各种PWM控制方法的原理及优缺点

合集下载

PWM整流电路及其控制方法

PWM整流电路及其控制方法

PWM整流电路及其控制方法引言PWM〔脉宽调制〕技术是一种常用的电磁能源转换技术,广泛应用于各种电力电子设备中。

在电力转换中,如何实现高效率、低功率损失的能源转换一直是研究的热点之一。

PWM整流电路是一种典型的能源转换电路,它通过控制开关器件的导通时间来实现电源直流化的同时降低功率损耗。

本文将介绍PWM整流电路的根本原理、关键元件以及控制方法。

PWM整流电路的根本原理PWM整流电路主要由开关器件、滤波电容、感性元件和控制电路组成。

其根本原理是将输入交流电通过开关器件进行脉宽调制,从而获得平均值等于输出直流电压的脉冲电流。

通过滤波电容以及感性元件对脉冲电流进行平滑处理,得到稳定的直流输出电压。

开关器件的选择在PWM整流电路中,开关器件是实现脉宽调制的关键部件。

常见的开关器件有MOSFET〔金属氧化物半导体场效应晶体管〕和IGBT〔绝缘栅双极型晶体管〕两种。

MOSFET具有开关速度快、损耗小的特点,适用于低功率应用;而IGBT那么适用于高功率应用,具有较高的承受电压和电流能力。

滤波电容和感性元件滤波电容和感性元件是PWM整流电路中的关键元件,它们的作用是对脉冲电流进行平滑处理。

滤波电容可以存储电荷并平滑输出电流,而感性元件那么可以平滑输出电压。

合理选择滤波电容和感性元件的值可以在保证输出电压稳定的同时减小纹波电流和纹波电压。

控制方法PWM整流电路的控制方法主要有两种:固定频率控制和变频控制。

固定频率控制是指在整个转换过程中,开关器件的频率保持不变。

这种控制方法简单可靠,但效率较低。

变频控制是根据输出电压的需求,自适应地改变开关器件的频率,以提高整流效率。

变频控制方法相对复杂,但具有较高的效率和稳定性。

控制电路设计PWM整流电路的控制电路设计是实现控制方法的关键。

控制电路主要包括PWM生成电路和反响控制电路。

PWM生成电路负责生成脉宽信号,控制开关器件的导通时间;反响控制电路用于检测输出电压,并根据检测结果调整PWM信号以实现稳定的输出电压控制。

各种PWM简介

各种PWM简介

脉冲宽度调制脉冲宽度调制(PWM),是英文“Pulse Width Modulation”的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。

目录简介基本原理具体过程脉冲宽度调制优点控制方法等脉宽PWM法随机PWMSPWM法等面积法硬件调制法软件生成法自然采样法规则采样法低次谐波消去法梯形波与三角波比较法线电压控制PWM马鞍形波与三角波比较法单元脉宽调制法电流控制PWM滞环比较法三角波比较法预测电流控制法空间电压矢量控制PWM矢量控制PWM直接转矩控制PWM非线性控制PWM谐振软开关PWM脉冲宽度调制相关应用领域具体应用简介PWM软件法控制充电电流PWM在推力调制中的应用在LED中的应用简介基本原理具体过程脉冲宽度调制优点控制方法等脉宽PWM法随机PWMSPWM法等面积法硬件调制法软件生成法自然采样法规则采样法低次谐波消去法梯形波与三角波比较法线电压控制PWM马鞍形波与三角波比较法单元脉宽调制法电流控制PWM滞环比较法三角波比较法预测电流控制法空间电压矢量控制PWM矢量控制PWM直接转矩控制PWM非线性控制PWM谐振软开关PWM脉冲宽度调制相关应用领域具体应用简介PWM软件法控制充电电流PWM在推力调制中的应用在LED中的应用脉冲宽度调制是一种模拟控制方式,其根据相应载荷的变化来调制晶体管栅极或基极的偏置,来实现开关稳压电源输出晶体管或晶体管导通时间的改变,这种方式能使电源的输出电压在工作条件变化时保持恒定,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术。

PWM控制技术以其控制简单,灵活和动态响应好的优点而成为电力电子技术最广泛应用的控制方式,也是人们研究的热点。

由于当今科学技术的发展已经没有了学科之间的界限,结合现代控制理论思想或实现无谐振软开关技术将会成为PWM控制技术发展的主要方向之一。

pwm基本原理

pwm基本原理

pwm基本原理一、引言PWM(Pulse Width Modulation)是一种通过调整脉冲信号的宽度来控制电路的一种技术。

在电子领域中,PWM广泛应用于数字调光、电机调速、音频处理等领域。

本文将从基本原理、应用场景和实现方法三个方面对PWM进行深入探讨。

二、基本原理PWM的基本原理是通过改变脉冲信号的占空比来实现电路的控制。

占空比(Duty Cycle)是指高电平信号在一个周期内所占的时间比例。

通过改变占空比,可以调整电路的输出功率或者亮度。

三、应用场景PWM广泛应用于各种电子设备中,下面将介绍几个常见的应用场景。

3.1 数字调光PWM在LED照明领域中得到广泛应用。

通过改变LED的亮度,可以实现不同场景下的照明要求。

PWM调光具有调节范围广、响应快的特点,能够实现平滑的亮度调节效果。

3.2 电机调速控制PWM在电机调速控制中也非常重要。

通过改变电机的供电脉冲宽度,可以控制电机的转速。

通过调整脉冲信号的占空比,可以实现电机的高精度控制。

3.3 音频处理PWM在音频领域中也有广泛应用。

通过调整脉冲信号的占空比,可以实现音频信号的调制。

PWM音频处理具有高保真度、低失真的优点,被广泛应用于音响设备中。

四、实现方法PWM的实现方法多种多样,下面将介绍几种常见的实现方法。

4.1 555定时器555定时器是一种常用的PWM生成器。

通过改变定时器的电阻和电容值,可以调整脉冲信号的周期和占空比。

555定时器具有结构简单、稳定可靠的特点,被广泛应用于PWM电路的设计中。

4.2 AVR单片机AVR单片机是一种常见的PWM控制器。

通过配置单片机的定时器/计数器模块,可以实现PWM信号的生成。

AVR单片机具有灵活性高、控制精度好的特点,适用于各种复杂的PWM控制场景。

4.3 离散逻辑门电路除了定时器和单片机,还可以使用离散逻辑门电路实现PWM功能。

通过组合门电路的输入,可以实现不同占空比的脉冲信号。

离散逻辑门电路具有成本低、可扩展性强的特点,适用于一些简单的PWM控制需求。

开关电源PWM的五种反馈控制模式

开关电源PWM的五种反馈控制模式

一、引言PWM开关稳压或稳流电源基本工作原理就是在输入电压变化、内部参数变化、外接负载变化的情况下,控制电路通过被控制信号与基准信号的差值进行闭环反馈,调节主电路开关器件的导通脉冲宽度,使得开关电源的输出电压或电流等被控制信号稳定。

PWM的开关频率一般为恒定,控制取样信号有:输出电压、输入电压、输出电流、输出电感电压、开关器件峰值电流。

由这些信号可以构成单环、双环或多环反馈系统,实现稳压、稳流及恒定功率的目的,同时可以实现一些附带的过流保护、抗偏磁、均流等功能。

对于定频调宽的PWM闭环反馈控制系统,主要有五种PWM反馈控制模式。

下面以VDMOS开关器件构成的稳压正激型降压斩波器为例说明五种PWM反馈控制模式的发展过程、基本工作原理、详细电路原理示意图、波形、特点及应用要点,以利于选择应用及仿真建模研究。

二、开关电源PWM的五种反馈控制模式1. 电压模式控制PWM (VOLTAGE-MODE CONTROL PWM):如图1所示为BUCK降压斩波器的电压模式控制PWM反馈系统原理图。

