七年级上数学期中考试试卷(二)

合集下载

人教版2019-2020学年七年级上学期期中考试数学试题(II)卷

人教版2019-2020学年七年级上学期期中考试数学试题(II)卷

人教版2019-2020学年七年级上学期期中考试数学试题(II)卷姓名:________ 班级:________ 成绩:________一、单选题1 . 下面选项中符合代数式书写要求的是()A.ay·3B.C.D.a×b÷c2 . 一件工作,甲单独做需a天完成,乙单独做需b天完成,如果两人合作7天,完成的工作量是()A.B.7(a-b)C.7(a+b)D.3 . 下列说法错误的是()A.﹣xy的系数是﹣1B.3x3﹣2x2y2﹣y3的次数是4C.当a<2b时,2a+b+2|a﹣2b|=5bD.多项式中x2的系数是﹣34 . 在0,2,,-5这四个数中,最大的数是()A.0B.2C.D.-55 . 下列计算正确的是()A.a+2a=3B.C.D.6 . 2018年政府工作报告指出,过去五年来,我国经济实力跃上新台阶.国内生产总值从54万亿元增加到82.7万亿元,稳居世界第二.82.7万亿用科学记数法表示为()A.B.C.D.7 . -的相反数是()A.2016B.﹣2016C.D.-8 . 若△ABC三条边的长度分别为m,n,p,且,则这个三角形为A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形9 . 下列各组运算中,结果为负数的是()A.-(-3)B.(-3)×(-2)C.-|-3|D.10 . 下列各式符合代数式书写格式的为()A.B.C.D.二、填空题11 . 若数轴上点A与点B的距离是2018,点B表示的数为7,则点A表示的数是_______.12 . 单项式﹣x3y的系数是_____.13 . 张老师在黑板上写出以下四个结论:①−3的绝对值为;②一个负数的绝对值一定是正数;③若=−a,则a一定是负数;④一个五棱柱的截面最多是七边形. 认为张老师写的结论正确的有_______.(填序号)14 . 如果,那么代数式的值为______.15 . 金砖五国成员国巴西的首都巴西利亚、新西兰的首都惠灵顿与北京的时差如下表:城市惠灵顿巴西利亚时差/h+4﹣11若现在的北京时间是11月16日8:00,请从A,B两题中任选一题作答.A.那么,现在的惠灵顿时间是11月_____日_____B.那么,现在的巴西利亚时间是11月_____日_____.16 . 单项式x2y的系数是_____;次数是______.17 . 李先生要用按揭贷款的方式购买一套商品房,由于银行提高了贷款利率,他想尽量减少贷款额,就将自己的全部积蓄a元交付了所需购房款的60%,其余部分向银行贷款,则李先生应向银行贷款________元.18 . 若a、b为实数,且满足|a-2|+=0,则a=______ ,b=______.三、解答题19 . 计算下列各题:(1)(-9)-(-7)+(-6)-(+4)-(-5);(2)(+4.3)-(-4)+(-2.3)-(+4).20 . 已知:,且。

人教版七年级上册数学期中测试 试卷2(含答案)

人教版七年级上册数学期中测试 试卷2(含答案)

七年级(上)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.冬季某天我国三个城市的最高气温分别是﹣8℃,2℃,﹣3℃,把它们从高到低排列正确的是()A.﹣8℃,﹣3℃,2℃B.﹣3℃,﹣8℃,2℃C.2℃,﹣3℃,﹣8℃D.2℃,﹣8℃,﹣3℃2.2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107B.83.62×106C.0.8362×108 D.8.362×1083.小新准备用如图的纸片做一个正方体礼品盒,为了美观,他想在六个正方形纸片上画上图案,使做成后三组对面的图案相同,那么画上图案后正确的是()A.B.C.D.4.如图,数轴上有A、B、C、D四个点,其中表示互为相反数的点是()A.点A与点D B.点A与点C C.点B与点D D.点B与点C5.小红分别从正面、左面和上面观察由一些相同小立方块搭成的几何体时,发现几何体的形状图均为如图,则构成该几何体的小立方块的个数有()A.3个 B.4个 C.5个 D.6个6.小红要购买珠子串成一条手链,黑色珠子每个a元,白色珠子每个b元,要串成如图所示的手链,小红购买珠子应该花费()A.(3a+4b)元B.(4a+3b)元C.4(a+b)元D.3(a+b)元7.下列各式计算正确的是()A.﹣2a+5b=3ab B.6a+a=6a2C.4m2n﹣2mn2=2mn D.3ab2﹣5b2a=﹣2ab28.一列火车长m米,以每秒n米的速度通过一个长为p米的桥洞,用代数式表示它通过桥洞所需的时间为()A.秒 B.秒C.秒D.秒二、填空题(本小题共6小题,每小题3分,共16分)9.如果向东走150米,记为+150米,那么向西走250米,记为米.10.如图所示的图形绕虚线旋转一周,便能形成某个几何体,这个几何体的名称叫做.11.用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱(写出所有正确结果的序号).12.一个边长为1的正方形,第一次截去正方形的一半,第二次截去剩下的一半,如此截下去,第六次后剩下的面积为米13.一个长方形的宽为xcm,长比宽的2倍多3cm,这个长方形的周长为cm.14.如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成,第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图案有10个三角形,…依此规律,第n个图案有个三角形(用含n的代数式表示)三、解答题(本题共78分)15.如图,是一个几何体从上面看到的形状图,正方形中的数字是该位置上的小立方块的数量,请画出从正面和从左面看到的图形.16.计算(1)4﹣(﹣28)+(﹣2)(2)(﹣)×(﹣24)(3)(﹣2)3﹣(﹣13)÷(﹣)(4)﹣12﹣(1﹣0.5)÷×.17.如图是一个几何体的表面展开图,图中的数字表示相应的棱的长度(单位:cm)(1)写出该几何体的名称;(2)计算该几何体的表面积.18.在数轴上表示下列数,并用“<”号把这些数连接起来.﹣(﹣4),﹣|﹣3.5|,+(﹣),0,+(+2.5),119.如图所示,已知直角三角形纸板ABC,直角边AB=4cm,BC=8cm.(1)将直角三角形纸板绕三角形的边所在的直线旋转一周,能得到种大小不同的几何体?(2)分别计算绕三角形直角边所在的直线旋转一周,得到的几何体的体积?(圆锥的体积=πr2h,其中π取3)20.计算:(1)3x+2y﹣5x﹣y(2)a+(5a﹣3b)﹣(a﹣2b)(3)(5mn﹣2m+3n)+(﹣7m﹣7mn)(4)﹣3(2x2﹣xy)+4(x2+xy﹣6)21.一辆货车从某超市出发,向西走3千米到达A点,继续向西走1.5千米到达B点,然后回头向东走9.5千米到达C点,最后回到超市.(1)以超市为原点O,向东为正,以一个单位长度表示1千米,在数轴上画出表示上述各点的位置;(2)计算出点A到点C之间的距离;(3)求出货车这趟一共走了多少千米?22.先化简,再求值:(1)3a2﹣(2a2+5a﹣1)﹣(3a+1),其中a=2(2)x2y﹣3x2y﹣6xy+5xy+2x2y,其中x=11,y=﹣6.23.如图所示:(1)用代数式表示阴影部分的面积;(2)当a=10,b=4时,π取值为3.14,求阴影部分的面积.24.观察下列等式:第一等式:a1==(1﹣);第二等式:a2==(﹣);第三等式:a3==(﹣);第四等式:a4==(﹣);…问题解决:(1)按以上规律列出第6个等式:a6==;(2)若n是正整数,请用含n的代数式表示第n个等式,a n==;(3)求a1+a2+a3+…+a2014+a2015+a2016的值.参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.冬季某天我国三个城市的最高气温分别是﹣8℃,2℃,﹣3℃,把它们从高到低排列正确的是()A.﹣8℃,﹣3℃,2℃B.﹣3℃,﹣8℃,2℃C.2℃,﹣3℃,﹣8℃D.2℃,﹣8℃,﹣3℃【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得2℃>﹣3℃>﹣8℃,∴把它们从高到低排列正确的是:2℃,﹣3℃,﹣8℃.故选:C.2.2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107B.83.62×106C.0.8362×108 D.8.362×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:8362万=8362 0000=8.362×107,故选:A.3.小新准备用如图的纸片做一个正方体礼品盒,为了美观,他想在六个正方形纸片上画上图案,使做成后三组对面的图案相同,那么画上图案后正确的是()A.B.C.D.【考点】几何体的展开图.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:正方体的平面展开图中,相对的面一定之间相隔一个正方形,所以使做成后三组对面的图案相同,正确的应是C故选C.4.如图,数轴上有A、B、C、D四个点,其中表示互为相反数的点是()A.点A与点D B.点A与点C C.点B与点D D.点B与点C【考点】相反数;数轴.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:2与﹣2互为相反数,故选:A.5.小红分别从正面、左面和上面观察由一些相同小立方块搭成的几何体时,发现几何体的形状图均为如图,则构成该几何体的小立方块的个数有()A.3个 B.4个 C.5个 D.6个【考点】由三视图判断几何体.【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:从俯视图发现有3个立方体,从左视图发现第二层最多有1个立方块,则构成该几何体的小立方块的个数有4个;故选B.6.小红要购买珠子串成一条手链,黑色珠子每个a元,白色珠子每个b元,要串成如图所示的手链,小红购买珠子应该花费()A.(3a+4b)元B.(4a+3b)元C.4(a+b)元D.3(a+b)元【考点】列代数式.【分析】直接利用两种颜色的珠子的价格进而求出手链的价格.【解答】解:∵黑色珠子每个a元,白色珠子每个b元,∴要串成如图所示的手链,小红购买珠子应该花费为:3a+4b.故选:A.7.下列各式计算正确的是()A.﹣2a+5b=3ab B.6a+a=6a2C.4m2n﹣2mn2=2mn D.3ab2﹣5b2a=﹣2ab2【考点】合并同类项.【分析】本题考查同类项的概念,含有相同的字母,并且相同字母的指数相同,是同类项的两项可以合并,否则不能合并.合并同类项的法则是系数相加作为系数,字母和字母的指数不变.【解答】解:解:A、﹣2a+5b不是同类项,不能合并.错误;B、6a+a=7a,错误;C、4m2n﹣2mn2不是同类项,不能合并.错误;D、3ab2﹣5b2a=﹣2ab2.正确.故选D.8.一列火车长m米,以每秒n米的速度通过一个长为p米的桥洞,用代数式表示它通过桥洞所需的时间为()A.秒 B.秒C.秒D.秒【考点】列代数式(分式).【分析】通过桥洞所需的时间为=(桥洞长+车长)÷车速.【解答】解:它通过桥洞所需的时间为秒.故选D.二、填空题(本小题共6小题,每小题3分,共16分)9.如果向东走150米,记为+150米,那么向西走250米,记为﹣250米.【考点】正数和负数.【分析】用正负数来表示具有意义相反的两种量:向东走记为正,则向西走就记为负,直接得出结论即可.【解答】解:如果向东走150米记作+150米,那么向西走250米记作﹣250米.故答案为:﹣250.10.如图所示的图形绕虚线旋转一周,便能形成某个几何体,这个几何体的名称叫做圆锥.【考点】点、线、面、体.【分析】如图,一个直角三角形围绕一条直角边为中心对称轴旋转一周,根据面动成体的原理即可解.【解答】解:直角三角形绕它的直角边旋转一周可形成圆锥.故答案为圆锥.11.用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱①③④(写出所有正确结果的序号).【考点】截一个几何体.【分析】当截面的角度和方向不同时,圆柱体的截面无论什么方向截取圆柱都不会截得三角形.【解答】解:①正方体能截出三角形;②圆柱不能截出三角形;③圆锥沿着母线截几何体可以截出三角形;④正三棱柱能截出三角形.故截面可能是三角形的有3个.故答案为:①③④.12.一个边长为1的正方形,第一次截去正方形的一半,第二次截去剩下的一半,如此截下去,第六次后剩下的面积为米【考点】有理数的乘方.【分析】根据题意知,易求出前几次裁剪后剩下的纸片的面积,第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,根据规律,总结出一般式,由此可以求出【解答】解:∵第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,∴第n次剩下的面积为,∴,故答案为:.13.一个长方形的宽为xcm,长比宽的2倍多3cm,这个长方形的周长为6x﹣6cm.【考点】列代数式.【分析】根据题意可以分别表示出长方形的长和宽,进而解答即可.【解答】解:一个长方形的长比宽的2倍少3cm,若宽为xcm,则长为:(2x ﹣3)cm,周长为:2(2x﹣3+x)=6x﹣6(cm)故答案为:6x﹣614.如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成,第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图案有10个三角形,…依此规律,第n个图案有3n+1个三角形(用含n的代数式表示)【考点】规律型:图形的变化类.【分析】由题意可知:第(1)个图案有3+1=4个三角形,第(2)个图案有3×2+1=7个三角形,第(3)个图案有3×3+110个三角形,…依此规律,第n个图案有(3n+1)个三角形.【解答】解:∵第(1)个图案有3+1=4个三角形,第(2)个图案有3×2+1=7个三角形,第(3)个图案有3×3+1=10个三角形,…∴第n个图案有(3n+1)个三角形.故答案为:3n+1.三、解答题(本题共78分)15.如图,是一个几何体从上面看到的形状图,正方形中的数字是该位置上的小立方块的数量,请画出从正面和从左面看到的图形.【考点】作图﹣三视图.【分析】由已知条件可知,主视图有3列,每列小正方数形数目分别为3,1,4,左视图有3列,每列小正方形数目分别为2,3,4.据此可画出图形.【解答】解:如图所示:16.计算(1)4﹣(﹣28)+(﹣2)(2)(﹣)×(﹣24)(3)(﹣2)3﹣(﹣13)÷(﹣)(4)﹣12﹣(1﹣0.5)÷×.【考点】有理数的混合运算.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式利用乘法分配律计算即可得到结果;(3)原式先计算乘方运算,再计算除法运算,最后算加减运算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=4+28﹣2=30;(2)原式=﹣8+4=﹣4;(3)原式=﹣8﹣26=﹣34;(4)原式=﹣1﹣=﹣1.17.如图是一个几何体的表面展开图,图中的数字表示相应的棱的长度(单位:cm)(1)写出该几何体的名称;(2)计算该几何体的表面积.【考点】几何体的展开图.【分析】(1)根据几何体的表面展开图可知该几何体是长方体;(2)根据长方体的表面积=2(长×宽+长×高+宽×高),结合图形中所标的数据即可求出表面积.【解答】解:(1)该几何体的名称是长方体;(2)(20×15+20×10+15×10)×2=×2=650×2=1300(cm2).答:该几何体的表面积是1300cm2.18.在数轴上表示下列数,并用“<”号把这些数连接起来.﹣(﹣4),﹣|﹣3.5|,+(﹣),0,+(+2.5),1【考点】有理数大小比较;数轴.【分析】根据题意,先把这些数的绝对值符号和括号去掉,再在数轴上表示出来,然后根据在数轴上表示的数用“<”号把这些数连接起来即可.【解答】解:.19.如图所示,已知直角三角形纸板ABC,直角边AB=4cm,BC=8cm.(1)将直角三角形纸板绕三角形的边所在的直线旋转一周,能得到3种大小不同的几何体?(2)分别计算绕三角形直角边所在的直线旋转一周,得到的几何体的体积?(圆锥的体积=πr2h,其中π取3)【考点】点、线、面、体.【分析】(1)将直角三角形纸板ABC绕三角形的三条边所在的直线旋转一周,能得到3种大小不同的几何体.(2)如果以AB所在的直线旋转一周得到的圆锥的底面半径是8厘米,高是4厘米;如果以BC所在的直线旋转一周得到的圆锥的底面半径是4厘米,高是8厘米,根据圆锥的体积公式:v=πr2h,把数据代入公式解答.【解答】解:(1)将直角三角形纸板ABC绕三角形的三条边所在的直线旋转一周,能得到3种大小不同的几何体.(2)以AB为轴:×3×82×4=×3×64×4=256(立方厘米);以BC为轴:×3×42×8=×3×16×8=128(立方厘米).答:以AB为轴得到的圆锥的体积是256立方厘米,以BC为轴得到的圆锥的体积是128立方厘米.故答案为:3.20.计算:(1)3x+2y﹣5x﹣y(2)a+(5a﹣3b)﹣(a﹣2b)(3)(5mn﹣2m+3n)+(﹣7m﹣7mn)(4)﹣3(2x2﹣xy)+4(x2+xy﹣6)【考点】整式的加减.【分析】(1)根据合并同类项法则即可求出答案.(2)﹣﹣(4)根据去括号法则和合并同类项法则即可求出答案.【解答】解:(1)原式=﹣2x+y(2)原式=a+5a﹣3b﹣a+2b=5a﹣b(3)原式=5mn﹣2m+3n﹣7m﹣7mn=﹣2mn﹣9m+3n(4)原式=﹣6x2+3xy+4x2+4xy﹣24=﹣2x2+7xy﹣2421.一辆货车从某超市出发,向西走3千米到达A点,继续向西走1.5千米到达B点,然后回头向东走9.5千米到达C点,最后回到超市.(1)以超市为原点O,向东为正,以一个单位长度表示1千米,在数轴上画出表示上述各点的位置;(2)计算出点A到点C之间的距离;(3)求出货车这趟一共走了多少千米?【考点】数轴.【分析】(1)根据题意可以画出相应的数轴;(2)根据第一问画出的数轴,由两点间的距离公式可以求出点A到点C之间的距离;(3)根据题意可以求出货车一共行驶了多少千米.【解答】解:(1)如图所示:(2)4.5﹣(﹣4.5)=9(千米).故点A到点C之间的距离是9千米;(3)3+1.5+9.5+4.5=18.5(千米).故货车这趟一共走了18.5千米.22.先化简,再求值:(1)3a2﹣(2a2+5a﹣1)﹣(3a+1),其中a=2(2)x2y﹣3x2y﹣6xy+5xy+2x2y,其中x=11,y=﹣6.【考点】整式的加减—化简求值.【分析】(1)先去括号,再合并同类项即可化简,将a的值代入化简后的代数式计算可得;(2)合并同类项即可化简,再将x、y的值代入求值即可.【解答】解:(1)原式=3a2﹣2a2﹣5a+1﹣3a﹣1=a2﹣8a,当a=2时,原式=4﹣16=﹣12;(2)原式=﹣xy,当x=11、y=﹣6时,原式=66.23.如图所示:(1)用代数式表示阴影部分的面积;(2)当a=10,b=4时,π取值为3.14,求阴影部分的面积.【考点】列代数式;代数式求值.【分析】(1)阴影部分的面积=长方形的面积﹣半圆的面积;(2)把各数代入求值即可.【解答】解:(1)阴影部分的面积=;(2)当a=10,b=4时,阴影部分的面积==14.88.24.观察下列等式:第一等式:a1==(1﹣);第二等式:a2==(﹣);第三等式:a3==(﹣);第四等式:a4==(﹣);…问题解决:(1)按以上规律列出第6个等式:a6==(﹣);(2)若n是正整数,请用含n的代数式表示第n个等式,a n===(﹣);(3)求a1+a2+a3+…+a2014+a2015+a2016的值.【考点】规律型:数字的变化类.【分析】(1)根据给定的等式依次写出第5、6个等式,由此即可得出结论;(2)分析等式各分母与a n下标之间的关系,由此即可得出第n个等式;(3)根据变化规律a n==(﹣)将代数式进行分解,再运用分式的加、减法即可求出结论.【解答】解:(1)∵a1==(1﹣),a2==(﹣),a3==(﹣),a4==(﹣),∴a5==(﹣),a6==(﹣).故答案为:;(﹣).(2)观察发现等式的分母为(2n ﹣1)(2n +1)、2n ﹣1以及2n +1,∴a n ==(﹣).故答案为:;(﹣).(3)原式=(1﹣)+(﹣)+(﹣)+…+(﹣)+(﹣),=×1﹣×,=.。

