超临界流体萃取技术简介
超临界流体萃取仪
• 引言 • 超临界流体萃取仪的基本原理 • 超临界流体萃取仪的应用领域 • 超临界流体萃取仪的优势与局限性 • 超临界流体萃取仪的实际应用案例 • 结论
01
引言
主题简介
01
02
03
定义
超临界流体萃取仪是一种 利用超临界流体作为萃取 剂,从固体或液体中提取 有效成分的设备。
工作原理
萃取原理和技术流程
原理
超临界流体萃取利用超临界流体的特 殊性质,通过调节压力和温度,使目 标组分从原料中溶解并随流体流动, 最终通过分离器分离出纯化的组分。
技术流程
超临界流体萃取主要包括萃取、分离 和回收三个步骤,通过控制萃取条件 ,如压力、温度和流速等,实现目标 组分的有效提取和分离。
ห้องสมุดไป่ตู้
仪器的工作原理和结构
环保节能
超临界流体萃取技术不需要有机溶剂, 减少了环境污染和能源消耗,符合绿 色化学的发展趋势。
02
超临界流体萃取仪的基本原理
超临界流体的定义和特性
定义
超临界流体是指物质在高于其临 界温度和临界压力的状态下的特 殊流体状态。
特性
超临界流体具有高密度、低粘度 、高扩散系数和良好的溶剂化能 力等特性,使其成为萃取和分离 的理想介质。
中药挥发油提取
超临界流体萃取技术能够完整地提取中草药中的挥发油成分,保持其原有药效和 香气。
环境样品处理
土壤有机物提取
超临界流体萃取技术能够提取土壤中 的有机污染物,如多环芳烃、有机氯 农药等,为环境监测和治理提供技术 支持。
水体有机物分离
超临界流体萃取技术可用于水体中有 机污染物的分离和富集,如持久性有 机污染物、内分泌干扰物质等。
超临界萃取技术
1.超临界流体萃取的简介超临界流体萃取(Supercritical fluidextraction,简称SFE)是用超临界条件下的流体作为萃取剂,由液体或固体中萃取出所需成分(或有害成分)的一种分离方法。
超临界流体(Supercritical fluid,简称SCF)是指操作温度超过临界温度和压力超过监界压力状态的流体。
在此状态下的流体,具有接近于液体的密度和类似于液体的溶解能力,同时还具有类似于气体的高扩散性、低粘度、低表面张力等特性。
因此SCF具有良好的溶剂特性,很多固体或液体物质都能被其溶解。
常用的SCF有二氧化碳、乙烯、乙烷、丙烯、丙烷和氨等.其中以二氧化碳最为常用。
由于SCF在溶解能力、传递能力和溶剂回收等方面具有特殊的优点.而且所用溶剂多为无毒气体.避免了常用有机溶剂的污染问题。
早在100多年前,人们就观察到临界流体的特殊溶解性能,但在相当长时间内局限于实验室研究及石油化工方面的小型应用。
直到20世纪70年代以后才真正进入发展高潮。
1978年召开了首届专题讨论会,1979年首台工业装置投入运行,标志着超临界萃取技术开始进入工业应用。
超临界萃取之所以受到青睐,是由于它与传统额液-液萃取或浸取相比,有以下优点:①萃取率高;②产品质量高;③萃取剂易于回收;④选择性好。
1.超临界萃取的基本原理1.1.超临界流体特性所谓超临界流体(SCF),是指一类压强高于临界压强Pc,温度高于临界温度Tc,的流体,这种流体既不是液体,也不是气体,是一类特殊的流体。
超临界流体的物性较为特殊。
表1将超临界流体的这些物性与气体、液体的表1超临界流体的物性及与普通流体物性的比较相应值作了比较。
从表中可以看出:①超临界流体的密度接近于液体密度,而比气体密度高得多。
另一方面.超临界流体是可压缩的,但其压缩性比气体小得多;②超临界流体的扩散系数与气体的扩散系数相比要小得多,但比液体的扩散系数又高得多;③超临界流体的粘度接近于气体的粘度,而比液体粘度低得多。
超临界流体萃取技术
超临界流体萃取技术概述超临界流体萃取技术是一种利用超临界流体作为溶剂的分离技术。
超临界流体是介于气体和液体之间的一种物质状态,在超临界状态下具有较高的溶解能力和扩散性能,因此被广泛应用于化工、制药、食品等领域的分离与提纯过程中。
本文将介绍超临界流体的基本概念、特点以及在萃取过程中的应用。