电压模式控制PWM是六十年代后期开关稳压电源刚刚开始发展起就采用的第一种控制方法。

该方法与一些必要的过电流保护电路相结合,至今仍然在工业界很好地被广泛应用。

电压模式控制只有一个电压反馈闭环,采用脉冲宽度调制法,即将电压误差放大器采样放大的慢变化的直流信号与恒定频率的三角波上斜波相比较,通过脉冲宽度调制原理,得到当时的脉冲宽度,见图1A中波形所示。

逐个脉冲的限流保护电路必须另外附加。

主要缺点是暂态响应慢。

当输入电压突然变小或负载阻抗突然变小时,因为有较大的输出电容C及电感L相移延时作用,输出电压的变小也延时滞后,输出电压变小的信息还要经过电压误差放大器的补偿电路延时滞后,才能传至PWM比较器将脉宽展宽。

这两个延时滞后作用是暂态响应慢的主要原因。

图1A电压误差运算放大器(E/A)的作用有三:①将输出电压与给定电压的差值进行放大及反馈,保证稳态时的稳压精度。

pwm的工作原理

pwm的工作原理

pwm的工作原理PWM的全称是Pulse Width Modulation,中文意思是脉宽调制。

它是一种通过改变脉冲信号的宽度来传输信息的调制方式。

在现代电子技术中,PWM被广泛应用于电力电子、通信、自动控制等领域。

本文将介绍PWM的工作原理及其在实际应用中的特点和优势。

PWM的工作原理。

PWM的工作原理可以简单描述为通过改变脉冲信号的占空比来控制电路的输出。

在一个完整的PWM周期内,包括一个固定频率的周期性脉冲信号和一个可变的占空比。

占空比是指脉冲信号中高电平时间占整个周期的比例,通常用百分比表示。

在PWM信号中,当占空比为50%时,表示高电平和低电平的时间相等,这时电路的输出为中间值。

当占空比小于50%时,高电平时间减少,电路的输出信号会相应减小;反之,当占空比大于50%时,高电平时间增加,电路的输出信号会相应增大。

通过调整占空比,可以实现对电路输出的精确控制。

PWM的实现方式。

PWM信号的生成可以通过硬件电路或者软件算法来实现。

在硬件电路中,常用的方法是利用定时器来生成固定频率的脉冲信号,然后通过比较器来调整占空比。

而在软件算法中,可以通过程序控制IO口的高低电平来实现PWM信号的输出。

在实际应用中,PWM信号通常用来控制电机的转速、调节LED 的亮度、调节电源的输出等。

例如,通过改变电机驱动器输入的PWM信号占空比,可以实现电机的精确转速调节;通过改变LED驱动电路输入的PWM信号占空比,可以实现LED灯的亮度调节。

PWM的特点和优势。

与传统的模拟调制方式相比,PWM具有以下几点特点和优势:1. 精确控制,通过改变占空比,可以实现对电路输出信号的精确控制,具有较高的分辨率和稳定性。

2. 能效高,PWM信号的平均功率较高,能够提高电路的能效,减小能量损耗。

3. 抗干扰能力强,PWM信号的数字特性使其具有较强的抗干扰能力,能够适应复杂的工作环境。

4. 适应性强,PWM信号可以适用于不同类型的电路和设备,具有较强的通用性和灵活性。

pwm基本原理

pwm基本原理

pwm基本原理PWM基本原理。

脉宽调制(PWM)是一种常见的调制技术,它在电子领域中有着广泛的应用。

PWM的基本原理是通过控制信号的占空比来实现对电路的控制,从而实现对电压、电流、功率等参数的精确调节。

本文将介绍PWM的基本原理及其在实际应用中的一些特点和优势。

首先,PWM的基本原理是利用脉冲信号的高电平时间占整个周期的比例来控制输出。

当高电平时间占比较大时,输出信号的平均值也相应增大;反之,当高电平时间占比较小时,输出信号的平均值减小。

这种通过改变占空比来控制输出的方式,使得PWM技术在电子调节中得到了广泛应用。

其次,PWM技术在实际应用中有着诸多优势。

首先,PWM技术可以实现对电路的精确控制,能够在不同的工作条件下保持稳定的输出。

其次,PWM技术可以实现高效的能量转换,能够减小能量损耗,提高系统的效率。

此外,PWM技术还具有抗干扰能力强、响应速度快等特点,适用于各种复杂的控制系统。

在实际应用中,PWM技术被广泛应用于电力电子领域。

例如,PWM技术可以用于直流电机的调速控制,通过改变PWM信号的占空比,可以实现对电机转速的精确控制。

此外,PWM技术还可以用于逆变器的控制,实现对交流电的变换和调节。

除此之外,PWM技术还被应用于照明领域。

采用PWM技术可以实现对LED灯的亮度调节,通过改变PWM信号的占空比,可以实现对LED灯的亮度精确控制,实现节能和环保的目的。

总之,PWM技术作为一种重要的调制技术,在电子领域中有着广泛的应用。

通过控制信号的占空比,可以实现对电路的精确控制,具有高效能量转换、抗干扰能力强等优势,适用于各种复杂的控制系统。

在电力电子和照明领域,PWM技术都有着重要的应用价值,对于提高系统的效率、节能环保等方面都具有积极的作用。

希望本文对PWM技术的基本原理和应用有所帮助,谢谢阅读!。

PWM温控方案

PWM温控方案

PWM温控方案PWM温控方案(Pulse Width Modulation Temperature Control Scheme)是一种常见的温度调控方法,通过调节脉冲宽度来控制输出功率,从而实现对温度的精确控制。

本文将介绍PWM温控方案的原理、应用及其优缺点。

一、原理PWM温控方案的原理基于脉冲宽度调制技术,即通过改变脉冲的宽度来控制输出信号的占空比。

在温度调控中,PWM方案通过改变控制信号的占空比来控制加热器的工作时间。

占空比越高,加热器工作时间越长,温度上升越快;反之,温度下降速度会增加。

二、应用PWM温控方案在许多领域得到广泛应用,以下列举几个常见的应用场景:1. 电子设备散热控制:例如计算机、手机等电子设备,在高负荷运行时会产生大量热量,通过PWM温控方案可以实现精确的散热控制,避免设备过热而引发故障。

2. 温室控温:在温室种植中,温度对植物的生长非常重要。

PWM温控方案可以帮助维持恰当的温度,在不同的生长阶段提供适宜的温度环境,促进植物的生长发育。

3. 工业生产过程控制:许多工业生产过程需要在特定温度下进行,例如炼油、塑料加工等。

通过PWM温控方案,可以精确控制加热设备,确保生产过程稳定和产品质量。

三、优缺点PWM温控方案具有以下优点:1. 精确控制:通过改变脉冲宽度,PWM温控方案可以实现对温度的精确控制,适用于需要高度稳定的温度环境。

2. 节能高效:与传统的开关控制相比,PWM温控方案可以根据实时需求自动调整加热器的工作时间,从而提高能源利用效率。

3. 可靠性高:PWM温控方案具有较高的稳定性和可靠性,可以适应长时间运行的需求。

然而,PWM温控方案也存在一些缺点:1. 噪声干扰:PWM温控方案在调节过程中会产生脉冲信号,可能引起电磁干扰,对某些敏感设备或场景造成影响。

2. 电路复杂性:与传统的温度调控方法相比,PWM温控方案需要较为复杂的电路设计和控制算法,需要较高的技术要求。

3. 系统响应速度:由于PWM温控方案需要不断调整脉冲宽度,系统响应速度相对较慢,不适用于某些对温度快速变化要求较高的场景。

pwm控制led亮度的原理和方法

pwm控制led亮度的原理和方法

pwm控制led亮度的原理和方法以PWM控制LED亮度的原理和方法引言:在电子设备中,LED广泛应用于各种场景,如显示屏、照明等。

而控制LED的亮度是一项重要的任务。

本文将介绍使用PWM(脉宽调制)控制LED亮度的原理和方法。

一、PWM控制LED亮度的原理PWM是一种通过改变信号的占空比来控制电路输出的方法。

在LED控制中,通过改变LED的驱动电流来控制亮度。

而PWM控制LED亮度的原理就是通过改变PWM信号的占空比来改变驱动电流的平均值,从而控制LED的亮度。

PWM信号是一种周期性的方波信号,其周期T可以根据需要调节。

占空比D定义为PWM信号高电平的占比,即高电平时间TH与周期T的比值。

通过改变占空比D,可以改变PWM信号的高电平时间,进而改变驱动电流的平均值。

驱动电流的平均值与LED的亮度成正比。

当PWM信号的占空比D 较小时,驱动电流的平均值较小,LED的亮度较暗;当PWM信号的占空比D较大时,驱动电流的平均值较大,LED的亮度较亮。

二、PWM控制LED亮度的方法PWM控制LED亮度的方法主要有以下几种:1. 使用PWM芯片控制:在一些需要频繁调节LED亮度的场景中,可以使用专门的PWM芯片来控制。

