2020年长春市南关区九年级二模数学试卷
长春市2020年中考数学二模试题(II)卷
一、单选题长春市 2020 年中考数学二模试题(II)卷姓名:________班级:________成绩:________1 . 如图,在同一平面直角坐标系中,函数与函数的图象大致是( )A.B.C.D.2 . 下列运算不正确的是( )A.B.C.D.3 . 在下列数:3.14,3.3333…,0,0.4 ,﹣π,0.10110111011110…中,无理数的个数有( )A.2 个B.3 个C.4 个4 . 如图,下列几何体的左视图不是矩形的是( )D.5 个A.B.C.D.5 . 下列说法正确的是( )第1页共6页A.相等的弦所对的弧相等 C.相等的弧所对的弦相等B.相等的圆心角所对的弧相等 D.相等的弦所对的圆心角相等6.在中,,,,则 的值为( )A.B.C.D.7 . 下列调查中,适宜采用普查方式的是( )A.了解某校初三一班的体育学考成绩 C.了解我国青年人喜欢的电视节目B.了解某种节能灯的使用寿命 D.了解全国九年级学生身高的现状8 . 已知两条线段的长分别为 cm 和 cm,那么能与它们组成直角三角形的第三条线段的长为( )A.1cmB. cmC.1cm 或 cm9 . 氢原子的半径约为 0.000 000 000 05m,用科学记数法表示为( )A.5×10﹣10mB.5×10﹣11mC.0.5×10﹣10mD.不存在 D.﹣5×10﹣11m10 . 若方程与方程的解相同,则 的值为( )A.B.C.D.11 . 如果∠α 与∠β 的两边分别平行,∠α 比∠β 的 3 倍少 40°,则∠α 的度数为( )A.20°B.125°C.20°或 125°D.35°或 110°12 . 《九章算术》中记载:“今有上禾三秉,益实六斗,当下禾十秉.下禾五秉,益实一斗,当上禾二秉.问上、下 禾实一秉各几何?”其大意是:今有上等稻子三捆,若打出来的谷子再加六斗,则相当于十捆下等稻子打出来的谷子. 有下等稻子五捆,若打出来的谷子再加一斗,则相当于两捆上等稻子打岀来的谷子.问上等、下等稻子每捆能打多少 斗谷子?设上等稻子每捆能打 x 斗谷子,下等稻子每捆能打 y 斗谷子,根据题意,可列方程组为( )A.B.C.D.二、填空题第2页共6页13 . 如图所示,在△ABC 中,∠C=90°,AC=BC=5,现将△ABC 沿着 CB 的方向平移到△A′B′C′的位置.若 平移的距离为 2,则图中阴影部分的面积为________.14 . 计算:=.15 . 不等式组的所有整数解的积为__________.16 . 据崇左市气象预报:我市 6 月份某天中午各县(区)市的气温如下:地名江州区扶绥县天等县大新县 龙州县 宁明县凭祥市气温37(℃) 33(℃) 30(℃) 31(℃) 33(℃) 36(℃) 34(℃)则我市各县(区)市这组气温数据的极差是 .17 . 如图,已知在 Rt△ABC 中,∠ACB=90°,M 是边 AB 的中点,连接 CM 并延长到点 E,使得 EM= AB,D 是 边 AC 上一点,且 AD=BC,连接 D A.则∠CDE 的度数为_______.18 . 在函数中,自变量 x 的取值范围是.三、解答题第3页共6页19 . 如图,在平面直角坐标系中,抛物线 y=x2+mx+n 与 x 轴正半轴交于 A,B 两点(点 A 在点 B 左侧),与 y 轴交于 点A.(1)利用直尺和圆规,作出抛物线 y=x2+mx+n 的对称轴(尺规作图,保留作图痕迹,不写作法);(2)若△OBC 是等腰直角三角形,且其腰长为 3,求抛物线的解析式;(3)在(2)的条件下,点 P 为抛物线对称轴上的一点,则 PA+PC 的最小值为.20 . 如图,已知:线段(1)请用尺规作一个菱形,使它的两条对角线,.(注意:不能在已知线段上作图,要求保留作图痕迹,不写作法)(2)若,,求:菱形的面积?21 . 如图,水坝的横断面是梯形,背水坡 的坡角,坡长,为加强水坝强度,将坝底从 A 处向后水平延伸到 E 处,使新的背水坡的坡度为 1:2,求 的长度(结果精确到 1 米.参考数据:,)22 . 计算: +( ) 0+ •sin45°﹣(π﹣2019)0.23 . 汽车产业的发展,有效促进我国现代化建设,某汽车销售公司 2012 年盈利 1500 万元,到 2014 年盈利 2160第4页共6页万元,且从 2012 年到 2014 年,每年盈利的年增长率相同. (1)求该公司盈利的年增长率; (2)若该公司盈利的年增长率继续保持不变,预计 2016 年盈利多少万元? 24 . 如图,在⊙O 中,C,D 分别为半径 OB,弦 AB 的中点,连接 CD 并延长,交过点 A 的 切线于点 E. (1)求证:AE⊥CE.(2)若 AE= ,sin∠ADE= ,求⊙O 半径的长.25 .26 . “安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件. 某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为 以下 4 类情形:A.仅学生自己参与; C.仅家长自己参与;B.家长和学生一起参与; D.家长和学生都未参与.请根据图中提供的信息,解答下列问题: (1)在这次抽样调查中,共调查了________名学生;第5页共6页(2)补全条形统计图,并在扇形统计图中计算 C 类所对应扇形的圆心角的度数; (3)根据抽样调查结果,估计该校 2000 名学生中“家长和学生都未参与”的人数.第6页共6页。
吉林省长春市中考数学二模试卷
吉林省长春市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2018·道外模拟) 下列图形是轴对称图形而不是中心对称图形的是()A .B .C .D .2. (2分) (2019七下·长丰期中) 0.000002019用科学记数法可表示为()A . 0.2019×10﹣5B . 2.019×10﹣6C . 20.19×10﹣7D . 2019×10﹣93. (2分)下列计算正确的是()A . ﹣|﹣3|=﹣3B . 30=0C . 3﹣1=﹣3D . =±34. (2分)下列图中,左边的图形是立方体的表面展开图,把它折叠成立方体,它会变右边的()A .B .C .D .5. (2分)若甲、乙、丙、丁四位同学一学期4次数学测试的平均成绩恰好都是85分,方差分别为S甲2=0.80,S乙2=1.31,S丙2=1.72,S丁2=0.42,则成绩最稳定的同学是()A . 甲B . 乙C . 丙D . 丁6. (2分) (2017九下·张掖期中) 下列运算正确的是()A . x2+x2=x4B . (﹣a2)3=﹣a6C . (a﹣b)2=a2﹣b2D . 3a2•2a3=6a67. (2分)如图,∠ACB=60°,半径为2的⊙O切BC于点C,若将⊙O在CB上向右滚动,则当滚动到⊙O与CA也相切时,圆心O移动的水平距离为()A . 2πB . 4πC .D . 48. (2分)如图,在△ABC中,AB=AC,D是边BC的中点,一个圆过点A,交边AB于点E,且与BC相切于点D,则该圆的圆心是()A . 线段AE的中垂线与线段AC的中垂线的交点B . 线段AB的中垂线与线段AC的中垂线的交点C . 线段AE的中垂线与线段BC的中垂线的交点D . 线段AB的中垂线与线段BC的中垂线的交点9. (2分) (2019九上·綦江月考) 如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(-1,0),对称轴为直线x=1,与y轴的交点B在(0,2)和(0,3)之间(包括这两点),下列结论:①当x>3时,y<0;②3a +b>0;③-1≤a≤-;④4ac-b2>8a;(5)3a+c=0,其中正确的结论有()个A . 2B . 3C . 4D . 510. (2分)如图,矩形ABCD沿着AE折叠,使D点落在BC边上的F点处,如果∠BAF=60°,则∠DAE等于()A . 30°B . 15°C . 45°D . 60°二、填空题 (共6题;共6分)11. (1分)(2019·福州模拟) 计算:-1+2-1=________.12. (1分)(2020·马山模拟) 因式分解: ________.13. (1分)已知△ABC的各边长度分别为3cm,5cm,6cm,连结各边中点所构成的△DEF的周长是________ cm.14. (1分) (2016九上·宾县期中) 已知x1 , x2是方程x2+2x﹣k=0的两个实数根,则x1+x2=________.15. (1分)(2018·寮步模拟) 如图,在△ABC中,AB=AC,∠A=120°,BC=,⊙A与BC相切于点D,且交AB,AC于M、N两点,则图中阴影部分的面积是________(结果保留π).16. (1分) (2019九上·滨湖期末) 半径相等的圆内接正三角形与正方形的边长之比为________.三、解答题 (共9题;共98分)17. (10分)(2020·金牛模拟)(1)计算(π﹣2020)0+2cos30°﹣|2﹣ |﹣()﹣2;(2)解不等式组:.18. (5分)先化简,再求值:,其中x=-1.19. (17分)已知钝角△ABC,试画出:(1) AB边上的高;(2) BC边上的中线;(3)∠BAC的角平分线;(4)图中相等的线段有:________;(5)图中相等的角有:________.20. (10分) (2016九上·达州期末) 创建文明城市,人人参与,人人共建.我市各校积极参与创建活动,自发组织学生走上街头,开展文明劝导活动.某中学九(一)班为此次活动制作了大小、形状、质地等都相同的“文明劝导员”胸章和“文明监督岗”胸章若干,放入不透明的盒中,此时从盒中随机取出“文明劝导员”胸章的概率为;若班长从盒中取出“文明劝导员”胸章3只、“文明监督岗”胸章7只送给九(二)班后,这时随机取出“文明劝导员”胸章的概率为.(1)请你用所学知识计算:九(一)班制作的“文明劝导员”胸章和“文明监督岗”胸章各有多少只?(2)若小明一次从盒内剩余胸章中任取2只,问恰有“文明劝导员”胸章、“文明监督岗”胸章各1只的概率是多少?(用列表法或树状图计算)21. (5分)(2017·萍乡模拟) 放风筝是大家喜爱的一种运动,星期天的上午小明在市政府广场上放风筝.如图,他在A处不小心让风筝挂在了一棵树梢上,风筝固定在了D处,此时风筝AD与水平线的夹角为30°,为了便于观察,小明迅速向前边移动,收线到达了离A处10米的B处,此时风筝线BD与水平线的夹角为45°.已知点A,B,C在同一条水平直线上,请你求出小明此时所收回的风筝线的长度是多少米?(风筝线AD,BD均为线段,≈1.414,≈1.732,最后结果精确到1米).22. (10分) (2016八上·蕲春期中) 已知,D、E分别为等边三角形ABC边上的点,AD=CE,BD、AE交于N,BM⊥AE于M.证明:(1)∠CAE=∠ABD;(2) MN= BN.23. (15分) (2016九上·盐城开学考) 如图,反比例函数y= 的图象与一次函数y=mx+b的图象交于A(1,3),B(n,﹣1)两点.(1)求反比例函数与一次函数的函数关系式;(2)求△AOB的面积;(3)我们知道,一次函数y=x﹣1的图象可以由正比例函数y=x的图象向下平移1个长度单位得到.试结合平移解决下列问题:在(1)的条件下,请你试探究:①函数y= 的图象可以由y= 的图象经过怎样的平移得到?②点P(x1 , y1)、Q (x2 , y2)在函数y= 的图象上,x1<x2 .试比较y1与y2的大小.24. (11分) (2019九上·宜兴期末) 如图,在平面直角坐标系中,点A、B的坐标分别为,,点M是AO中点,的半径为2.(1)若是直角三角形,则点P的坐标为________ 直接写出结果(2)若,则BP与有怎样的位置关系?为什么?(3)若点E的坐标为,那么上是否存在一点P,使最小,如果存在,求出这个最小值,如果不存在,简要说明理由.25. (15分)如图,抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,﹣1),图象与y轴交于点C(0,3),与x轴交于A、B两点.(1)求抛物线的解析式;(2)设抛物线对称轴与直线BC交于点D,连接AC、AD,求△ACD的面积;(3)点E为直线BC上的任意一点,过点E作x轴的垂线与抛物线交于点F,问是否存在点E使△DEF为直角三角形?若存在,求出点E坐标,若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共98分)17-1、17-2、18-1、19-1、19-2、19-3、19-4、19-5、20-1、20-2、21-1、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、。
吉林省长春市2019-2020学年中考数学二模试卷含解析