七年级数学上册 期中检测试卷2(含答案解析)

七年级数学上册 期中检测试卷2(含答案解析)

七年级数学上册期中检测试卷2(含答案解析)一、选择题(每小题2分,共16分,请把正确答案填入下面对应表格中)1.下列各数中,绝对值最大的数是( )A.﹣3 B.﹣2 C.0 D.12.下列各式中不是整式的是( )A.3x B.C.D.x﹣3y3.下列各组数中,互为相反数的是( )A.﹣(﹣2)与2 B.(﹣2)2与4 C.|﹣2|与2 D.﹣22与44.若﹣3x2m y3与2x4y n是同类项,则|m﹣n|的值是( )A.0 B.1 C.7 D.﹣15.如图,数轴上的A、B、C三点所表示的数分别为a、b、c,AB=BC,如果|a|>|c|>|b|,那么该数轴的原点O的位置应该在( )A.点A的左边B.点A与点B之间C.点B与点C之间D.点C的右边6.下列根据等式基本性质变形正确的是( )A.由﹣x=y,得x=2y B.由3x﹣2=2x+2,得x=4C.由2x﹣3=3x,得x=3 D.由3x﹣5=7,得3x=7﹣57.如图,是李明同学在求阴影部分的面积时,列出的4个式子,其中错误的是( )A.ab+(c﹣a)a B.ac+(b﹣a)a C.ab+ac﹣a2D.bc+ac﹣a28.一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程( )A.x﹣1=(26﹣x)+2 B.x﹣1=(13﹣x)+2 C.x+1=(26﹣x)﹣2 D.x+1=(13﹣x)﹣2二、填空题(每小题2分,共16分)9.在一条东西走向的跑道上,设向东的方向为正方形,如果小芳向东走了8m,记作“+8m”,那么她向西走了10m,应该记作__________.10.对单项式“0.8a”可以解释为:一件商品原价为a元,若按原价的8折出售,这件商品现在的售价是0.8a 元,请你对“0.8a”再赋予一个含义:__________.11.2015年初,一列CRH5型高速车组进行了“300000公里正线运营考核”标志着中国高速快车从“中国制造”到“中国创造”的飞越,将300000用科学记数法表示为__________.12.已知x2+3x+5的值是7,则式子x2+3x﹣2的值为__________.13.若关于x的方程(2a+1)x2+5x b﹣2﹣7=0是一元一次方程,则方程ax+b=0的解是__________.14.若多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3相加后不含二次项,则m的值为__________.15.李明与王伟在玩游戏,游戏的规则是=ad﹣bc,李明计算,根据规则=3×1﹣2×5=3﹣10=﹣7,现在轮到王伟计算,请你帮忙算一算,其结果是__________.16.《庄子.天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图.由图易得:=__________.三、解答题(17题10分,18、19题各6分,共22分)17.(1)计算:(﹣4)2×[(﹣)+(﹣)](2)计算:﹣22﹣(1﹣0.5)××[2﹣(﹣4)2].18.化简,求值.已知:(a+2)2+|b﹣3|=0,求(ab2﹣3)+(7a2b﹣2)+2(ab2+1)﹣2a2b的值.19.解方程:=3x﹣.四、解答题(每小题8分,共24分)20.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:回答下列问题:(1)这8筐白菜中最接近标准重量的这筐白菜重__________千克;(2)与标准重量比较,8筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这8筐白菜可卖多少元?21.已知多项式+2xy2﹣4x3+1是六次四项式,单项式26x2n y5+m的次数与该多项式的次数相同,求(﹣m)3+2n的值.22.关于x的方程x﹣2m=﹣3x+4与2﹣m=x的解互为相反数.求m的值.五、23.小华在课外书中看到这样一道题:计算:()+().她发现,这个算式反映的是前后两部分的和,而这两部分之间存在着某种关系,利用这种关系,她顺利地解答了这道题(1)前后两部分之间存在着什么关系?(2)先计算哪部分比较简便?并请计算比较简便的那部分.(3)利用(1)中的关系,直接写出另一部分的结果.(4)根据以上分析,求出原式的结果.六、列方程解应用题24.假期里,某学校组织部分学生参加社会实践活动,分乘大、小两辆车去农业科技园区体验生活,早晨6点钟出发,计划2小时到达;(1)若大车速度为80km/h,正好可以在规定时间到达,而小车速度为100km/h,如果两车同时到达,那么小车可以晚出发多少分钟?(2)若小车每小时能比大车多行30千米,且大车在规定时间到达,小车要提前30分钟到达,求大、小车速度.(3)若小车与大车同时以相同速度出发,但走了20分钟以后,发现有物品遗忘,小车准备返回取物品,若小车仍想与大车同时在规定时间到达,应提速到原来的多少倍?2015-2016学年辽宁省鞍山市台安县七年级(上)期中数学试卷一、选择题(每小题2分,共16分,请把正确答案填入下面对应表格中)1.下列各数中,绝对值最大的数是( )A.﹣3 B.﹣2 C.0 D.1【考点】绝对值;有理数大小比较.【分析】根据绝对值是实数轴上的点到原点的距离,可得答案.【解答】解:|﹣3|>|﹣2|>|1|>|0|,故选:A.【点评】本题考查了绝对值,绝对值是实数轴上的点到原点的距离.2.下列各式中不是整式的是( )A.3x B.C.D.x﹣3y【考点】整式.【分析】根据单项式与多项式统称为整式,根据整式及相关的定义解答即可.【解答】解:A、3x是单项式,是整式,故A不符合题意;B、既不是单项式,又不是多项式,不是整式,故B符合题意;C、是单项式,是整式,故C不符合题意;D、x﹣3y是多项式,是整式,故D不符合题意.故选:B.【点评】本题主要考查整式的相关的定义,解决此题的关键是熟记整式的相关定义.3.下列各组数中,互为相反数的是( )A.﹣(﹣2)与2 B.(﹣2)2与4 C.|﹣2|与2 D.﹣22与4【考点】相反数;有理数的乘方.【分析】利用化简符号法则,绝对值的性质,有理数的乘方,以及只有符号不同的两个数叫做互为相反数对各选项分析判断后利用排除法求解.【解答】解:A、﹣(﹣2)=2,不是互为相反数,故本选项错误;B、(﹣2)2=4,不是互为相反数,故本选项错误;C、|﹣2|=2,不是互为相反数,故本选项错误;D、﹣22=﹣4,﹣4与4互为相反数,故本选项正确.故选D.【点评】本题考查了相反数的定义,绝对值的性质,有理数的乘方,是基础题,熟记概念是解题的关键.4.若﹣3x2m y3与2x4y n是同类项,则|m﹣n|的值是( )A.0 B.1 C.7 D.﹣1【考点】同类项.【分析】根据同类项的定义得出2m=4,n=3,求出后代入,即可得出答案.【解答】解:∵﹣3x2m y3与2x4y n是同类项,∴2m=4,n=3,∴m=2,∴|m﹣n|=|2﹣3|=1,故选B.【点评】本题考查了同类项的定义的应用,注意:所含字母相同,并且相同字母的指数也分别相等的项,是同类项.5.如图,数轴上的A、B、C三点所表示的数分别为a、b、c,AB=BC,如果|a|>|c|>|b|,那么该数轴的原点O的位置应该在( )A.点A的左边B.点A与点B之间C.点B与点C之间D.点C的右边【考点】实数与数轴.【分析】根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解.【解答】解:∵|a|>|c|>|b|,∴点A到原点的距离最大,点C其次,点B最小,又∵AB=BC,∴原点O的位置是在点B、C之间且靠近点B的地方.故选C.【点评】本题考查了实数与数轴,理解绝对值的定义是解题的关键.6.下列根据等式基本性质变形正确的是( )A.由﹣x=y,得x=2y B.由3x﹣2=2x+2,得x=4C.由2x﹣3=3x,得x=3 D.由3x﹣5=7,得3x=7﹣5【考点】等式的性质.【分析】根据等式的性质1,等式的两边都加或减同一个整式,结果不变,根据等式的性质2,等式的两边都乘或除以同一个不为零的整式,结果不变,可得答案.【解答】解:A、等是左边乘以﹣﹣3,右边乘以3,故A错误;B、等式的两边都加(2﹣2x),得x=4,故B正确;C、等式的两边都减2x,得x=﹣﹣3,故C错误;D、等式的两边都加5,得3x=7+5,故D错误;故选:B.【点评】本题考查了等式的性质,利用了等式的性质1,等式的性质2.7.如图,是李明同学在求阴影部分的面积时,列出的4个式子,其中错误的是( )A.ab+(c﹣a)a B.ac+(b﹣a)a C.ab+ac﹣a2D.bc+ac﹣a2【考点】列代数式.【专题】计算题;整式.【分析】根据图形表示出阴影部分面积,化简得到结果,即可作出判断.【解答】解:根据题意得:阴影部分面积S=ab+a(c﹣a)=ac+a(b﹣a)=ab+ac﹣a2.故选D.【点评】此题考查了列代数式,正确表示出阴影部分面积是解本题的关键.8.一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程( )A.x﹣1=(26﹣x)+2 B.x﹣1=(13﹣x)+2 C.x+1=(26﹣x)﹣2 D.x+1=(13﹣x)﹣2【考点】由实际问题抽象出一元一次方程.【专题】几何图形问题.【分析】首先理解题意找出题中存在的等量关系:长方形的长﹣1cm=长方形的宽+2cm,根据此列方程即可.【解答】解:设长方形的长为xcm,则宽是(13﹣x)cm,根据等量关系:长方形的长﹣1cm=长方形的宽+2cm,列出方程得:x﹣1=(13﹣x)+2,故选B.【点评】列方程解应用题的关键是找出题目中的相等关系,有的题目所含的等量关系比较隐藏,要注意仔细审题,耐心寻找.二、填空题(每小题2分,共16分)9.在一条东西走向的跑道上,设向东的方向为正方形,如果小芳向东走了8m,记作“+8m”,那么她向西走了10m,应该记作﹣10m.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:正”和“负”相对,所以向东是正,则向西就是负,因而向西运动10m应记作﹣10m.故答案为:﹣10m.【点评】此题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.10.对单项式“0.8a”可以解释为:一件商品原价为a元,若按原价的8折出售,这件商品现在的售价是0.8a 元,请你对“0.8a”再赋予一个含义:练习本每本0.8元,小明买了a本,共付款0.8a元(答案不唯一).【考点】代数式.【专题】开放型.【分析】根据生活实际作答即可.【解答】解:答案不唯一,例如:练习本每本0.8元,小明买了a本,共付款0.8a元.【点评】本题考查了代数式的意义,此类问题应结合实际,根据代数式的特点解答.11.2015年初,一列CRH5型高速车组进行了“300000公里正线运营考核”标志着中国高速快车从“中国制造”到“中国创造”的飞越,将300000用科学记数法表示为3×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将300000用科学记数法表示为:3×105.故答案为:3×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.已知x2+3x+5的值是7,则式子x2+3x﹣2的值为0.【考点】代数式求值.【分析】首先根据已知列出方程x2+3x+5=7,通过移项推出x2+3x=2,通过代入式子即可推出结果为0.【解答】解:∵x2+3x+5=7,∴x2+3x=2,∴x2+3x﹣2=2﹣2=0.故答案为0.【点评】本题主要考查代数式的求值,关键在于根据已知推出x2+3x=2.13.若关于x的方程(2a+1)x2+5x b﹣2﹣7=0是一元一次方程,则方程ax+b=0的解是x=6.【考点】一元一次方程的定义.【分析】根据一元一次方程的定义可知2a+1=0,b﹣2=1,从而得到a、b的值,然后将a、b的值代入方程ax+b=0求解即可.【解答】解:∵关于x的方程(2a+1)x2+5x b﹣2﹣7=0是一元一次方程,∴2a+1=0,b﹣2=1.解得:a=﹣,b=3.将a=﹣,b=3代入ax+b=0得:﹣x+3=0.解得x=6.故答案为:x=6.【点评】本题主要考查的是一元一次方程的定义,由一元一次方程的定义得到2a+1=0,b﹣2=1是解题的关键.14.若多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3相加后不含二次项,则m的值为4.【考点】整式的加减.【分析】先把两式相加,合并同类项得5x3﹣8x2+2mx2﹣4x+2,不含二次项,即2m﹣8=0,即可得m的值.【解答】解:据题意两多项式相加得:5x3﹣8x2+2mx2﹣4x+2,∵相加后结果不含二次项,∴当2m﹣8=0时不含二次项,即m=4.【点评】本题主要考查整式的加法运算,涉及到二次项的定义知识点.15.李明与王伟在玩游戏,游戏的规则是=ad﹣bc,李明计算,根据规则=3×1﹣2×5=3﹣10=﹣7,现在轮到王伟计算,请你帮忙算一算,其结果是8.【考点】有理数的混合运算.【专题】计算题;新定义.【分析】原式利用已知的新定义计算即可得到结果.【解答】解:根据题意得:原式=2×(﹣5)﹣3×(﹣6)=﹣10+18=8.故答案为:8.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.《庄子.天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图.由图易得:=1﹣.【考点】规律型:图形的变化类.【专题】规律型.【分析】由图可知第一次剩下,截取1﹣;第二次剩下,共截取1﹣;…由此得出第n次剩下,共截取1﹣,得出答案即可.【解答】解:=1﹣故答案为:1﹣.【点评】此题考查图形的变化规律,找出与数据之间的联系,得出规律解决问题.三、解答题(17题10分,18、19题各6分,共22分)17.(1)计算:(﹣4)2×[(﹣)+(﹣)](2)计算:﹣22﹣(1﹣0.5)××[2﹣(﹣4)2].【考点】有理数的混合运算.【专题】计算题.【分析】(1)原式先计算乘方运算,再利用乘法分配律计算即可;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可.【解答】解:(1)原式=16×(﹣﹣)=﹣12﹣10=﹣22;(2)原式=﹣4﹣××(﹣14)=﹣4+=﹣1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.化简,求值.已知:(a+2)2+|b﹣3|=0,求(ab2﹣3)+(7a2b﹣2)+2(ab2+1)﹣2a2b的值.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.【解答】解:原式=ab2﹣1+7a2b﹣2+2ab2+2﹣2a2b=ab2+5a2b﹣1,∵(a+2)2+|b﹣3|=0,∴a+2=0,b﹣3=0,即a=﹣2,b=3,则原式=﹣42+60﹣1=17.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.解方程:=3x﹣.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得2(2x﹣1)﹣2×6=18x﹣3(x+4),去括号得4x﹣2﹣12=18x﹣3x﹣12,移项得4x﹣18x+3x=2+12﹣12,合并同类项得﹣11x=2,系数化成1得x=﹣.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.四、解答题(每小题8分,共24分)20.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:回答下列问题:(1)这8筐白菜中最接近标准重量的这筐白菜重﹣0.5千克;(2)与标准重量比较,8筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这8筐白菜可卖多少元?【考点】正数和负数.【分析】(1)根据绝对值的意义,绝对值越小越接近标准,可得答案;(2)根据有理数的加法运算,可得答案;(3)根据单价乘以数量等于总价,可得答案.【解答】解:(1)∵|﹣3|>|﹣2.5|>|﹣2|=|2|>|1.5|>|1|>|﹣0.5|,∴﹣0.5的最接近标准.故答案为:﹣0.5千克;(2)由题意,得1.5+(﹣3)+2+(﹣0.5)+1+(﹣2)+(﹣2)+(﹣2.5)=﹣5.5(千克).答:与标准重量比较,8筐白菜总计不足5.5千克;(3)由题意,得(25×8﹣5.5)×2.6=194.5×2.6=505.7(元).答:出售这8筐白菜可卖505.7元.【点评】本题考查了正数和负数,利用了绝对值的意义,有理数的加法运算.21.已知多项式+2xy2﹣4x3+1是六次四项式,单项式26x2n y5+m的次数与该多项式的次数相同,求(﹣m)3+2n的值.【考点】多项式;单项式.【分析】利用多项式与单项式的次数与系数的确定方法得出关于m与n的等式进而得出答案.【解答】解:由于多项式是六次四项式,所以m+1+2=6,解得:m=3,单项式26x2n y5﹣m应为26x2n y2,由题意可知:2n+2=6,解得:n=2,所以(﹣m)3+2n=(﹣3)3+2×2=﹣23.【点评】此题主要考查了多项式与单项式的次数,正确得出m,n的值是解题关键.22.关于x的方程x﹣2m=﹣3x+4与2﹣m=x的解互为相反数.求m的值.【考点】一元一次方程的解.【专题】计算题.【分析】将m看做已知数分别表示出两方程的解,根据互为相反数两数之和为0列出关于m的方程,求出方程的解即可得到m的值.【解答】解:x﹣2m=﹣3x+4,移项合并得:4x=2m+4,解得:x=m+1,根据题意得:m+1+2﹣m=0,解得:m=6.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.五、23.小华在课外书中看到这样一道题:计算:()+().她发现,这个算式反映的是前后两部分的和,而这两部分之间存在着某种关系,利用这种关系,她顺利地解答了这道题(1)前后两部分之间存在着什么关系?(2)先计算哪部分比较简便?并请计算比较简便的那部分.(3)利用(1)中的关系,直接写出另一部分的结果.(4)根据以上分析,求出原式的结果.【考点】有理数的除法.【分析】(1)根据倒数的定义可知:()与()互为倒数;(2)利用乘法的分配律可求得()的值;(3)根据倒数的定义求解即可;(4)最后利用加法法则求解即可.【解答】解:(1)前后两部分互为倒数;(2)先计算后一部分比较方便.()=()×36=9+3﹣14﹣1=﹣3;(3)因为前后两部分互为倒数,所以()=﹣;(4)根据以上分析,可知原式==﹣3.【点评】本题主要考查的是有理数的乘除运算,发现()与()互为倒数是解题的关键.六、列方程解应用题24.假期里,某学校组织部分学生参加社会实践活动,分乘大、小两辆车去农业科技园区体验生活,早晨6点钟出发,计划2小时到达;(1)若大车速度为80km/h,正好可以在规定时间到达,而小车速度为100km/h,如果两车同时到达,那么小车可以晚出发多少分钟?(2)若小车每小时能比大车多行30千米,且大车在规定时间到达,小车要提前30分钟到达,求大、小车速度.(3)若小车与大车同时以相同速度出发,但走了20分钟以后,发现有物品遗忘,小车准备返回取物品,若小车仍想与大车同时在规定时间到达,应提速到原来的多少倍?【考点】一元一次方程的应用.【专题】应用题.【分析】(1)计算出小车需要的时间,然后可得出可以晚出发的时间;(2)设大车速度为每小时x千米,则小车速度为每小时(x+30)千米,根据小车要提前30分钟到达,可得出方程,解出即可.(3)设原速度为a,小车提速到原来的m倍,根据仍按时到达可得出方程,解出即可.【解答】解:(1)总路程=80×2=160km,小车需要的时间为:=1.6(小时),故小车可以晚出发0.4小时,即24分钟,(2)设大车速度为每小时x千米,则2x=1.5(x+30),解得x=90,即大车速度为每小时90千米,小车速度为每小时120千米.(3)设原速度为a,小车提速到原来的m倍,根据题意得:a+2a=(2﹣)ma,解得:m=1.4,答:应提速到原来的1.4倍.【点评】本题考查了一元一次方程的应用,属于行程问题,解答本题的关键是仔细审题,找到等量关系,利用方程思想解答.。

