2015年江苏省苏州市中考数学试题及答案

合集下载

2015年江苏苏州中考数学

2015年江苏苏州中考数学

Ⅰ 求证:������������ 平分 ∠������������������; Ⅱ 若 ������������ = 6,∠������������������ = 50∘ ,求 ������������ ,������������ 的长度之和(结果保留 π). 25. 如图,已知函数 ������ = ������ ������ > 0 的图象经过点 ������,������ ,点 ������ 的坐标为 2,2 .过点 ������ 作 ������������ ⊥ ������ 轴, 垂足为 ������ ,过点 ������ 作 ������������ ⊥ ������ 轴,垂足为 ������ ,������������ 与 ������������ 交于点 ������ .一次函数 ������ = ������������ + ������ 的图象 经过点 ������,������,与 ������ 轴的负半轴交于点 ������ .
第 2 页(共 11 页) 2
的值为

三、解答题(共 10 小题;共 130 分) 19. 计算: 9 + −5 − 2 − 3 . 20. 解不等式组: ������ + 1 ≥ 2, 3 ������ − 1 > ������ + 5.
1 ������ 2 +2������ +1 ������ +2 0
Ⅰ 如图 1,点 ������ 从 ������ → ������ → ������ → ������,全程共移动了
cm(用含 ������,������ 的代数式表示);
Ⅱ 如图 1,已知点 ������ 从 ������ 点出发,移动 2s 到达 ������ 点,继续移动 3s,到达 ������������ 的中点.若点 ������ 与 ⊙ ������ 的移动速度相等,求在这 5s 时间内圆心 ������ 移动的距离; Ⅲ 如图 2,已知 ������ = 20,������ = 10.是否存在如下情形:当 ⊙ ������ 到达 ⊙ ������1 的位置时(此时圆心 ������1 在矩形对角线 ������������ 上),������������ 与 ⊙ ������1 恰好相切?请说明理由.

