实验二进程同步实验
进程管理实验实验报告
一、实验目的1. 理解进程的基本概念,掌握进程的结构和生命周期。
2. 掌握进程的创建、终止、同步和通信的方法。
3. 熟悉进程调度算法和进程同步机制。
4. 通过实验加深对操作系统进程管理的理解。
二、实验环境1. 操作系统:Linux2. 编程语言:C/C++3. 实验工具:gcc、make、xterm三、实验内容1. 进程的创建与终止(1)使用fork()系统调用创建进程编写一个C程序,通过fork()系统调用创建一个子进程。
父进程和子进程分别执行不同的任务,并输出各自的信息。
```c#include <stdio.h>#include <sys/types.h>#include <unistd.h>int main() {pid_t pid;pid = fork();if (pid == -1) {printf("Fork failed!\n");return 1;printf("This is child process, PID: %d\n", getpid()); // 子进程执行的任务} else {printf("This is parent process, PID: %d\n", getpid()); // 父进程执行的任务}return 0;}```(2)使用exec()系统调用替换子进程内容在父进程中,使用exec()系统调用替换子进程的内容,执行新的程序。
```c#include <stdio.h>#include <sys/types.h>#include <sys/wait.h>#include <unistd.h>int main() {pid_t pid;pid = fork();if (pid == -1) {printf("Fork failed!\n");return 1;execlp("ls", "ls", "-l", (char )NULL);printf("Exec failed!\n");return 1;} else {wait(NULL);}return 0;}```2. 进程同步与通信(1)使用管道实现进程通信编写一个C程序,使用管道实现父进程和子进程之间的通信。
操作系统实验实验报告
操作系统实验实验报告一、实验目的操作系统是计算机系统中最为关键的核心软件,它管理着计算机的硬件资源和软件资源,为用户提供了一个方便、高效、稳定的工作环境。
本次操作系统实验的目的在于通过实际操作和实践,深入理解操作系统的基本原理和核心概念,掌握操作系统的基本功能和操作方法,提高对操作系统的认识和应用能力。
二、实验环境本次实验使用的操作系统为 Windows 10 专业版,开发工具为Visual Studio 2019,编程语言为 C 和 C++。
实验硬件环境为一台配备Intel Core i7 处理器、16GB 内存、512GB SSD 硬盘的个人计算机。
三、实验内容(一)进程管理实验1、进程创建与终止通过编程实现创建新的进程,并在完成任务后终止进程。
在实验中,我们使用了 Windows API 函数 CreateProcess 和 TerminateProcess 来完成进程的创建和终止操作。
通过观察进程的创建和终止过程,深入理解了进程的生命周期和状态转换。
2、进程同步与互斥为了实现进程之间的同步与互斥,我们使用了信号量、互斥量等同步对象。
通过编写多线程程序,模拟了多个进程对共享资源的访问,实现了对共享资源的互斥访问和同步操作。
在实验中,我们深刻体会到了进程同步与互斥的重要性,以及不正确的同步操作可能导致的死锁等问题。
(二)内存管理实验1、内存分配与释放使用 Windows API 函数 VirtualAlloc 和 VirtualFree 进行内存的分配和释放操作。
通过实验,了解了内存分配的不同方式(如堆分配、栈分配等)以及内存释放的时机和方法,掌握了内存管理的基本原理和操作技巧。
2、内存分页与分段通过编程模拟内存的分页和分段管理机制,了解了内存分页和分段的基本原理和实现方法。
在实验中,我们实现了简单的内存分页和分段算法,对内存的地址转换和页面置换等过程有了更深入的理解。
(三)文件系统实验1、文件操作使用 Windows API 函数 CreateFile、ReadFile、WriteFile 等进行文件的创建、读取和写入操作。
操作系统实验二实验报告
操作系统实验二实验报告一、实验目的本次操作系统实验二的主要目的是深入理解和掌握进程管理的相关概念和技术,包括进程的创建、执行、同步和通信。
通过实际编程和实验操作,提高对操作系统原理的认识,培养解决实际问题的能力。
二、实验环境本次实验使用的操作系统为 Windows 10,编程环境为 Visual Studio 2019。
三、实验内容及步骤(一)进程创建实验1、首先,创建一个新的 C++项目。
2、在项目中,使用 Windows API 函数`CreateProcess`来创建一个新的进程。
3、为新进程指定可执行文件的路径、命令行参数、进程属性等。
4、编写代码来等待新进程的结束,并获取其退出代码。
(二)进程同步实验1、设计一个生产者消费者问题的模型。
2、使用信号量来实现生产者和消费者进程之间的同步。
3、生产者进程不断生成数据并放入共享缓冲区,当缓冲区已满时等待。
4、消费者进程从共享缓冲区中取出数据进行处理,当缓冲区为空时等待。
(三)进程通信实验1、选择使用管道来实现进程之间的通信。
2、创建一个匿名管道,父进程和子进程分别读写管道的两端。
3、父进程向管道写入数据,子进程从管道读取数据并进行处理。
四、实验结果及分析(一)进程创建实验结果成功创建了新的进程,并能够获取到其退出代码。
通过观察进程的创建和执行过程,加深了对进程概念的理解。
(二)进程同步实验结果通过使用信号量,生产者和消费者进程能够正确地进行同步,避免了缓冲区的溢出和数据的丢失。