这种方法需要外接PWM芯片,通过设置相关寄存器来控制PWM信号的占空比。

通过改变占空比,来改变驱动电流的平均值,从而控制LED的亮度。

2. 使用单片机控制:在一些需要程序化控制的场景中,可以使用单片机来控制PWM信号。

单片机具有较强的计算和控制能力,可以根据需要编写程序来控制PWM信号的占空比。

通过改变占空比,来改变驱动电流的平均值,从而控制LED的亮度。

3. 使用专用LED驱动芯片控制:在一些大规模LED灯光控制系统中,常常使用专用的LED驱动芯片来控制。

这些驱动芯片内部集成了PWM控制电路,可以直接通过设置相关寄存器来控制PWM信号的占空比。

通过改变占空比,来改变驱动电流的平均值,从而控制LED的亮度。

pwm控制的工作原理

pwm控制的工作原理

pwm控制的工作原理
PWM(脉宽调制)是一种控制信号的技术,它通过控制信号
的脉冲宽度的长短来实现对输出信号的调节。

PWM常用于控
制电机的速度、改变LED的亮度等电子设备中。

PWM的工作原理是根据输出信号的周期和脉冲宽度比例来控
制电路的开关状态。

具体步骤如下:
1. 设定周期:首先确定输出信号的周期,即一个完整的脉冲周期的时间。

2. 设定脉冲宽度:根据需要调节输出信号的幅度,即控制电路的开关状态的时间。

3. 脉冲生成:利用计时器或特殊的PWM芯片,根据设定的周
期和脉冲宽度来生成PWM信号。

4. 输出控制:将PWM信号通过电流放大器等电路输出给目标
设备,实现对设备的控制。

在PWM信号中,脉冲宽度占整个周期的比例决定了输出信号
的强度或工作状态。

脉冲宽度比例越大,输出信号越强;脉冲宽度比例越小,输出信号越弱。

优点是PWM控制方式可以实现模拟信号的输出,而不需要使
用模数转换器。

另外,由于脉冲宽度的变化可以通过改变开关频率来实现,因此PWM可以很好地适应不同频率范围的应用。

总之,PWM控制的工作原理是根据周期和脉冲宽度比例来控制输出信号的强度或工作状态,通过改变脉冲宽度比例来实现对电子设备的精确控制。

pwm互补电路

pwm互补电路

pwm互补电路PWM互补电路引言:PWM(Pulse Width Modulation)互补电路是一种常用的电子电路,用于控制电机或其他负载的转速和输出功率。

本文将介绍PWM互补电路的工作原理、应用领域以及优缺点。

一、PWM互补电路的工作原理PWM互补电路通过改变信号的占空比来控制输出电压的大小。

在PWM信号的高电平期间,开关S1导通,输出电压为正;在低电平期间,开关S2导通,输出电压为负。

通过不断改变S1和S2的导通时间,可以实现对输出电压的精确控制,从而达到控制转速和输出功率的目的。

二、PWM互补电路的应用领域1. 电机控制:PWM互补电路广泛应用于电机控制领域。

通过调整PWM信号的占空比,可以精确控制电机的转速。

在一些需要变速运转的设备中,如风扇、空调压缩机等,PWM互补电路可以提供高效、精确的转速控制。

2. 光照控制:PWM互补电路还可以应用于照明系统中。

通过调整PWM信号的占空比,可以控制LED灯的亮度。

这种方式不仅可以实现调光效果,还可以节省能源。

3. 电源控制:PWM互补电路也被广泛应用于电源控制领域。

通过改变PWM信号的占空比,可以实现对输出电压的精确调节,从而保证电子设备的稳定工作。

三、PWM互补电路的优缺点1. 优点:a. 精确控制:PWM互补电路可以通过调整占空比来精确控制输出电压的大小,从而实现对负载的精确控制。

b. 高效性能:PWM互补电路具有高效的能量转换特性,能够在不同负载情况下提供稳定输出电压。

c. 简单可靠:PWM互补电路的结构相对简单,可靠性高,故障率低。

2. 缺点:a. 电磁干扰:PWM互补电路在工作过程中会产生高频脉冲信号,可能会对周围的电子设备产生电磁干扰。

b. 效率损耗:PWM互补电路在工作过程中需要频繁地开关,会产生一定的功率损耗。

结论:PWM互补电路是一种常用的电子电路,通过改变信号的占空比来控制输出电压的大小,广泛应用于电机控制、照明系统和电源控制等领域。

介绍几种PWM控制方法

介绍几种PWM控制方法

介绍几种PWM控制方法控制方法采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同.PWM控制技术就是以该结论为理论基础,对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形.按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率.PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现.直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用.随着电力电子技术,微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论,非线性系统控制思想的应用,PWM控制技术获得了空前的发展.到目前为止,已出现了多种PWM控制技术,根据PWM控制技术的特点,到目前为止主要有以下8类方法.1 相电压控制PWM1.1 等脉宽PWM法[1]VVVF(Variable Voltage Variable Frequency)装置在早期是采用PAM(Pulse Amplitude Modulation)控制技术来实现的,其逆变器部分只能输出频率可调的方波电压而不能调压.等脉宽PWM法正是为了克服PAM法的这个缺点发展而来的,是PWM法中最为简单的一种.它是把每一脉冲的宽度均相等的脉冲列作为PWM波,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化.相对于PAM法,该方法的优点是简化了电路结构,提高了输入端的功率因数,但同时也存在输出电压中除基波外,还包含较大的谐波分量.1.2 随机PWM在上世纪70年代开始至上世纪80年代初,由于当时大功率晶体管主要为双极性达林顿三极管,载波频率一般不超过5kHz,电机绕组的电磁噪音及谐波造成的振动引起了人们的关注.为求得改善,随机PWM方法应运而生.其原理是随机改变开关频率使电机电磁噪音近似为限带白噪声(在线性频率坐标系中,各频率能量分布是均匀的),尽管噪音的总分贝数未变,但以固定开关频率为特征的有色噪音强度大大削弱.正因为如此,即使在IGBT已被广泛应用的今天,对于载波频率必须限制在较低频率的场合,随机PWM仍然有其特殊的价值;另一方面则说明了消除机械和电磁噪音的最佳方法不是盲目地提高工作频率,随机PWM技术正是提供了一个分析,解决这种问题的全新思路.1.3 SPWM法SPWM(Sinusoidal PWM)法是一种比较成熟的,目前使用较广泛的PWM法.前面提到的采样控制理论中的一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同.SPWM法就是以该结论为理论基础,用脉冲宽度按正弦规律变化而和正弦波等效的PWM波形即SPWM波形控制逆变电路中开关器件的通断,使其输出的脉冲电压的面积与所希望输出的正弦波在相应区间内的面积相等,通过改变调制波的频率和幅值则可调节逆变电路输出电压的频率和幅值.该方法的实现有以下几种方案.1.3.1 等面积法该方案实际上就是SPWM法原理的直接阐释,用同样数量的等幅而不等宽的矩形脉冲序列代替正弦波,然后计算各脉冲的宽度和间隔,并把这些数据存于微机中,通过查表的方式生成PWM信号控制开关器件的通断,以达到预期的目的.由于此方法是以SPWM控制的基本原理为出发点,可以准确地计算出各开关器件的通断时刻,其所得的的波形很接近正弦波,但其存在计算繁琐,数据占用内存大,不能实时控制的缺点.1.3.2 硬件调制法硬件调制法是为解决等面积法计算繁琐的缺点而提出的,其原理就是把所希望的波形作为调制信号,把接受调制的信号作为载波,通过对载波的调制得到所期望的PWM波形.通常采用等腰三角波作为载波,当调制信号波为正弦波时,所得到的就是SPWM波形.其实现方法简单,可以用模拟电路构成三角波载波和正弦调制波发生电路,用比较器来确定它们的交点,在交点时刻对开关器件的通断进行控制,就可以生成SPWM波.但是,这种模拟电路结构复杂,难以实现精确的控制.1.3.3 软件生成法由于微机技术的发展使得用软件生成SPWM波形变得比较容易,因此,软件生成法也就应运而生.软件生成法其实就是用软件来实现调制的方法,其有两种基本算法,即自然采样法和规则采样法.1.3.3.1 自然采样法[2]以正弦波为调制波,等腰三角波为载波进行比较,在两个波形的自然交点时刻控制开关器件的通断,这就是自然采样法.其优点是所得SPWM波形最接近正弦波,但由于三角波与正弦波交点有任意性,脉冲中心在一个周期内不等距,从而脉宽表达式是一个超越方程,计算繁琐,难以实时控制.1.3.3.2 规则采样法[3]规则采样法是一种应用较广的工程实用方法,一般采用三角波作为载波.其原理就是用三角波对正弦波进行采样得到阶梯波,再以阶梯波与三角波的交点时刻控制开关器件的通断,从而实现SPWM法.当三角波只在其顶点(或底点)位置对正弦波进行采样时,由阶梯波与三角波的交点所确定的脉宽,在一个载波周期(即采样周期)内的位置是对称的,这种方法称为对称规则采样.当三角波既在其顶点又在底点时刻对正弦波进行采样时,由阶梯波与三角波的交点所确定的脉宽,在一个载波周期(此时为采样周期的两倍)内的位置一般并不对称,这种方法称为非对称规则采样.规则采样法是对自然采样法的改进,其主要优点就是是计算简单,便于在线实时运算,其中非对称规则采样法因阶数多而更接近正弦.其缺点是直流电压利用率较低,线性控制范围较小.