2024—2025学年人教版七年级数学上册期中考试试卷

2024—2025学年人教版七年级数学上册期中考试试卷

七年级上册数学期中考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

笞卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第I卷时,选出每小题答案后,把答案填写在答题卡上对应题目的位置,填空题填写在答题卡相应的位置写在本试卷上无效。

3.回答第II卷时,将答案写在第II卷答题卡上。

4.考试结束后,将本试卷和答题卡一并交回。

第I卷一、选择题(每题只有一个正确选项,每小题3分,满分36分)1.将“1410000000”用科学记数法表示正确的是()A.14.1×108B.1.41×109C.0.141×1010D.1.41×10102.下列各对数中,数值相等的是()A.﹣(﹣3)2与﹣(2)3B.﹣32与(﹣3)2C.﹣3×23与﹣32×2D.﹣27与(﹣2)73.下列表示数轴的方法正确的是()A.B.C.D.4.质检员抽查某种零件的质量,超过规定长度记为正数,短于规定长度记为负数,检查结果如下:第一个为0.13毫米,第二个为﹣0.12毫米,第三个为﹣0.15毫米,第四个为0.16毫米,则质量最差的零件是()A.第一个B.第二个C.第三个D.第四个5.下列有理数大小关系判断正确的是()A.﹣(﹣)>﹣|﹣|B.0>|﹣10|C.|﹣3|<|+3|D.﹣1>﹣0.016.下列说法正确的有()A.是整式B.是单项式C.不是整式D.是多项式7.如果a表示一个任意有理数,那么下面说法正确的是()A.﹣a是负数B.|a|一定是正数C.|a|一定不是负数D.|a|一定是负数8.把数轴上表示2的点移动5个单位后,所得的对应点表示的数是()A.7B.﹣3C.7或﹣3D.不能确定9.如图所示,点在数轴上,则将m、n、0、﹣m、﹣n从小到大排列正确的是()A.﹣m<﹣n<0<m<n B.m<n<0<﹣m<﹣nC.﹣n<﹣m<0<m<n D.m<n<0<﹣n<﹣m 10.如图,长为y(cm),宽为x(cm)的大长方形被分割为7小块,除阴影A,B外,其余5块是形状、大小完全相同的小长方形,其较短的边长为4cm,下列说法中正确的有()①小长方形的较长边为(y﹣12)cm;②阴影A的较短边和阴影B的较短边之和为(x﹣y+4)cm;③若x为定值,则阴影A和阴影B的周长和为定值;④当x=20时,阴影A和阴影B的面积和为定值.A.1个B.2个C.3个D.4个二、填空题(6小题,每题3分,共18分)11.笔记本的单价是x元,圆珠笔的单价是y元,买4本笔记本和2支圆珠笔共需元.12.2024的倒数是.13.单项式的系数是14.若关于a,b的代数式﹣3a3b x与9a y b是同类项,则x y的值是15.已知x与y互为相反数,m与n互为倒数,且|a|=3,则=.16.已知有理数a≠1,我们把称为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=如果a1=﹣2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数…依此类推,那么a1+a2+…+a100的值是第II卷七年级上册数学期中模拟考试试卷人教版2024—2025学年七年级上册姓名:____________ 学号:____________准考证号:___________ 12345678910题号答案11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.计算(1);(2).18.先化简,再求值:a+2(5a﹣3b)﹣3(a﹣3b),其中a=,b=﹣2.19.有理数a、b、c在数轴上的位置如图所示:(1)比较﹣a、b、c的大小(用“<”连接);(2)化简|c﹣b|﹣|b﹣a|+|a+c|.20.足球比赛中,根据场上攻守形势,守门员会在球门前来回跑动.如果以球门线为基准,向前跑记作正数,返回则记作负数,一段时间内,某守门员的跑动情况记录如下(单位:m)+10,﹣2,+5,﹣6,+12,﹣9,+4,﹣14(假定开始计时时,守门员正好在球门线上).(1)守门员最后是否回到了球门线上?(2)守门员在这段时间内共跑了多少米?(3)如果守门员离开球门线的距离超过10m(不包括10m),那么对方球员挑射极有可能破门.请问在这段时间内,对方球员有几次挑射破门的机会?21.为了加强公民的节水意识,合理利用水资源,某市采取价格调控手段以达到节水的目的,如表是该市自来水收费价格的价目表(注:水费按月结算)每月用水量单价不超过6立方米的部分2元/立方米超过6立方米但不超过10立方米的部分4元/立方米超过10立方米的部分8元/立方米(1)若某户居民2月份用水4立方米,则应缴纳水费元.(2)若某户居民3月份用水a(6<a<10)立方米,则该用户3月份应缴纳水费多少元(用含a的代数式表示,并化成最简形式)?(3)若某户居民4,5月份共用水15立方米(5月份用水量多于4月份),设4月份用水x立方米,求该户居民4,5月份共缴纳水费多少元.(用含x的代数式表示,并化成最简形式)22.有四个数,第一个数是a2+b,第二个数比第一个数的2倍少a2,第三个数是第一个数与第二个数的差的3倍,第四个数比第一个数少﹣2b,若第二个数用x表示,第三个数用y表示,第四个数用z表示.(1)用a,b分别表示x,y,z三个数;(2)若第一个数的值是3时,求这四个数的和;(3)已知m,n为常数,且mx+2ny﹣3z﹣4的结果与a,b无关,求m,n的值.23.数学中,运用整体思想方法在求代数式的值中非常重要,例如:已知,a2+2a=3,则代数式2a2+4a+1=2(a2+2a)+1=2×3+1=7.请你根据以上材料解答以下问题:(1)若a2﹣2a=2,则2a2﹣4a=;(2)已知a﹣b=5,b﹣c=3,求代数式(a﹣c)2+3a﹣3c的值;(3)当x=﹣1,y=2时,代数式ax2y﹣bxy2﹣1的值为5,则当x=1,y=﹣2时,求代数式ax2y﹣bxy2﹣1的值.24.两个边长分别为a和b的正方形按如图1放置,记未叠合部分(阴影)的面积为S1.在图1大正方形的右下角再摆放一个边长为b的小正方形(如图2),记两个小正方形叠合部分(阴影)的面积S2.(1)用含a,b的代数式分别表示S1,S2.(2)若a=5,b=3,求S1+S2的值.(3)若S1+S2=64,求图3中阴影部分的面积S3.25.已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2(单位长度),慢车长CD=4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是b.若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个单位长度/秒的速度向左匀速继续行驶,且|a+8|与(b﹣16)2互为相反数.(1)求此时刻快车头A与慢车头C之间相距多少单位长度?(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头AC相距8个单位长度?(3)此时在快车AB上有一位爱动脑筋的七年级学生乘客P,他发现行驶中有一段时间t秒钟,他的位置P到两列火车头A、C的距离和加上到两列火车尾B、D的距离和是一个不变的值(即P A+PC+PB+PD为定值).你认为学生P发现的这一结论是否正确?若正确,求出这个时间及定值;若不正确,请说明理由.。

人教版数学七年级上册期中试卷 (2)

人教版数学七年级上册期中试卷 (2)
【详解】∵多项式 是关于 的二次三项式,
∴ , ,
∴ .
所以答案为2.
【点睛】本题主要考查了多项式的性质,熟练掌握相关概念是解题关键.
15.30
【分析】根据a★b= ,用﹣6与5的积除以它们的和,计算即可.
【详解】解:∵a★b= ,
∴(﹣6)★5= .
故答案为:30.
【点睛的新运算是解题关键.
(1)用含a代数式分别表示该销售商今年四月份、五月份、六月份销售空调多少台?.
(2)若a=220,求六月份销售的空调总数。
23.请完成以下问题
(1)有理数a,b,c所对应的点在数轴上的位置如图所示,试比较a,﹣a,b,﹣b,c,﹣c,0的大小,并用“<”连接.
(2)有理数a、b、m、n、x满足下列条件:a与b互为倒数,m与n互为相反数,x的绝对值为最小的正整数,求2021(m+n)+2020x3﹣2019ab的值.
【详解】解:①∵π>3,−(+3)=−3
∴−π<−(+3)
②∵32=9,(−2)3=−8
9>−8
∴32>(−2)3,
③∵ ,
∴ ,
故答案为:<,>,<.
【点睛】本题考查了实数大小的比较,明确实数大小比较的法则及乘方、绝对值等相关知识点,是解题的关键.
13.-3
【分析】根据题意首先得到:|k|﹣2=1,解此绝对值方程,求出k的两个值.分别代入所给方程中,使系数不为0的方程,求解即可.
已知点A在数轴上表示的数是a,点B表示的数为b,且满足 .
(1)a=___,b=___,AB=___.(直接写出结果)
(2)如图1,点P是数轴上一点,点P到点A的距离是点P到点B的距离的3倍(即PA=3PB),求点P在数轴上表示的数;

1-七年级数学上学期期中测试卷(二)

1-七年级数学上学期期中测试卷(二)

七年级数学期中测试卷(二)(满分:100分)一、选择题(每小题3分,共30分) 1.3-的相反数是( )A .3-B . 13-C .3D .132.下列四个数中,最大的数是( ) A .(2)-+B . 1--C . 2(1)-D . 03.若(2)3x =-⨯,则x 的倒数是( ) A .16-B .16C . 6-D . 64.下列说法中正确的是( )A .近似数0.720有两个有效数字B .近似数3.6万精确到万位C .近似数2.10精确到十分位 D. 近似数35.0810⨯有三个有效数字 5.下列说法:①相反数等于它本身的数只有0;②倒数等于它本身的数只有1;③绝对值等于它本身的数只有0;④平方等于它本身的数只有1;其中错误的有( ) A .1个B .2个C .3个D .4个6.下列各组中,是同类项的是( )A .222x y xy -和B .22x y x z 和 C .24mn nm 和 D .ab abc -和7.化简:()a b a b ++-的结果是( )A.22a b +B.2bC.2aD. 08.下列概念表述正确的是( ) A .单项式ab 的系数是0,次数是2B .224,3,5435a b ab a b ab --+-是多项式的项 C .单项式3232a b -的系数是2-,次数是5 D .12xy -是二次二项式 9.若x x y xy 52,00+<<-则且等于( )A .7xB . 3y -C . 3x -D . 3x 10.多项式2213383x kxy y xy --+-合并同类项后不含xy 项,则k 的值是( ) A .13B .16C .19D .0二、填空题(每小题2分,共20分)11.如果+20%表示增加20%,那么-6%表示__________________12.地球离太阳约有一亿五千万千米,一亿五千万用科学记数法表示为______________ 13.多项式3232578x xy y x y --+按x 的降幂排列为______________________ 14.已知教室里座位的行数是m ,并且座位的行数是每行座位的23,则教室里总共的座位是_______________ 15.32422()93-÷⨯-=_______ 16.已知有理数b 120110a a b -+-=、满足 ,那么ab =________ 17.已知有理数a 、b 在数轴上的位置如图所示,化简a b b a +--的结果是_________18.已知一个两位数M 的个位数字是a ,十位数字是b ,交换这个两位数的十位上的数与个位上的数的位置,所得的新数记为N ,则M -N=_________________ 19.按一定规律排列的一列数依次为111111,,,,,, (2310152635)---按此规律排列下去,这列数中第七个数是______________20.有两组数,第一组:30.25,1,34--,第二组数:430.35,,510--,从这两组数中各取一个数,将它们相乘,那么所有这样的乘积的总和是_____________三.解答题:21.计算(每小题3分,共18分)①(-8)+10+2+(-1) ② )75.1(6.0)2131(215-÷⨯-⨯-③ 322(10)[(4)(13)2]-+---⨯ ④)24()836143()31(322-⨯+++-⨯-⑤)2()35(a b b a a -+-- ⑥)3(2)]25([52222x x x x x x ---++·· ·ba 017题图22.(每小题5分,共10分)先化简,再求值(1)2213[(33)][2(44)]3,3y x xy y x xy x y ----+-==,其中(2)已知11323()2()32m n mn n mn mn m +=-=--+-,,求的值23.(本题6分)甲、乙两家超市以相同的价格出售同样的商品,但为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超过400元后,超过部分按原价七折优惠;在乙超市购买商品只按原价的八折优惠;设顾客累计购物x 元(400>x ) (1)用含x 的整式分别表示顾客在两家超市购买所付的费用。

2024-2025学年七年级数学上学期期中测试卷(长沙专用,测试范围:七上第1~4章)(全解全析)

2024-2025学年七年级数学上学期期中测试卷(长沙专用,测试范围:七上第1~4章)(全解全析)

2024-2025学年七年级数学上学期期中卷(长沙)(考试时间:120分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:人教版2024七年级上册第一至第四章。

5.难度系数:0.75。

一、选择题(本题共10小题,每小题3分,共30分)1.在一组数7-,p ,13-,0.10100100¼(每两个1中依次多一个0)中,有理数的个数是( )A .1B .2C .3D .42.2023年我国高校毕业生近1160万人,教育部等七部门拟联合开展促就业的“国聘行动”.数据“1160万”用科学记数法表示为( )A .81.1610´B .71.1610´C .611.610´D .80.11610´【答案】B【解析】1160万711600000 1.1610==´,故选B .3.手机移动支付给生活带来便捷.如图是王老师某日微信账单的收支明细(正数表示收入,负数表示支出,单位:元),王老师当天微信收支的最终结果是( )A .收入15元B .支出2元C .支出17元D .支出9元【答案】B【解析】15(8)(9)2+-+-=-(元),即张老师当天微信收支的最终结果是支出2元.故选B .4.下列各组数中,相等的一组是( )A .()2--与2--B .21-与()21-C .()32-与32-D .223与223æöç÷èø5.下列说法中,错误的是( )A .数字0是单项式B .22356x y y xy -+是四次三项式C .单项式2223x y p -的系数是23p -D .多项式332x x -+-的常数项是2【答案】D【解析】A 、数字0是单项式,故不符合题意;B 、22356x y y xy -+是四次三项式,故不符合题意;6.下列去括号中,正确的是( )A .()3232x x +-=-+B .()116322a b a b -=-C .()2222x x x x--=--D .()24386a a --=--7.有理数a b 、在数轴上的位置如图所示,则下列各式正确的是( )A .0ab >B .0a b +<C .0a b ->D .0b a ->8.若1x =时,式子39ax bx ++的值为4.则当1x =-时,式子39ax bx ++的值为( )A .14-B .4C .13D .14【答案】D【解析】因为1x =时,式子39ax bx ++的值为4,所以94a b ++=,所以5a b +=-,当1x =-时,39ax bx ++9a b =--+()9a b =-++59=--+()14=.故选D .9.由于受禽流感影响,某市2月份鸡的价格比1月份下降%a ,3月份比2月份下降%b ,已知1月份鸡的价格为24元/千克,设3月份鸡的价格为m 元/千克,则( )A .()241%%m a b =--B .()241%%m a b =-C .24%%m a b =--D .()()241%1%m a b =--【答案】D【解析】因为2月份鸡的价格比1月份下降%a ,1月份鸡的价格为24元/千克,所以2月份鸡的价格为()241%a -元,因为3月份比2月份下降%b ,所以3月份鸡的价格为()()241%1%a b --元,即()()241%1%m a b =--.故选D .10.如图,长方形ABCD 长为a ,宽为b ,若()123412S S S S ==+,则4S 等于( ),ab=1:2,二、填空题(本题共6小题,每小题3分,共18分)11.在数轴上,A ,B 两点之间的距离是5,若点A 表示的数是2,则点B 表示的数是__________.【答案】−3或7/7或-3【解析】根据数轴的特点分两种情况讨论:①当点B 在点A 的右边时,2+5=7;②当点B 在点A 的左边时,2-5=-3.所以点B 表示的数是-3或7.故答案为:-3或7.12.把3.1415926精确到百分位的近似值为__________.【答案】3.14【解析】把3.1415926精确到百分位的近似值为3.14,故答案为:3.14.1314.某种商品的原价每件a 元,第一次降价打“八折”,第二次降价又减10元.则两次降价后的售价为__________元.【答案】()0.810a -【解析】第一次降价打“八折”为0.8a 元,第二次降价又减10元为()0.810a -元,故答案为:()0.810a -元.15.如果a ,b 满足()2320a b ++-=,那么b a =__________.【答案】916.一个四位正整数n ,各数位上的数字均不为0,若其千位数字比百位数字大2,十位数字比个位数字小3,将n 的千位数字和百位数字去掉后得到一个两位数s ,将n 的十位数字和个位数字去掉后得到一个两位数t ,记()3s tF n +=,若()F n 为整数,则称数n 为“善雅数”,若“善雅数”n 满足101s t ++能被13整除,则n = .……同理可得当4,5,6,7b =时,d 不能为整数,所以2,6b d ==,所以24,33a b c d =+==-=,所以4236n =,故答案为:4236.三、解答题(本题共9小题,共72分,其中第17、18、19题各6分,第20、21题各8分,22、23题各9分,24、25题各10分)17.(6分)计算3125(2)|4|2æöéù´+----¸ç÷ëû.18.(6分)定义一种新的运算“⊕”,规则如下:3a b ab Å=-.(1)142æöÅ-=ç÷èø______;19.(6分)先化简,再求值:()()22222322a b ab a b ab a b -+---,其中2a =,1b =-.【解析】()()22222322a b ab a b ab a b-+---22222423a b ab a b ab a b+=-+--2ab =-,(3分)把2a =,1b =-代入得原式()221212=-´-=-´=-.(6分)20.(8分)如图所示:已知a b c ,,在数轴上的位置(1)化简:a b c b b a+--+-(2)若a 的绝对值的相反数是2b -,-的倒数是它本身,24c =,求()2a b c a b c -++-+-的值.【解析】(1)解:由数轴可得:0c b a <<<,所以0,0,0+>-<-<a b c b b a ,所以原式2a b c b b a a b c =++--+=-+.(4分)(2)因为a 的绝对值的相反数是2b -,-的倒数是它本身,24c =,0c <,所以2,1,2a b c ==-=-,所以2()2224149a b c a b c a b c a b c a b c -++-+-=-++--+=-++=---=-.(8分)21.(8分)李军大学毕业后返乡创业,成为一名电商老板,把村里农民的苹果放在网上销售,计划每天销售2000千克,实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是李军某一周苹果的销售情况:(1)李军该周销售苹果最多的一天比最少的一天多销售多少千克?(2)李军该周实际销售苹果的总量是多少千克?(3)若李军按5元/千克收购,按9.5元/千克进行苹果销售,运费及包装费等平均为2.5元/千克,则李军该周销售苹果一共收入多少元?【解析】(1)解:130-(-70)=200(千克)答:李军该周销售苹果最多的一天比最少的一天多200千克.(3分)(2)2000×7+30-50-70+130-20+50+110=14180(千克)答:李军该周实际销售苹果的总量是14180千克.(6分)(3)14180×(9.5-5-2.5)=28360(元).答:李军该周销售苹果一共收入28360元.(8分)22.(9分)如图,学校有一块长方形地皮,计划在白色扇形部分种植花卉,其余阴影部分种草皮.(1)用代数式表示图中阴影部分的面积;(2)当6a =,4b =时,草皮种植费用为6元每单位面积,求草皮的种植费用为多少?(π取3)23.(9分)已知关于x 的整式2332A x ax x =+-+,整式22422B x ax x =+-+,若a 是常数,且3A B -不含x 的一次项.(1)求a 的值;(2)若b 为整数,关于x 的一元一次方程230bx x +-=的解是整数,求5a b +的值.24.(10分)定义:若a+b=2,则称a与b是关于2的平衡数.(1)3与__________是关于2的平衡数,7﹣x与__________是关于2的平衡数.(填一个含x的代数式)(2)若a=x2﹣4x﹣1,b=x2﹣2(x2﹣2x﹣1)+1,判断a与b是否是关于2的平衡数,并说明理由.(3)若c=kx+1,d=x﹣3,且c与d是关于2的平衡数,若x为正整数,求非负整数k的值.【解析】(1)因为2﹣3=﹣1,所以3与﹣1是关于2的平衡数,因为2﹣(7﹣x)=2﹣7+x=x﹣5,所以7﹣x与x﹣5是关于2的平衡数,故答案为:﹣1,x﹣5;(2分)(2)a与b是关于2的平衡数,理由:因为a=x2﹣4x﹣1,b=x2﹣2(x2﹣2x﹣1)+1,所以a+b=(x2﹣4x﹣1)+[x2﹣2(x2﹣2x﹣1)+1]=x2﹣4x﹣1+x2﹣2(x2﹣2x﹣1)+1=x2﹣4x﹣1+x2﹣2x2+4x+2+1=2,所以a与b是关于2的平衡数;(6分)(3)因为c=kx+1,d=x﹣3,且c与d是关于2的平衡数,所以c+d=2,所以kx+1+x﹣3=2,所以(k+1)x=4,因为x为正整数,所以当x =1时,k +1=4,得k =3,当x =2时,k +1=2,得k =1,当x =4时,k +1=1,得k =0,所以非负整数k 的值为0或1或3.(10分)25.(10分)数轴上两点之间的距离等于相应两数差的绝对值,如2与3的距离可表示为231-=,2与3-的距离可表示为()23--.(1)数轴上表示3和8的两点之间的距离是__________;数轴上表示3-和9-的两点之间的距离是__________;(2)数轴上表示x 和2-的两点A 和B 之间的距离是__________;如果AB 4=,则x 为__________;(3)数a ,b ,c 在数轴上对应的位置如图所示,化简a c c b a b +-++-.(4)当代数式123x x x ++-+-取最小值时,x 的值为__________.【解析】(1)解:835-=,()396---=.故答案为:5,6;(2分)(2)解:数轴上表示x 和4-的两点A 和B 之间的距离是()22x x --=+,24x +=,则24x +=或24x +=,即2x =或6-.故答案为:2x +,2或6-;(4分)(3)解:由数轴可知,0a c +<,0c b +<,0a b ->,则|a c c b a b+-++-()()()a c cb a b =-++++-ac c b a b=--+++-0=;(8分)(4)解:代数式123x x x ++-+-的几何意义是:数轴上表示数x 的点到表示1-,2,3的三点的距离之和,显然只有当2x =时,距离之和才是最小,则123x x x ++-+-取最小值时,x 的值为2;故答案为:2.(10分)。

