PWM控制技术
第十五讲PWM控制技术
u*为交流信号时,只要其频率远低于上述自励振荡频率,从 u中滤除由器件通断产生的高次谐波后,所得的波形就几乎 和u* 相同,从而实现电压跟踪控制
14.3.2 三角波比较方式
基本原理
不是把指令信号和三角波直接进行比较,而是通 过闭环来进行控制
第十五讲 PWM控制技术(二)
14.0 14.1 14.2 14.3 14.4
引言 PWM控制的基本原理 PWM逆变电路及其控制方法 PWM跟踪控制技术 PWM整流电路及其控制方法
14.3 PWM跟踪控制技术
PWM波形生成的第三种方法——跟踪控制方法 把希望输出的波形作为指令信号,把实际波形作
定时比较方式
不用滞环比较器,而是设置一个固定的时钟 以固定采样周期对指令信号和被控制变量进行采样,根
据偏差的极性来控制开关器件通断 在时钟信号到来的时刻,如i < i*,V1通,V2断,使i增大
如i > i*,V1断,V2通,使i减小 每个采样时刻的控制作用都使实际电流与指令电流的误
V1
VD3
桥PWM整流电路
半桥电路直流侧电容必须由两个 电容串联,其中点和交流电源连 接
VD2 VD1
us
Ls is Rs A
V3 B
+
ud
负 载
V4
VD4
V2
b)
全桥电路直流侧电容只要一个就 可以
图6-28
图6-28
单相PWM整流电路
交 电Leabharlann 流 感侧 和电 交
感 流
电Ls
包 源
括 内
外 部
PWM 控制技术
图15 SPWM 的谐波分析
5.7 异步调制和同步调制
异步调制 载波和信号波不保持同步的调制方式称为异步调制 。 保持载波频率fc固定不变,因而当调制波频率fr变化时,载波比N是变化的。 在信号波的半个周期内,PWM的脉冲个数不固定,相位也不固定,正负半 周期的脉冲可能不对称,半周期内前后1/4周期的脉冲也可能不对称。 同步调制 载波比N等于常数,并在变频时使载波和信号波保持同步的方式称为同步 调制。 三相SPWM逆变电路中,通常公用一个三角载波,且取载波比N为3的整数 倍,以使三相输出波形严格对称,为了保证双极性调制时每相波形的正、 负半波对称,N应取奇数。 信号波一个周期内输出的脉冲数是固定的,脉冲相位也是固定的。 分段同步调制 将异步调制和同步调制结合起来,成为分段同步调制方式。 在不同的频率段采用异步,在同一频段采用同步,结合了异步和同步的优 点。
V1m =
Vdc ×m 2
FFT window: 2 of 6 cycles of selected signal 100 50 0 -50 -100
0.07
0.075
0.08 0.085 Time (s)
0.09
0.095
0.07
0.075
0.08 0.085 Time (s)
0.09
0.095
Fundamental (60Hz) = 158.7 , THD= 137.34%
图3 SPWM的原理
5.3 SPWM 控制方法
计算法:实时在线计算困难 调制法(三角波交点法) 把希望输出的波形作为调制波, 等腰三角形作为载波,通过对载 波的调制得到希望输出的PWM波 形。 1)单极性调制:三角波载波在半个 周期内只在1个方向变化,所得 的PWM波形也只能在单极性范围 内变化。 优点:电压电流波动小,开关器 件的电压、电流应力小 缺点:生成困难 2)双极性调制:三角波载波在半个 周期内在正负2个方向变化,所 得的PWM波形也在2个方向变化。 缺点:电压电流波动较大,器件 缺点 电压、电流应力较大 优点:生成容易 优点
PWM控制技术
PWM控制技术1.试说明 PWM 控制的基本原理。
答:PWM 控制就是对脉冲的宽度进行调制的技术。
即通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。
在采样控制理论中有一条重要的结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同,冲量即窄脉冲的面积。
效果基本相同是指环节的输出响应波形基本相同。
上述原理称为面积等效原理以正弦 PWM 控制为例。
把正弦半波分成N 等份,就可把其看成是N 个彼此相连的脉冲列所组成的波形。
这些脉冲宽度相等,都等于π/N,但幅值不等且脉冲顶部不是水平直线而是曲线,各脉冲幅值按正弦规律变化。
如果把上述脉冲列利用相同数量的等幅而不等宽的矩形脉冲代替,使矩形脉冲的中点和相应正弦波部分的中点重合,且使矩形脉冲和相应的正弦波部分面积(冲量)相等,就得到 PWM 波形。
各 PWM 脉冲的幅值相等而宽度是按正弦规律变化的。
根据面积等效原理,PWM 波形和正弦半波是等效的。
对于正弦波的负半周,也可以用同样的方法得到 PWM 波形。
可见,所得到的 PWM 波形和期望得到的正弦波等效2. 单极性和双极性 PWM 调制有什么区别?三相桥式 PWM 型逆变电路中,输出相电压(输出端相对于直流电源中点的电压)和线电压 SPWM 波形各有几种电平?答:三角波载波在信号波正半周期或负半周期里只有单一的极性,所得的 PWM 波形在半个周期中也只在单极性范围内变化,称为单极性 PWM 控制方式。
三角波载波始终是有正有负为双极性的,所得的 PWM 波形在半个周期中有正、有负,则称之为双极性 PWM 控制方式。
三相桥式 PWM 型逆变电路中,输出相电压有两种电平:0.5U d和-0.5 U d。
输出线电压有三种电平U d、0、- U d。