分析结果表明,信号量机制有效地解决了进程之间的资源竞争和协调问题。
(三)进程通信实验结果通过管道实现了父进程和子进程之间的数据通信。
数据能够准确地在进程之间传递,验证了管道通信的有效性。
五、遇到的问题及解决方法(一)在进程创建实验中,遇到了参数设置不正确导致进程创建失败的问题。
通过仔细查阅文档和调试,最终正确设置了参数,成功创建了进程。
(二)在进程同步实验中,出现了信号量使用不当导致死锁的情况。
进程同步实验报告
一、实验目的1. 理解进程同步的概念和原理;2. 掌握进程同步的基本方法和机制;3. 学会使用信号量实现进程同步;4. 通过实验验证进程同步机制的有效性。
二、实验原理1. 进程同步:在多道程序设计中,进程的执行是并发的,但某些情况下需要保证多个进程按照一定的顺序执行,以避免出现数据不一致、死锁等问题。
进程同步是指通过某种机制,协调多个进程的执行顺序,保证它们能够正确、有效地共享资源。
2. 信号量:信号量是一种特殊的变量,用于实现进程同步。
信号量具有两个原子操作:P操作(wait)和V操作(signal)。
P操作用于申请资源,V操作用于释放资源。
3. 互斥锁:互斥锁是一种常见的进程同步机制,用于保证临界资源的互斥访问。
当一个进程进入临界区时,它会尝试获取互斥锁,如果锁已被其他进程获取,则该进程进入等待状态;当进程退出临界区时,它会释放互斥锁。
三、实验内容1. 实验环境:Linux操作系统,C语言编程环境。
2. 实验工具:gcc编译器、gdb调试器。
3. 实验步骤:(1)创建一个互斥锁,用于保护临界资源。
(2)编写两个进程,分别模拟对临界资源的访问。
(3)在进程访问临界资源前,使用P操作尝试获取互斥锁。
(4)在进程访问临界资源后,使用V操作释放互斥锁。
(5)编译并运行程序,观察进程执行情况。
四、实验结果与分析1. 实验结果:(1)在互斥锁的保护下,两个进程能够按照预期顺序访问临界资源。
(2)当其中一个进程正在访问临界资源时,另一个进程会进入等待状态。
(3)当进程访问临界资源完成后,它会释放互斥锁,允许其他进程访问。
2. 实验分析:(1)互斥锁能够有效地保护临界资源,避免数据不一致问题。
(2)信号量P操作和V操作保证了进程的同步,避免了死锁现象。
(3)通过实验验证了进程同步机制的有效性。
五、实验总结本次实验通过使用信号量和互斥锁,实现了进程同步。
实验结果表明,信号量和互斥锁能够有效地保证进程按照预期顺序执行,避免数据不一致和死锁等问题。
进程管理实验报告分析(3篇)
第1篇一、实验背景进程管理是操作系统中的一个重要组成部分,它负责管理计算机系统中所有进程的创建、调度、同步、通信和终止等操作。
为了加深对进程管理的理解,我们进行了一系列实验,以下是对实验的分析和总结。
二、实验目的1. 加深对进程概念的理解,明确进程和程序的区别。
2. 进一步认识并发执行的实质。
3. 分析进程争用资源的现象,学习解决进程互斥的方法。
4. 了解Linux系统中进程通信的基本原理。
三、实验内容1. 使用系统调用fork()创建两个子进程,父进程和子进程分别显示不同的字符。
2. 修改程序,使每个进程循环显示一句话。
3. 使用signal()捕捉键盘中断信号,并通过kill()向子进程发送信号,实现进程的终止。
4. 分析利用软中断通信实现进程同步的机理。
四、实验结果与分析1. 实验一:父进程和子进程分别显示不同的字符在实验一中,我们使用fork()创建了一个父进程和两个子进程。
在父进程中,我们打印了字符'a',而在两个子进程中,我们分别打印了字符'b'和字符'c'。
实验结果显示,父进程和子进程的打印顺序是不确定的,这是因为进程的并发执行。
2. 实验二:每个进程循环显示一句话在实验二中,我们修改了程序,使每个进程循环显示一句话。
实验结果显示,父进程和子进程的打印顺序仍然是随机的。
这是因为并发执行的进程可能会同时占用CPU,导致打印顺序的不确定性。
3. 实验三:使用signal()捕捉键盘中断信号,并通过kill()向子进程发送信号在实验三中,我们使用signal()捕捉键盘中断信号(按c键),然后通过kill()向两个子进程发送信号,实现进程的终止。
实验结果显示,当按下c键时,两个子进程被终止,而父进程继续执行。
这表明signal()和kill()在进程控制方面具有重要作用。
4. 实验四:分析利用软中断通信实现进程同步的机理在实验四中,我们分析了利用软中断通信实现进程同步的机理。
操作系统实验报告
操作系统实验报告实验项⽬⼆进程管理⼀、实验⽬的1.理解进程的概念,掌握⽗、⼦进程创建的⽅法。
2.认识和了解并发执⾏的实质,掌握进程的并发及同步操作。
⼆、实验内容1.编写⼀C语⾔程序,实现在程序运⾏时通过系统调⽤fork( )创建两个⼦进程,使⽗、⼦三进程并发执⾏,⽗亲进程执⾏时屏幕显⽰“I am father”,⼉⼦进程执⾏时屏幕显⽰“I am son”,⼥⼉进程执⾏时屏幕显⽰“I am daughter”。
2.多次连续反复运⾏这个程序,观察屏幕显⽰结果的顺序,直⾄出现不⼀样的情况为⽌。
记下这种情况,试简单分析其原因。
3.修改程序,在⽗、⼦进程中分别使⽤wait()、exit()等系统调⽤“实现”其同步推进,并获取⼦进程的ID号及结束状态值。
多次反复运⾏改进后的程序,观察并记录运⾏结果。