安徽省宿州市泗县2024-2025学年七年级上学期期中考试数学试卷(含简单答案)

安徽省宿州市泗县2024-2025学年七年级上学期期中考试数学试卷(含简单答案)

泗县2024-2025学年度第一学期七年级期中质量检测数学试卷考试时间:100分钟;总分:120分注意事项:1.答题前填写好自己的姓名、班级、考号等信息;2.请将答案正确填写在答题卷上。

一、单选题(每小题3分,共30分)1.的绝对值是()A.99B.C.D.2.由4个相同的小立方体搭成的几何体如图所示,则从上面看得到的图形是()A.B.C.D.3.如果a与b互为相反数,则下列各式不正确的是()A.B.C.D.4.已知有理数a、b在数轴上的位置如图所示,下列结论正确的是()A.B.C.D.5.用科学记数法表示为的数是()A.1888B.188.8C.0.001888D.188806.一个两位数,十位上的数字是a,个位上的数字是b,如果把十位上的数与个位上的数对调,所得的两位数是()A.B.C.D.7.今年10月14日泗县最低气温是16,温差是9,那么这一天的最高气温是()A.24B.25C.7D.208.已知代数式的值是9,那么代数式的值是()A.32B.33C.35D.369.下列图形不能围成正方体的是()A.B.C.D.10.用棋子摆出下列一组“□”字,按照这种方法摆下去,则摆第n个“□”字需用棋子枚数为()99-99-199199-a b+=0a b-=a b=a b=-a b>0ab<0b a->0a b+>31.88810⨯ba b a+10b a+10a b+℃℃℃℃℃℃21x x++2339x x++A .4nB .C .D .二、填空题(每小题3分,共24分)11.的相反数是________,倒数是________,绝对值是________。

12.次数是________。

13.比较大小:________。

14.在数轴上,如果A 点表示,那么与点A 距离4个长度单位的点表示的数是________。

15.若与是同类项,则________。

16.观察下面一列数,按规律在横线上填写适当的数,,,,,________。

【鲁教版】七年级数学上期中试题(带答案)(2)

【鲁教版】七年级数学上期中试题(带答案)(2)

一、选择题1.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ).A .4B .8C .±4D .±8 2.在代数式a 2+1,﹣3,x 2﹣2x ,π,1x 中,是整式的有( ) A .2个B .3个C .4个D .5个 3.若 3x m y 3 与﹣2x 2y n 是同类项,则( ) A .m=1,n=1 B .m=2,n=3 C .m=﹣2,n=3 D .m=3,n=2 4.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- 5.已知整数1234,,,a a a a ……满足下列条件:12132430,1,2,3a a a a a a a ==-+=-+=-+……,依次类推,则2019a 的值为( ) A .2018B .2018-C .1009-D .1009 6.下列同类项合并正确的是( )A .x 3+x 2=x 5B .2x ﹣3x =﹣1C .﹣a 2﹣2a 2=﹣a 2D .﹣y 3x 2+2x 2y 3=x 2y 3 7.下列说法中,①a - 一定是负数;② a -一定是正数;③倒数等于它本身的数是±1;④一个数的平方等于它本身的数是1;⑤两个数的差一定小于被减数;⑥如果两个数的和为正数,那么这两个数中至少有一个正数正确的有( )A .2个B .3个C .4个D .5个8.在数轴上距原点4个单位长度的点所表示的数是( ).A .4B .-4C .4或-4D .2或-2 9.下列各组数中,互为相反数的是( ) A .(﹣3)2和﹣32 B .(﹣3)2和32 C .(﹣2)3和﹣23 D .|﹣2|3和|﹣23| 10.一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案( )A .少5B .少10C .多5D .多10 11.下列分数不能化成有限小数的是( ) A .625 B .324 C .412 D .11612.下列计算结果正确的是( )A .-3-7=-3+7=4B .4.5-6.8=6.8-4.5=2.3C .-2-13⎛⎫- ⎪⎝⎭=-2+13=-213 D .-3-12⎛⎫-⎪⎝⎭=-3+12=-212 二、填空题13.如图是用棋子摆成的“上”字:如果按照以下规律继续摆下去,第n 个“上”字需用______枚棋子.14.已知|a|=-a ,bb =-1,|c|=c ,化简 |a+b| + |a-c| - |b-c| = _________.15.已知()()2420b k k a k =--≠,用含有b 、k 的代数式表示a ,则a =______.16.在x y +,0,21>,2a b -,210x +=中,代数式有______个.17.截至格林尼治标准时间2020年6月7日10时,全球累计报告新冠肺炎确诊病例达7000000例;其中累计死亡病例超过40万例,数据7000000科学记数法表示为_____. 18.计算:(1)(-0.8)+1.2+(-0.7)+(-2.1)=[________]+1.2=________+1.2=____;(2)32.5+46+(-22.5) =[____]+46=_____+46=____.19.若两个不相等的数互为相反数,则两数之商为____.20.在一次区级数学竞赛中,某校8名参赛学生的成绩与全区参赛学生平均成绩80分的差分别为(单位:分):5,2-,8,14,7,5,9,6-,则该校8名参赛学生的平均成绩是______ .三、解答题21.计算(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦22.某儿童自行车厂计划一周生产儿童自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天的生产量与计划每天的生产量有出入.实际情况如下表(超产记为正,减产记为负) 星期 一 二 三 四 五 六 日 增减 5+ 2- 4- 13+ 10- 16+ 9-(2)这周生产量最多的一天比生产量最少的一天多生产多少辆?(3)该厂实行每周计件工资制,每生产一辆可得50元,若超额完成任务,则超出部分每辆另奖12元;少生产一辆扣20元,那么该工厂这周的工资总额是多少元?23.计算(1)28()5(0.4)5+----;(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭; (3)2336()(2)()(6)575⨯---⨯-+-⨯; (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦; (5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦. 24.试写出一个含a 的代数式,使a 不论取何值,这个代数式的值不大于1.25.已知,,a b c 在数轴上的位置如图所示,解答下列问题.(1)化简:||||||a b c b b a +--+-;(2)若a 的绝对值的相反数是2,b --的倒数是它本身,24c =,求2()a b c a b c -++-+-的值.26.当0.2x =-时,求代数式22235735x x x x -+-+-的值。

2024-2025学年七年级数学上学期期中测试卷(湖北省卷专用,人教版2024七上第1~4章)考试版

2024-2025学年七年级数学上学期期中测试卷(湖北省卷专用,人教版2024七上第1~4章)考试版

2024-2025学年七年级数学上学期期中模拟卷(湖北省卷专用)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:人教版第1章有理数+第2章有理数的运算+第3章代数式+第4章整式的加减。

5.难度系数:0.72。

第一部分(选择题共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若收入80元记作+80元,则﹣60元表示( )A.收入60元B.收入20元C.支出60元D.支出20元2.下列四个数中,是负数的是( )A.|﹣1|B.﹣|﹣4| C.﹣(﹣3)D.(﹣2)23.下列说法正确的是( )A.―2xy5的系数是﹣2B.x2+x﹣1的常数项为1C.22ab3的次数是6次D.x﹣5x2+7是二次三项式4.2023年4月26日,成都市统计局、国家统计局成都调查队联合发布2023年第一季度成都市经济运行情况.数据显示,一季度全市实现地区生产总值5266.82亿元,同比增长5.3%.将数据“5266.82亿”用科学记数法表示为( )A .5266.82×108B .5.26682×109C .5.26682×1010D .5.26682×10115.下列运算中,正确的是( )A .3a +2b =5abB .2x 2+2x 3=4x 5C .3a 2b ﹣3ba 2=0D .5a 2b ﹣4a 2b =16.在数轴上,a 所表示的点在b 所表示的点的左边,且|a |=3,b 2=1,则a ﹣b 的值为( )A .﹣2B .﹣3C .﹣4或﹣2D .﹣2或47.下列说法:①平方等于4的数是±2;②若a ,b 互为相反数,则b a=―1;③若|﹣a |=a ,则(﹣a )3<0;④若ab ≠0,则a |a|+b |b|的取值在0,1,2,﹣2这4个数中,不能得到的是0,其中正确的个数为( )A .0个B .1个C .2个D .3个8.如图,把半径为1的圆放到数轴上,圆上一点A 与表示﹣1的点重合,圆沿着数轴滚动2周,此时点A 表示的数是( )A .﹣1+4πB .﹣1+2πC .﹣1+4π或﹣1﹣4πD .﹣1+2π或﹣1﹣2π9.如图,把四张形状大小完全相同的小长方形卡片(如图1),不重叠地放在一个长为a cm 、宽为b cm 长方形内(如图2),未被卡片覆盖的部分用阴影表示,则图2中两块阴影部分的周长和是( )A .4b cmB .4a cmC .2(a +b )cmD .4(a ﹣b )cm10.如图是一组有规律的图案,它们是由边长相同的灰白两种颜色的小正方形组成的,按照这样的规律,若组成的图案中有2025个灰色小正方形,则这个图案是( )A .第505个B .第506个C .第507个D .第508个第二部分(非选择题 共90分)二、填空题(本大题共5小题,每小题3分,满分15分)11.若x 与3互为相反数,则2x +4等于 .12.若x ,y 为有理数,且|x +2|+(y ﹣2)2=0,则(x y )2023的值为 .13.定义一种新运算:a *b =a 2﹣b +ab .例如:(﹣1)*3=(﹣1)2﹣3+(﹣1)×3=﹣5,则4*[2*(﹣3)]= .14.当x =2时,ax 3﹣bx +3的值为15,那么当x =﹣2时,ax 3﹣bx +3的值为 .15.如图是一个运算程序的示意图,若开始输入的x 的值为81,我们看到第一次输出的结果为27,第二次输出的结果为9…第2024次输出的结果为 .三、解答题(本大题共9小题,满分75分.解答应写出文字说明,证明过程或演算步骤)16.(每小题4分,共8分)计算:(1)―4+|5―8|+24÷(―3)×13; (2)―14―(1―0.5)×13×[2―(―3)2].17.(每小题4分,共8分)计算:(1)3(4x 2﹣3x +2)﹣2(1﹣4x 2+x ); (2)4y 2﹣[3y ﹣(3﹣2y )+2y 2].18.(6分)先化简,再求值:x2﹣3(2x2﹣4y)+2(x2﹣y),其中x,y满足|x+2|+(y﹣3)2=0.19.(8分)已知a2=4,|b|=3.(1)已知ba<0,求a+b的值;(2)|a+b|=﹣(a+b),求a﹣b的值.20.(8分)已知M=2x2+ax﹣5y+b,N=bx2―32x―52y﹣3,其中a,b为常数.(1)求整式M﹣2N;(2)若整式M﹣2N的值与x的取值无关,求(a+2M)﹣(2b+4N)的值.21.(8分)随着网络直播的兴起,凉山州“建档立卡户”刘师傅在帮扶队员的指导下做起了“主播”,把自家的石榴放到网上销售.他原计划每天卖100千克石榴,但由于种种原因,实际每天的销售量与计划量相比有出入.如表是某周的销售情况(超额记为正,不足记为负,单位:千克):星期一三三四五六日与计划量的差值+5﹣2﹣5+14﹣8+22﹣6(1)根据记录的数据可知前三天共卖出 千克.(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售多少千克?(3)若石榴每千克按10元出售,每千克石榴的运费平均3元,那么刘师傅本周出售石榴的纯收入一共多少元?22.(8分)已知有理数a,b,c在数轴上的位置如图所示且|a|=|b|,(1)求值:a+b= ;(2)分别判断以下式子的符号(填“>”或“<”或“=”):b+c 0;a﹣c 0;ac 0;(3)化简:﹣|2c|+|﹣b|+|c﹣a|+|b﹣c|.23.(9分)定义一种新的运算⊗:已知a,b为有理数,规定a⊗b=ab﹣b+1.(1)计算(﹣2)⊗3的值.(2)已知x2⊗a与3⊗x2的差中不含x2项,求a的值.(3)如图,数轴上有三点A,B,C,点A在数轴上表示的数是(﹣6)⊗1,点C在数轴上表示的数是1⊗(﹣8)点B在点A的右侧,距点A两个单位长度.若点B以每秒3个单位长度的速度向右匀速运动,8同时点C以每秒1个单位长度的速度向左匀速运动,问运动多少秒时,BC=4?24.(12分)某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20):(1)若该客户按方案①购买,需付款 元(用含x的代数式表示);(答案写在下面)若该客户按方案②购买,需付款 元(用含x的代数式表示);(答案写在下面)(2)若x=30,通过计算说明此时按哪种方案购买较为合算?(3)当x=30。

2024-2025学年初中七年级上学期数学期中考及答案(人教版)

2024-2025学年初中七年级上学期数学期中考及答案(人教版)

