2015年湖北高考数学试卷(文科)及详细答案(Word版)

合集下载

2015年湖北省高考数学试卷(文科)

2015年湖北省高考数学试卷(文科)

2015年湖北省高考数学试卷(文科)一、选择题:本大题10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(3分)i为虚数单位,i607=()A.﹣i B.i C.1 D.﹣12.(3分)我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()A.134石B.169石C.338石D.1365石3.(3分)命题“∃x0∈(0,+∞),lnx=x﹣1”的否定是()A.∃x0∈(0,+∞),lnx≠x﹣1 B.∃x∉(0,+∞),lnx=x﹣1C.∀x∈(0,+∞),lnx≠x﹣1 D.∀x∉(0,+∞),lnx=x﹣14.(3分)已知变量x和y满足关系y=﹣0.1x+1,变量y与z正相关,下列结论中正确的是()A.x与y负相关,x与z负相关B.x与y正相关,x与z正相关C.x与y正相关,x与z负相关D.x与y负相关,x与z正相关5.(3分)l1,l2表示空间中的两条直线,若p:l1,l2是异面直线,q:l1,l2不相交,则()A.p是q的充分条件,但不是q的必要条件B.p是q的必要条件,但不是q的充分条件C.p是q的充分必要条件D.p既不是q的充分条件,也不是q的必要条件6.(3分)函数f(x)=+lg的定义域为()A.(2,3)B.(2,4] C.(2,3)∪(3,4] D.(﹣1,3)∪(3,6] 7.(3分)设x∈R,定义符号函数sgnx=,则()A.|x|=x|sgnx| B.|x|=xsgn|x| C.|x|=|x|sgnx D.|x|=xsgnx8.(3分)在区间[0,1]上随机取两个数x,y,记p1为事件“x+y≤”的概率,P2为事件“xy≤”的概率,则()A.p1<p2<B.C.p2<D.9.(3分)将离心率为e1的双曲线C1的实半轴长a和虚半轴长b(a≠b)同时增加m(m>0)个单位长度,得到离心率为e2的双曲线C2,则()A.对任意的a,b,e1>e2B.当a>b时,e1>e2;当a<b时,e1<e2C.对任意的a,b,e1<e2D.当a>b时,e1<e2;当a<b时,e1>e210.(3分)已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B中元素的个数为()A.77 B.49 C.45 D.30二、填空题11.(3分)已知向量⊥,||=3,则•= .12.(3分)设变量x,y满足约束条件,则3x+y的最大值为.13.(3分)f(x)=2sin xsin(x+)﹣x2的零点个数为.14.(3分)某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(1)直方图中的a= .(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为.15.(3分)如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD= m.16.(3分)如图,已知圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2.(1)圆C的标准方程为.(2)圆C在点B处切线在x轴上的截距为.17.(3分)a为实数,函数f(x)=|x2﹣ax|在区间[0,1]上的最大值记为g(a).当a= 时,g(a)的值最小.三、解答题18.(12分)某同学将“五点法”画函数f(x)=Asin(wx+φ)(w>0,|φ|<)在某一个时期内的图象时,列表并填入部分数据,如下表:的解析式;(2)将y=f(x)图象上所有点向左平移个单位长度,得到y=g(x)图象,求y=g(x)的图象离原点O最近的对称中心.19.(12分)设等差数列{an }的公差为d,前n项和为Sn,等比数列{bn}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{an },{bn}的通项公式(2)当d>1时,记cn =,求数列{cn}的前n项和Tn.20.(13分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马P﹣ABCD中,侧棱PD⊥底面ABCD,且PD=CD,点E是PC的中点,连接DE、BD、BE.(Ⅰ)证明:DE⊥平面PBC.试判断四面体EBCD是否为鳖臑.若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;(Ⅱ)记阳马P﹣ABCD的体积为V1,四面体EBCD的体积为V2,求的值.21.(14分)设函数f(x),g(x)的定义域均为R,且f(x)是奇函数,g(x)是偶函数,f(x)+g(x)=e x,其中e为自然对数的底数.(1)求f(x),g(x)的解析式,并证明:当x>0时,f(x)>0,g(x)>1;(2)设a≤0,b≥1,证明:当x>0时,ag(x)+(1﹣a)<<bg(x)+(1﹣b).22.(14分)一种画椭圆的工具如图1所示.O是滑槽AB的中点,短杆ON可绕O转动,长杆MN通过N处铰链与ON连接,MN上的栓子D可沿滑槽AB滑动,且DN=ON=1,MN=3,当栓子D在滑槽AB内作往复运动时,带动N绕O转动,M处的笔尖画出的椭圆记为C,以O为原点,AB所在的直线为x轴建立如图2所示的平面直角坐标系.(1)求椭圆C的方程;(2)设动直线l与两定直线l1:x﹣2y=0和l2:x+2y=0分别交于P,Q两点.若直线l总与椭圆C有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.2015年湖北省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的。

2015年高考文科数学湖北卷

2015年高考文科数学湖北卷

数学试卷 第1页(共6页)数学试卷 第2页(共6页)数学试卷 第3页(共6页)绝密★启用前2015年普通高等学校招生全国统一考试(湖北卷)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟. 注意事项:1.答卷前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑,再在答题卡上对应的答题区域内答题.写在试题卷、草稿纸和答题卡上的非答题区域均无效.5.考试结束后,请将本试题卷和答题卡一并上交.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.i 为虚数单位,607i = ( )A .i -B .iC .1-D .12.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )A .134石B .169石C .338石D .1 365石 3.命题“0(0,)x ∃∈+∞,00ln 1x x =-”的否定是( ) A .0(0,)x ∃∈+∞,00ln 1x x ≠- B .0(0,)x ∃∉+∞,00ln 1x x =- C .(0,)x ∀∈+∞,ln 1x x ≠-D .(0,)x ∀∉+∞,ln 1x x =-4.已知变量x 和y 满足关系0.11y x =-+,变量y 与z 正相关.下列结论中正确的是 ( )A .x 与y 负相关,x 与z 负相关B .x 与y 正相关,x 与z 正相关C .x 与y 正相关,x 与z 负相关D .x 与y 负相关,x 与z 正相关5.1l ,2l 表示空间中的两条直线,若p :1l ,2l 是异面直线;q :1l ,2l 不相交,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件6.函数256()lg 3x x f x x -+=+-的定义域为( )A .(2,3)B .(2,4]C .(2,3)(3,4]D .(1,3)(3,6]-7.设x ∈R ,定义符号函数1,0,sgn 0,0,1,0,x x x x >⎧⎪==⎨⎪-<⎩则 ( )A .|||sgn |x x x =B .||sgn ||x x x =C .||||sgn x x x =D .||sgn x x x =8.在区间[0,1]上随机取两个数x ,y ,记1p 为事件“12x y +≤”的概率,2p 为事件“12xy ≤”的概率,则 ( )A .1212p p << B .1212p p << C .2112p p << D .2112p p << 9.将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则 ( )A .对任意的a ,b ,12e e >B .当a b >时,12e e >;当a b <时,12e e <C .对任意的a ,b ,12e e <D .当a b >时,12e e <;当a b <时,12e e >10.已知集合22{(,)1,,}A x y x y x y =+∈Z ≤,{(,)||2,||2,,}B x y x y x y =∈Z ≤≤,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为( ) A .77B .49C .45D .30第Ⅱ卷(非选择题 共100分)二、填空题:本大题共7小题,每小题5分,共35分.把答案填在题中的横线上.11.已知向量OA AB ⊥ ,||3OA = ,则 OA OB =___________.12.若变量,x y 满足约束条件4,2,30,x y x y x y +⎧⎪-⎨⎪-⎩≤≤≥则3x y +的最大值是___________.13.函数2π()2sin sin(2f x x x x =+-的零点个数为___________.14.某电子商务公司对10 000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(Ⅰ)直方图中的a =_________;(Ⅱ)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为_________.15.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30 的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75 的方向上,仰角为30 ,则此山的高度CD =_________m.16.如图,已知圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点A ,B (B 在A 的上方),且2AB =.(Ⅰ)圆C 的标准方程为_________;(Ⅱ)圆C 在点B 处的切线在x 轴上的截距为_________.17. a 为实数,函数2()||f x x ax =-在区间[0,1]上的最大值记为()g a .当a =_________时,()g a 的值最小.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效---------------- 姓名________________ 准考证号_____________数学试卷 第4页(共6页)数学试卷 第5页(共6页)数学试卷 第6页(共6页)三、 解答题:本大题共5小题,共65分.解答应写出必要的文字说明、证明过程或演算步骤. 18.(本小题满分12分)某同学用“五点法”画函数π()sin()(0,||2f x A x ωϕωϕ=+><在某一个周期内的图(Ⅰ)请将上表数据补充完整,并直接写出函数()f x 的解析式; (Ⅱ)将()y f x =图象上所有点向左平行移动π6个单位长度,得到()y g x =的图象,求()y g x =的图象离原点O 最近的对称中心.19.(本小题满分12分)设等差数列{}n a 的公差为d ,前n 项和为n S ,等比数列{}n b 的公比为q ,已知11b a =,22b =,q d =,10100S =.(Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)当1d >时,记n n nac b =,求数列{}n c 的前n 项和n T .20.(本小题满分13分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马P ABCD -中,侧棱PD ⊥底面ABCD ,且PD CD =,点E 是PC 的中点,连接DE ,BD ,BE .(Ⅰ)证明:DE PBC ⊥平面.试判断四面体EBCD 是否为鳖臑.若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(Ⅱ)记阳马P ABCD -的体积为1V ,四面体EBCD 的体积为2V ,求12V V 的值.21.(本小题满分14分)设函数()f x ,()g x 的定义域均为R ,且()f x 是奇函数,()g x 是偶函数,()f x +()g x e x =,其中e 为自然对数的底数.(Ⅰ)求()f x ,()g x 的解析式,并证明:当0x >时,()0f x >,()1g x >; (Ⅱ)设0a ≤,1b ≥,证明:当0x >时,()()(1)()(1)f x ag x a bg x b x+-+-<<. 22.(本小题满分14分)一种画椭圆的工具如图1所示,O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且DN ON =1=,3MN =.当栓子D 在滑槽AB 内作往复运动时,带动N 绕O 转动,M 处的笔尖画出的椭圆记为C ,以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系. (Ⅰ)求椭圆C 的方程;(Ⅱ)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l总与椭圆C 有且只有一个公共点,试探究:△OPQ 的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.。

2015年湖北省高考数学试卷(文科)答案与解析

2015年湖北省高考数学试卷(文科)答案与解析

2015年湖北省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的。

6072.(3分)(2015•湖北)我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内×4.(3分)(2015•湖北)已知变量x和y满足关系y=﹣0.1x+1,变量y与z正相关,下列结5.(3分)(2015•湖北)l1,l2表示空间中的两条直线,若p:l1,l2是异面直线,q:l1,l26.(3分)(2015•湖北)函数f(x)=的定义域为(),7.(3分)(2015•湖北)设x∈R,定义符号函数sgnx=,则(),而左边,而左边,而左边=xsgnx=,显然正确;8.(3分)(2015•湖北)在区间[0,1]上随机取两个数x,y,记p1为事件“x+y≤”的概率,P2为事件“xy≤”的概率,则()”==;;9.(3分)(2015•湖北)将离心率为e1的双曲线C1的实半轴长a和虚半轴长b(a≠b)同时=∴﹣,10.(3分)(2015•湖北)已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B中元二、填空题11.(3分)(2015•湖北)已知向量,||=3,则=9.,所以=0﹣,即212.(3分)(2015•湖北)设变量x,y满足约束条件,则3x+y的最大值为10.得13.(3分)(2015•湖北)函数的零点个数为2.14.(3分)(2015•湖北)某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(1)直方图中的a=3.(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为6000.15.(3分)(2015•湖北)如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=100m.h=,h=100.16.(3分)(2015•湖北)如图,已知圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2.(1)圆C的标准方程为(x﹣1)2+(y﹣)2=2.(2)圆C在点B处切线在x轴上的截距为﹣1﹣.)由题意,圆的半径为=))1+)﹣﹣).17.(3分)(2015•湖北)a为实数,函数f(x)=|x2﹣ax|在区间[0,1]上的最大值记为g(a).当a=2﹣2时,g(a)的值最小.2﹣2时,=∵=﹣,[);,故答案为:三、解答题18.(12分)(2015•湖北)某同学将“五点法”画函数f(x)=Asin(wx+φ)(w>0,|φ|<)π(1)请将上述数据补充完整,填写在答题卡上相应位置,并直接写出函数f(x)的解析式;(2)将y=f(x)图象上所有点向左平移个单位长度,得到y=g(x)图象,求y=g(x)的图象离原点O最近的对称中心.2))图象上所有点向左平移()﹣]2x+)=k﹣,.(﹣19.(12分)(2015•湖北)设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{a n},{b n}的通项公式(2)当d>1时,记c n=,求数列{c n}的前n项和T n.,写出、,由题意可得,或;=•••∴+3+5+7+•∴+++﹣﹣20.(13分)(2015•湖北)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马P﹣ABCD中,侧棱PD⊥底面ABCD,且PD=CD,点E是PC的中点,连接DE、BD、BE.(Ⅰ)证明:DE⊥平面PBC.试判断四面体EBCD是否为鳖臑.若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;(Ⅱ)记阳马P﹣ABCD的体积为V1,四面体EBCD的体积为V2,求的值.====.CD==21.(14分)(2015•湖北)设函数f(x),g(x)的定义域均为R,且f(x)是奇函数,g (x)是偶函数,f(x)+g(x)=e x,其中e为自然对数的底数.(1)求f(x),g(x)的解析式,并证明:当x>0时,f(x)>0,g(x)>1;(2)设a≤0,b≥1,证明:当x>0时,ag(x)+(1﹣a)<<bg(x)+(1﹣b).时,>,(=)>×==时,>,故,故<22.(14分)(2015•湖北)一种画椭圆的工具如图1所示.O是滑槽AB的中点,短杆ON 可绕O转动,长杆MN通过N处铰链与ON连接,MN上的栓子D可沿滑槽AB滑动,且DN=ON=1,MN=3,当栓子D在滑槽AB内作往复运动时,带动N绕O转动,M处的笔尖画出的椭圆记为C,以O为原点,AB所在的直线为x轴建立如图2所示的平面直角坐标系.(1)求椭圆C的方程;(2)设动直线l与两定直线l1:x﹣2y=0和l2:x+2y=0分别交于P,Q两点.若直线l总与椭圆C有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.其方程为.=k(,,)|PQ|==|PQ|d=|m||x|m|||=| =||=8|时,<(时,∴1+。

