2018年春八年级数学下册全一册教案(打包23套) 人教版5(免费推荐下载)

合集下载

新人教版八年级数学下册教案全册

新人教版八年级数学下册教案全册

新人教版八年级数学下册教案全册第一单元分式与有理数第一课有理数加减法本课程旨在教授学生有理数的加减法。

通过具体的生活实例和练题,让学生掌握有理数的加减法运算规则和方法。

研究目标- 理解有理数的概念和表示方法- 掌握有理数的加法和减法运算规则- 能够在实际生活中运用有理数进行加减法运算课程内容1. 有理数的概念和表示方法2. 有理数的加法运算规则3. 有理数的减法运算规则4. 实际生活中的加减法运算练授课步骤1. 引入:通过问题引发学生对有理数加减法的思考,激发学生的研究兴趣。

2. 理论讲解:介绍有理数的概念和表示方法,并讲解有理数的加法和减法运算规则。

3. 实例演示:通过具体的实例演示有理数的加减法运算过程,帮助学生理解运算规则。

4. 练训练:设计一系列的练题,让学生巩固和应用所学的加减法运算规则。

5. 总结提高:总结本课所学的内容,并提出下节课的预任务。

教学资源- 教材:新人教版八年级数学下册- 实例演示用的实物或图片- 练题和答案评估方式- 检查课堂讨论的参与度- 作业完成情况- 答题准确率第二课分式的概念与性质本课程旨在介绍分式的概念和性质。

通过生动的例子和实践操作,使学生理解分式的含义和相关性质。

研究目标- 了解分式的概念和表示方法- 掌握分式的化简和扩展方法- 能够应用分式解决实际问题课程内容1. 分式的概念和表示方法2. 分式的化简和扩展方法3. 分式的实际应用授课步骤1. 引入:通过生活中的实例引发学生对分式的思考,激发学生的研究兴趣。

2. 理论讲解:介绍分式的概念和表示方法,并讲解分式的化简和扩展方法。

3. 实例演示:通过具体的实例演示分式的化简和扩展过程,帮助学生掌握方法。

4. 实践操作:设计分组活动,让学生通过实际操作解决分式相关问题。

5. 总结提高:总结本课所学的内容,并提出下节课的预任务。

教学资源- 教材:新人教版八年级数学下册- 实际生活中的分数例子- 分组活动所需的材料评估方式- 检查课堂讨论的参与度- 实践操作的表现和成果- 练题和作业的完成情况及准确率...(继续编写其他单元的教案)。

人教版2018-2019学年八年级数学下册全册教案

人教版2018-2019学年八年级数学下册全册教案

第十六章 分式 16.1分式16.1.1从分数到分式 一、 教学目标1.了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件. 二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件. 2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件. 三、课堂引入1.让学生填写P4[思考],学生自己依次填出:710,as ,33200,sv .2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少? 请同学们跟着教师一起设未知数,列方程. 设江水的流速为x 千米/时. 轮船顺流航行100千米所用的时间为v+20100小时,逆流航行60千米所用时间v-2060小时,所以v+20100=v-2060.3. 以上的式子v+20100,v-2060,as ,sv ,有什么共同点?它们与分数有什么相同点和不同点? 五、例题讲解P5例1. 当x 为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x 的取值范围.[提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m 为何值时,分式的值为0? (1) (2) (3)[分析] 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解.[答案] (1)m=0 (2)m=2 (3)m=1 六、随堂练习1.判断下列各式哪些是整式,哪些是分式? 9x+4, x7 , 209y +, 54-m , 238y y -,91-x2. 当x 取何值时,下列分式有意义? (1) (2) (3)3. 当x 为何值时,分式的值为0?(1) (2) (3) 七、课后练习1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.(3)x 与y 的差于4的商是 . 2.当x取何值时,分式 无意义? 1-m m 32+-m m 112+-m m 4522--x x x x 235-+23+x x x 57+xx 3217-xx x --2212312-+x x3. 当x 为何值时,分式 的值为0? 八、答案:六、1.整式:9x+4, 209y +, 54-m 分式: x7 , 238y y -,91-x2.(1)x ≠-2 (2)x ≠ (3)x ≠±23.(1)x=-7 (2)x=0 (3)x=-1七、1.18x, ,a+b,b a s +,4y x -; 整式:8x, a+b, 4y x -;分式:x80,ba s + 2. X = 3. x=-1课后反思:16.1.2分式的基本性质一、教学目标1.理解分式的基本性质.x 802332xx x --212.会用分式的基本性质将分式变形. 二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形. 三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5. 四、课堂引入1.请同学们考虑: 与 相等吗? 与 相等吗?为什么?2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据?43201524983432015249833.提问分数的基本性质,让学生类比猜想出分式的基本性质.五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例 5.不改变分式的值,使下列分式的分子和分母都不含“-”号.ab 56--, yx 3-, nm --2, nm 67--, yx 43---。

[初中数学]2018年春八年级数学下册全一册教案(23套) 人教版17

[初中数学]2018年春八年级数学下册全一册教案(23套) 人教版17

19.2.3 一次函数与方程、不等式1. 教材分析(1)内容、地位、联系:《一次函数与方程、不等式》是人教版数学八年级下册第十九章第二节的内容。

本节课的主要内容是对之前学过的知识进行回顾复习的同时,着重建立了一次函数与一元一次方程、一次不等式和二元一次方程组的有效联系,站在更高的角度进行动态分析,利用一次函数的图象求一元一次方程的解、一次不等式的解集和二元一次方程组的解,使新旧知识融会贯通,加大学生对已经学过的相关内容之间联系的认识,进一步体验函数的重要性,发挥函数对相关内容的统率作用,其中渗透了数形结合的思想,为后继学习奠定了基础,在初中学段有很重要的地位和作用。

(2)课标要求:理解一次函数与一元一次方程、一次不等式和二元一次方程组的关系,会用函数观点解释方程和不等式及其解或解集的意义。

2. 教材处理把教材问题3的内容放到开始位置,处理意图是激发学生的学习兴趣,轻松引入课题。

3. 教学目标(1)学情分析从认知状况来说,学生在此之前已经掌握了一次函数的概念和解析式的一般形式,会画一次函数的图象,而且通过前面的学习学生能够初步建立一次函数模型来解决一些简单的数学问题,但是把一元一次方程、一次不等式的联系和二元一次方程组利用函数图象联系在一起,结合数形结合的思想,来理解它们之间的关系,这对于我们的学生来说,会有点困难。

(2)教学目标制定结合学情我将三维目标进行整合,确定本节课的教学目标为:<1>理解一次函数与一元一次方程、一次不等式和二元一次方程组的关系,鼓励学生积极主动地参与讨论,感受发现问题和解决问题带来的愉悦。

<2>能根据一次函数的图象求一元一次方程的解、一次不等式的解集和二元一次方程组的解,会用函数观点解释方程和不等式及其解或解集的意义。

经历用函数图象表示方程和不等式的过程,进一步体会“以形表数,以数释形”的数形结合思想,鼓励学生积极与他人交流、合作,从而激发学生探究数学知识的兴趣。

人教版八年级数学下册全册教案(9篇)

人教版八年级数学下册全册教案(9篇)