2024-2025学年人教版七年级数学上册期中考试检测试卷一、选择题(每题3分,共计36分)1.有关正负数的概念和运算法则的系统论述,记载于我国古代数学名著《九章算术》一书中,书中明确提出“正负数”,这是世界上至今发现的最早详细的记载.如果水位上升5米记作5+米,那么水位下降8米记作( )A.8− B.3C.13D.3−2.在2−、1−、0、1这四个数中,最小的数是( )A.1B.0C.-1D.-23.某市某天的最高气温为8C °,最低气温为9C −°,则最高气温与最低气温的差为( )A.17C° B.1C° C.17C−° D.1C−°4.水结成冰体积增大111,现有体积为a 水结成冰后体积为( )A 111a B.1211a C.1011a D.1112a 5.截至目前中国森林面积达到175000000公顷,森林覆盖率为18.21%,人工林面积居世界首位,其中数字175000000用科学记数法表示为( ) A.717.510× B.81.7510× C.91.7510× D.90.17510×6.李伯家有山羊m 2倍多18只,绵羊的数量为( )A.18m + B.18m − C.218m − D.218m +7.“△”表示一种运算符号,其意义是:2a b a b =− ,那么13 等于( )A.1B.1− C.5D.5−8.已知表示有理数a ,b 的点在数轴上的位置如图所示,则a ba b+的值是()A.2−B.1−C.0D.29.如果13x +=,5y =,0yx−>,那么y x −的值是()A.2或0B.2−或0C.1−或3D.7−或910.用8m 长的铝合金做成一个如图所示的长方形窗框,设长方形窗框的横条长度为m x ,则长方形窗框的面积为()的.A.()24m x x − B.()283m x x −C.234m 2x x −D.228m 3x x −11.如果()32a =−−,()33b =−,223c =−,那么a bc +的值为( )A.4− B.4C.20D.20−12.小强根据学习“数与式”积累的经验,111111111111122232334344545=−=−=−=−×××× ,,,,,则111111223344520202021+++++××××× 的值为( ).A.2020B. 20212022C.2021D.20202021二、填空题(每题4分,共计24分)13.计算:23−=____________. 14.对于有理数a b 、,若规定a b a ab ∗=−,则(2)5−∗的值为_______.15.若()22430||a b ++−-=,则b =___________;a =___________.16.若220230x y −−=,则代数式202424x y −+的值是__________.17.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的_____.18.计算:111123344520132014++++=×××× ()三、解答题(19、20、21每题10分,22-26题每题12分,共计90分,写出必要的解答过程和步骤才给分)19.计算:(1)112712623 −−++−;(2)273132515858 ++−−−−+.20.把下列各数分别填入相应的集合里.1,0.20−,135,325,789−,0,23.13−,0.618,2004−非正数集合:{ …}; 非负数集合:{ …}; 非正整数集合:{ …}; 非负整数集合:{ …}.21.如图,在一条数轴上,点O 为原点,点A 、B 、C 表示数分别是1m +,2m −,94m −.(1)求AC 的长;(用含m 的代数式表示)(2)若5AB =,求BC 中点D 表示的数.22.已知:()21102a b −++=,c 是最小的自然数,d 是最大负整数. (1)求a ,b ,c ,d 值:(2)试求代数式()()328b ac d −+−的值.23.已知,如图,某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为20米,宽为10米,正方形的边长为1米,求阴影部分的面积.24.先阅读下列解题过程,再解答问题:解方程:32x +=. 解:当30x +≥时,原方程可化为32x +=,解得1x =−;当30x +<时,原方程可化为32x +=−,解得 5.x =−所以原方程的解是1x =−或5x =−.(1)解方程:3150x −−=;的的的(2)若1x a x −++的最小值为4,求a 的值.25.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期一二三四五六日与计划量的差值4+3−5−14+8−21+6−(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(2)本周实际销售总量达到了计划数量没有?(3)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?26.阅读材料:求2342020122222++++++ 的值.解:设234201920201222222S =+++++++ ,将等式两边同时乘2,得 ,23452020202122222222S =+++++++将下式减上式,得2021221S S −=−,即 202121S =−, 即 2342020202112222221++++++=− . 请你仿照此法计算:(1)23410122222++++++ ;(2)234133333n ++++++ (其中n 为正整数).2024-2025学年人教版七年级数学上册期中考试检测试卷一、选择题(每题3分,共计36分)1.有关正负数的概念和运算法则的系统论述,记载于我国古代数学名著《九章算术》一书中,书中明确提出“正负数”,这是世界上至今发现的最早详细的记载.如果水位上升5米记作5+米,那么水位下降8米记作( )A.8− B.3C.13D.3−【答案】A 【解析】【分析】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.【详解】解:“正”和“负”相对,所以,如果水位上升5米记作5+米,那么水位下降8米记作8−米. 故选:A .2.在2−、1−、0、1这四个数中,最小的数是( )A 1 B.0C.-1D.-2【答案】D 【解析】【分析】本题考查有理数大小比较法则,熟练掌握此法则是解答此题的关键.由有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,即可判断.【详解】解:由有理数的大小比较法则,可得:2101−<−<<,∴在2−,1−,0,1这四个数中,最小的数是2−.故选:D .3.某市某天的最高气温为8C °,最低气温为9C −°,则最高气温与最低气温的差为( )A.17C ° B.1C° C.17C−° D.1C−°【答案】A 【解析】【分析】本题主要考查的是有理数的减法.用最高气温减去最低气温进行计算即可.【详解】解:()()8917C −−=°..故选:A .4.水结成冰体积增大111,现有体积为a 的水结成冰后体积为( )A.111a B.1211a C.1011a D.1112a 【答案】B 【解析】【分析】本题是基础题型,弄清冰的体积=(1+增长率)×水的体积是解题的关键.体积为a 的水结成冰后体积,冰的体积为1111a +.【详解】解:依题意有水结成冰后体积为11211111a a += .故选:B .5.截至目前中国森林面积达到175000000公顷,森林覆盖率为18.21%,人工林面积居世界首位,其中数字175000000用科学记数法表示为( ) A.717.510× B.81.7510× C.91.7510× D.90.17510×【答案】B 【解析】【分析】本题考查用科学记数法表示较大的数,一般形式为10n a ×,其中110a ≤<,n 可以用整数位数减去1来确定.用科学记数法表示数,一定要注意a 的形式,以及指数n 的确定方法.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】解:175000000用科学记数法表示为81.7510×. 故选:B .6.李伯家有山羊m 只,绵羊的数量比山羊的2倍多18只,绵羊的数量为( )A.18m + B.18m − C.218m − D.218m +【答案】D 【解析】【分析】本题考查列代数式,根据题意可知:绵羊的只数=山羊只数的2倍+18,根据此解答即可.【详解】∵李伯家有山羊m 只,∴绵羊的数量比山羊的2倍多18只,绵羊的数量为()218m +只,故选:D .7.“△”表示一种运算符号,其意义是:2a b a b =− ,那么13 等于( )A.1 B.1− C.5D.5−【答案】B 【解析】【分析】此题考查了有理数的混合运算,新定义运算的含义,熟练掌握运算法则是解本题的关键.根据新定义运算的运算法则先列式,再计算即可.【详解】解:∵2a b a b =− , ∴13213231=×−=−=− , 故选:B .8.已知表示有理数a ,b 点在数轴上的位置如图所示,则a ba b+的值是()A.2−B.1−C.0D.2【答案】C 【解析】【分析】本题考查了数轴和去绝对值,根据数轴分别判断0a <,0b >,然后去掉绝对值即可,解题的关键是结合数轴判断绝对值符号里面代数式的正负.【详解】由数轴可得,0a <,0b >,∴a b a b+a b a b=+−,110=−+=,故选:C .9. 如果13x +=,5y =,0yx−>,那么y x −的值是()A.2或0B.2−或0C.1−或3D.7−或9【答案】D 【解析】的【分析】本题考查了绝对值的意义,有理数的除法,有理数的减法.先根据绝对值的意义得出2x =或4x =−,5y =±,再根据有理数的除法法则得出x 和y 异号,最后进行分类讨论即可.【详解】解:∵13x +=, ∴13x +=±,解得:2x =或4x =−, ∵5y =, ∴5y =±, ∵0yx−>,∴0yx<,即x 和y 异号, ∴当2x =时5y =−,当4x =−时,5y =, ①当2x =,5y =−时,527y x −=−−=−,②当4x =−,5y =时,()549y x −=−−=,∴y x −的值是7−或9,故选:D .10.用8m 长的铝合金做成一个如图所示的长方形窗框,设长方形窗框的横条长度为m x ,则长方形窗框的面积为()A.()24m x x − B.()283m x x −C.234m 2x x −D.228m 3x x −【答案】C 【解析】【分析】本题考查了列代数式,要注意长方形窗框的横条有3条,观察图形求出长方形窗框的竖条长度是解答本题的关键.根据长方形窗框的横条长度求出长方形窗框的竖条长度,再根据长方形的面积公式计算即可求解.【详解】解:∵长方形窗框的横条长度为m x , ∴长方形窗框的竖条长度为8334m 22x x −=−,∴长方形窗框的面积为:234m 2x x −,故选∶C .11.如果()32a =−−,()33b =−,223c =−,那么a bc +的值为( )A.4− B.4 C.20 D.20−【答案】A 【解析】【分析】本题考查有理数的乘方,有理数的混合运算,求代数式的值,分别求出a 、b 、c 并代入a bc +计算即可.掌握相应的运算法则是解题的关键.【详解】解:∵()328a =−−=,()3327b =−=−, ∴()827481249a bc ×=−+=+=−, ∴a bc +的值为4−. 故选:A .12.小强根据学习“数与式”积累的经验,111111111111122232334344545=−=−=−=−×××× ,,,,,则111111223344520202021+++++××××× 的值为( ).A.2020B. 20212022C. 2021D.20202021【答案】D 【解析】【分析】本题考查了有理数的混合运算,利用拆项法解答即可求解,掌握拆项法是解题的关键.【详解】解:∵111111111111122232334344545=−=−=−=−×××× ,,,,, ∴111111223344520202021+++++×××××1111111111223344520202021=−+−+−+−++− ,112021=−,20202021=,故选:D .二、填空题(每题4分,共计24分)13.计算:23−=____________. 【答案】23【解析】【分析】本题考查求一个数的绝对值,根据负数的绝对值等于它的相反数,即可得出结果.【详解】解:23−=23;故答案为:23.14.对于有理数a b 、,若规定a b a ab ∗=−,则(2)5−∗的值为_______.【答案】12 【解析】根据新定义得到()(2)5225−∗=−−−×,再计算即可.【详解】解:由题意得,()(2)522512−∗=−−−×=,故答案为:12.15.若()22430||a b ++−-=,则b =___________;a =___________.【答案】①.3 ②. 2【解析】【分析】根据有理数的非负性解答即可.本题考查了有理数的非负性,熟练掌握性质是解题的关键.【详解】解:∵()22430||a b ++−-=, ∴20,30a b +=−=-,解得:3,2b a ==.故答案为:3,2.16.若220230x y −−=,则代数式202424x y −+的值是__________.【答案】2022−【解析】【分析】本题考查了代数式求值,整体代入是解题的关键.将202424x y −+变形为()202422x y −−,然后将22023x y −=代入求解即可. 【详解】解:∵220230x y −−=, ∴22023x y −=, 则()2024242024222024202322022x y x y −+=−−=−×=−,故答案为:2022−.17.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的_____. 【答案】a ab +##a b a+【解析】【分析】本题考查了列代数式,第一个图形中下底面积为未知数,利用第一个图可得墨水的体积,利用第二个图可得空余部分的体积,进而可得玻璃瓶的容积,让求得的墨水的体积除以玻璃瓶容积即可,掌握知识点的应用是解题的关键.【详解】解:设第一个图形中下底面积为S .倒立放置时,空余部分的体积为bS ,正立放置时,有墨水部分的体积是aS ,因此墨水体积约占玻璃瓶容积的as a as bs a b=++,故答案为:a a b+.的18.计算:111123344520132014++++=×××× ()【答案】5031007【解析】【分析】本题主要考查了有理数的混合运算,解答此题关键是找出解题的规律.根据裂项相消的方法把原式化为1111111123344520132014−+−+−++− ,再计算即可.【详解】解:111123344520132014++++×××× 1111111123344520132014=−+−+−++− 1122014=−1007120142014−10062014=5031007=;故答案为5031007.三、解答题(19、20、21每题10分,22-26题每题12分,共计90分,写出必要的解答过程和步骤才给分)19.计算:(1)112712623 −−++−;(2)273132515858 ++−−−−+ .【答案】(1)10 (2)5【解析】【分析】本题主要考查有理数的加减混合运算;(1)先去括号,再把分数通分成分母相同的分数,最后根据有理数的加减混合运算法则即可求解;(2)先去括号,再运用加法结合律把分母相同的分数结合,最后根据有理数的加减混合运算法则即可求解.【小问1详解】 解:112712623−−++−112712623=++−71547666=++−71547666 =++−73=+10=;【小问2详解】 解:273132515858++−−−−+273132515858=−+−237135215588 =+−+94=−5=.20.把下列各数分别填入相应的集合里.1,0.20−,135,325,789−,0,23.13−,0.618,2004− 非正数集合:{ …};非负数集合:{ …};非正整数集合:{ …};非负整数集合:{ …}.【答案】0.20−,789−,0,23.13−,2004−;1,135,325,0,0.618;789−,0,2004−;1,325,0【解析】【分析】本题考查有理数的分类(正数和分数统称为有理数;有理数的分类:按整数、分数的关系分类;按正数、负数与零的关系分类),根据非正数(负数和零)、非负数(正数和零)、非正整数(负整数和零)和非负整数(正整数和零)的意义进行选取即可.准确理解相关概念的意义是解题的关键.【详解】解:非正数集合:{0.20−,789−,0,23.13−,2004−,…};非负数集合:{1,135,325,0,0.618,…};非正整数集合:{789−,0,2004−,…};非负整数集合:{1,325,0,…}.故答案为:0.20−,789−,0,23.13−,2004−;1,135,325,0,0.618;789−,0,2004−;1,325,0.21.如图,在一条数轴上,点O 为原点,点A 、B 、C 表示的数分别是1m +,2m −,94m −.(1)求AC 的长;(用含m 的代数式表示)(2)若5AB =,求BC 的中点D 表示的数.【答案】(1)58m −(2)2−【解析】【分析】本题考查了数轴的知识,代数式,正确认识数轴并理解数轴,能够表示数轴上两点的距离是解题的关键.(1)根据数轴上的两点间的距离公式求解即可;(2)首先由5AB =建立方程求解m ,再求解、B 、C 对应的数即可得到答案.【小问1详解】解: 点A 、C 表示数分别是1m +,94m −,∴()19458AC m m m =+−−=−;【小问2详解】()125AB m m =+−−=,∴()125m m +−−=,解得:3m =,∴2231m −=−=−,949123m −=−=−,∴当5AB =时,B 点表示的数是1−,C 点表示的数是3−,∴BC 的中点D 表示的数是()1322−+−=−. 22.已知:()21102a b −++=,c 是最小的自然数,d 是最大负整数. (1)求a ,b ,c,d 的值:的(2)试求代数式()()328b a c d −+−的值.【答案】(1)11,2a b ==−,0,1c d ==− (2)8−【解析】【分析】本题考查了非负数的性质和求代数式的值,解题关键是根据题意求出字母的值.(1)根据非负数的性质及有理数相关概念求出a 、b 、c 、d 的值即可;(2)将求出的a 、b 、c 、d 的值代入代数式求值即可.【小问1详解】解:()21102a b -++= , 110,02a b ∴-=+=, 11,2a b ∴==-, c 是最小的自然数,d 是最大负整数,0,1c d ∴==-;【小问2详解】 解:11,2a b ==- ,0,1c d ==− ()()328b a c d ∴-+-()32181012⎛⎫⎡⎤ ⎪=⎦⎡⎤⎢⎥⎢⎥⨯--+-- ⎪⎣⎝⎭⎣⎦18118⎛⎫ ⎪=⎪⎡⎤⎢⨯--+ ⎢⎝⎥⎥⎣⎦⎭ 9818⎛⎫ ⎪=⨯-+ ⎪⎝⎭()91=-+8=−.23.已知,如图,某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为20米,宽为10米,正方形的边长为1米,求阴影部分的面积.【答案】(1)()24ab x −平方米 (2)196平方米【解析】【分析】(1)根据图形中的数据,可以用含a 、b 、x 的代数式表示出阴影部分的面积; (2)将20a =,10b =,1x =代入(1)中的代数式,即可求得阴影部分的面积.本题考查列代数式、代数式求值,解答本题的关键是明确题意,列出相应的代数式,求出相应的代数式的值.小问1详解】解:∵某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米. ∴由图可得,阴影部分的面积是2(4)ab x −平方米;【小问2详解】解:当20a =,10b =,1x =时,24ab x −2201041×−×2004−196=(平方米), 即阴影部分的面积是196平方米.24. 先阅读下列解题过程,再解答问题:解方程:32x +=. 解:当30x +≥时,原方程可化为32x +=,解得1x =−;当30x +<时,原方程可化为32x +=−,解得 5.x =−所以原方程的解是1x =−或5x =−.(1)解方程:3150x −−=; (2)若1x a x −++的最小值为4,求a 的值.【答案】(1)2x =或43x =−; (2)3a =或5a =−.【【解析】【分析】本题考查了绝对值方程的解法,数轴上两点间的距离,熟练掌握绝对值的定义是解答本题的关键,对值等于一个正数的数有2个,它们是互为相反数的关系.(1)根据题中所给解法求解即可;(2)根据1x a x −++的最小值为4,得出表示a 的点与表示1−的点的距离为4,求解即可.【小问1详解】 解:3150x −−=, 移项,得315x −=, 当310x −≥,即13x ≥时,原方程可化为:315x −=,解得:2x =, 当310x −<,即13x <时,原方程可化为:315x −=−,解得43x =−. ∴原方程的解是:2x =或43x =−. 【小问2详解】 解:1x a x −++ 的最小值为4,∴表示a 的点与表示1−的点的距离为4,143−+= ,145−−=−,3a ∴=或5a =−.25.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期一二三四五六日与计划量的差值4+3−5−14+8−21+6−(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(2)本周实际销售总量达到了计划数量没有?(3)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?【答案】(1)29 (2)达到了(3)3585元【解析】【分析】此题考查了正数与负数,有理数混合运算的应用,熟练掌握运算法则是解本题的关键.(1)根据最大正数和最小负数的差值得出结论即可;(2)根据所有差值的和的正负来判断即可;(3)根据售价﹣运费得出收入即可.【小问1详解】()21829−−=(斤),故答案为:29;【小问2详解】43514821617+−−+−+−=(斤),∴本周实际销售总量达到了计划数量;【小问3详解】()()100717833585×+×−=(元),答:小明本周一共收入3585元.26.阅读材料:求2342020122222++++++ 的值.解:设234201920201222222S =+++++++ ,将等式两边同时乘2,得 ,23452020202122222222S =+++++++将下式减上式,得2021221S S −=−,即 202121S =−, 即 2342020202112222221++++++=− .请你仿照此法计算:(1)23410122222++++++ ;(2)234133333n ++++++ (其中n 为正整数).【答案】(1)123410112222221++++++=− ;(2)()23411133333312n n +++++++=− . 【解析】【分析】本题考查的是探索运算规律题,根据已知材料中的方法,探索出运算规律是解决此题的关键.(1)设23410122222S =++++++ ,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值;(2)设234133333n S =++++++ ,两边乘以3后得到关系式,与已知等式相减,变形即可求出所求式子的值.【小问1详解】设23410122222S =++++++ ,将等式两边同时乘2,得23410112222222S =++++++ ,将下式减上式,得 11221S S −−,即 1121S =−则123410112222221++++++=−【小问2详解】设 234133333,n S =++++++将等式两边同时乘3,得 23413333333,n n S +=++++++下式减上式,得1331n S S +−=−,即 ()11312n S +−,即 )234113333331n n +++++++=− .。

【人教版】七年级上册期中考试数学试卷共10套(含答案)(2)

【人教版】七年级上册期中考试数学试卷共10套(含答案)(2)