2015年全国各地高考数学试题湖北文

2015年全国各地高考数学试题湖北文

湖北省教育考试院 保留版权 数学(文史类) 第1页(共14页)绝密★启用前2015年全国各地高考数学试题(湖北卷)数 学(文史类)本试题卷共5页,22题。

全卷满分150分。

考试用时120分钟。

一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.i 为虚数单位,607i = A.i - B.i C.1- D.1答案:A 解析:1.6074151+33ii i i ⨯===-.故选(A ).2.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534 石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为A.134石B.169石C.338石D.1365石答案:B解析:这批米内夹谷约为281534169254⨯≈石.故选(B). 3.命题“0(0,)x ∃∈+∞,00ln 1x x =-”的否定是 A.0(0,)x ∃∈+∞,00ln 1x x ≠- B.0(0,)x ∃∉+∞,00ln 1x x =- C.(0,)x ∀∈+∞,ln 1x x ≠- D.(0,)x ∀∉+∞,ln 1x x =-答案:C解析:特称性命题的否定是全称性命题,且注意否定结论,故原命题的否定是:“()0,,ln 1x x x ∀∈+∞≠-”.故选(C ).4.已知变量x 和y 满足关系0.11y x =-+,变量y 与z 正相关. 下列结论中正确的是 A.x 与y 负相关,x 与z 负相关 B.x 与y 正相关,x 与z 正相关 C.x 与y 正相关,x 与z 负相关 D.x 与y 负相关,x 与z 正相关答案:A解析:显然x 与y 负相关.又y 与z 正相关,所以根据“正负得负”的传递性,得x 与z 负相关.故选(A )5.12,l l 表示空间中的两条直线,若p :12,l l 是异面直线;q :12,l l 不相交,则A.p 是q 的充分条件,但不是q 的必要条件B.p 是q 的必要条件,但不是q 的充分条件C.p 是q 的充分必要条件D.p 既不是q 的充分条件,也不是q 的必要条件 答案:A解析:由12,l l 是异面直线,可得12,l l 不相交,所以p q ⇒;由12,l l 不相交,可得12,l l 是异面直线或12//l l ,所以q p ⇒.所以p 是q 的充分条件,但不是q 的必要条件.故选(A ).6.函数256()lg 3x x f x x -+=-的定义域为A.(2,3)B.(2,4]C.(2,3)(3,4]D.(1,3)(3,6]-答案:C解析:依题意,有40x -≥,解得44≤≤-x ①;且03652>-+-x x x ,解得2x >且3x ≠②;由①②求交集得,函数的定义域为()(]2,33,4.故选(C).7.设x ∈R ,定义符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩则 A.|||sgn |x x x = B.||sgn ||x x x =C.||||sgn x x x =D.||sgn x x x =答案:D解析:当0>x 时,sgn x x x x ==; 当0=x 时,sgn 0x x x ==;当0<x 时,sgn x x x x =-=. 综上,sgn x x x =.故选(D).8. 在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≤”的概率,2p 为事件“12xy ≤” 的概率,则A.1212p p << B.1212p p <<C.2112p p <<D.2112p p << 答案:B解析:在直角坐标系中,依次作出不等式01,01,x y ≤≤⎧⎨≤≤⎩11,22x y xy +≤≤的可行域如下图所示:依题意,OCDEABO S S p 四边形∆=1,OCDEOEGFC S S p 四边形曲边多边形=2,而OCDEOEC S S 四边形∆=21,所以1212p p <<. 故选(B).9.将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位 长度,得到离心率为2e 的双曲线2C ,则 A.对任意的,a b ,12e e > B.当a b >时,12e e >;当a b <时,12e e < C.对任意的,a b ,12e e < D.当a b >时,12e e <;当a b <时,12e e >答案:D解析:2211a b e +=,2e =.不妨令21e e <,化简得()0b b m m a a m +<>+,得am bm <,得b a <.所以当a b >时,有m a m b a b ++>,即21e e >;当a b <时,有ma mb a b ++<,即21e e <.故选(D ).10.已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,定义集合 12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为A.77B.49C.45D.30答案:C解析:如图,集合A 表示如下图所示的所有红心圆点,集合B 表示如下图所示的所有红心圆点+所有绿心圆点,集合A B ⊕显然是集合(){},|3,3,,x y x y x y ≤≤∈Z 中除去四个点()()()(){}3,3,3,3,3,3,3,3----之外的所有整点(即横坐标与纵坐标都为整数的点),即集合A B ⊕表示如下图所示的所有红心圆点+所有绿心圆点+所有黄心圆点,共45个.故AB ⊕中元素的个数为45 . 故选(C ).二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号.......的位 置上. 答错位置,书写不清,模棱两可均不得分. 11.已知向量OA AB ⊥,||3OA =,则OA OB ⋅=_________. 答案:9 解析:由OA AB⊥,得OA AB =.所以()2O A OB OA O A AB O A O A A=+=+22039OA =+==. 12.若变量,x y 满足约束条件4,2,30,x y x y x y +≤⎧⎪-≤⎨⎪-≥⎩则3x y +的最大值是_________.答案:10解析:作出约束条件表示的可行域如下图所示:易知可行域边界三角形的三个顶点坐标分别是()()()3,1,1,3,1,3--,平行移动直线3y x =-,求可知当直线过点()3,1时3x y +取最大值10.13.函数2π()2sin sin()2f x x x x =+-的零点个数为_________.答案:2解析:()2222sin sin 2sin cos sin 22f x x x x x x x x x π⎛⎫=+-=-=- ⎪⎝⎭.令()0f x =,则2sin 2x x =,则函数()f x 的零点个数即为函数sin 2y x =与函数2y x =图像的交点个数.作出函数图像知,两函数图像的交点有2个,即函数()f x 的零点个数为2.14.某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额 (单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示. (Ⅰ)直方图中的a =_________;(Ⅱ)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为_________.答案:(Ⅰ)3;(Ⅱ)6000.解析:(Ⅰ)由频率分布直方图知,()1.5 2.5 2.00.80.20.11a +++++⨯=,解得3a =; (Ⅱ)消费金额在区间[]0.5,0.9内的购物者的人数为()100003 2.00.80.20.1⨯+++⨯=6000.15.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD =_________m.答案:解析:依题意,在ABC ∆中,600AB =,30BAC ∠=︒,753045ACB ∠=︒-︒=︒,由正弦定理得s i n s i n B CA B B A C A C B =∠∠,即600sin 30sin 45BC =︒︒,所以32BC =.在BCD∆中,30CBD ∠=︒,tan tan30CD BC CBD =∠=︒=16.如图,已知圆C 与x 轴相切于点(1,0)T ,与y 轴正半 轴交于两点A ,B (B 在A 的上方),且2AB =. (Ⅰ)圆C 的标准..方程为_________; (Ⅱ)圆C 在点B 处的切线在x 轴上的截距为_________.AB答案:(Ⅰ)22(1)(2x y -+=;(Ⅱ)①②③解析:(Ⅰ)由题意设圆心()1,C r (r 为圆C 的半径),则222122AB r ⎛⎫=+= ⎪⎝⎭,解得r =所以圆C 的方程为()(2212x y -+=.(Ⅱ)令0x =,得1y =,所以点()1B .又点(C ,所以直线BC 的斜率为1BCk =-,所以圆C 在点B 处的切线方程为)10y x -=-,即)1y x =+.令0y =,得切线在x 轴上的截距为1.17. a 为实数,函数2()||f x x ax =-在区间[0,1]上的最大值记为()g a . 当a =_________时,()g a 的值最小.解析:17.①当0a ≤时,()2f x x ax =-在[]0,1上是增函数,所以()()11g a f a ==-,此时()min 1g a =;②当02a <<时,作出函数()2f x x ax =-的大致图像如下:由图易知,()2f x x ax =-在0,2a ⎡⎤⎢⎥⎣⎦上是增函数,在,2aa ⎡⎤⎢⎥⎣⎦上是减函数,在[],1a 上是增函数,此时,只需比较2a f ⎛⎫⎪⎝⎭与()1f 的大小即可.由()12a f f ⎛⎫= ⎪⎝⎭,得2122a a a a ⎛⎫-=- ⎪⎝⎭,得214a a =-,解得2a =或2a =(舍去). 且当02a <<时,()12a f f ⎛⎫<⎪⎝⎭;当22a <<时,()12a f f ⎛⎫> ⎪⎝⎭.(i )当02a <<时,()12a f f ⎛⎫< ⎪⎝⎭,所以()()11g a f a ==-,此时()321g a -<<;(ii )当2a =时,()12a f f ⎛⎫=⎪⎝⎭,所以()()132a g a f f ⎛⎫===- ⎪⎝⎭(iii )当22a <<时,()12a f f ⎛⎫> ⎪⎝⎭,所以()224a ag a f ⎛⎫==⎪⎝⎭,此时()34g a -<<;③当2a ≥时,()2f x x ax =-在[]0,1上是增函数,所以()()11g a f a ==-,此时()m i n 1g a =.综上,当2a =时,()min 3g a =-三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)某同学用“五点法”画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一个周期内的图象时,列表并填入了部分数据,如下表:(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置...........,并直接写出函数()f x 的解 析式;(Ⅱ)将()y f x =图象上所有点向左平行移动π6个单位长度,得到()y g x =图象,求 ()y g x =的图象离原点O 最近的对称中心. 解:18.(1)根据表中已知数据,解得π5,2,6A ωϕ===-. 数据补全如下表:且函数表达式为π()5sin(2)6f x x =-.(2)由(1)知π()5sin(2)6f x x =-,因此 πππ()5sin[2()]5sin(2)666g x x x =+-=+.因为曲线sin y x =的对称中心为(π,0)k ,k ∈Z . 令π2π6x k +=,解得ππ212k x =-,k ∈Z .即()y g x =图像的对称中心为ππ0212k -(,),k ∈Z ,其中离原点O 最近的对称中心为π(,0)12-. 19.(本小题满分12分)设等差数列{}n a 的公差为d ,前n 项和为n S ,等比数列{}n b 的公比为q .已知11b a =,22b =,q d =,10100S =.(Ⅰ)求数列{}n a ,{}n b 的通项公式; (Ⅱ)当1d >时,记nn na cb =,求数列{}n c 的前n 项和n T . 解:(1)由题意有,111045100,2,a d a d +=⎧⎨=⎩ 即112920,2,a d a d +=⎧⎨=⎩解得11,2,a d =⎧⎨=⎩ 或19,2.9a d =⎧⎪⎨=⎪⎩ 故121,2.n n n a n b -=-⎧⎪⎨=⎪⎩或11(279),929().9nn n a n b -⎧=+⎪⎪⎨⎪=⋅⎪⎩(2)由1d >,知21n a n =-,12n n b -=,故1212n n n c --=,于是2341357921122222n n n T --=++++++, ① 2345113579212222222n nn T -=++++++. ② ①-②可得221111212323222222n n nn n n T --+=++++-=-, 故n T 12362n n -+=-. 20.(本小题满分13分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马P ABCD -中,侧棱PD ⊥底面ABCD ,且PD CD =,点E 是PC 的 中点,连接,,DE BD BE .(Ⅰ)证明:DE ⊥平面PBC . 试判断四面体EBCD 是否为鳖臑,若是,写出其每个面的直角(只需 写出结论);若不是,请说明理由;(Ⅱ)记阳马P ABCD -的体积为1V ,四面体EBCD 的体积为2V ,求12V V 的值.解:(1)因为PD ⊥底面ABCD ,所以PD BC ⊥.由底面ABCD 为长方形,有BC CD ⊥,而PDCD D =,所以BC ⊥平面PCD . DE ⊂平面PCD ,所以BC DE ⊥.又因为PD CD =,点E 是PC 的中点,所以DE PC ⊥. 而PCBC C =,所以DE ⊥平面PBC .由BC ⊥平面PCD ,DE ⊥平面PBC ,可知四面体EBCD 的四个面都是直角三角形,即四面体EBCD 是一个鳖臑,其四个面的直角分别是,,,.BCD BCE DEC DEB ∠∠∠∠(2)由已知,PD 是阳马P ABCD -的高,所以11133ABCD V S PD BC CD PD =⋅=⋅⋅;由(1)知,DE 是鳖臑D BCE -的高, BC CE ⊥,所以21136BCE V S DE BC CE DE ∆=⋅=⋅⋅.在Rt △PDC 中,因为PD CD =,点E 是PC 的中点,所以DE CE ==, 于是 12123 4.16BC CD PD V CD PD V CE DEBC CE DE ⋅⋅⋅===⋅⋅⋅21.(本小题满分14分)设函数()f x ,()g x 的定义域均为R ,且()f x 是奇函数,()g x 是偶函数, ()()e x f x g x +=,其中e 为自然对数的底数.(1)求()f x ,()g x 的解析式,并证明:当0x >时,()0f x >,()1g x >; (2)设0a ≤,1b ≥,证明:当0x >时,()()(1)()(1)f x ag x a bg x b x+-<<+-. 解:(1)由()f x , ()g x 的奇偶性及()()e x f x g x +=, ①得 ()()e .x f x g x --+= ②联立①②解得1()(e e )2x x f x -=-,1()(e e )2x x g x -=+.当0x >时,e 1x >,0e 1x -<<,故()0.f x > ③又由基本不等式,有1()(e e )12x x g x -=+,即() 1.g x > ④(2)由(1)得 2111e 1()(e )(e )(e e )()2e 2e 2x x x x x x x f x g x -''=-=+=+=, ⑤2111e 1()(e )(e )(e e )()2e 2e 2x x x x x x x g x f x -''=+=-=-=, ⑥当0x >时,()()(1)f x ag x a x>+-等价于()()(1)f x axg x a x >+-, ⑦()()(1)f x bg x b x<+-等价于()()(1).f x bxg x b x <+- ⑧ 设函数 ()()()(1)h x f x cxg x c x =---,由⑤⑥,有()()()()(1)h x g x cg x cxf x c '=----(1)[()1]().c g x cxf x =--- 当0x >时,(1)若0c ≤,由③④,得()0h x '>,故()h x 在[0,)+∞上为增函数,从而()(0)0h x h >=,即()()(1)f x cxg x c x >+-,故⑦成立.(2)若1c ≥,由③④,得()0h x '<,故()h x 在[0,)+∞上为减函数,从而()(0)0h x h <=,即()()(1)f x cxg x c x <+-,故⑧成立.综合⑦⑧,得 ()()(1)()(1)f x ag x a bg x b x+-<<+-. 22.(本小题满分14分)一种画椭圆的工具如图1所示.O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且1DN ON ==,3MN =.当栓子D 在滑槽AB 内作往复运动时,带动..N 绕O 转动,M 处的笔尖画出的椭圆记为C .以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系. (Ⅰ)求椭圆C 的方程;(Ⅱ)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l总与椭圆C 有且只有一个公共点,试探究:△OPQ 的面积是否存在最小值?若存 在,求出该最小值;若不存在,说明理由.解:(1)因为||||||314OM MN NO ≤+=+=,当,M N 在x 轴上时,等号成立;同理||||||312OM MN NO ≥-=-=,当,D O 重合,即MN x ⊥轴时,等号成立.所以椭圆C 的中心为原点O ,长半轴长为4,短半轴长为2,其方程为221.164x y +=图1图2(2)1)当直线l 的斜率不存在时,直线l 为4x =或4x =-,都有14482OPQ S ∆=⨯⨯=.2)当直线l 的斜率存在时,设直线1:()2l y kx m k =+≠±,由22,416,y kx m x y =+⎧⎨+=⎩ 消去y ,可得222(14)84160k x kmx m +++-=. 因为直线l 总与椭圆C 有且只有一个公共点,所以2222644(14)(416)0k m k m ∆=-+-=,即22164m k =+. ① 又由,20,y kx m x y =+⎧⎨-=⎩可得2(,)1212m m P k k --;同理可得2(,)1212m m Q k k -++.由原点O 到直线PQ的距离为d =和|||P Q PQ x x =-,可得22111222||||||||222121214OPQP Q m m m S PQ d m x x m k k k ∆=⋅=-=⋅+=-+-.②将①代入②得,222241281441OPQk m S k k ∆+==--. 当214k >时,2224128()8(1)84141OPQ k S k k ∆+==+>--;当2104k ≤<时,2224128()8(1)1414OPQ k S k k ∆+==-+--.因2104k ≤<,则20141k <-≤,22214k ≥-,所以228(1)814OPQ S k ∆=-+≥-, 当且仅当0k =时取等号.所以当0k =时,OPQ S ∆的最小值为8.综合1)2)可知,当直线l 与椭圆C 在四个顶点处相切时,△OPQ 的面积取得最小值8.。