同时,还将探讨超临界流体萃取技术的优点和局限性,并结合实际案例进行分析。
超临界流体的基本概念超临界流体指的是在临界点之上的高压高温条件下,流体达到临界状态。
在超临界状态下,物质的密度和粘度等性质与传统液体和气体有明显差异,具有较高的溶解能力和扩散性能。
常用的超临界流体包括二氧化碳、水蒸汽、乙烯等。
与传统的有机溶剂相比,超临界流体作为溶剂具有以下优点:•高溶解能力:超临界流体的溶解能力比传统有机溶剂高,可以溶解更多的物质。
•可控性强:通过调节温度和压力等条件,可以控制溶解度和提取速度。
•萃取效率高:超临界流体在溶解物质后,可以通过调节温度或者减压来实现溶剂的快速脱失,从而提高萃取效率。
•环保可持续:超临界流体一般是可再生的,可以循环利用。
超临界流体萃取技术的应用超临界流体萃取技术在许多领域都得到了广泛的应用,以下是一些常见的应用场景:化工领域超临界流体萃取技术在化工领域用于分离和纯化特定化合物,常见的应用包括:•油脂提取:利用超临界流体(常用的是二氧化碳)可以高效地从植物油中提取脂肪酸、甘油等有机成分,用于制备食用油或者化妆品等产品。
相比传统的溶剂提取方法,超临界流体提取技术更加环保,不会产生有机溶剂残留。
•天然色素提取:超临界流体提取技术也可以应用于从天然植物中提取色素,用于食品、化妆品和纺织品等行业。
•聚合物分离:超临界流体还可以用于聚合物的分离和纯化,提高聚合物的纯度和质量。
制药领域在制药领域,超临界流体萃取技术被广泛应用于药物分离、纯化和微粒制备等方面,常见的应用包括:•天然药物提取:超临界流体提取技术可以高效地从天然植物中提取药物成分,用于药物生产和研发。
超临界流体萃取技术
在食品分析方面的应用: 7 在食品分析方面的应用 : 1988年,国际上推出 了第一台商品化的超临界流体萃取(SFE)仪, 早期 主要用于食品分析,如食用香料,脂肪油脂,维生素 等,采用超临界技术分析,能节省时间,节约化学试 剂,排除溶剂干扰,减少人身伤害。紫外(UV)和常 压化学解离质谱法(APCIMS) 的填充柱超临界流 体色谱法(PS-FC),是鉴别和定量测定β-兴奋剂的 通用方法,对于牛肝样品的β-兴奋剂,该法显示出 良好的回收率和较低的交量(RSD <15%) ,此法还 可用于双氯醇胺和柳丁氨醇的测定。对于农药 残留的测定,特别是水中碳硫化合物的测定,超临 界萃取法比较迅速 。对于中药有效成分的分析, 超临界萃取也有应用。
啤酒花有效成分的提取: 2 啤酒花有效成分的提取:1982 年,西德 HEG 公司建造的工业规模超临界萃取啤 酒花生产线投入生产。用有机溶剂萃取 的啤酒花萃取液,色泽暗绿,成分复杂,且残 留有机溶剂。如采用CO2 超临界萃取,萃 取液颜色为橄榄绿色,不仅萃取率高,芳香 成分也不被氧化,而且可避免萃取农药。
一、超临界流体萃取的原理
超临界流体(SCF)是指处于临界温度(Tc)和临界压力(Pc) 以上,其物理性质介于气体与液体之间的流体。这种 流体(SCF)兼有气液两重性的特点,它既有与气体相当 的高渗透能力和低的粘度,又兼有与液体相近的密度 和对许多物质优良的溶解能力。溶质在某溶剂中的溶 解度与溶剂的密度呈正相关,溶质在SCF中的溶解度也 与此类似。因此,通过改变压力和温度,改变SCF的密 度,便能溶解许多不同类型的物质,达到选择性地提 取各种类型化合物的目的。
植物油脂的萃取: 3 植物油脂的萃取:油茶是我国重要的木本 食用油料,我国传统的茶油制取一般采用压 榨法和浸出法,前者残油率高,后者味差色深。 如用超临界CO2 萃取,所得油的颜色、外观, 理化指标均优于溶剂法,且提取率高,杂质少, 水分低,无需精炼。与此相类似的还有利用 超临界萃取豆油、菜籽油、米糠油、棕榈 油、茶籽油、玉米胚芽油、杏仁油、紫苏 油、花生油、山苍子油。另外,采用超临界 萃取技术提取微生物油脂也是近年来研究 的热点,如孢霉菌丝体油脂提取的研究已取 得进展。
二氧化碳超临界流体萃取技术简介
常见临界流体萃取辅助剂
被萃取物 咖啡因 单甘酯 亚麻酸
青霉素G钾盐 乙醇 豆油
菜子油 棕榈油 EPA ,DHA