苏州市中考数学试卷及答案

苏州市中考数学试卷及答案

2015年苏州市初中毕业暨升学考试试卷数 学一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上......... 1.2的相反数是 A .2B .12C .-2D .-122.有一组数据:3,5,5,6,7,这组数据的众数为 A .3B .5C .6D .73.月球的半径约为1 738 000m ,1 738 000这个数用科学记数法可表示为A .1.738×106B .1.738×107C .0.1738×107D .17.38×1054.若()2m =-,则有 A .0<m <1 B .-1<m <0 C .-2<m <-1 D .-3<m <-25.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:则通话时间不超过15min 的频率为 A .0.1B .0.4C .0.5D .0.96.若点A (a ,b )在反比例函数2y x=的图像上,则代数式ab -4的值为 A .0 B .-2C . 2D .-67.如图,在△ABC 中,AB =AC ,D 为BC 中点,∠BAD =35°,则∠C 的度数为 A .35° B .45°C .55°D .60°DCBA8.若二次函数y =x 2+bx 的图像的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x 的方程x 2+bx =5的解为 A .120,4x x ==B .121,5x x ==C .121,5x x ==-D .121,5x x =-=9.如图,AB 为⊙O 的切线,切点为B ,连接AO ,AO 与⊙O 交于点C ,BD 为⊙O 的直径,连接CD .若∠A =30°,⊙O 的半径为2,则图中阴影部分的面积为 A.43πB.43π-C.π D.23π10.如图,在一笔直的海岸线l 上有A 、B 两个观测站,AB =2km ,从A 测得船C 在北偏东45°的方向,从B 测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为 A .4kmB.(2+kmC.D.(4km二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上......... 11.计算:2a a ⋅= ▲ .12.如图,直线a ∥b ,∠1=125°,则∠2的度数为 ▲ °.13.某学校在“你最喜爱的球类运动”调查中,随机调查了若干名学生(每名学生分别选了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛(第9题)(第10题)lba(第13题)20%10%30%40%其他乒乓球篮球羽毛球球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为 ▲ 名. 14.因式分解:224a b -= ▲ .15.如图,转盘中8个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针指向大于6的数的概率为 ▲ .16.若23a b -=,则924a b -+的值为 ▲ .17.如图,在△ABC 中,CD 是高,CE 是中线,CE =CB ,点A 、D 关于点F 对称,过点F作FG ∥CD ,交AC 边于点G ,连接GE .若AC =18,BC =12,则△CEG 的周长为 ▲ .18.如图,四边形ABCD 为矩形,过点D 作对角线BD 的垂线,交BC 的延长线于点E ,取BE 的中点F ,连接DF ,DF =4.设AB =x ,AD =y ,则()224x y +-的值为 ▲ . 三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上........,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔. 19.(本题满分5分)(052---. 20.(本题满分5分)解不等式组:()12,31 5.x x x +≥⎧⎪⎨-+⎪⎩>(第17题)GF E D CBA F EDC B A (第18题)(第15题)21.(本题满分6分)先化简,再求值:2121122x x x x ++⎛⎫-÷⎪++⎝⎭,其中1x .22.(本题满分6分)甲、乙两位同学同时为校文化艺术节制作彩旗.已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问甲、乙每小时各做多少面彩旗?23.(本题满分8分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是 ▲ ;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.24.(本题满分8分)如图,在△ABC 中,AB =AC .分别以B 、C 为圆心,BC 长为半径在BC 下方画弧,设两弧交于点D ,与AB 、AC 的延长线分别交于点E 、F ,连接AD 、BD 、CD .