高考湖北文科数学试题及答案word解析版

高考湖北文科数学试题及答案word解析版

高考湖北文科数学试题及答案word 分析版2015 年一般高等学校招生全国一致考试(湖北卷)数学(文科)一、选择题:本大题共 10 小题,每题5 分,共 50 分,在每题给出的四个选项中,只有一项切合题目要求.( 1)【 2015 年湖北,文 1, 5 分】 i 为虚数单位, i 607()( A ) i ( B ) i (C ) 1(D )1【答案】 A【分析】 i 607 i 4 151 i 3 i ,应选 A .( 2)【 2015 年湖北,文 2,5 分】我国古代数学名着《数书九章》有“米谷粒分 ”题:粮仓开仓收粮,有人送来米1534 石,验得米内夹谷,抽样取米一把,数得 254 粒内夹谷 28 粒,则这批米内夹谷约为( )( A )134 石 (B )169 石 ( C )338 石( D ) 1365 石【答案】 B【分析】依题意,这批米内夹谷约为281534169 石,应选 B .254( 3)【 2015 年湖北,文 3, 5 分】命题 “ x 0(0,) , ln x 0 x 0 1 ”的否认是()( A ) x 0 (0, ) , ln x 0 x 0 1( B ) x 0 (0,) , ln x 0 x 0 1( C )x (0,) , ln x x1(D )x(0,) , ln x x1【答案】 C【分析】由特称命题的否认为全称命题可知,所求命题的否认为x 0,, ln x x 1,应选 C .( 4)【 2015 年湖北,文 4,5 分】已知变量 x 和 y 知足关系 y1 ,变量 y 与 z 正有关.以下结论中正确的是()( A ) x 与 y 负有关, x 与 z 负有关 ( B ) x 与 y 正有关, x 与 z 正有关( C ) x 与 y 正有关, x 与 z 负有关( D ) x 与 y 负有关, x 与 z 正有关【答案】 A【分析】 因为变量 x 和 y 知足关系 y0.1x 1 ,此中 0.1 0 ,所以 x 与 y 成负有关; 又因为变量 y 与 z 正有关,不如设 z kyb k 0 ,则将 y1 代入即可获得: zk 0.1x 1bkb ,所以 x 与z 负有关,综上可知,应选 A .( 5)【 2015 年湖北,文 5, 5 分】 l 1 ,l 2 表示空间中的两条直线,若 p : l 1 ,l 2 是异面直线; q : l 1 ,l 2 不订交,则()( A ) p 是 q 的充足条件,但不是 q 的必需条件( B ) p 是 q 的必需条件,但不是 q 的充足条件( C ) p 是 q 的充足必需条件 (D ) p 既不是 q 的充足条件,也不是 q 的必需条件【答案】 A【分析】若 p : l 1 ,l 2 是异面直线,由异面直线的定义知,l 1 ,l 2 不订交,所以 q : l 1 ,l 2 不订交成立,即 p 是 q 的充足条件;反过来,若 q : l 1 ,l 2 不订交,则 l 1,l 2 可能平行,也可能异面,所以不可以推出l 1 ,l 2 是异面直线,即 p不是 q 的必需条件,应选A .26的定义域为(( 6)【 2015 年湖北,文 6, 5 分】函数 f ( x)4 | x | lg x5 x)x 3( A ) (2, 3)( B ) (2, 4]( C ) (2, 3) U (3, 4](D ) ( 1, 3) U (3, 6]【答案】 C0 ,x2【分析】由函数yf x 的表达式可知,函数fx 的定义域应知足条件:4 x5 x6 0 ,解之得x 32 x 2 , x2 , x3 ,即函数 fx 的定义域为 (2, 3) U (3, 4] (2, 3) U (3, 4] ,应选 C .1, x 0 ( 7)【 2015 年湖北,文 7, 5 分】设 xR ,定义符号函数 sgn x0, x 0 ,则()1,x 0( A ) | x | x | sgn x |( B ) | x |xsgn | x |( C ) | x | | x | sgn x(D ) | x |xsgn x【答案】 D高考湖北文科数学试题及答案word 分析版【分析】关于选项A ,右侧x sgn xx, x 0,而左侧xx, x 0,明显不正确;关于选项B ,右侧0, x 0x, x 0x, x 0x, x 0x, x 0x sgn x,而左侧 xC ,右侧 x sgn x0, x0 ,0, xx, x,明显不正确;关于选项x, x 0x, x 0x, x 0x, x而左侧xx sgn x0, x 0 ,而左侧 x,x, x ,明显不正确; 关于选项 D ,右侧x, xx, x 0明显正确,应选D .( 8)【 2015 年湖北,文 8,5 分】在区间 [0, 1] 上随机取两个数x, y ,记 p 1 xy1”的概率, p 2为事件为事件 “2“ 1” 的概率,则()xy2( A ) p 1p 21 ( B ) p 11 p 2( C ) p 2 1 p 1(D )1p 2 p 1【答案】 B22221 1 11,事件“【分析】由题意知,事件“ y 1”的概率为 p 122 21 ”的概率x21 18xy2p 2S 0,此中 S1 1 1 1dx1 1 ln2 , S1 1 1 ,所以1S22 2 x 2S 0 1 1 ln 2 1 1p 2 21 ln2 ,应选 B .S1 12 2( 9)【 2015 年湖北,文 9,5 分】将离心率为 e 1 的双曲线 C 1 的实半轴长 a 和虚半轴长 b (ab) 同时增添 m (m0)个单位长度,获得离心率为 e 2 的双曲线 C 2 ,则( )( A )对随意的 a, b , e 1 e 2 ( B )当 a b 时, e 1 e 2 ;当 a b 时, e 1 e 2 ( C )对随意的 a, b , e 1e 2( D )当 a b 时, e 1e 2 ;当 a b 时, e 1e 2【答案】 D222a2b m 2b2【分析】依题意,e 1a b1b , em 1m ,a a2a ma m因为bb m ab bmab am m ba0 , a 0 , b0 ,a a,因为 maa ma a m m当 ab 时, 0b1 ,b m,bb2b m 2,所以 12 ;1m , baamaa maa mee2b2当 ab 时,b1 ,bm 1 ,而bbm,所以bm ,所以 e 1 e 2 .aa ma a ma a m 所以当 ab 时, e 1 e 2 ,当 a b 时, e 1 e 2 ,应选 D .( 10)【 2015 年湖北,文 10,5 分】已知会合 A {( x, y) x 2y 21, x, y Z} ,B {( x, y) | x | 2 , | y | 2, x, y Z } ,定义会合 AB {( x 1x 2 , y 1 y 2 ) (x 1, y 1 ) A, (x 2 , y 2 ) B},则AB 中元素的个数为()(A )77(B )49(C ) 45(D )30【答案】 C【分析】因为会合 Ax, y x 2y 2 1, x, yZ ,所以会合 A 中有 9 个元素(即 9 个点),即、图中圆中的整点, 会合 B {( x, y) | x | 2 , | y | 2, x, y Z} 中有 25 个元素(即 25 个点):即图中正方形 ABCD 中的整点,会合 AB {( x 1 x 2 , y 1 y 2 ) ( x 1 , y 1 ) A, ( x 2 , y 2 ) B}的元素可看作正方形 A 1 B 1C 1 D 1 中的整点(除掉四个极点) ,即 7 7 4 45个,应选 C .高考湖北文科数学试题及答案word 分析版二、填空题:共7 小题,每题 5 分,共 35 分.请将答案填在答题卡对应题号 的地点上 答错地点,书写不清,....... .... 含糊其词均不得分.( 11)【 2015 年湖北,文 uuur uuur uuur uuur uuur11, 5 分】已知向量 OA AB , |OA| 3,则 OA OB . 【答案】 9 uuur uuur uuur uuur uuur uuur uuur uuur uuur uuur uuur uuur2 2 32 9 . 【分析】因为 OA AB , OA 3, OA OB OA OA OB OA OA OB OAx y 4,( 12)【 2015 年湖北, 文 12,5 分】若变量 x, y 知足拘束条件x y 2, 则 3x y3xy 0,的最大值是 .【答案】 10【分析】第一依据题意所给的拘束条件画出其表示的平面地区以以下图所示,而后依据图像可得 : 目标函数 z 3xy 过点 B 3,1 获得最大值,即z max 33 1 10 ,故应填 10.( 13)【 2015 年湖北,文 13, 5 分】函数 f ( x) π 2的零点个数为.2sin x sin( x )x【答案】 22【分析】函数 f x2sin xsin22sin xsin x20 2 x 的零点个数等价于方程x2的根的个数,即函数 gx2sin x sin x2sin x cos xsin 2 与 h x2的2x图像交点个数.于是,分别画出其函数图像以以下图所示,由图可知,函数 g x与 h x 的图像有 2 个交点.( 14)【 2015 年湖北,文 14, 5 分】某电子商务企业对10000 名网络购物者 2014 年度的花费状况进行统计,发现花费金额(单位:万元)都在区间 [0.3, 0.9] 内,其频次散布直方图以下图.(Ⅰ)直方图中的 a _________ ;(Ⅱ)在这些购物者中, 花费金额在区间[0.5, 0.9] 内的购物者的人数为 _________.【答案】(Ⅰ) 3;(Ⅱ) 6000【分析】由频次散布直方图及频次和等于1 可得2a1 ,解之的 a 3 .于是花费金额在区间 0.5,0.9 内频次为0.1 0.8 0.1 2 0.1 3 0.1 0.6 ,所以花费金 额在区间 0.5,0.9 内的购物者的人数为:100006000.( 15)【 2015 年湖北,文 15,5 分】如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶 D 在西偏北 30o 的方向上, 行驶 600m 后抵达 B 处,测得此山顶在西偏北 75o 的方向上,仰角为30o ,则此山的高度 CDm .【答案】 100 6【分析】依题意, BAC 30 , ABC 105 ,在 ABC 中,由所以 ACB 45 ,因为 AB 600 ,由正弦定理可得 因为CBD30 , BC 300 2 ,所以 tan30CDBCABCBACACB180 ,600BC ,即 BC 300 2 m ,在 Rt BCD 中,sin 45sin30CD ,所以 CD 100 6 m .300 2( 16)【 2015 年湖北,文 16, 5 分】如图,已知圆C 与 x 轴相切于点 T (1, 0) ,与 y 轴正半轴交于两点 A , B (B 在 A 的上方),且 AB 2 .(Ⅰ)圆 C 的标准 方程为 _________;..(Ⅱ)圆 C 在点 B 处的切线在 x 轴上的截距为 _________.22【答案】(Ⅰ) xy22 ;(Ⅱ) 1 21【分析】(Ⅰ)设点 C 的坐标为(x 0 , y 0 ) ,则由圆 C 与 x 轴相切于点 T (1, 0) 知,点 C 的横坐标为 1,即 x 0 1 ,半高考湖北文科数学试题及答案word 分析版径 ry 0 .又因为AB 2 ,所以 12 12 y 02 ,即 y 02r ,所以圆 C 的标准方程为( x2( y 22 .1)2)(Ⅱ)令 x0 得: B(0, 2 1) .设圆 C 在点 B 处的切线方程为 y ( 2 1) kx ,则圆心 C 到其距离为:d k2212 ,解之得 k 1 .即圆 C 在点 B 处的切线方程为yx ( 2 1) ,于是令21ky0 可得 x2 1,即圆 C 在点 B 处的切线在x 轴上的截距为 12 .( 17)【 2015 年湖北,文 17, 5 分】 a 为实数,函数f ( x) | x 2 ax | 在区间 [0, 1] 上的最大值记为g ( a) . 当 a_________时, g (a ) 的值最小.【答案】 2 2 2【分析】解法一:因为函数 f xx 2 ax ,所以分以下几种状况进行议论:①当a 0 时,函数 f x x 2 axx 2ax在区间 0,1 上单一递加,所以f xmaxg a1 a ;②当 0a222 时,此时222a 2 2f aaaa a, f 1 1 a ,而a1 a2 0 ,所以 fxmaxg a1 a ;4222 4421 a a2 2 2③当 a2 22 时, fxmaxg aa.综上可知,g aa 2 a2 2 2 ,所以 g a 在44,2 2 2 上单一递减, 在 2 2 2,上单一递加, 所以 g amaxg 2 2 2 ,所以当 a2 22时, g a 的值最小.解法二:fa a 2 2 22 a1① a 0 , g af 11 a ;② 0 a1 , g a 24;f 1 1 a 0 a 2 22③ 1 a 2 , g afaa 2 ;④ a 2 , g af 1 a1 ;24综上所述,当 a 2 22 时, g a 取到最小值3 2 2 .三、解答题:共 5 题,共65 分.解答应写出文字说明,演算步骤或证明过程.( 18)【2015 年湖北,文 18,12 分】某同学用 “五点法 ”画函数 f ( x) A sin( x) ( 0,| | π在某一个周期) 2内的图象时,列表并填入了部分数据,以下表:0 5(Ⅰ)请将上表数据增补完好,填写在答题卡上相应地点 ,并直接写出函数f (x) 的分析式;...........(Ⅱ)将 y f ( x) 图象上全部点向左平行挪动π个单位长度,获得 yg ( x) 的图象. 求 yg ( x) 的图象离原点 O 近来的对称中心.6解:(Ⅰ)依据表中已知数据,解得A 5,2,π. 数据补全以下表:6高考湖北文科数学试题及答案word 分析版5且函数表达式为f ( x)5sin(2 xπ) .6(Ⅱ)由(Ⅰ)知f (x)5sin(2 xπ,所以 g ( x) 5sin[2( xπ π5sin(2 xπ.) )])6666因为 ysin x 的对称中心为 (k π,0) , kZ. 令πk π πk Z2 x kx,.6 π,解得212π ππ 即 yg( x) 图象的对称中心为 , kZ ,此中离原点 O 近来的对称中心为 ( , 0) . (,)21212( 19)【2015 年湖北,文 19 ,12 分】设等差数列 { a n } 的公差为 d 前 n 项和为 S n ,等比数列 { b n } 的公比为 q .已知b 1 a 1 , b 2 2 , q d , S 10 100 .(Ⅰ)求数列 {a n}n, { b } 的通项公式;(Ⅱ)当 d1 时,记 c na n,求数列 { c n } 的前 n 项和 T n .b na 1110a 1 45d 1002a 1 9d20a 1 1 9 a n 2n 1 a n2n79解:( Ⅰ )由题意知:,即,解得2 ,故9.a 1d 2a 1d 2或db n2n 1或2 n 1d 29b n99( Ⅱ )由 d 1 ,知 a n2n 1, b n 2n 12n 1 ,,故 c n2 n 1于是 T n 1 35 7 9 L L2n 1①1T n1 3579 2n1②2 234 2n 12 2 2345 L L 2 n2 2 22222由① -②可得 1T 2 1 1 1 1 1 L L 1 2n 1 3 2n 3 T 6 2n 32 n 2 2345 n 2nn,故nn 1 .2 2 2 2 2 2 22( 20)【 2015 年湖北,文 20, 13 分】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马, 将四个面都为直角三角形的四周体称之为鳖臑.如图,在阳马 P ABCD中,侧棱 PD 底面 ABCD ,且 PD CD ,点 E 是 PC 的中点,连结 DE, BD , BE .(Ⅰ)证明: DE 平面 PBC . 试判断四周体 EBCD 能否为鳖臑,假如,写出其每个面的直角(只要写出结论) ;若不是,请说明原因;(Ⅱ)记阳马 PABCD 的体积为 V 1 ,四周体 EBCD 的体积为 V 2 ,求V 1的值.V 2解:(Ⅰ)因为 PD所以 BC所以 DE由 BC底面 ABCD ,所以 PD BC . 由底面 ABCD 为长方形,有 BC CD ,而 PD I CD D ,平面 PCD . DE 平面 PCD ,所以 BC DE . 又因为 PD CD ,点 E 是 PC 的中点,PC . 而 PCI BC C ,所以 DE 平面 PBC .平面 PCD , DE 平面 PBC ,可知四周体 EBCD 的四个面都是直角三角形,即四周体 EBCD 是一个鳖臑,其四个面的直角分别是BCD,BCE, DEC, DEB.(Ⅱ)由已知,PD 是阳马 P ABCD 的高,所以 V 11S ABCD PD1BC CDPD ;33由(Ⅰ)知, DE 是鳖臑 DBCE 的高, BCCE ,所以 V 21S BCE DE1BC CE DE .36在 Rt △ PDC 中,因为 PD CD ,点 E 是 PC 的中点,所以 DECE2 CD ,12V 1 BC CD PD2CD PD3于是1CE 4.V 2DEBC CE DE6 分】设函数 f ( x) , g( x) 的定义域均为 R ,且 f ( x) 是奇函数, g( x) 是偶函数,( 21)【 2015 年湖北,文 21, 14高考湖北文科数学试题及答案word分析版f (x) g( x)e x,此中 e为自然对数的底数.(Ⅰ)求f(x) , g( x) 的分析式,并证明:当x 0 时, f ( x)0 , g ( x) 1 ;(Ⅱ)设 a 0 , b 1 ,证明:当x0 时,ag( x) (1 a)f (x)bg( x) (1 b) .xx x 解:(Ⅰ)由 f ( x) ,g ( x) 的奇偶性及联立①②解得 f ( x)1x (e 2又由基本不等式,有g (x)(Ⅱ)由(Ⅰ)得 f ( x)1(e x2g ( x) 1 (e x2f ( x)g( x)e x ) ,g (x)1 xe x(e)211xx)(ee21x ) 1 (e xe2e ,①f ( x) g( x) e .②1 x x.当x 0时,x,x1,故f ( x) 0.③(e e ) 1 0 e2x x1,即 g (x) 1.④e ee x1xe x)g( x) ,⑤2x)(ee2x1 (e xe2 x ) e x ) f ( x) ,⑥e2当 x0时, f ( x)ag( x)(1a) 等价于 f ( x)axg ( x)(1a) x ,⑦xf ( x)bg(x)(1b) 等价于 f (x)bxg ( x)(1 b)x.⑧x设函数h( x) f ( x) cxg (x)(1c) x ,由⑤⑥,有 h ( x)g( x)cg(x)cxf (x) (1 c)(1 c)[ g( x)1] cxf ( x).当 x 0 时,( 1)若c0,由③④,得h ( x) 0 ,故 h(x) 在 [0,) 上为增函数,进而h(x) h(0)0 ,即 f (x) cxg (x) (1 c) x ,故⑦成立.( 2)若c1,由③④,得h (x)0 ,故 h( x) 在 [0,) 上为减函数,进而 h (x)h(0)0 ,即 f (x)cxg (x)(1c)x ,故⑧成立.综合⑦⑧,得ag( x)(1a)f ( x)(1 b) .bg( x)x1 所示.O是滑槽AB的中点,短杆( 22)【 2015 年湖北,文22, 14 分】一种作图工具如图ON 可绕 O 转动,长杆 MN 经过 N 处铰链与 ON 连结, MN 上的栓子 D 可沿滑槽 AB 滑动,且DN ON1, MN 3 .当栓子 D 在滑槽 AB 内作来去运动时,带动..N 绕O转动一周( D 不动时, N 也不动), M 处的笔尖画出的曲线记为 C.以O为原点,AB所在的直线为 x 轴成立如图 2 所示的平面直角坐标系.(Ⅰ)求曲线 C 的方程;(Ⅱ)设动直线l 与两定直线 l1 : x2y 0 和 l2 : x 2 y0分别交于P, Q 两点.若直线l总与曲线C 有且只有一个公共点,尝试究:△OPQ 的面积能否存在最小值?若存在,求出该最小值;若不存在,说明原因.解:(Ⅰ)设点 D(t, 0) (| t| 2) ,N(x0, y0), M ( x, y),依题意,uuuur uuur uuur uuur1,MD2DN,且|DN | |ON|( x0221,所以 (t x,y)2(x0t, y0 ) ,且t)y0x02y02 1.即tx 2 x02t ,且 t(t2x0 )0.因为当点 D 不动时,点 N y 2 y0 .也不动,所以 t 不恒等于0,于是t2x0,故x0x, y0y ,,可得 x2y242代入 x02y021 1 ,即所求的曲线C的方程为164(Ⅱ)( 1)当直线l的斜率不存在时,直线l 为 x 4 或 x 4 ,都有x2y2161.4S OPQ1.4 4 82高考湖北文科数学试题及答案word分析版( 2)当直线l的斜率存在时,设直线l : y kx m (k 1)y kx m,,由2 4 y216, 2x消去 y ,可得(14k2 )x28kmx所以2222 64k m4(1 4k)(4 m y kx m,可得 P(2m又由2 y0,,x 1 2k 由原点 O到直线 PQ 的距离为 d11x Q S OPQ| PQ | d| m || x P22将①代入②得,SOPQ2m214k24m2160.因为直线 l 总与椭圆 C 有且只有一个公共点,16)0 ,即224 .①m16km;同理可得Q(2m m1),) .2 k12k 12k| m |和|PQ|1k2 | x P x Q | ,可得21 k2m2|12m2m| m |2k12k12.②214k4k218.4 k2 1当k21时, S OPQ8(4k218(12)8 ;2)244k14k1当021时, S OPQ4k 218(12k48(4k2)12 ) .14k因 0k 21,则 014k2 1 ,22 2 ,所以 S OPQ8( 122) 8,414k1 4 k 当且仅当 k0 时取等号.所以当k0时, S OPQ的最小值为 8.综合( 1)( 2)可知,当直线l 与椭圆 C 在四个极点处相切时,△ OPQ 的面积获得最小值 8.。

2015年高考文科数学湖北卷(含详细答案)

2015年高考文科数学湖北卷(含详细答案)

数学试卷 第1页(共36页)数学试卷 第2页(共36页)数学试卷 第3页(共36页)绝密★启用前2015年普通高等学校招生全国统一考试(湖北卷)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟. 注意事项:1.答卷前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑,再在答题卡上对应的答题区域内答题.写在试题卷、草稿纸和答题卡上的非答题区域均无效.5.考试结束后,请将本试题卷和答题卡一并上交.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.i 为虚数单位,607i = ( )A .i -B .iC .1-D .12.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )A .134石B .169石C .338石D .1 365石 3.命题“0(0,)x ∃∈+∞,00ln 1x x =-”的否定是( ) A .0(0,)x ∃∈+∞,00ln 1x x ≠- B .0(0,)x ∃∉+∞,00ln 1x x =- C .(0,)x ∀∈+∞,ln 1x x ≠-D .(0,)x ∀∉+∞,ln 1x x =-4.已知变量x 和y 满足关系0.11y x =-+,变量y 与z 正相关.下列结论中正确的是 ( ) A .x 与y 负相关,x 与z 负相关 B .x 与y 正相关,x 与z 正相关 C .x 与y 正相关,x 与z 负相关D .x 与y 负相关,x 与z 正相关5.1l ,2l 表示空间中的两条直线,若p :1l ,2l 是异面直线;q :1l ,2l 不相交,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件6.函数256()lg 3x x f x x -+=-的定义域为( )A .(2,3)B .(2,4]C .(2,3)(3,4] D .(1,3)(3,6]-7.设x ∈R ,定义符号函数1,0,sgn 0,0,1,0,x x x x >⎧⎪==⎨⎪-<⎩则( )A .|||sgn |x x x =B .||sgn ||x x x =C .||||sgn x x x =D .||sgn x x x =8.在区间[0,1]上随机取两个数x ,y ,记1p 为事件“12x y +≤”的概率,2p 为事件“12xy ≤”的概率,则( )A .1212p p << B .1212p p << C .2112p p <<D .2112p p << 9.将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则 ( )A .对任意的a ,b ,12e e >B .当a b >时,12e e >;当a b <时,12e e <C .对任意的a ,b ,12e e <D .当a b >时,12e e <;当a b <时,12e e >10.已知集合22{(,)1,,}A x y x y x y =+∈Z ≤,{(,)||2,||2,,}B x y x y x y =∈Z ≤≤,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为( )A .77B .49C .45D .30 第Ⅱ卷(非选择题 共100分)二、填空题:本大题共7小题,每小题5分,共35分.把答案填在题中的横线上. 11.已知向量OA AB ⊥,||3OA =,则 OA OB =___________.12.若变量,x y 满足约束条件4,2,30,x y x y x y +⎧⎪-⎨⎪-⎩≤≤≥则3x y +的最大值是___________.13.函数2π()2sin sin()2f x x x x =+-的零点个数为___________.14.某电子商务公司对10 000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(Ⅰ)直方图中的a =_________;(Ⅱ)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为_________.15.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD =_________m.16.如图,已知圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点A ,B (B 在A 的上方),且2AB =.(Ⅰ)圆C 的标准方程为_________;(Ⅱ)圆C 在点B 处的切线在x 轴上的截距为_________.17. a 为实数,函数2()||f x x ax =-在区间[0,1]上的最大值记为()g a .当a =_________时,()g a 的值最小. --------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共36页)数学试卷 第5页(共36页)数学试卷 第6页(共36页)三、 解答题:本大题共5小题,共65分.解答应写出必要的文字说明、证明过程或演算步骤. 18.(本小题满分12分)某同学用“五点法”画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一个周期内的图(Ⅰ)请将上表数据补充完整,并直接写出函数()f x 的解析式; (Ⅱ)将()y f x =图象上所有点向左平行移动π6个单位长度,得到()y g x =的图象,求()y g x =的图象离原点O 最近的对称中心.19.(本小题满分12分)设等差数列{}n a 的公差为d ,前n 项和为n S ,等比数列{}n b 的公比为q ,已知11b a =,22b =,q d =,10100S =.(Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)当1d >时,记n n nac b =,求数列{}n c 的前n 项和n T .20.(本小题满分13分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马P ABCD -中,侧棱PD ⊥底面ABCD ,且PD CD =,点E 是PC 的中点,连接DE ,BD ,BE .(Ⅰ)证明:DE PBC ⊥平面.试判断四面体EBCD 是否为鳖臑.若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(Ⅱ)记阳马P ABCD -的体积为1V ,四面体EBCD 的体积为2V ,求12V V 的值.21.(本小题满分14分)设函数()f x ,()g x 的定义域均为R ,且()f x 是奇函数,()g x 是偶函数,()f x +()g x e x =,其中e 为自然对数的底数.(Ⅰ)求()f x ,()g x 的解析式,并证明:当0x >时,()0f x >,()1g x >; (Ⅱ)设0a ≤,1b ≥,证明:当0x >时,()()(1)()(1)f x ag x a bg x b x+-+-<<. 22.(本小题满分14分)一种画椭圆的工具如图1所示,O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且DN ON =1=,3MN =.当栓子D 在滑槽AB 内作往复运动时,带动N 绕O 转动,M 处的笔尖画出的椭圆记为C ,以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系. (Ⅰ)求椭圆C 的方程;(Ⅱ)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l总与椭圆C 有且只有一个公共点,试探究:△OPQ 的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.2015年普通高等学校招生全国统一考试(湖北卷)数学(文科)答案解析第Ⅰ卷)(]3,4,故选【提示】根据函数成立的条件进行求解即可3 / 124心圆点所有黄心圆点,共45个,故A B⊕中元素的个数为45故选C.第Ⅱ卷5 / 126【解析】作出约束条件表示的可行域如下图所示:易知可行域边界三角形的三个顶点坐标分别是3,11,31,3--(),(),(),平行移动直线3y x =-,求可知当2tan30100︒=7 / 12812a aa =-)1;当29 / 121011 / 1212。