超临界流体
CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2
辅助剂 水
丙酮 正己烷
水 氯化锂 己烷,乙醇
丙烷 乙醇 尿素
超临界流体旳选择性
超临界流体萃取技术
(Supercritical Fluid Extraction,SFE)
物质有三种状态: 气态、液态、固态 流体状态
物质旳第四态:超临界状态
临界温度:每种物质都有一种特定 温度,在这个温度以上,不论怎样 增大压强,虽然密度与液态接近, 气态物质也不会液化。这个温度称 为物质旳临界温度。
④ 化合物旳相对分子量越高,越难萃取。
分子量在200~400范围内旳组分轻易萃 取,有些低相对分子质量、易挥发成份甚 至能够直接用二氧化碳液体提取;高分子 量物质(如树胶、蜡等)则极难萃取。
超临界CO2是非极性溶剂,在许 多方面类似于己烷,对非极性旳脂 溶性成份有很好旳溶解能力,对有 一定极性旳物质(如黄酮、生物碱 等)旳溶解性就较差。其对成份旳 溶解能力差别很大,主要与成份旳 极性有关,其次与沸点、分子量也 有关。
3 扩散系数比气体小,但比液体高一到 两个数量级,具有很强旳渗透能力
4 SCF旳介电常数,极化率和分子行为 都与气液两相都有明显差别
总之,超临界流体不但具有液体 旳溶解能力,也具有气体旳扩散和 传质能力
超临界流体萃取
(Supercritical Fluid Extraction,SFE)
超临界流体萃取是利用超临 界流体作萃取剂,从液体或固体 中萃取出某些成份并进行分离旳 技术。
超临界流体萃取
十二、应用前景
• 我国资源丰富,用超临界萃取有广泛的应用前景。 许多都可以用超临界流体技术进行加工,如:银 杏叶、鱼油、卵磷脂、沙棘油、川芎等。大力开 展这方面的研究,能获得很高的经济效益。超临 界萃取技术的应用,除对环境污染少、操作简便、 温度低、省时、提高收率外,还能得到许多种常 规法得不到的成分,这也为我国中药材化学成分 的提取和分离提供了一种有效方法。相信随着人 们对环境保护的日益重视和绿色时代的要求,超 临界流体技术将促进其进一步的开发和利用
二、发展现状
• 最早将超临界CO2萃取技术应用于大规模生产的是 美国通用食品公司,之后法、英、德等国也很快 将该技术应用于大规模生产中。90年代初,中国 开始了超临界萃取技术的产业化工作,发展速度 很快。实现了超临界流体萃取技术从理论研究、 中小水平向大规模产业化的转变使中国在该领域 的研究应用已同国际接轨,在某些地方达到了国 际领先水平。目前,超临界流体萃取已被广泛应 用于从石油渣油中回收油品、从咖啡中提取咖啡 因、从啤酒花中提取有效成分等工业中。
超临界流体萃取
一、概述
• 超临界流体萃取是一种新型提取技术,它利用超 临界条件下的气体做萃取剂,从液体或固体中萃 取出某些成分并进行分离技术。超临界条件下的 气体,也称为超临界流体(SF),是处于临界温 度(Tc)和临界压力(Pc)以上,以流体形式存 在的物质。通常有二氧化碳、氮气、氧化二氮、 乙烯、三氟甲烷等。 • 超临界流体(Supercritical fluid,简称SCF)是指操 作温度超过临界温度和压力超过监界压力状态的 流体。
5.5.超临界流体的极性可以改变
• 超临界流体的的密度和介电常数随着密闭体系压 力的增加而增加,极性增大,只要改变压力,即 可提取不同极性的物质,可选择范围广。
超临界流体萃取技术
超临界流体萃取技术引言超临界流体萃取技术(Supercritical fluid extraction, SFE)是一种利用超临界流体对固体样品进行萃取的过程。
超临界流体是介于气体和液体之间的状态,在这种状态下具有类似于气体的低粘度和高扩散性,以及类似于液体的高溶解性。
超临界流体萃取技术在许多领域中得到了广泛应用,例如食品、医药、化妆品等行业。
超临界流体的特性超临界流体具有以下几种独特的特性:1.低粘度:超临界流体的黏度比液体低,因此在流体中的质量传递速度更快。
2.高扩散性:超临界流体的粒子间距比液体小,因此分子在流体中的扩散速度更快。