吉林省长春市2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列是我国四座城市的地铁标志图,其中是中心对称图形的是()A.B.C.D.2.下列图形中,是轴对称图形的是()A.B.C.D.3.如图是由四个相同的小正方形组成的立体图形,它的俯视图为()A.B.C.D.4.如图分别是某班全体学生上学时乘车、步行、骑车人数的分布直方图和扇形统计图(两图都不完整),下列结论错误的是( )A.该班总人数为50 B.步行人数为30C.乘车人数是骑车人数的2.5倍D.骑车人数占20%5.一个几何体的三视图如图所示,则该几何体的表面积是()在反比例函数4y x=的图象中,阴影部分的面积不等于4的是( ) A . B .C . D .7.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=6x在第一象限的图象经过点B ,则△OAC 与△BAD 的面积之差S △OAC ﹣S △BAD 为( )A .36B .12C .6D .3 8.已知二次函数()2y ax bx c a 0=++≠的图象如图所示,则下列结论:①ac>0;②a-b+c<0; ③当x 0<时,y 0<;2a b 0+=④,其中错误的结论有( )A .②③B .②④C .①③D .①④9.一个几何体的三视图如图所示,则该几何体的形状可能是( )A .B .C .D .10.如图,AD ∥BC ,AC 平分∠BAD ,若∠B =40°,则∠C 的度数是( )点,且使得△ABC 为等腰直角三角形,则这样的点C 有( )A .6个B .7个C .8个D .9个12.下列二次根式中,与a 是同类二次根式的是( )A .2aB .2aC .4aD .4a +二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在▱ABCD 中,E 、F 分别是AB 、DC 边上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S △APD =16cm 1,S △BQC =15cm 1,则图中阴影部分的面积为_____cm 1.14.如图,矩形ABCD 中,8AB =,4BC =,将矩形沿AC 折叠,点D 落在点'D 处.则重叠部分AFC ∆的面积为______.15.因式分解:2xy 2xy x ++=______.16.如图①,四边形ABCD 中,AB ∥CD ,∠ADC=90°,P 从A 点出发,以每秒1个单位长度的速度,按A→B→C→D 的顺序在边上匀速运动,设P 点的运动时间为t 秒,△PAD 的面积为S ,S 关于t 的函数图象如图②所示,当P 运动到BC 中点时,△PAD 的面积为______.17.如图,在△ABC 中,AB =AC =10cm ,F 为AB 上一点,AF =2,点E 从点A 出发,沿AC 方向以2cm/s 的速度匀速运动,同时点D 由点B 出发,沿BA 方向以lcm/s 的速度运动,设运动时间为t (s )(018.分解因式:4m2﹣16n2=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=mx的图象在第一象限的交点为C,CD⊥x轴于D,若OB=1,OD=6,△AOB的面积为1.求一次函数与反比例函数的表达式;当x>0时,比较kx+b与mx的大小.20.(6分)从一幢建筑大楼的两个观察点A,B观察地面的花坛(点C),测得俯角分别为15°和60°,如图,直线AB与地面垂直,AB=50米,试求出点B到点C的距离.(结果保留根号)21.(6分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:四边形BFDE 是平行四边形.22.(8分)某街道需要铺设管线的总长为9000m,计划由甲队施工,每天完成150m.工作一段时间后,因为天气原因,想要40天完工,所以增加了乙队.如图表示剩余管线的长度()y m与甲队工作时间x(天)(2)求线段BC所对应的函数解析式,并写出自变量x的取值范围;(3)直接写出乙队工作25天后剩余管线的长度.23.(8分)先化简,再求值:(x2x2+-+24x4x4-+)÷xx2-,其中x=1224.(10分)如图,已知⊙O,请用尺规做⊙O的内接正四边形ABCD,(保留作图痕迹,不写做法)25.(10分)如图,矩形ABCD中,O是AC与BD的交点,过O点的直线EF与AB、CD的延长线分别交于E、F.(1)证明:△BOE≌△DOF;(2)当EF⊥AC时,求证四边形AECF是菱形.26.(12分)为缓解交通压力,市郊某地正在修建地铁站,拟同步修建地下停车库.如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度=1:3,AD=9米,点C在DE上,CD=0.5米,CD是限高标志牌的高度(标志牌上写有:限高米).如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据:2≈1.41,3≈1.73,10≈3.16)篮球共需600元.(1)求购买一个足球,一个篮球分别需要多少元?(2)该中学根据实际情况,需从体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过6000元,求这所中学最多可以购买多少个篮球?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据中心对称图形的定义解答即可.【详解】选项A不是中心对称图形;选项B不是中心对称图形;选项C不是中心对称图形;选项D是中心对称图形.故选D.【点睛】本题考查了中心对称图形的定义,熟练运用中心对称图形的定义是解决问题的关键.2.B【解析】分析:根据轴对称图形的概念求解.详解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选B.点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分根据俯视图是从上往下看的图形解答即可.【详解】从上往下看到的图形是:.故选B.【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.4.B【解析】【分析】根据乘车人数是25人,而乘车人数所占的比例是50%,即可求得总人数,然后根据百分比的含义即可求得步行的人数,以及骑车人数所占的比例.【详解】A、总人数是:25÷50%=50(人),故A正确;B、步行的人数是:50×30%=15(人),故B错误;C、乘车人数是骑车人数倍数是:50%÷20%=2.5,故C正确;D、骑车人数所占的比例是:1-50%-30%=20%,故D正确.由于该题选择错误的,故选B.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.5.D【解析】【分析】根据三视图知该几何体是一个半径为2、高为4的圆柱体的纵向一半,据此求解可得.【详解】本题主要考查由三视图判断几何体,解题的关键是根据三视图得出几何体的形状及圆柱体的有关计算.6.B【解析】【分析】根据反比例函数kyx=中k的几何意义,过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|解答即可.【详解】解:A、图形面积为|k|=1;B、阴影是梯形,面积为6;C、D面积均为两个三角形面积之和,为2×(12|k|)=1.故选B.【点睛】主要考查了反比例函数kyx=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=12|k|.7.D【解析】设△OAC和△BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图象可得出点B的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义以及点B的坐标即可得出结论.解:设△OAC和△BAD的直角边长分别为a、b,则点B的坐标为(a+b,a﹣b).∵点B在反比例函数6yx=的第一象限图象上,∴(a+b)×(a﹣b)=a2﹣b2=1.∴S△OAC﹣S△BAD=12a2﹣12b2=12(a2﹣b2)=12×1=2.故选D.函数上点的坐标是关键.8.C【解析】【分析】①根据图象的开口方向,可得a 的范围,根据图象与y 轴的交点,可得c 的范围,根据有理数的乘法,可得答案;②根据自变量为-1时函数值,可得答案;③根据观察函数图象的纵坐标,可得答案;④根据对称轴,整理可得答案.【详解】图象开口向下,得a <0,图象与y 轴的交点在x 轴的上方,得c >0,ac <,故①错误;②由图象,得x=-1时,y <0,即a-b+c <0,故②正确;③由图象,得图象与y 轴的交点在x 轴的上方,即当x <0时,y 有大于零的部分,故③错误;④由对称轴,得x=-2b a=1,解得b=-2a , 2a+b=0 故④正确; 故选D .【点睛】考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.9.D【解析】试题分析:由主视图和左视图可得此几何体上面为台,下面为柱体,由俯视图为圆环可得几何体为.故选D . 考点:由三视图判断几何体.视频【分析】根据平行线性质得出∠B+∠BAD=180°,∠C=∠DAC,求出∠BAD,求出∠DAC,即可得出∠C的度数.【详解】解:∵AD∥BC,∴∠B+∠BAD=180°,∵∠B=40°,∴∠BAD=140°,∵AC平分∠DAB,∴∠DAC=12∠BAD=70°,∵A∥BC,∴∠C=∠DAC=70°,故选C.【点睛】本题考查了平行线性质和角平分线定义,关键是求出∠DAC或∠BAC的度数.11.A【解析】【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.【详解】如图:分情况讨论:①AB为等腰直角△ABC底边时,符合条件的C点有2个;②AB为等腰直角△ABC其中的一条腰时,符合条件的C点有4个.故选:C.【点睛】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.【分析】根据二次根式的性质把各个二次根式化简,根据同类二次根式的定义判断即可.【详解】A .2a =|a|与a 不是同类二次根式;B .2a 与a 不是同类二次根式;C .4a =2a 与a 是同类二次根式;D .4a +与a 不是同类二次根式.故选C .【点睛】本题考查了同类二次根式的定义,一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.41【解析】试题分析:如图,连接EF∵△ADF 与△DEF 同底等高,∴S △ADF =S △DEF ,即S △ADF -S △DPF =S △DEF -S △DPF ,即S △APD =S △EPF =16cm 1,同理可得S △BQC =S △EFQ =15cm 1,、∴阴影部分的面积为S △EPF +S △EFQ =16+15=41cm 1.考点:1、三角形面积,1、平行四边形14.10【解析】【分析】根据翻折的特点得到'AD F CBF ∆≅∆,AF CF =.设BF x =,则8FC AF x ==-.在Rt BCF ∆中,222BC BF CF +=,即()22248x x +=-,解出x,再根据三角形的面积进行求解. 【详解】∵翻折,∴'4AD AD BC ===,'90D B ∠=∠=︒,又∵'AFD CFB ∠=∠,∴'AD F CBF ∆≅∆,∴AF CF =.设BF x =,则8FC AF x ==-.在Rt BCF ∆中,222BC BF CF +=,即()22248x x +=-,解得3x =,∴5AF =, ∴11541022AFC S AF BC ∆=⋅=⨯⨯=. 【点睛】此题主要考查勾股定理,解题的关键是熟知翻折的性质及勾股定理的应用.15.2(1)x y +【解析】【分析】先提取公因式x ,再对余下的多项式利用完全平方公式继续分解.【详解】xy 1+1xy+x ,=x (y 1+1y+1),=x (y+1)1.故答案为:x (y+1)1.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.16.1【解析】解:由图象可知,AB+BC=6,AB+BC+CD=10,∴CD=4,根据题意可知,当P 点运动到C 点时,△PAD 的面积最大,S △PAD =12×AD×DC=8,∴AD=4,又∵S △ABD =12×AB×AD=2,∴AB=1,∴当P 点运动到BC 中点时,△PAD 的面积=12×12(AB+CD )×AD=1,故答案为1. 17.1【解析】【分析】过点C 作CH ∥AB 交DE 的延长线于点H ,则1028DF t t ---==,证明DFG HCG ∆∆∽,可求出CH ,再证明ADE CHE ∆∆∽,由比例线段可求出t 的值.【详解】如下图,过点C 作CH ∥AB 交DE 的延长线于点H ,则21028BD t AE t DF t t ---=,=,==,∵DF ∥CH ,∴DFG HCG ∆∆∽, ∴12DF FC HC GC ==, ∴2162CH DF t ==-,同理ADE CHE ∆∆∽, ∴AD AE CH CE=, ∴102162102t t t t -=--,解得t =1,t =253(舍去), 故答案为:1.【点睛】本题主要考查了三角形中的动点问题,熟练掌握三角形相似的相关方法是解决本题的关键.18.4(m+2n )(m ﹣2n ).【解析】【分析】原式提取4后,利用平方差公式分解即可.【详解】解:原式=4(224m n - )()()422m n m n =+-.故答案为()()422m n m n +-【点睛】本题考查提公因式法与公式法的综合运用,解题的关键是熟练掌握因式分解的方法.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19. (1) 223y x =-,12y x=;(2) 当0<x <6时,kx+b <m x ,当x >6时,kx+b >m x 【解析】【分析】(1)根据点A 和点B 的坐标求出一次函数的解析式,再求出C 的坐标6,2),利用待定系数法求解即可求出解析式(2)由C(6,2)分析图形可知,当0<x<6时,kx+b<mx,当x>6时,kx+b>mx【详解】(1)S△AOB=12OA•OB=1,∴OA=2,∴点A的坐标是(0,﹣2),∵B(1,0)∴2 30 bk b=-⎧⎨+=⎩∴232 kb⎧=⎪⎨⎪=-⎩∴y=23x﹣2.