(1)求证:AD 平分∠BAC ;(2)若BC =6,∠BAC =50︒,求DE 、DF 的长度之和(结果保留π).CBA25.(本题满分8分)如图,已知函数ky x=(x >0)的图像经过点A 、B ,点B 的坐标为(2,2).过点A 作AC ⊥x 轴,垂足为C ,过点B 作BD ⊥y 轴,垂足为D ,AC 与BD 交于点F .一次函数y=ax +b 的图像经过点A 、D ,与x 轴的负半轴交于点E . (1)若AC =32OD ,求a 、b 的值; (2)若BC ∥AE ,求BC 的长.26.(本题满分10分)如图,已知AD 是△ABC 的角平分线,⊙O 经过A 、B 、D 三点,过点B 作BE ∥AD ,交⊙O 于点E ,连接ED . (1)求证:ED ∥AC ;(2)若BD =2CD ,设△EBD 的面积为1S ,△ADC 的面积为2S ,且2121640S S -+=,求△ABC 的面积.27.(本题满分10分)如图,已知二次函数()21y x m x m =+--(其中0<m <1)的图像与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴为直线l .设P 为对称轴l 上的点,连接P A 、PC ,P A =PC . (1)∠ABC 的度数为 ▲ °;(2)求P 点坐标(用含m 的代数式表示);(3)在坐标轴上是否存在点Q (与原点O 不重合),使得以Q 、B 、C 为顶点的三角形与△P AC 相似,且线段PQ 的长度最小?如果存在,求出所有满足条件的点Q 的坐标;如果不存在,请说明理由.28.(本题满分10分)如图,在矩形ABCD 中,AD =a cm ,AB =b cm (a >b >4),半径为2cm的⊙O 在矩形内且与AB 、AD 均相切.现有动点P 从A 点出发,在矩形边上沿着A →B →C →D 的方向匀速移动,当点P 到达D 点时停止移动;⊙O 在矩形内部沿AD 向右匀速平移,移动到与CD 相切时立即沿原路按原速返回,当⊙O 回到出发时的位置(即再次与AB 相切)时停止移动.已知点P 与⊙O 同时开始移动,同时停止移动(即同时到达各自的终止位置).(1)如图①,点P 从A →B →C →D ,全程共移动了 ▲ cm (用含a 、b 的代数式表示); (2)如图①,已知点P 从A 点出发,移动2s 到达B 点,继续移动3s ,到达BC 的中点.若点P 与⊙O 的移动速度相等,求在这5s 时间内圆心O 移动的距离;(3)如图②,已知a =20,b =10.是否存在如下情形:当⊙O 到达⊙O 1的位置时(此时圆心O 1在矩形对角线BD 上),DP 与⊙O 1恰好相切?请说明理由.2015年苏州市初中毕业暨升学考试数学试题答案一、选择题 1.C2.B3.A4.C5.D(第28题)(图②)(图①)6.B7.C8.D9.A10.B 二、填空题 11.3a 12.55 13.60 14.()()22a b a b +- 15.1416.317.2718.16三、解答题19.解:原式 = 3+5-1 = 7. 20.解:由12x +≥,解得1x ≥,由()315x x -+>,解得4x >, ∴不等式组的解集是4x >.21.解:原式=()21122x x x x ++÷++ =()2121211x x x x x ++⨯=+++.当1x==. 22.解:设乙每小时做x 面彩旗,则甲每小时做(x +5)面彩旗.根据题意,得60505x x=+. 解这个方程,得x =25.经检验,x =25是所列方程的解. ∴x +5=30. 答:甲每小时做30面彩旗,乙每小时做25面彩旗. 23.解:(1)1. (2)用表格列出所有可能的结果: 到红球”有2种可能.∴P (两次都摸到红球)=212=16. 24.证明:(1)由作图可知BD =CD .在△ABD 和△ACD 中,,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩∴△ABD≌△ACD(SSS).∴∠BAD=∠CAD,即AD平分∠BAC.解:(2)∵AB=AC,∠BAC=50°,∴∠ABC=∠ACB=65°.∵BD= CD = BC,∴△BDC为等边三角形.∴∠DBC=∠DCB=60°.∴∠DBE=∠DCF=55°.∵BC=6,∴BD= CD =6.∴DE的长度=DF的长度=556111806ππ⨯⨯=.∴DE、DF的长度之和为111111 663πππ+=.25.解:(1)∵点B(2,2)在kyx=的图像上,∴k=4,4yx =.∵BD⊥y轴,∴D点的坐标为(0,2),OD=2.∵AC⊥x轴,AC=32OD,∴AC=3,即A点的纵坐标为3.∵点A在4yx=的图像上,∴A点的坐标为(43,3).∵一次函数y=ax+b的图像经过点A、D,∴43,32.a bb⎧+=⎪⎨⎪=⎩解得3,42.ab⎧=⎪⎨⎪=⎩(2)设A点的坐标为(m,4m),则C点的坐标为(m,0).∵BD∥CE,且BC∥DE,∴四边形BCED为平行四边形.∴CE= BD=2.∵BD∥CE,∴∠ADF=∠AEC.∴在Rt△AFD中,tan∠ADF=42 AF mDF m-=,在Rt△ACE中,tan∠AEC=42 AC m EC=,∴4422m mm-=,解得m=1.∴C点的坐标为(1,0),BC.26.