七年级(上)期中数学试卷一、选择题:每小题3分,共24分1.在数0.25,﹣,7,0,﹣3,100中,正数的个数是()A.1个B.2个C.3个D.4个2.﹣||的倒数是()A.2015 B.﹣2015 C.﹣D.3.实数a在数轴上的位置如图所示,则下列说法不正确的是()A.a的相反数大于2 B.a的相反数是2C.|a|>2 D.2a<04.若a、b互为相反数,x、y互为倒数,则的值是()A.3 B.4 C.2 D.3.55.已知a和b是有理数,若a+b=0,a2+b2≠0,则在a和b之间一定()A.存在负整数B.存在正整数C.存在一个正数和负数D.不存在正分数6.在﹣0.1428中用数字3替换其中的一个非0数码后,使所得的数最大,则被替换的字是()A.1 B.2 C.4 D.87.多项式2x2y3﹣5xy2﹣3的次数和项数分别是()A.5,3 B.5,2 C.8,3 D.3,38.已知代数式2y2﹣2y+1的值是7,那么y2﹣y+1的值是()A.1 B.2 C.3 D.4二、填空题:每小题3分,共21分9.若m<n<0,则(m+n)(m﹣n)0.(2015春大名县期末)|x﹣4y|+(2y+1)2=0,则x2009y2010=.11.单项式﹣的系数是,次数是.12.按图所示的程序流程计算,若开始输入的值为x=3,则最后输出的结果是.13.若单项式2a2b m+1与﹣3n b2的和是单项式,则(﹣m)n=.14.定义新运算“⊗”,,则12⊗(﹣1)=.15.下图(1)表示1张餐桌和6张椅子(每个小半圆代表1张椅子),若按这种方式摆放20张餐桌需要的椅子张数是.三、解答题:共55分16.计算下列各题:(1)(+45)+(﹣92)+35+(﹣8);(2);(3)﹣24+|4﹣6|﹣3÷(﹣1)2014;(4)化简:3ab﹣a2﹣2ba﹣3a2;(5)先化简后求值:,其中.17.实数a、b、c在数轴上的位置如图所示,试化简:|c﹣b|+|b﹣a|﹣|c|.18.有3个有理数x、y、z,若且x与y互为相反数,y与z互为倒数.(1)当n为奇数时,你能求出x、y、z这三个数吗?当n为偶数时,你能求出x、y、z这三个数吗?能,请计算并写出结果;不能,请说明理由.(2)根据(1)的结果计算:xy﹣y n﹣(y﹣z)2011的值.19.某检修小组乘汽车检修公路道路.向东记为正,向西记为负.某天自A地出发.所走路程(单位:千米)为:+22,﹣3,+4,﹣2,﹣8,﹣17,﹣2,+12,+7,﹣5;问:①最后他们是否回到出发点?若没有,则在A地的什么地方?距离A地多远?②若每千米耗油0.05升,则今天共耗油多少升?20.某地电话拨号入网有两种收费方式:(A)计时制:0.05元/分;(B)包月制:50元,此外,每种另加收通信费0.02元/分.(1)某用户某月上网时间为x小时,请分别写出两种收费方式下该用户应支付的费用;(2)若某用户估计一个月上网时间为20小时,你认为采用哪种方式较合算.21.学习有理数得乘法后,老师给同学们这样一道题目:计算:49×(﹣5),看谁算的又快又对,有两位同学的解法如下:小明:原式=﹣×5=﹣=﹣249;小军:原式=(49+)×(﹣5)=49×(﹣5)+×(﹣5)=﹣249;(1)对于以上两种解法,你认为谁的解法较好?(2)上面的解法对你有何启发,你认为还有更好的方法吗?如果有,请把它写出来;(3)用你认为最合适的方法计算:19×(﹣8)22.[背景知识]数轴是初中数学的一个重要工具,利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:数轴上A点、B点表示的数为a、b,则A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为AB=a﹣b;线段AB的中点M表示的数为.[问题情境]已知数轴上有A、B两点,分别表示的数为﹣10,8,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动.设运动时间为t秒(t>0).[综合运用](1)运动开始前,A、B两点的距离为;线段AB的中点M所表示的数.(2)点A运动t秒后所在位置的点表示的数为;点B运动t秒后所在位置的点表示的数为;(用含t的代数式表示)(3)它们按上述方式运动,A、B两点经过多少秒会相遇,相遇点所表示的数是什么?(4)若A,B按上述方式继续运动下去,线段AB的中点M能否与原点重合?若能,求出运动时间,并直接写出中点M的运动方向和运动速度;若不能,请说明理由.(当A,B 两点重合,则中点M也与A,B两点重合)七年级(上)期中数学试卷参考答案与试题解析一、选择题:每小题3分,共24分1.在数0.25,﹣,7,0,﹣3,100中,正数的个数是()A.1个B.2个C.3个D.4个【考点】正数和负数.【分析】根据大于零的数是正数,可得答案.【解答】解:0.25,7,100是正数,故选:C.【点评】本题考查了正数和负数,大于零的数是正数,注意零既不是正数也不是负数.2.﹣||的倒数是()A.2015 B.﹣2015 C.﹣D.【考点】倒数;绝对值.【分析】直接根据倒数的定义求解.【解答】解:﹣||的倒数是﹣2015,故选B.【点评】本题考查了倒数的定义,关键是根据乘积是1的两数互为倒数,a的倒数为(a≠0).3.实数a在数轴上的位置如图所示,则下列说法不正确的是()A.a的相反数大于2 B.a的相反数是2C.|a|>2 D.2a<0【考点】实数与数轴.【分析】根据数轴确定a的取值范围,进而选择正确的选项.【解答】解:由数轴可知,a<﹣2,A、a的相反数>2,故本选项正确,不符合题意;B、a的相反数≠2,故本选项错误,符合题意;C、a的绝对值>2,故本选项正确,不符合题意;D、2a<0,故本选项正确,不符合题意.故选:B.【点评】本题考查的是数轴和实数的性质,属于基础题,灵活运用数形结合思想是解题的关键.4.若a、b互为相反数,x、y互为倒数,则的值是()A.3 B.4 C.2 D.3.5【考点】代数式求值;相反数;倒数.【专题】计算题.【分析】先根据相反数、倒数的概念易求a+b、xy的值,然后整体代入所求代数式计算即可.【解答】解:根据题意得a+b=0,xy=1,那么=×0+×1=.故选:D.【点评】本题考查了相反数、倒数、代数式求值,解题的关键是熟练掌握倒数、相反数的概念.5.已知a和b是有理数,若a+b=0,a2+b2≠0,则在a和b之间一定()A.存在负整数B.存在正整数C.存在一个正数和负数D.不存在正分数【考点】有理数.【专题】常规题型.【分析】本题可用排除法.代入特殊值即可,令a=0.5,b=﹣0.5,故A、B即可排除,无论a,b何值,a,b必然一正一负,故D不正确.【解答】解:本题用排除法即可.令a=0.5,b=﹣0.5,a,b间无非0整数,A、B即可排除.无论a,b何值,a,b必然一正一负.故选C.【点评】本题考查了学生对有理数的分类的掌握情况,遇到这种情况可让学生用排除法即可.6.在﹣0.1428中用数字3替换其中的一个非0数码后,使所得的数最大,则被替换的字是()A.1 B.2 C.4 D.8【考点】有理数大小比较.【分析】对负数来说,绝对值大的反而小,因此用3代替其中的一个数字,使她的绝对值最小即为正确选项.【解答】解:逐个代替后这四个数分别为﹣0.3428,﹣0.1328,﹣0.1438,﹣0.1423.﹣0.1328的绝对值最小,只有C符合.故选C.【点评】考查有理数大小比较法则.两个负数,绝对值大的反而小.7.多项式2x2y3﹣5xy2﹣3的次数和项数分别是()A.5,3 B.5,2 C.8,3 D.3,3【考点】多项式.【分析】根据多项式次数的定义求解,多项式的次数是多项式中最高次项的次数,多项式中单项式的个数是多项式的项数,可得答案.【解答】解:多项式2x2y3﹣5xy2﹣3的次数和项数分别是5,3,故选:A.【点评】本题考查了多项式,解题的关键是弄清多项式次数是多项式中次数最高的项的次数.8.已知代数式2y2﹣2y+1的值是7,那么y2﹣y+1的值是()A.1 B.2 C.3 D.4【考点】代数式求值.【分析】首先根据代数式2y2﹣2y+1的值是7,可得到等式2y2﹣2y+1=7,然后利用等式的性质1;等式两边同时加上或减去同一个数,等式仍然成立;把等式两边同时减去1,可得到2y2﹣2y=6,再把等式的变形成2(y2﹣y)=6‘再利用等式的性质2:等式两边同时加乘以(或除以同一个不为零)数,等式仍然成立;等式两边同时除以2,可得到y2﹣y=3,最后再利用等式的性质1,两边同时加上1即可得到答案.【解答】解:∵2y2﹣2y+1=7∴2y2﹣2y+1﹣1=7﹣12y2﹣2y=6∴2(y2﹣y)=6∴y2﹣y=3∴y2﹣y+1=3+1=4故选:D【点评】此题主要考查了利用等式的性质求代数式的值,作此题的关键是把已知条件与结论要有效的结合,利用等式的性质不断的变形.二、填空题:每小题3分,共21分9.若m<n<0,则(m+n)(m﹣n)>0.(m﹣n)>0.【解答】解:∵m<n<0,∴m+n<0,m﹣n<0,∴(m+n)(m﹣n)>0.故答案是>.【点评】本题考查了有理数的乘法法则,解题的关键是先判断m+n、m﹣n的取值情况.10.|x﹣4y|+(2y+1)2=0,则x2009y2010=﹣.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】据非负数的性质,可求出x、y的值,然后将代数式化简再代值计算.【解答】解:根据题意得:,解得:,则原式=(xy)2009y=12009×(﹣)=﹣.故答案是:﹣.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.11.单项式﹣的系数是﹣,次数是4.【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义,该单项式得系数是﹣,次数是2+1+1=4.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分子为1和指数为1时,不能忽略.12.按图所示的程序流程计算,若开始输入的值为x=3,则最后输出的结果是21.【考点】代数式求值.【专题】图表型.【分析】把x=3代入程序流程中计算,判断结果与10的大小,即可得到最后输出的结果.【解答】解:把x=3代入程序流程中得:=6<10,把x=6代入程序流程中得:=21>10,则最后输出的结果为21.故答案为:21【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.13.若单项式2a2b m+1与﹣3n b2的和是单项式,则(﹣m)n=1.【考点】合并同类项.【分析】根据单项式的和是单项式,可得同类项,根据同类项是字母项相同且相同字母的指数也相同,可得m、n的值,根据乘方的意义,可得答案.【解答】解:单项式2a2b m+1与﹣3n b2的和是单项式,得n=2,m+1=1,解得m=1.则(﹣m)n=(﹣1)2=1,故答案为:1.【点评】本题考查了合并同类项,利用同类项得出m、n的值是解题关键.14.定义新运算“⊗”,,则12⊗(﹣1)=8.【考点】代数式求值.【专题】压轴题;新定义.【分析】根据已知可将12⊗(﹣1)转换成a﹣4b的形式,然后将a、b的值代入计算即可.【解答】解:12⊗(﹣1)=×12﹣4×(﹣1)=8故答案为:8.【点评】本题主要考查代数式求值的方法:直接将已知代入代数式求值.15.下图(1)表示1张餐桌和6张椅子(每个小半圆代表1张椅子),若按这种方式摆放20张餐桌需要的椅子张数是82.【考点】规律型:图形的变化类.【分析】此类找规律的题目一定要结合图形进行分析,发现每多一张餐桌,就多4张椅子.【解答】解:结合图形发现:1张餐桌时,是6张椅子.在6的基础上,每多一张餐桌,就多4张椅子.则共有n张餐桌时,就有6+4(n﹣1)=4n+2.当n=20时,原式=4×20+2=82.故答案为:82【点评】此题考查了平面图形,主要培养学生的观察能力和归纳能力.三、解答题:共55分16.计算下列各题:(1)(+45)+(﹣92)+35+(﹣8);(2);(3)﹣24+|4﹣6|﹣3÷(﹣1)2014;(4)化简:3ab﹣a2﹣2ba﹣3a2;(5)先化简后求值:,其中.【考点】整式的加减—化简求值;有理数的混合运算;整式的加减.【专题】计算题.【分析】(1)原式结合后,相加即可;(2)原式利用乘法分配律计算即可;(3)原式利用乘方的意义,绝对值的代数意义计算即可;(4)原式合并同类项即可;(5)原式去括号合并得到最简结果,把x与y的值代入计算即可.【解答】解:(1)原式=45+35﹣92﹣8=80﹣100=﹣20;(2)原式=﹣24+36+9﹣14=7;(3)原式=﹣16+2﹣3=﹣17;(4)原式=ab﹣4a2;(5)原式=x﹣2x+y2﹣x+y2=﹣3x+y2,当x=﹣2,y=时,原式=6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.17.实数a、b、c在数轴上的位置如图所示,试化简:|c﹣b|+|b﹣a|﹣|c|.【考点】整式的加减;绝对值;实数与数轴.【分析】先根据各点在数轴上的位置判断出其符号及绝对值的大小,再去绝对值符号,合并同类项即可.【解答】解:∵由图可知,c<b<0<a,|c|>a>|b|,∴c﹣b<0,b﹣a<0,∴原式=b﹣c+a﹣b+c=a.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.18.有3个有理数x、y、z,若且x与y互为相反数,y与z互为倒数.(1)当n为奇数时,你能求出x、y、z这三个数吗?当n为偶数时,你能求出x、y、z这三个数吗?能,请计算并写出结果;不能,请说明理由.(2)根据(1)的结果计算:xy﹣y n﹣(y﹣z)2011的值.【考点】有理数的乘方;相反数;倒数.【专题】分类讨论.【分析】(1)分n为奇数,n为偶数两种情况求出x、y、z这三个数.(2)将x=﹣1,y=1,z=1的值代入计算即可.【解答】解:(1)当n为奇数时,==﹣1.∵x与y互为相反数,∴y=﹣x=1,∵y与z为倒数,∴,∴x=﹣1;y=1;z=1.当n为偶数时,(﹣1)n﹣1=1﹣1=0,∵分母不能为零,∴不能求出x、y、z这三个数.(2)当x=﹣1,y=1,z=1时,xy﹣y n﹣(y﹣z)2011,=(﹣1)×1﹣1n﹣(1﹣1)2011,=﹣2.【点评】本题考查了有理数的运算.注意:互为相反数的两个数的和为0;互为倒数的两个数的积为1;0的任何不等于0的次幂都等于0;1的任何次幂都等于1;﹣1的奇次幂都等于﹣1;﹣1的偶次幂都等于1.19.某检修小组乘汽车检修公路道路.向东记为正,向西记为负.某天自A地出发.所走路程(单位:千米)为:+22,﹣3,+4,﹣2,﹣8,﹣17,﹣2,+12,+7,﹣5;问:①最后他们是否回到出发点?若没有,则在A地的什么地方?距离A地多远?②若每千米耗油0.05升,则今天共耗油多少升?【考点】正数和负数.【分析】①把所走的路程相加,然后根据正负数的意义解答;②先求出所有路程的绝对值的和,再乘以0.05,计算即可得解.【解答】解:①(+22)+(﹣3)+(+4)+(﹣2)+(﹣8)+(﹣17)+(﹣2)+(+12)+(+7)+(﹣5)=45+(﹣37)=8千米,所以,不能回到出发点,在A地东边8千米处;②|+22|+|﹣3|+|+4|+|﹣2|+|﹣8|+|﹣17|+|﹣2|+|+12|+|+7|+|﹣5|=22+3+4+2+8+17+2+12+7+5=82千米,82×0.05=4.1升.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.20.某地电话拨号入网有两种收费方式:(A)计时制:0.05元/分;(B)包月制:50元,此外,每种另加收通信费0.02元/分.(1)某用户某月上网时间为x小时,请分别写出两种收费方式下该用户应支付的费用;(2)若某用户估计一个月上网时间为20小时,你认为采用哪种方式较合算.【考点】列代数式;代数式求值.【分析】A种方式收费为:计时费+通信费;B种方式付费为:包月费+通信费.根据等量关系列出代数式求出结果,比较后得出结论.【解答】解:(1)A:0.05×60x+0.02×60x=4.2x(元),B:50+0.02×60x=50+1.2x(元);(2)当x=20时,A:84元;B:74元,∴采用包月制较合算.【点评】本题考查列代数式、代数式求值解决实际问题的能力.解决问题的关键是找到所求的量的等量关系,需注意把时间单位统一.21.学习有理数得乘法后,老师给同学们这样一道题目:计算:49×(﹣5),看谁算的又快又对,有两位同学的解法如下:小明:原式=﹣×5=﹣=﹣249;小军:原式=(49+)×(﹣5)=49×(﹣5)+×(﹣5)=﹣249;(1)对于以上两种解法,你认为谁的解法较好?(2)上面的解法对你有何启发,你认为还有更好的方法吗?如果有,请把它写出来;(3)用你认为最合适的方法计算:19×(﹣8)【考点】有理数的乘法.【专题】阅读型.【分析】(1)根据计算判断小军的解法好;(2)把49写成(50﹣),然后利用乘法分配律进行计算即可得解;(3)把19写成(20﹣),然后利用乘法分配律进行计算即可得解.【解答】解:(1)小军解法较好;(2)还有更好的解法,49×(﹣5)=(50﹣)×(﹣5)=50×(﹣5)﹣×(﹣5)=﹣250+=﹣249;(3)19×(﹣8)=(20﹣)×(﹣8)=20×(﹣8)﹣×(﹣8)=﹣160+=﹣159.【点评】本题考查了有理数的乘法,主要是对乘法分配律的应用,把带分数进行适当的转化是解题的关键.22.[背景知识]数轴是初中数学的一个重要工具,利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:数轴上A点、B点表示的数为a、b,则A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为AB=a﹣b;线段AB的中点M表示的数为.[问题情境]已知数轴上有A、B两点,分别表示的数为﹣10,8,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动.设运动时间为t秒(t>0).[综合运用](1)运动开始前,A、B两点的距离为18;线段AB的中点M所表示的数﹣1.(2)点A运动t秒后所在位置的点表示的数为﹣10+3t;点B运动t秒后所在位置的点表示的数为8﹣2t;(用含t的代数式表示)(3)它们按上述方式运动,A、B两点经过多少秒会相遇,相遇点所表示的数是什么?(4)若A,B按上述方式继续运动下去,线段AB的中点M能否与原点重合?若能,求出运动时间,并直接写出中点M的运动方向和运动速度;若不能,请说明理由.(当A,B 两点重合,则中点M也与A,B两点重合)【考点】一元一次方程的应用;数轴.【专题】几何动点问题.【分析】(1)根据A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为AB=a﹣b及线段AB的中点M表示的数为即可求解;(2)点A运动t秒后所在位置的点表示的数=运动开始前A点表示的数+点A运动的路程,点B运动t秒后所在位置的点表示的数=运动开始前B点表示的数﹣点B运动的路程;(3)设它们按上述方式运动,A、B两点经过x秒会相遇,等量关系为:点A运动的路程+点B运动的路程=18,依此列出方程,解方程即可;(4)设A,B按上述方式继续运动t秒线段AB的中点M能否与原点重合,根据线段AB 的中点表示的数为0列出方程,解方程即可.【解答】解:(1)运动开始前,A、B两点的距离为8﹣(﹣10)=18;线段AB的中点M 所表示的数为=﹣1;(2)点A运动t秒后所在位置的点表示的数为﹣10+3t;点B运动t秒后所在位置的点表示的数为8﹣2t;(3)设它们按上述方式运动,A、B两点经过x秒会相遇,根据题意得﹣10+3x=8﹣2x,解得x=,﹣10+3x=.答:A、B两点经过秒会相遇,相遇点所表示的数是;(4)由题意得,=0,解得t=2,答:经过2秒A,B两点的中点M会与原点重合.M点的运动方向向右,运动速度为每秒个单位长度.故答案为18,﹣1;﹣10+3t,8﹣2t.【点评】本题考查了一元一次方程的应用应用和数轴,解题的关键是掌握点的移动与点所表示的数之间的关系,根据题目给出的条件,找出合适的等量关系列出方程,再求解.。