三、源程序及运⾏结果源程序1:#include#include#includeint main(int argc, char ** argv ){int pid=fork();if(pid < 0)printf("error!");else if( pid == 0 ){printf("I am son!\n");}else{int pid=fork();if (pid < 0)printf("error!");else if( pid == 0 ){printf(“I am daughter! \n");}elseprintf("I am father!\n");}sleep(1);return 0;}运⾏结果:源程序2:#include#include#includeint main(int argc, char ** argv ) {char *message;int n;int pid=fork();if(pid < 0)printf("error!");else if( pid == 0 ){message="I am daughter!"; pid=getpid();n=3;}else{int pid=fork();if (pid < 0)printf("error!");else if( pid == 0 ){message="I am son!";pid=getpid();n=3;}elsemessage="I am father!";n=3;}for(;n>0;n--){puts(message);sleep(1);}return 0;}运⾏结果:四、实验分析与总结1.实验内容1运⾏结果为什么⽆固定顺序,fork()函数创建进程是如何并发执⾏的。
进程的管理实验报告
一、实验目的1. 理解进程的基本概念和进程状态转换过程。
2. 掌握进程创建、进程同步和进程通信的方法。
3. 了解进程调度算法的基本原理和实现方法。
4. 通过实验加深对进程管理的理解,提高操作系统实践能力。
二、实验环境1. 操作系统:Linux2. 编程语言:C/C++3. 开发工具:GCC三、实验内容1. 进程创建与状态转换(1)使用fork()函数创建一个子进程,并观察父进程和子进程的进程ID。
(2)使用exec()函数替换子进程的映像,实现进程的创建。
(3)观察进程状态转换过程,如创建、运行、阻塞、就绪、终止等。
2. 进程同步(1)使用互斥锁(mutex)实现进程的互斥访问共享资源。
(2)使用信号量(semaphore)实现进程的同步,如生产者-消费者问题。
(3)观察进程同步的效果,确保进程安全执行。
3. 进程通信(1)使用管道(pipe)实现进程间的单向通信。
(2)使用消息队列(message queue)实现进程间的双向通信。
(3)使用共享内存(shared memory)实现进程间的快速通信。
(4)观察进程通信的效果,确保数据正确传递。
(1)实现基于优先级的进程调度算法,如先来先服务(FCFS)和最高优先级优先(HPF)。
(2)实现基于时间片的轮转调度算法(RR)。
(3)观察进程调度算法的效果,分析不同算法的优缺点。
四、实验步骤1. 编写程序实现进程创建与状态转换,使用fork()和exec()函数。
2. 编写程序实现进程同步,使用互斥锁和信号量。
3. 编写程序实现进程通信,使用管道、消息队列和共享内存。
4. 编写程序实现进程调度,使用优先级调度和时间片轮转调度。
5. 编译并运行程序,观察实验结果,分析实验现象。
五、实验结果与分析1. 进程创建与状态转换通过实验,我们成功创建了父进程和子进程,并观察到进程ID的变化。
在进程创建过程中,父进程的进程ID与子进程的进程ID不同,说明子进程是独立于父进程的实体。
进程同步实验总结范文
进程同步实验总结范文实验三:进程同步实验一、实验任务:(1)掌握操作系统的进程同步原理;(2)熟悉linu某的进程同步原语;(3)设计程序,实现经典进程同步问题。
二、实验原理:(1)P、V操作PV操作由P操作原语和V操作原语组成(原语是不可中断的过程),对信号量进行操作,具体定义如下:P(S):①将信号量S的值减1,即S=S-1;②如果S30,则该进程继续执行;否则该进程置为等待状态,排入等待队列。
V(S):①将信号量S的值加1,即S=S+1;②如果S>0,则该进程继续执行;否则释放队列中第一个等待信号量的进程。
(2)信号量信号量(emaphore)的数据结构为一个值和一个指针,指针指向等待该信号量的下一个进程。
信号量的值与相应资源的使用情况有关。
当它的值大于0时,表示当前可用资源的数量;当它的值小于0时,其绝对值表示等待使用该资源的进程个数。
注意,信号量的值仅能由PV操作来改变。
一般来说,信号量S30时,S表示可用资源的数量。
执行一次P操作意味着请求分配一个单位资源,因此S的值减1;当S<0时,表示已经没有可用资源,请求者必须等待别的进程释放该类资源,它才能运行下去。
而执行一个V操作意味着释放一个单位资源,因此S的值加1;若S£0,表示有某些进程正在等待该资源,因此要唤醒一个等待状态的进程,使之运行下去。
(3)linu某的进程同步原语①wait();阻塞父进程,子进程执行;②#include<y/type.h>#include<y/ipc.h>key_tftok(char某pathname,charproj);它返回与路径pathname相对应的一个键值。
③intemget(key_tkey,intnem,intemflg)参数key是一个键值,由ftok获得,唯一标识一个信号灯集,用法与mgget()中的key相同;参数nem指定打开或者新创建的信号灯集中将包含信号灯的数目;emflg参数是一些标志位。
进程的同步实验报告
操作系统实验报告哈尔滨工程大学计算机科学与技术学院进程的同步一.实验概述1.实验名称:进程的同步2.实验目的:1)使用EOS 的信号量,编程解决生产者—消费者问题,理解进程同步的意义;2)调试跟踪EOS 信号量的工作过程,理解进程同步的原理;3)修改EOS 的信号量算法,使之支持等待超时唤醒功能(有限等待),加深理解进程同步的原理。