人教版八年级数学下册全册教案(9篇)人教版八年级数学下册教案篇一1、掌握一次函数解析式的特点及意义2、知道一次函数与正比例函数的关系3、理解一次函数图象特点与解析式的联系规律1、一次函数解析式特点2、一次函数图象特征与解析式的联系规律1、一次函数与正比例函数关系2、根据已知信息写出一次函数的表达式。

ⅰ.提出问题,创设情境问题1 小明暑假第一次去北京.汽车驶上a地的高速公路后,小明观察里程碑,发现汽车的平均车速是95千米/小时.已知a地直达北京的高速公路全程为570千米,小明想知道汽车从a地驶出后,距北京的路程和汽车在高速公路上行驶的时间有什么关系,以便根据时间估计自己和北京的距离.分析我们知道汽车距北京的路程随着行车时间而变化,要想找出这两个变化着的量的关系,并据此得出相应的值,显然,应该探求这两个变量的变化规律.为此,我们设汽车在高速公路上行驶时间为t小时,汽车距北京的路程为s千米,根据题意,s和t的函数关系式是s=570-95t.说明找出问题中的变量并用字母表示是探求函数关系的第一步,这里的s、t是两个变量,s是t的函数,t是自变量,s是因变量.问题2 小张准备将平时的零用钱节约一些储存起来.他已存有50元,从现在起每个月节存12元.试写出小张的'存款与从现在开始的月份之间的函数关系式.分析我们设从现在开始的月份数为x,小张的存款数为y元,得到所求的函数关系式为:y=50+12x.问题3 以上问题1和问题2表示的这两个函数有什么共同点?ⅰ.导入新课上面的两个函数关系式都是左边是因变量y,右边是含自变量x的代数式。

并且自变量和因变量的指数都是一次。

若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。

特别地,当b=0时,称y是x的正比例函数。

例1:下列函数中,y是x的一次函数的是()①y=x-6;②y=2x;③y=;④y=7-x x8a、①②③b、①③④c、①②③④d、②③④例2 下列函数关系中,哪些属于一次函数,其中哪些又属于正比例函数?(1)面积为10cm2的三角形的底a(cm)与这边上的高h(cm);(2)长为8(cm)的平行四边形的周长l(cm)与宽b(cm);(3)食堂原有煤120吨,每天要用去5吨,x天后还剩下煤y吨;(4)汽车每小时行40千米,行驶的路程s(千米)和时间t(小时).(5)汽车以60千米/时的速度匀速行驶,行驶路程中y(千米)与行驶时间x(时)之间的关系式;(6)圆的面积y(厘米2)与它的半径x(厘米)之间的关系;(7)一棵树现在高50厘米,每个月长高2厘米,x月后这棵树的高度为y(厘米)分析确定函数是否为一次函数或正比例函数,就是看它们的解析式经过整理后是否符合y=kx+b(k≠0)或y=kx(k≠0)形式,所以此题必须先写出函数解析式后解答.解(1)a?20,不是一次函数.h(2)l=2b+16,l是b的一次函数.(3)y=壹五0-5x,y是x的一次函数.(4)s=40t,s既是t的一次函数又是正比例函数.(5)y=60x,y是x的一次函数,也是x的正比例函数;(6)y=πx2,y不是x的正比例函数,也不是x的一次函数;(7)y=50+2x,y是x的一次函数,但不是x的正比例函数例3 已知函数y=(k-2)x+2k+1,若它是正比例函数,求k的值.若它是一次函数,求k的值.分析根据一次函数和正比例函数的定义,易求得k的值.解若y=(k-2)x+2k+1是正比例函数,则2k+1=0,即k=?若y=(k-2)x+2k+1是一次函数,则k-2≠0,即k≠2.例4 已知y与x-3成正比例,当x=4时,y=3.(1)写出y与x之间的函数关系式;(2)y与x之间是什么函数关系;(3)求x=2.5时,y的值.解(1)因为y与x-3成正比例,所以y=k(x-3).又因为x=4时,y=3,所以3=k(4-3),解得k=3,所以y=3(x-3)=3x-9.(2) y是x的一次函数.(3)当x=2.5时,y=3×2.5=7.5.1.2例5 已知a、b两地相距30千米,b、c两地相距48千米.某人骑自行车以每小时12千米的速度从a地出发,经过b地到达c地.设此人骑行时间为x(时),离b地距离为y (千米).(1)当此人在a、b两地之间时,求y与x的函数关系及自变量x取值范围.(2)当此人在b、c两地之间时,求y与x的函数关系及自变量x的取值范围.分析(1)当此人在a、b两地之间时,离b地距离y为a、b两地的距离与某人所走的路程的差.(2)当此人在b、c两地之间时,离b地距离y为某人所走的路程与a、b两地的距离的差.解(1) y=30-12x.(0≤x≤2.5)(2) y=12x-30.(2.5≤x≤6.5)例6 某油库有一没储油的储油罐,在开始的8分钟时间内,只开进油管,不开出油管,油罐的进油至24吨后,将进油管和出油管同时打开16分钟,油罐中的油从24吨增至40吨.随后又关闭进油管,只开出油管,直至将油罐内的油放完.假设在单位时间内进油管与出油管的流量分别保持不变.写出这段时间内油罐的储油量y(吨)与进出油时间x(分)的函数式及相应的x取值范围.分析因为在只打开进油管的8分钟内、后又打开进油管和出油管的16分钟和最后的只开出油管的三个阶级中,储油罐的储油量与进出油时间的函数关系式是不同的,所以此题因分三个时间段来考虑.但在这三个阶段中,两变量之间均为一次函数关系.解在第一阶段:y=3x(0≤x≤8);在第二阶段:y=16+x(8≤x≤16);在第三阶段:y=-2x+88(24≤x≤44).ⅰ.随堂练习根据上表写出y与x之间的关系式是:________________,y是否为x一的次函数?y 是否为x有正比例函数?2、为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按0.6元/米3收费;每户每月用水量超过6米3时,超过部分按1元/米3收费。

人教版数学八年级下册教案全册完整版

人教版数学八年级下册教案全册完整版

人教版数学八年级下册教案全册完整版一、教学内容1. 第十三章:平面几何1.1 线段和直线1.2 角1.3 多边形1.4 平行四边形1.5 矩形、菱形、正方形2. 第十四章:函数2.1 函数的定义2.2 一次函数2.3 二次函数2.4 反比例函数2.5 函数的应用二、教学目标1. 理解并掌握平面几何的基本概念和性质,能够运用几何知识解决实际问题。

2. 掌握函数的定义、图像和性质,能够运用函数知识解决实际问题。

3. 培养学生的逻辑思维能力和解决问题的能力。

三、教学难点与重点1. 教学难点:几何图形的性质和判定函数图像的绘制和性质分析2. 教学重点:几何图形的分类和性质函数的定义和性质四、教具与学具准备1. 教具:黑板橡皮、直尺、圆规等绘图工具多媒体设备2. 学具:笔记本铅笔、橡皮、直尺、圆规等绘图工具五、教学过程1. 导入:利用生活实例引入平面几何和函数的概念,激发学生学习兴趣。