2015年湖北省高考数学试卷(文科)

2015年湖北省高考数学试卷(文科)

2015年湖北省高考数学试卷(文科)一、选择题:本大题10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(3分)i为虚数单位,i607=()A.﹣i B.i C.1 D.﹣12.(3分)我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()A.134石B.169石C.338石D.1365石3.(3分)命题“∃x0∈(0,+∞),lnx=x﹣1”的否定是()A.∃x0∈(0,+∞),lnx≠x﹣1 B.∃x∉(0,+∞),lnx=x﹣1C.∀x∈(0,+∞),lnx≠x﹣1 D.∀x∉(0,+∞),lnx=x﹣14.(3分)已知变量x和y满足关系y=﹣0.1x+1,变量y与z正相关,下列结论中正确的是()A.x与y负相关,x与z负相关B.x与y正相关,x与z正相关C.x与y正相关,x与z负相关D.x与y负相关,x与z正相关5.(3分)l1,l2表示空间中的两条直线,若p:l1,l2是异面直线,q:l1,l2不相交,则()A.p是q的充分条件,但不是q的必要条件B.p是q的必要条件,但不是q的充分条件C.p是q的充分必要条件D.p既不是q的充分条件,也不是q的必要条件6.(3分)函数f(x)=+lg的定义域为()A.(2,3)B.(2,4] C.(2,3)∪(3,4] D.(﹣1,3)∪(3,6] 7.(3分)设x∈R,定义符号函数sgnx=,则()A.|x|=x|sgnx| B.|x|=xsgn|x| C.|x|=|x|sgnx D.|x|=xsgnx8.(3分)在区间[0,1]上随机取两个数x,y,记p1为事件“x+y≤”的概率,P2为事件“xy≤”的概率,则()A.p1<p2<B.C.p2<D.9.(3分)将离心率为e1的双曲线C1的实半轴长a和虚半轴长b(a≠b)同时增加m(m>0)个单位长度,得到离心率为e2的双曲线C2,则()A.对任意的a,b,e1>e2B.当a>b时,e1>e2;当a<b时,e1<e2C.对任意的a,b,e1<e2D.当a>b时,e1<e2;当a<b时,e1>e210.(3分)已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B中元素的个数为()A.77 B.49 C.45 D.30二、填空题11.(3分)已知向量⊥,||=3,则•= .12.(3分)设变量x,y满足约束条件,则3x+y的最大值为.13.(3分)f(x)=2sin xsin(x+)﹣x2的零点个数为.14.(3分)某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(1)直方图中的a= .(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为.15.(3分)如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD= m.16.(3分)如图,已知圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2.(1)圆C的标准方程为.(2)圆C在点B处切线在x轴上的截距为.17.(3分)a为实数,函数f(x)=|x2﹣ax|在区间[0,1]上的最大值记为g(a).当a= 时,g(a)的值最小.三、解答题18.(12分)某同学将“五点法”画函数f(x)=Asin(wx+φ)(w>0,|φ|<)在某一个时期内的图象时,列表并填入部分数据,如下表:(1)请将上述数据补充完整,填写在答题卡上相应位置,并直接写出函数f(x)的解析式;(2)将y=f(x)图象上所有点向左平移个单位长度,得到y=g(x)图象,求y=g(x)的图象离原点O最近的对称中心.19.(12分)设等差数列{an }的公差为d,前n项和为Sn,等比数列{bn}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{an },{bn}的通项公式(2)当d>1时,记cn =,求数列{cn}的前n项和Tn.20.(13分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马P﹣ABCD中,侧棱PD⊥底面ABCD,且PD=CD,点E是PC的中点,连接DE、BD、BE.(Ⅰ)证明:DE⊥平面PBC.试判断四面体EBCD是否为鳖臑.若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;(Ⅱ)记阳马P﹣ABCD的体积为V1,四面体EBCD的体积为V2,求的值.21.(14分)设函数f(x),g(x)的定义域均为R,且f(x)是奇函数,g(x)是偶函数,f(x)+g(x)=e x,其中e为自然对数的底数.(1)求f(x),g(x)的解析式,并证明:当x>0时,f(x)>0,g(x)>1;(2)设a≤0,b≥1,证明:当x>0时,ag(x)+(1﹣a)<<bg(x)+(1﹣b).22.(14分)一种画椭圆的工具如图1所示.O是滑槽AB的中点,短杆ON可绕O转动,长杆MN通过N处铰链与ON连接,MN上的栓子D可沿滑槽AB滑动,且DN=ON=1,MN=3,当栓子D在滑槽AB内作往复运动时,带动N绕O转动,M处的笔尖画出的椭圆记为C,以O为原点,AB所在的直线为x轴建立如图2所示的平面直角坐标系.(1)求椭圆C的方程;(2)设动直线l与两定直线l1:x﹣2y=0和l2:x+2y=0分别交于P,Q两点.若直线l总与椭圆C有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.2015年湖北省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的。

2015年湖北省高考数学试卷(文科)

2015年湖北省高考数学试卷(文科)

2015年湖北省高考数学试卷(文科)一、选择题:本大题10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(3分)i为虚数单位,i607=()A.﹣i B.i C.1 D.﹣12.(3分)我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()A.134石B.169石C.338石D.1365石3.(3分)命题“∃x0∈(0,+∞),lnx=x﹣1”的否定是()A.∃x0∈(0,+∞),lnx≠x﹣1 B.∃x∉(0,+∞),lnx=x﹣1C.∀x∈(0,+∞),lnx≠x﹣1 D.∀x∉(0,+∞),lnx=x﹣14.(3分)已知变量x和y满足关系y=﹣0.1x+1,变量y与z正相关,下列结论中正确的是()A.x与y负相关,x与z负相关B.x与y正相关,x与z正相关C.x与y正相关,x与z负相关D.x与y负相关,x与z正相关5.(3分)l1,l2表示空间中的两条直线,若p:l1,l2是异面直线,q:l1,l2不相交,则()A.p是q的充分条件,但不是q的必要条件B.p是q的必要条件,但不是q的充分条件C.p是q的充分必要条件D.p既不是q的充分条件,也不是q的必要条件6.(3分)函数f(x)=+lg的定义域为()A.(2,3)B.(2,4] C.(2,3)∪(3,4] D.(﹣1,3)∪(3,6] 7.(3分)设x∈R,定义符号函数sgnx=,则()A.|x|=x|sgnx| B.|x|=xsgn|x| C.|x|=|x|sgnx D.|x|=xsgnx8.(3分)在区间[0,1]上随机取两个数x,y,记p1为事件“x+y≤”的概率,P2为事件“xy≤”的概率,则()A.p1<p2<B.C.p2<D.9.(3分)将离心率为e1的双曲线C1的实半轴长a和虚半轴长b(a≠b)同时增加m(m>0)个单位长度,得到离心率为e2的双曲线C2,则()A.对任意的a,b,e1>e2B.当a>b时,e1>e2;当a<b时,e1<e2C.对任意的a,b,e1<e2D.当a>b时,e1<e2;当a<b时,e1>e210.(3分)已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B中元素的个数为()A.77 B.49 C.45 D.30二、填空题11.(3分)已知向量⊥,||=3,则•= .12.(3分)设变量x,y满足约束条件,则3x+y的最大值为.13.(3分)f(x)=2sin xsin(x+)﹣x2的零点个数为.14.(3分)某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(1)直方图中的a= .(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为.15.(3分)如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD= m.16.(3分)如图,已知圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2.(1)圆C的标准方程为.(2)圆C在点B处切线在x轴上的截距为.17.(3分)a为实数,函数f(x)=|x2﹣ax|在区间[0,1]上的最大值记为g(a).当a= 时,g(a)的值最小.三、解答题18.(12分)某同学将“五点法”画函数f(x)=Asin(wx+φ)(w>0,|φ|<)在某一个时期内的图象时,列表并填入部分数据,如下表:wx+φπ2πxAsin(wx+φ)05﹣50(1)请将上述数据补充完整,填写在答题卡上相应位置,并直接写出函数f(x)的解析式;(2)将y=f(x )图象上所有点向左平移个单位长度,得到y=g(x)图象,求y=g(x)的图象离原点O最近的对称中心.19.(12分)设等差数列{an }的公差为d,前n项和为Sn,等比数列{bn}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{an },{bn}的通项公式(2)当d>1时,记cn =,求数列{cn}的前n项和Tn.20.(13分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马P﹣ABCD中,侧棱PD⊥底面ABCD,且PD=CD,点E是PC的中点,连接DE、BD、BE.(Ⅰ)证明:DE⊥平面PBC.试判断四面体EBCD是否为鳖臑.若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;(Ⅱ)记阳马P﹣ABCD的体积为V1,四面体EBCD的体积为V2,求的值.21.(14分)设函数f(x),g(x)的定义域均为R,且f(x)是奇函数,g(x)是偶函数,f(x)+g(x)=e x,其中e为自然对数的底数.(1)求f(x),g(x)的解析式,并证明:当x>0时,f(x)>0,g(x)>1;(2)设a≤0,b≥1,证明:当x>0时,ag(x)+(1﹣a)<<bg(x)+(1﹣b).22.(14分)一种画椭圆的工具如图1所示.O是滑槽AB的中点,短杆ON可绕O转动,长杆MN通过N处铰链与ON连接,MN上的栓子D可沿滑槽AB滑动,且DN=ON=1,MN=3,当栓子D在滑槽AB内作往复运动时,带动N绕O转动,M处的笔尖画出的椭圆记为C,以O为原点,AB所在的直线为x轴建立如图2所示的平面直角坐标系.(1)求椭圆C的方程;(2)设动直线l与两定直线l1:x﹣2y=0和l2:x+2y=0分别交于P,Q两点.若直线l总与椭圆C有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.2015年湖北省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的。

2015年湖北省高考数学试卷(文科)

2015年湖北省高考数学试卷(文科)

2015年湖北省高考数学试卷(文科)一、选择题:本大题10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(3分)i为虚数单位,i607=()A.﹣i B.i C.1 D.﹣12.(3分)我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()A.134石B.169石C.338石D.1365石3.(3分)命题“∃x0∈(0,+∞),lnx=x﹣1”的否定是()A.∃x0∈(0,+∞),lnx≠x﹣1 B.∃x∉(0,+∞),lnx=x﹣1C.∀x∈(0,+∞),lnx≠x﹣1 D.∀x∉(0,+∞),lnx=x﹣14.(3分)已知变量x和y满足关系y=﹣0.1x+1,变量y与z正相关,下列结论中正确的是()A.x与y负相关,x与z负相关B.x与y正相关,x与z正相关C.x与y正相关,x与z负相关D.x与y负相关,x与z正相关5.(3分)l1,l2表示空间中的两条直线,若p:l1,l2是异面直线,q:l1,l2不相交,则()A.p是q的充分条件,但不是q的必要条件B.p是q的必要条件,但不是q的充分条件C.p是q的充分必要条件D.p既不是q的充分条件,也不是q的必要条件6.(3分)函数f(x)=+lg的定义域为()A.(2,3)B.(2,4] C.(2,3)∪(3,4] D.(﹣1,3)∪(3,6]7.(3分)设x∈R,定义符号函数sgnx=,则()A.|x|=x|sgnx| B.|x|=xsgn|x| C.|x|=|x|sgnx D.|x|=xsgnx8.(3分)在区间[0,1]上随机取两个数x,y,记p1为事件“x+y≤”的概率,P2为事件“xy≤”的概率,则()A.p1<p2<B.C.p2<D.9.(3分)将离心率为e1的双曲线C1的实半轴长a和虚半轴长b(a≠b)同时增加m(m>0)个单位长度,得到离心率为e2的双曲线C2,则()A.对任意的a,b,e1>e2B.当a>b时,e1>e2;当a<b时,e1<e2C.对任意的a,b,e1<e2D.当a>b时,e1<e2;当a<b时,e1>e210.(3分)已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B中元素的个数为()A.77 B.49 C.45 D.30二、填空题11.(3分)已知向量⊥,||=3,则•= .12.(3分)设变量x,y满足约束条件,则3x+y的最大值为.13.(3分)f(x)=2sin xsin(x+)﹣x2的零点个数为.14.(3分)某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(1)直方图中的a= .(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为.15.(3分)如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD= m.16.(3分)如图,已知圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2.(1)圆C的标准方程为.(2)圆C在点B处切线在x轴上的截距为.17.(3分)a为实数,函数f(x)=|x2﹣ax|在区间[0,1]上的最大值记为g(a).当a= 时,g(a)的值最小.三、解答题18.(12分)某同学将“五点法”画函数f(x)=Asin(wx+φ)(w>0,|φ|<)在某一个时期内的图象时,列表并填入部分数据,如下表:(1)请将上述数据补充完整,填写在答题卡上相应位置,并直接写出函数f(x)的解析式;(2)将y=f(x)图象上所有点向左平移个单位长度,得到y=g(x)图象,求y=g(x)的图象离原点O最近的对称中心.19.(12分)设等差数列{an }的公差为d,前n项和为Sn,等比数列{bn}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{an },{bn}的通项公式(2)当d>1时,记cn =,求数列{cn}的前n项和Tn.20.(13分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马P﹣ABCD中,侧棱PD⊥底面ABCD,且PD=CD,点E是PC的中点,连接DE、BD、BE.(Ⅰ)证明:DE⊥平面PBC.试判断四面体EBCD是否为鳖臑.若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;(Ⅱ)记阳马P﹣ABCD的体积为V1,四面体EBCD的体积为V2,求的值.21.(14分)设函数f(x),g(x)的定义域均为R,且f(x)是奇函数,g(x)是偶函数,f(x)+g(x)=e x,其中e为自然对数的底数.(1)求f(x),g(x)的解析式,并证明:当x>0时,f(x)>0,g(x)>1;(2)设a≤0,b≥1,证明:当x>0时,ag(x)+(1﹣a)<<bg(x)+(1﹣b).22.(14分)一种画椭圆的工具如图1所示.O是滑槽AB的中点,短杆ON可绕O转动,长杆MN通过N处铰链与ON连接,MN上的栓子D可沿滑槽AB滑动,且DN=ON=1,MN=3,当栓子D在滑槽AB内作往复运动时,带动N绕O转动,M处的笔尖画出的椭圆记为C,以O为原点,AB所在的直线为x轴建立如图2所示的平面直角坐标系.(1)求椭圆C的方程;(2)设动直线l与两定直线l1:x﹣2y=0和l2:x+2y=0分别交于P,Q两点.若直线l总与椭圆C有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.2015年湖北省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的。

2015年高考湖北卷文科数学

2015年高考湖北卷文科数学

000(0,),ln 1x x x ∃∈+∞=- 2015年普通高等学校招生全国统一考试(湖北卷)数学(文史类)本试卷共5页,共22题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用统一提供的2B 铅笔将答题卡上试卷类型B 后的方块涂黑。

2.选择题的作答:每小题选出答案后,用统一提供的2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

答在试题卷、草稿纸上无效。

3.填空题和解答题的作答:用统一提供的签字笔将答案直接答在答题卡上对应的答题区域内。

答在试卷、草稿纸上无效。

4.考生必须保持答题卡的整洁。

考试结束后,请将本试卷和答题卡一并上交。

一、选择题:本大题共10小题,每小题5分,共50分 ,在每小题给出的四个选项中,只有一项是符合题目要求的 1. i 为虚数单位,607i= ( )A.iB.-iC.1D.-12. 我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为 ( ) A. 134石 B.169石 C.338石 D.1365石3. 命题“ ”的否定是 ( ) A.0(0,),ln 1x x x ∀∈+∞≠- B.0(0,),ln 1x x x ∀∉+∞=- C.000(0,),ln 1x x x ∃∈+∞≠- D.000(0,),ln 1x x x ∃∉+∞=-4. 已知变量x 和y 满足关系式0.11y x =-+,变量y 与z 正相关,下列结论正确的是( ) A. x 与y 正相关,x 与z 负相关 B. x 与y 正相关,x 与z 正相关 C. x 与y 负相关,x 与z 负相关 D. x 与y 负相关,x 与z 正相关5.12,l l 表示空间中的两条直线,若p:12,l l 是异面直线。