以上两种方法均只适用于同步调制方式中.1.3.4 低次谐波消去法[2]低次谐波消去法是以消去PWM波形中某些主要的低次谐波为目的的方法.其原理是对输出电压波形按傅氏级数展开,表示为u(ωt)=ansinnωt,首先确定基波分量a1的值,再令两个不同的an=0,就可以建立三个方程,联立求解得a1,a2及a3,这样就可以消去两个频率的谐波.该方法虽然可以很好地消除所指定的低次谐波,但是,剩余未消去的较低次谐波的幅值可能会相当大,而且同样存在计算复杂的缺点.该方法同样只适用于同步调制方式中.1.4 梯形波与三角波比较法[2]前面所介绍的各种方法主要是以输出波形尽量接近正弦波为目的,从而忽视了直流电压的利用率,如SPWM法,其直流电压利用率仅为86.6%.因此,为了提高直流电压利用率,提出了一种新的方法--梯形波与三角波比较法.该方法是采用梯形波作为调制信号,三角波为载波,且使两波幅值相等,以两波的交点时刻控制开关器件的通断实现PWM控制.由于当梯形波幅值和三角波幅值相等时,其所含的基波分量幅值已超过了三角波幅值,从而可以有效地提高直流电压利用率.但由于梯形波本身含有低次谐波,所以输出波形中含有5次,7次等低次谐波.2 线电压控制PWM前面所介绍的各种PWM控制方法用于三相逆变电路时,都是对三相输出相电压分别进行控制的,使其输出接近正弦波,但是,对于像三相异步电动机这样的三相无中线对称负载,逆变器输出不必追求相电压接近正弦,而可着眼于使线电压趋于正弦.因此,提出了线电压控制PWM,主要有以下两种方法.2.1 马鞍形波与三角波比较法马鞍形波与三角波比较法也就是谐波注入PWM方式(HIPWM),其原理是在正弦波中加入一定比例的三次谐波,调制信号便呈现出马鞍形,而且幅值明显降低,于是在调制信号的幅值不超过载波幅值的情况下,可以使基波幅值超过三角波幅值,提高了直流电压利用率.在三相无中线系统中,由于三次谐波电流无通路,所以三个线电压和线电流中均不含三次谐波[4].除了可以注入三次谐波以外,还可以注入其他3倍频于正弦波信号的其他波形,这些信号都不会影响线电压.这是因为,经过PWM调制后逆变电路输出的相电压也必然包含相应的3倍频于正弦波信号的谐波,但在合成线电压时,各相电压中的这些谐波将互相抵消,从而使线电压仍为正弦波.2.2 单元脉宽调制法[5]因为,三相对称线电压有Uuv+Uvw+Uwu=0的关系,所以,某一线电压任何时刻都等于另外两个线电压负值之和.现在把一个周期等分为6个区间,每区间60°,对于某一线电压例如Uuv,半个周期两边60°区间用Uuv本身表示,中间60°区间用-(Uvw+Uwu)表示,当将Uvw和Uwu作同样处理时,就可以得到三相线电压波形只有半周内两边60°区间的两种波形形状,并且有正有负.把这样的电压波形作为脉宽调制的参考信号,载波仍用三角波,并把各区间的曲线用直线近似(实践表明,这样做引起的误差不大,完全可行),就可以得到线电压的脉冲波形,该波形是完全对称,且规律性很强,负半周是正半周相应脉冲列的反相,因此,只要半个周期两边60°区间的脉冲列一经确定,线电压的调制脉冲波形就唯一地确定了.这个脉冲并不是开关器件的驱动脉冲信号,但由于已知三相线电压的脉冲工作模式,就可以确定开关器件的驱动脉冲信号了.该方法不仅能抑制较多的低次谐波,还可减小开关损耗和加宽线性控制区,同时还能带来用微机控制的方便,但该方法只适用于异步电动机,应用范围较小.3 电流控制PWM电流控制PWM的基本思想是把希望输出的电流波形作为指令信号,把实际的电流波形作为反馈信号,通过两者瞬时值的比较来决定各开关器件的通断,使实际输出随指令信号的改变而改变.其实现方案主要有以下3种.3.1 滞环比较法[4]这是一种带反馈的PWM控制方式,即每相电流反馈回来与电流给定值经滞环比较器,得出相应桥臂开关器件的开关状态,使得实际电流跟踪给定电流的变化.该方法的优点是电路简单,动态性能好,输出电压不含特定频率的谐波分量.其缺点是开关频率不固定造成较为严重的噪音,和其他方法相比,在同一开关频率下输出电流中所含的谐波较多.3.2 三角波比较法[2]该方法与SPWM法中的三角波比较方式不同,这里是把指令电流与实际输出电流进行比较,求出偏差电流,通过放大器放大后再和三角波进行比较,产生PWM波.此时开关频率一定,因而克服了滞环比较法频率不固定的缺点.但是,这种方式电流响应不如滞环比较法快.3.3 预测电流控制法[6]预测电流控制是在每个调节周期开始时,根据实际电流误差,负载参数及其它负载变量,来预测电流误差矢量趋势,因此,下一个调节周期由PWM产生的电压矢量必将减小所预测的误差.该方法的优点是,若给调节器除误差外更多的信息,则可获得比较快速,准确的响应.目前,这类调节器的局限性是响应速度及过程模型系数参数的准确性.4 空间电压矢量控制PWM [7]空间电压矢量控制PWM(SVPWM)也叫磁通正弦PWM法.它以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,用逆变器不同的开关模式所产生的实际磁通去逼近基准圆磁通,由它们的比较结果决定逆变器的开关,形成PWM波形.此法从电动机的角度出发,把逆变器和电机看作一个整体,以内切多边形逼近圆的方式进行控制,使电机获得幅值恒定的圆形磁场(正弦磁通).具体方法又分为磁通开环式和磁通闭环式.磁通开环法用两个非零矢量和一个零矢量合成一个等效的电压矢量,若采样时间足够小,可合成任意电压矢量.此法输出电压比正弦波调制时提高15%,谐波电流有效值之和接近最小.磁通闭环式引入磁通反馈,控制磁通的大小和变化的速度.在比较估算磁通和给定磁通后,根据误差决定产生下一个电压矢量,形成PWM波形.这种方法克服了磁通开环法的不足,解决了电机低速时,定子电阻影响大的问题,减小了电机的脉动和噪音.但由于未引入转矩的调节,系统性能没有得到根本性的改善.5 矢量控制PWM[8]矢量控制也称磁场定向控制,其原理是将异步电动机在三相坐标系下的定子电流Ia,Ib及Ic,通过三相/二相变换,等效成两相静止坐标系下的交流电流Ia1及Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1及It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿对直流电动机的控制方法,实现对交流电动机的控制.其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制.通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制.但是,由于转子磁链难以准确观测,以及矢量变换的复杂性,使得实际控制效果往往难以达到理论分析的效果,这是矢量控制技术在实践上的不足.此外.它必须直接或间接地得到转子磁链在空间上的位置才能实现定子电流解耦控制,在这种矢量控制系统中需要配置转子位置或速度传感器,这显然给许多应用场合带来不便.6 直接转矩控制PWM[8]1985年德国鲁尔大学Depenbrock教授首先提出直接转矩控制理论(Direct Torque Control简称DTC).直接转矩控制与矢量控制不同,它不是通过控制电流,磁链等量来间接控制转矩,而是把转矩直接作为被控量来控制,它也不需要解耦电机模型,而是在静止的坐标系中计算电机磁通和转矩的实际值,然后,经磁链和转矩的Band-Band控制产生PWM信号对逆变器的开关状态进行最佳控制,从而在很大程度上解决了上述矢量控制的不足,能方便地实现无速度传感器化,有很快的转矩响应速度和很高的速度及转矩控制精度,并以新颖的控制思想,简洁明了的系统结构,优良的动静态性能得到了迅速发展.但直接转矩控制也存在缺点,如逆变器开关频率的提高有限制.7 非线性控制PWM单周控制法[7]又称积分复位控制(Integration Reset Control,简称IRC),是一种新型非线性控制技术,其基本思想是控制开关占空比,在每个周期使开关变量的平均值与控制参考电压相等或成一定比例.该技术同时具有调制和控制的双重性,通过复位开关,积分器,触发电路,比较器达到跟踪指令信号的目的.单周控制器由控制器,比较器,积分器及时钟组成,其中控制器可以是RS触发器,其控制原理如图1所示.图中K可以是任何物理开关,也可是其它可转化为开关变量形式的抽象信号.单周控制在控制电路中不需要误差综合,它能在一个周期内自动消除稳态,瞬态误差,使前一周期的误差不会带到下一周期.虽然硬件电路较复杂,但其克服了传统的PWM控制方法的不足,适用于各种脉宽调制软开关逆变器,具有反应快,开关频率恒定,鲁棒性强等优点,此外,单周控制还能优化系统响应,减小畸变和抑制电源干扰,是一种很有前途的控制方法.8 谐振软开关PWM传统的PWM逆变电路中,电力电子开关器件硬开关的工作方式,大的开关电压电流应力以及高的du/dt和di/dt限制了开关器件工作频率的提高,而高频化是电力电子主要发展趋势之一,它能使变换器体积减小,重量减轻,成本下降,性能提高,特别当开关频率在18kHz以上时,噪声将已超过人类听觉范围,使无噪声传动系统成为可能.谐振软开关PWM的基本思想是在常规PWM变换器拓扑的基础上,附加一个谐振网络,谐振网络一般由谐振电感,谐振电容和功率开关组成.开关转换时,谐振网络工作使电力电子器件在开关点上实现软开关过程,谐振过程极短,基本不影响PWM技术的实现.从而既保持了PWM技术的特点,又实现了软开关技术.但由于谐振网络在电路中的存在必然会产生谐振损耗,并使电路受固有问题的影响,从而限制了该方法的应用.9 结语本文较详细地总结了各种PWM控制方法的原理,并简单说明了各种方法的优缺点.PWM控制技术以其控制简单,灵活和动态响应好的优点而成为电力电子技术最广泛应用的控制方式,也是人们研究的热点.由于当今科学技术的发展已经没有了学科之间的界限,结合现代控制理论思想或实现无谐振软开关技术将会成为PWM控制技术发展的主要方向之一.。