当x=6时,y=23×6﹣2=2,∴C(6,2)∴m=2×6=3.∴y=12x.(2)由C(6,2),观察图象可知:当0<x<6时,kx+b<mx,当x>6时,kx+b>mx.【点睛】此题考查反比例函数与一次函数的交点问题,解题关键在于求出C的坐标20.(500+【解析】【详解】试题分析:根据题意构建图形,结合图形,根据直角三角形的性质可求解. 试题解析:作AD⊥BC于点D,∵∠MBC=60°,∴∠ABC=30°,∵AB⊥AN,∴∠BAN=90°,∴∠BAC=105°,则∠ACB=45°,在Rt△ADB中,AB=1000,则AD=500,BD=在Rt△ADC中,AD=500,CD=500,则BC=500+答:观察点B到花坛C的距离为(500+米.考点:解直角三角形21.证明见解析【解析】【详解】∵四边形ABCD是平行四边形,∴AD//BC,AD=BC,∵AE=CF∴AD-AE=BC-CF即DE=BF∴四边形BFDE是平行四边形.22.(1)(10,7500)(2)直线BC的解析式为y=-250x+10000,自变量x的取值范围为10≤x≤40.(3)1250米.【解析】【分析】(1)由于前面10天由甲单独完成,用总的长度减去已完成的长度即为剩余的长度,从而求出点B的坐标;(2)利用待定系数法求解即可;(3)已队工作25天后,即甲队工作了35天,故当x=35时,函数值即为所求.【详解】(1)9000-150×10=7500.∴点B的坐标为(10,7500)(2)设直线BC的解析式为y=kx+b,依题意,得:解得:∴直线BC的解析式为y=-250x+10000,∵乙队是10天之后加入,40天完成,∴自变量x的取值范围为10≤x≤40.(3)依题意,当x=35时,y=-250×35+10000=1250.∴乙队工作25天后剩余管线的长度是1250米.【点睛】本题考查了一次函数的应用,理解题意观察图象得到有用信息是解题的关键.23.-1 3【解析】【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【详解】原式=[x2x2+-+()24x2-]÷xx2-=[()22x4x2---+()24x2-]÷xx2-=()22xx2-·x2x-=xx2-,当x=12时,原式=12122-=-13.【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.24.见解析【解析】【分析】根据内接正四边形的作图方法画出图,保留作图痕迹即可.【详解】任作一条直径,再作该直径的中垂线,顺次连接圆上的四点即可.【点睛】此题重点考察学生对圆内接正四边形作图的应用,掌握圆内接正四边形的作图方法是解题的关键. 25.(1)(2)证明见解析【解析】【分析】(1)根据矩形的性质,通过“角角边”证明三角形全等即可;(2)根据题意和(1)可得AC与EF互相垂直平分,所以四边形AECF是菱形.【详解】(1)证明:∵四边形ABCD 是矩形,∴OB=OD ,AE ∥CF ,∴∠E=∠F (两直线平行,内错角相等),在△BOE 与△DOF 中,E F BOE DOF OB OD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BOE ≌△DOF (AAS ).(2)证明:∵四边形ABCD 是矩形,∴OA=OC ,又∵由(1)△BOE ≌△DOF 得,OE=OF ,∴四边形AECF 是平行四边形,又∵EF ⊥AC ,∴四边形AECF 是菱形.26.2.1.【解析】【分析】据题意得出tanB =13, 即可得出tanA, 在Rt △ADE 中, 根据勾股定理可求得DE, 即可得出∠FCE 的正切值, 再在Rt △CEF 中, 设EF=x,即可求出x, 从而得出CF=1x 的长.【详解】解:据题意得tanB=,∵MN ∥AD ,∴∠A=∠B ,∴tanA=,∵DE⊥AD,∴在Rt△ADE中,tanA=,∵AD=9,∴DE=1,又∵DC=0.5,∴CE=2.5,∵CF⊥AB,∴∠FCE+∠CEF=90°,∵DE⊥AD,∴∠A+∠CEF=90°,∴∠A=∠FCE,∴tan∠FCE=在Rt△CEF中,CE2=EF2+CF2设EF=x,CF=1x(x>0),CE=2.5,代入得()2=x2+(1x)2解得x=(如果前面没有“设x>0”,则此处应“x=±,舍负”),∴CF=1x=≈2.1,∴该停车库限高2.1米.【点睛】点评: 本题考查了解直角三角形的应用, 坡面坡角问题和勾股定理, 解题的关键是坡度等于坡角的正切值. 27.(1)一个足球需要50元,一个篮球需要80元;(2)1个.【解析】【分析】(1)设购买一个足球需要x元,则购买一个排球也需要x元,购买一个篮球y元,根据购买2个足球和3个篮球共需340元,4个排球和5个篮球共需600元,可得出方程组,解出即可;【详解】(1)设购买一个足球需要x元,则购买一个排球也需要x元,购买一个篮球y元,由题意得:,解得:.答:购买一个足球需要50元,购买一个篮球需要80元;(2)设该中学购买篮球m个,由题意得:80m+50(100﹣m)≤6000,解得:m≤1,∵m是整数,∴m最大可取1.答:这所中学最多可以购买篮球1个.【点睛】本题考查了一元一次不等式及二元一次方程组的知识,解答本题的关键是仔细审题,得到等量关系及不等关系,难度一般.。
2020年吉林省长春市名校调研(市命题)中考数学二模试卷(含答案解析)
吉林省长春市名校调研(市命题)中考数学二模试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)在﹣3,﹣1,0,1四个数中,比﹣2小的数是()A.﹣3 B.﹣1 C.0 D.12.(3分)我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册.把2100000用科学记数法表示为()A.0.21×108B.21×106C.2.1×107D.2.1×106 3.(3分)如图有5个相同的小立方体搭成的几何体如图所示,则它的左视图是()A.B.C.D.4.(3分)不等式﹣x+1>3的解集是()A.x<﹣4 B.x>﹣4 C.x>4 D.x<45.(3分)下列运算,结果正确的是()A.m2+m2=m4B.2m2n÷mn=4mC.(3mn2)2=6m2n4D.(m+2)2=m2+46.(3分)如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是()A.68°B.20°C.28°D.22°7.(3分)如图,A、B、C、D四个点均在⊙O上,∠AOD=50°,AO∥DC,则∠B 的度数为()A.50°B.55°C.60°D.65°8.(3分)如图,平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(3,0),B(0,6)分别在x轴,y轴上,反比例函数y=的图象经过点D,则k 值为()A.﹣14 B.14 C.7 D.﹣7二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)计算(﹣a2b)3=.10.(3分)三个小伙伴各出资a元,共同购买了价格为b元的一个篮球,还剩下一点钱,则剩余金额为元(用含a、b的代数式表示)11.(3分)如图,直线a∥b,∠P=75°,∠2=30°,则∠1=.12.(3分)如图,在△ABC中,DM垂直平分AC,交BC于点D,连接AD,若∠C =28°,AB=BD,则∠B的度数为度.13.(3分)如图,在△ABC中,∠ACB=90°,∠B=60°,AB=12,若以点A 为圆心,AC为半径的弧交AB于点E,以点B为圆心,BC为半径的弧交AB于点D,则图中阴影部分图形的面积为(保留根号和π)14.(3分)如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2,AD=1,点E的坐标为(0,2).点F(x,0)在边AB上运动,若过点E、F 的直线将矩形ABCD的周长分成2:1两部分,则x的值为.三、解答题(本大题共10小题,共计78分)15.(6分)先化简再求值:÷(﹣1),其中x=.16.(6分)水果店老板用600元购进一批水果,很快售完;老板又用1250元购进第二批水果,所购件数是第一批的2倍,但进价比第一批每件多了5元,问第一批水果每件进价多少元?17.(6分)有4张正面分别标有数字﹣1,2,﹣3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从4张卡片中随机摸出一张不放回,将该卡片上的数字记为m,在随机抽取1张,将卡片的数字即为n.(1)请用列表或树状图的方式把(m,n)所有的结果表示出来.(2)求选出的(m,n)在二、四象限的概率.18.(7分)如图,分别以线段AB两端点A,B为圆心,以大于AB长为半径画弧,两弧交于C,D两点,作直线CD交AB于点M,DE∥AB,BE∥CD.(1)判断四边形ACBD的形状,并说明理由;(2)求证:ME=AD.19.(7分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.20.(7分)美丽的甬江宛如一条玉带穿城而过,数学课外实践活动中,小林在甬江岸边的A,B两点处,利用测角仪分别对西岸的一观景亭D进行测量.如图,测得∠DAC=45°,∠DBC=65°,若AB=114米,求观景亭D到甬江岸边AC的距离约为多少米?(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)21.(8分)周末,甲、乙两名大学生骑自行车去距学校6000米的净月潭公园,两人同时从学校出发,以a米/分的速度匀速行驶,出发4.5分钟时,甲同学发现忘记带学生证,以1.5a米/分的速度按原路返回学校,取完学生证(在学校取学生证所用时间忽略不计),继续以返回时的速度追赶乙,甲追上乙后,两人以相同的速度前往净月潭,乙骑自行车的速度始终不变,设甲,乙两名大学生距学校的路程为s(米),乙同学行驶的时间为t(分),s与t之间的函数图象如图所示.(1)求a,b的值;(2)求甲追上乙时,距学校的路程;(3)当两人相距500米时,求t的值.22.(9分)【感知】如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.【拓展】如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.【应用】如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD 延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,则菱形CEFG的面积为.23.(10分)已知:如图1,抛物线的顶点为M,平行于x轴的直线与该抛物线交于点A,B(点A在点B左侧),根据对称性△AMB恒为等腰三角形,我们规定:当△AMB为直角三角形时,就称△AMB为该抛物线的“完美三角形”.(1)①如图2,求出抛物线y=x2的“完美三角形”斜边AB的长;②抛物线y=x2+1与y=x2的“完美三角形”的斜边长的数量关系是;(2)若抛物线y=ax2+4的“完美三角形”的斜边长为4,求a的值;(3)若抛物线y=mx2+2x+n﹣5的“完美三角形”斜边长为n,且y=mx2+2x+n ﹣5的最大值为﹣1,求m,n的值.24.(12分)如图,在▱ABCD中,AB=4,AD=5,tan A=,点P从点A出发,沿折线AB﹣BC以每秒1个单位长度的速度向中点C运动,过点P作PQ⊥AB,交折线AD﹣DC于点Q,将线段PQ绕点P顺时针旋转90°,得到线段PR,连接QR.设△PQR与▱ABCD重叠部分图形的面积为S(平方单位),点P运动的时间为t(秒).(1)当点R与点B重合时,求t的值;(2)当点P在BC边上运动时,求线段PQ的长(用含有t的代数式表示);(3)当点R落在▱ABCD的外部时,求S与t的函数关系式;(4)直接写出点P运动过程中,△PCD是等腰三角形时所有的t值.吉林省长春市名校调研(市命题)中考数学二模试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)在﹣3,﹣1,0,1四个数中,比﹣2小的数是()A.﹣3 B.﹣1 C.0 D.1【分析】利用两个负数,绝对值大的其值反而小,进而得出答案.【解答】解:∵|﹣3|=3,|﹣2|=2,∴比﹣2小的数是:﹣3.故选:A.【点评】此题主要考查了有理数比较大小,正确把握两负数比较大小的方法是解题关键.2.(3分)我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册.把2100000用科学记数法表示为()A.0.21×108B.21×106C.2.1×107D.2.1×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2100000=2.1×106,故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n 的值.3.(3分)如图有5个相同的小立方体搭成的几何体如图所示,则它的左视图是()A.B.C.D.【分析】找到从左面看所得到的图形即可.