3.特定谐波消去法的基本原理是什么?设半个信号波周期内有 10 个开关时刻(不含0 和p 时刻)可以控制,可以消去的谐波有几种?答:首先尽量使波形具有对称性,为消去偶次谐波,应使波形正负两个半周期对称,为消去谐波中的余弦项,使波形在正半周期前后 1/4 周期以p /2 为轴线对称。
变频器PWM技术
变频器PWM技术在现代工业领域,变频器已成为不可或缺的设备,广泛应用于电机控制、能源管理等方面。
而在变频器中,PWM(Pulse Width Modulation)技术被广泛采用,为电机提供高效的控制和调节。
一、PWM技术的基本原理PWM技术是通过控制电源的开关时间来控制输出电平的技术。
其基本原理是将一个周期性的脉冲信号,通过调整脉冲的占空比来控制输出电压的大小。
通过PWM技术可以有效地控制电机的转速、电压和电流,实现精确的电机控制。
二、PWM技术的优势1. 精确控制:PWM技术可以通过调整脉冲的占空比来控制输出电压的大小,从而精确控制电机的转速和输出功率。
2. 高效能耗:PWM技术能够实现电能调节,通过快速切换电源的开关状态,在减小功耗的同时提高电源利用率。
3. 噪声低:PWM技术可以通过合理的调整频率和脉冲宽度来减小电机工作时的噪声,并提高整个系统的运行稳定性。
4. 可靠性强:通过PWM技术,可以将输入电源的频率和电压转换为适合电机工作的频率和电压,提高整个系统的可靠性和稳定性。
三、PWM技术的应用场景1. 变频驱动:PWM技术被广泛应用于电机变频驱动系统,如空调、洗衣机、风扇等家电产品。
通过PWM技术可以实现电机转速调节和能量管理,提高产品效率和性能。
2. 能源管理:PWM技术可以应用于太阳能发电、风能发电等能源管理系统中。
通过PWM技术可以实现对电能的有效调节和利用,提高能源利用率和系统的稳定性。
3. 电力电子:PWM技术在电力电子领域也有广泛的应用,如电力变换器、逆变器和交流传动等。
通过PWM技术可以实现对电能的高效转换和控制,提高电力系统的稳定性和运行效率。
四、PWM技术的未来发展随着科学技术的不断进步,PWM技术也在不断创新和发展。
未来,PWM技术有望在以下方面取得更多的突破:1. 高频调制:通过提高PWM技术的调制频率,可实现更高精度的电气调节和响应速度。
2. 多级逆变器:多级PWM逆变器可以实现对电能质量更精细的调控,并提高系统的可靠性和效率。
四种pwm控制技术的原理
四种pwm控制技术的原理
PWM(Pulse Width Modulation,脉宽调制)是一种常用的数字控制技术,用于实现模拟信号的精确控制。
它通过改变信号的脉冲宽度来控制信号的平均电压或电流。
下面是四种常见的PWM控制技术及其原理:
1. 占空比控制:占空比是PWM信号高电平与周期之比。
通过改变占空比可以控制输出信号的平均电压或电流。
占空比越大,输出信号的平均电压或电流越大;占空比越小,输出信号的平均电压或电流越小。
这种方法简单易行,适用于许多应用场合。
2. 脉冲数改变:这种方法通过改变PWM信号每个周期中的脉冲数来控制输出信号的平均电压或电流。
脉冲数越多,输出信号的平均电压或电流越大;脉冲数越少,输出信号的平均电压或电流越小。
脉冲数改变时,周期保持不变。
这种方法常用于需要精确控制输出信号的平均电压或电流的应用。
3. 频率调制:这种方法通过改变PWM信号的频率来控制输出信号的平均电压或电流。
频率越高,输出信号的平均电压或电流越大;频率越低,输出信号的平均电压或电流越小。
输出的平均功率受频率的影响最小,可以实现高效的能量转换。
频率调制一般使用较高的固定占空比。
4. 相位移控制:这种方法通过改变PWM信号相位来控制输出信号的平均电压或电流。
相位移正比于输出信号的平均电压或电流。
相位移控制可以实现交流电源的电压或电流控制,广泛应用于电网有功功率控制和无功功率控制。
这四种PWM控制技术可以根据具体应用的需要选择合适的方式,以实现对输出信号的精确控制。
PWM的名词解释
PWM的名词解释PWM,即脉宽调制(Pulse Width Modulation),是一种在电子工程领域中常见的技术。
它在控制电子设备中功率输出以及速度调节等方面有着广泛应用。
一、什么是PWM?脉宽调制是一种控制技术,通过改变信号的脉冲宽度来控制电路输出的电平。
在PWM中,理论上电路输出总是以高低电平交替出现,但通过改变高电平和低电平之间的脉冲宽度,可以控制电路输出的平均电压或平均功率。
脉宽调制最常见的一种形式是矩形脉冲波,它由固定的周期和可调节的脉冲宽度组成。
脉冲宽度的调节可以在一定的周期内不断变化,从而实现对输出信号的控制。
二、PWM的原理PWM技术的核心原理是基于周期性的脉冲信号。
当脉冲的宽度增加时,电路输出的平均值也会相应增加。
换句话说,脉冲宽度越宽,输出的功率或电压就越高,而脉冲宽度越窄,输出的功率或电压就越低。
具体来说,PWM技术通过不断改变脉冲信号的高电平时间和低电平时间的比例来控制输出信号。
这样做的好处是可以在保证信号稳定性的前提下,精确地调节输出的平均电压或平均功率。
三、PWM的应用领域1. 电机控制:PWM技术广泛应用于电机控制领域。
通过改变PWM脉冲的宽度,可以调节电机的转速。
例如,调速风扇、电动车等就是利用PWM技术来控制电机转速的典型应用。
2. LED调光:PWM技术在LED照明领域也有重要应用,可以通过改变PWM 信号的脉冲宽度来控制LED灯的亮度。
这种方式相对于传统的电阻调光,具有更高的效率和更精确的调节范围。
3. 电源管理:PWM技术在电源管理中也扮演着重要角色。
通过PWM控制器可以实现高效、稳定的电源输出,弥补传统的线性稳压电路的不足。
4. 音频放大:PWM技术也常被应用于音频系统中。