3.实验类型:验证+设计4.实验内容:1)准备实验2)使用EOS 的信号量解决生产者-消费者问题3)调试EOS 信号量的工作过程4)修改EOS 的信号量算法二.实验环境操作系统:windows XP编译器:Tevalaton OS Lab语言:C三.实验过程1.设计思路和流程图2.实验过程1)准备实验,启动OS Lab,新建一个EOS Kernel项目和EOS应用程序,将EOS Kernel 项目中生成的SDK文件覆盖到ROS应用程序项目文件夹中的SDK文件夹;2)使用pc.c文件中的源代码,替换之前创建的EOS应用程序项目中EOSApp.c文件中的代码,并生成项目,启动调试,忽略调试的异常,立即激活虚拟机窗口中查看生产者-消费者同步执行的过程,结束此次调试;3)信号量结构体(SEMAPHORE)中的各个成员变量是由API 函数CreateSemaphore 的对应参数初始化的。
创建信号量,启动调试EOS应用程序,在OS Lab弹出的调试异常对话框中选择“是”,进入异常调试,在main函数中创建Empty信号量的代码行添加断点;EmptySemaphoreHandle = CreateSemaphore(BUFFER_SIZE, BUFFER_SIZE, NULL);4)启动调试,逐语句调试进入CreateSemaphore 函数。
可以看到此API 函数只是调用了EOS内核中的PsCreateSemaphoreObject 函数来创建信号量对象,继续逐语句调试试进入semaphore.c 文件中的PsCreateSemaphoreObject 函数。
北科大操作系统实验报告
操作系统实验报告学院:计算机与通信工程学院专业:计算机与科学技术班级:学号:姓名:指导教师:王成耀成绩:2015年 1 月4 日实验一线程的状态和转换(5分)1 实验目的和要求目的:熟悉线程的状态及其转换,理解线程状态转换与线程调度的关系。
要求:(1)跟踪调试EOS线程在各种状态间的转换过程,分析EOS中线程状态及其转换的相关源代码;(2)修改EOS的源代码,为线程增加挂起状态。
2 完成的实验内容2.1 EOS线程状态转换过程的跟踪与源代码分析(分析EOS中线程状态及其转换的核心源代码,说明EOS定义的线程状态以及状态转换的实现方法;给出在本部分实验过程中完成的主要工作,包括调试、跟踪与思考等)//使 Zero 状态或者运行状态的线程转入就绪状态VOIDPspReadyThread(PTHREAD Thread){ASSERT(NULL != Thread);ASSERT(Zero == Thread->State || Running == Thread->State);// 将线程插入其优先级对应的就绪队列的队尾,并设置就绪位图中对应的位。
// 最后将线程的状态修改为就绪状态。
ListInsertTail(&PspReadyListHeads[Thread->Priority], &Thread->StateListEntry);BIT_SET(PspReadyBitmap, Thread->Priority);Thread->State = Ready;}//取消线程的就绪状态,使线程转入 Zero 状态VOIDPspUnreadyThread(PTHREAD Thread){ASSERT(NULL != Thread && Ready == Thread->State);// 将线程从所在的就绪队列中取出,如果线程优先级对应的就绪队列变为空,// 则清除就绪位图中对应的位。
《操作系统》课程实验报告
《操作系统》课程实验报告一、实验目的本次《操作系统》课程实验的主要目的是通过实际操作和观察,深入理解操作系统的工作原理、进程管理、内存管理、文件系统等核心概念,并掌握相关的操作技能和分析方法。
二、实验环境1、操作系统:Windows 10 专业版2、开发工具:Visual Studio Code3、编程语言:C/C++三、实验内容(一)进程管理实验1、进程创建与终止通过编程实现创建新进程,并观察进程的创建过程和资源分配情况。
同时,实现进程的正常终止和异常终止,并分析其对系统的影响。
2、进程同步与互斥使用信号量、互斥锁等机制实现进程之间的同步与互斥。
通过模拟多个进程对共享资源的访问,观察并解决可能出现的竞争条件和死锁问题。
(二)内存管理实验1、内存分配与回收实现不同的内存分配算法,如首次适应算法、最佳适应算法和最坏适应算法。
观察在不同的内存请求序列下,内存的分配和回收情况,并分析算法的性能和优缺点。
2、虚拟内存管理研究虚拟内存的工作原理,通过设置页面大小、页表结构等参数,观察页面的换入换出过程,以及对系统性能的影响。
(三)文件系统实验1、文件操作实现文件的创建、打开、读取、写入、关闭等基本操作。
观察文件在磁盘上的存储方式和文件系统的目录结构。
2、文件系统性能优化研究文件系统的缓存机制、磁盘调度算法等,通过对大量文件的读写操作,评估不同优化策略对文件系统性能的提升效果。
四、实验步骤(一)进程管理实验步骤1、进程创建与终止(1)使用 C/C++语言编写程序,调用系统函数创建新进程。
(2)在子进程中执行特定的任务,父进程等待子进程结束,并获取子进程的返回值。
(3)通过设置异常情况,模拟子进程的异常终止,观察父进程的处理方式。
2、进程同步与互斥(1)定义共享资源和相关的信号量或互斥锁。
(2)创建多个进程,模拟对共享资源的并发访问。
(3)在访问共享资源的关键代码段使用同步机制,确保进程之间的正确协作。
(4)观察并分析在不同的并发情况下,系统的运行结果和资源竞争情况。
操作系统实验报告——进程同步与互斥
操作系统实验报告——进程同步与互斥一、实验内容本实验主要内容是通过编写程序来实现进程的同步与互斥。
具体来说,是通过使用信号量来实现不同进程之间的同步和互斥。
我们将编写两个进程,一个进程负责打印奇数,另一个进程负责打印偶数,两个进程交替打印,要求打印的数字从1开始,直到100结束。