【解答】解:从左面看,得到左边2个正方形,右边1个正方形.故选:C.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.(3分)不等式﹣x+1>3的解集是()A.x<﹣4 B.x>﹣4 C.x>4 D.x<4【分析】不等式移项合并,把x系数化为1,即可求出解集.【解答】解:不等式整理得:﹣x>3﹣1,解得:x<﹣4,故选:A.【点评】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.5.(3分)下列运算,结果正确的是()A.m2+m2=m4B.2m2n÷mn=4mC.(3mn2)2=6m2n4D.(m+2)2=m2+4【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【解答】解:m2+m2=2m2,故选项A错误,2m2n÷mn=4m,故选项B正确,(3mn2)2=9m2n4,故选项C错误,(m+2)2=m2+4m+4,故选项D错误,故选:B.【点评】本题考查合并同类项、整式的除法、积的乘方、完全平方公式,解答本题的关键是明确它们各自的计算方法.6.(3分)如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是()A.68°B.20°C.28°D.22°【分析】先根据矩形的性质得∠BAD=∠ABC=∠ADC=90°,再根据旋转的性质得∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,然后根据四边形的内角和得到∠3=68°,再利用互余即可得到∠α的大小.【解答】解:∵四边形ABCD为矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠AD′C′=∠ADC=90°,∵∠2=∠1=112°,而∠ABC=∠D′=90°,∴∠3=180°﹣∠2=68°,∴∠BAB′=90°﹣68°=22°,即∠α=22°.故选:D.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.7.(3分)如图,A、B、C、D四个点均在⊙O上,∠AOD=50°,AO∥DC,则∠B 的度数为()A.50°B.55°C.60°D.65°【分析】首先连接AD,由A、B、C、D四个点均在⊙O上,∠AOD=70°,AO ∥DC,可求得∠ADO与∠ODC的度数,然后由圆的内接四边新的性质,求得答案.【解答】解:连接AD,∵OA=OD,∠AOD=50°,∴∠ADO==65°.∵AO∥DC,∴∠ODC=∠AOC=50°,∴∠ADC=∠ADO+∠ODC=115°,∴∠B=180°﹣∠ADC=65°.故选:D.【点评】此题考查了圆周角定理、圆的内接四边形的性质、平行线的性质以及等腰三角形的性质.此题比较适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.8.(3分)如图,平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(3,0),B(0,6)分别在x轴,y轴上,反比例函数y=的图象经过点D,则k 值为()A.﹣14 B.14 C.7 D.﹣7【分析】过点D作DE⊥x轴于点E,由同角的余角相等可得出∠OBA=∠EAD,结合∠AOB=∠DEA=90°可得出△AOB∽△DEA,根据相似三角形的性质结合点A、B的坐标,即可得出AE、DE的长度,进而可得出点D的坐标,再利用反比例函数图象上点的坐标特征即可求出k值,此题得解.【解答】解:过点D作DE⊥x轴于点E,如图所示.∵∠OAB+∠OBA=∠OAB+∠EAD=90°,∴∠OBA=∠EAD.又∵∠AOB=∠DEA=90°,∴△AOB∽△DEA,∴==.∵四边形ABCD为矩形,点A(3,0),B(0,6),AB:BC=3:2,∴DE=AO=2,AE=BO=4,∴OE=OA+AE=3+4=7,∴点D的坐标为(7,2).∵反比例函数y=的图象经过点D,∴k=7×2=14.故选:B.【点评】本题考查了反比例函数图象上点的坐标特征、矩形的性质以及相似三角形的判定与性质,利用相似三角形的性质找出点D的坐标是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)计算(﹣a2b)3=﹣a6b3.【分析】根据积的乘方的运算方法:(ab)n=a n b n,求出(﹣a2b)3的值是多少即可.【解答】解:(﹣a2b)3=•(a2)3•b3=﹣a6b3.故答案为:﹣a6b3.【点评】此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).10.(3分)三个小伙伴各出资a元,共同购买了价格为b元的一个篮球,还剩下一点钱,则剩余金额为(3a﹣b)元(用含a、b的代数式表示)【分析】根据题意可以用代数式表示剩余的金额,本题得以解决.【解答】解:由题意可得,剩余金额为:(3a﹣b)元,故答案为:(3a﹣b).【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.11.(3分)如图,直线a∥b,∠P=75°,∠2=30°,则∠1=45°.【分析】过P作PM∥直线a,求出直线a∥b∥PM,根据平行线的性质得出∠FPM=∠1=45°,即可求出答案.【解答】解:过P作PM∥直线a,∵直线a∥b,∴直线a∥b∥PM,∵∠2=30°,∴∠EPM=∠2=30°,又∵∠EPF=75°,∴∠FPM=45°,∴∠1=∠FPM=45°,故答案为:45°.【点评】本题考查了平行线的性质的应用,能正确根据平行线的性质进行推理是解此题的关键,注意:两直线平行,内错角相等.12.(3分)如图,在△ABC中,DM垂直平分AC,交BC于点D,连接AD,若∠C =28°,AB=BD,则∠B的度数为68 度.【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=CD,等边对等角可得∠DAC=∠C,三角形的一个外角等于与它不相邻的两个内角的和求出∠ADB=∠C+∠DAC,再次根据等边对等角可得可得∠ADB=∠BAD,然后利用三角形的内角和等于180°列式计算即可得解.【解答】解:∵DM垂直平分AC,∴AD=CD,∴∠DAC=∠C=28°,∴∠ADB=∠C+∠DAC=28°+28°=56°,∵AB=BD,∴∠ADB=∠BAD=56°,在△ABD中,∠B=180°﹣∠BAD﹣∠ADB=180°﹣56°﹣56°=68°.故答案为:68.【点评】本题考查了等腰三角形的性质,线段垂直平分线上的点到两端点的距离相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,熟记各性质与定理是解题的关键.13.(3分)如图,在△ABC中,∠ACB=90°,∠B=60°,AB=12,若以点A 为圆心,AC为半径的弧交AB于点E,以点B为圆心,BC为半径的弧交AB于点D,则图中阴影部分图形的面积为15π﹣18(保留根号和π)【分析】根据题意可知阴影部分的面积是扇形BCD与扇形ACE的面积之和与△ABC的面积之差,从而可以解答本题.【解答】解:∵在△ABC中,∠ACB=90°,∠B=60°,AB=12,∴∠A=30°,∴BC=6,AC=6,∵以点A为圆心,AC为半径的弧交AB于点E,以点B为圆心,BC为半径的弧交AB于点D,∴阴阴部分的面积为:﹣=15π﹣18,故答案为:15π﹣18.【点评】本题考查扇形面积的计算、含30度角的直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.14.(3分)如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2,AD=1,点E的坐标为(0,2).点F(x,0)在边AB上运动,若过点E、F 的直线将矩形ABCD的周长分成2:1两部分,则x的值为±.【分析】分类讨论:点F在OA上和点F在OB上两种情况.根据题意列出比例关系式,直接解答即可得出x得出值.【解答】解:如图,∵AB的中点与原点O重合,在矩形ABCD中,AB=2,AD =1,∴A(﹣1,0),B(1,0),C(1,1).当点F在OB上时.易求G(,1)∵过点E、F的直线将矩形ABCD的周长分成2:1两部分,则AF+AD+DG=3+x,CG+BC+BF=3﹣x,由题意可得:3+x=2(3﹣x),解得x=.由对称性可求当点P在OA上时,x=﹣.故答案是:±.【点评】本题主要考查了一次函数的综合题,解答要注意数形结合思想的运用,是各地中考的热点,同学们要加强训练,属于中档题.三、解答题(本大题共10小题,共计78分)15.(6分)先化简再求值:÷(﹣1),其中x=.【分析】根据分式的混合运算法则化简,然后代入计算即可.【解答】解:原式=÷=•=﹣(x﹣1)=1﹣x,当x=时,原式=.【点评】本题考查分式的混合运算,解题的关键是记住分式的混合运算,先乘方,再乘除,然后加减,有括号的先算括号里面的.16.(6分)水果店老板用600元购进一批水果,很快售完;老板又用1250元购进第二批水果,所购件数是第一批的2倍,但进价比第一批每件多了5元,问第一批水果每件进价多少元?【分析】设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,根据用1250元所购件数是第一批的2倍,列方程求解.【解答】解:设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,由题意得,×2=,解得:x=120,经检验:x=120是原分式方程的解,且符合题意.答:第一批水果每件进价为120元.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.17.(6分)有4张正面分别标有数字﹣1,2,﹣3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从4张卡片中随机摸出一张不放回,将该卡片上的数字记为m,在随机抽取1张,将卡片的数字即为n.(1)请用列表或树状图的方式把(m,n)所有的结果表示出来.(2)求选出的(m,n)在二、四象限的概率.【分析】(1)画树状图展示所有12种等可能的结果数;(2)找出点(m,n)在一、三象限的结果数,然后根据概率公式求解.【解答】解:(1)画树状图为:共有12种等可能的结果数;(2)由树状图可知,共产生12种结果,每种结果出现的可能性相同,其中在二、四象限的有(2,﹣1),(4,﹣1),(﹣3,2),(4,﹣3),(﹣1,2),(2,﹣3),(﹣1,4),(﹣3,4)共8种,∴(m,n)在二、四现象的概率为:P==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.18.(7分)如图,分别以线段AB两端点A,B为圆心,以大于AB长为半径画弧,两弧交于C,D两点,作直线CD交AB于点M,DE∥AB,BE∥CD.(1)判断四边形ACBD的形状,并说明理由;(2)求证:ME=AD.【分析】(1)根据题意得出AC=BC=BD=AD,即可得出结论;(2)先证明四边形BEDM是平行四边形,再由菱形的性质得出∠BMD=90°,证明四边形ACBD是矩形,得出对角线相等ME=BD,即可得出结论.【解答】(1)解:四边形ACBD是菱形;理由如下:根据题意得:AC=BC=BD=AD,∴四边形ACBD是菱形(四条边相等的四边形是菱形);(2)证明:∵DE∥AB,BE∥CD,∴四边形BEDM是平行四边形,∵四边形ACBD是菱形,∴AB⊥CD,∴∠BMD=90°,∴四边形ACBD是矩形,∴ME=BD,∵AD=BD,∴ME=AD.【点评】本题考查了菱形的判定、矩形的判定与性质、平行四边形的判定;熟练掌握菱形的判定和矩形的判定与性质,并能进行推理论证是解决问题的关键.19.(7分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有60 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为90 度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.【分析】(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;(2)由(1)可求得了解的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案.【解答】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:×360°=90°;故答案为:60,90;(2)60﹣15﹣30﹣10=5;补全条形统计图得:(3)根据题意得:900×=300(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.【点评】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.关键是根据列表法或树状图法求概率以及条形统计图与扇形统计图.20.(7分)美丽的甬江宛如一条玉带穿城而过,数学课外实践活动中,小林在甬江岸边的A,B两点处,利用测角仪分别对西岸的一观景亭D进行测量.如图,测得∠DAC=45°,∠DBC=65°,若AB=114米,求观景亭D到甬江岸边AC的距离约为多少米?