通过控制PWM脉冲的宽度和频率,可以达到高保真度的音频放大效果。
四、PWM的优点与局限性1. 优点:- 精确控制:通过改变脉冲宽度和周期,可以实现对输出信号的精确控制,使其满足特定要求。
第6章PWM技术
由电机学,三相对称正 弦供电时: 总向量恒幅恒速旋转 (电)角速度:w 2f s 代表空间正弦分布且圆 转磁场,u s、es、is 是引用量
26
• 三相交流的空间向量
n=0:15;x=2*pi*n/16;a=2*pi/3;
v=cos(x)+cos(x+a)*exp(j*a) +cos(x-a)*exp(-j*a); plot(v)
16
除计算法和调制法外,还有 空间向量法 跟踪控制方法
17
6.2.2 异步调制和同步调制
载波比N = fc / fo----模拟uo一个周波的脉冲数 1) 异步调制----fc不变, N随fo变 载波与调制波不同步 N常≠整数 对称性差。 当fo较低时,N大------低频性能好。
当fo增高时,N小------高频差
u
ω1
u2Tc
32
空间矢量磁链控制 SVPWM
其它区域也有相应控制规则
SVPWM用电压向量u控制Ψ 沿折线围线,并走走停停逼近圆 开关频率越高,线元usTc越短 Ψ圆越准
33
空间矢量磁链控制 SVPWM
三电平逆变器 电压向量us更多 按ΔΨ=Ψ* - Ψ --用最佳us控制 Ψ圆更准
34
SVPWM波形特点
31
空间矢量磁链控制 SVPWM
--仿闭环控制算法 控制方程ΔΨs “=” usTc 按Ψ转向超前90度建u参考轴 u2 用u轴前后电压向量控制Ψ 例如图 矢量 作用 应用条件 u1 u1 正转增幅 Ψ滞后欠幅 u2 正转减幅 滞后超幅 u7,8 停转等待 超前 Ψ 例:Ψ滞后欠幅,用u1 u1Tc Ψ滞后超幅,用u2 Ψ超前,用u7,8 注”相邻原则”:u1u8; u2u7;可减少开关动作
pwm控制技术
调制 电路
单极性PWM控制方式(单相桥逆变) 单极性PWM控制方式(单相桥逆变) PWM控制方式
u uc ur
O
uo Ud
uo
O
-Ud
为正弦波, 调制信号ur为正弦波, 载波uc在ur的正半周为正极 性的三角波, 性的三角波,在负半周为负 ωt 极性的三角波 在ur和uc的交点时刻控制 IGBT的通断 IGBT的通断 uof ur正半周,V1保持通,V2 正半周, 保持通, 保持断 •当ur>uc时使V4通,V3断, 时使V 当 ωt u o= U d •当ur<uc时使V4断,V3通, 时使V 当 表示uo的基波分量4通, 如io<0,VD1和VD4通, 不管哪种情况uo=Ud
V1 + V2 VD 2 ur uc VD 1 R uo V3 L V4 VD4 VD 3
•
uo Ud uof uo
•
O
ωt
Ud
-Ud
信号波 载波
调制 电路
21
双极性PWM控制方式(单相桥逆变) 双极性PWM控制方式(单相桥逆变) PWM控制方式
7
冲量相同的各种窄脉冲的响应波形
PWM控制的基本原理 PWM控制的基本原理
1964年 德国A.Schonung A.Schonung率先提出了脉宽调制变频的思 1964年,德国A.Schonung率先提出了脉宽调制变频的思 交变压变频器的原理框图, 想。交—直—交变压变频器的原理框图, 直 交变压变频器的原理框图 逆变器的功率开关器件采用全控式器件, 逆变器的功率开关器件采用全控式器件,按一定规律控 制其导通或关断,使输出端获得一系列宽度不等 宽度不等的矩形脉 制其导通或关断,使输出端获得一系列宽度不等的矩形脉 冲电压波形。 冲电压波形。 通过改变脉冲的不同宽度可以控制逆变器输出交流基波 电压的幅值,通过改变调制周期可以控制其输出频率, 电压的幅值,通过改变调制周期可以控制其输出频率,从 8 而同时实现变压和变频。 而同时实现变压和变频。
pwm控制原理
pwm控制原理
PWM(脉宽调制)是一种常用的控制技术,可以通过调节信号的脉冲宽度来控制电子设备的输出功率,其原理如下:
PWM的基本原理是通过改变信号的占空比来控制输出电压或电流的大小。
占空比是指脉冲高电平时间与一个周期的比值,通常用百分比表示。
在PWM控制的过程中,输入信号会被分为固定的多个周期,在每个周期内,根据设定的占空比来决定脉冲的高电平时间和低电平时间。
当占空比较大时,脉冲的高电平时间相对较长,输出电压或电流较大;当占空比较小时,脉冲的高电平时间相对较短,输出电压或电流较小。
PWM控制可以实现对输出信号的精确控制,具有输出功率调节范围广、开关损耗小、控制精度高等优点。
在电子设备中,尤其是电机控制领域,PWM控制被广泛应用。
在实际应用中,PWM控制需要通过微控制器或专用的PWM 控制芯片来实现。
这些控制器会根据外部输入的控制信号或算法,计算出对应的占空比,并产生相应的PWM信号。
PWM 信号经过功率放大电路放大后,驱动输出设备,实现对输出功率的调节。
需要注意的是,PWM控制的频率和占空比需要根据被控制设备的特性和需求进行合理选取。
频率较高可以减小输出的脉冲波形,提高控制精度;占空比较大可以获得更高的输出功率,
但也会增加开关损耗。
因此,在具体应用中,需要综合考虑设备特性、效率要求等因素,进行合理的PWM参数设计。
电力电子技术第七章PWM控制技术
5
7.2.1 计算法和调制法
■计算法 ◆根据逆变电路的正弦波输出频率、幅值和半个周期内
的脉冲数,将PWM波形中各脉冲的宽度和间隔准确计算出 来,按照计算结果控制逆变电路中各开关器件的通断,就可 以得到所需要的PWM波形,这种方法称之为计算法.