二、实验原理进程的同步是指多个进程之间按照一定的顺序执行,进程之间互相等待的关系。
而进程的互斥是指多个进程竞争同一个资源,需要通过其中一种方式来避免同时访问共享资源,以免造成数据错乱。
在本实验中,我们使用信号量来实现进程的同步与互斥。
信号量是一个计数器,用于表示一些共享资源的可用数量。
进程在访问共享资源时,需要先对信号量进行操作,当信号量大于0时,表示资源可用,进程可以访问;当信号量等于0时,表示资源不可用,进程需要等待。
进程同步的实现可以通过信号量的P操作与V操作来完成。
P操作用于申请资源,当资源可用时,将计数器减一,并进入临界区;V操作用于释放资源,当资源使用完毕时,将计数器加一,使等待资源的进程能够申请。
进程互斥的实现可以通过信号量的P操作与V操作结合临界区来完成。
当多个进程需要访问共享资源时,需要先进行P操作,进入临界区,访问完毕后进行V操作,离开临界区。
三、实验步骤1.首先,我们需要创建两个进程,一个进程负责打印奇数,另一个进程负责打印偶数。
2. 然后,我们创建一个共享变量count,用来记录打印的数字。
3. 接着,我们创建两个信号量odd和even,用来控制进程的同步与互斥。
odd信号量初始值为1,表示打印奇数的进程可以访问;even信号量初始值为0,表示打印偶数的进程需要等待。
4.编写奇数打印进程的代码,首先进行P操作,判断奇数信号量是否大于0,如果大于0,表示可以打印奇数。
5. 如果可以打印奇数,将count加一,并输出当前的奇数,然后进行V操作,释放偶数打印进程的等待。
6.同样的,编写偶数打印进程的代码,首先进行P操作,判断偶数信号量是否大于0,如果大于0,表示可以打印偶数。
进程管理实验报告
进程管理实验报告进程管理实验报告引言:进程管理是操作系统中的重要概念,它负责调度和控制计算机系统中的各个进程,确保它们能够有序地执行。
本实验旨在通过实际操作和观察,深入了解进程管理的原理和方法,并通过实验结果分析其影响因素和优化策略。
实验一:进程创建与终止在本实验中,我们首先进行了进程的创建和终止实验。
通过编写简单的程序,我们能够观察到进程的创建和终止过程,并了解到进程控制块(PCB)在其中的作用。
实验结果显示,当一个进程被创建时,操作系统会为其分配一个唯一的进程ID,并为其分配必要的资源,如内存空间、文件描述符等。
同时,操作系统还会为该进程创建一个PCB,用于存储该进程的相关信息,如进程状态、程序计数器等。
当我们手动终止一个进程时,操作系统会释放该进程所占用的资源,并将其PCB从系统中删除。
这样,其他进程便可以继续使用这些资源,提高系统的效率和资源利用率。
实验二:进程调度算法进程调度算法是决定进程执行顺序的重要因素。
在本实验中,我们通过模拟不同的进程调度算法,比较它们在不同场景下的表现和效果。
我们选择了三种常见的进程调度算法:先来先服务(FCFS)、最短作业优先(SJF)和轮转调度(RR)。
通过设置不同的进程执行时间和优先级,我们观察到不同调度算法对系统吞吐量和响应时间的影响。
实验结果显示,FCFS算法适用于执行时间较短的进程,能够保证公平性,但在执行时间较长的进程出现时,会导致等待时间过长,影响系统的响应速度。
SJF 算法在执行时间较长的进程时表现出色,但对于执行时间较短的进程,可能会导致饥饿现象。
RR算法能够在一定程度上平衡各个进程的执行时间,但对于执行时间过长的进程,仍然会影响系统的响应速度。
实验三:进程同步与互斥在多进程环境中,进程之间的同步和互斥是必不可少的。
在本实验中,我们通过模拟进程间的竞争和互斥关系,观察进程同步与互斥的实现方式和效果。
我们选择了信号量机制和互斥锁机制作为实现进程同步和互斥的方法。
操作系统实验之进程管理实验报告
操作系统实验之进程管理实验报告一、实验目的本次操作系统实验的主要目的是深入理解进程管理的概念和原理,通过实际操作和观察,掌握进程的创建、调度、同步与互斥等关键机制。
二、实验环境本次实验使用的操作系统为 Windows 10,开发工具为 Visual Studio 2019,编程语言为 C++。
三、实验内容1、进程创建使用系统提供的 API 函数创建新的进程。
观察新进程的资源使用情况和运行状态。
2、进程调度编写程序模拟不同的进程调度算法,如先来先服务(FCFS)、短作业优先(SJF)和时间片轮转(RR)。
比较不同调度算法下的平均周转时间、平均等待时间等性能指标。
3、进程同步与互斥利用信号量、互斥锁等机制实现进程之间的同步与互斥。
设计并发程序,解决生产者消费者问题、读写者问题等经典同步问题。
四、实验步骤1、进程创建实验首先,包含所需的头文件,如`<windowsh>`。
然后,定义创建进程的函数,使用`CreateProcess` 函数创建新进程,并获取进程的相关信息,如进程标识符、线程标识符等。
最后,通过查看任务管理器或其他系统工具,观察新创建进程的资源占用情况。
2、进程调度实验设计不同的调度算法函数,如`FCFSSchedule`、`SJFSchedule` 和`RRSchedule`。
在每个调度算法函数中,模拟进程的到达时间、服务时间等参数,并按照相应的算法进行进程调度。
计算每个进程的周转时间和等待时间,并求出平均周转时间和平均等待时间。
3、进程同步与互斥实验定义信号量或互斥锁变量。
在生产者消费者问题中,生产者在生产产品时获取互斥锁,生产完成后释放互斥锁并通知消费者;消费者在消费产品时获取互斥锁,消费完成后释放互斥锁。
在读写者问题中,读者在读取数据时获取共享锁,读完后释放共享锁;写者在写入数据时获取独占锁,写入完成后释放独占锁。
五、实验结果与分析1、进程创建实验结果成功创建新的进程,并能够获取到进程的相关信息。
实验2 进程通信设计说明书
进程通信参考实例:设计说明书1 概述在程序中使用多线程时,一般很少有多个线程能在其生命期内进行完全独立的操作。