(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)【分析】过点D作DE⊥AC,垂足为E,设BE=x,根据AE=DE,列出方程即可解决问题.【解答】解:过点D作DE⊥AC,垂足为E,设BE=x,在Rt△DEB中,tan∠DBE=,∵∠DBC=65°,∴DE=x tan65°.又∵∠DAC=45°,∴AE=DE.∴114+x=x tan65°,∴解得x≈100,∴DE≈214(米).∴观景亭D到甬江岸边AC的距离约为214米.【点评】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.21.(8分)周末,甲、乙两名大学生骑自行车去距学校6000米的净月潭公园,两人同时从学校出发,以a米/分的速度匀速行驶,出发4.5分钟时,甲同学发现忘记带学生证,以1.5a米/分的速度按原路返回学校,取完学生证(在学校取学生证所用时间忽略不计),继续以返回时的速度追赶乙,甲追上乙后,两人以相同的速度前往净月潭,乙骑自行车的速度始终不变,设甲,乙两名大学生距学校的路程为s(米),乙同学行驶的时间为t(分),s与t之间的函数图象如图所示.(1)求a,b的值;(2)求甲追上乙时,距学校的路程;(3)当两人相距500米时,求t的值.【分析】(1)根据函数图象中的数据和题意可以求得a、b的值;(2)根据题意和函数图象中的数据可以求得甲追上乙时,距学校的路程;(3)由题意和图象可知,存在两种情况使得两人相距500米,从而可以求得t的值.【解答】解:(1)由题意可得,a=900÷4.5=200,b=6000÷200=30,即a的值是200,b的值是30;(2)设甲追上乙时的时刻为t,乙加速后的速度是200×1.5=300米/分,300(t﹣4.5﹣)=200t,解得,t=22.5,则200t=200×22.5=4500,答:甲追上乙时,距学校的路程是4500米;(3)当两人相距500米时,300(t﹣4.5)+200(t﹣4.5)=500,得t=5.5,或300(t﹣4.5﹣)+500=200t,得t=17.5,即t的值是5.5或17.5.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.(9分)【感知】如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.【拓展】如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.【应用】如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,则菱形CEFG的面积为.【分析】拓展:由四边形ABCD、四边形CEFG均为菱形,利用SAS易证得△BCE ≌△DCG,则可得BE=DG;应用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=2ED,可求得△CDE的面积,继而求得答案.【解答】解:拓展:∵四边形ABCD、四边形CEFG均为菱形,∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.∵∠A=∠F,∴∠BCD=∠ECG.∴∠BCD﹣∠ECD=∠ECG﹣∠ECD,即∠BCE=∠DCG.在△BCE和△DCG中,,∴△BCE≌△DCG(SAS),∴BE=DG.(6分)应用:∵四边形ABCD为菱形,∴AD∥BC,∵BE=DG,∴S△ABE+S△CDE=S△BEC=S△CDG=8,∵AE=2ED,∴S△CDE=×8=,∴S△ECG=S△CDE+S△CDG=,∴S菱形CEFG=2S△ECG=.故答案为:.(9分)【点评】此题考查了菱形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.23.(10分)已知:如图1,抛物线的顶点为M,平行于x轴的直线与该抛物线交于点A,B(点A在点B左侧),根据对称性△AMB恒为等腰三角形,我们规定:当△AMB为直角三角形时,就称△AMB为该抛物线的“完美三角形”.(1)①如图2,求出抛物线y=x2的“完美三角形”斜边AB的长;②抛物线y=x2+1与y=x2的“完美三角形”的斜边长的数量关系是相等;(2)若抛物线y=ax2+4的“完美三角形”的斜边长为4,求a的值;(3)若抛物线y=mx2+2x+n﹣5的“完美三角形”斜边长为n,且y=mx2+2x+n ﹣5的最大值为﹣1,求m,n的值.【分析】(1)①①过点B作BN⊥x轴于N,根据△AMB为等腰直角三角形,AB ∥x轴,所以∠BMN=∠ABM=45°,所以∠BMN=∠MBN,得到MN=BN,设B 点坐标为(n,n),代入抛物线y=x2,得n=n2,解得n=1,n=0(舍去),所以B(1,1),求出BM的长度,利用勾股定理,即可解答;②因为抛物线y=x2+1与y=x2的形状相同,所以抛物线y=x2+1与y=x2的“完美三角形”的斜边长的数量关系是相等;(2)根据抛物线y=ax2与抛物线y=ax2+4的形状相同,所以抛物线y=ax2与抛物线y=ax2+4的“完美三角形”全等,所以抛物线y=ax2+4的“完美三角形”斜边的长为4,所以抛物线y=ax2的“完美三角形”斜边的长为4,从而确定B点坐标为(2,2)或(2,﹣2),把点B代入y=ax2中,得到.(3))根据y=mx2+2x+n﹣5的最大值为﹣1,得到,化简得mn ﹣4m﹣1=0,抛物线y=mx2+2x+n﹣5的“完美三角形”斜边长为n,所以抛物线y=mx2的“完美三角形”斜边长为n,所以B点坐标为,代入抛物线y=mx2,得,mn=﹣2或n=0(不合题意舍去),所以,所以.【解答】解:(1)①过点B作BN⊥x轴于N,如图2,∵△AMB为等腰直角三角形,∴∠ABM=45°,∵AB∥x轴,∴∠BMN=∠ABM=45°,∴∠MBN=90°﹣45°=45°,∴∠BMN=∠MBN,∴MN=BN,设B点坐标为(n,n),代入抛物线y=x2,得n=n2,∴n=1,n=0(舍去),∴B(1,1)∴MN=BN=1,∴MB==,∴MA=MB=,在Rt△AMB中,AB==2,∴抛物线y=x2的“完美三角形”的斜边AB=2.②∵抛物线y=x2+1与y=x2的形状相同,∴抛物线y=x2+1与y=x2的“完美三角形”的斜边长的数量关系是相等;故答案为:相等.(2)∵抛物线y=ax2与抛物线y=ax2+4的形状相同,∴抛物线y=ax2与抛物线y=ax2+4的“完美三角形”全等,∵抛物线y=ax2+4的“完美三角形”斜边的长为4,∴抛物线y=ax2的“完美三角形”斜边的长为4,∴B点坐标为(2,2)或(2,﹣2),把点B代入y=ax2中,∴.(3)∵y=mx2+2x+n﹣5的最大值为﹣1,∴,∴mn﹣4m﹣1=0,∵抛物线y=mx2+2x+n﹣5的“完美三角形”斜边长为n,∴抛物线y=mx2的“完美三角形”斜边长为n,∴B点坐标为,∴代入抛物线y=mx2,得,∴mn=﹣2或n=0(不合题意舍去),∴,∴.【点评】本题考查了二次函数,解决本题的关键是理解“完美三角形”的定义,利用勾股定理,求出点B的坐标.24.(12分)如图,在▱ABCD中,AB=4,AD=5,tan A=,点P从点A出发,沿折线AB﹣BC以每秒1个单位长度的速度向中点C运动,过点P作PQ⊥AB,交折线AD﹣DC于点Q,将线段PQ绕点P顺时针旋转90°,得到线段PR,连接QR.设△PQR与▱ABCD重叠部分图形的面积为S(平方单位),点P运动的时间为t(秒).(1)当点R与点B重合时,求t的值;(2)当点P在BC边上运动时,求线段PQ的长(用含有t的代数式表示);(3)当点R落在▱ABCD的外部时,求S与t的函数关系式;(4)直接写出点P运动过程中,△PCD是等腰三角形时所有的t值.【分析】(1)根据AP+PR=AB,构建方程即可解决问题;(2)在Rt△APQ中,解直角三角形即可解决问题;(3)分三种情形分别求解即可解决问题;(4)分四种情形分别求解即可解决问题;【解答】解:(1)∵将线段PQ绕点P顺时针旋转90°,得到线段PR,∴PQ=PR,∠QPR=90°,∴△QPR为等腰直角三角形.当运动时间为t秒时,AP=t,PQ=PQ=AP•tan A=t.∵点R与点B重合,∴AP+PR=t+t=AB=4,解得:t=.(2)当点P在BC边上时,4≤t≤9,CP=9﹣t,∵tan A=,∴tan C=,sin C=,∴PQ=CP•sin C=(9﹣t).(3)①如图1中,当<t≤3时,重叠部分是四边形PQKB.作KM⊥AR于M.∵△KBR∽△QAR,∴=,∴=,∴KM=(t﹣4)=t﹣,∴S=S△PQR﹣S△KBR=×(t)2﹣×(t﹣4)(t﹣)=﹣t2+t﹣.②如图2中,当3<t≤4时,重叠部分是四边形PQKB.S=S﹣S△KBR=×4×4﹣×t×t=﹣t2+8.△PQR③如图3中,当4<t<9时,重叠部分是△PQK.S=•S=××(9﹣t)•(9﹣t)=(9﹣t)2.△PQC(4)如图4中,①当DC=DP1=4时,易知AP1=3,t=3.②当DC=DP2时,CP2=2•CD•=,∴BP2=,∴t=4+=.③当CD=CP3时,t=5.④当CP4=DP4时,CP4=2÷=,∴t=9﹣=.综上所述,满足条件的t的值为4或或5或.【点评】本题考查四边形综合题、动点问题、平行四边形的性质、多边形的面积、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想解决问题,学会利用参数构建方程解决问题,属于中考压轴题.。
2020届吉林省长春市中考数学模拟试卷(二)(有解析)
2020届吉林省长春市中考数学模拟试卷(二)一、选择题(本大题共8小题,共24.0分)1.下列计算正确的是()A. 12×3=16B. 79÷7=19C. 25×25=1 D. 1÷34=342.如图是由6个大小相同的小正方体摆成的立体图形,它的左视图是()A.B.C.D.3.“共享单车”是指企业与政府合作,在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车共享的一种服务,是共享经济的一种新形态.某市预计投入31600辆共享单车服务于人们,31600用科学记数法表示为()A. 3.16×104B. 3.16×105C. 3.16×106D. 31.6×1054.下列不等式组中,可以用如图表示其解集的是()A. {x+1>0x−2<0B. {x+1≥0x−2≤0C. {x+1>0x−2≤0D. {x+1≥0x−2<05.下面四幅图中所作的∠AOB不一定等于60°的是()A. B.C. D.6.如图,小明从路灯下A处向前走了5米,发现自己在地面上的影子长DE是2米,如果小明的身高为1.6米,那么路灯离地面的高度AB是()A. 4米B. 5.6米C. 2.2米D. 12.5米7.在A处观察B处时的仰角为36°,那么在B处观察A处时的俯角为()A. 36°B. 54°C. 126°D. 144°8.如图,将一张平行四边形纸片撕开并向两边水平拉伸,若拉开的距离为lcm,AB=2cm,∠B=60°,则拉开部分的面积(即阴影面积)是()A. 1cm2 B. √3cm2 C. √3cm2 D. 2√3cm2 2二、填空题(本大题共6小题,共18.0分)9.在−√3与√10之间的整数是______ .10.下面是某同学在一次作业中的计算摘录①(a3b)3=a3b3;②(−x2)3=−x6;③(−m)3÷(−m)=m2;④(−3x)2⋅x3=9x5;⑤6m3n−7mn3=−m3n.其中正确的有______(把正确的序号都填在横线上)11.若以二元一次方程x+3y=b的解为坐标的点(x,y)都在直线y=−13x+b−1上,则常数b的值为______.12.如图,在平行四边形ABCD中,AB=4,BC=6.以点B为圆心,适当长为半径画弧,交BA于点E,交BC于点F,再分别以点E,F为圆心,大于12EF的长为半径画弧,两弧相交于点G,射线BG交CD的延长线于点H,则DH的长是______.13.如图,边长为1的正方形ABCD的对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ< 90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G,则下列结论中正确的是________.①EF=√2OE;②S四边形OEBF:S正方形ABCD=1:4;③BE+BF=√2OA;④在旋转过程中,当△BEF与△COF的面积之和最大时,AE=34;⑤OG﹒BD=AE2+CF2.14.函数y=ax2+(a+2)x+2的图象与x轴有且仅有一个交点,则a=______.三、解答题(本大题共10小题,共78.0分)15.(1)化简:(x+2x2−2x −x−1x2−4x+4)÷x−4ax(2)设S=(x+2x2−2x −x−1x2−4x+4)÷x−4ax,a为非零常数,对于每一个有意义的x值,都有一个S的值对应,可得下表:x…−3−2−10134567…S (2)2518291222122918225…仔细观察上表,能直接得出方程a(x−3)2=18的解为______.16. 为喜迎新年,九三班上学期期末开展了“元旦游园”活动.其中一项是抽奖获奖品的活动:抽奖箱中有4个标号分别为1,2,3,4的质地、大小完全相同的小球.参与的同学任意摸取一个小球,然后放回,搅匀后再摸取一个小球.若两次摸出的数字之和是“8”为一等奖,可获签字笔一支;数字之和是“6”为二等奖,可获铅笔一支;数字之和其他数字则为三等奖,可获橡皮擦一个.(1)参与抽奖的获三等奖的概率为______ ;(2)分别求出参与抽奖获一等奖和二等奖的概率.17. (1)用直尺和圆规作一个等腰三角形,使得底边长为线段a,底边上的高的长为线段b,要求保留作图痕迹.