3.高溶解性:超临界流体具有较高的溶解度,能够更好地溶解固体样品。
4.可调性:超临界流体的溶解度可以通过调整温度和压力来控制,从而实现对萃取过程的精确控制。
超临界流体萃取技术的原理超临界流体萃取技术的原理基于超临界流体的特性。
在该技术中,固态样品首先与超临界流体接触,随着温度和压力的上升,样品中的目标化合物被溶解在超临界流体中。
然后,通过降低温度和压力,从超临界流体中分离出目标化合物。
超临界流体萃取技术常用的超临界流体包括二氧化碳(CO2)和乙烷(C2H6)等。
这些超临界流体在超临界状态下具有较好的溶解性和选择性,能够有效地提取出目标化合物。
超临界流体萃取技术的应用超临界流体萃取技术在许多领域中得到了广泛应用。
食品行业超临界流体萃取技术可以用于食品中有机溶剂残留的提取。
超临界流体能够高效地去除有机溶剂,同时保持食品的营养成分和风味。
医药行业超临界流体萃取技术可以用于药物成分的提取和纯化。
超临界流体能够高效地提取药物成分,同时减少对环境的污染。
化妆品行业超临界流体萃取技术可以用于提取植物精华和天然色素,用于化妆品的生产。
环境监测超临界流体萃取技术可以用于环境中有机污染物的提取和测定。
超临界流体能够高效地提取有机污染物,并且对环境无毒性。
超临界流体萃取技术的优势超临界流体萃取技术相比传统的溶剂提取方法具有以下几个优势:•高效性:超临界流体能够高效地提取目标化合物,减少提取时间和成本。
超临界萃取
超临界萃取
超临界萃取是一种利用超临界流体(通常是超临界二氧化碳)作为
溶剂进行提取的技术。
超临界流体具有介于气体和液体之间的特性,具有较高的溶解力和低的粘度。
超临界萃取被广泛用于从天然产物
中提取化学物质,如药物、天然香料和植物提取物。
超临界萃取的过程是将待提取物料与超临界流体接触,在高压和高
温条件下进行混合和溶解。
随后,通过降压或降温来使溶液回到常
压下,提取物则会从溶液中析出。
这种技术具有以下几个优点:
1. 高选择性:超临界萃取可以根据物质的溶解度和分配系数来实现
有选择性的提取。
2. 高效性:超临界萃取过程通常较快,可以在短时间内完成大量提取。
3. 无残留溶剂:超临界流体通常可以通过减压来回收和重复使用,
因此没有残留的溶剂产生。
4. 温和条件:超临界萃取通常在相对温和的条件下进行,对物质的
活性和稳定性影响较小。
由于这些优点,超临界萃取已被广泛应用于食品、医药、化工和环保等领域。
它在提取高附加值产品、减少有机溶剂使用、替代传统萃取技术等方面具有重要的应用前景。
超临界流体萃取技术
超临界流体萃取技术史丽岩 1 史景明 2 张先海31,2梨树县第二人民医院 (吉林梨树 136502)3 吉林省第二荣复军人医院[中图分类号]R943 [文献标识码]A [文章编号]1810-5734(2010)9-0096-021 引言早在1879年,Hannay等就发现超临界流体(supercritical fluid,SCF)具有显著的溶解能力,但超临界流体取(supercritical fluid extraction,SFE)却是在近30年来迅速发展起来的一种分离技术[1,2]。
2 超临界萃取的原理特点2.1 超临界流体萃取技术是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。
在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地依次把极性大小、沸点高低和相对分子质量大小不同的成分萃取出来。
2.2 SFE的萃取速率和范围更为扩大,具有以下特点:2.2.1 超临界萃取兼有精馏和液液萃取的某些特点。
2.2.2 超临界流体的萃取能力取决于流体密度,因而可方便地通过调节温度和压力来控制,这对保证产品质量的稳定是非常有利的。
2.2.3 萃取剂可循环使用,其分离与回收方法远比精馏和液液萃取简单,且能耗较低。
2.2.4 超临界流体萃取的操作温度与萃取剂的临界温度有关。