更多的情况是一些线程进行某些处理操作,而其它的线程必须对其处理结果进行了解。
正常情况下对这种处理结果的了解应当在其处理任务完成后进行。
如果不采取适当的措施,其它线程往往会在线程处理任务结束前就去访问处理结果,这就很有可能得到有关处理结果的错误的了解。
例如,多个线程同时访问同一个全局变量,如果都是读取操作,则不会出现问题。
如果一个线程负责改变此变量的值,而其他线程负责同时读取变量内容,则不能保证读取到的数据是经过写线程修改后的。
为了确保读线程读取到的是经过修改的变量,就必须在向变量写入数据时禁止其他线程对其的任何访问,直至赋值过程结束后再解除对其他线程的访问限制。
像这种保证线程能了解其他线程任务处理结束后的处理结果而采取的保护措施即为线程同步。
1.1 目的通过本软件的演示,使学生更直观、更深入的明确操作系统进程、线程的概念。
能够知道为什么要使用多道程序的思想,以及怎么使用API创建多线程和使线程同步的基本方法。
把课本上的P、V操作的思想运用到实践当中。
掌握基本的VC编程,提高动手能力。
1.2 主要完成的任务PUT图1 模型图对该模型(图1)实例化,利用图形界面直观易懂的特点,把完全抽象的线程的就绪、阻塞、执行的概念以及同步互斥的过程用图形动态的显示出来。
1.3 使用的开发工具VC++ 6.0,WINDOWS 20001.4 解决的主要问题(1)线程的同步互斥首先我们要对问题进行正确的P、V操作的描述,然后选择适当的API加以描述。
(2)图形显示模拟的问题。
利用一定的图形清楚直观的反应抽象的数据,把整个模型的动态流程表示出来。
(3)各功能模块的协调合作要为各模块及程序做好运行时的状态保存,然后依据状态进行合适的操作。
2 使用的基本概念和基本原理2.1 程序、进程、线程程序:是指一个指令序列。
线程的同步和互斥问题
实验二线程的同步和互斥问题一.实验内容:编写程序实现并发线程之间的同步和互斥问题。
线程间的互斥:并发执行的线程共享某些类临界资源,对临界资源的访问应当采取互斥的机制。
线程间的同步:并发执行的线程间通常存在相互制约的关系,线程必须遵循一定的规则来执行,同步机制可以协调相互制约的关系。
二.实验目的和要求1)了解进程同步与互斥的概念,掌握编写进程同步、互斥的实例。
2)解决一类典型的进程间同步问题,如生产者-消费者问题,读者-写者问题等。
三.实验方法和步骤1.实验方法掌握同步与互斥的机制,选取合适的问题,给出演示程序的设计思想,包括流程图的形式;选取C、C++、VC、JA V A等计算机语言,编程调试,最终给出运行正确的程序。
2.程序设计(1)线程间互斥:分析问题,创建多个线程,找出临界资源,划出正确的临界区,根据互斥机制的操作模式,编写程序。
互斥机制的操作模式:p(mutex);/*关锁*/临界区的操作;v(mutex);/*开锁*/(2)线程间同步——读者-写者问题示例:在Windows 2000 环境下,创建一个包含n 个线程的控制台进程。
用这n 个线程来表示n个读者或写者。
每个线程按相应测试数据文件的要求,进行读写操作。
请用信号量机制分别实现读者优先和写者优先的读者-写者问题。
读者-写者问题的读写操作限制:1)写-写互斥;2)读-写互斥;3)读-读允许;运行结果显示要求:要求在每个线程创建、发出读写操作申请、开始读写操作和结束读写操作时分别显示一行提示信息,以确信所有处理都遵守相应的读写操作限制。
测试数据文件格式测试数据文件包括n 行测试数据,分别描述创建的n 个线程是读者还是写者,以及读写操作的开始时间和持续时间。
每行测试数据包括四个字段,各字段间用空格分隔。
第一字段为一个正整数,表示线程序号。
第二字段表示相应线程角色,R 表示读者是,W 表示写者。
第三字段为一个正数,表示读写操作的开始时间。
操作系统实验报告
操作系统实验报告操作系统是计算机科学中十分重要的一门课程,本次实验是关于操作系统的,通过实验,我们可以更深入地了解操作系统的相关知识和操作。
本篇文章将着重介绍本次操作系统实验的内容和实验过程中的收获。
一、实验内容本次实验内容主要涉及操作系统的进程、线程和进程同步三部分。
具体内容包括:1. 进程的创建和管理2. 线程的创建和管理3. 进程同步的实现在实验过程中,我们将分别使用C语言和Linux操作系统实现上述功能。
二、实验过程1. 进程的创建和管理在这一部分实验中,我们要创建多个进程,实现进程的调度和管理功能。
我们采用了Linux系统下的fork()函数,用于创建子进程。
在程序运行时,首先创建一个父进程,然后使用fork()函数创建四个子进程,每个子进程都有自己的进程号(pid),并在屏幕上输出该进程号以示区分。
为了实现进程的调度功能,我们在代码中加入了sleep()函数,用于将进程挂起一段时间,然后再轮流执行其他进程。
2. 线程的创建和管理在这一部分实验中,我们使用了C语言的POSIX线程库pthread.h,实现多线程的功能。
同样地,我们采用了Linux系统下的fork()函数来创建线程。
在代码运行时,我们创建了两个线程,并在屏幕上输出线程号(tid)以示区分。
为了实现线程的调度和管理功能,我们在代码中加入了pthread_join()函数,用于等待线程的执行完成。
3. 进程同步的实现在这一部分实验中,我们使用了Linux系统下的进程同步工具——信号量(semaphore)。
在代码中,我们使用sem_init()函数创建信号量,使用sem_wait()函数阻塞进程或线程,使用sem_post()函数释放进程或线程。
为了更好地理解信号量的工作原理,我们将代码分为生产者和消费者两部分,其中生产者用于向缓冲区添加数据,消费者则用于删除数据。
在这个过程中,我们需要使用信号量控制生产者和消费者的数量,避免出现生产过多或消费过多的情况。
《操作系统》课程综合性的实验报告