(不要求写出作法)(2)在(1)中,若a=6,b=4,求等腰三角形的腰长.18. A,B两点在数轴上如图所示,其中O为原点,点A对应的有理数为a,点B对应的有理数为b,且点A距离原点6个单位长度,a、b满足b−|a|=2.(1)a=______;b=______;(2)动点P从点A出发,以每秒2个单位长度的速度向右运动,设运动时间为t秒(t>0)①当PO=2PB时,求点P的运动时间t:②当PB=6时,求t的值:(3)当点P运动到线段OB上时,分别取AP和OB的中点E、F,则AB−OP的值是否为一个定值?如果EF是,求出定值,如果不是,说明理由.19. (11分)某商场经理对某一品牌旅游鞋近一个月的销售情况进行统计后,绘制了如下统计表与条形图:(1)写出表中a,b,c的值;(2)补全条形图;(3)商场经理准备购进同一品牌的旅游鞋1500双,请根据市场实际情况估计他应该购进38码的鞋多少双.20. 如图,AB是⊙O的直径,AC是弦,OC是⊙O的半径,AD⊥CD于点D.且∠AOC=2∠ACD.求证:(1)CD是⊙O的切线.(2)AC2=AB·AD.21. 如图,l1反映了甲离开A的时间与离A地的距离的关系,l2反映了乙离开A地的时间与离A地的距离之间的关系,根据图象填空:(1)当时间为2小时时,甲离A地千米,乙离A地千米:(2)当时间时,甲、乙两人离A地距离相等;(3)当时间时,甲在乙的前面,当时间时,乙超过了甲;(4)l2对应的函数表达式为.22. 如图,已知:B,E,C,F四点在同一条直线上,BE=CF,∠B=∠1.(1)在①∠2=∠F;②AC=DF;③AB=DE三个条件中,任选一个条件,使△ABC≌△DEF,你选择的条件是______(填序号,填符合题意的一个即可);(2)在(1)题选择的条件下,证明△ABC≌△DEF.23. 如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,∠OAB=90°且OA=AB,OB=8,OC=5.(1)求点A的坐标;(2)点P是从O点出发,沿X轴正半轴方向以每秒1单位长度的速度运动至点B的一个动点(点P不与点O,B重合),过点P的直线l与y轴平行,交四边形ABCD的边AO或AB于点Q,交OC 或BC于点R.设运动时间为t(s),已知t=3时,直线l恰好经过点C.求①点P出发时同时点E也从点B出发,以每秒1个单位的速度向点O运动,点P停止时点E也停止.设△QRE的面积为S,求当0<t<3时S与t的函数关系式;并直接写出S的最大值.②是否存在某一时刻t,使得△ORE为直角三角形?若存在,请求出相应t的值;若不存在,请说明理由.24. 某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象.图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第26天的日销售量是______件,日销售利润是______元.(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于600元的天数共有多少天?试销售期间,日销售最大利润是多少元?【答案与解析】1.答案:B解析:解:A.12×3=32,故本选项不合题意;B.79÷7=19,故本选项符合题意;C.25×25=425,故本选项不合题意;D.1÷34=43,故本选项不合题意.故选:B.分别根据有理数的乘除法法则逐一判断即可.本题主要考查了有理数的乘除法,熟记运算法则是解答本题的关键.2.答案:B解析:解:从左边看有两列,从左到右第一列是三个小正方形,第二列底层是一个小正方形,故选:B.根据从左边看得到的图形是左视图,可得答案.本题考查了简单组合体的三视图,从左边看得到的图形是左视图.3.答案:A解析:解:31600用科学记数法表示为3.16×104,故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4.答案:C解析:解:根据数轴不等式的解集是:−1<x≤2;A、不等式组的解集是:−1<x<2;B、不等式组的解集是:−1≤x≤2;C、不等式组的解集是:−1<x≤2;D、不等式组的解集是:−1≤x<2.故选C.根据数轴写出不等式组的解集,然后解各个不等式组,与已知的不等式的解集比较就可以得到.本题考查一元一次不等式组的解法及解集在数轴上的表示方法.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.答案:D解析:本题考查角的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考基础题.根据角的定义即可解决问题.解:A.是直角三角板,∠AOB所在的角是60°角,故选项正确,不符合题意;B.从量角器刻度上可以看出∠AOB的度数为60°角,故选项正确,不符合题意;C.三角形为等边三角形,∠AOB的度数为60°角,故选项正确,不符合题意;D.看不出∠AOB的度数为60°,故选项错误,符合题意.故选D.6.答案:B解析:解:由图知,DE=2米,CD=1.6米,AD=5米,∴AE=AD+DE=5+2=7米∵CD//AB,∴△ECD∽△EBA∴CDAB =DEAE,即1.6AB=25+2,解得AB=5.6(米).故选:B.根据CD//AB,得出△ECD∽△EBA,进而得出比例式求出即可.此题主要考查了相似三角形的应用,得出△ECD∽△EBA是解决问题的关键.7.答案:A解析:解:设A、B两点的水平线分别为AM、BN,依题意,得AM//BN,∠BAM=36°,由平行线的性质可知,∠ABN=∠BAM=36°.故选:A.。
长春市2020版中考数学二模试题A卷
长春市2020版中考数学二模试题A卷姓名:________ 班级:________ 成绩:________一、单选题1 . 能使分式的值为零的所有x的值是()A.x=1B.x=﹣1C.x=1或x=﹣1D.x=2或x=12 . 如图,在矩形ABCD中,点F在AD上,点E在BC上,把这个矩形沿EF折叠后,使点D恰好落在BC边上的G点处,若矩形面积为且,GE=2BG,则折痕EF的长为()A.4B.C.2D.3 . 如图,是某几何体的三视图及相关数据,则该几何体的表面积是()A.39πB.29πC.24πD.19π4 . 斑叶兰被列为国家二级保护植物,它的一粒种子重约0.00000053克.将0.00000053用科学计数法表示为()A.5.3×107B.5.3×10-7C.0.53×10-6D.5.3×10-65 . 下列运算正确的是()A.=-2B.4-=1C.÷=D.·=66 . 如图,点A是圆O上一点,BC是圆O的弦,若∠A=50°,则∠OBC的度数()A.40°B.50°C.25°D.100°7 . 一个n边形的内角和是外角和2倍,则n的值为()A.3B.4C.5D.68 . 在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为()A.1.70,1.75B.1.70,1.70C.1.65,1.75D.1.65,1.70二、填空题9 . 当k____时,关于x的方程x2﹣3x+k=0没有实数根.10 . 计算:__________.11 . 如图,平面直角坐标系中,矩形ABOC的边BO,CO分别在x轴,y轴上,A点的坐标为(﹣8,6),点P 在矩形ABOC的内部,点E在BO边上,满足△PBE∽△CBO,当△APC是等腰三角形时,P点坐标为_____.12 . 如图,在平面直角坐标系中,梯形的边在轴的正半轴上,,,过点的双曲线的一支在第一象限交梯形对角线于点,交边于点.若,,则的值为________.13 . 如图,在面积为16的四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,D P⊥AB于点P,则DP的长是_____.14 . 庄子说:“一尺之椎,日取其半,万世不竭”.这句话(文字语言)表达了古人将事物无限分割的思想,用图形语言表示为图1,按此图分割的方法,可得到一个等式(符号语言):1=图2也是一种无限分割:在△ABC中,∠C=90°,∠B=30°,过点C作CC1⊥AB于点C1,再过点C1作C1C2⊥BC 于点C2,又过点C2作C2C3⊥AB于点C3,如此无限继续下去,则可将利△ABC分割成△ACC1、△CC1C2、△C1C2C3、△C2C3C4、…、△Cn﹣2Cn﹣1Cn、….假设AC=2,这些三角形的面积和可以得到一个等式是_____.三、解答题15 . 某班共30名同学参加了网络上第二课堂的禁毒知识竞赛(共20道选择题),学习委员对竞赛结果进行了统计,发现每个人答题正确题数都超过15题.通过统计制成了下表,结合表中信息,解答下列问题:答对题数1617181920人数3964(1)补统计表中数据:(2)求这30名同学答对题目的平均数、众数和中位数;(3)答题正确率为100%的4名同学中恰好是2名男同学和2名女同学,现从中随机抽取2名同学参加学校禁毒知识抢答大赛,问抽到1男1女的概率是多少?16 . 如图,平行四边形中,点分别是的中点.求证.17 . 如图,在平面直角坐标系中,二次函数的图像经过点,点,与轴交于点,(1)求、的值:(2)若点为直线上一点,点到直线、两点的距离相等,将该抛物线向左(或向右)平移,得到一条新抛物线,并且新抛物线经过点,求新抛物线的顶点坐标.18 . 历下区历史文化悠久,历下一名,取意于大舜帝耕作于历山之下.这位远古圣人为济南留下了影响深远的大舜文化,至今已绵延两千年.某校就同学们对“舜文化”的了解程度进行随机抽样调查,将调查结果绘制成如下两幅统计图:根据统计图的信息,解答下列问题:(1)本次共调查名学生,条形统计图中;(2)若该校共有学生1200名,请估算该校约有多少名学生不了解“舜文化”;(3)谓查结果中,该校九年级(2)班有四名同学相当优秀,了解程度为“很了解”,他们是三名男生、—名女生,现准备从这四名同学中随机抽取两人去市里参加“舜文化”知识竞赛,用树状或列表法,求恰好抽中一男生一女生的概率.19 . 先化简,再求值:,其中m=.20 . 如图,中,是直径,是弦,,垂足为点,过点的直线交的延长线于点,交的延长线于点,已知的半径为5.(1)分别求出线段的长;(2)如果,求证:是的切线;(3)如果,求的长.21 . 情境·观察:将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A1C1D,如图1所示,将△A1C1D的顶点A1与点A重合,并绕点A按逆时针方向旋转,使点D,A(A1),B在同一条直线上,如图2所示,观察图2可知:旋转角∠CA C1 =________°,与BC相等的线段是__________。
2020年吉林省长春市南关区九年级中考二模数学试题
“汉字听写”大赛成绩段频数频率统计表
成绩 /分
频数
频率
根据以上信息,解答下列问题:
(1)表中 , ;
(2)请补全频数分布直方图;
(3)这次比赛成绩的中位数是;
(4)若这次比赛成绩在 分以上(含 分)的学生获得优胜奖,估计该校参加这次比赛的 名学生中获得优胜奖的人数.
21.某企业接到加工粮食任务,要求 天加工完 吨粮食.该企业安排甲、乙两车间共同完成加工任务.乙车间因维修设备,中途停工一段时间,维修设备后提高了加工效率,继续加工,直到与甲车间同时完成加工任务为止.设甲、乙两车间各自加工粮食数量 (吨)与甲车间加工时间 (天)之间的函数关系如图①所示;未加工粮食 (吨)与甲车间加工时间 (天)之间的函数关系如图②所示、请结合图象解答下列问题:
【详解】
解:设点A、B的纵坐标为y1,点C、D的纵坐标为y2,
分别表示出来A、B、C、D四点的坐标为A( ,y1),点B( ,y1),点C( ,y2),点D( ,y2).
,
∴ ,
,
,
∴ ,
,
∴ .
故选:D.
【点睛】
本题考查了两点间的距离、反比例函数图象上点的坐标特征以及反比例函数的性质,解题的关键是利用两点间的距离公式表示出AB=2.
∴OE∥CD,
∴ =( )2= .
∴S△OBE=3.
∴S四边形DOEC=12-3=9.
故选C.
【点睛】
本题考查的是作图-基本作图,熟知作一个角等于已知角的作法是解答此题的关键.
8.D
【解析】
【分析】
设点A、B的纵坐标为y1,点C、D的纵坐标为y2,分别表示出来A、B、C、D四点的坐标,根据线段ቤተ መጻሕፍቲ ባይዱB、CD的长度结合AB与CD间的距离,即可得出y1、y2的值,再由点A、B的横坐标结合AB=2即可求出a-b的值.
2020年吉林省长春市中考数学模拟试题(二)(附带详细解析)
得分
三、解答题
15.(1)计算:2(m+1)2﹣(2m+1)(2m﹣1);
(2)先化简,再求值.[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷2x,其中x=﹣2,y= .
16.从甲、乙、丙、丁4名同学中随机抽取同学参加学校的座谈会
(1)抽取一名同学,恰好是甲的概率为
(2)抽取两名同学,求甲在其中的概率。
(3)拓展延伸
把△ADE绕点A在平面内自由旋转,若AD=4,AB=8,请直接写出△PMN面积的取值范围.
10.若关于 的方程 的解为负数,则 的取值范围是_____________
11.如图,将两张一样(长为 ,宽为 )的矩形纸条交叉叠放,重合部分为四边形,则四边形的周长的最大值是_____ .
12.如图,在Rt△ABC中,∠ABC=90°,点D、E、F分别是AB、AC,BC边上的中点,连结BE,DF,已知BE=5,则DF=______.
A.mcosαB. C.msinαD.