3 超临界萃取的主要影响因素3. 1 萃取压力萃取压力是SC-CO2萃取的最重要工艺参数之一。
不同原料在不同超临界条件下的溶解度曲线表明,萃取物在SC-CO2中的溶解度与SC-CO2的密度密切相关,而萃取压力是改变超临界流体对物质溶解能力的重要参数,这种溶解度与萃取压力的关系构成SC-CO2流体萃取过程的基础[3,4]。
3. 2 萃取温度萃取温度是影响SC-CO2密度的另一个十分重要的参数,对SC-CO2流体萃取过程的影响要复杂得多。
在一定萃取压力下,萃取温度对植物萃取的影响有两种趋势:一是随温度的升高,收率逐渐增加,当超过一定温度时,又逐渐下降,这种情况在萃取压力较高时出现。
超临界萃取技术
超临界流体技术研究新进展
SCF萃取精馏技术
在原超临界CO2萃取系统加上一支精馏柱,构成 “萃取釜+精馏柱+分离釜”系统,使超临界CO2的 分离效果得到大大改善。由于许多物质在超临界 CO2中的溶解度随温度的升高而下降,所以一般超 临界CO2 精馏的精馏柱的温度分布是下面低温上面 高温,压力不变,通常采用轴向变温分四段加热。 随着携带有萃取物的CO2自下而上的流动,不断会 有一些组分因溶解度降低而被“淘汰”,并聚集形 成内回流。只有溶解度高的组分才会通过精馏柱在 分离釜中被回收。
CO2流量增加时,其与料液的接触搅 拌作用增强,传质系数和接触面积都相应 增加,改善流体在物料中的流动状态,提 高传质效率。但流量过大时,CO2 耗量增 加,提高生产成本。
影响超临界流体萃取的因素
5、萃取时间
CO2流量一定时,随萃取时间延长, 萃取物的得率增加。但当萃取一定时间后, 由于萃取对象中待分离成分含量减少而使 萃取率逐渐下降,再延续时间,则总萃取 量无明显变化。因此,在确定萃取时间时, 应综合考虑设备能耗和萃取率的关系。
超临界流体萃取的设备及工艺
典型超临界流体萃取设备流程
下图是南通华安超临界萃取有限公司 生产的一种通用流程的萃取设备
超临界流体萃取的设备及工艺
四、超临界流体 技术研究新进展
超临界流体技术研究新进展
超临界流体萃取精馏富集多不饱和脂肪酸 超临界流体制备超细颗粒技术
超临界流体技术的其它利用
超临界流体萃取的原理及特点
操作参数主要为压力和温度,而这两者比
较容易控制。在临界点附近,压力和温度 的微小变化将会引起流体密度很大变化, 并相应地表现为溶解度的变化。因此,可 以利用压力、温度的变化来实现萃取和分 离的过程。即在较高的压力下,将溶质溶 解于流体之中,然后降低流体溶液的压力 或升高流体溶液的温度,使溶解于超临界 流体中的溶质因其密度下降,溶解度降低 而析出,从而实现特定溶质的萃取与分离。
超临界流体萃取技术
1
(一)超临界流体萃取技术概述
一.超临界流体的概念
物质有三中状态,气态,液态和固态。 物质有三中状态,气态,液态和固态。 除了这三中常见的状态外物质还有另外的 一些状态, 如等离子状态、 一些状态 , 如等离子状态 、 超临界状态 等。
2
温度超过374.4℃, 温度超过374.4℃,水分子有足够的能量来抵抗压力升高的 374.4℃ 压迫,使分子之间保持一定的距离,而不变成液体状态。 压迫,使分子之间保持一定的距离,而不变成液体状态。 无论压力有多高,水分子之间的距离尽管会缩小, 无论压力有多高,水分子之间的距离尽管会缩小,水蒸气的 密度尽管会增大,但无论如何,分子之间都有一定的距离。 密度尽管会增大,但无论如何,分子之间都有一定的距离。 水蒸气的压力大到使其密度与液态的水相接近, 水蒸气的压力大到使其密度与液态的水相接近,它也不会液 这个温度称为水的临界温度(374.4℃), ),与临界温度 化。这个温度称为水的临界温度(374.4℃),与临界温度 相对应的压力称为水的临界压力(22.2MPa), ),水的临界温 相对应的压力称为水的临界压力(22.2MPa),水的临界温 度和临界压力就构成了水的临界点。 度和临界压力就构成了水的临界点。 水处于温度374.4℃以上,压力22.2MPa以上的状态时, 374.4℃以上 22.2MPa以上的状态时 水处于温度374.4℃以上,压力22.2MPa以上的状态时,就称 这种水处于超临界状态,也可以称之为超临界水。 这种水处于超临界状态,也可以称之为超临界水。超临界状 态下水是一种特殊的气体, 态下水是一种特殊的气体,它的密度与液态水相接近而又保 留了气体的性质,我们把它称着“稠密的气体” 留了气体的性质,我们把它称着“稠密的气体”。 为了与水的一般形态相区别, 为了与水的一般形态相区别,这种水即不称为气体也不称为 液体,而称为“流体” 即水的超临界流体。 液体,而称为“流体”,即水的超临界流体。