pwm调速原理

pwm调速原理

pwm调速原理PWM调速原理。

PWM(Pulse Width Modulation)调速技术是一种常用的电机调速方法,通过控制电机输入的脉冲宽度来实现电机转速的调节。

本文将介绍PWM调速的原理及其应用。

1. PWM调速原理。

PWM调速原理是基于调制信号的脉冲宽度来控制电机的转速。

当输入的PWM 信号占空比(即高电平时间占总周期的比例)增大时,电机的平均电压和电流也随之增大,从而提高了电机的转速。

反之,当PWM信号的占空比减小时,电机的转速也会相应减小。

2. PWM调速的优势。

相比于传统的电压调速和频率调速,PWM调速具有以下优势:精度高,PWM调速可以实现对电机转速的精确控制,有利于提高系统的稳定性和精度。

效率高,PWM调速可以减小电机的能耗,提高能源利用率。

响应快,PWM调速可以实现对电机的快速响应,适用于对转速要求较高的场合。

3. PWM调速的应用。

PWM调速技术广泛应用于各种电机控制系统中,包括风扇、空调、电动车、机械设备等。

以风扇为例,通过调节PWM信号的占空比,可以实现风扇转速的调节,从而满足不同环境下的散热需求;在电动车中,PWM调速可以实现对电机转速的精确控制,提高了电动车的动力性能和能效比。

4. 总结。

PWM调速技术作为一种高效、精确的电机调速方法,已经得到了广泛的应用。

通过控制PWM信号的占空比,可以实现对电机转速的精确控制,提高了系统的稳定性和能效比。

未来,随着电机控制技术的不断发展,PWM调速技术将会在更多领域得到应用,为各种电机控制系统带来更好的性能和效果。

5. 参考文献。

刘晓明. 电机控制技术[M]. 机械工业出版社, 2015.王明. PWM调速技术在电机控制中的应用[J]. 电机技术, 2019(6): 45-48.。

(完整版)PWM控制技术(深度剖析)

(完整版)PWM控制技术(深度剖析)

第6章PWM控制技术主要内容:PWM控制的基本原理、控制方式与PWM波形的生成方法,PWM逆变电路的谐波分析,PWM整流电路。

重点:PWM控制的基本原理、控制方式与PWM波形的生成方法。

难点:PWM波形的生成方法,PWM逆变电路的谐波分析。

基本要求:掌握PWM控制的基本原理、控制方式与PWM波形的生成方法,了解PWM 逆变电路的谐波分析,了解跟踪型PWM逆变电路,了解PWM整流电路。

PWM(Pulse Width Modulation)控制——脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。

第3、4章已涉及这方面内容: 第3章:直流斩波电路采用,第4章有两处:4.1节斩控式交流调压电路,4.4节矩阵式变频电路。

本章内容PWM控制技术在逆变电路中应用最广,应用的逆变电路绝大部分是PWM型,PWM 控制技术正是有赖于在逆变电路中的应用,才确定了它在电力电子技术中的重要地位。

本章主要以逆变电路为控制对象来介绍PWM控制技术,也介绍PWM整流电路1 PWM控制的基本原理理论基础:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。