8.如图,平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(3,0),B(0,6)分别在x轴,y轴上,反比例函数y= 的图象经过点D,则k值为( )
A.﹣14B.14C.7D.﹣7
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
二、填空题
9.若am=5,an=6,则am+n=________.
22.如图1,在△ABC中,AB=AC,∠BAC=120°,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.
(1)观察猜想
图1中,线段PM与PN的数量关系是,∠MPN的度数是;
2020年吉林省中考数学二模试卷解析版
A. C. D.
(x>0)的图象经过点
二、填空题(本大题共 6 小题,共 18.0 分) 9. 分解因式:am2-9a=______. 10. 中国人民银行近期下发通知,决定自 2019 年 4 月 30 日停止
兑换第四套人民币中菊花 1 角硬币.如图所示,则该硬币 边缘镌刻的正多边形的外角的度数为______.
D. 3 - =2
6. 如图,已知 l1∥AB,AC 为角平分线,下列说法错误的
是( )
A. ∠1=∠4
B. ∠1=∠5
C. ∠2=∠3
D. ∠1=∠3
第 1 页,共 18 页
7. 如图,在四边形 ABCD 中,AD∥BC,∠D=90°,AD=4,
BC=3.分别以点 A,C 为圆心,大于 AC 长为半径作弧
中考数学二模试卷
题号 得分
一
二
三
总分
一、选择题(本大题共 8 小题,共 24.0 分) 1. -2 的绝对值是( )
A. 2
B.
C. -
D. -2
2. 预计到 2025 年,中国 5G 用户将超过 460000000.将 460000000 用科学记数法表示
为()
A. 4.6×109
B. 46×107
14. 如图,抛物线 y=ax2+bx+c 与 x 轴相交于 A、B 两点,点 A( 在点 B 左侧,顶点在折线 M-P-N 上移动,它们的坐标分别 为 M(-1,4)、P(3,4)、N(3,1).若在抛物线移动过 程中,点 A 横坐标的最小值为-3,则 a-b+c 的最小值是______ .
三、解答题(本大题共 10 小题,共 78.0 分) 15. 先化简,再求值:(2a+1)2-4a(a-1),其中 a= .
吉林省长春市2020版中考数学模拟试卷(II)卷
吉林省长春市2020版中考数学模拟试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)下列运算正确的是()A .B .C .D .2. (2分)(2016·安顺) 下列计算正确的是()A . a2•a3=a6B . 2a+3b=5abC . a8÷a2=a6D . (a2b)2=a4b3. (2分)(2017·揭西模拟) 下面四个图形中,既是中心对称图形又是轴对称图形的是()A .B .C .D .4. (2分)(2016·自贡) 甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为S甲2=0.56,S乙2=0.60,S丙2=0.50,S丁2=0.45,则成绩最稳定的是()A . 甲B . 乙C . 丙D . 丁5. (2分)(2017·和平模拟) 纳米是非常小的长度单位,1纳米=10﹣9米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是()A . 2.51×10﹣5米B . 25.1×10﹣6米C . 0.251×10﹣4米D . 2.51×10﹣4米6. (2分)(2016·双柏模拟) 下列四个几何体中,主视图为矩形的是()A .B .C .D .7. (2分)如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于()A . 80°B . 50°C . 40°D . 20°8. (2分)(2017·港南模拟) 如图,在△ABC中,AB=10,AC=8,BC=12,AD⊥BC于D,点E、F分别在AB、AC边上,把△ABC沿EF折叠,使点A与点D恰好重合,则△DEF的周长是()A . 14B . 15C . 16D . 179. (2分) (2018九上·江苏月考) 已知是方程x2—2x—1=0的两个根,则的值为()A . —2B .C .D . 210. (2分)如图,双曲线y=与y=﹣分别为一第一、第四象限,A是y轴上任意一点,B是y=﹣上的点,C是y=上的点,线段BC⊥x轴于点D,且4BD=3CD,则下列说法:①双曲线y=在每个象限内,y随x的增大而减小;②若点B的横坐标为3,则点C的坐标为(3,﹣);③△ABC的面积为定值7,正确的有()A . 1个B . 2个C . 3个D . 4个11. (2分)(2018·定兴模拟) 中国古代人民很早就在生产生活种发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x辆车,则可列方程()A .B .C .D .12. (2分)二次函数y=2x2﹣8x+m满足以下条件:当﹣2<x<﹣1时,它的图象位于x轴的下方;当6<x <7时,它的图象位于x轴的上方,则m的值为()A . 8B . ﹣10C . ﹣42D . ﹣24二、填空题 (共6题;共7分)13. (1分) (2016九上·乐至期末) 当x________时,二次根式有意义.14. (1分) (2019七下·安康期中) 将点A先向下平移3个单位,再向右平移2个单位后,则得到点B(2,5),则点A的坐标为________.15. (2分) (2017七下·濮阳期中) 如图,已知直线a∥b,且∠1=60°,则∠2=________.16. (1分) (2018八上·重庆期中) 已知一个正多边形有一个内角是120°,那么这个正多边形是正________边形.17. (1分))班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是________ .18. (1分) (2016七上·北京期中) “!”是一种数学运算符号,1!=1,2!=1×2=2,3!=1×2×3=6,4!=1×2×3×4=24,5!=________…则 =________.三、综合题 (共8题;共51分)19. (5分) (2019七上·南岗期末) 计算:(1)(2)20. (5分) (2018七上·西城期末) 先化简,再求值:,其中,.21. (2分) (2017八下·福州期末) 为了让市民享受到更多的优惠,某市针对乘坐地铁的人群进行了调查.(1)为获得乘坐地铁人群的月均花费信息,下列调查方式中比较合理是;A . 对某小区的住户进行问卷调查B . 对某班的全体同学进行问卷调查C . 在市里的不同地铁站,对进出地铁的人进行问卷调查(2)调查小组随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.① 根据图中信息,估计平均每人乘坐地铁的月均花费的范围是________元;A.20—60B.60—120C.120—180②你是用________(填统计概念)对①进行估计的。
长春市2020版中考数学二模试卷(II)卷
长春市2020版中考数学二模试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)当x=-2时,下列不等式不成立的是()A . x-5<-6B . x+2>0C . 3+2x>6D . 2(1-x)>-72. (2分) (2020·锦州模拟) 2018年4月10日,“2018博鳌亚洲论坛”在我国海南省博鳌小镇如期举行,据统计,在刚刚过去的一年,亚洲经济总量为29.6万亿美元,高居全球七大洲之首.数据“29.6万亿”用科学记数法可表示为()A . 2.96×108B . 2.96×1013C . 2.96×1012D . 29.6×10123. (2分) (2020·通州模拟) 下列几何体中,侧面展开图是矩形的是()A .B .C .D .4. (2分) (2020七下·宁波期中) 《孙子算经》是唐初作为“算学”教科书的著名的《算经十书)之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料,下卷收集了一些算术难题,“鸡兔同笼”问题是其中之一,原题如下:今有雉(鸡)兔同笼,上有三十五头,下有九十四足.问雉、兔各几何?()A . 雉 23 只,兔 12 只B . 雉 12 只,兔 23 只C . 雉 13 只,兔 22 只D . 雉 22 只,兔 13 只5. (2分)在一次数学测试中,某学习小组6名同学的成绩(单位:分)分别为65,82,86,82,76,95.关于这组数据,下列说法错误的是()A . 平均数是82B . 中位数是82C . 极差是30D . 众数是826. (2分) (2019七上·顺德期末) 两个单项式是同类项的是()A . 2x2y与2xy2B . ﹣x3与3x3C . 1与aD . ﹣3ab2c3与0.6b2c37. (2分) (2016七下·宜昌期中) 如图,若m∥n,∠1=105°,则∠2=()A . 55°B . 60°C . 65°D . 75°8. (2分)(2015·绵阳) 下列函数中,当x>0时,y随x的增大而增大的是()A . y=-3xB . y=-x+4C . y=-D . y=二、填空题 (共8题;共8分)9. (1分)(2020·南京模拟) 因式分解:3x3﹣3x2y﹣6xy2=________.10. (1分)(2019·道外模拟) 不等式组的解集为________.11. (1分) (2019八上·港南期中) 如图,在中,垂直平分,若的周长是12,,则的长________.12. (1分)如图,点A,B,C在⊙O上,若∠ABC=40°,则∠AOC的度数为________.13. (1分)(2017·辽阳) 如图,在矩形ABCD中,∠ABC的平分线交AD于点E,连接CE.若BC=7,AE=4,则CE=________.14. (1分) (2016九上·相城期末) 如图,小王从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15米3的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现己知购买这种铁皮每平方米需20元钱,这张矩形铁皮共花钱________元.15. (1分)(2020·中宁模拟) 一个不透明的口袋中装有5个红球和若干个白球,他们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,估计口袋中白球有________个.16. (1分) (2020七上·天桥期末) 下列图形都是由相同的小正方形按照一定规律摆放而成的,照此规律排列下去,则第20个图中小正方形的个数是________三、解答题 (共10题;共90分)17. (5分)(2014·苏州) 计算:22+|﹣1|﹣.18. (5分)已知△ABC,过点D作△ABC平移后的图形,其中点D与点A对应.19. (5分) (2019七下·松滋期末) 市实验中学学生会准备调查七年级学生参加“球类”“书画类”“棋牌类:”“器乐类”四类校本课程的人数.(1)确定调查方式时,甲同学说:“我到七年级(1)班去调查全体同学”;乙同学说:“放学时,我到校门口随机调查部分同学”;丙同学说:“我到七年级每个班随机调查一定数量的同学”.这三位同学的调查方式中,最合理的是________(填“甲”“乙”或“丙”)同学的调查方式.(2)他们采用了最为合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图,请你根据图表提供的信息解答下列问题:①a=________,b=________;②在扇形统计图中,器乐类所对应的圆心角的度数是________;③若该校七年级有学生660人,请你估计大约有多少学生参加球类校本课程?________类别频数(人数)百分比球类25书画类2020%棋牌类15b器乐类合计a100%20. (15分)将九年级部分男生掷实心球的成绩进行整理,分成5个小组(x表示成绩,单位:米).A组:5.25≤x<6.25;B组:6.25≤x<7.25;C组:7.25≤x<8.25;D组:8.25≤x<9.25;E组:9.25≤x<10.25,并绘制出扇形统计图和频数分布直方图(不完整).规定x≥6.25为合格,x≥9.25为优秀.(1)这部分男生有多少人?其中成绩合格的有多少人?(2)这部分男生成绩的中位数落在哪一组?扇形统计图中D组对应的圆心角是多少度?(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,求他俩至少有1人被选中的概率.21. (5分)(2018·阳信模拟) 列方程解应用题:某景区一景点改造工程要限期完成,甲工程队单独做可提前一天完成,乙工程队单独做要误期6天,现由两工程队合做4天后,余下的由乙工程队独做,正好如期完成,则工程期限是多少天?22. (10分)已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=4,cosC= 时,求⊙O的半径.23. (5分)(2017·洛宁模拟) “蘑菇石”是我国著名的自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1890m.如图,DE∥BC,BD=1800m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1m,可参考数据sin29°≈0.4848,sin80°≈0.9848,cos29°≈0.8746,cos80°≈0.1736)24. (10分) (2018九上·安陆月考) 某商品的进价为每件40元,售价为每件60元时,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2件.设每件商品的售价为x元(x为正整数),每个月的销售利润为y元.(1)当每件商品的售价是多少元时,每个月的利润刚好是2250元?(2)当每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?25. (15分) (2018八上·武汉月考) 若 a、b、c 为△ABC 的三边,且满足 a2+b2+c2=ab+ac+bc.点 D 是 AC边的中点,以点 D 为顶点作∠FDE=120°,角的两边分别与直线 AB 和 BC 相交于点 F 和点 E(1)试判断△ABC 的形状,说明理由(2)如图 1,将△ABC 图形中∠FDE=120°绕顶点 D 旋转,当两边 DF、DE 分别与边 AB 和射线BC 相交于点 F、E 时,三线段 BE、BF、AB 之间存在什么关系?证明你的结论(3)如图 2,当角两边 DF、DE 分别与射线 AB 和射线 BC 相交两点 F、E 时,三线段 BE、BF、AB 之间存在什么关系26. (15分)(2020·项城模拟) 二次函数的图象交x轴于A(-1, 0),B(4, 0)两点,交y 轴于点C.动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC.设运动的时间为t秒.(1)求二次函数的表达式;(2)连接BD,当时,求△DNB的面积;(3)在直线MN上存在一点P,当△PBC是以∠BPC为直角的等腰直角三角形时,直接写出此时点D的坐标.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共8分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共10题;共90分)17-1、18-1、19-1、19-2、20-1、20-2、20-3、21-1、22-1、22-2、23-1、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、。