超临界流体萃取技
3.萃取方法分类
动态法:简单、方便、快捷,适合于萃取在超临界流体萃取 剂中溶解度很大的物质,用品基体很容易被超临界流体渗 透。 静态法:适合于萃取与样品基体较难分离或在萃取剂流体内 溶解度不大的物质,也适合与用品基体较为致密,超临界 流体不易渗透的场合,但萃取速度较慢。 夹带剂:由于超临界CO2 是非极性流体,其萃取能力受到限 制。单纯一种CO2 只能萃取非极性或极性较低的物质,当 有较强极性物质存在于被萃取的物质中时,萃取效果不明 显,当加入某些夹带剂(也称提携剂或共溶剂),如乙醇、 甲醇、水、丙酮、氯仿等极性小分子物质后,超临界CO2 的萃取能力明显增强。
(2)不同夹带剂浓度对姬松茸酚萃取率的影响
(3)不同萃取压力及萃取时间对姬松茸酚萃取率的影响
以60%乙醇作夹带剂,在萃取温度65℃、分离I温度45℃、 分离I 压力10MPa、分离II 温度35℃、分离II 压力4~6MPa、 CO2 流量为25L/h、夹带剂用量60ml条件下,分别测定压力 为25~45MPa 时萃取样品3h(每20min 收集1 次萃取物)后 酚类物质的萃取率
实验设计
采用单因素试验:对夹带剂的种类、乙醇浓度、萃取压力、萃 取时间、CO2 流速、夹带剂用量和萃取温度等进行单因素实 验。 (1)无夹带剂、乙醇、丙酮、甲醇、石油醚考查适宜萃取姬松 茸多酚的夹带剂种类
在萃取压力30MPa、萃取温度65℃、分离I 温度45℃、分 离I 压力10MPa、分离II 温度35℃、分离II 压4~6MPa、 CO2 流量为25L/h 和萃取时间1h 条件下,选择不同夹带 剂各60ml,以不加夹带剂为对照。
超临界流体萃取技术
(Supercritical Fluid Extraction, SFE)
1、定义 超临界流体萃取(SEF)是一种新型的提取分离技术, 它是利用流体(溶剂)在临界点附近某区域(超临界区)与 待分离混合物中的溶质具有异常相平衡行为和传递性能,且 对溶质的溶解能力随压力和温度的改变而在相当宽的范围内 变动的一种萃取方法。 (1)超临界区域:在压温图中,高于临界温度和临界压力的 区域称为超临界区 (2)超临界流体:处于超临界状态时,气液界面消失,体系 性质均一,既不是气体也不是液体,呈流体流体CO2萃取
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5. 粒度
原料颗粒愈小,溶质从原料向SCF 传输的路径愈短,与SCF的接触的表 面积愈大,萃取愈快,愈完全,粒度 也不宜太小,容易造成过滤网堵塞而 破坏设备。
6. 夹带剂(携带剂)
超临界CO2流体对亲脂类物质的 溶解度较大,对较大极性的物质溶 解较小,限制了其对极性较大溶质 的应用。可在SCF中加入极性溶剂 (如乙醇等)以改变溶剂的极性, 拓宽其适用范围。如丹参中的丹参 酮难溶于CO2流体,在CO2中添加 一定量乙醇可大大增加其溶解度。
EPA(二十碳五烯酸)是有五个双键的多元
不饱和脂肪酸(C20H30O2)
DHA(二十二碳六烯酸)是有六个双键的多元
不饱和脂肪酸(C22H32O2)
山西省洪洞飞马集团公司(原洪洞县洗煤厂)
与中国科学院山西煤炭化学研究所合作,于1998年
投资4000万元,引进意大利Fedgari公司超
临界CO2萃取装置,制备DHA和EPA等生物活性物质
❖ 基本工艺流程
超临界流体萃取的工艺流程一般是 由萃取(CO2溶解组分)和分离 (CO2和组分的分离)两步组成。