2. 新课内容:详细讲解教材中的知识点,通过例题和随堂练习巩固所学内容。

3. 课堂讲解:对重点、难点知识进行详细讲解,结合实际应用进行分析。

4. 课堂练习:设计不同难度的练习题,让学生独立完成,并及时给予指导和反馈。

六、板书设计1. 人教版数学八年级下册教案2. 内容:章节和知识点例题和解答过程重点、难点提示七、作业设计1. 作业题目:第十三章:1.1 画出线段和直线1.2 判断角的类型1.3 绘制多边形1.4 判断平行四边形1.5 分析矩形、菱形、正方形的性质第十四章:2.1 解释函数的定义2.2 绘制一次函数图像2.3 分析二次函数性质2.4 解释反比例函数2.5 解决函数应用问题2. 答案:八、课后反思及拓展延伸1. 反思:2. 拓展延伸:设计相关竞赛题目,提高学生运用几何和函数知识解决问题的能力。

鼓励学生进行课后自主学习,拓展知识面。

重点和难点解析一、教学内容1. 几何图形的性质和判定重点和难点解析:这部分内容涉及到的几何图形种类繁多,性质和判定方法各异。

2018年最新人教版八年级数学下册全册教案

2018年最新人教版八年级数学下册全册教案

第十六章 分式 16.1分式16.1.1从分数到分式 一、 教学目标1.了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件. 二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件. 2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件. 三、课堂引入1.让学生填写P4[思考],学生自己依次填出:710,as ,33200,sv .2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少? 请同学们跟着教师一起设未知数,列方程. 设江水的流速为x 千米/时. 轮船顺流航行100千米所用的时间为v+20100小时,逆流航行60千米所用时间v-2060小时,所以v+20100=v-2060.3. 以上的式子v+20100,v-2060,as ,sv ,有什么共同点?它们与分数有什么相同点和不同点? 五、例题讲解P5例1. 当x 为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x 的取值范围.[提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m 为何值时,分式的值为0? (1) (2) (3)[分析] 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解.[答案] (1)m=0 (2)m=2 (3)m=1 六、随堂练习1.判断下列各式哪些是整式,哪些是分式? 9x+4, x7 , 209y +, 54-m , 238y y -,91-x2. 当x 取何值时,下列分式有意义? (1) (2) (3)3. 当x 为何值时,分式的值为0?(1) (2) (3)七、课后练习1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.(3)x 与y 的差于4的商是 . 2.当x取何值时,分式 无意义? 1-m m 32+-m m 112+-m m 4522--x x x x 235-+23+x x x 57+xx 3217-xx x --2212312-+x x3. 当x 为何值时,分式 的值为0? 八、答案:六、1.整式:9x+4, 209y +, 54-m 分式: x7 , 238y y -,91-x2.(1)x ≠-2 (2)x ≠ (3)x ≠±23.(1)x=-7 (2)x=0 (3)x=-1七、1.18x, ,a+b,b a s +,4y x -; 整式:8x, a+b, 4y x -;分式:x80,ba s + 2. X = 3. x=-1课后反思:16.1.2分式的基本性质一、教学目标1.理解分式的基本性质.x 802332xx x --212.会用分式的基本性质将分式变形. 二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形. 三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5. 四、课堂引入1.请同学们考虑: 与 相等吗? 与 相等吗?为什么?2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据?43201524983432015249833.提问分数的基本性质,让学生类比猜想出分式的基本性质.五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例 5.不改变分式的值,使下列分式的分子和分母都不含“-”号.ab 56--, yx 3-, nm --2, nm 67--, yx 43---。

2018年春八年级数学下册全一册教案(打包23套) 人教版16(免费推荐下载)

2018年春八年级数学下册全一册教案(打包23套) 人教版16(免费推荐下载)

19.2.2 一次函数()大家好,今天我说课的内容是人教版八年级数学(下册)第十九章第二节《一次函数》的第二课时——“一次函数的图象与性质”。

下面我从教材分析、学情分析、教法学法、教学过程、教学评价及板书设计等个方面来进行说课。

一、说教材分析(1)地位与作用:本节课的主要内容是探究一次函数的图象与性质。

它既是前面所学正比例函数图象与性质的延续类比运用,又为后面学习二次函数和反比例函数奠定了基础。

因此,它在教材中起着承上启下的重要作用。

总体来看,本节教学使学生对研究函数的图象和性质的基本方法有初步的认识与了解,加强了代数与几何的联系,同时提供了相应的研究方法和学习策略,对于后继数形结合的学习至关重要。

(2)课标要求:能画出一次函数的图象,根据图象和解析式理解图象的变化情况(3)教学目标与教学重、难点:基于以上教材分析,并结合我校学生的实际情况,特制定教学目标如下:教学目标:知识与能力:、会画一次函数的图象;能根据图象探知一次函数的性质。

过程与方法:、通过经历自主探究性质的过程,渗透类比、数形结合等数学思想,培养学生自主学习、归纳概括等能力。

情感态度与价值观:、通过自主学习,增强学习信心与自学能力,发现探索的快乐,体验成功,发展几何直观能力。

教学重点:一次函数的图象特点与性质;教学难点:结合图象探讨一次函数的性质。

突出重点的方法:让学生亲自动手,多次绘制函数图象,并设置探究性的问题指导学生小组讨论。

突破难点的方法:借助多媒体动态展示、几何画板等让学生直观理解一次函数的性质。

二、说学情分析(1)学生的知识与能力:学生已经学习了正比例函数的图象与性质,也学习了一次函数的概念,已有了一定的函数知识储备与自主学习的能力,这为本节课的学习打下了良好的基础。

(2)学生的心理与学习困难:八年级学生好奇心强、有强烈的求知欲和表现欲,喜欢独立思考和探究,但由于学生刚开始学习函数知识,抽象思维能力比较薄弱,类比、数形结合等数学思想意识还不强,因此自主全面地概括出函数性质有一定困难,需要教师及时点拨、指导。