2015湖北文高考数学试题

2015湖北文高考数学试题

2015普通高等学校招生全国统一考试(湖北文)一、选择题1.i 为虚数单位,i 607=( )A .iB .-iC .1D .-1【解析】因i 607=(i 2)303i =-i ,故应选B .2.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )A .134石B .169石C .338石D .1 365石解析:254粒和1 534石中夹谷的百分比含量是大致相同的,可据此估计.设1 534石米内夹谷x 石,则由题意知x 1 534=28254,解得x ≈169.故这批米内夹谷约为169石. 3.命题“∃x 0∈(0,+∞),ln x 0=x 0-1”的否定是( )A .∀x ∈(0,+∞),ln x ≠x -1B .∀x ∉(0,+∞),ln x =x -1C .∃x 0∈(0,+∞),ln x 0≠x 0-1D .∃x 0∉(0,+∞),ln x 0=x 0-1【解析】由特称命题的否定为全称命题可知,所求命题的否定为∀x ∈(0,+∞),ln x ≠x -1,故应选A .4.已知变量x 和y 满足关系y =-0.1x +1,变量y 与z 正相关.下列结论中正确的是( )A .x 与y 正相关,x 与z 负相关B .x 与y 正相关,x 与z 正相关C .x 与y 负相关,x 与z 负相关D .x 与y 负相关,x 与z 正相关【解析】因变量x 和y 满足关系y =-0.1x +1,其中-0.1<0,故x 与y 成负相关;又因变量y 与z 正相关,不妨设z =ky +b (k >0),则将y =-0.1x +1代入即可得到:z =k (-0.1x +1)+b =-0.1kx +(k +b ),故-0.1k <0,故x 与z 负相关,综上可知,应选A .5.l 1,l 2表示空间中的两条直线,若p :l 1,l 2是异面直线,q :l 1,l 2不相交.则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件6.函数f (x )=4-|x |+lg x 2-5x +6x -3的定义域为( ) A .(2,3) B .(2,4] C .(2,3)∪(3,4] D .(-1,3)∪(3,6]【解析】由函数f (x )的表达式可知,函数f (x )的定义域应满足条件:4-|x |≥0,x 2-5x +6x -3>0,解之得,-2≤x ≤2,x >2,x ≠3,即函数f (x )的定义域为(2,3)∪(3,4],故应选C .7.设x ∈R ,定义符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,则下面正确的是( )A .|x |=x |sgn x |B .|x |=x sgn |x |C .|x |=|x |sgn xD .|x |=x sgn x【解】当x <0时,|x |=-x ,sgn x =-1.则x ·|sgn x |=x ,x sgn|x |=x ,|x |sgn x =x .因此,选项A ,B ,C 均不成立.8.在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≤12”的概率,p 2为事件“xy ≤12”的概率,则( )A .p 1<p 2<12B .p 2<12<p 1 C.12<p 2<p 1 D .p 1<12<p 2 【解析】由题意知,事件“x +y ≤12”的概率为11111222118p ⨯⨯==⨯,事件“xy ≤12”的概率02S p S=,其中11021111(1ln 2)222S dx x=⨯+=+⎰,111S =⨯=,故021(1ln 2)112(1ln 2)1122S p S +===+>⨯,故应选B .9.将离心率为e 1的双曲线C 1的实半轴长a 和虚半轴长b (a ≠b )同时增加m (m >0)个单位长度,得到离心率为e 2的双曲线C 2,则( )A .对任意的a ,b ,e 1<e 2B .当a >b 时,e 1<e 2;当a <b 时,e 1>e 2C .对任意的a ,b ,e 1>e 2D .当a >b 时,e 1>e 2;当a <b 时,e 1<e 210.已知集合A ={(x ,y )|x 2+y 2≤1,x ,y ∈Z },B ={(x ,y )||x |≤2,|y |≤2,x ,y ∈Z },定义集合A ⊕B ={(x 1+x 2,y 1+y 2)|(x 1,y 1)∈A ,(x 2,y 2)∈B },则A ⊕B 中元素的个数为( )A .77B .49C .45D .30【解一】因A ={(x ,y )|x 2+y 2≤1,x ,y ∈Z}={(0,0),(0,1),(0,﹣1),(1,0),(﹣1,0),B ={(x ,y )||x |≤2,|y |≤2,x ,y ∈Z}={(0,0),(0,1),(0,2),(0,﹣1),(0,﹣2),(1,0),(1,1),(1,2),(1,﹣1),(1,﹣2),(2,0),(2,1),(2,2),(2,﹣1),(2,﹣2),(﹣1,﹣2),(﹣1,﹣1),(﹣1,0),(﹣1,1),(﹣1,2),(﹣2,﹣2),(﹣2,﹣1),(﹣2,0),(﹣2,1),(﹣2,2)},因A ⊕B ={(x 1+x 2,y 1+y 2)|(x 1,y 1)∈A ,(x 2,y 2)∈B },故A ⊕B ={(0,0),(0,1),(0,2),(0,﹣1),(0,﹣2),(1,0),(1,1),(1,2),(1,﹣1),(1,﹣2),(2,0),(2,1),(2,2),(2,﹣1),(2,﹣2),(﹣1,﹣2),(﹣1,﹣1),(﹣1,0),(﹣1,1),(﹣1,2),(﹣2,﹣2),(﹣2,﹣1),(﹣2,0),(﹣2,1),(﹣2,2),(﹣2,3),(﹣2,﹣3),(0,﹣3),(2,﹣3),(﹣1,3),(﹣1,﹣3),(1,3),(2,3),(0,3),(3,﹣1),(3,0),(3,1),(3,2),(3,﹣2),(﹣3,2),(﹣3,1),(1,﹣3),(﹣3,﹣1),(﹣3,0),(﹣3,﹣2)}共45个元素;【解二】由题意知,A ={(x ,y )|x 2+y 2≤1,x ,y ∈Z }={(0,1),(0,﹣1),(1,0),(﹣1,0)},B ={(x ,y )||x |≤2,|y |≤2,x ,y ∈Z },故由新定义集合A ⊕B 可知,x 1=±1,y 1=0或x 1=0,y 1=±1.当x 1=±1,y 1=0时,x 1+x 2=-3,-2,-1,0,1,2,3,y 1+y 2=-2,-1,0,1,2,故此时A ⊕B 中元素的个数有:7×5=35个;当x 1=0,y 1=±1时,x 1+x 2=-2,-1,0,1,2,y 1+y 2=-3,-2,-1,0,1,2,3,这种情形下和第一种情况下除y 1+y 2的值取-3或3外均相同,即此时有5×2=10,由分类计数原理知,A ⊕B 中元素的个数为35+10=45个,故应选C .【解三】因集合A ={(x ,y )|x 2+y 2≤1,x ,y ∈Z},故集合A 中有5个元素,即图中圆中的整点,B ={(x ,y )||x |≤2,|y |≤2,x ,y ∈Z},中有5×5=25个元素,即图中正方形ABCD 中的整点,A ⊕B ={(x 1+x 2,y 1+y 2)|(x 1,y 1)∈A ,(x 2,y 2)∈B }的元素可看作正方形A 1B 1C 1D 1中的整点(除去四个顶点),即7×7﹣4=45个.二、填空题11.已知向量OA →⊥AB →,|OA →|=3,则OA →·OB →=__________.12.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧ x +y ≤4x -y ≤23x -y ≥0,则3x +y 的最大值是__________.【解析】首先根据题意所给的约束条件画出其表示的平面区域如下图所示,然后根据图像可得: 目标函数z =3x +y 过点B (3,1)取得最大值,即z max =3×3+1=10,故应填10.13.函数f (x )=2sin x sin(x +π2)-x 2的零点个数为________. 【解析】f (x )=2sin x cos x -x 2=sin 2x -x 2,函数f (x )的零点个数可转化为函数y 1=sin 2x 与y 2=x 2图像的交点个数,在同一坐标系中画出y 1=sin 2x 与y 2=x 2的图像如图所示:由图可知两函数图像有2个交点,则f (x )的零点个数为2.14.某电子商务公司对10 000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(1)直方图中的a =__________;(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为__________.解析 (1)由0.1×1.5+0.1×2.5+0.1a +0.1×2.0+0.1×0.8+0.1×0.2=1,解得a =3.(2)区间[0.3,0.5)内的频率为0.1×1.5+0.1×2.5=0.4,故[0.5,0.9]内的频率为1-0.4=0.6.因此,消费金额在区间[0.5,0.9]内的购物者的人数为0.6×10 000=6 000.15.如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600 m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=__________m.解析:由题意,在△ABC中,∠BAC=30°,∠ABC=180°-75°=105°,故∠ACB=45°.又AB=600m,故由正弦定理得600sin 45°=BCsin 30°,解得BC=300 2 m.在Rt△BCD中,CD=BC·tan 30°=3002×33=1006(m).16.如图,已知圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2.(1)圆C的标准方程为__________;(2)圆C在点B处的切线在x轴上的截距为__________.【解析】设点C的坐标为(x0,y0),则由圆C与x轴相切于点T(1,0)知,点C的横坐标为1,即x0=1,半径r=y0.又AB=2,故y2=2,即y0=2=r,故圆C的标准方程为(x-1)2+(y-2)2=2,令x=0得:B(0,2+1).设圆C在点B处的切线方程为y-(2+1)=kx,则圆心C到其距离为:d=|k+1|k2+1=2,解之得k=1.即圆C在点B处的切线方程为y=x+(2+1),于是令y=0可得x =-2-1,即圆C在点B处的切线在x轴上的截距为-2-1,故应填(x-1)2+(y-2)2=2和-2-1.17.a为实数,函数f(x)=|x2-ax|在区间[0,1]上的最大值记为g(a).当a=__________时,g(a)的值最小.【解析】②:0<a≤1:⎪⎩⎪⎨⎧-<<-=≤<-==)2220(1)1()1222(4)2()(2aafaaafag,③:1<a<2:g(a)=f(a/2)=a24;④:a≥2:g(a)=f(1)=a-1,综上,当a =22-2时,g (a )取到最小值3-22.三、解答题18.(本小题满分12分)某同学用“五点法”画函数f (x )=A sin(ωx +φ)(ω>0,|φ|<π2)在某一个ωx +φ 0 π2 π 3π22π x π3 5π6A sin(ωx +φ) 0 5 -5 0(1)...........f (x )的解析式; (2)将y =f (x )图像上所有点向左平行移动π6个单位长度,得到y =g (x )的图像,求y =g (x )的图像离原点O 最近的对称中心. 【解析】⑴.根据表中已知数据可得:A =5,ω=2,φ=-π6.数据补全如下表: ωx +φ0 π2 π 3π2 2π xπ12 π3 7π12 5π6 1312π A sin(ωx +φ)0 5 0 -5 0 且函数表达式为f (x )=5sin(2x -π6). ⑵.由⑴知,f (x )=5sin(2x -π6),因此g (x )=5sin[2(x +π6)-π6]=5sin(2x +π6).因y =sin x 的对称中心为(k π,0),k ∈Z .令2x +π6=k π,解得x =k π2-π12,k ∈Z .即y =g (x )图像的对称中心为(k π2-π12,0),k ∈Z ,其中离原点O 最近的对称中心为(-π12,0). 19.(本小题满分12分)设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q .已知b 1=a 1,b 2=2,q =d ,S 10=100.(1)求数列{a n },{b n }的通项公式;(2)当d >1时,记c n =a n b n,求数列{c n }的前n 项和T n . 【解析】(1)由题意有⎩⎪⎨⎪⎧ 10a 1+45d =100,a 1d =2,即⎩⎪⎨⎪⎧ 2a 1+9d =20,a 1d =2,,解得⎩⎪⎨⎪⎧ a 1=1,d =2或⎩⎪⎨⎪⎧a 1=9,d =29.,故⎩⎪⎨⎪⎧ a n =2n -1,b n =2n -1或⎩⎨⎧ a n =19(2n +79),b n =9·⎝⎛⎭⎫29n -1.(2)解 由d >1,知a n =2n -1,b n =2n -1,故c n =2n -12n -1,于是T n =1+32+522+723+924+…+2n -12n -1①,12T n =12+322+523+724+925+…+2n -12n ②.①-②可得12T n =2+12+122+…+12n -2-2n -12n =3-2n +32n ,故T n =6-2n +32n -1. 20.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马P -ABCD 中,侧棱PD ⊥底面ABCD ,且PD =CD ,点E 是PC 的中点,连接DE ,BD ,BE .⑴.证明:DE ⊥平面PBC .试判断四面体EBCD 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由.⑵.记阳马P -ABCD 的体积为V 1,四面体EBCD 的体积为V 2,求V 1V 2的值. 【解析】⑴.因PD ⊥平面ABCD ,故PD ⊥BC ,由于底面ABCD 为长方形,有BC ⊥CD ,且PD ∩CD =D ,故BC ⊥平面PCD .由DE ⊂平面PCD ,故BC ⊥DE ,又PD =CD ,点E 是PC 的中点,故DE ⊥PC .由PC ∩BC =C ,故DE ⊥平面PBC .由BC ⊥平面PCD ,DE ⊥平面PBC .可知四面体EBCD 的四个面都是直角三角形,则四面体EBCD 是一个鳖臑,其四个面的直角分别是∠BCD ,∠BCE ,∠DEC ,∠DEB .⑵.由已知,PD 是阳马P -ABCD 的高.故V 1=13S ABCD ·PD =13·BC ·CD ·PD ,由⑴知,DE 是鳖臑D -BCE 的高,BC ⊥CE .故V 2=13S △BCE ·DE =16·BC ·CE ·DE ,在Rt △PDC 中,由于PD =CD ,点E 是PC 的中点.故DE =CE =22CD ,于是V 1V 2=13BC ·CD ·PD 16BC ·CE ·DE =2CD ·PD CE ·DE =4. 21.(本小题满分14分)设函数f (x ),g (x )的定义域均为R ,且f (x )是奇函数,g (x )是偶函数,f (x )+g (x )=e x ,其中e 为自然对数的底数.(1)求f (x ),g (x )的解析式,并证明:当x >0时,f (x )>0,g (x )>1;(2)设a ≤0,b ≥1,证明:当x >0时,ag (x )+(1-a )< f (x )x<bg (x )+(1-b ). 【解析】⑴.由f (x ),g (x )的奇偶性及f (x )+g (x )=e x ,①得:-f (x )+g (x )=e -x ②,联立①②解得,f (x )=12(e x -e -x ),g (x )=12(e x +e -x ).当x >0时,e x >1,0<e -x <1,故f (x )>0③,又由基本不等式,有g (x )=12(e x +e -x )>e x ·1e x =1,即g (x )>1④;⑵.由⑴得,f ′(x )=12(e x +e -x )=g (x )⑤,g ′(x )=12(e x -e -x )=f (x )⑥,当x >0时,f (x )x>ag (x )+(1-a )等价于f (x )>axg (x )+(1-a )x ⑦,f (x )x<bg (x )+(1-b )等价于f (x )<bxg (x )+(1-b )x ⑧,设函数h (x )=f (x )-cxg (x )-(1-c )x ,由⑤⑥,有h ′(x )=g (x )-cg (x )-cxf (x )-(1-c )=(1-c )[g (x )-1]-cxf (x ).当x >0时,①.若c ≤0,由③④,得h ′(x )>0,故h (x )在[0,+∞)上为增函数,从而h (x )>h (0)=0,即f (x )>cxg (x )+(1-c )x ,故⑦成立.②.若c ≥1,由③④,得h ′(x )<0,故h (x )在[0,+∞)上为减函数,从而h (x )<h (0)=0,即f (x )<cxg (x )+(1-c )x ,故⑧成立.综合⑦⑧,得 ag (x )+(1-a )< f (x )x<bg (x )+(1-b ).22.(本小题满分14分)一种画椭圆的工具如图1所示.O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处的铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且DN =ON =1,MN =3.当栓子D 在滑槽AB 内作往复运动时,带动..N 绕O 转动,M 处的笔尖画出的椭圆记为C .以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系. (1)求椭圆C 的方程;(2)设动直线l 与两定直线l 1:x -2y =0和l 2:x +2y =0分别交于P ,Q 两点.若直线l 总与椭圆C 有且只有一个公共点,试探究:△OPQ 的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.【解析】(1)设点D (t,0)(|t |≤2),N (x 0,y 0),M (x ,y ),依题意,MD →=2DN →,且|DN →|=|ON →|=1,所以(t -x ,-y )=2(x 0-t ,y 0),且⎩⎪⎨⎪⎧ (x 0-t )2+y 20=1,x 20+y 20=1.即⎩⎪⎨⎪⎧t -x =2x 0-2t ,y =-2y 0,且t (t -2x 0)=0.由于当点D 不动时,点N 也不动,所以t 不恒等于0,于是t =2x 0,故x 0=x 4,y 0=-y 2,代入x 20+y 20=1,可得x 216+y 24=1,即所求曲线C 的方程为x 216+y 24=1. (2)①当直线l 的斜率不存在时,直线l 为x =4或x =-4,都有S △OPQ =12×4×4=8. ②当直线l 的斜率存在时,设直线l :y =kx +m ⎝⎛⎭⎫k ≠±12,由⎩⎪⎨⎪⎧y =kx +m ,x 2+4y 2=16,消去y ,可得(1+4k 2)x 2+8kmx +4m 2-16=0.因为直线l 总与椭圆C 有且只有一个公共点,所以Δ=64k 2m 2-4(1+4k 2)(4m 2-16)=0,即m 2=16k 2+4.(*1)又由⎩⎪⎨⎪⎧ y =kx +m ,x -2y =0,可得P ⎝ ⎛⎭⎪⎫2m 1-2k ,m 1-2k ;同理可得Q ⎝ ⎛⎭⎪⎫-2m 1+2k ,m 1+2k .由原点O 到直线PQ 的距离为d =|m |1+k 2和PQ =1+k 2|x P -x Q |,可得S △OPQ =12·PQ ·d =12|m |·|x P -x Q |=12·|m |⎪⎪⎪⎪⎪⎪2m 1-2k +2m 1+2k =⎪⎪⎪⎪⎪⎪2m 21-4k 2.(*2)将(*1)代入(*2)得,S △OPQ =⎪⎪⎪⎪⎪⎪2m 21-4k 2=8|4k 2+1||4k 2-1|.当k 2>14时,S △OPQ =8⎝ ⎛⎭⎪⎫4k 2+14k 2-1=8⎝⎛⎭⎪⎫1+24k 2-1>8;当0≤k 2<14时,S △OPQ =8⎝ ⎛⎭⎪⎫4k 2+11-4k 2=8(-1+21-4k 2).因0≤k 2<14,则0<1-4k 2≤1,21-4k 2≥2,所以S △OPQ =8(-1+21-4k 2)≥8,当且仅当k =0时取等号.所以当k =0时,S △OPQ 的最小值为8. 综合①②可知,当直线l 与椭圆C 在四个顶点处相切时,△OPQ 的面积取得最小值8.2015普通高等学校招生全国统一考试(湖北理)一、选择题1.i 为虚数单位,i 607=()A .iB .-IC .1D .-1【解析】因i 607=(i 2)303i =-i ,故应选B .2.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()A .134石B .169石C .338石D .1365石【解析】254粒和1 534石中夹谷的百分比含量是大致相同的,可据此估计.设1 534石米内夹谷x石,则由题意知x 1 534=28254,解得x ≈169.故这批米内夹谷约为169石. 3.已知(1+x )n 的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为()A .212B .211C .210D .29【解答】已知(1+x )n 的展开式中第4项与第8项的二项式系数相等,可得C 3n =C 7n,可得n =3+7=10.(1+x )10的展开式中奇数项的二项式系数和为:12×210=29.故选:D . 4.设X ~N (μ1,σ21),Y ~N (μ2,σ22),这两个正态分布密度曲线如图所示.下列结论中正确的是()A .P (Y ≥μ2)≥P (Y ≥μ1)B .P (X ≤σ2)≤P (X ≤σ1)C .对任意正数t ,P (X ≤t )≥P (Y ≤t )D .对任意正数t ,P (X ≥t )≥P (Y ≥t )【解析】正态分布密度曲线图像关于x =μ对称,故μ1<μ2,从图中容易得到P (X ≤t )≥P (Y ≤t ).5.设a 1,a 2,…,a n ∈R ,n ≥3.若p :a 1,a 2,…,a n 成等比数列;q :(a 21+a 22+…+a 2n -1)(a 22+a 23+…+a 2n )=(a 1a 2+a 2a 3+…+a n -1a n )2,则( )A .p 是q 的充分条件,但不是q 的必要条件;B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件;D .p 既不是q 的充分条件,也不是q 的必要条件【解】对命题p :a 1,a 2,…,a n 成等比数列,则公比q =a n a n -1(n ≥3)且a n ≠0;对命题q ,①当a n =0时,(a 21+a 22+…+a 2n -1)(a 22+a 23+…+a 2n )=(a 1a 2+a 2a 3+…+a n -1a n )2成立;②当a n ≠0时,根据柯西不等式,等式(a 21+a 22+…+a 2n -1)(a 22+a 23+…+a 2n )=(a 1a 2+a 2a 3+…+a n -1a n )2成立,则a 2a 1=a 3a 2=a 4a 3=…=a n -1a n -2=a n a n -1,故a 1,a 2,…,a n 成等比数列,故p 是q 的充分条件,但不是q 的必要条件. 解析 若p 成立,设a 1,a 2,…,a n 的公比为q ,则(a 21+a 22+…+a 2n -1)(a 22+a 23+…+a 2n )=a 21(1+q2+…+q 2n -4)·a 22(1+q 2+…+q 2n -4)=a 21a 22(1+q 2+…+q 2n -4)2,(a 1a 2+a 2a 3+…+a n -1a n )2=(a 1a 2)2(1+q 2+…+q 2n -4)2,故q 成立,故p 是q 的充分条件.取a 1=a 2=…=a n =0,则q 成立,而p 不成立,故p 不是q 的必要条件.即p 是q 的充分不必要条件.6.已知符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,,f (x )是R 上的增函数,g (x )=f (x )-f (ax )(a >1),则()A .sgn[g (x )]=sgn xB .sgn[g (x )]=-sgn xC .sgn[g (x )]=sgn[f (x )]D .sgn[g (x )]=-sgn[f (x )]【解】因f (x )是R 上的增函数,令f (x )=x ,故g (x )=(1-a )x ,因a >1,故g (x )是R 上的减函数,由符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,知,1,0sgn[()]0,0sgn 1,0x g x x x x ->⎧⎪===-⎨⎪<⎩.7.在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≥12”的概率,p 2为事件“|x -y |≤12”的概率,p 3为事件“xy ≤12”的概率,则( ) A .p 1<p 2<p 3B .p 2<p 3<p 1C .p 3<p 1<p 2D .p 3<p 2<p 1【解析】满足条件的x ,y 构成的点(x ,y )在正方形OBCA 及其边界上.事件“x +y ≥12”对应的图形如图①所示的阴影部分;事件“|x -y |≤12”对应的图形为图②所示的阴影部分;事件“xy ≤12”对应的图形为图③所示的阴影部分.对三者的面积进行比较,可得p 2<p 3<p 1.8.将离心率为e 1的双曲线C 1的实半轴长a 和虚半轴长b (a ≠b )同时增加m (m >0)个单位长度,得到离心率为e 2的双曲线C 2,则()A .对任意的a ,b ,e 1>e 2B .当a >b 时,e 1>e 2;当a <b 时,e 1<e 2C .对任意的a ,b ,e 1<e 2D .当a >b 时,e 1<e 2;当a <b 时,e 1>e 2【解析】由题意,双曲线C 1:c 2=a 2+b 2,e 1=c a;双曲线C 2:c ′2=(a +m )2+(b +m )2,e 2=,故e 21-e 22=b 2a 2﹣=,故当a>b 时,e 1<e 2;当a <b 时,e 1>e 2,故选:D .9.已知集合A ={(x ,y )|x 2+y 2≤1,x ,y ∈Z },B ={(x ,y )||x |≤2,|y |≤2,x ,y ∈Z },定义集合A ⊕B ={(x 1+x 2,y 1+y 2)|(x 1,y 1)∈A ,(x 2,y 2)∈B },则A ⊕B 中元素的个数为( )A .77B .49C .45D .30【解一】因A ={(x ,y )|x 2+y 2≤1,x ,y ∈Z}={(0,0),(0,1),(0,﹣1),(1,0),(﹣1,0),B ={(x ,y )||x |≤2,|y |≤2,x ,y ∈Z}={(0,0),(0,1),(0,2),(0,﹣1),(0,﹣2),(1,0),(1,1),(1,2)(1,﹣1),(1,﹣2),(2,0),(2,1),(2,2),(2,﹣1),(2,﹣2),(﹣1,﹣2),(﹣1,﹣1),(﹣1,0),(﹣1,1),(﹣1,2),(﹣2,﹣2),(﹣2,﹣1),(﹣2,0),(﹣2,1),(﹣2,2)},因A ⊕B ={(x 1+x 2,y 1+y 2)|(x 1,y 1)∈A ,(x 2,y 2)∈B },故A ⊕B ={(0,0),(0,1),(0,2),(0,﹣1),(0,﹣2),(1,0),(1,1),(1,2),(1,﹣1),(1,﹣2),(2,0),(2,1),(2,2),(2,﹣1),(2,﹣2),(﹣1,﹣2),(﹣1,﹣1),(﹣1,0),(﹣1,1),(﹣1,2),(﹣2,﹣2),(﹣2,﹣1),(﹣2,0),(﹣2,1),(﹣2,2),(﹣2,3),(﹣2,﹣3),(0,﹣3),(2,﹣3),(﹣1,3),(﹣1,﹣3),(1,3),(2,3),(0,3),(3,﹣1),(3,0),(3,1),(3,2),(3,﹣2),(﹣3,2),(﹣3,1),(1,﹣3),(﹣3,﹣1),(﹣3,0),(﹣3,﹣2)}共45个元素;【解二】由题意知,A ={(x ,y )|x 2+y 2≤1,x ,y ∈Z }={(0,1),(0,﹣1),(1,0),(﹣1,0)},B ={(x ,y )||x |≤2,|y |≤2,x ,y ∈Z },故由新定义集合A ⊕B 可知,x 1=±1,y 1=0或x 1=0,y 1=±1.当x 1=±1,y 1=0时,x 1+x 2=-3,-2,-1,0,1,2,3,y 1+y 2=-2,-1,0,1,2,故此时A ⊕B 中元素的个数有:7×5=35个;当x 1=0,y 1=±1时,x 1+x 2=-2,-1,0,1,2,y 1+y 2=-3,-2,-1,0,1,2,3,这种情形下和第一种情况下除y 1+y 2的值取-3或3外均相同,即此时有5×2=10,由分类计数原理知,A ⊕B 中元素的个数为35+10=45个,故应选C . 