七年级上期中试卷--数学 (2)

七年级上期中试卷--数学 (2)

第一学期期中考试 初 一 数 学(考试时间:100分钟 满分:120分)一、选择题:本大题共10小题;每题4分;共40分. (下列每小题中有四个备选答案;其中只有一个....是符合题意的;请将正确选项前的字母填在表格中相应的位置上)1. 1.-2的绝对值是(A) 2(B) -2 (C)21(D) ±22. 2.下列各式结果为负数的是(A)-(-2)(B) +2–3 (C)︱-2︱(D) (-2)23. 3.2008年9月25日;神舟七号飞船发射升空; 26日航天员成功出舱.舱外航天服每套造价约32 000 000元人民币;则数字32 000 000用科学记数法表示为 (A)3200×104(B) 32×106(C) 3.2×107(D) 0.32×1084. 4.如图表示负数集合与整数集合;则图中重合部分A 处可以填入的数是(A) 3(B) 0 (C) -2.65. 5.单项式 -5x 2y 的系数和次数分别是(A) 5;3 (B) -5;3 (C) 5;2 (D)-5;2 6. 6.若321b ax 与7y b a 6是同类项;则x 、y 的值分别是(A)x =1;y =6 (B)x =3;y =6(C) x =5;y =2(D) x =7;y =27. 7.一斤苹果a 元;一斤梨b 元;买5斤苹果和4斤梨共需(A) 9元(B)(a + b )元(C) (5a +4b )元 (D)9ab 元8. 8.方程5x + 1 = 3x 的解是(A)2(B) -2(C) -21(D)21负数集整数集9. 9.有理数a 、b 、c 在数轴上的位置如图所示;则下列结论错误..的是(A) b <a(B) ac <0 (C) a + b <0 (D)︱b ︱<︱c ︱10. 10.若四个不同的整数m 、n 、p 、q 满足4)7)(7)(7)(7(=----q p n m ;则qp n m +++等于 (A) 28 (B) 24 (C) 10 (D) 0二、填空题:本大题共6小题;每题4分;共24分. 11. 数字7.3482精确到0.01的近似数是_______________. 12. 已知︱m +2︱+ (3 -n )2=0;那么m =________;n=________. 13. 比较大小:109-98-.(用“>”、“=”或“<”连接) 14. -3的立方是___________;平方是81的数是 . 15. 已知a –b =–31;那么代数式1 + 2a –2b =__________________. 16. 按下图规律;在第四个方框内填入的数应为_________________.三、解答题:本大题共7小题;共56分.17. (10分)计算:(1)-–2 + 4.2 ; (2)22128(2)2⎛⎫-⨯-+÷- ⎪⎝⎭.18. (6分)计算:)1574365(60-+-⨯.-1 -2 -2 -3 -3 -4 -4 -5 -4 -3 -5 -4 -6 -5 -7 -6-14-54-132?19. (12分)化简下列各式:(1)7ab -12a -5ab ; (2)(4x 2y -5xy 2)-(7x 2y -4xy 2).20. (6分)先化简;再求值:)2(3322222y xy x y xy x -+---;其中23=x ;21-=y .21.(6分)若b a ,互为相反数;d c ,互为倒数;m 的绝对值是2;求mba ++cd m -的值.21. 22.(9分)如图;数轴上有三个点A 、B 、C ;表示的数分别是-4、-2、3;请回答:(1)若将点B 向左移动3个单位后;三个点所表示的数中;最小的数是 ; (2)若使点B 所表示的数最大;则需将点C 至少向 移动 个单位; (3)若使C 、B 两点的距离与A 、B 两点的距离相等;则需将点C 向左移动 个单位; (4)若移动A 、B 、C 三点中的两个点;使三个点表示的数相同;移动方法有 种;其中移动所走的距离和最少的是_____________个单位;(5)若在原点处有一只小青蛙;一步跳1个单位长. 小青蛙第1次先向左跳1步;第2次再向右跳3步;然后第3次再向左跳5步;第4次再向右跳7步;…;按此规律继续跳下去;那么跳第101次时;应跳 步;落脚点表示的数是 ;跳了第n 次(n 是正整数)时;落脚点表示的数是 . 23.(7分)阅读下列材料:点A 、B 在数轴上分别表示两个数a 、b ;A 、B 两点间的距离记为︱AB ︱;O 表示原点. 当A 、B 两点中有一点在原点时;不妨设点A 为原点; 如图1;则︱AB ︱=︱OB ︱=︱b ︱=︱a -b ︱;当A 、B 两点都不在原点时;① 如图2;若点A 、B 都在原点的右边时;︱AB ︱=︱OB ︱-︱OA ︱=︱b ︱-︱a ︱= b –a =︱a -b ︱; ② 如图3;若点A 、B 都在原点的左边时;︱AB ︱=︱OB ︱-︱OA ︱=︱b ︱-︱a ︱=–b –(–a ) =︱a -b ︱;③ 如图4;若点A 、B 在原点的两边时;︱AB ︱=︱OB ︱+︱OA ︱=︱b ︱+︱a ︱=–b + a =︱a -b ︱. 回答下列问题:(1)综上所述;数轴上A 、B 两点间的距离为︱AB ︱= .(2)若数轴上的点A 表示的数为2;点B 表示的数为 -3;则A 、B 两点间的距离为 ; (3)若数轴上的点A 表示的数为x ;点B 表示的数为 -1;则︱AB ︱= ;若︱AB ︱= 3;则x 的值为 ;(4)代数式32++-x x 的最小值为 ;取得最小值时x 的取值范围是 .(5)满足341>+++x x 的x 的取值范围是 .图3图4图1图2初 一 数 学 答 案(考试时间:100分钟 满分:120分)一、选择题:本大题共10小题;每题4分;共40分. 题号 1 2 3 4 5 6 7 8 9 10 答案 ABCDBDCCAA二、填空题:本大题共6小题;每题4分;共24分. 题号 11 12 13 14 15 16 答案 7.35-2;3<-27;±9132 -260二、解答题:本大题共7小题;共56分.20. (6分)解:)2(3322222y xy x y xy x -+--- = )633(322222y xy x y xy x -+--- …………………1′ = 222263332y xy x y xy x +---- …………………2′ = -2x 2-5xy +3y 2. ………………………………………4′当23=x ;21-=y 时; 原式= 0.…………………………6′21. (6分)解:因为b a ,互为相反数;所以a + b = 0. ……………1′因为d c ,互为倒数;所以cd =1. ………………………………2′ 因为m 的绝对值是2;所以m =±2. …………………………3′ 原式=m+1-m =±2-1. …………………………………5′ 所以m 的值为1或-3. ………………………………………6′22.(9分;每空1分)(1)-5;(2)左;5;(3)3或7;(4)3;7;(5)201;-101;(-1)nn .23.(7分;每空1分)(1)︱a -b ︱;(2)5;(3)1+x ;2或-4;(4)5;-3≤x ≤2;(5)x <-4或x >-1.。

人教版七年级上册期中考试数学试卷及详细答案解析(共5套)

人教版七年级上册期中考试数学试卷及详细答案解析(共5套)

人教版七年级上册期中考试数学试卷(一)一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为℃.3.用“<”“=”或“>”填空:﹣(﹣1)﹣|﹣1|.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为毫升.5.近似数2.30万精确到位.6.如果一个负数的平方等于它的相反数,那么这个数是.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为(用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 318.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= .9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= .10.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= .二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.913.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=317.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.018.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.505619.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?参考答案与试题解析一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm .【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以若水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm.故答案为:水位下降了16cm.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为310 ℃.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:白天,阳光垂直照射的地方温度高达+127℃,夜晚,温度可降至﹣183℃,所以月球表面昼夜的温差为:127℃﹣(﹣183℃)=310℃.故答案为:310℃.3.用“<”“=”或“>”填空:﹣(﹣1)>﹣|﹣1|.【考点】有理数大小比较.【分析】先依据相反数和绝对值的性质化简各数,然后进行比较即可.【解答】解:﹣(﹣1)=1,﹣|﹣1|=﹣1.∵1>﹣1,∴﹣(﹣1)>﹣|﹣1|.故答案为:>.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为 1.44×103毫升.【考点】科学记数法—表示较大的数.【分析】首先把4小时化为秒,再用时间×0.05×2计算可得答案.【解答】解:0.05×2×4×3600=1440=1.44×103,故答案为:1.44×103.5.近似数2.30万精确到百位.【考点】近似数和有效数字.【分析】近似数2.30万精确到0.01万位,即百位.【解答】解:近似数2.30万精确到百位.故答案为百.6.如果一个负数的平方等于它的相反数,那么这个数是﹣1 .【考点】有理数的乘方;相反数.【分析】设这个数为x(x<0),由于一个负数的平方等于它的相反数得到x2=﹣x,解得x=0或x=﹣1,因此这个数只能为﹣1.【解答】解:设这个数为x(x<0),根据题意得x2=﹣x,x(x+1)=0,∴x=0或x=﹣1,∴这个数为﹣1.故答案为﹣1.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为3a (用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 31【考点】列代数式.【分析】认真观察日历中,竖列相邻的三个数之间的规律,问题即可解决.【解答】解:任意圈出一竖列相邻的三个数,设中间一个数为a,则另外两个数为:a﹣7,a+7,∴这三个数之和=a+a﹣7+a+7=3a.故答案为3a.8.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= ﹣5 .【考点】多项式.【分析】根据单项式的系数和次数的定义,多项式的定义求解.【解答】解:∵x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,∴﹣p=﹣5.9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= 0 .【考点】有理数的混合运算;相反数;倒数.【分析】利用相反数,负倒数的定义求出m+n,xy与的值,代入原式计算即可求出值.【解答】解:根据题意得:m+n=0,xy=﹣1,即=﹣1,则原式=0﹣2010+2010=0.故答案为:010.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= ﹣1005a .【考点】整式的加减.【分析】首先去括号,然后再把化成(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,再合并即可.【解答】解:原式=a+3a+5a+…+2009a﹣2a﹣4a﹣6a﹣…﹣2010a,=(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,=﹣a+(﹣a)+(﹣a)+(﹣a)+…+(﹣a),=﹣1005a,故答案为:﹣1005a.二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④【考点】有理数的乘方;相反数;绝对值.【分析】根据a n表示n个a相乘,而﹣an表示an的相反数,而(﹣a)2n=a2n,(﹣a)2n+1=﹣a2n+1(n是整数)即可对各个选项中的式子进行化简,然后根据相反数的定义即可作出判断.【解答】解:①﹣(﹣2)=2,﹣|﹣2|=﹣2,故互为相反数;②(﹣1)2=1,﹣12=﹣1,故互为相反数;③23=8,32=9不互为相反数;④(﹣2)3=﹣8,﹣23=﹣8,相等,不是互为相反数.故选B.12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.9【考点】有理数的乘方.【分析】先求出(﹣3)2的值,∵32=9,(﹣3)2=9,可求出a的值.【解答】解:∵a2=(﹣3)2=9,且(±3)2=9,∴a=±3.故选C.13.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个【考点】单项式.【分析】根据单项式的定义进行解答即可.【解答】解: a2b2,是数与字母的积,故是单项式;,,a2﹣2ab+b2中是单项式的和,故是多项式;﹣25是单独的一个数,故是单项式.故共有2个.故选C.14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个【考点】有理数大小比较;数轴.【分析】根据实数的分类以及绝对值的性质即可作出判断.【解答】解:①最大的负整数是﹣1,正确;②数轴上表示数2和﹣2的点到原点的距离相等,正确;③当a≤0时,|a|=﹣a成立,正确;④a+5一定比a大,正确.故选D15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y【考点】多项式.【分析】由于多项式次数是多项式中次数最高的项的次数,项数是多项式中所有单项式的个数,由此可确定所有答案的项数和次数,然后即可作出选择.【解答】解:A、a2+﹣3是分式,故选项错误;B、32+3+1是常数项,可以合并,故选项错误;C、32+a+ab是二次三项式,故选项正确;D、x2+y2+x﹣y是二次四项式,故选项错误.故选C.16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=3【考点】解二元一次方程组;同类项.【分析】两个单项式的和为单项式,则这两个单项式是同类项再根据同类项的定义列出方程组,即可求出m、n的值.【解答】解:由题意,得,解得.故选C.17.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.0【考点】有理数的乘方.【分析】根据有理数乘方的含义,得(﹣1)2n+1=﹣1,(﹣1)2n=1,再计算求和即可.【解答】解:(﹣1)2n+(﹣1)2n+1=1+(﹣1)=0.故选D.18.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.5056【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数4.50所表示的准确值a的取值范围是4.495≤a<4.505.故选A.19.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数【考点】代数式.【分析】根据代数式,可得代数式的表达意义.【解答】解:用数学语言叙述﹣bA、比a的倒数小b的数,故A正确;B、1除以a的商与b的绝对值的差,故B错误;C、1除以a的商与b的相反数的和,故C正确;D、b与a的倒数的差的相反数,故D正确;故选:B.20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能【考点】有理数的乘法;有理数的加法.【分析】根据有理数的加法和有理数的乘法运算法则进行判断即可.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值较大,综上所述,a、b异号且负数的绝对值较大.故选B.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)【考点】整式的加减;有理数的混合运算.【分析】利用实数的运算法则和整式的运算法则即可求出答案.【解答】解:(1)原式=3.5﹣2.5﹣1.4﹣4.6=1﹣6=﹣5;(2)原式=﹣4÷(﹣64)+0.2×=+=;(3)原式=[﹣(9+4﹣18)]÷5×(﹣1)=÷5×(﹣1)=﹣;(4)原式=x﹣2x﹣2+3x=2x﹣2;(5)原式=3x2+2xy﹣4y2﹣3xy+4y2﹣3x2=﹣xy;(6)原式=4x2﹣20x﹣10x2﹣15x=﹣6x2﹣35x;22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.【考点】有理数大小比较;数轴.【分析】先在数轴上表示出各数,再按照从左到右的顺序用“<”连接起来即可.【解答】解:各点在数轴上的位置如图所示:故﹣2.5<﹣<0<1<2.5.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).【考点】数轴.【分析】(1)读出数轴上的点表示的数值即可;(2)根据两点的距离公式,即可求出A、B两点之间的距离;(3)与点A的距离为2的点有两个,一个向左,一个向右.【解答】解:(1)根据所给图形可知A:1,B:﹣2;(2)依题意得:AB之间的距离为:1+2=3;(3)设这两点为C、D,则这两点为C:1+2=3,D:1﹣2=﹣1.如图所示:24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质,可求出a、b的值,然后再去括号、合并同类项,对原代数式进行化简,最后把a,b的值代入计算即可.【解答】解:∵|a﹣4|+(b+1)2=0,∴a=4,b=﹣1;原式=5ab2﹣(2a2b﹣4ab2+2a2b)+4a2b=5ab2﹣4a2b+4ab2+4a2b=9ab2=36.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.【考点】列代数式;代数式求值.【分析】(1)根据梯形的面积=(上底+下底)×高,阴影部分的面积等于梯形的面积减去半圆的面积,列式进行计算即可得解;(2)把a=10代入(1)中的代数式进行计算即可得解.【解答】解:(1)∵梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40,半圆的直径为4a,∴阴影部分的面积=(a2+2a﹣10+3a2﹣5a﹣80)×40﹣π()2,=80a2﹣60a﹣1800﹣2a2π,=80a2﹣60a﹣1800﹣2a2×3,=74a2﹣60a﹣1800;(2)当a=10时,74a2﹣60a﹣1800=74×102﹣60×10﹣1800=5000.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据一次用的时间乘以次数,可得答案.【解答】解:(1)+10+(﹣9)+8+(﹣6)+7.5+(﹣6)+8+(﹣7)=5.5毫米,答:振子停止时所在位置距A点5.5毫米;(2)0.02×(10+|﹣9|+8+|﹣6|+7.5+|﹣6|+8+|﹣7|)=0.02×61.5=1.23秒.答:共用时间1.23秒.人教版七年级上册期中考试数学试卷(二)一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和14.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×1035.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.210.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是.12.由四舍五入法得到的近似数10.560精确到位.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= .14.请写出一个只含有想x,y两个字母的三次四项式.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.18.化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?21.小明和小红在一起玩数学小游戏,他们规定:a*b=a2﹣2ab+b2;=a+b﹣c; =ad﹣bc.请你和他们一起按规定计算:(1)2*(﹣5)的值;(2)(3).22.我国出租车的收费标准因地而异,济宁市规定:起步价为6元,3千米之后每千米1.4元;济南市规定:起步价8元,3千米之后每千米1.2元.(1)求济宁的李先生乘出租车2千米,5千米应付的车费;(2)写出在济宁乘出租车行x千米时应付的车费;(3)当行驶路程超过3千米,不超过l3千米时,求在济南、济宁两地坐出租车的车费相差多少?(4)如果李先生在济南和济宁乘出租车所付的车费相等,试估算出李先生乘出租车多少千米(直接写出答案,不必写过程).参考答案与试题解析一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣【考点】绝对值.【分析】根据正数的绝对值等于它本身即可求解.【解答】解:的绝对值是.故选A.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米【考点】有理数的减法;有理数的加法.【专题】常规题型.【分析】先定义向上爬为正,向下爬为负,用井深减去各个数就得到此时蜗牛离井口的距离.【解答】解:向上爬记作“+”,往下爬记作“﹣”蜗牛离井口的距离为10﹣3﹣(﹣1)﹣3﹣(﹣1)=10﹣3+1﹣3+1=6(米)故选C.【点评】本题考查了有理数的加减运算.计算有理数的加减,先把减法转化为加法,可以运用加法的交换律和结合律.3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和1【考点】相反数;有理数.【分析】根据相反数的概念解答即可.【解答】解:A、整数有负整数、0、正整数,故A错误;B、小于零的数是负数,故B错误;C、分数都是有理数,故C正确;D、相反数是它本身的数是非负数,故D错误;故选:C.【点评】本题考查了相反数的意义:只有符号不同的两个数互为相反数,0的相反数是0.4.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3000万用科学记数法可表示为3×107,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值【考点】有理数的乘法;正数和负数;绝对值;有理数的加法.【分析】两有理数相乘,同号得正,异号得负,因为ab<0,所以a、b异号,再根据a+b<0进一步判定负数的绝对值大于正数的绝对值.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值大于正数的绝对值.故选:D.【点评】考查了有理数的乘法,有理数的加法,本题主要利用两有理数相乘,同号得正,异号得负.6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个【考点】多项式;单项式.【分析】根据单项式和多项式的系数、次数、项数的定义可得.【解答】解:①单独的数字或字母是单项式,正确;②单项式﹣的系数是﹣,次数是2,错误;③多项式x2+x﹣1的常数项是﹣1,错误;④多项式x2+2xy+y2的次数是2,正确;故选:B.【点评】本题主要考查单项式和多项式,熟练掌握单项式的系数、次数和多项式的项数、次数、常数项等概念是关键.7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.【考点】同类项.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,结合选项进行判断.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、字母不同不是同类项,故B错误;C、相同字母的指数不同不是同类项,故C错误;D、字母相同,相同字母的指数相同,故D正确;故选:D.【点评】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y【考点】整式的加减.【分析】根据题意对两个多项式作差即可.【解答】解:(x+2y)﹣(2x﹣y)=x+2y﹣2x+y=﹣x+3y故选(A)【点评】本题考查多项式运算,要注意多项式参与运算时,需要对该多项式添加括号.9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.2【考点】代数式求值.【分析】先化简条件得a﹣2b=﹣2,再将(a﹣2b)2+2a﹣4b整理,代值即可得出结论.【解答】解:∵a﹣2b+1的值是﹣l,∴a﹣2b+1=﹣1,∴a﹣2b=﹣2,∴(a﹣2b)2+2a﹣4b=(a﹣2b)2+2(a﹣2b)=4+2×(﹣2)=0,故选C.【点评】此题是代数式求值,主要考查了整式的加减、整体思想,整体代入是解本题的关键.10.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405【考点】规律型:图形的变化类.【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n个图形中共有4(n﹣1)+1个小正方形.【解答】解:由图片可知:规律为小正方形的个数=4(n﹣1)+1=4n﹣3.n=100时,小正方形的个数=4n﹣3=397.故选B.【点评】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n个图形中共有4(n﹣1)+1个小正方形.二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是1或﹣1 .【考点】倒数.【专题】计算题.【分析】根据倒数的定义得倒数等于它本身只有1和﹣1.【解答】解:1或﹣1的倒数等于它本身.故答案为1或﹣1.【点评】本题考查了倒数:a的倒数为.12.由四舍五入法得到的近似数10.560精确到千分位.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数10.560精确到千分位.故答案为千分位.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= ﹣1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】首先根据非负数的性质:几个非负数的和等于0,则每个数等于0,从而列方程求得x和y的值,进而求解.【解答】解:根据题意得:x﹣1=0,y+2=0,解得:x=1,y=﹣2,则原式=(1﹣2)2017=﹣1.故答案是:﹣1.【点评】本题考查了非负数的性质:几个非负数的和等于0,则每个数等于0,理解性质是关键.14.请写出一个只含有想x,y两个字母的三次四项式x3+xy+y+1(答案不唯一).【考点】多项式.【分析】由多项式的定义即可求出答案.【解答】解:故答案为:x3+xy+y+1(答案不唯一)【点评】本题考查多项式的概念,属于基础题型.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是πr2﹣ab .【考点】列代数式.【分析】利用大图形面积减去小图形面积即可求出答案.【解答】解:阴影部分面积=πr2﹣ab故答案为:πr2﹣ab【点评】本题考查列代数式,涉及圆面积公式,三角形面积公式.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)【考点】有理数的混合运算.【专题】常规题型;实数.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果.【解答】解:(1)原式=10+5=15;(2)原式=﹣8××=﹣8;(3)原式=(﹣+)×(﹣)=﹣3+2﹣=﹣1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.【考点】图形的剪拼;矩形的判定与性质;梯形.【分析】(1)直接利用已知图形进而拼凑出梯形与长方形;(2)直接利用已知图形得出其周长.【解答】解:(1)如图所示:;(2)大梯形的周长为:2a+4a+2b=6a+2b(cm),长方形的周长为:2(3a+a)=8a(cm).【点评】此题主要考查了图形的剪拼,正确得出符合题意的图形是解题关键.18.(1)化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=5x+2x+y﹣x+4y=6x+5y;(2)原式=2x2﹣1+x﹣2x+2x2+6=4x2﹣x+5,当x=﹣时,原式=1++5=6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】把M与N代入3M+2N中,去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:∵M=x3﹣3xy+2x+1,N=﹣3x+xy,∴3M+2N=3(x3﹣3xy+2x+1)+2(﹣3x+xy)=3x3﹣9xy+6x+3﹣6x+2xy=3x3﹣7xy+3,当x=﹣1,y=时,原式=﹣3++3=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?【考点】数轴;正数和负数.【分析】(1)根据数轴的三要素画出数轴,并根据题意在数轴上表示出A、B、C、D、E的位置;(2)求出行驶记录的数据的绝对值的和即可;(3)根据有理数的加法进行计算即可.【解答】解:(1如图所示:取1个单位长度表示1千米,;。