2018学年第二学期八年级下册数学全套教案

2018学年第二学期八年级下册数学全套教案

初中八年级(下册)教案科目数学2017-2018学年第二学期16.1.1 二次根式教学内容二次根式的概念及其运用教学目标理解二次根式的概念,并利用a(a≥0)的意义解答具体题目.提出问题,根据问题给出概念,应用概念解决实际问题.教学重难点关键1.重点:形如a(a≥0)的式子叫做二次根式的概念;2.难点与关键:利用“a(a≥0)”解决具体问题.教学过程一、复习引入(学生活动)请同学们独立完成下列三个课本P2的三个思考题:二、探索新知很明显3、10、46,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如a(a≥0)•的式子叫做二次根式,“”称为二次根号.(学生活动)议一议:1.-1有算术平方根吗?2.0的算术平方根是多少?3.当a<0,a有意义吗?老师点评:(略)下列式子,哪些是二次根式,哪些不是二次根式:2、33、1x、x(x>0)、0、42、-2、1x y+、x y+(x≥0,y•≥0).分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.解:二次根式有:2、x(x>0)、0、-2、x y+(x≥0,y≥0);不是二次根式的有:33、1x、42、1x y+.例1.当x 是多少时2 x 在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以x-2≥0,•2-x 才能有意义.解:由x-2≥0,得:x ≥2当x ≥2时,2-x 在实数范围内有意义. 三、巩固练习教材P5练习1、2、3. 四、应用拓展 例3.当x 是多少时, 23x ++11x +在实数范围内有意义? 分析:要使23x ++11x +在实数范围内有意义,必须同时满足23x +中的≥0和11x +中的x+1≠0.解:依题意,得2x. 由①得:x ≥-32由②得:x ≠-1 当x ≥-32且x ≠-1时,23x ++11x +在实数范围内有意义. 例4(1)已知y=2x -+2x -+5,求xy的值.(答案:2) (2)若1a ++1b -=0,求a 2004+b 2004的值.(答案:25) 五、归纳小结(学生活动,老师点评) 本节课要掌握:1.形如a (a ≥0)的式子叫做二次根式,“”称为二次根号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数. 六、布置作业1.教材P5 1,2,3,4 2.选用课时作业设计.第一课时作业设计 一、选择题1.下列式子中,是二次根式的是( ) A .-7 B .37 C .x D .x 2.下列式子中,不是二次根式的是( )A .4B .16C .8D .1x3.已知一个正方形的面积是5,那么它的边长是( ) A .5 B .5 C .15D .以上皆不对21.1 二次根式(2)教学内容2a =a (a ≥0)教学目标理解2a =a (a ≥0)并利用它进行计算和化简.通过具体数据的解答,探究2a =a (a ≥0),并利用这个结论解决具体问题. 教学重难点关键1.重点:2a =a (a ≥0). 2.难点:探究结论.3.关键:讲清a ≥0时,2a =a 才成立. 教学过程一、复习引入老师口述并板收上两节课的重要内容; 1.形如a (a ≥0)的式子叫做二次根式; 2.a (a ≥0)是一个非负数; 3.(a )2=a (a ≥0).那么,我们猜想当a ≥0时,2a =a 是否也成立呢?下面我们就来探究这个问题. 二、探究新知(学生活动)填空:22=_______;20.01=_______;21()10=______;22()3=________;20=________;23()7=_______. (老师点评):根据算术平方根的意义,我们可以得到:22=2;20.01=0.01;21()10=110;22()3=23;20=0;23()7=37. 因此,一般地:2a =a (a ≥0) 例1 化简(1)9 (2)(25)2 (3)25 (4)2(3)-分析:因为(1)9=-32,(2)(25)2=20,(3)25=52,(4)(-3)2=32,所以都可运用2a =a (a ≥0)•去化简. 解:(1)9=23=3 (2)(25)2(3)25=25=5 (4)2(3)-=23=3三、巩固练习 教材P 7练习2. 四、应用拓展例2 填空:当a ≥0时,2a =_____;当a<0时,2a =_______,•并根据这一性质回答下列问题.(1)若2a =a ,则a 可以是什么数? (2)若2a =-a ,则a 可以是什么数? (3)2a >a ,则a 可以是什么数?分析:∵2a =a (a ≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“( )2”中的数是正数,因为,当a ≤0时,2a =2()a -,那么-a ≥0. (1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2)可知2a =│a │,而│a │要大于a ,只有什么时候才能保证呢?a<0. 解:(1)因为2a =a ,所以a ≥0; (2)因为2a =-a ,所以a ≤0;(3)因为当a ≥0时2a =a ,要使2a >a ,即使a>a 所以a 不存在;当a<0时,2a =-a ,要使2a >a ,即使-a>a ,a<0综上,a<0例3当x>2,化简2(2)x --2(12)x -.分析:(略) 五、归纳小结本节课应掌握:2a =a (a ≥0)及其运用,同时理解当a<0时,2a =-a 的应用拓展. 六、布置作业1.教材P 5习题16.1 3、4、6、8. 2.选作课时作业设计. 第二课时作业设计 一、选择题1.2211(2)(2)33+-的值是( ).A .0B .23 C .423D .以上都不对 2.a ≥0时,2a 、2()a -、-2a ,比较它们的结果,下面四个选项中正确的是( ). A .2a =2()a -≥-2a B .2a >2()a ->-2a C .2a <2()a -<-2a D .-2a >2a =2()a -21.2 二次根式的乘除教学内容a ·b =ab (a ≥0,b ≥0),反之ab =a ·b (a ≥0,b ≥0)及其运用.教学目标理解a ·b =ab (a ≥0,b ≥0),ab =a ·b (a ≥0,b ≥0),并利用它们进行计算和化简由具体数据,发现规律,导出a ·b =ab (a ≥0,b ≥0)并运用它进行计算;•利用逆向思维,得出ab =a ·b (a ≥0,b ≥0)并运用它进行解题和化简. 教学重难点关键重点:a ·b =ab (a ≥0,b ≥0),ab =a ·b (a ≥0,b ≥0)及它们的运用.难点:发现规律,导出a ·b =ab (a ≥0,b ≥0). 关键:要讲清ab (a<0,b<0)=a b ,如(2)(3)-⨯-=(2)(3)--⨯--或(2)(3)-⨯-=23⨯=2×3.教学过程一、复习引入(学生活动)请同学们完成下列各题.1.填空(1)4×9=_______,49⨯=______;(2)16×25=_______,1625⨯=________.(3)100×36=________,10036⨯=_______.参考上面的结果,用“>、<或=”填空.4×9_____49⨯,16×25_____1625⨯,100×36________10036⨯2.利用计算器计算填空(1)2×3______6,(2)2×5______10,(3)5×6______30,(4)4×5______20,(5)7×10______70.老师点评(纠正学生练习中的错误)二、探索新知(学生活动)让3、4个同学上台总结规律.老师点评:(1)被开方数都是正数;(2)两个二次根式的乘除等于一个二次根式,•并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数.一般地,对二次根式的乘法规定为a·b=ab.(a≥0,b≥0)反过来: ab=a·b(a≥0,b≥0)例1.计算(1)3×5(2)13×9(3)9×27(4)12×6分析:直接利用a·b=ab(a≥0,b≥0)计算即可.解:(1)3×=5=15(2)13×9=193⨯=3(3)9×27=292793⨯=⨯=93 (4)12×6=162⨯=3 例2 化简(1)916⨯ (2)1681⨯ (3)81100⨯(4)229x y (5)54分析:利用ab =a ·b (a ≥0,b ≥0)直接化简即可. 