包括高压泵及流体系统、萃取系统 和收集系统三个部分
超临界流体萃取的简单流程
萃
分
取
离
釜
釜
热 交 换 器
CO2
热交换器 压缩机 过滤器 高压泵
超临界流体萃取的工艺流程
流量计
萃
高压泵
取
二 氧
第五部分 超临界CO2流体萃取部分装置
实物图
压缩机
萃取釜
热交换器
二氧化碳循环泵
萃取釜 容积500L
美国Supercritical Processing Inc
第六部分 超临界CO2萃取的影响因素
超临界CO2流体萃取的局限性
(1)对脂溶性成分溶解能力较强而 对水溶性成分溶解能力较低; (2)设备造价较高而导致产品成本 中的设备折旧费比例过大; (3)更换产品时清洗设备较困难。
4 SCF的介电常数,极化率和分子行为 都与气液两相均有明显差别
•总之,超临界流体不仅具有液 体的溶解能力,也具有气体的 扩散和传质能力
第三部分 超临界流体萃取技术
超临界流体萃取定义
(Supercritical Fluid Extraction,SFE)
超临界流体萃取是利用超临 界流体作萃取剂,从液体或固体 中萃取出某些成分并进行分离的 技术。
纯CO2密度与压力、温度的关系
1.2 1.1 1 0.9 0.8 0.7 0.6
CO2流体密度是温度 与压力的函数
0.5
在超临界区域,密度
压 力
0.3
变化幅度达到3倍以上
0.2
0.1
临界点附近,压力或
温度的微小变化可以
大幅度改变流体密度
温度
各直线上数值为CO2密度,g/ml
3、分离工艺简单
超临界萃取只由萃取器和分离器 二部分组成,不需要溶剂回收设 备,与传统分离工艺流程相比不 但流程简化,而且节省耗能。
冷箱
夹 带
釜
化 碳
贮
剂 罐
气
瓶罐
高压泵
分
解
解
析
析
离
釜
釜
柱ቤተ መጻሕፍቲ ባይዱ
流程简介
•将萃取原料装入萃取釜。采用二氧化碳为超临界溶剂。二氧化碳 气体经热交换器冷凝成液体,用加压泵把压力提升到工艺过程所 需的压力(应高于二氧化碳的临界压力),同时调节温度,使其成 为超临界二氧化碳流体。二氧化碳流体作为溶剂从萃取釜底部进 入,与被萃取物料充分接触,选择性溶解出所需的化学成分。含 溶解萃取物的高压二氧化碳流体经节流阀降压到低于二氧化碳临 界压力以下进入分离釜(又称解析釜),由于二氧化碳溶解度急剧 下降而析出溶质,自动分离成溶质和二氧化碳气体二部分,前者 为过程产品,定期从分离釜底部放出,后者为循环二氧化碳气体 ,经过热交换器冷凝成二氧化碳液体再循环使用。整个分离过程 是利用二氧化碳流体在超临界状态下对有机物有特异增加的溶解 度,而低于临界状态下对有机物基本不溶解的特性,将二氧化碳 流体不断在萃取釜和分离釜间循环,从而有效地将需要分离提取 的组分从原料中分离出来。
常见临界流体萃取辅助剂
被萃取物 • 咖啡因
单甘酯 亚麻酸 青霉素G钾盐
乙醇 豆油 菜子油 棕榈油 EPA ,DHA
超临界流体
CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2
完全无溶剂残留,洁净
存在重金属
无重金属
溶剂的溶解能力为定值
溶解力随温度和压力变化
可能使用高温,导致热敏物质分解 通常在较低温度下,不分解
存在无机盐被萃取的问题
无无机盐残留
溶剂选择性差
选择性好
需要额外的操作单元来脱除溶解
在线分离,有效物质收率高
总结:二氧化碳作为萃取剂的优点
✓CO2临界温度和压力都较低,易于工业化。 ✓ CO2不可燃、无毒、化学稳定性好、易分离,不
第七部分 超临界流体萃取的应用
第一部分 前言
高中教材有机化 学选修5结束语中 用很长篇幅介绍了 超临界流体萃取, 并从绿色溶剂的角 度叙述了其运用、 优点和发展前景。 结合教材的其他内 容,我根据自身经 历,整理出一些基 础知识,希望对同 事、同学们有所帮 助。