七年级数学上学期期中试题试题 2_1_1_1

七年级数学上学期期中试题试题 2_1_1_1

第七中学2021-2021学年七年级数学上学期期中试题制卷人:打自企; 成别使; 而都那。

审核人:众闪壹; 春壹阑; 各厅…… 日期:2022年二月八日。

〔全卷一共五个大题,满分是150分,考试时间是是120分钟〕注:所有试题之答案必须答在答题卡上,不得在试卷上直接答题.一、选择题:〔本大题12个小题,每一小题4分,一共48分〕在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑. 1.假设向西走16米记为-16米,那么向东走37米记为A .+37米B .-37米C .-21米D .+21米 2.-8的倒数是A .8B .-8C .81 D .81- 3.%132 )2( 5)( 0|6| 3232------,)(,,--,,,在这七个数中,负数的个数为 A .2个 B .3个 C .4个 D .5个 4.多项式2x 4-x 3y 2+7是A .四次三项式B .五次三项式C .三次四项式D .三次五项式 5.以下说法正确的选项是A .有理数的绝对值都是正数B .0是单项式C .代数式分为单项式和多项式D .最小的整数是0 6.由四舍五入法得到近似数78,那么以下各数中,可能是它原数的是A .77.49B .78.5C .78.49D .77.097.某服装店新开张,第一天销售服装a 件,第二天的销售件数是第一天销售件数的3倍还多10件,那么第二天销售了A .(a +10)件B .(3a +13)件C .(10a +3)件D .(3a +10)件 8.当x =-1时,那么代数式x 3-2x +1的值是A .2B .-2C .6D . 0 9.代数式3x 2y -4x 3y 2-5xy 3-1按x 的升幂排列,正确的选项是A .-4x 3y 2+3x 2y -5xy 3-1 B .-5xy 3+3x 2y -4x 3y 2-1 C .-1+3x 2y -4x 3y 2-5xy 3D .-1-5xy 3+3x 2y -4x 3y 210.实数a ,b 在数轴上的位置如下图,以下各式正确的选项是A .a > 0B .-b > 0C .-a < bD .-a >-b11.假如a +b <0,ab <0,a > b ,那么A .a >0,b <0,a >bB .a <0,b >0,a >bC .a >0,b <0,a <bD .a <0,b >0,a <b12.在计算机程序中,二叉树是一种表示数据构造的方法,如图,一层二叉树的结点总数为1,二层二叉树的结点总数为3,三层二叉树的结点总数为7,……,照此规律, 八层二叉树的结点总数为A .256B .255C .127D .126b二、填空题:〔本大题6个小题,每一小题4分,一共24分〕请将每一小题之答案直接填在答题卡中对应的横线上. 13.-51的相反数是 . 14.单项式-3m 2n 的系数为 .15.大剧院的大、中剧场一共可包容2790人,其中数据2790用科学计数法表示为 .16.购置了一批图书,一共a 箱,每箱有b 册.将这批图书的一半捐给社区,那么捐给社区的图书有册〔用含a 、b 的代数式表示〕.17.假设x +y =8,xy =7,那么代数式3xy -x -y +4的值是 .18.初一某班以6个同学为一组,一一共分了n 组.在捐书活动中,各组捐书的本数按一定规律增加,第1组捐了10本,第2组捐了13本,第3组捐了16本,…,第n 组捐的本数比第1组的3倍还多1本,由此可知该班一一共有学生 人.三、解答题:〔本大题2个小题,每一小题7分,一共14分〕解答时每一小题必须给出必要的演算过程或者推理步骤,请将解答书写在答题卡中对应的位置上. 19.计算:135—(+)+(+138)-(-1.7))213(+-.20.请将以下各数在数轴上表示出来:22,0,1--,四、解答题:〔本大题4个小题,每一小题10分,一共40分〕解答时每一小题必须给出必要的演算过程或者推理步骤,请将解答书写在答题卡中对应的位置上. 21.计算:〔1〕74(49)()(8)47-÷⨯-÷-; 〔2〕2222532ab b a ab b a +--22.先化简,再求值:)(2)2(3222x xy xy x x -+--,其中0)2(32=-++y x .23.列式并计算: 〔1〕-1减去65-与83-的和,所得的差是多少?〔2〕一个多项式减去235m mn +得mn n 422--,求这个多项式.24.小李家住房构造如下图,小李打算把主卧室、次卧室和客厅铺上强化木地板,把 厕所和厨房铺上地砖.请解答以下问题︰〔1〕客厅的面积为 , 厨房的面积为 , 次卧室的面积为 , 主卧室的面积为 ,这所住宅的总面积为 ;〔2〕假设铺1平方米强化木地板平均费用115元, 铺1平方米地砖平均费用60元,当x =6米时,客厅主卧次卧室 厨厕x24224题图求这套住宅铺木地板和地砖的总费用.五、解答题:〔本大题2个小题,每一小题12分,一共24分〕解答时每一小题必须给出必要的演算过程或者推理步骤,请将解答书写在答题卡中对应的位置上.25.A、B两地果园分别有苹果30吨和40吨,C、D两地分别需要苹果20吨和50吨;从A、B到C、D〔1〕假设从A果园运到C地的苹果为10吨,那么从A果园运到D地的苹果为吨,从B果园运到C地的苹果为吨,从B果园运到D地的苹果为吨,总运输费为元;〔2〕假设从A果园运到C地的苹果为x吨,求从A果园运到D地的苹果的吨数以及从A果园将苹果运往D地的运输费用;〔3〕假设从A果园运到C地的苹果为x吨,用含x的式子表示出总运输费.26.某出租车收费HY如下:3公里以内〔含3公里〕收费10元,超过3公里但没超过10公里的局部每公里收费2元.超过10公里以上的局部每公里收费3元.〔不足1公里以1公里计算〕〔1〕一次性乘坐出租车行驶6.1公里应付车费元,一次性乘坐出租车行驶12.9公里应付车费元;〔2〕假设一次性乘坐出租车x公里(x恰巧为整数),用含x的代数式写出当3<x≤10和x>10时,应付的车费;〔3〕小明家间隔 14.1千米,他想坐出租车从回家,请问怎样乘坐才最钱?小明身边带了36元钱,钱够吗?假如够,还剩多少钱?假如不够,他除了乘坐出租车,至少还要步行多少公里路?二、填空题:〔每一小题4分,一共24分〕三、解答题:〔本大题2个小题,每一小题7分,一共14分〕解答时每一小题必须给出必要的演算过程或者推理步骤.20.请将以下各数在数轴上表示出来.22,0,1--,)213(+-.32O〔0表示正确给1分,其余3个数表示正确各2分〕四、解答题:〔本大题4个小题,每一小题10分,一共40分〕解答时每一小题必须给出必要的演算过程或者推理步骤. 21.计算:〔1〕74(49)()(8)47-÷⨯-÷- 解:原式=81747449⨯⨯⨯- ……………………3分 =-2 ……………………5分〔2〕2222532ab b a ab b a +-- 解:原式=2a 2b -a 2b -3ab 2+5ab2……………………2分=a 2b +2ab 2……………………5分〔最后合并同类项,错1个扣2分〕24.〔1〕客厅的面积为 x 2,厨房的面积为 6 , 次卧室的面积为 3x -6 ,主卧室的面积为 4x -4 ,这所住宅的总面积为 x 2+7x +2 ; …………………5分客厅主卧室 次卧室 厨房 厕所 xx 3 2 1 34224题图〔2〕客厅+次卧室+主卧室 =x 2+(3x -6)+(4x -4)=x 2+7x -10 …………………7分 当x =6米时,x 2+7x -10=62+7×6-10=68而厕所+厨房=6+6=12 …………………8分所以总费用=68×115+12×60=8540(元) …………………10分答:这套住宅铺木地板和地砖的总费用为8540元.五、解答题:〔本大题2个小题,每一小题12分,一共24分〕解答时每一小题必须给出必要的演算过程或者推理步骤.〔3〕B果园运到C地的费用为10(20-x) …………9分B果园运到D地的费用为9×[40-(20-x)] …10分总费用=15x+(360-12x)+10(20-x)+9×[40-(20-x)]=15x+360-12x+200-10x+9x+180=2x+740﹙元﹚……………………12分日期:2022年二月八日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上数学期中考试试卷(二)
一、填得圆圆满满(每小题3分,共30分)
1.-1-(-3)= 。

2.-0.5的绝对值是 ,相反数是 ,倒数是 。

3.单项式22
xy π的系数是 ,次数是 。

4.若逆时针旋转90o 记作+1,则-2表示 。

5.如果a 、b 互为相反数,x 、y 互为倒数,那么(a+b )x y -xy+a 2-b 2
= 。

6.在数轴上,点A 表示数-1,距A 点2.5个单位长度的点表示的数是 。

7.灾难无情人有情!某次在抗震救灾文艺汇演中,各界艺人和人士为地震灾区人民捐款捐物达349.8万元。

将这个数字用科学计数法表示并保留三个有效数字为 元。

8.长方形的长是a 米,宽比长的2倍少b 米,则宽为 米。

9.若m 、n 满足2)3(2++-n m =0,则.__________=m n
10.某厂10月份的产值是125万元,比3月份的产值的3倍少13万元,若设3月份的产值为x 万元,则可列出的方程为
二、做出你的选择(每小题3分,共30分)
11.如果向东走2km 记作+2km ,那么-3km 表示( ).
A.向东走3km
B.向南走3km
C.向西走3km
D.向北走3km
12.下列说法正确的是( C )
A.x 的系数为0
B. a
1
是一项式 C.1是单项式 D.-4x 系数是4 13.下列各组数中是同类项的是( )
A.4x 和4y
B.4xy 2和4xy
C.4xy 2和-8x 2y
D.-4xy 2和4y 2
x
14.下列各组数中,互为相反数的有( ) ①2)2(----和 ②221)1(--和 ③2332和 ④332)2(--和
A.④
B.①②
C.①②③
D.①②④
15.若a+b<0,ab<0,则下列说法正确的是( )
A.a 、b 同号
B.a 、b 异号且负数的绝对值较大
C.a 、b 异号且正数的绝对值较大
D.以上均有可能
16.下列计算正确的是( )
A.4x-9x+6x=-x
B.xy-2xy=3xy
C.x 3-x 2=x
D.21a-21
a=0 17.数轴上的点M 对应的数是-2,那么将点M 向右移动4个单位长度,此时点M 表示的数是( )
A. -6
B. 2
C. -6或2
D.都不正确
18.若x 的相反数是3,5y =,则x+y 的值为( ).
A.-8
B. 2
C. 8或-2
D.-8或2
19.若 3x=6,2y=4则5x+4y 的值为( )
A.18
B.15
C.9
D. 6
20.若-3xy 2m 与5x 2n-3y 8的和是单项式,则m 、n 的值分别是( )
A.m =2,n =2
B.m =4,n =1
C.m =4,n =2
D.m =2,n =3
三、用心解答(共60分)
21.(16分)计算
(1) -26-(-15) (2)(+7)+(-4)-(-3)-14
(3)(-3)×31
÷(-2)×(-21) (4)-(3-5)+32
×(-3)
22.解方程(本题8分)
(1)x+3x= -12 (2)3x+7=32-2x
23.(6分)将下列各数在数轴上表示出来,并用“<”连接:
-22, -(-1), 0,3- , -2.5
24.(6分)若a 是绝对值最小的数,b 是最大的负整数。

先化简,再求值:
)33()2(22222b ab a b ab a ++-+--
25.(6分)列方程解应用题。

把一批图书分给某班学生阅读,如果每人分3本,则剩余20本,如果每人分4本,则还缺25本。

这个班有多少名学生?
26.(9分)出租车司机小李某天上午营运时是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午所接六位乘客的行车里程(单位:km)如下:-2,+5,-1,+1,-6,-2,问:
(1)将最后一位乘客送到目的地时,小李在什么位置?
(2)若汽车耗油量为0.2L/km(升/千米),这天上午小李接送乘客,出租车共耗油多少升?(3)若出租车起步价为8元,起步里程为3km(包括3km),超过部分每千米1.2元,问小李这天上午共得车费多少元?
27.(9分)从2开始,连续的偶数相加,它们和的情况如下表:
(1)若n=8时,则 S的值为_____________.
(2)根据表中的规律猜想:用n的式子表示S的公式为:
S=2+4+6+8+…+2n=____________.
(3)根据上题的规律计算2+4+6+8+10+…+98+100的值.
试题答案
一填得圆圆满满(每小题3分,共30分)
1、2
2、0.5 ,0.5,-2
3、2π
,3 4、顺时针旋转180o
5、-1
6、-3.5或1.5
7、3.50×106
8、2a-b 9、9 10、3x-13=125
二.做出你的选择(每小题3分,共30分)
11、C 12、C 13、D 14、B 15、D 16、D 17、B 18、
D 19、A 20、C
三、用心解答(共60分)
21、(16分)(1)-11 (2)8 (3)-4
1 (4)-25 22、(8分)(1)x=-3 (2)x=25
23、(6分)-22<-2.5<0<-(-1)<3-
24、(6分)解:由题意,得 a =0,b =-1
原式=2a 2-4ab -2b 2-a 2+3ab +3b 2
=a 2-ab +b 2
当a =0,b =-1时, 原式=(-1)2=1
25、(6分)这个班有45名学生
26、(9分)解:(1)-2+5-1+1-6-2=-5
答:小李在起始的西5km 的位置 (2)261152-+-+++-+++-
=2+5+1+1+6+2=17 17×0,2=3.4
答:出租车共耗油3.4升
(3)6×8+(2+3)×1.2=54
答:小李这天上午共得车费54元。

27、(9分)(1)72; (2)(1)n n +;
(3)2+4+6+8+10+…+98+100=50×51=2550。

相关文档
最新文档