负载相电压的PWM波由±2/3Ud、±1/3Ud和0 共5种电平组成.
◆为了防止上下两个臂直通而造成短路,在上 图7-8 三相桥式PWM逆变电路波形 下两臂通断切换时要留一小段上下臂都施加
关断信号的死区时间.
12
7.2.1 计算法和调制法
图7-9 特定谐波消去法的输出PWM波形
■特定谐波消去法 ◆是计算法中一种较有代表性的方法. ◆如果在输出电压半个周期内开关器件开通和关断各k次,考虑到
◆在fr低的频段采用较高的载波比,以 使fc不致过低而对负载产生不利影响.
◆为了防止fc在切换点附近的来回跳 动,在各频率切换点采用了滞后切换的方 法.
◆有的装置在低频输出时采用异步调
制方式,而在高频输出时切换到同步调制 方式,这样可以把两者的优点结合起来, 和分段同步方式的效果接近.
19
7.2.3 规则采样法
高频段略有差异. ◆实例 ☞将图7-1a、b、c、d所示的脉冲作为输入,加在图7-2a所示的R-L
电路上,设其电流it为电路的输出,图7-2b给出了不同窄脉冲时it的响应波 形.
图7-1 形状不同而冲量相同的各种窄脉冲
图7-2 冲量相同的各种窄脉冲的响应波形
3
7.1 PWM控制的基本原理
■用PWM波代替正弦半波
(完整版)PWM控制技术(深度剖析)
第6章PWM控制技术主要内容:PWM控制的基本原理、控制方式与PWM波形的生成方法,PWM逆变电路的谐波分析,PWM整流电路。
重点:PWM控制的基本原理、控制方式与PWM波形的生成方法。
难点:PWM波形的生成方法,PWM逆变电路的谐波分析。
基本要求:掌握PWM控制的基本原理、控制方式与PWM波形的生成方法,了解PWM 逆变电路的谐波分析,了解跟踪型PWM逆变电路,了解PWM整流电路。
PWM(Pulse Width Modulation)控制——脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。
第3、4章已涉及这方面内容: 第3章:直流斩波电路采用,第4章有两处:4.1节斩控式交流调压电路,4.4节矩阵式变频电路。
本章内容PWM控制技术在逆变电路中应用最广,应用的逆变电路绝大部分是PWM型,PWM 控制技术正是有赖于在逆变电路中的应用,才确定了它在电力电子技术中的重要地位。
本章主要以逆变电路为控制对象来介绍PWM控制技术,也介绍PWM整流电路1 PWM控制的基本原理理论基础:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。
冲量指窄脉冲的面积。
效果基本相同,是指环节的输出响应波形基本相同。
低频段非常接近,仅在高频段略有差异。
图6-1 形状不同而冲量相同的各种窄脉冲面积等效原理:分别将如图6-1所示的电压窄脉冲加在一阶惯性环节(R-L电路)上,如图6-2a所示。
其输出电流i(t)对不同窄脉冲时的响应波形如图6-2b所示。
从波形可以看出,在i(t)的上升段,i(t)的形状也略有不同,但其下降段则几乎完全相同。
脉冲越窄,各i(t)响应波形的差异也越小。
如果周期性地施加上述脉冲,则响应i(t)也是周期性的。
用傅里叶级数分解后将可看出,各i(t)在低频段的特性将非常接近,仅在高频段有所不同。
图6-2 冲量相同的各种窄脉冲的响应波形用一系列等幅不等宽的脉冲来代替一个正弦半波,正弦半波N等分,看成N个相连的脉冲序列,宽度相等,但幅值不等;用矩形脉冲代替,等幅,不等宽,中点重合,面积(冲量)相等,宽度按正弦规律变化。
PWM控制技术
*提高输出电压,减少开关次数
如各相迭加up =-(三相ur基波最小值)-um
--三倍次谐波+直流 基波可提高15% 使线电压幅值达Ud 线参考电压-仍为正弦 各相基波有120°为最小值 此时ur为-um 对应电源相压持续为-Ud/2 且下臂开关保持导通
--开关动作减少,损耗减小
11
7.3 PWM (闭环)跟踪控制技术 --主要是电流跟踪
SVPWM
三电平逆变器 电压向量us更多 按ΔΨ=Ψ* - Ψ --用最佳us控制 Ψ圆更准
22
7.4 PWM整流电路
晶闸管/二极管整流问题: 谐波分量大,功率因数低。 PWM整流可控制交流侧电流波形(近正弦)与相位
可调有功与无功----高功率因数整流器、无功补偿器
单相PWM整流电路
Ls=外接电感+交流源电感------交流功率缓冲 C(C1,C2) ------直流功率缓冲
/
dt
r us
r is R
由电机学:对称交流时三相合成磁场“圆转”:
(幅值=(3/2)相幅值,电角速度=ω)
因r 此s 代表r s实, ur际s , er磁s , ir场s ,都而是旋urs转, ers的, irs 是引用量
空间位置任选
常选正转方向 (ab)顺时针
SVPWM--用PWM电路有限个状态的空间向量 urn
Ud>峰值√2UAB1 = √2Es/cosδ>峰值Usm
26
电流闭环控制单相PWM整流