冲量指窄脉冲的面积。

效果基本相同,是指环节的输出响应波形基本相同。

低频段非常接近,仅在高频段略有差异。

图6-1 形状不同而冲量相同的各种窄脉冲面积等效原理:分别将如图6-1所示的电压窄脉冲加在一阶惯性环节(R-L电路)上,如图6-2a所示。

其输出电流i(t)对不同窄脉冲时的响应波形如图6-2b所示。

从波形可以看出,在i(t)的上升段,i(t)的形状也略有不同,但其下降段则几乎完全相同。

脉冲越窄,各i(t)响应波形的差异也越小。

如果周期性地施加上述脉冲,则响应i(t)也是周期性的。

用傅里叶级数分解后将可看出,各i(t)在低频段的特性将非常接近,仅在高频段有所不同。

图6-2 冲量相同的各种窄脉冲的响应波形用一系列等幅不等宽的脉冲来代替一个正弦半波,正弦半波N等分,看成N个相连的脉冲序列,宽度相等,但幅值不等;用矩形脉冲代替,等幅,不等宽,中点重合,面积(冲量)相等,宽度按正弦规律变化。

pwm的频率控制原理及应用

pwm的频率控制原理及应用

PWM的频率控制原理及应用什么是PWMPWM(Pulse Width Modulation)中文名为脉宽调制,是一种电子信号的调制技术。

它通过控制信号的高电平时间和低电平时间的比例来调整信号的平均电压,从而实现对电压、电流或功率的精确控制。

PWM的原理在PWM技术中,通过调整信号的脉宽和周期来控制电路的输出。

具体来说,当脉冲的高电平时间占整个周期的一定比例时,电路的输出会产生相应的效果,比如改变电流的大小、控制电机的转速等。

具体实现PWM技术的方法有很多种,其中常见的方法是使用计数器和比较器。

计数器用来生成固定频率的计时信号,而比较器则用来将计数器的值与一个可调节的阈值进行比较,从而确定输出信号的脉宽。

PWM的应用PWM技术在各个领域都有广泛的应用。

下面列举几种常见的应用场景:1.电机控制:PWM技术被广泛应用于电机控制中,可以通过调整脉宽比例来控制电机的转速和扭矩。

例如,在机器人控制中,通过调整PWM信号的频率和占空比,可以实现精确的电机控制,从而使机器人实现各种运动。

2.LED灯控制:PWM技术也常用于LED灯的亮度控制。

通过控制PWM信号的占空比,可以精确地调节LED灯的亮度。

这种亮度调节方式具有高效、稳定的特点,被广泛应用于照明系统和显示屏中。

3.电源调节:PWM技术还可以用于电源调节。

通过调整PWM信号的占空比,可以控制开关电源输出电压的大小。

这种电源调节方式具有高效、可调性强的特点,常用于电子设备中。

4.音频放大:PWM技术还常用于音频放大电路中。

通过将音频信号转换为PWM信号,并通过模拟滤波器将其恢复为模拟信号,可以实现高效的音频放大。

5.电磁阀控制:PWM技术也可以应用于电磁阀控制中。

通过调整PWM信号的频率和占空比,可以精确地控制电磁阀的工作状态,从而控制流体的流量。

PWM的优势使用PWM技术有以下几个优势:1.高效性:PWM技术可以减小功率损耗,提高能量的利用率。

通过调整脉冲的占空比,可以控制输出电压或电流的大小,从而实现高效的能量转换。

pwm的优点缺点以及使用

pwm的优点缺点以及使用

pwm的优点缺点以及使⽤1.设低电平触发与边沿触发有什么不同?答:外部中断INT0 和INT1 可根据寄存器TCON 中的IT0 和IT1 位状态分别设置为电平或者边沿触发实际产⽣的中断标志是TCON 中的位IE0 和IE1 当产⽣外部中断时如果是边沿触发进⼊中断服务程序后由硬件清除中断标志位如果中断是电平触发由外部请求源⽽不是由⽚内硬件控制请求标志.2.设低电平触发有什么要注意的地⽅?答:电平触发,你要及时撤销外部中断源,简单说,就是在中断服务程序执⾏期间,让INT1上的电压重新变⾼.防⽌"刚从中断程序出来,⼜进⼊中断服务程序".3.硬件外围电路,外部中断IC脚要不要加上拉电阻?答:⼀般不⽤,因为因为INT1在P3⼝上,内部有上拉电阻.但是仍然建议加⼀个10K的上拉电阻,万⼀需要可以焊接上,不会乱飞线了.介绍了PWM 技术的基本原理,并详细介绍了在智能充电器中采⽤的PWM技术的⽅法和其优缺点,并针对问题提出了更加合理的解决⽅案,本⽂介绍的⽅法主要⾯向镍氢和镍镉电池充电器等应⽤PWM技术的基本原理随着电⼦技术的发展,出现了多种PWM技术,其中包括:相电压控制PWM、脉宽PWM法、随机PWM、SPWM法、线电压控制PWM等,⽽本⽂介绍的是在镍氢电池智能充电器中采⽤的脉宽PWM法。

它是把每⼀脉冲宽度均相等的脉冲列作为PWM波形,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空⽐可以调压,采⽤适当控制⽅法即可使电压与频率协调变化。

可以通过调整PWM的周期、PWM的占空⽐⽽达到控制充电电流的⽬的。

PWM技术的具体应⽤PWM软件法控制充电电流本⽅法的基本思想就是利⽤单⽚机具有的PWM端⼝,在不改变PWM⽅波周期的前提下,通过软件的⽅法调整单⽚机的PWM 控制寄存器来调整PWM的占空⽐,从⽽控制充电电流。