《操作系统》课程综合性的实验报告一、实验目的本次《操作系统》课程的综合性实验旨在通过实际操作和实践,深入理解操作系统的基本原理、功能和运行机制。
具体目标包括熟悉操作系统的进程管理、内存管理、文件系统管理以及设备管理等核心模块,提高对操作系统的整体认知和应用能力。
二、实验环境本次实验在以下环境中进行:操作系统:Windows 10 专业版开发工具:Visual Studio 2019编程语言:C++三、实验内容及步骤(一)进程管理实验1、创建多个进程使用 C++中的多线程库,创建多个进程,并观察它们的并发执行情况。
通过设置不同的优先级和资源需求,研究进程调度算法对系统性能的影响。
2、进程同步与互斥实现生产者消费者问题,使用信号量、互斥锁等机制来保证进程之间的同步和互斥。
观察在不同并发情况下,数据的正确性和系统的稳定性。
(二)内存管理实验1、内存分配与回收模拟内存分配算法,如首次适应算法、最佳适应算法和最坏适应算法。
通过随机生成内存请求,观察不同算法下内存的利用率和碎片情况。
2、虚拟内存管理研究虚拟内存的工作原理,通过设置页面大小和页表结构,观察页面置换算法(如 FIFO、LRU 等)对内存访问性能的影响。
(三)文件系统管理实验1、文件操作创建、读取、写入和删除文件,了解文件系统的基本操作和数据结构。
2、文件目录管理实现文件目录的创建、遍历和搜索功能,研究目录结构对文件访问效率的影响。
(四)设备管理实验1、设备驱动程序模拟编写简单的设备驱动程序,模拟设备的输入输出操作,如键盘输入和屏幕输出。
2、设备分配与调度研究设备分配算法,如先来先服务和优先级算法,观察设备的使用情况和系统的响应时间。
四、实验结果与分析(一)进程管理实验结果分析1、在创建多个进程的实验中,发现高优先级进程能够更快地获得CPU 资源,系统响应时间更短。
但过度提高某些进程的优先级可能导致其他进程饥饿。
2、对于进程同步与互斥问题,正确使用信号量和互斥锁能够有效地保证数据的一致性和系统的稳定性。
进程同步问题总结报告
进程同步问题总结报告一、问题描述进程同步是操作系统中一个重要的问题,它涉及到多个进程在共享资源时如何正确地访问和操作。
在多进程环境中,如果没有正确的同步机制,会导致诸如竞态条件、死锁等问题。
本报告主要探讨进程同步问题及其解决方案。
二、问题分析1. 竞态条件:当多个进程同时访问共享资源,并且至少有一个进程的操作结果被其他进程的操作所覆盖,就会产生竞态条件。
竞态条件可能会导致数据不一致、系统状态不确定等问题。
2. 死锁:死锁是指两个或多个进程在等待对方释放资源,导致系统无法继续执行的情况。
死锁通常是由于资源分配不当、进程请求资源的顺序不一致等原因造成的。
三、解决方案1. 互斥锁(Mutex):互斥锁是一种最基本的同步机制,它允许一个进程在一段时间内独占共享资源。
当一个进程获得互斥锁后,其他进程就不能再获取锁,直到原进程释放锁。
这样可以避免竞态条件。
2. 信号量(Semaphore):信号量是一个计数器,用于控制对共享资源的访问次数。
信号量的值表示当前可用的共享资源数量。
通过调整信号量的值,可以控制进程对共享资源的访问。
3. 条件变量(Condition Variable):条件变量用于进程间的通信,一个进程可以在条件变量上等待,直到另一个进程通过通知操作唤醒它。
条件变量常与互斥锁、信号量等机制结合使用。
4. 读写锁(Read-Write Lock):读写锁允许多个进程同时读取共享资源,但只允许一个进程写入共享资源。
这可以提高并发性能,特别适用于读操作远多于写操作的情况。
5. 栅栏(Barrier):栅栏是一种同步机制,用于确保多个进程在访问共享资源前都达到某一位置。
栅栏类似于一个检查点,所有进程在到达栅栏前都必须等待,直到所有进程都到达栅栏才继续执行。
四、实验结果我们通过实验验证了这些同步机制的正确性和有效性。
实验中,我们设计了一些多进程程序,模拟了竞态条件和死锁情况,然后使用上述同步机制来解决这些问题。
操作系统进程同步实验报告
操作系统进程同步实验报告本实验旨在通过模拟操作系统中进程的同步问题,加深学生对操作系统中进程同步机制的了解和实践能力。
本次实验分为两个部分,第一个部分是使用信号量实现进程同步,第二个部分是使用管程实现进程同步。
第一部分实验:使用信号量实现进程同步本部分实验的目标是使用信号量来实现进程同步,确保资源的互斥访问。
在Linux系统中,信号量是一种用来控制进程同步的机制,可以用于保证共享资源的互斥访问、避免死锁等问题。
具体实验流程如下:1. 定义一个信号量,用于互斥访问共享资源在Linux系统中,使用semget函数可以创建一个信号量集,使用semctl函数可以对信号量进行控制。
```#include <sys/types.h>#include <sys/ipc.h>#include <sys/sem.h>#define KEY 1234 // 定义信号量的键值int semid; // 定义信号量标识符union semun{int val; // 信号量的初始值struct semid_ds *buf; // IPC_STAT, IPC_SET操作时用ushort *array; // GETALL, SETALL操作时用};void init_sem(){int ret;union semun semunion;// 创建信号量semid = semget(KEY, 1, IPC_CREAT | 0666);if(semid == -1){perror("semget error");exit(1);}2. 定义生产者和消费者进程,并使用信号量来实现同步在生产者和消费者进程中,需要先对信号量进行P操作,即申请资源,然后进行对共享资源的操作,最后再对信号量进行V操作,即释放资源。