电流给定is* : 相位与电源us相同, 幅值可调 用i滞环控制: is<is*-δ uAB = -Ud is↑
is>is*+δ uAB = +Ud is↓ 电路简单响应快; 交流电流有波纹可滤 调节is*幅值可调节Ud
第六章 PWM控制技术
6.2.1
计算法和调制法
V1 C U N'
Ud 2
双极性PWM控制方式(三相桥逆变) 控制方式 三相桥逆变) 双极性
Ud 2
+
VD1 V3 V
VD 3 V5 VD6 W V2
VD 5 N VD 2
+
C
V4 VD4 V 6
u rU u rV u rW uc
调制 电路
图6-7 三相桥式PWM型逆变电路
u
PWM控制技术 控制技术 重要理论基础
• 如何用一系列等幅不等宽的脉冲来代替一个正弦半波
O
u
> ωt
面积等效原理
O
> ωt
3
6.1
PWM控制的基本原理 PWM控制的基本原理
Ud O -U d
• 对于正弦波的负半周,采取同样的方法,得到PWM 波形,因此正弦波一个完整周期的等效PWM波为:
ωt
• 根据面积等效原理,正弦波还可等效为下图中的 PWM波,而且这种方式在实际应用中更为广泛。
21
10
20
30
40 f r /Hz
50
60
70
80
图6-11 分段同步调制 方式举例
15
6.2.3
规则采样法
Tc u uc A D B O tA tD tB t ur
自然采样法: 自然采样法: 按照SPWM控制的基本原理 按照 控制的基本原理 产生的PWM波的方法 波的方法,其求解 产生的 波的方法 复杂,难以在实时控制中在线计 算,工程应用不多 规则采样法特点 工程实用方法,效果接近自 然采样法,计算量小得多
6.2.2
异步调制和同步调制
2. 同步调制 ——载波信号和调制信号保持同步的调制方式,当变频时 使载波与信号波保持同步,即N等于常数。
SVPWM控制技术
SVPWM控制技术PWM控制技术就是对脉冲宽度进行调制的技术,通过对一系列脉冲宽度进行调制来等效获得所需要的波形(包括形状和幅值)。
PWM控制的基本原理:冲量(窄脉冲的面积)相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果(输出响应波形)基本相同,即面积等效原理;用一系列幅值相等,宽度按一定规律变化的高频脉冲序列代替期望的输出波形,多用于逆变电路的控制;PWM信号生成的方法有:计算法、调制法、跟踪法,主要对调制法进行详解调制法:把希望输出的波形作为调制波,把接收调制的信号作为载波,通过信号波的调制得到所期望的PWM波形。
如典型逆变电路:DC-AC,期望逆变后的电压波形为频率50Hz,幅值为直流电压Ud的正弦波,采用PWM控制技术,调制波选为频率为50Hz的正弦波,等腰三角形为载波,用正弦波和载波的交点控制逆变电路四个全控性器件(IGBT)的通断,实现用一系列幅值相等,宽度按所期望的正弦波规律变化的高频脉冲,来等效代替所期望逆变输出的正弦交流电压波形。
上图为典型的单相桥式PWM逆变电路(单极性PWM控制),调制信号为正弦波Ur,载波Uc选为在正弦波正半周为正极性的三角波,在正弦波负半周为负极性的三角波,用正弦波Ur和载波Uc的交点控制IGBT的通断。
在正弦波Ur的正半周,VT1保持导通,VT2保持断态,当正弦波Ur大于载波Uc使VT4导通,VT3关断,输出电压为直流电压Uo=Ud(默认负载两端的电压自左向右为正)正弦波Ur小于载波Uc时,VT4关断,VT3导通,输出电压Uo=0;在正弦波Ur的负半周,VT1保持断态,VT2保持通态,当正弦波Ur小于载波Uc时,VT3导通,VT4关断,输出电压为Uo=-Ud;当正弦波Ur大于载波Uc时,VT3关断,VT4导通,输出电压Uo = 0。
通过控制四个IGBT的通断,得到的输出电压为幅值为Ud,宽度按正弦波规律变化的脉冲序列,用这样的高频脉冲序列来代替我们期望输出的正弦波电压,就是SPWM控制技术。
PWM技术分析与介绍
PWM技术分析与介绍PWM技术,即脉宽调制技术(Pulse Width Modulation),是一种在数字电路中常用的调制技术。
通过控制电平信号的脉冲宽度,可以实现模拟信号的数字化调制,达到控制信号的目的。
PWM技术广泛应用于电力电子、通信系统、汽车电子、航空航天等领域,在现代电子技术中占据着重要地位。
1.PWM技术原理在PWM技术中,通常有两种控制方式:基于定时器的PWM控制和基于比较器的PWM控制。
基于定时器的PWM控制是通过设置定时器的计数值和比较值来生成PWM信号的脉冲宽度,而基于比较器的PWM控制是通过将输入信号与基准信号进行比较来调节脉冲宽度。
2.PWM技术优点1)高效率:PWM技术可以以高效率地将数字信号转换成模拟信号,提高电路的效率和性能。
2)稳定性好:PWM信号的输出电平稳定,不受环境影响,能够稳定输出所需的信号。
3)精度高:PWM技术能够实现微小的信号调节,精度高,能够满足各种精密要求。