解:(1)916⨯=9×16=3×4=12 (2)1681⨯=16×81=4×9=36 (3)81100⨯=81×100=9×10=90 (4)229x y =23×22x y =23×2x ×2y =3xy(5)54=96⨯=23×6=36 三、巩固练习(1)计算(学生练习,老师点评)①16×8 ②36×210 ③5a ·15ay (2) 化简:20; 18;24; 54; 2212a b教材P 11练习全部 四、应用拓展例3.判断下列各式是否正确,不正确的请予以改正: (1)(4)(9)49-⨯-=-⨯- (2)12425×25=4×1225×25=41225×25=412=83 解:(1)不正确.改正:(4)(9)-⨯-=49⨯=4×9=2×3=6 (2)不正确.改正:12425×25=11225×25=1122525⨯=112=167⨯=47五、归纳小结本节课应掌握:(1)a ·b =ab =(a ≥0,b ≥0),ab =a ·b (a ≥0,b ≥0)及其运用. 六、布置作业1.课本P 11 1,4,5,6.(1)(2). 2.选用课时作业设计. 第一课时作业设计 一、选择题 1.化简a 1a-的结果是( ). A .a - B .a C .-a - D .-a 2.等式2111x x x +-=-成立的条件是( )A .x ≥1B .x ≥-1C .-1≤x ≤1D .x ≥1或x ≤-1 3.下列各等式成立的是( ).A .45×25=85 B .53×42=205C .43×32=75D .53×42=206一、1.B 2.C 3.A 4.D21.2 二次根式的乘除(2)教学内容a b =a b (a ≥0,b>0),反过来a b =a b(a ≥0,b>0)及利用它们进行计算和化简.教学目标 理解a b =a b (a ≥0,b>0)和a b =a b(a ≥0,b>0)及利用它们进行运算.利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简. 教学重难点关键 1.重点:理解a b =a b (a ≥0,b>0),a b =a b(a ≥0,b>0)及利用它们进行计算和化简.2.难点关键:发现规律,归纳出二次根式的除法规定.教学过程一、复习引入(学生活动)请同学们完成下列各题:1.写出二次根式的乘法规定及逆向等式.2.填空(1)916=________,916=_________;(2)1636=________,1636=________;(3)416=________,416=_________;(4)3681=________,3681=________.规律:916______916;1636______1636;416_______416;36 81_______3681.(老师点评)二、探索新知刚才同学们都练习都很好,上台的同学也回答得十分准确,根据大家的练习和回答,我们可以得到:一般地,对二次根式的除法规定:a b =ab(a≥0,b>0),反过来,ab=ab(a≥0,b>0)下面我们利用这个规定来计算和化简一些题目.例1.计算:(1)123(2)3128÷(3)11416÷(4)648分析:上面4小题利用ab=ab(a≥0,b>0)便可直接得出答案.解: (1)324=22248324(2)3128÷=313834282÷=⨯=⨯=3×=23 (3)11416÷=111164164÷=⨯=4=2 (4)648=648=8=22例2.化简:(1)364 (2)22649b a (3)2964x y (4)25169xy分析:直接利用a b =ab(a ≥0,b>0)就可以达到化简之目的. 解:(1)364=33864= (2)22649b a =2264839b ba a=(3)2964xy =293864x x y y = (4)25169xy =25513169x x y y= 三、巩固练习 教材P14 练习1.四、应用拓展例3.已知9966x xx x --=--,且x 为偶数,求(1+x )22541x x x -+-的值. 分析:式子a b =ab,只有a ≥0,b>0时才能成立. 因此得到9-x ≥0且x-6>0,即6<x ≤9,又因为x 为偶数,所以x=8. 解:由题意得9060x x -≥⎧⎨->⎩,即96x x ≤⎧⎨>⎩∴6<x ≤9∵x为偶数∴x=8∴原式=(1+x)(4)(1) (1)(1) x xx x--+-=(1+x)41 xx-+=(1+x)4(1)xx-+=(1)(4)x x+-∴当x=8时,原式的值=49⨯=6.五、归纳小结本节课要掌握ab=ab(a≥0,b>0)和ab=ab(a≥0,b>0)及其运用.六、布置作业1.习题16.2 2、7、8、9.2.选用课时作业设计.21.2 二次根式的乘除(3)教学内容最简二次根式的概念及利用最简二次根式的概念进行二次根式的化简运算.教学目标理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求.重难点关键1.重点:最简二次根式的运用.2.难点关键:会判断这个二次根式是否是最简二次根式.教学过程一、复习引入(学生活动)请同学们完成下列各题(请三位同学上台板书)1.计算(1)35,(2)3227,(3)82a老师点评:35=155,3227=63,82a=2aa2.现在我们来看本章引言中的问题:如果两个电视塔的高分别是h1km,h2km,•那么它们的传播半径的比是_________.它们的比是1222Rh Rh .二、探索新知观察上面计算题1的最后结果,可以发现这些式子中的二次根式有如下两个特点: 1.被开方数不含分母;2.被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.那么上题中的比是否是最简二次根式呢?如果不是,把它们化成最简二次根式. 学生分组讨论,推荐3~4个人到黑板上板书.老师点评:不是.1222Rh Rh =121122222h h Rh hRh h h ==. 例1.(1) 5312; (2) 2442x y x y +; (3) 238x y例2.如图,在Rt △ABC 中,∠C=90°,AC=2.5cm ,BC=6cm ,求AB 的长.BAC解:因为AB 2=AC 2+BC 2所以AB=222.56+=2516916913()362424+====6.5(cm ) 因此AB 的长为6.5cm .三、巩固练习 练习2、3 四、应用拓展例3.观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:121+=1(21)2121(21)(21)⨯--=-+-=2-1, 132+=1(32)3232(32)(32)⨯--=-+-=3-2, 同理可得:143+=4-3,……从计算结果中找出规律,并利用这一规律计算(121++132++143++ (1)20022001+)(2002+1)的值.分析:由题意可知,本题所给的是一组分母有理化的式子,因此,分母有理化后就可以达到化简的目的.解:原式=(2-1+3-2+4-3+……+2002-2001)×(2002+1) =(2002-1)(2002+1)=2002-1=2001 五、归纳小结本节课应掌握:最简二次根式的概念及其运用. 六、布置作业1.习题16.2 3、7、10.2.选用课时作业设计.第三课时作业设计 一、选择题 1.如果xy(y>0)是二次根式,那么,化为最简二次根式是( ). A .xy(y>0) B .xy (y>0) C .xy y (y>0) D .以上都不对2.把(a-1)11a --中根号外的(a-1)移入根号内得( ). A .1a - B .1a - C .-1a - D .-1a - 3.在下列各式中,化简正确的是( )A .53=315 B .12=±122C .4a b =a 2 bD .32x x -=x 1x -.答案:一、1.C 2.D 3.C21.3 二次根式的加减(1)教学内容二次根式的加减教学目标理解和掌握二次根式加减的方法.先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解.再总结经验,用它来指导根式的计算和化简.重难点关键1.重点:二次根式化简为最简根式.2.难点关键:会判定是否是最简二次根式.教学过程一、复习引入学生活动:计算下列各式.(1)2x+3x;(2)2x2-3x2+5x2;(3)x+2x+3y;(4)3a2-2a2+a3教师点评:上面题目的结果,实际上是我们以前所学的同类项合并.同类项合并就是字母不变,系数相加减.