本实验中,共享资源是一个循环缓冲区,生产者进程向其中写入数据,消费者进程从中读取数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二进程同步一、实验目的:
掌握基本的同步算法,理解经典进程同步问题的本质;学习使用Linux的进程同步机制,掌握相关API的使用方法;能利用信号量机制,采用多种同步算法实现不会发生死锁的哲学家进餐程序。
二、实验平台:
虚拟机:VMWare9以上
操作系统:以上
编辑器:Gedit | Vim
编译器:Gcc
三、实验内容:
(1)以哲学家进餐模型为依据,在Linux控制台环境下创建5个进程,用semget函数创建一个信号量集(5个信号量,初值为1),模拟哲学家的思考和进餐行为:每一位哲学家饥饿时,先拿起左手筷子,再拿起右手筷子;筷子是临界资源,为每一支筷子定义1个互斥信号量;想拿到筷子需要先对信号量做P操作,使用完释放筷子对信号量做V操作。
伪代码描述:
semaphore chopstick[5]={1,1,1,1,1};
•第i位哲学家的活动可描述为:
do{
printf("%d is thinking\n",i);
printf("%d is hungry\n",i);
wait(chopstick[i]); 当哲学家的左、右两只筷子均可用时,才允许他拿起筷子进餐;b.至多只允许有4位哲学家同时去拿左边的筷子,最终能保证至少有一位哲学家能够进餐;
c.规定奇数号哲学家先拿起他左手的筷子,然后再拿起他右手的筷子,而偶数号哲学家则先拿起他右手的筷子,然后再拿起他左手的筷子。
方法a在示例程序中给出,请用方法b和c写出不会发生死锁的哲学家进餐程序。
(3)设计程序,实现生产者/消费者进程(线程)的同步与互斥。
在该程序中创建4个进程(或线程)模拟生产者和消费者,实现进程(线程)的同步与互斥。
实验结果:
使用a方法结果哲学家就餐问题
使用b方法解决哲学家就餐问题
源码如下:
#include <>
#include <>
#include <>
#include <>
#include <>
#include <>
#include <>
#include <sys/>
#include <sys/>
#include <sys/>
#include <sys/>
#include <sys/>
union semun
{
int val;
struct semid_ds *buf;
unsigned short *array;
struct seminfo *_buf;
};
#define ERR_EXIT(m) \
do { \
perror(m); \
exit(EXIT_FAILURE); \
} while(0)
like: \t", id, in);
buff[in] = 1;
print();
++in;
pthread_mutex_unlock(&mutex);
sem_post(&full_sem);
}
}
/* 消费者方法 */
void *prochase()
{
int id = ++prochase_id;
while(1)
{
like: \t", id, out);
buff[out] = 0;
print();
++out;
pthread_mutex_unlock(&mutex);
sem_post(&empty_sem);
}
int main()
{
pthread_t id1[N];
pthread_t id2[N];
int i;
int ret[N];
// 初始化同步信号量
int ini1 = sem_init(&empty_sem, 0, M);
int ini2 = sem_init(&full_sem, 0, 0);
if(ini1 && ini2 != 0)
{
printf("sem init failed \n");
exit(1);
}
//初始化互斥信号量
int ini3 = pthread_mutex_init(&mutex, NULL);
if(ini3 != 0)
{
printf("mutex init failed \n");
exit(1);
}
// 创建N个生产者线程
for(i = 0; i < N; i++)
{
ret[i] = pthread_create(&id1[i], NULL, product, (void *)(&i));
if(ret[i] != 0)
{
printf("product%d creation failed \n", i);
exit(1);
}
}
//创建N个消费者线程
for(i = 0; i < N; i++)
{
ret[i] = pthread_create(&id2[i], NULL, prochase, NULL);
if(ret[i] != 0)
{
printf("prochase%d creation failed \n", i);
exit(1);
}
}
//销毁线程
for(i = 0; i < N; i++)
pthread_join(id1[i],NULL);
pthread_join(id2[i],NULL);
}
exit(0);
}
执行结果:
实验总结
哲学家进餐的问题是操作系统信号量同步的经典例题了。
这次我通过解决哲学家进餐的哲学问题从而对进程同步有一个更好的理解,解决这个问题书中给出了三种解决方法。
我在实验中也是用这三种方法去定义信号量解决死锁问题。
通过信号量的获取与wait 操作去控制进餐,a方法是控制哲学家左右手都有筷子时才能进餐,b中则是通过互斥信号量的获取,若没有信号量便不能执行,而且只有四个哲学家能同时进餐也避免了死锁的出现。
c中是让奇数的哲学家先拿左筷子执行wait和signal操作,偶数号的虽然也执行该操作但是只能拿右筷子。