4)简单实现:PWM技术在数字电路中实施简单,硬件成本低,易于实现自动化控制。
3.PWM技术应用1)电力电子:PWM技术在交流调直流变换、逆变器控制、电机控制等方面得到广泛应用,提高了电力电子设备的效率和性能。
2)通信系统:PWM技术在通信系统中用于数字信号的调制和解调,增强了信号传输的稳定性和可靠性。
3)汽车电子:PWM技术被广泛应用于汽车电子控制系统中,如发动机控制单元、变速器控制单元等,提高了汽车性能和燃油经济性。
4)航空航天:PWM技术在飞机、卫星等航空航天领域中用于电子设备的控制和数据传输,提高了飞行器的性能和可靠性。
总的来说,PWM技术是一种高效、稳定、精密的调制技术,在现代电子技术中有着重要的应用价值。
随着数字化技术的不断发展,PWM技术将在更多的领域展现出其强大的能力,为现代化生活提供更加便利和高效的解决方案。
电力电子技术中的PWM调制技术是什么
电力电子技术中的PWM调制技术是什么在电力电子技术领域中,脉宽调制(PWM)技术是一种常用的调节电压或电流的方法。
PWM技术通过改变电压或电流的占空比(即高电平与总周期的比值)来实现对输出的调整。
本文将介绍PWM调制技术的基本原理及其应用。
一、PWM调制技术的基本原理PWM调制技术的基本原理是通过调节信号的脉冲宽度来控制输出电压或电流的大小。
PWM信号通常由一个固定频率的基准信号和一个可变宽度的调制信号叠加而成。
根据调制信号的宽度,可以将基准信号分为高电平和低电平两部分,从而实现对输出信号的控制。
PWM调制技术的原理可以通过以下公式来表示:V_avg = (D/T) * V_ref其中,V_avg表示输出电压(或电流)的平均值,D表示调制信号的脉冲宽度,T表示基准信号的周期,V_ref表示基准电压(或电流)。
通过调整调制信号的占空比D/T,可以实现对输出信号的精确控制。
当D/T=0时,输出信号的平均值为0;当D/T=1时,输出信号的平均值等于基准信号的幅值。
通过改变D/T的值,可以在这两个极限之间调节输出信号的大小。
二、PWM调制技术的应用1. 电力转换器在电力转换器中广泛应用PWM调制技术。
通过PWM技术,可以精确控制电力转换器的输出波形,以满足不同的需求。
例如,在直流-交流变换器(DC-AC)中,PWM技术可以用来实现对输出交流电压的频率和幅值的调节。
在交流-直流变换器(AC-DC)中,PWM技术可以用于实现对输出直流电压的稳定控制。
2. 变频驱动器PWM调制技术也被广泛应用于变频驱动器中。
变频驱动器通过调节电机的频率和电压,实现对电机转速的控制。
PWM技术可以精确地控制电机供电的电压和频率,从而实现对电机转速的调节。
这种调制方法可以提高电机的效率和响应速度。
3. LED调光在LED照明领域,PWM调制技术被用于实现LED的调光。
通过改变PWM信号的占空比,可以控制LED的亮度。
由于LED的亮度与电流的关系是非线性的,PWM调制技术可以提供更精确的亮度控制,而且可以降低功耗。
第三章无刷直流电动机PWM控制方案
第三章无刷直流电动机PWM控制方案无刷直流电动机是目前应用广泛的电动机之一,其具有高效率、高功率密度和长寿命的特点。
PWM(Pulse Width Modulation)是一种常用的控制技术,可以实现对无刷直流电动机的精确控制。
本文将详细介绍PWM 控制方案在无刷直流电动机中的应用。
1.PWM控制原理PWM控制是通过调整开关器件的开通时间来控制电压的有效值,从而实现对无刷直流电动机的控制。
PWM控制的主要原理是将直流供电通过开关器件进行快速切换,使得电机得到一个等效的可调的直流电,从而实现对电动机的控制。
(1)基于单脉冲宽度调制(SPWM)的控制方案SPWM是一种常见的PWM调制技术,其基本思想是将待调制的模拟信号与一个高频的三角波进行对比,通过比较得到一个等效的PWM信号。
在无刷直流电动机中的应用,SPWM控制方案可以实现对电机的速度和转矩的控制。
(2)基于矢量控制的控制方案矢量控制是一种高级的PWM控制技术,可以实现对无刷直流电动机的精确控制。
它通过对电流矢量的调整来实现对电机的转速和转向的控制。
矢量控制具有较高的动态性能和响应速度,能够实现电机的高效运行。
(3)基于空间矢量调制(SVM)的控制方案SVM是一种高级的PWM调制技术,可以实现对无刷直流电动机的高精度控制。
它通过对电流矢量的调整来实现对电机的速度和转矩的控制。
SVM控制具有较高的输出电流质量,让电机运行更加稳定和高效。
3.PWM控制的优势(1)高效率:PWM控制可以实现对电机的高效率控制,可以根据需要调整输出电压和电流,从而使电机运行在最佳点。
(2)高精度:PWM控制可以实现对电机的精确控制,可以根据需要调整输出电压和电流的波形,从而实现对电机速度和转矩的精确控制。
(3)稳定性好:PWM控制可以减小电机的振动和噪声,从而使电机运行更加平稳和稳定。
