:通过列举所有小于这个数的正整数,并判断能否整除这个数来求得。

3.2 倍数的应用(1)求最小公倍数:通过列举两个数的倍数,找到它们的公共倍数中最小的一个数,就是最小公倍数。

(2)求最大公因数:通过列举两个数的因数,找到它们的公共因数中最大的一个数,就是最大公因数。

(3)计算简单分数的通分:将两个分数的分母的最小公倍数作为它们的公分母,然后将分子按比例扩大。

四、因数和倍数的联系与区别4.1 联系一个数的因数也是它的倍数,一个数的倍数也是它的因数。

4.2 区别因数是指能够整除一个数的数,而倍数是指能够被一个数整除的数。

因数是从小到大逐个增加的,而倍数是从大到小逐个增加的。

因数和倍数是数学中常见的概念,它们在数学中有着重要的地位和应用。

五四制青岛版四年级下午数学第三单元因数与倍数1 因数和倍数教案教学设计

五四制青岛版四年级下午数学第三单元因数与倍数1  因数和倍数教案教学设计

因数和倍数⏹教学内容因数与倍数。

⏹教学提示在这节课先揭示整数的概念,再利用整数认识因数和倍数,而是让学生根据实际情境列出乘法算式,利用乘法来认识倍数与因数。

在找一个数的倍数时,也是让学生运用除法的知识,探索找一个数的倍数的方法。

教材提出“可以怎样排队”的问题。

利用整数乘法认识倍数与因数,以整数乘法算式为例说明倍数与因数的含义,让学生通过小组合作,探究不同的解题方法,指导学生利用原有的乘除法知识,探究找一个倍数的方法,总结出一个数的倍数最小的是本身,没有最大的倍数,并提醒学生,在探究因数和倍数的时候,一般不讨论0。

引导学生体会一般可以用乘法算式来找一个数的倍数,要注意引导学生的有序思考,并逐步让学生领会到一个数的倍数的个数是无限的。

⏹教学目标知识与能力结合具体情境,利用乘法认识倍数和因数。

过程与方法探索找一个数的倍数的方法,能在1-100的自然数中,找出10以内某个自然数的所有倍数。

情感、态度与价值观培养学生综合应用的意识和能力。

⏹重点、难点重点、难点了解倍数和因数的意义。

⏹教学准备教师准备:多媒体课件学生准备:练习本⏹教学过程(一)新课导入:创设情境1、谈话引人师:同学们喜欢开运动会吗?运动会上的团体操表演非常好看,那么接下来我们一起来看看运动会上团体操排练时,队型排列出现了一些问题,想让同学们帮忙解决这个问题。

2、出示情境图(1)学生活动:仔细观察情境图,获取图中信息。

全班进行交流(2)学生活动:分一分。

你能提出什么问题?学生先单独活动,教师帮助有困难的学生。

全班进行交流(3)学生汇报,提出问题。

教师引导学生对队形如何排列进行提问。

设计意图:通过讨论学生感兴趣的话题引入本课的例题,吸引学生的注意力,调动学生的学习兴趣。

(二)探究新知:1.解决:可以怎样排队2.学生列算式说明倍数和因数的含义2 × 6 = 123 ×4 = 12 1 × 12 = 12(1)说明含义,2和6是12的因数;12是2和6的倍数。

倍数与因数知识归纳整理

倍数与因数知识归纳整理
判断一个数是不是3的倍数,不能看这个数的个位数字。
找因数
找一个数的因数,从1开始一对一地找,看哪两个自然数的乘积等于这个数,这两个自然数就是这个数的因数。
一个数因数的个数是有限的,最大的因数就是这个数的本身,最小的因数是1。
找质数
1、质数与合数的意义:一个数只有1和它本身两个因数,这个数叫做质数;一个数除了1和它本身以外还有别的因数,这个数叫做合数。
一个数各个数位上数字之和是3的倍数,这个数就是3的倍数。
判断一个数是不是3的倍数,不能看这个数的个位数字。
找因数
找一个数的因数,从1开始一对一地找,看哪两个自然数的乘积等于这个数,这两个自然数就是这个数的因数。
一个数因数的个数是有限的,最大的因数就是这个数的本身,最小的因数是1。
找质数
1、质数与合数的意义:一个数有别的因数,这个数叫做合数。
倍数与因数知识整理
知识模块
具体内容
要点提示





1、倍数与因数的意义:如果a×b=c,(a,b,c都是不为0的自然数),那么a和b就是c的因数,c就是a和b的倍数。
2、求一个数的倍数的方法:用这个数分别乘1,2,3,4……所得的积都是这个数的倍数
倍数与因数是相互依存的,不能单独说一个数是倍数或因数。
2、1既不是质数,也不是合数。
质数不都是奇数,如2是偶数;奇数不都是质数,如9,15是合数。
倍数与因数知识整理
知识模块
具体内容
要点提示





1、倍数与因数的意义:如果a×b=c,(a,b,c都是不为0的自然数),那么a和b就是c的因数,c就是a和b的倍数。
2、求一个数的倍数的方法:用这个数分别乘1,2,3,4……所得的积都是这个数的倍数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

100是20和5的倍数
20和5是100的因数
下面哪些数是7的倍数?
1.
2.根据算式,说一说哪个数是哪个数的倍数,哪 个数是哪个数的因数。 14×6=84 20×7=140 45÷9=5
3.小兔子过河。
4.我写你说。
5.看谁找得快。
哪些数既是4的倍数,又是6的倍数?
6.请写出100以内8的全部倍数。
北师大版 五年级上册 第三单元 倍数与因数
运动会上两个班同学分别排出下面两种队形, 算一算两班各有多少人?
9×4=36是9和4的倍数 9和4是36的因数
5×7=35
35是5和7的倍数 5和7是35的因数
根据算是说一说哪个数是哪个数的倍数,哪个 数是哪个数的因数? 25×3=75 75是25和3的倍 数 25和3是75的因 数 20×5=100
相关文档
最新文档