本⽅法所要求的单⽚机必须具有ADC端⼝和PWM端⼝这两个必须条件,另外ADC的位数尽量⾼,单⽚机的⼯作速度尽量快。

pwm电路原理

pwm电路原理

pwm电路原理PWM电路原理。

PWM(Pulse Width Modulation)是一种常见的调制技术,它通过改变信号的脉冲宽度来实现对电路的控制。

在各种电子设备中,PWM技术被广泛应用,例如电源管理、电机驱动、LED调光等领域。

本文将介绍PWM电路的原理及其在实际应用中的重要性。

1. PWM电路原理。

PWM电路的基本原理是通过控制信号的占空比来实现对电路的控制。

在PWM信号中,周期固定不变,通过改变高电平的持续时间来控制输出信号的强弱。

通常情况下,PWM信号的周期越短,高电平的持续时间越长,输出信号的平均功率就越大。

PWM信号的频率和占空比是两个重要的参数。

频率决定了信号的周期,而占空比则决定了信号的强弱。

通过调节这两个参数,可以实现对电路输出的精确控制。

2. PWM电路的应用。

PWM电路在电子设备中有着广泛的应用。

其中,最常见的应用之一是电机驱动。

通过改变PWM信号的占空比,可以控制电机的转速和转向,实现精确的电机控制。

此外,PWM技术还可以用于LED调光,通过改变PWM信号的占空比,可以实现对LED亮度的精确调节。

另外,PWM技术还被广泛应用于电源管理领域。

通过PWM控制电路的开关,可以实现高效的能量转换和稳定的电压输出。

这在各种电子设备中都有着重要的应用,特别是在便携式设备和电源适配器中。

3. PWM电路的优势。

与传统的调制技术相比,PWM技术具有许多优势。

首先,PWM信号的频率和占空比可以精确控制,可以实现对电路输出的精确调节。

其次,PWM电路结构简单,成本低廉,易于实现。

此外,PWM技术还可以实现高效能量转换,提高电路的能效。

4. 结语。

总的来说,PWM电路是一种重要的调制技。

pwm控制的基本原理

pwm控制的基本原理

pwm控制的基本原理PWM控制的基本原理。

PWM(脉宽调制)是一种常见的控制方式,它在电子设备中有着广泛的应用。

本文将从PWM控制的基本原理入手,介绍其工作原理、应用场景及优缺点。

首先,我们来了解一下PWM控制的工作原理。

PWM控制是通过改变信号的占空比来控制电路的开关状态,从而实现对电路的控制。

在PWM控制中,信号的占空比是指信号中高电平(ON)所占的时间与一个完整周期内的时间比例。

通过改变占空比,可以控制输出信号的平均功率,从而实现对电路的控制。

PWM控制的应用场景非常广泛,其中包括电机控制、LED调光、DC-DC变换器等。

在电机控制中,PWM控制可以通过改变电机的供电电压和频率来实现对电机转速的精确控制。

在LED调光中,PWM控制可以通过改变LED的亮度,实现对光照强度的调节。

在DC-DC变换器中,PWM控制可以通过改变开关管的占空比,实现对输出电压的调节。

当然,PWM控制也存在一些优缺点。

其优点包括控制精度高、能耗低、成本低等。

而缺点则包括在一些特定应用场景下可能会产生电磁干扰、需要滤波等。

因此,在实际应用中,需要根据具体的情况来选择是否使用PWM控制。

总的来说,PWM控制作为一种常见的控制方式,具有着广泛的应用前景。

通过改变信号的占空比,可以实现对电路的精确控制,从而满足不同应用场景的需求。

当然,在使用PWM控制时,也需要注意其优缺点,选择合适的应用场景,以实现最佳的控制效果。

通过本文的介绍,相信读者对PWM控制的基本原理有了更深入的了解。

希望本文能够为大家对PWM控制的理解提供一些帮助。

电力电子技术中的PWM调制方法及其优缺点

电力电子技术中的PWM调制方法及其优缺点

电力电子技术中的PWM调制方法及其优缺点电力电子技术在现代电力系统中扮演着重要的角色,PWM调制方法作为其中的重要技术手段之一,广泛应用于各类电力电子设备中。

本文将介绍PWM调制方法的基本原理,不同类型的PWM调制技术,并探讨其优缺点。

一、PWM调制方法的基本原理PWM(Pulse Width Modulation)调制方法是一种通过改变脉冲信号的宽度来控制输出电压的技术。

其基本原理是将模拟信号转换为数字信号,然后通过改变数字信号的脉冲宽度来控制输出信号的幅值。

二、常见的PWM调制技术1. 脉冲位置调制(PPM)脉冲位置调制是通过改变脉冲信号的位置来控制输出电压的技术。

它的特点是脉冲宽度不变,只改变脉冲的位置。

优点是调制电路简单,缺点是对于非线性负载的适应性较差。

2. 脉冲幅度调制(PAM)脉冲幅度调制是通过改变脉冲信号的幅度来控制输出电压的技术。

它的特点是脉冲位置固定,只改变脉冲的幅度。

优点是控制精度高,缺点是谐波较多。

3. 脉冲宽度调制(PWM)脉冲宽度调制是通过改变脉冲信号的宽度来控制输出电压的技术。

它的特点是脉冲幅度固定,只改变脉冲的宽度。

与前两种调制技术相比,PWM调制具有调制电路简单、波形失真小、谐波含量低等优点。

三、PWM调制方法的优点1. 高效性:PWM调制方法可以实现高效能的能量转换,通过控制功率开关器件的通断,可以大大提高能量转换效率。

2. 控制精度高:PWM调制方法可以精确地控制输出电压或电流的大小,使电力电子设备在工作过程中具有良好的稳定性和可靠性。

3. 可调性强:PWM调制方法可以根据需要灵活调节输出信号的幅度和频率,满足不同场合下的需求。

四、PWM调制方法的缺点1. 电磁干扰:由于PWM调制方法通过纯数字控制开关器件的通断,会产生高频的脉冲信号,可能引起电磁干扰问题。

2. 谐波问题:PWM调制方法产生的输出信号中含有较多的谐波成分,可能对其他设备产生干扰。

3. 开关损耗:当PWM调制方法需要高频切换时,开关器件的通断损耗会增加,会造成能量的浪费。

几种PWM控制方法

几种PWM控制方法

几种PWM控制方法引言采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。

PWM控制技术就是以该结论为理论基础,对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形。

按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。

PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现。

直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用。

随着电力电子技术、微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论、非线性系统控制思想的应用,PWM 控制技术获得了空前的发展。

到目前为止,已出现了多种PWM控制技术,根据PWM控制技术的特点,到目前为止主要有以下8类方法。

1 相电压控制PWM1.1 等脉宽PWM法[1]VVVF(Variable Voltage Variable Frequency)装置在早期是采用PAM(Pulse Amplitude Modulation)控制技术来实现的,其逆变器部分只能输出频率可调的方波电压而不能调压。

等脉宽PWM法正是为了克服PAM法的这个缺点发展而来的,是PWM法中最为简单的一种。

它是把每一脉冲的宽度均相等的脉冲列作为PWM波,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。

相对于PAM法,该方法的优点是简化了电路结构,提高了输入端的功率因数,但同时也存在输出电压中除基波外,还包含较大的谐波分量。

1.2 随机PWM在上世纪70年代开始至上世纪80年代初,由于当时大功率晶体管主要为双极性达林顿三极管,载波频率一般不超过5kHz,电机绕组的电磁噪音及谐波造成的振动引起了人们的关注。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

引言采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。

PWM控制技术就是以该结论为理论基础,对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形。

按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。

PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现。

直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用。

随着电力电子技术、微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论、非线性系统控制思想的应用,PWM控制技术获得了空前的发展。

到目前为止,已出现了多种PWM控制技术,根据PWM控制技术的特点,到目前为止主要有以下8类方法。

1相电压控制PWM1.1等脉宽PWM法[1]VVVF(Variable Voltage Variable Frequency)装置在早期是采用PAM(Pulse Amplitude Modulation)控制技术来实现的,其逆变器部分只能输出频率可调的方波电压而不能调压。

等脉宽PWM法正是为了克服PAM法的这个缺点发展而来的,是PWM法中最为简单的一种。

它是把每一脉冲的宽度均相等的脉冲列作为PWM波,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。

相对于PAM法,该方法的优点是简化了电路结构,提高了输入端的功率因数,但同时也存在输出电压中除基波外,还包含较大的谐波分量。

1.2随机PWM在上世纪70年代开始至上世纪80年代初,由于当时大功率晶体管主要为双极性达林顿三极管,载波频率一般不超过5kHz,电机绕组的电磁噪音及谐波造成的振动引起了人们的关注。

为求得改善,随机PWM方法应运而生。

其原理是随机改变开关频率使电机电磁噪音近似为限带白噪声(在线性频率坐标系中,各频率能量分布是均匀的),尽管噪音的总分贝数未变,但以固定开关频率为特征的有色噪音强度大大削弱。

正因为如此,即使在IGBT已被广泛应用的今天,对于载波频率必须限制在较低频率的场合,随机PWM仍然有其特殊的价值;另一方面则说明了消除机械和电磁噪音的最佳方法不是盲目地提高工作频率,随机PWM技术正是提供了一个分析、解决这种问题的全新思路。

1.3SPWM法SPWM(Sinusoidal PWM)法是一种比较成熟的、目前使用较广泛的PWM法。

前面提到的采样控制理论中的一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。

SPWM法就是以该结论为理论基础,用脉冲宽度按正弦规律变化而和正弦波等效的PWM波形即SPWM波形控制逆变电路中开关器件的通断,使其输出的脉冲电压的面积与所希望输出的正弦波在相应区间内的面积相等,通过改变调制波的频率和幅值则可调节逆变电路输出电压的频率和幅值。

该方法的实现有以下几种方案。

1.3.1等面积法该方案实际上就是SPWM法原理的直接阐释,用同样数量的等幅而不等宽的矩形脉冲序列代替正弦波,然后计算各脉冲的宽度和间隔,并把这些数据存于微机中,通过查表的方式生成PWM信号控制开关器件的通断,以达到预期的目的。

由于此方法是以SPWM控制的基本原理为出发点,可以准确地计算出各开关器件的通断时刻,其所得的的波形很接近正弦波,但其存在计算繁琐,数据占用内存大,不能实时控制的缺点。