吉林省长春市2020年中考数学二模试卷A卷
吉林省长春市2020年中考数学二模试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共32分)1. (2分)下列说法正确的是()A . 平方是本身的数是0B . 立方等于本身的数是1、﹣1C . 绝对值是本身的数是正数D . 倒数是本身的数是1、﹣12. (2分)如图,直线a , b被c所截,a∥b ,若∠1=35°,则∠2的大小为()A . 35°B . 145°C . 55°D . 125°3. (2分)由n个相同的小正方体堆成的几何体,两种视图如右图所示,则n的最大值是()A . 18B . 19C . 20D . 214. (2分) (2016七下·会宁期中) 若3x+2y=3,求27x 9y的值为()A . 9B . 27C . 6D . 05. (2分) (2016八上·萧山期中) 下列“表情图”中,不属于轴对称图形的是()A .B .C .D .6. (2分) (2019九上·梁平期末) 若关于x的一元二次方程(k+1)x2+2(k+1)x+k-2=0有实数根,则k 的取值范围在数轴上表示正确的是()A .B .C .D .7. (2分)如图,点A的坐标为(1,0),点B在直线y=-x上运动,当线段AB最短时,点B的坐标为()A . (0,0)B . (, -)C . (,-)D . (-,)8. (2分)甲、乙两根绳共长17米,如果甲绳减去它的,乙绳增加1米,两根绳长相等,若设甲绳长x 米,乙绳长y米,那么可列方程组()A .B .C .D .9. (2分)为调查某校2000名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况。
随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图.根据统计图提供的信息,可估算出该校喜爱动画节目的学生约有()A . 500名B . 600名C . 700名D . 800名10. (2分)在△ABC中,点D、E分别在边AB , AC上,AD:BD=1:2,那么下列条件中能够判断DE∥BC的是().A .B .C .D .11. (2分)(2019·深圳) 已知y=ax2+bx+c(a≠0)的图象如图,则y=ax+b和y= 的图象为()A .B .C .D .12. (2分) (2020八下·太原期中) 如图,已知中,的垂直平分线分别交于连接,则的长为()A .B .C .D .13. (2分)已知一个正多边形一个外角是72°,则这个正多边形是()A . 四边形B . 五边形C . 六边形D . 七边形14. (2分) (2018九上·罗湖期末) 如图,△AOB是直角三角形,∠AOB=90。
长春市中考数学二模试卷
长春市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2020·硚口模拟) 的相反数是()A . 7B .C .D . 12. (2分) (2019八上·潮安期末) 芝麻作为食品和药物,均广泛使用,经测算,一粒芝麻重量约有0.00 000 201kg,用科学记数法表示10粒芝麻的重量为()A . 2.01×10-6kgB . 2.01×10-5kgC . 20.1×10-7kgD . 20.1×10-6kg3. (2分)下列命题中,假命题是()A . 平行四边形是中心对称图形B . 三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C . 对于简单的随机样本,可以用样本的方差去估计总体的方差D . 若x2=y2 ,则x=y4. (2分)的整数部分是x,小数部分是y,则y(x+)的值是()A . 1B . 2C . 3D . 45. (2分)(2019·东台模拟) 如图,由5个完全相同的小正方体组合成的几何体,它的俯视图为()A .B .C .D .6. (2分) (2019九上·慈溪期中) 某校男子篮球队20名队员的身高如表所示:则此男子排球队20名队员身高的中位数是()身高(cm)170176178182198人数(个)46532A . 176cmB . 177cmC . 178cmD . 180cm7. (2分) (2016九下·海口开学考) 分式方程的解为()A . x=1B . x=2C . x=3D . x=48. (2分)某农机厂四月份生产零件50万个,第二季度共生产零件182万个设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A . 50(1+x)2=182B . 50+50(1+x)+50(1+x)2=182C . 50(1+2x)=182D . 50+50(1+x)+50(1+2x)2=1829. (2分)给出下列命题:①四条边相等的四边形是正方形;②两组邻边分别相等的四边形是平行四边形;③有一个角是直角的平行四边形是矩形;④两条对角线互相垂直且平分的四边形是菱形.其中错误命题的个数是()A . 1B . 2C . 3D . 410. (2分)如图,点O是圆形纸片的圆心,将这个圆形纸片按下列顺序折叠,使和都经过圆心O,则阴影部分的面积是⊙O面积的()A .B .C .D .11. (2分)如图,一学生要测量校园内一颗水杉树的高度,他站在距离水杉树10m的B处,测得树顶的仰角为∠CAD=30°,已知测角仪的架高AB=2 m,那么这棵水杉树高是()A . (+2) mB . (+2) mC . mD . 7 m12. (2分)不论m取何实数,抛物线y=2(x+m)2+m的顶点一定在下列哪个函数图象上()A . y=2x2B . y=-xC . y=-2xD . y=x二、填空题 (共6题;共7分)13. (1分)﹣|﹣16|的值等于________。
2024年吉林省长春市南关区多校联考中考二模数学试题(含答案)
2024年吉林省长春市南关区多校联考中考二模数学试题一、选择题(每小题3分,共24分)1.下列各数中,无理数是()A. B.0 C.-32.根据长春市人民政府的信息,2023年末,长春市的常住人口为910.19万人,将910.19万用科学记数法表示应为()A. B. C. D.3.下列计算中,正确的是()A. B. C. D.4.如果一个多边形的每个内角都相等,且内角和为,那么这个多边形的边数为()A.14B.13C.15D.165.如图所示的几何体是由6个大小相同的小正方体搭成的,将小正方体移走后,新的几何体的正视图为()A. B. C. D.6.关于的一元二次方程,其根的情况为()A.有两个相等的实数根B.无实根C.无法判断D.有两个不相等的实数根7.如图,中,平分交BC于点,分别以点和点为圆心,大于的长为半径作弧,两弧相交于点和点,作直线MN,交AD于点,则CE的长为()A.3B.C.4D.8.如图,取一根长100cm的匀质木杆,用细绳绑在木杆的中点O并将其吊起来,在中点O的左侧距离中点处挂一个重的物体,在中点的右侧用一个弹簧秤向下拉,使木杆处π260.9101910⨯69.101910⨯591.01910⨯29.101910⨯3362a a a+=()336a a=34a a a⋅=222()a b a b-=-2160︒Ax2440kx x k--=ABC5,6,AB AC BC AD===BAC∠D A C12AC M N E78258()125cm25cmO L=()19.8N9.8NF=O于水平状态.弹簧秤与中点的距离(单位:)及弹簧秤的示数(单位:)满足.以的数值为横坐标,的数值为纵坐标建立直角坐标系.则关于的函数图象大致是( )A. B. C. D.二、填空题(每小题3分,共18分)9.若代数式有意义,则实数的取值范围为_____________.10.因式分解:_____________.11.分式分程的解为_____________.12.如图,以的顶点为圆心,以BC 长为半径作弧;再以顶点为圆心,以AB 长为半径作弧,两弧交于点;连结AD 、CD .若,则的大小为_____________度.13.如图,在中,,连接BE ,交AC 于点,则CF 的长为_____________.14.已知抛物线.若抛物线过点,且对于抛物线上任意一点都有,若是这条抛物线上的两点,则的最小值_____________.三、解答题(本大题10小题,共78分)15.(6分)先化简,再求值:,其中.16.(6分)在一个不透明的布袋里装有3个标号为1、2、3的小球,它们的材质、形状、大小完全相同,小明从布袋里随机取出一个小球,记下数字为,小丽从剩下的2个小球中随机取出一个小球,记下数字为,这样确O L cm F N 11FL F L =L F F L 13x -x 325xy xy -=313x x=-ABC A C D 65B ︒∠=ADC ∠ABCD 23AE AD =,5F AC =2(2)21y x a x a =-+++()01,y -()11,x y 10y y …(,),(2,)A m n B m p -n p +22211x x x x x x ⎛⎫÷+ ⎪-+-⎝⎭12x =-x y定了点的坐标.(1)请你运用画树状图或列表的方法,写出点所有可能的坐标.(2)求点在函数图象上的概率.17.(6分)人们对网购的热衷促进了快递行业的发展,某快递站点为提高投递效率,给快递员配备了电动车,结果平均每人每天比原来多投递60件.若快递站点的快递员人数不变,站点投递快件的能力由每天400件提高到640件.求现在平均每人每天投递多少件快件.18.(7分)如图,在菱形ABCD 中,是CD 边上一动点,过点分别作于点于点,连接FG .(1)求证:四边形OGEF 为矩形.(2)求GF 的最小值.19.(7分)某校兴趣小组通过调查,形成了如下调查报告(不完整).调查目的1.了解本校初中生最喜爱的球类运动项目2.给学校提出更合理地配置体育运动器材和场地的建议调查方式随机抽样调查调查对象部分初中生调查内容你最喜爱的一个球类运动项目(必选)A.篮球B.乒乓球C.足球D.排球E.羽毛球调查结果被抽查学生最喜爱的球类运动项目调查结果条形统计图被抽查学生最喜爱的球类运动项目调查结果条扇统计图结合调查信息,回答下列问题:(1)本次调查共抽查了多少名学生?(2)补全条形统计图.(3)估计该校1000名初中生中最喜爱篮球项目的人数.20.(7分)如图是由小正方形组成的的网格,每个小正方形的顶点叫做格点,都是格点,仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.P (,)x y P (,)P x y 5y x =-+16,12,AC BD E ==E EF OC ⊥,F EG OD ⊥G 66⨯,,A O B(1)在图(1)中,在射线OA 上画点,使(2)在图(2)中,在射线OA 上画点,使;(3)在图(3)中,画的平分线OE .21.(8分)【综合与实践】【实践任务】研究小组进行跨学科主题学习活动,利用函数的相关知识研究某种化学试剂的挥发情况,某研究小组在两种不同的场景下做对比实验,并收集该试剂挥发过程中剩余质量随时间变化的数据.【实验数据】该试剂挥发过程中剩余质量y (克)随时间x (分钟)变化的数据(0≤x ≤20),并分别绘制在平面直角坐标系中,如图所示:任务一:求出函数表达式(1)经过描点构造函数模型来模拟两种场景下随变化的函数关系,发现场景的图象是抛物线的一部分,场景的图象是直线的一部分,分别求出场景A 、B 相应的函数表达式;任务二:探究该化学试剂的挥发情况(2)查阅文献可知,该化学试剂发挥作用的最低质量为3克,在上述实验中,该化学试剂在哪种场影下发挥作用的时间更长?任务三:探究化学试剂对人体的影响情况(3)因化学试剂对人体是有一定的影响的,若试剂挥发过程中剩余质量不大于1克对人体影响最小,则哪个场景影响时间最少?22.(9分)旋转是几何图形运动中的一种重要变换,通常与全等三角形等数学知识相结合来解决实际问题,某学校数学兴趣小组在研究三角形旋转的过程中,进行如下探究:△ABC 和均为等腰直角三角形,,点为BC 中点,将绕点旋转,连接AE 、CF .观察猜想:C CBO AOB∠=∠D ABD AOB ∠=∠AOB ∠y x A y 20.04x bx c =-++B (0)y ax c a =+≠DEF 90BAC EDF ︒∠=∠=D DEF D(1)如图1,在旋转过程中,求证:;探究发现:(2)如图2,当点在内且三点共线时,试探究线段CF 、AF 过DE 之间的数量关系,并说明理由;解决问题:(3)若中,在旋转过程中,当且三点共线时,直接写出DE 的长.23.(10分)如图,Rr △ABC 中,.动点从点出发,沿线段AB 以每秒5个单位的速度向终点运动,连接PC ,作点关于PC 的对称点,连结CD 、DP ,设点的运动时间为(秒).(1)线段AB 的长是___________;(2)连结BD ,则线段BD 的最小值是___________,最大值是___________;(3)当点柱AB 边上时,求的值;(4)当点落在的内部时,求的取值范围。