二、探索新知学生活动:计算下列各式.(1)22+32(2)28-38+58(4)33-23+2(3)7+27+397老师点评:(1)如果我们把2当成x,不就转化为上面的问题吗?22+32=(2+3)2=52(2)把8当成y;28-38+58=(2-3+5)8=48=82(3)把7当成z;7+27+97=27+27+37=(1+2+3)7=67(4)3看为x,2看为y.33-23+2=(3-2)3+2=3+2因此,二次根式的被开方数相同是可以合并的,如22与8表面上看是不相同的,但它们可以合并吗?可以的.(板书)32+8=32+22=5233+27=33+33=63所以,二次根式加减时,可以先将二次根式化成最简二次根式,•再将被开方数相同的二次根式进行合并.例1.计算(1)8+18(2)16x+64x分析:第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并.解:(1)8+18=22+32=(2+3)2=52(2)16x+64x=4x+8x=(4+8)x=12x例2.计算(1)348-913+312(2)(48+20)+(12-5)解:(1)348-913+312=123-33+63=(12-3+6)3=153(2)(48+20)+(12-5)=48+20+12-5 =43+25+23-5=63+5三、巩固练习教材P19练习1、2.四、应用拓展例3.已知4x2+y2-4x-6y+10=0,求(293x x+y23xy)-(x21x-5xyx)的值.分析:本题首先将已知等式进行变形,把它配成完全平方式,得(2x-1)2+(y-3)2=0,即x=12,y=3.其次,根据二次根式的加减运算,先把各项化成最简二次根式,•再合并同类二次根式,最后代入求值.解:∵4x2+y2-4x-6y+10=0∵4x2-4x+1+y2-6y+9=0∴(2x-1)2+(y-3)2=0∴x=12,y=3原式=293x x+y23xy-x21x+5xyx=2x x+xy-x x+5xy =x x+6xy当x=12,y=3时,原式=12×12+632=24+36五、归纳小结本节课应掌握:(1)不是最简二次根式的,应化成最简二次根式;(2)相同的最简二次根式进行合并.六、布置作业1.习题16.3 1、2、3、5.2.选作课时作业设计.第一课时作业设计一、选择题1.以下二次根式:①12;②22;③23;④27中,与3是同类二次根式的是().A.①和②B.②和③C.①和④D.③和④2.下列各式:①33+3=63;②177=1;③2+6=8=22;④243=22,其中错误的有().A.3个B.2个C.1个D.0个二、填空题1.在8、1753a、293a、125、323aa、30.2、-218中,与3a是同类二次根式的有________.2.计算二次根式5a-3b-7a+9b的最后结果是________.三、综合提高题1.已知5≈2.236,求(80-415)-(135+4455)的值.(结果精确到0.01)2.先化简,再求值.(6x yx+33xyy)-(4xxy+36xy),其中x=32,y=27.答案:一、1.C 2.A二、1.1753a323aa2.6b-2a三、1.原式=45-355-455-1255=155≈15×2.236≈0.452.原式=6xy+3xy-(4xy+6xy)=(6+3-4-6)xy=-xy,当x=32,y=27时,原式=-3272=-92221.3 二次根式的加减(2)教学内容利用二次根式化简的数学思想解应用题.教学目标运用二次根式、化简解应用题.通过复习,将二次根式化成被开方数相同的最简二次根式,进行合并后解应用题.重难点关键讲清如何解答应用题既是本节课的重点,又是本节课的难点、关键点.教学过程一、复习引入上节课,我们已经讲了二次根式如何加减的问题,我们把它归为两个步骤:第一步,先将二次根式化成最简二次根式;第二步,再将被开方数相同的二次根式进行合并,下面我们讲三道例题以做巩固.二、探索新知例1.如图所示的Rt△ABC中,∠B=90°,点P从点B开始沿BA边以1厘米/•秒的速度向点A移动;同时,点Q也从点B开始沿BC边以2厘米/秒的速度向点C移动.问:几秒后△PBQ的面积为35平方厘米?(结果用最简二次根式表示)BAC QP分析:设x 秒后△PBQ 的面积为35平方厘米,那么PB=x ,BQ=2x ,•根据三角形面积公式就可以求出x 的值.解:设x 后△PBQ 的面积为35平方厘米. 则有PB=x ,BQ=2x 依题意,得:12x ·2x=35 x 2=35 x=35所以35秒后△PBQ 的面积为35平方厘米. 答:35秒后△PBQ 的面积为35平方厘米.例2.要焊接如图所示的钢架,大约需要多少米钢材(精确到0.1m )?分析:此框架是由AB 、BC 、BD 、AC 组成,所以要求钢架的钢材,•只需知道这四段的长度.BAC2m1m4mD解:由勾股定理,得 AB=22224220AD BD +=+==25BC=222221BD CD +=+=5 所需钢材长度为 AB+BC+AC+BD=25+5+5+2 =35+7 ≈3×2.24+7≈13.7(m ) 答:要焊接一个如图所示的钢架,大约需要13.7m 的钢材. 三、巩固练习 教材练习3 四、应用拓展 ..五、归纳小结本节课应掌握运用最简二次根式的合并原理解决实际问题.六、布置作业1.习题16.3 7.2.选用课时作业设计.作业设计一、选择题1.已知直角三角形的两条直角边的长分别为5和5,那么斜边的长应为().(•结果用最简二次根式)A.52B.50C.25D.以上都不对2.小明想自己钉一个长与宽分别为30cm和20cm的长方形的木框,•为了增加其稳定性,他沿长方形的对角线又钉上了一根木条,木条的长应为()米.(结果同最简二次根式表示)A.13100B.1300C.1013D.513.答案:一、1.A 2.C.21.3 二次根式的加减(3)教学内容含有二次根式的单项式与单项式相乘、相除;多项式与单项式相乘、相除;多项式与多项式相乘、相除;乘法公式的应用.教学目标含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用.复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘方等运算.重难点关键重点:二次根式的乘除、乘方等运算规律;难点关键:由整式运算知识迁移到含二次根式的运算.教学过程一、复习引入学生活动:请同学们完成下列各题:1.计算(1)(2x+y)·zx (2)(2x2y+3xy2)÷xy2.计算(1)(2x+3y)(2x-3y)(2)(2x+1)2+(2x-1)2老师点评:这些内容是对八年级上册整式运算的再现.它主要有(1)•单项式×单项式;(2)单项式×多项式;(3)多项式÷单项式;(4)完全平方公式;(5)平方差公式的运用.二、探索新知如果把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢?•仍成立.整式运算中的x、y、z是一种字母,它的意义十分广泛,可以代表所有一切,•当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式.例1.计算:(1)(6+8)×3 (2)(46-32)÷22分析:刚才已经分析,二次根式仍然满足整式的运算规律,•所以直接可用整式的运算规律.解:(1)(6+8)×3=6×3+8×3 =18+24=32+26解:(46-32)÷22=46÷22-32÷22 =23-32例2.计算(1)(5+6)(3-5) (2)(10+7)(10-7)分析:刚才已经分析,二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立. 解:(1)(5+6)(3-5) =35-(5)2+18-65 =13-35(2)(10+7)(10-7)=(10)2-(7)2 =10-7=3三、巩固练习 课本练习1、2. 四、应用拓展.本节课应掌握二次根式的乘、除、乘方等运算. 六、布置作业1.习题16.3 1、8、9. 2.选用课时作业设计.作业设计 一、选择题1.(24-315+2223)×2的值是( ). A .2033-330 B .330-233C .230-233 D .2033-302.计算(x +1x -)(x -1x -)的值是( ).A .2B .3C .4D .1 答案:一、1.A 2.D .17.1 勾股定理(一)一、教学目的1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。