1.3.2硬件调制法硬件调制法是为解决等面积法计算繁琐的缺点而提出的,其原理就是把所希望的波形作为调制信号,把接受调制的信号作为载波,通过对载波的调制得到所期望的PWM波形。

通常采用等腰三角波作为载波,当调制信号波为正弦波时,所得到的就是SPWM波形。

其实现方法简单,可以用模拟电路构成三角波载波和正弦调制波发生电路,用比较器来确定它们的交点,在交点时刻对开关器件的通断进行控制,就可以生成SPWM波。

但是,这种模拟电路结构复杂,难以实现精确的控制。

1.3.3软件生成法由于微机技术的发展使得用软件生成SPWM波形变得比较容易,因此,软件生成法也就应运而生。

软件生成法其实就是用软件来实现调制的方法,其有两种基本算法,即自然采样法和规则采样法。

1.3.3.1自然采样法[2]以正弦波为调制波,等腰三角波为载波进行比较,在两个波形的自然交点时刻控制开关器件的通断,这就是自然采样法。

其优点是所得SPWM波形最接近正弦波,但由于三角波与正弦波交点有任意性,脉冲中心在一个周期内不等距,从而脉宽表达式是一个超越方程,计算繁琐,难以实时控制。

1.3.3.2规则采样法[3]规则采样法是一种应用较广的工程实用方法,一般采用三角波作为载波。

其原理就是用三角波对正弦波进行采样得到阶梯波,再以阶梯波与三角波的交点时刻控制开关器件的通断,从而实现SPWM法。

当三角波只在其顶点(或底点)位置对正弦波进行采样时,由阶梯波与三角波的交点所确定的脉宽,在一个载波周期(即采样周期)内的位置是对称的,这种方法称为对称规则采样。

当三角波既在其顶点又在底点时刻对正弦波进行采样时,由阶梯波与三角波的交点所确定的脉宽,在一个载波周期(此时为采样周期的两倍)内的位置一般并不对称,这种方法称为非对称规则采样。

规则采样法是对自然采样法的改进,其主要优点就是是计算简单,便于在线实时运算,其中非对称规则采样法因阶数多而更接近正弦。

其缺点是直流电压利用率较低,线性控制范围较小。

以上两种方法均只适用于同步调制方式中。

1.3.4低次谐波消去法[2]低次谐波消去法是以消去PWM波形中某些主要的低次谐波为目的的方法。

其原理是对输出电压波形按傅氏级数展开,表示为u(ωt)=ansinnωt,首先确定基波分量a1的值,再令两个不同的an=0,就可以建立三个方程,联立求解得a1,a2及a3,这样就可以消去两个频率的谐波。

该方法虽然可以很好地消除所指定的低次谐波,但是,剩余未消去的较低次谐波的幅值可能会相当大,而且同样存在计算复杂的缺点。

该方法同样只适用于同步调制方式中。

1.4梯形波与三角波比较法[2]前面所介绍的各种方法主要是以输出波形尽量接近正弦波为目的,从而忽视了直流电压的利用率,如SPWM法,其直流电压利用率仅为86.6%。

因此,为了提高直流电压利用率,提出了一种新的方法——梯形波与三角波比较法。

该方法是采用梯形波作为调制信号,三角波为载波,且使两波幅值相等,以两波的交点时刻控制开关器件的通断实现PWM控制。

由于当梯形波幅值和三角波幅值相等时,其所含的基波分量幅值已超过了三角波幅值,从而可以有效地提高直流电压利用率。

但由于梯形波本身含有低次谐波,所以输出波形中含有5次、7次等低次谐波。

2线电压控制PWM前面所介绍的各种PWM控制方法用于三相逆变电路时,都是对三相输出相电压分别进行控制的,使其输出接近正弦波,但是,对于像三相异步电动机这样的三相无中线对称负载,逆变器输出不必追求相电压接近正弦,而可着眼于使线电压趋于正弦。

因此,提出了线电压控制PWM,主要有以下两种方法。

2.1马鞍形波与三角波比较法马鞍形波与三角波比较法也就是谐波注入PWM方式(HIPWM),其原理是在正弦波中加入一定比例的三次谐波,调制信号便呈现出马鞍形,而且幅值明显降低,于是在调制信号的幅值不超过载波幅值的情况下,可以使基波幅值超过三角波幅值,提高了直流电压利用率。

在三相无中线系统中,由于三次谐波电流无通路,所以三个线电压和线电流中均不含三次谐波[4]。

除了可以注入三次谐波以外,还可以注入其他3倍频于正弦波信号的其他波形,这些信号都不会影响线电压。

这是因为,经过PWM 调制后逆变电路输出的相电压也必然包含相应的3倍频于正弦波信号的谐波,但在合成线电压时,各相电压中的这些谐波将互相抵消,从而使线电压仍为正弦波。

2.2单元脉宽调制法[5]因为,三相对称线电压有Uuv+Uvw+Uwu=0的关系,所以,某一线电压任何时刻都等于另外两个线电压负值之和。

现在把一个周期等分为6个区间,每区间60°,对于某一线电压例如Uuv,半个周期两边60°区间用Uuv本身表示,中间60°区间用-(Uvw+Uwu)表示,当将Uvw和Uwu作同样处理时,就可以得到三相线电压波形只有半周内两边60°区间的两种波形形状,并且有正有负。

把这样的电压波形作为脉宽调制的参考信号,载波仍用三角波,并把各区间的曲线用直线近似(实践表明,这样做引起的误差不大,完全可行),就可以得到线电压的脉冲波形,该波形是完全对称,且规律性很强,负半周是正半周相应脉冲列的反相,因此,只要半个周期两边60°区间的脉冲列一经确定,线电压的调制脉冲波形就唯一地确定了。

这个脉冲并不是开关器件的驱动脉冲信号,但由于已知三相线电压的脉冲工作模式,就可以确定开关器件的驱动脉冲信号了。

该方法不仅能抑制较多的低次谐波,还可减小开关损耗和加宽线性控制区,同时还能带来用微机控制的方便,但该方法只适用于异步电动机,应用范围较小。

3电流控制PWM电流控制PWM的基本思想是把希望输出的电流波形作为指令信号,把实际的电流波形作为反馈信号,通过两者瞬时值的比较来决定各开关器件的通断,使实际输出随指令信号的改变而改变。

其实现方案主要有以下3种。

3.1滞环比较法[4]这是一种带反馈的PWM控制方式,即每相电流反馈回来与电流给定值经滞环比较器,得出相应桥臂开关器件的开关状态,使得实际电流跟踪给定电流的变化。

该方法的优点是电路简单,动态性能好,输出电压不含特定频率的谐波分量。

其缺点是开关频率不固定造成较为严重的噪音,和其他方法相比,在同一开关频率下输出电流中所含的谐波较多。

3.2三角波比较法[2]该方法与SPWM法中的三角波比较方式不同,这里是把指令电流与实际输出电流进行比较,求出偏差电流,通过放大器放大后再和三角波进行比较,产生PWM波。

此时开关频率一定,因而克服了滞环比较法频率不固定的缺点。

但是,这种方式电流响应不如滞环比较法快。

3.3预测电流控制法[6]预测电流控制是在每个调节周期开始时,根据实际电流误差,负载参数及其它负载变量,来预测电流误差矢量趋势,因此,下一个调节周期由PWM产生的电压矢量必将减小所预测的误差。

该方法的优点是,若给调节器除误差外更多的信息,则可获得比较快速、准确的响应。

目前,这类调节器的局限性是响应速度及过程模型系数参数的准确性。

4空间电压矢量控制PWM[7]空间电压矢量控制PWM(SVPWM)也叫磁通正弦PWM法。

它以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,用逆变器不同的开关模式所产生的实际磁通去逼近基准圆磁通,由它们的比较结果决定逆变器的开关,形成PWM波形。

相关文档
最新文档