4.PWM控制的应用(1)工业应用:PWM控制广泛应用于各类工业设备中,如机械加工、自动化生产线等,可以实现对电机的高精度控制,提高生产效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.4.1 PWM整流电路的工作原理
■可分为电压型和电流型两大类,目前研究 和应用较多的是电压型PWM整流电路。 ■单相PWM整流电路 ◆对于半桥电路来说,直流侧电容必须由 两个电容串联,其中点和交流电源连接,对 包括外接电抗器 于全桥电路来说,直流侧电容只要一个就可 的电感和交流电 源内部电感,是 以了。 电路正常工作所 必须的。 ◆工作原理(以全桥电路为例) ☞按照正弦信号波和三角波相比较的方 法对图7-30b中的V1~V4进行SPWM控制,就 可以在桥的交流输入端AB产生一个SPWM波 uAB。 √uAB中含有和正弦信号波同频率且幅值 成比例的基波分量,以及和三角波载波有关 的频率很高的谐波,而不含有低次谐波。 ☞由于Ls的滤波作用,is脉动很小,可以 图7-30 单相PWM整流电路 忽略,所以当正弦信号波的频率和电源频率 a)单相半桥电路 相同时,is也为与电源频率相同的正弦波。 b)单相全桥电路
7.3 PWM跟踪控制技术
7.3.1 滞环比较方式 7.3.2 三角波比较方式
1/60
7.3.1 滞环比较方式
■跟踪控制方法:把希望输出的电 流或电压波形作为指令信号,把实 际电流或电压波形作为反馈信号, 通过两者的瞬时值比较来决定逆变 电路各功率开关器件的通断,使实 际的输出跟踪指令信号变化 ■滞环比较方式 ◆电流跟踪控制应用最多。 ◆PWM电流跟踪控制单相半桥 式逆变电路 ☞把指令电流i*和实际输出电 流i的偏差i*-i作为带有滞环特性的 比较器的输入,通过其输出来控制 功率器件V1和V2的通断。
4/60
图7-26 三相电流跟踪型PWM逆变电路
图7-25 滞环比较方式的指令电流和输出电流
7.3.1 滞环比较方式
图7-28 电压跟踪控制电路举例
◆电压跟踪控制 ☞把指令电压u*和输出电压u进行比较,滤除偏差信号中的谐波,滤波器的 输出送入滞环比较器,由比较器输出控制开关器件的通断,从而实现电压跟踪 控制。 ☞输出电压PWM波形中含大量高次谐波,必须用适当的滤波器滤除。 ☞u*=0时,输出电压u为频率较高的矩形波,相当于一个自励振荡电路。 ☞u*为直流信号时,u产生直流偏移,变为正负脉冲宽度不等,正宽负窄或 正窄负宽的矩形波。 ☞u*为交流信号时,只要其频率远低于上述自励振荡频率,从u中滤除由器 件通断产生的高次谐波后,所得的波形就几乎和u* 相同,从而实现电压跟踪 控制。
图7-33 间接电流控制系统结构 19/60
7.4.2 PWM整流电路的控制方法
■直接电流控制 ◆通过运算求出交流输入电流指 令值,再引入交流电流反馈,通 过对交流电流的直接控制而使其 跟踪指令电流值。 ◆图7-34的控制系统是一个双闭 环控制系统,其外环是直流电压 控制环,内环是交流电流控制环。 ◆控制原理 ☞外环PI调节器的输出为id, id分别乘以和a、b、c三相相电压 同相位的正弦信号,得到三相交 流电流的正弦指令信号i*a,i*b和i*c。
10/60
7.4.1 PWM整流电路的工作原理
☞在us一定的情况下,is的幅值和 相位仅由uAB中基波分量uABf的幅 值及其与us的相位差来决定,改变 uABf的幅值和相位,就可以使is和 us同相位、反相位,is比us超前 90°,或使is与us的相位差为所需要 的角度。 √图a中,滞后的相角为,和完 全同相位,电路工作在整流状态, 且功率因数为1,是PWM整流电 路最基本的工作状态。 √图b中超前的相角为,和的相 位正好相反,电路工作在逆变状 态,说明PWM整流电路可以实现 能量正反两个方向的流动 。
图7-24 滞环比较方式电流跟踪控制举例
i
i*
i* + D I
t
i* - D I
图7-25 滞环比较方式的指令电流和输出电流 3/60
7.3.1 滞环比较方式
◆三相电流跟踪型PWM逆变电路 ☞由三个单相半桥电路组成,三相电流 指令信号i*U、i*V和i*W依次相差120°。 ☞在线电压的正半周和负半周内,都有 极性相反的脉冲输出,这将使输出电压中 的谐波分量增大,也使负载的谐波损耗增 加。 ◆采用滞环比较方式的电流跟踪型PWM 变流电路有如下特点 ☞硬件电路简单。 ☞实时控制,电流响应快。 ☞不用载波,输出电压波形中不含特定 频率的谐波。 ☞和计算法及调制法相比,相同开关频 率时输出电流中高次谐波含量多。 ☞属于闭环控制,是各种跟踪型PWM 变流电路的共同特点。
17/60
7.4.2 PWM整流电路的控制方法
图7-33 间接电流控制系统结构
◆控制系统中其余部分的工作原理 ☞图中上面的乘法器是id分别乘以和a、b、c三相相电压 同相位的正弦信号,再乘以电阻R,得到各相电流在Rs上 的压降uRa、uRb和uRc。 ☞图中下面的乘法器是id分别乘以比a、b、c三相相电压 相位超前/2的余弦信号,再乘以电感L的感抗,得到各相 电流在电感Ls上的压降uLa、uLb和uLc。