人教版八年级数学下册全册教案教学设计

人教版八年级数学下册全册教案教学设计

人教版八年级数学下册全册教案教学设计
原题目:人教版八年级数学下册全册教案(完整版)教学设计
教学设计概述
该教案是基于人教版八年级数学下册的全册内容,旨在为教师提供全面的教学设计指导。

教案分为不同章节,每个章节涵盖了相应的教学内容和目标。

教案结构
每个章节的教案都按照以下结构设计:
课时序号
该部分为课时序号,标明本节课在整个教学进程中的位置。

教学目标
该部分列出了本节课的教学目标,明确了所要达到的知识点和能力。

教学重点
该部分列出了本节课的教学重点,强调了在教学过程中需要重点关注的知识或技能。

教学难点
该部分列出了本节课的教学难点,指明了学生在掌握本课内容时可能遇到的困难或挑战。

教学过程
该部分详细描述了本节课的教学过程,包括引入新知识、讲解重点内容、展示例题、引导学生实践、巩固练和总结归纳等环节。

教学设计特点
该教案的设计具有以下特点:
- 系统性: 教案根据教材内容有条理地进行了分类和编排,便于教师查找所需教学资源。

- 清晰明确: 教学目标、重点和难点都得到了明确阐述,为教师提供了明确的教学指导。

- 全面实用: 教案包含了教学设计的各个环节,从引入新知识到练巩固和总结归纳,使教师能够全面指导学生的研究。

使用建议
教师在使用该教案时,可以根据自己的教学需要进行适当的调整和修改。

同时,教师可以根据学生情况,合理安排教学时间和教学方法,提高教学效果。

结论
该教案提供了全面的教学设计指导,有助于教师有效开展八年级数学下册的教学工作。

教师在教学过程中可以根据该教案进行教学设计和指导,以促进学生的学习效果。

2018-2019学年人教版八年级数学下学期全册教案

2018-2019学年人教版八年级数学下学期全册教案

第十六章 分式 16.1分式16.1.1从分数到分式 一、 教学目标1.了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件. 二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件. 2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件. 三、课堂引入1.让学生填写P4[思考],学生自己依次填出:710,as ,33200,sv .2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少? 请同学们跟着教师一起设未知数,列方程. 设江水的流速为x 千米/时. 轮船顺流航行100千米所用的时间为v+20100小时,逆流航行60千米所用时间v-2060小时,所以v+20100=v-2060.3. 以上的式子v+20100,v-2060,as ,sv ,有什么共同点?它们与分数有什么相同点和不同点? 五、例题讲解P5例1. 当x 为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x 的取值范围.[提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m 为何值时,分式的值为0? (1) (2) (3)[分析] 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解.[答案] (1)m=0 (2)m=2 (3)m=1 六、随堂练习1.判断下列各式哪些是整式,哪些是分式? 9x+4, x7 , 209y +, 54-m , 238y y -,91-x2. 当x 取何值时,下列分式有意义? (1) (2) (3)3. 当x 为何值时,分式的值为0?(1) (2) (3) 七、课后练习1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.(3)x 与y 的差于4的商是 . 2.当x取何值时,分式 无意义? 1-m m 32+-m m 112+-m m 4522--x x x x 235-+23+x x x 57+xx 3217-xx x --2212312-+x x3. 当x 为何值时,分式 的值为0? 八、答案:六、1.整式:9x+4, 209y +, 54-m 分式: x7 , 238y y -,91-x2.(1)x ≠-2 (2)x ≠ (3)x ≠±23.(1)x=-7 (2)x=0 (3)x=-1七、1.18x, ,a+b,b a s +,4y x -; 整式:8x, a+b, 4y x -;分式:x80,ba s + 2. X = 3. x=-1课后反思:16.1.2分式的基本性质一、教学目标1.理解分式的基本性质.x 802332xx x --212.会用分式的基本性质将分式变形. 二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形. 三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5. 四、课堂引入1.请同学们考虑: 与 相等吗? 与 相等吗?为什么?2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据?43201524983432015249833.提问分数的基本性质,让学生类比猜想出分式的基本性质.五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例 5.不改变分式的值,使下列分式的分子和分母都不含“-”号.ab 56--, yx 3-, nm --2, nm 67--, yx 43---。

人教版数学八年级下册教案全册完整版

人教版数学八年级下册教案全册完整版

人教版数学八年级下册教案全册完整版一、教学内容1. 第十八章概率初步1.1 随机事件1.2 概率的定义1.3 概率的计算2. 第十九章函数与方程2.1 一次函数2.2 一次方程和一次方程组2.3 二元一次方程组3. 第二十章四边形3.1 四边形的性质3.2 矩形、菱形、正方形3.3 多边形的内角和与外角和二、教学目标1. 理解并掌握概率的基本概念和计算方法,能运用概率知识解决实际问题。

2. 掌握一次函数、一次方程和二元一次方程组的相关知识,能熟练解决相关问题。

3. 了解四边形的性质,掌握矩形、菱形、正方形的判定和性质,以及多边形的内角和与外角和的计算。

三、教学难点与重点1. 教学难点:概率的计算、一次方程组的解法、四边形的性质和判定。

2. 教学重点:概率的定义、一次函数的图像与性质、矩形、菱形、正方形的性质。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、几何模型。

2. 学具:学生用书、练习本、直尺、圆规。

五、教学过程1. 引入实践情景,激发学生兴趣。

2. 知识讲解与例题分析:第十八章:讲解随机事件、概率的定义和计算方法,举例说明。

第十九章:讲解一次函数、一次方程和方程组的解法,结合实际例子进行分析。

第二十章:讲解四边形的性质,以矩形、菱形、正方形为例,进行判定和性质分析。

3. 随堂练习:针对每个知识点,设计相应的练习题,让学生巩固所学。

六、板书设计1. 第十八章:概率初步1.1 随机事件1.2 概率的定义1.3 概率的计算2. 第十九章:函数与方程2.1 一次函数2.2 一次方程和一次方程组2.3 二元一次方程组3. 第二十章:四边形3.1 四边形的性质3.2 矩形、菱形、正方形3.3 多边形的内角和与外角和七、作业设计1. 作业题目:第十八章:计算随机事件的概率,解释概率在实际生活中的应用。

第十九章:解一次方程和方程组,分析一次函数的图像与性质。

第二十章:判断四边形的类型,计算多边形的内角和与外角和。

最新人教版八年级数学下册全册教案

最新人教版八年级数学下册全册教案
3、当 a 为正数时 数 必须满足 (三)合作探究 指a的
。 ,而 0 的算术平方根是 ,负
,只有非负数 a 才有算术平方根。所以,在二次根式 , 才有意义。
中,字母 a
1、学生自学课本第 2 页例题后,模仿例题的解答过程合作完成练习 : x 取何值时,下列各二次根式有意义? ① 3x − 4 ② 2+
x2 − 7
0.35
4a -11
2
(六)达标测试 A组 (一)填空题: =________; 2 3 2、 5 在实数范围内因式分解: (1)x2-9= x2 - ( )2= (x+ ____)(x-____) (2) x2 - 3 = x2 - ( ) 2 = (x+ _____) (x- _____) (二)选择题: 1、计算 (−13) 2 的值为 ( ) A. 169 B.-13 C±13 D.13 2、已知 x + 3 = 0, 则x为( ) A. x>-3 B. x<-3 C.x=-3 D x 的值不能确定 3、下列计算中,不正确的是 ( ) 。 A. 3= ( 3) 2 C . ( 0.3) 2 =0.3 (一)选择题: B D 0.5= ( 0.5 ) 2 1、
2 x 3


1 2− x
2、 (1)若 a − 3 − 3 − a 有意义,则 a 的值为___________. (2)若 − x 在实数范围内有意义,则 x 为( ) 。 A.正数 (四)展示反馈 B.负数 (学生归纳总结) C.非负数 D.非正数
1.非负数 a 的算术平方根 a (a≥0)叫做二次根式. 二次根式的概念有两个要点:一是从形式上看,应含有二次根号;二是被开方 数的取值范围有限制:被开方数 a 必须是非负数。 2.式子 a (a 0) 的取值是非负数。 (五)精讲点拨 1、二次根式的基本性质( a )2=a 成立的条件是 a≥0,利用这个性质可以求二次 根式的平方, 如( 5 )2=5; 也可以把一个非负数写成一个数的平方形式, 如 5=( 5 )2. 2、讨论二次根式的被开方数中字母的取值,实际上是解所含字母的不等式。 (五)拓展延伸