高中教材选修5 Page 75 资料卡片 鱼油 EPA 和 DHA两种不饱和脂肪酸。DHA和EPA即二十碳 五烯酸以及二十二碳六烯酸,其烯键即碳碳双键化 学结构很不稳定,容易被氧化。EPA和DHA同属于Ω3系列多不饱和脂肪酸,是人体自身不能合成但又不 可缺少的重要营养素,因此称为人体必需脂肪酸。 DHA是大脑细胞形成发育及运作不可缺少的物质基础 ,起补脑健脑以及提高视力,防止近视眼的作用。 DHA还是母乳中必要成分,能增强人体免疫能力。。 EPA被称为“血管清道夫”,包括高血压、高胆固醇 、高血脂、脑血管障碍、心肌梗塞、动脉硬化、青 光眼、白内障等症状有效,它具有疏导清理心脏血 管的作用,从而防止多种心血管疾病。
, 国内配套设计由中国科学院山西煤炭化学研究所
刘黎(研究员)、董桂燕 (总工程师)等设计完成 。笔者当时作为山西省洪洞飞马集团公司(原洪洞 县洗煤厂)项目技术负责人全程参与了项目的前期 考察、设计、引进、安装、调试、试生产等全部工 作,为期3年。
近年来,山西省在太原、运城芮城、临汾大宁等 地,建成了多条超临界流体生产线。
2. 萃取温度
温度对超临界流体溶解度的影响: ① 温度升高,SCF密度降低,溶解力下降; ② 温度升高使被萃取溶质的挥发性增加,
增大了在SCF中的浓度。
9.0MPa
溶 解 度
温度
萃取温度的设置
温度对溶解度的影响还 与压力有密切的关系:在压 力相对较低时,温度升高溶 解度降低;而在压力相对较 高时,温度升高超临界CO2 的溶解能力提高。
甲烷
-83.0
4.6
丙烷
97.0
4.26
二氯二氟
甲烷
111.7
3.99
甲醇
240.5
7.99
乙醚
193.6
3.68
超临界流体由于处于临界温度和临 界压力以上,其物理性质介于气体 与液体之间。
物质 密度(g/cm3) 粘度(g/cm/s) 扩散系数(cm2/s ) 状态
气态 液态 SCF
(0.6-2) ×10-3 0.6-1.6 0.2-0.9
意大利Fedgari公司超临界CO2萃取装置
第二部分 临界和超临界简介
物质有三种状态: 气态、液态、固态 流体状态
物质的第四态:超临界状态
临界温度:每种物质都有一个特定 温度,在这个温度以上,无论怎样 增大压强,即使密度与液态接近, 气态物质也不会液化。这个温度称 为物质的临界温度。
临界压力:与临界温度相对应的压 力称为临界压力。
萃 取 物 收 率 /%
3、萃取时间
5 4 3 2 1 0
0 60 120 180 240 300 360 420
时间/min
4. CO2流量
① CO2流速提高,增加溶剂 对原料的萃取次数,强化萃 取过程的传质效果,可缩短 萃取时间; ② CO2流速加快,CO2与被 萃取物接触时间减少,溶质 含量降低。
超临界CO2流体的溶解性能
① 亲脂性、低沸点成分可在10MPa以下萃取。 如挥发油、烃、酯、内酯、醚、环氧
化合物等,尤其天然植物中的香气成分
② 引入强极性基团(如-OH,-COOH), 造成萃取困难。
在苯的衍生物范围内,有一个羰基和 三个以上羟基的化合物是不能被萃取的
超临界CO2流体的溶解性能
③ 更强的极性物质,如糖类、氨基酸类 在40Mpa以下是不能被萃取的。
夹带剂的作用:
① 增加目标组分在CO2中的溶解度 ② 增加溶质在CO2中的溶解度对温
度、压力的敏感性,有可能单独 通过降温来解析 ③ 提高溶质的选择性 ④ 可改变CO2的临界参数
夹带剂(提携剂)的种类及用量
提携剂一般选用挥发度介于超临 界溶剂和被萃取溶质之间的溶剂
中草药:乙醇、水、丙酮、EtOAc 提携剂的用量是相对于CO2流量而 言,太多或太少都不好 一般用量:1%~5%(质量)
临界点:物质处于临界状态下的温 度、压力点。
超临界区域:在压强温度图中, 高于临界温度和临界压力的区 域称为超临界区域。
超临界流体:处于超临界状态 时,气液界面消失,体系性质 均一,既不是气体也不是液体, 呈流体状态,故称为超临界流 体
试剂 临界温度(℃) 临界压力(MPa)
CO2
31.06
7.38
④ 化合物的相对分子量越高,越难萃取。
分子量在200~400范围内的组分容易萃 取,有些低相对分子质量、易挥发成分甚 至可以直接用二氧化碳液体提取;高分子 量物质(如树胶、蜡等)则很难萃取。