【解三】因集合A ={(x ,y )|x 2+y 2≤1,x ,y ∈Z},故集合A 中有5个元素,即图中圆中的整点,B ={(x ,y )||x |≤2,|y |≤2,x ,y ∈Z},中有5×5=25个元素,即图中正方形ABCD 中的整点,A ⊕B ={(x 1+x 2,y 1+y 2)|(x 1,y 1)∈A ,(x 2,y 2)∈B }的元素可看作正方形A 1B 1C 1D 1中的整点(除去四个顶点),即7×7﹣4=45个.10.设x ∈R ,[x ]表示不超过x 的最大整数.若存在实数t ,使得[t ]=1,[t 2]=2,…,[t n ]=n 同时成立....,则正整数n 的最大值是() A .3 B .4 C .5 D .6【解析】若[t ]=1,则t ∈[1,2),若[t 2]=2,则t ∈[2,3)(因为题目需要同时成立,则负区间舍去),若[t 3]=3,则t ∈[,),若[t 4]=4,则t ∈[,),若[t 5]=5,则t ∈[,),其中3≈1.732,≈1.587,≈1.495,≈1.431<1.495,通过上述可以发现,当t =4时,可以找到实数t 使其在区间[1,2)∩[2,3)∩[,)∩[,)上,但当t =5时,无法找到实数t 使其在区间[1,2)∩[2,3)∩[,)∩[,)∩[,)上,故正整数n 的最大值4.二、填空题11.已知向量OA →⊥AB →,|OA →|=3,则OA →·OB →=.【解】因OA →⊥AB →,|OA →|=3,故OA →·OB →=OA →·(OA →+AB →)=OA →2+OA →·OB →=OA →2=9.12.函数f (x )=4cos 2x 2cos(π2-x )-2sin x -|ln(x +1)|的零点个数为.【解答】函数f (x )的定义域为:{x |x >﹣1}.f (x )=4cos 2x 2cos(π2﹣x )﹣2sin x ﹣|ln(x +1)|=2sin x (2cos 2x2-1)﹣|ln(x +1)|=sin2x ﹣|ln(x +1)|,分别画出函数y =sin2x ,y =|ln(x +1)|的图像,由函数的图像可知,交点个数为2.故函数的零点有2个.13.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =________ m .【解】依题意,∠BAC =30°,∠ABC =105°,在△ABC 中,由∠ABC +∠BAC +∠ACB =180°,所以∠ACB =45°,因为AB =600,由正弦定理可得600sin 45°=BCsin 30°,即BC =300 2 m ,在Rt △BCD中,因为∠CBD =30°,BC =3002,所以tan 30°=CD BC =CD3002,所以CD =100 6 m .14.如图,圆C 与x 轴相切于点T (1,0),与y 轴正半轴交于两点A ,B (B 在A 的上方),且AB =2.⑴.圆C 的标准..方程为; ⑵.过点A 任作一条直线与圆O :x 2+y 2=1相交于M ,N 两点,下列三个结论:①.|NA ||NB |=|MA ||MB |;②.|NB ||NA |-|MA ||MB |=2;③.|NB ||NA |+|MA ||MB |=22.其中正确结论的序号是.(写出所有正确结论的序号)【解】⑴.由题意,设圆心C (1,r )(r 为圆C 的半径),则r 2=2,解得r =2.故圆C 的方程为(x -1)2+(y -2)2=2.⑵.由⑴知,A (0,2-1),B (0,2+1).设M (a ,b ),则|MA ||MB |=a 2+[b -(2-1)]2a 2+[b -(2+1)]2=1-b 2+[b -(2-1)]21-b 2+[b -(2+1)]2=(2-1)b -(2-2)(2+1)b -(2+2)=(2-1)(b -2)(2+1)(b -2)=(2-1)2(2+1)(2-1)=2-1.同理|NA ||NB |=2-1.故|NA ||NB |=|MA ||MB |,①正确;|NB ||NA |-|MA ||MB |=12-1-(2-1)=2,②正确;|NB ||NA |+|MA ||MB |=12-1+2-1=22,③正确.综上,正确结论的序号是①②③.16.(选修4-4:坐标系与参数方程)在直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 的极坐标方程为ρ(sin θ-3cos θ)=0,曲线C 的参数方程为( t为参数),l 与C 相交于A ,B 两点,则AB =. 三、解答题17.某同学用“五点法”画函数f (x )=A sin(ωx +φ)(ω>0,|φ|<π2)在某一个周期内的图像时,列表并填入了部分数据,如下表:⑴.请将上表数据补充完整,填写在答题卡上相应位置...........,并直接写出函数y =f (x )的解析式; ⑵.将y =f (x )图像上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图像.若y =g (x )图像的一个对称中心为(5π12,0),求θ的最小值.【解析】⑴.根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表:且函数表达式为f (x )=5sin(2x -π6).⑵.由⑴知,f (x )=5sin(2x -π6),得g (x )=5sin(2x +2θ-π6).因y =sin x 的对称中心为(k π,0),k ∈Z .令2x +2θ-π6=k π,解得x =k π2+π12-θ,k ∈Z .由于函数y =g (x )的图像关于点(5π12,0)成中心对称,令k π2+π12-θ=5π12,解得θ=k π2-π3,k ∈Z .由θ>0可知,当k =1时,θ取得最小值π6. 18.设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100.⑴.求数列{a n },{b n }的通项公式;⑵.当d >1时,记c n =a nb n,求数列{c n }的前n 项和T n .【解析】⑴.由题意得⎩⎪⎨⎪⎧ 10a 1+45d =100,a 1d =2,即⎩⎪⎨⎪⎧ 2a 1+9d =20,a 1d =2,解得⎩⎪⎨⎪⎧a 1=1,d =2,或⎩⎪⎨⎪⎧a 1=9,d =29.故⎩⎪⎨⎪⎧a n =2n -1,b n =2n-1,或⎩⎨⎧a n =19(2n +79),b n=9·⎝⎛⎭⎫29n -1.⑵.由d >1,知a n =2n -1,b n =2n -1,故c n =2n -12n -1,于是T n =1+32+522+723+924+…+2n -12n -1①,12T n =12+322+523+724+925+…+2n -12n ②.①-②可得12T n =2+12+122+…+12n -2-2n -12n =3-2n +32n ,故T n =6-2n +32n -1.19.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P -ABCD 中,侧棱PD ⊥底面ABCD ,且PD =CD ,过棱PC 的中点E ,作EF ⊥PB 交PB 于点F ,连接DE ,DF ,BD ,BE .⑴.证明:PB ⊥平面DEF .试判断四面体BDEF 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;⑵.若面DEF 与面ABCD 所成二面角的大小为π3,求DC /BD 的值.【解析】⑴.因PD ⊥底面ABCD ,故PD ⊥BC ,由底面ABCD 为长方形,有BC ⊥CD ,而PD ∩CD =D ,故BC ⊥平面PCD .而DE ⊂平面PCD ,故BC ⊥DE .又PD =CD ,点E 是PC 的中点,故第19题解答图2第19题解答图1DE ⊥PC .而PC ∩BC =C ,故DE ⊥平面PBC .而PB ⊂平面PBC ,故PB ⊥DE .又PB ⊥EF ,DE ∩EF =E ,故PB ⊥平面DEF .由DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形,即四面体BDEF 是一个鳖臑,其四个面的直角分别为∠DEB ,∠DEF ,∠EFB ,∠DFB . ⑵.如图1,在面PBC 内,延长BC 与FE 交于点G ,则DG 是平面DEF 与平面ABCD ,的交线.由⑴知,PB ⊥平面DEF ,故PB ⊥DG .又PD ⊥底面ABCD ,故PD ⊥DG .而PD ∩PB =P ,故DG ⊥平面PBD .故∠BDF 是面DEF 与面ABCD 所成二面角的平面角,设PD =CD =1,BC =λ,有BD=(1+λ2)12,在Rt △PDB 中,由DF ⊥PB ,得∠DFP =∠FDB =π3,则tan π3=tan ∠DPF =BD /PD =(1+λ2)12=3,解得λ=2.故DC /BC =22,故当面DEF 与面ABCD 所成二面角的大小为π3时,DC /BC =22. 【解二】⑴.如图2,以D 为原点,射线DA ,DC ,DP 分别为x ,y ,z 轴的正半轴,建立空间直角坐标系.设PD =CD =1,BC =λ,则D (0,0,0),P (0,0,1),B (λ,1,0),C (0,1,0),PB →=(λ,1,-1),点E 是PC 的中点,故E (0,12,12),DE →=(0,12,12),于是PB →·DE →=0,即PB ⊥DE .又EF ⊥PB ,而DE ∩EF =E ,故PB ⊥平面DEF .因PC →=(0,1,-1),DE →·PC →=0,则DE ⊥PC ,故DE ⊥平面PBC .由DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形,即四面体BDEF 是一个鳖臑,其四个面的直角分别为∠DEB ,∠DEF ,∠EFB ,∠DFB .⑵.由PD ⊥平面ABCD ,故DP →=(0,0,1)是平面ABCD 的一个法向量;由⑴知,PB ⊥平面DEF ,故BP →=(-λ,-1,1)是平面DEF 的一个法向量.若面DEF 与面ABCD 所成二面角的大小为π3,则cos π3=1/(2+λ2)12=12,解得λ=2.故DC /BC =1λ=22,故当面DEF 与面ABCD 所成二面角的大小为π3时,DC /BC =22.20.某厂用鲜牛奶在某台设备上生产A ,B 两种奶制品.生产1吨A 产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B 产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B 产品的产量不超过A 产品产量的2倍,设备每天生产A ,B 两种产品时间之和不超过12小时.假定每天可获取的鲜牛奶数量W (单位:吨)是一个随机变量,其分布列为该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z (单位:元)是一个随机变量.⑴.求Z 的分布列和均值;⑵.若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.【解析】设每天A ,B 两种产品的生产数量分别为x ,y ,相应的获利为Z ,则有2 1.5,1.512,20,0, 0x y W x y x y x y +≤⎧⎪+≤⎪⎨-≥⎪⎪≥≥⎩①,目标函数为z =1000x +1200y .当W =12时,①表示的平面区域如图1,三个顶点分别为A (0,0),B (2.4,2.8),C (6,0).将z =1000x +1200y 变形为561200z y x =-+,当x =2.4,y =2.8时,直线l :561200zy x =-+在y轴上的截距最大,最大获利Z =z max =2.4×1000+2.8×1200=8160.当W =15时,(1)表示的平面区域如图2,三个顶点分别为A (0,0),B (3,6),C (7.5,0).将z =1000x +1200y 变形为561200zy x =-+,当x =3,y =6时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利Z =z max =3×1000+6×1200=10200.当W =18时,(1)表示的平面区域如图3,四个顶点分别为A (0,0),B (3,6),C (6,4),D (9,0).将z =1000x +1200y 变形为561200z y x =-+,当x =6,y =4时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利Z =z max =6×1000+4×1200=10800.故最大获利Z 的分布列为因此,E (Z )=8160×0.3+10200×0.5+10800×0.2=9708.⑵.由⑴知,一天最大获利超过10000元的概率P 1=P (Z >10000)=0.5+0.2=0.7,由二项分第20题解答图1 第20题解答图2第20题解答图3布,3天中至少有1天最大获利超过10000元的概率为P =1-(1-P 1)3=0.973.21.一种作图工具如图1所示.O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处铰链与ON 连结,MN 上的栓子D 可沿滑槽AB 滑动,且DN =ON =1,MN =3,当栓子D 在滑槽AB 内作往复运动时,带动N 绕O 转动一周(D 不动时,N 也不动),M 处的笔尖画出的曲线记为C ,以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系.(1)求曲线C 的方程;(2)设动直线l 与两定直线l 1:x -2y =0和l 2:x +2y =0分别交于P ,Q 两点.若直线l 总与曲线C 有且只有一个公共点,试探究:△OPQ 的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.【解析】(1)设点D (t,0)(|t |≤2),N (x 0,y 0),M (x ,y ),依题意,MD →=2DN →,且|DN →|=|ON →|=1,所以(t -x ,-y )=2(x 0-t ,y 0),且⎩⎪⎨⎪⎧ (x 0-t )2+y 20=1,x 20+y 20=1.即⎩⎪⎨⎪⎧t -x =2x 0-2t ,y =-2y 0,且t (t -2x 0)=0.由于当点D 不动时,点N 也不动,所以t 不恒等于0,于是t =2x 0,故x 0=x 4,y 0=-y 2,代入x 20+y 20=1,可得x 216+y 24=1,即所求曲线C 的方程为x 216+y 24=1. (2)①当直线l 的斜率不存在时,直线l 为x =4或x =-4,都有S △OPQ =12×4×4=8.②当直线l 的斜率存在时,设直线l :y =kx +m ⎝⎛⎭⎫k ≠±12,由⎩⎪⎨⎪⎧y =kx +m ,x 2+4y 2=16,消去y ,可得(1+4k 2)x 2+8kmx +4m 2-16=0.因为直线l 总与椭圆C 有且只有一个公共点,所以Δ=64k 2m 2-4(1+4k 2)(4m 2-16)=0,即m 2=16k 2+4.(*1)又由⎩⎪⎨⎪⎧y =kx +m ,x -2y =0,可得P ⎝ ⎛⎭⎪⎫2m 1-2k ,m 1-2k ;同理可得Q ⎝ ⎛⎭⎪⎫-2m 1+2k ,m 1+2k .由原点O 到直线PQ 的距离为d =|m |1+k 2和PQ =1+k 2|x P -x Q |,可得S △OPQ =12·PQ ·d =12|m |·|x P -x Q |=12·|m |⎪⎪⎪⎪⎪⎪2m 1-2k +2m 1+2k =⎪⎪⎪⎪⎪⎪2m 21-4k 2.(*2)将(*1)代入(*2)得,S △OPQ =⎪⎪⎪⎪⎪⎪2m 21-4k 2=8|4k 2+1||4k 2-1|.当k 2>14时,S △OPQ =8⎝ ⎛⎭⎪⎫4k 2+14k 2-1=8⎝ ⎛⎭⎪⎫1+24k 2-1>8;当0≤k 2<14时,S △OPQ =8⎝ ⎛⎭⎪⎫4k 2+11-4k 2=8⎝ ⎛⎭⎪⎫-1+21-4k 2.因0≤k 2<14,则0<1-4k 2≤1,21-4k 2≥2,所以S △OPQ =8⎝ ⎛⎭⎪⎫-1+21-4k 2≥8,当且仅当k =0时取等号.所以当k =0时,S △OPQ 的最小值为8.综合①②可知,当直线l 与椭圆C 在四个顶点处相切时,△OPQ 的面积取得最小值8. 22.已知数列{a n }的各项均为正数,b n =n (1+1n)n a n ,n ∈N *,e 为自然对数的底数.⑴.求函数f (x )=x +1-e x 的单调区间,并比较(1+1n )n 与e 的大小;⑵.计算,,,由此推测计算的公式,并给出证明;⑶.令c n =(a 1a 2…a n )1n ,数列{a n },{c n }的前n 项和分别记为S n ,T n ,证明:T n <e S n . 【解析】⑴.f (x )的定义域为(-∞,+∞),f ′(x )=1-e x .当f (x )>0,即x <0时,f (x )单调递增;当f (x )<0,即x >0时,f (x )单调递减.故f (x )的单调递增区间为(-∞,0),单调递减区间为(0,+∞).当x >0时,f (x )<f (0)=0,即1+x <e x .令x =1n ,得1+1n <e 1n ,即(1+1n )n <e .①⑵.11111(1)1121b a =⋅+=+=;22212121212122(1)(21)32b b b b a a a a =⋅=⋅+=+=;123312123123b b b bb b a a a a a a =⋅=32·3(1+13)3=(3+1)3=43.由此推测:1212(1).n n nb b b n a a a=+L L ② 下面用数学归纳法证明②.(1)当n =1时,左边=右边=2,②成立.(2)假设当n =k 时,②成立,即1212(1)k k kb b b k a a a =+L L .当n =k +1时,1111(1)(1)1k k k b k a k +++=+++,由归纳假设可得 111211211211211(1)(1)(1)(2)1k k k k k k k k k k k b b b b b b b b k k k a a a a a a a a k ++++++=⋅=+++=++L L L L .故当n =k +1时,②也成立.根据(1)(2),可知②对一切正整数n 都成立.⑶.由c n 的定义,②,算术-几何平均不等式,b n 的定义及①得123n n T c c c c =++++=L 111131211212312()()()()nn a a a a a a a a a ++++L L111131212312112()()()()2341nn b b b b b b b b b n =+++++L L 12312112122334(1)n b b b b b b b b b n n ++++++≤++++⨯⨯⨯+L L121111111[][]1223(1)2334(1)(1)n b b b n n n n n n =+++++++++⋅⨯⨯+⨯⨯++L L L 1211111(1)()()1211n b b b n n n n =-+-++-+++L 1212n b b b n <+++L 1212111(1)(1)(1)12n n a a a n=++++++L 12e e e n a a a <+++L =n eS . 即T n <e S n .2015普通高等学校招生全国统一考试(广东文)一、选择题1.若集合M ={-1,1},N ={-2,1,0},则M ∩N =( ) A .{0,-1} B .{1} C .{0} D .{-1,1} 【解析】M ∩N ={1},故选C .2.已知i 是虚数单位,则复数(1+i)2=( ) A .2i B .-2i C .2 D .-2【解析】(1+i)2=1+2i +i 2=1+2i -1=2i ,故选D .3.下列函数中,既不是奇函数,也不是偶函数的是( )A .y =x +sin 2xB .y =x 2-cos xC .y =2x +12x D .y =x 2+sin x【解析】函数f (x )=x 2+sin x 的定义域为R ,关于原点对称,因f (1)=1+sin 1,f (-1)=1-sin 1,故函数f (x )=x 2+sin x 既不是奇函数,也不是偶函数;函数f (x )=x 2-cos x 的定义域为R ,关于原.4.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≤2,x +y ≥0,x ≤4,则z =2x +3y 的最大值为( )A .2B .5C .8D .10 【解析】作出可行域如图所示:作直线l 0:2x +3y =0,再作一组平行于l 0的直线l :2x +3y =z ,当直线l 经过点A 时,z =2x +3y取得最大值,由224x y x +=⎧⎨=⎩得:41x y =⎧⎨=-⎩,故点A 的坐标为(4,-1),故z max =2×4+3×(-1)=5,故选C .5.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A =32且b <c ,则b =( )A .3B .2 2C .2D . 3【解析】由余弦定理得:a 2=b 2+c 2-2bc cos A ,故4=b 2+12-2×b ×23×32,即b 2-6b +8=0,解得:b =2或b =4,因b <c ,故b =2,故选B .6.若直线l 1和l 2是异面直线,l 1在平面α内,l 2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A .l 与l 1,l 2都不相交B .l 与l 1,l 2都相交C .l 至多与l 1,l 2中的一条相交D .l 至少与l 1,l 2中的一条相交 【解析】若直线l 1和l 2是异面直线,l 1在平面α内,l 2在平面β内,l 是平面α与平面β的交线,则l 至少与l 1,l 2中的一条相交,故选A .7.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为( )A .0.4B .0.6C .0.8D .1 【解析】5件产品中有2件次品,记为a ,b ,有3件合格品,记为c ,d ,e ,从这5件产品中任取2件,有10种,分别是(a ,b ),(a ,c ),(a ,d ),(a ,e ),(b ,c ),(b ,d ),(b ,e ),(c ,d ),(c ,e ),(d ,e ),恰有一件次品,有6种,分别是(a ,c ),(a ,d ),(a ,e ),(b ,c ),(b ,d ),(b ,e ),设事件A = “恰有一件次品”,则P (A )=0.6,故选B .8.已知椭圆x 225+y 2m2=1(m >0)的左焦点为F 1(-4,0),则m =( )A .2B .3C .4D .9【解析】由题意得:m 2=25-16=9,因m >0,故m =3,故选C .9.在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,AB →=(1,-2),AD →=(2,1),则AD →·AC →=( )A .2B .3C .4D .510.若集合E ={(p ,q ,r ,s )|0≤p <s ≤4,0≤q <s ≤4,0≤r <s ≤4且p ,q ,r ,s ∈N },F ={(t ,u ,v ,w )|0≤t <u ≤4,0≤v <w ≤4且t ,u ,v ,w ∈N },用card(X )表示集合X 中的元素个数,则card(E )+card(F )=( )A .200B .150C .100D .50 【解析】当s =4时,p ,q ,r 都是取0,1,2,3中的一个,有4×4×4=64种,当s =3时,p ,q ,r 都是取0,1,2中的一个,有3×3×3=27种,当s =2时,p ,q ,r 都是取0,1中的一个,有2×2×2=8种,当s =1时,p ,q ,r 都取0,有1种,故card(E ) =64+27+8+1=100,当t =0时,u 取1,2,3,4中的一个,有4种,当t =1时,u 取2,3,4中的一个,有3种,当t =2时,u 取3,4中的一个,有2种,当t =3时,u 取4,有1种,故t 、u 的取值有1+2+3+4=10种,同理,v 、w 的取值也有10种,故card(F )=10×10=100,故card(E )+card(F )=100+100=200,故选D .二、填空题11.不等式-x 2-3x +4>0的解集为________.(用区间表示)【解析】由-x 2-3x +4<0得:-4<x <1,故不等式-x 2-3x +4>0的解集为(-4,1).12.已知样本数据x 1,x 2,…,x n 的均值x =5,则样本数据2x 1+1,2x 2+1,…,2x n +1的均值为________.13.若三个正数a ,b ,c 成等比数列,其中a =5+26,c =5-26,则b =________. 【解析】因三个正数a ,b ,c 成等比数列,故b 2=ac =(5+26)(5-26)=1,因b >0,故b =1.(二)选做题14.(坐标系与参数方程选做题)在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线C 1的极坐标方程为ρ(cos θ+sin θ)=-2,曲线C 2的参数方程为⎩⎨⎧x =t 2y =22t(t 为参数),则C 1与C 2交点的直角坐标为________. 【解析】曲线C 1的直角坐标方程为x +y =-2,曲线C 2的普通方程为y 2=8x ,由228x y y x+=-⎧⎨=⎩得:x =2,y =-4,故C 1与C 2交点的直角坐标为(2,-4).15.(几何证明选讲选做题)如图,AB 为圆O 的直径,E 为AB 延长线上一点,过E 作圆O 的切线,切点为C ,过A 作直线EC 的垂线,垂足为D .若AB =4,CE =23,则AD =________.三、解答题16.(本小题满分12分)已知tan α=2.(1)求tan(α+π4)的值;(2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.【解析】⑴.ta n(α+π4)=tan α+tan π41-tan αtanπ4=tan α+11-tan α=2+11-2×1=-3;⑵.sin2αsin 2α+sin αcos α-cos2α-1=2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×24+2-2=1. 17.(本小题满分12分)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图所示.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?【解析】⑴.由(0.002+0.0095+0.011+0.0125+x +0.005+0.0025)×20=1得:x =0.0075,所以直方图中x 的值是0.0075;⑵.月平均用电量的众数是12(220+240)=230,因(0.002+0.0095+0.011)×20=0.45<0.5,故月平均用电量的中位数在[220,240)内,设中位数为a ,由(0.002+0.0095+0.011)×20+0.0125×(a -220)=0.5得:a =224,故月平均用电量的中位数是224;⑶.月平均用电量为[220,240)的用户有0.0125×20×100=25户,月平均用电量为[240,260)的用户有0.0075×20×100=15户,月平均用电量为[260,280)的用户有0.005×20×100=10户,月平均用电量为[280,300]的用户有0.0025×20×100=5户,抽取比例为11÷(25+15+10+5)=15,故月平均用电量在[220,240)的用户中应抽取25×15=5户.18.(本小题满分14分)如图,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,PD =PC =4,AB =6,BC =3.(1)证明:BC ∥平面PDA ; (2)证明:BC ⊥PD ;(3)求点C 到平面PDA 的距离.【解析】⑴.因四边形ABCD 是长方形,故BC ∥AD ,因BC ⊄平面PDA ,AD ⊂平面PDA ,故BC ∥平面PDA ;⑵.因四边形ABCD 是长方形,故BC ⊥CD ,因平面PDC ⊥平面ABCD ,平面PDC ∩平面ABCD =CD ,BC ⊂平面ABCD ,故BC ⊥平面PDC ,因PD ⊂平面PDC ,故BC ⊥PD ;⑶.取CD 的中点E ,连结AE 和PE ,因PD =PC ,故PE ⊥CD ,在RtΔPED 中,PE =7,因平面PDC ⊥平面ABCD ,平面PDC ∩平面ABCD =CD ,PE ⊂平面PDC ,故PE ⊥平面ABCD ,由⑵知:BC ⊥平面PDC ,由⑴知:BC ∥AD ,故AD ⊥平面PDC ,因PD ⊂平面PDC ,故AD ⊥PD ,设点C。