春八年级数学下册全一册教案(打包23套)人教版18(教案)

春八年级数学下册全一册教案(打包23套)人教版18(教案)

课题学习选择方案今日,我讲课的内容是义务教育课程标准实验教科书,八年级数学下册第十九章一次函数第三节课题学习选择方案的调水问题。

一、教材的地位和作用本节课“课题学习选择方案”是以一次函数应用为主要知识点的专题内容。

这一节议论的问题,有较强的实质背景,并且能够综合运用函数的分析式、图象等知识,对问题进行剖析。

所以,这些问题拥有必定的实践性、综合性、研究性、兴趣性,是查验和提高学习能力的较好素材。

本节的教课形式应与一般例题教课有所差别,要更重申学生的主动性,使他们经过研究问题进一步感觉成立数学模型的思想方法,确实提高实践意识与综合应用数学知识的能力。

二、教课目的、要点难点剖析、教课目的知识技术:()稳固一次函数知识,灵巧运用变量关系解决有关实质问题。

()娴熟掌握一次函数与方程,不等式关系,有机地把各样数学模型经过函数一致同来使用,提高学生综合运用所学知识剖析和解决实质问题的能力,进一步感觉成立数学模型的思想方法。

感情态度:()领会数学与生活的联系,认识数学的价值,增强学生对数学的理解和学好数学的信心。

()认识数学是解决实质问题的重要工具。

、要点难点剖析要点:()成立函数模型()灵巧运用函数模型解决实质问题。

难点:运用一次函数知识解决实质问题。

三、教法与学法指导、学情剖析()有益踊跃要素:经过对一次函数的图像与性质、一次函数与方程不等式的关系及选择方案(第课时)的学习,学生已经能够初步剖析实质问题中所包括的变量及其关系,并以函数形式表示它们,即成立函数模型。

而本节内容依旧是用成立函数模型解决实质问题,学生比较简单接受。

()不利悲观要素:第一学生关于数学识题中的函数模型的成立认识和理解不够,同时,由于学生实践经验较少,再加之学生之间存在个体差别,进而在知识的反应过程中产生不平衡性,给老师的整体教课带来必定的困难。

、教法设计本节课的教课形式以学生合作研究活动为主。

整个讲堂构造采纳“问题情境成立模型解说应用与拓展”的教课模式。

春八年级数学下册全一册教案打包23套人教版2教案

春八年级数学下册全一册教案打包23套人教版2教案

二次根式的加减一、内容和内容分析.内容二次根式加减运算..内容分析在二次根式性质和乘除运算的基础上,本课进一步学习二次根式的加减运算.二次根式的加减法是把二次根化为最简二次根式后,合并被开方数同样的二次根式就可以了,所以本课内容与整式的加减法近似,在教课中可以让学生领会类比思想的本质,经过详尽例子,指引学生研究发现二次根式加减运算的中心是合并被开方数同样的二次根式,基本依照是二次根式的性质和分配律.基于以上分析,可以确立本课的教课要点是应用分配律进行二次根式的加减运算.二、目标和目标分析.目标()掌握二次根式加减运算的步骤和方法.()会灵巧运用二次根式的相关性质进行二次根式的加减运算..目标分析达成目标()的标记是学生经历类比合并同类项的方法后能研究概括,概括出二次根式加减运算的方法,先把每一个二次根式化成最简二次根式,再运用分配律合并被开方数同样的二次根式.目标()是经过例题教课使学生掌握运算的技巧方法,并能在练习中加以运用,能说出依照.三、教课识题诊断分析类比思想是依据不一样对象在某些方面的近似之处,猜想新、旧知识之间的联系与差别.在二次根式的加减运算中,最后是合并被开方数同样的二次根式.但几个二次根式能否可以合并,这一判断没有整式同类项的判断直接.前者常常需要把每一个二次根式化成最简二次根式,这会造成学生学习的困难.所以在教课教师指引学生进行类比时,指向必定要明确,由浅入深,总结得出“一化简”、“二判断”、“三合并”的步骤.本课的教课难点是正确判断可以合并的二次根式,灵巧运用性质、算律运算.四、教课过程设计(一)创建情形,提出问题问题:现有一块长.,宽的木板,能否采纳如课本图.-所示的方式,在这块木板上截出两个面积分别是和的正方形木板?师生活动:教师指引学生仔细读题,分析题意.追问:满足什么条件才能截出两块正方形木板?你能用数学语言表示出来吗?师生活动:学生谈论得出“长够、宽也够”,<,<,从而把问题转变为“长能否够?”,即转变为比较与.大小问题,这就需要计算.引出课题“二次根式的加减”.追问:你以为可以如何计算?师生活动:让学生谈论,教师认识学生的思路,有的学生提出可先预计两个正方形的边长,再把它们的值与木板的长比较;有的提出可化简乞降,教师合时恩赐必定谈论.设计企图:用本质问题引出是让学生感觉学习二次根式加减运算的必需性和意义.经过分析如何计算让学生认识到本课内容其实不是孤立的崭新知识,而与二次根式的化简亲近相关.(二)研究新知,解决问题问题:化简结果是多少?师生活动:学生回答,并复习合并同类项的方法.追问:你能化简吗?师生活动:学生指出它们不是同类项不可以合并,老师恩赐必定谈论.追问:你能化简吗?师生活动:教师指引学生类比合并同类项,令,学生总结方法得出结果.追问:能化简吗?与上题差别在哪?师生活动:学生谈论,教师指引,令,,得出结论:不可以、的被开方数不相同.设计企图:让学生经历类比合并同类项的方法去研究二次根式加减运算的方法,问题:、都是最简二次根式,那、是最简二次根式吗?师生活动:学生回答:不是、,教师恩赐必定谈论.追问:如何化简?师生活动:学生谈论得出,教师指引学生类比合并同类项,总结得出二次根式加减运算的方法.“先化成最简二次根式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.勾股定理的逆定理
.掌握勾股定理的逆定理的探究方法.
.通过对勾
)一个三角形,满足什么条件是直角三角形?
对前面所学知识的归纳总结,联想到用三边的关系是否可以判断一后以个结、个结、个结的长度为边长,用木桩钉成一个三角形,
这个问题意味着,如果围成的三角形的三边分别为、、,
那么围成的三角形是直角三角形.
画画看,如果三角形的三边分别为
.
殊到一般,归纳猜想出“如果三角形三边,,满足,那么这个三角师生行为:让学生在小组内共同合作,协手完成此活动.
那么这个三角形是直角三角形.认识什么样的两个命题是互逆命题,
练习:以下列各组线段为边长,能构成三角形的是
⑥,,
设计意图:由特殊猜想得到的结论,会让一些同学产生疑虑,我们的
必须有严密的推理证明过程,才能让大家用的放心.通过对命题的证明,
.说出下列命题的逆命题.这些命题的逆命题成立吗?
()两条直线平行,内错角相等
解:在△中,,所以△是直角三角形,∠是直角.
,所以△是直角三角形,∠是直角.
12cm,5cm,13cm,,.
你对本节的内容有哪些认识?掌握勾股定理的逆定理及其应用,熟记几组勾股
.∠∠∠ .∠:∠:∠
.若一个三角形的三边长的平方分别为:,,,则此三角形是直角三角形的的
,(
.已知,,为△三边,且满足
问:上述解题过程
;本题正确的结论是.。

相关文档
最新文档