电抗器 图7-24 滞环比较方式电流跟踪控制举例
i
i
i*
i* +D I
O i* -D I
t
图7-25 滞环比较方式的指令电流和输 出电流 2/60
7.3.1 滞环比较方式
☞控制规律 √当V1(或VD1)导通时,i增 大。 √当V2(或VD2)导通时,i减 小。 √通过环宽为2∆I的滞环比较器 的控制,i就在i*+∆I和i*-∆I的 范围内,呈锯齿状地跟踪指令 电流i*。 i ☞环宽过宽时,开关频率低,跟 踪误差大;环宽过窄时,跟踪 误差小,但开关频率过高,开 关损耗增大。 O ☞L大时,i的变化率小,跟踪慢; L小时,i的变化率大,开关频 率过高。
11/60
图7-31 PWM整流电路的运行方式相量图 a) 整流运行 b) 逆变运行 c) 无功补偿运行 d)I 超前角为
s
7.4.1 PWM整流电路的工作原理
√图c中滞后的相角为, 超前90°,电路在向 交流电源送出无功功 率,这时的电路被称 为静止无功功率发生 器(Static Var Generator—SVG)。 √在图d的情况下, U AB 通过对 幅值和相 位的控制,可以使s Is U 比 超前或滞后任 一角度。 12/60
13/60
7.4.1 PWM整流电路的工作原理
负 载
图7-32 三相桥式PWM整流电路
■三相PWM整流电路 ◆是最基本的PWM整流电路之一,其应用也最为广泛。 ◆电路的工作原理也和前述的单相全桥电路相似,只是从单相扩展 到三相。 ◆对电路进行SPWM控制,在桥的交流输入端A、B和C可得到 SPWM电压,对各相电压按图7-31a的相量图进行控制,就可以使各相 电流ia、ib、ic为正弦波且和电压相位相同,功率因数近似为1。 ◆该电路也可以工作在图7-31b的逆变运行状态及图c或d的状态。
18/60
7.4.2 PWM整流电路的控制方法
☞各相电源相电压ua、ub、uc分别减去前面求得的输入电流在电阻R 和电感L上的压降,就可得到所需要的交流输入端各相的相电压uA、 uB和uC的信号,用该信号对三角波载波进行调制,得到PWM开关 信号去控制整流桥,就可以得到需要的控制效果。 ◆存在的问题 ☞在信号运算过程中用到电路参数Ls和Rs,当Ls和Rs的运算值和实际 值有误差时,会影响到控制效果。 ☞是基于系统的静态模型设计的,其动态特性较差。
图7-31 PWM整流电路的运行方式相量图 a) 整流运行 b) 逆变运行 c) 无功补偿运行 d)I 超前角为
s
7.4.1 PWMຫໍສະໝຸດ 流电路的工作原理图7-30 b)单相全桥电路
☞整流运行状态 √当us>0时,由V2、VD4、VD1、Ls和V3、VD1、VD4、Ls分别组成了两个 升压斩波电路。 √以包含V2的升压斩波电路为例,当V2导通时,us通过V2、VD4向Ls储能, 当V2关断时,Ls中储存的能量通过VD1、VD4向直流侧电容C充电。 √当us<0时,由V1、VD3、VD2、Ls和V4、VD2、VD3、Ls分别组成了两个 升压斩波电路,工作原理和us>0时类似。 ◆电压型PWM整流电路是升压型整流电路,其输出直流电压可以从交流电源 电压峰值附近向高调节,使用时要注意电力半导体器件的保护;同时也要注 意,向低调节就会使电路性能恶化,以至不能工作。
电流滞 环比较 方式
图7-34 直接电流控制系统结构图
三相桥 式电路 图7-33 间接电流控制系统结构 15/60
7.4.2 PWM整流电路的控制方法
图7-33 间接电流控制系统结构
◆控制原理 * ☞ u d 和实际的直流电压ud比较后送入PI调节器,PI调节器的输出为一直流 电流信号id,id的大小和整流器交流输入电流幅值成正比。 * ☞稳态时,ud= u d ,PI调节器输入为零,PI调节器的输出id和负载电流大小 对应,也和交流输入电流幅值相对应。 ☞负载电流增大时,C放电而使ud下降,PI的输入端出现正偏差,使其输出 * id增大,进而使交流输入电流增大,也使ud回升;达到新的稳态时,ud和 u d 相等,PI调节器输入仍恢复到零,而id则稳定为新的较大的值,与较大的负载 电流和较大的交流输入电流对应。 ☞负载电流减小时,调节过程和上述过程相反。
7/60
7.4 PWM整流电路及其控制方法
7.4.1 PWM整流电路的工作原理 7.4.2 PWM整流电路的控制方法
8/60
7.4 PWM整流电路及其控制方法·引言
■实际应用的整流电路几乎都是晶闸管相控整流电 路或二极管整流电路。 ◆随着触发延迟角的增大,位移因数降低。 ◆输入电流中谐波分量相当大,功率因数很低。 ■把逆变电路中的SPWM控制技术用于整流电路, 就形成了PWM整流电路。 ◆通过对PWM整流电路的适当控制,可以使其 输入电流非常接近正弦波,且和输入电压同相位, 功率因数近似为1。 ◆也称为单位功率因数变流器,或高功率因数整 流器。
5/60
7.3.2 三角波比较方式