2015年高考文科数学湖北卷及答案解析

2015年高考文科数学湖北卷及答案解析

绝密★启用前2015年普通高等学校招生全国统一考试(湖北卷)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟. 注意事项:1.答卷前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑,再在答题卡上对应的答题区域内答题.写在试题卷、草稿纸和答题卡上的非答题区域均无效.5.考试结束后,请将本试题卷和答题卡一并上交.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.i 为虚数单位,607i= ( )A .i -B .iC .1-D .12.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )A .134石B .169石C .338石D .1 365石 3.命题“0(0,)x ∃∈+∞,00ln 1x x =-”的否定是( ) A .0(0,)x ∃∈+∞,00ln 1x x ≠- B .0(0,)x ∃∉+∞,00ln 1x x =- C .(0,)x ∀∈+∞,ln 1x x ≠-D .(0,)x ∀∉+∞,ln 1x x =-4.已知变量x 和y 满足关系0.11y x =-+,变量y 与z 正相关.下列结论中正确的是 ( )A .x 与y 负相关,x 与z 负相关B .x 与y 正相关,x 与z 正相关C .x 与y 正相关,x 与z 负相关D .x 与y 负相关,x 与z 正相关5.1l ,2l 表示空间中的两条直线,若p :1l ,2l 是异面直线;q :1l ,2l 不相交,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件6.函数256()4||lg 3x x f x x x -+=-+-的定义域为( )A .(2,3)B .(2,4]C .(2,3)(3,4] D .(1,3)(3,6]-7.设x ∈R ,定义符号函数1,0,sgn 0,0,1,0,x x x x >⎧⎪==⎨⎪-<⎩则( )A .|||sgn |x x x =B .||sgn ||x x x =C .||||sgn x x x =D .||sgn x x x =8.在区间[0,1]上随机取两个数x ,y ,记1p 为事件“12x y +≤”的概率,2p 为事件“12xy ≤”的概率,则 ( )A .1212p p << B .1212p p << C .2112p p <<D .2112p p << 9.将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则 ( )A .对任意的a ,b ,12e e >B .当a b >时,12e e >;当a b <时,12e e <C .对任意的a ,b ,12e e <D .当a b >时,12e e <;当a b <时,12e e >10.已知集合22{(,)1,,}A x y x y x y =+∈Z ≤,{(,)||2,||2,,}B x y x y x y =∈Z ≤≤,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为( ) A .77B .49C .45D .30第Ⅱ卷(非选择题 共100分)二、填空题:本大题共7小题,每小题5分,共35分.把答案填在题中的横线上. 11.已知向量OA AB ⊥,||3OA =,则 OA OB =___________.12.若变量,x y 满足约束条件4,2,30,x y x y x y +⎧⎪-⎨⎪-⎩≤≤≥则3x y +的最大值是___________.13.函数2π()2sin sin()2f x x x x =+-的零点个数为___________.14.某电子商务公司对10 000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(Ⅰ)直方图中的a =_________;(Ⅱ)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为_________.15.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD =_________m .16.如图,已知圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点A ,B (B 在A 的上方),且2AB =.(Ⅰ)圆C 的标准方程为_________;(Ⅰ)圆C 在点B 处的切线在x 轴上的截距为_________.17. a 为实数,函数2()||f x x ax =-在区间[0,1]上的最大值记为()g a .当a =_________时,()g a 的值最小.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________三、 解答题:本大题共5小题,共65分.解答应写出必要的文字说明、证明过程或演算步骤. 18.(本小题满分12分)某同学用“五点法”画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一个周期内的图象时,列表并填入了部分数据,如下表:x ωϕ+0 π2 π3π2 2πxπ35π6sin()A x ωϕ+55-(Ⅰ)请将上表数据补充完整,并直接写出函数()f x 的解析式; (Ⅱ)将()y f x =图象上所有点向左平行移动π6个单位长度,得到()y g x =的图象,求()y g x =的图象离原点O 最近的对称中心.19.(本小题满分12分)设等差数列{}n a 的公差为d ,前n 项和为n S ,等比数列{}n b 的公比为q ,已知11b a =,22b =,q d =,10100S =.(Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)当1d >时,记n n nac b =,求数列{}n c 的前n 项和n T .20.(本小题满分13分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马P ABCD -中,侧棱PD ⊥底面ABCD ,且PD CD =,点E 是PC 的中点,连接DE ,BD ,BE .(Ⅰ)证明:DE PBC ⊥平面.试判断四面体EBCD 是否为鳖臑.若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(Ⅱ)记阳马P ABCD -的体积为1V ,四面体EBCD 的体积为2V ,求12V V 的值.21.(本小题满分14分)设函数()f x ,()g x 的定义域均为R ,且()f x 是奇函数,()g x 是偶函数,()f x +()g x e x =,其中e 为自然对数的底数.(Ⅰ)求()f x ,()g x 的解析式,并证明:当0x >时,()0f x >,()1g x >; (Ⅱ)设0a ≤,1b ≥,证明:当0x >时,()()(1)()(1)f x ag x a bg x b x+-+-<<. 22.(本小题满分14分)一种画椭圆的工具如图1所示,O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且DN ON =1=,3MN =.当栓子D 在滑槽AB 内作往复运动时,带动N 绕O 转动,M 处的笔尖画出的椭圆记为C ,以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系. (Ⅰ)求椭圆C 的方程;(Ⅱ)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l总与椭圆C 有且只有一个公共点,试探究:△OPQ 的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.2015年普通高等学校招生全国统一考试(湖北卷)数学(文科)答案解析第Ⅰ卷)(]3,4,故选所示:S S1S【提示】由题意可得:()()()()(){}0001011,01,0A -=-,,,,,,,()()()()()()()(){()()0,00,10,201021,11,21112,B =----,,,,,,,1,0,,,,,,()()()()()()()()()()2,02,12,22122-1-21,11,01112-------,,,,,,,,,,,,,,()()()()}22212,02,1------,,,,,根据定义可求【考点】集合的基本定义及运算.第Ⅱ卷二、填空题 11.【答案】9【解析】由OA AB ⊥,得0OA AB = .所以()2OA OB OA OA AB OA OA AB=+=+22039OA =+==.【提示】由已知结合平面向量是数量积运算求得答案. 【考点】平面向量的数量积运算,向量模的求法. 12.【答案】10【解析】作出约束条件表示的可行域如下图所示:易知可行域边界三角形的三个顶点坐标分别是3,11,31,3--(),(),(),平行移动直线3y x =-,求可知当直线过点(3,1)时3x y +取最大值10.【提示】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z 的最大值.【考点】简单线性规划.13.【答案】2【解析】()2222sin sin 2sin cos sin 22f x x x x x x x x x π⎛⎫=+-=-=- ⎪⎝⎭,令()0f x =,则2sin2x x =,则函数()f x 的零点个数即为函数sin 2y x =与函数2y x =图像的交点个数,作出函数图像知,两函数图像的交点有2个,即函数()f x 的零点个数为2.【提示】将函数进行化简,由()0f x =,转化为两个函数的交点个数进行求解即可. 【考点】函数和方程之间的关系. 14.【答案】(Ⅰ)3 (Ⅱ)6000【解析】(Ⅰ)由频率分布直方图知,()1.5 2.5 2.00.80.20.11a +++++⨯=,解得3a =. (Ⅱ)消费金额在区间[]0.5,0.9内的购物者的人数为()100003 2.00.80.20.16000⨯+++⨯=.【提示】(Ⅰ)频率分布直方图中每一个矩形的面积表示频率,先算出频率,在根据频率和为1,算出a 的值.(Ⅱ)先求出消费金额在区间[]0.5,0.9内的购物者的频率,再求频数.【考点】频率分布直方图 15.【答案】1006【解析】依题意,在ABC ∆中,600AB =,30BAC ∠=︒,753045ACB ∠=︒-︒=︒,由正弦定理得sin sin BC AB BAC ACB =∠∠,即600sin30sin 45BC =︒︒,所以3002BC =.在BCD △中,30CBD ∠=︒,tan 3002tan301006CD BC CBD =∠=︒=.【提示】设此山高h m (),在BCD △中,利用仰角的正切表示出BC ,进而在ABC △中利用正弦定理求得h .【考点】正弦、余弦定理.16.【答案】(Ⅰ)22(1)(2)2x y -+-= (Ⅱ)①②③【解析】(Ⅰ)由题意设圆心()1,C r (r 为圆C 的半径),则222122AB r ⎛⎫=+= ⎪⎝⎭,解得2r =,所以圆C 的方程为()()22122x y -+-=.(Ⅱ)令0x =,得21y =±,所以点()0,21B +,又点()1,2C ,所以直线BC 的斜率为1BCk =-,所以圆C 在点B 处的切线方程为()210y x -+=-,即()21y x =++,令0y =,得切线在x 轴上的截距为21--.【提示】(Ⅰ)确定圆心与半径,即可求出圆C 的标准方程.a ⎡⎤a ⎡⎤12a a a =-()12a f ⎫<⎪⎭;当(12a f ⎛⎫< ⎪⎝⎭ ()1a f ⎛⎫= ⎪129()9n - 1299n -⎛⎫ ⎪⎝⎭ 112n n --,于是PD BC ⊥,PD CD D =,所以,又因为PD CD =PC 的中点,PC BC C =,故平面PBC .DE ⊥平面PBC ,可知四面体EBCD 是一个鳖臑,其四个面的直角分别是BCD ∠是阳马P ABCD -的高,所以11133ABCD V S PD BC CD PD ==; 是鳖臑D BCE -1136BCE S DE BC CE DE ∆=. 22DE CE CD ==,2 4.BC CD PD CD PDCE DE BC CE DE == 证明BC ⊥平面PCD DE ,角三角形,即可得出结论.由已知,是棱锥P ABCD ﹣的高,所以13ABCD PD BC CD PD =,由(Ⅰ)16BCE DE BC CE DE =,即可求)x -,证明见解析.1122|||||||221212P Q m m d m x x m k k =-=+-+将①代入②得,222241281441OPQk m S k k +==--△, 2224128()8(1)84141OPQ k S k k +==+>--△;2412k +【提示】(Ⅰ)根据条件求出a b ,即可求椭圆C 的方程.(Ⅱ)联立直线方程和椭圆方程,求出原点到直线的距离,结合三角形的面积公式进行求解即可.【考点】椭圆方程的求解,直线和圆锥曲线的位置关系.。

2015年湖北省高考数学试卷(文科)

2015年湖北省高考数学试卷(文科)

2015年湖北省高考数学试卷(文科)一、选择题:本大题10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(3分)i为虚数单位,i607=()A.﹣i B.i C.1 D.﹣12.(3分)我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()A.134石B.169石C.338石D.1365石3.(3分)命题“∃x0∈(0,+∞),lnx=x﹣1”的否定是()A.∃x0∈(0,+∞),lnx≠x﹣1 B.∃x∉(0,+∞),lnx=x﹣1C.∀x∈(0,+∞),lnx≠x﹣1 D.∀x∉(0,+∞),lnx=x﹣14.(3分)已知变量x和y满足关系y=﹣0.1x+1,变量y与z正相关,下列结论中正确的是()A.x与y负相关,x与z负相关B.x与y正相关,x与z正相关C.x与y正相关,x与z负相关D.x与y负相关,x与z正相关5.(3分)l1,l2表示空间中的两条直线,若p:l1,l2是异面直线,q:l1,l2不相交,则()A.p是q的充分条件,但不是q的必要条件B.p是q的必要条件,但不是q的充分条件C.p是q的充分必要条件D.p既不是q的充分条件,也不是q的必要条件6.(3分)函数f(x)=+lg的定义域为()A.(2,3)B.(2,4] C.(2,3)∪(3,4] D.(﹣1,3)∪(3,6] 7.(3分)设x∈R,定义符号函数sgnx=,则()A.|x|=x|sgnx| B.|x|=xsgn|x| C.|x|=|x|sgnx D.|x|=xsgnx8.(3分)在区间[0,1]上随机取两个数x,y,记p1为事件“x+y≤”的概率,P2为事件“xy≤”的概率,则()A.p1<p2<B.C.p2<D.9.(3分)将离心率为e1的双曲线C1的实半轴长a和虚半轴长b(a≠b)同时增加m(m>0)个单位长度,得到离心率为e2的双曲线C2,则()A.对任意的a,b,e1>e2B.当a>b时,e1>e2;当a<b时,e1<e2C.对任意的a,b,e1<e2D.当a>b时,e1<e2;当a<b时,e1>e210.(3分)已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B中元素的个数为()A.77 B.49 C.45 D.30二、填空题11.(3分)已知向量⊥,||=3,则•= .12.(3分)设变量x,y满足约束条件,则3x+y的最大值为.13.(3分)f(x)=2sin xsin(x+)﹣x2的零点个数为.14.(3分)某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(1)直方图中的a= .(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为.15.(3分)如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD= m.16.(3分)如图,已知圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2.(1)圆C的标准方程为.(2)圆C在点B处切线在x轴上的截距为.17.(3分)a为实数,函数f(x)=|x2﹣ax|在区间[0,1]上的最大值记为g(a).当a= 时,g(a)的值最小.三、解答题18.(12分)某同学将“五点法”画函数f(x)=Asin(wx+φ)(w>0,|φ|<)在某一个时期内的图象时,列表并填入部分数据,如下表:的解析式;(2)将y=f(x)图象上所有点向左平移个单位长度,得到y=g(x)图象,求y=g(x)的图象离原点O最近的对称中心.19.(12分)设等差数列{an }的公差为d,前n项和为Sn,等比数列{bn}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{an },{bn}的通项公式(2)当d>1时,记cn =,求数列{cn}的前n项和Tn.20.(13分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马P﹣ABCD中,侧棱PD⊥底面ABCD,且PD=CD,点E是PC的中点,连接DE、BD、BE.(Ⅰ)证明:DE⊥平面PBC.试判断四面体EBCD是否为鳖臑.若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;(Ⅱ)记阳马P﹣ABCD的体积为V1,四面体EBCD的体积为V2,求的值.21.(14分)设函数f(x),g(x)的定义域均为R,且f(x)是奇函数,g(x)是偶函数,f(x)+g(x)=e x,其中e为自然对数的底数.(1)求f(x),g(x)的解析式,并证明:当x>0时,f(x)>0,g(x)>1;(2)设a≤0,b≥1,证明:当x>0时,ag(x)+(1﹣a)<<bg(x)+(1﹣b).22.(14分)一种画椭圆的工具如图1所示.O是滑槽AB的中点,短杆ON可绕O转动,长杆MN通过N处铰链与ON连接,MN上的栓子D可沿滑槽AB滑动,且DN=ON=1,MN=3,当栓子D在滑槽AB内作往复运动时,带动N绕O转动,M处的笔尖画出的椭圆记为C,以O为原点,AB所在的直线为x轴建立如图2所示的平面直角坐标系.(1)求椭圆C的方程;(2)设动直线l与两定直线l1:x﹣2y=0和l2:x+2y=0分别交于P,Q两点.若直线l总与椭圆C有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.2015年湖北省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前2015年普通高等学校招生全国统一考试(湖北卷)数 学(文史类)本试题卷共5页,22题。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1.答卷前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.i 为虚数单位,607i =A .i -B .iC .1-D .12.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534 石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为 A .134石 B .169石 C .338石 D .1365石3.命题“0(0,)x ∃∈+∞,00ln 1x x =-”的否定是 A .0(0,)x ∃∈+∞,00ln 1x x ≠- B .0(0,)x ∃∉+∞,00ln 1x x =- C .(0,)x ∀∈+∞,ln 1x x ≠-D .(0,)x ∀∉+∞,ln 1x x =-4.已知变量x 和y 满足关系0.11y x =-+,变量y 与z 正相关. 下列结论中正确的是 A .x 与y 负相关,x 与z 负相关 B .x 与y 正相关,x 与z 正相关 C .x 与y 正相关,x 与z 负相关 D .x 与y 负相关,x 与z 正相关5.12,l l 表示空间中的两条直线,若p :12,l l 是异面直线;q :12,l l 不相交,则 A .p 是q 的充分条件,但不是q 的必要条件 B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件6.函数256()lg 3x x f x x -+=-的定义域为A .(2,3)B .(2,4]C .(2,3)(3,4]D .(1,3)(3,6]-7.设x ∈R ,定义符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩则 A .|||sgn |x x x = B .||sgn ||x x x = C .||||sgn x x x =D .||sgn x x x =8. 在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≤”的概率,2p 为事件“12xy ≤” 的概率,则A .1212p p << B .1212p p << C .2112p p <<D .2112p p << 9.将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位 长度,得到离心率为2e 的双曲线2C ,则 A .对任意的,a b ,12e e > B .当a b >时,12e e >;当a b <时,12e e < C .对任意的,a b ,12e e <D .当a b >时,12e e <;当a b <时,12e e > 10.已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,定义集合 12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为 A .77 B .49 C .45 D .30二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号.......的位 置上. 答错位置,书写不清,模棱两可均不得分. 11.已知向量OA AB ⊥,||3OA =,则OA OB ⋅=_________.12.若变量,x y 满足约束条件4,2,30,x y x y x y +≤⎧⎪-≤⎨⎪-≥⎩则3x y +的最大值是_________.13.函数2π()2sin sin()2f x x x x =+-的零点个数为_________.14.某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额 (单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示. (Ⅰ)直方图中的a =_________;(Ⅱ)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为_________.15.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD =_________m.16.如图,已知圆C 与x 轴相切于点(1,0)T ,与y 轴正半 轴交于两点A ,B (B 在A 的上方),且2AB =. (Ⅰ)圆C 的标准..方程为_________; (Ⅱ)圆C 在点B 处的切线在x 轴上的截距为_________.17. a 为实数,函数2()||f x x ax =-在区间[0,1]上的最大值记为()g a . 当a =_________时,()g a 的值最小.第16题图第14题图 第15题图AB三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)某同学用“五点法”画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一个周期内的图象时,列表并填入了部分数据,如下表:(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置...........,并直接写出函数()f x 的解 析式;(Ⅱ)将()y f x =图象上所有点向左平行移动π6个单位长度,得到()y g x =图象,求 ()y g x =的图象离原点O 最近的对称中心. 19.(本小题满分12分)设等差数列{}n a 的公差为d ,前n 项和为n S ,等比数列{}n b 的公比为q .已知11b a =,22b =,q d =,10100S =.(Ⅰ)求数列{}n a ,{}n b 的通项公式; (Ⅱ)当1d >时,记nn na cb =,求数列{}nc 的前n 项和n T . 20.(本小题满分13分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马P ABCD -中,侧棱PD ⊥底面ABCD ,且PD CD =,点E 是PC 的 中点,连接,,DE BD BE .(Ⅰ)证明:DE ⊥平面PBC . 试判断四面体EBCD 是否为鳖臑,若是,写出其每个面的直角(只需 写出结论);若不是,请说明理由;(Ⅱ)记阳马P ABCD -的体积为1V ,四面体EBCD 的体积为2V ,求12V V 的值. 第20题图21.(本小题满分14分)设函数()f x ,()g x 的定义域均为R ,且()f x 是奇函数,()g x 是偶函数, ()()e x f x g x +=,其中e 为自然对数的底数.(Ⅰ)求()f x ,()g x 的解析式,并证明:当0x >时,()0f x >,()1g x >; (Ⅱ)设0a ≤,1b ≥,证明:当0x >时,()()(1)()(1)f x ag x a bg x b x+-<<+-. 22.(本小题满分14分)一种画椭圆的工具如图1所示.O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且1DN ON ==,3MN =.当栓子D 在滑槽AB 内作往复运动时,带动..N 绕O 转动,M 处的笔尖画出的椭圆记为C .以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系. (Ⅰ)求椭圆C 的方程;(Ⅱ)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l总与椭圆C 有且只有一个公共点,试探究:△OPQ 的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.第22题图1第22题图2绝密★启用前2015年普通高等学校招生全国统一考试(湖北卷)数学(文史类)试题参考答案一、选择题(本大题共10小题,每小题5分,共50分)1.A 2.B 3.C 4.A 5.A 6.C 7.D 8.B 9.D 10.C 二、填空题(本大题共7小题,每小题5分,共35分)11.9 12.10 13.2 14.(Ⅰ)3;(Ⅱ)600015. 16.(Ⅰ)22(1)(2x y -+=;(Ⅱ)1-- 17.2三、解答题(本大题共5小题,共65分) 18.(12分)(Ⅰ)根据表中已知数据,解得π5,2,6A ωϕ===-. 数据补全如下表:且函数表达式为π()5sin(2)6f x x =-.(Ⅱ)由(Ⅰ)知π()5sin(2)6f x x =-,因此 πππ()5sin[2()]5sin(2)666g x x x =+-=+.因为sin y x =的对称中心为(π,0)k ,k ∈Z . 令π2π6x k +=,解得ππ212k x =-,k ∈Z .即()y g x =图象的对称中心为ππ0212k -(,),k ∈Z ,其中离原点O 最近的对称中心为π(,0)12-. 19.(12分)(Ⅰ)由题意有,111045100,2,a d a d +=⎧⎨=⎩ 即112920,2,a d a d +=⎧⎨=⎩解得11,2,a d =⎧⎨=⎩ 或19,2.9a d =⎧⎪⎨=⎪⎩ 故121,2.n n n a n b -=-⎧⎪⎨=⎪⎩或11(279),929().9nn n a n b -⎧=+⎪⎪⎨⎪=⋅⎪⎩(Ⅱ)由1d >,知21n a n =-,12n n b -=,故1212n n n c --=,于是 2341357921122222n n n T --=++++++, ① 2345113579212222222n n n T -=++++++. ② ①-②可得 221111212323222222n n n n n n T --+=++++-=-, 故n T 12362n n -+=-.20.(13分)(Ⅰ)因为PD ⊥底面ABCD ,所以PD BC ⊥.由底面ABCD 为长方形,有BC CD ⊥,而PDCD D =,所以BC ⊥平面PCD . DE ⊂平面PCD ,所以BC DE ⊥.又因为PD CD =,点E 是PC 的中点,所以DE PC ⊥. 而PC BC C =,所以DE ⊥平面PBC .由BC ⊥平面PCD ,DE ⊥平面PBC ,可知四面体EBCD 的四个面都是直角三角形,即四面体EBCD 是一个鳖臑,其四个面的直角分别是,,,.BCD BCE DEC DEB ∠∠∠∠ (Ⅱ)由已知,PD 是阳马P ABCD -的高,所以11133ABCD V S PD BC CD PD =⋅=⋅⋅;由(Ⅰ)知,DE 是鳖臑D BCE -的高, BC CE ⊥,所以21136BCE V S DE BC CE DE ∆=⋅=⋅⋅.在Rt △PDC 中,因为PD CD =,点E 是PC 的中点,所以DE CE ==, 于是 12123 4.16BC CD PD V CD PD V CE DEBC CE DE ⋅⋅⋅===⋅⋅⋅21.(14分) (Ⅰ)由()f x , ()g x 的奇偶性及()()e x f x g x +=, ①得 ()()e .x f x g x --+= ②联立①②解得1()(e e )2x x f x -=-,1()(e e )2x x g x -=+.当0x >时,e 1x >,0e 1x -<<,故()0.f x > ③又由基本不等式,有1()(e e )12x x g x -=+=,即() 1.g x > ④(Ⅱ)由(Ⅰ)得 2111e 1()(e )(e )(e e )()2e 2e 2x x x x x x x f x g x -''=-=+=+=, ⑤2111e 1()(e )(e )(e e )()2e 2e 2x x x x x x x g x f x -''=+=-=-=, ⑥当0x >时,()()(1)f x ag x a x>+-等价于()()(1)f x axg x a x >+-, ⑦()()(1)f x bg x b x<+-等价于()()(1).f x bxg x b x <+- ⑧设函数 ()()()(1)h x f x cxg x c x =---,由⑤⑥,有()()()()(1)h x g x cg x cxf x c '=----(1)[()1]().c g x cxf x =--- 当0x >时,(1)若0c ≤,由③④,得()0h x '>,故()h x 在[0,)+∞上为增函数,从而()(0)0h x h >=,即()()(1)f x cxg x c x >+-,故⑦成立.(2)若1c ≥,由③④,得()0h x '<,故()h x 在[0,)+∞上为减函数,从而()(0)0h x h <=,即()()(1)f x cxg x c x <+-,故⑧成立. 综合⑦⑧,得 ()()(1)()(1)f x ag x a bg x b x+-<<+-. 22.(14分)(Ⅰ)因为||||||314OM MN NO ≤+=+=,当,M N 在x 轴上时,等号成立;同理||||||312OM MN NO ≥-=-=,当,D O 重合,即MN x ⊥轴时,等号成立.所以椭圆C 的中心为原点O ,长半轴长为,短半轴长为,其方程为221.164x y +=(Ⅱ)(1)当直线l 的斜率不存在时,直线l 为4x =或4x =-,都有14482OPQ S ∆=⨯⨯=.第22题解答图(2)当直线l 的斜率存在时,设直线1:()2l y kx m k =+≠±,由22,416,y kx m x y =+⎧⎨+=⎩消去y ,可得222(14)84160k x kmx m +++-=. 因为直线l 总与椭圆C 有且只有一个公共点,所以2222644(14)(416)0k m k m ∆=-+-=,即22164m k =+. ① 又由,20,y kx m x y =+⎧⎨-=⎩ 可得2(,)1212m m P k k --;同理可得2(,)1212m m Q k k -++.由原点O 到直线PQ 的距离为d =|||P Q PQ x x =-,可得22111222||||||||222121214OPQP Q m m m S PQ d m x x m k k k ∆=⋅=-=⋅+=-+-. ② 将①代入②得,222241281441OPQk m S k k ∆+==--. 当214k >时,2224128()8(1)84141OPQ k S k k ∆+==+>--;当2104k ≤<时,2224128()8(1)1414OPQ k S k k∆+==-+--. 因2104k ≤<,则20141k <-≤,22214k ≥-,所以228(1)814OPQ S k∆=-+≥-, 当且仅当0k =时取等号.所以当0k =时,OPQ S ∆的最小值为8.综合(1)(2)可知,当直线l 与椭圆C 在四个顶点处相切时,△OPQ 的面积取得最小值8.。

相关文档
最新文档