证明:(1)∵AD是△ABC的角平分线,∴∠BAD =∠DAC.∵∠E=∠BAD,∴∠E =∠DAC.∵BE∥AD,∴∠E =∠EDA.∴∠EDA =∠DA C . ∴ED ∥AC .解:(2)∵BE ∥AD ,∴∠EBD =∠ADC .∵∠E =∠DAC ,∴△EBD ∽△ADC ,且相似比2BDk DC==. ··················· ∴2124S k S ==,即124S S =. ∵2121640S S -+=,∴222161640S S -+=,即()22420S -=.∴212S =. ∵233ABC S BC BD CD CD S CD CD CD +====,∴32ABCS=. 27.解:(1)45.理由如下:令x =0,则y =-m ,C 点坐标为(0,-m ).令y =0,则()210x m x m +--=,解得11x =-,2x m =.∵0<m <1,点A 在点B 的左侧,∴B 点坐标为(m ,0).∴OB =OC =m .∵∠BOC =90°,∴△BOC 是等腰直角三角形,∠OBC =45°. (2)解法一:如图①,作PD ⊥y 轴,垂足为D ,设l 与x 轴交于点E ,由题意得,抛物线的对称轴为12mx -+=. 设点P 坐标为(12m-+,n ). ∵P A = PC , ∴P A 2= PC 2,即AE 2+ PE 2=CD 2+ PD 2.∴()222211122m m n n m -+-⎛⎫⎛⎫++=++ ⎪ ⎪⎝⎭⎝⎭.解得12m n -=.∴P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭. 解法二:连接PB .由题意得,抛物线的对称轴为12m x -+=. ∵P 在对称轴l 上,∴P A =PB . ∵P A =PC ,∴PB =PC .∵△BOC 是等腰直角三角形,且OB =OC , ∴P 在BC 的垂直平分线y x =-上.∴P 点即为对称轴12mx -+=与直线y x =-的交点. ∴P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭.图①图②(3)解法一:存在点Q 满足题意.∵P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭, ∴P A 2+ PC 2=AE 2+ PE 2+CD 2+ PD 2=222221111112222m m m m m m -+---⎛⎫⎛⎫⎛⎫⎛⎫+++++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. ∵AC 2=21m +,∴P A 2+ PC 2=AC 2.∴∠APC =90°. ∴△P AC 是等腰直角三角形.∵以Q 、B 、C 为顶点的三角形与△P AC 相似, ∴△QBC 是等腰直角三角形.∴由题意知满足条件的点Q 的坐标为(-m ,0)或(0,m ). ①如图①,当Q 点的坐标为(-m ,0)时,若PQ 与x 轴垂直,则12mm -+=-,解得13m =,PQ =13.若PQ 与x 轴不垂直, 则22222221151521222222510m m PQ PE EQ m m m m --+⎛⎫⎛⎫⎛⎫=+=++=-+=-+⎪⎪ ⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ .<13, ∴当25m =,即Q 点的坐标为(25-,0)时, PQ 的长度最小.②如图②,当Q 点的坐标为(0,m )时,若PQ 与y 轴垂直,则12mm -=,解得13m =,PQ =13.若PQ 与y 轴不垂直, 则22222221151521222222510m m PQ PD DQ m m m m --⎛⎫⎛⎫⎛⎫=+=+-=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ.<13, ∴当25m =,即Q 点的坐标为(0,25)时, PQ 的长度最小.综上:当Q 点坐标为(25-,0)或(0,25)时,PQ 的长度最小.解法二: 如图①,由(2)知P 为△ABC 的外接圆的圆心. ∵∠APC 与∠ABC 对应同一条弧AC ,且∠ABC =45°,∴∠APC =2∠ABC =90°. 下面解题步骤同解法一.28.解:(1)a +2b .(2)∵在整个运动过程中,点P 移动的距离为()2a b +cm ,圆心O 移动的距离为()24a -cm , 由题意,得()224a b a +=-. ①∵点P 移动2s 到达B 点,即点P 用2s 移动了b cm ,点P 继续移动3s ,到达BC 的中点,即点P 用3s 移动了12a cm .∴1223a b =. ② 由①②解得24,8.a b =⎧⎨=⎩∵点P 移动的速度与⊙O 移动的速度相等, ∴⊙O 移动的速度为42b=(cm/s ).∴这5s 时间内圆心O 移动的距离为5×4=20(cm ). (3)存在这种情形.解法一:设点P 移动的速度为v 1cm/s ,⊙O 移动的速度为v 2cm/s ,由题意,得()()1222021052422044v a b v a ++⨯===--.FE如图,设直线OO 1与AB 交于点E ,与CD 交于点F ,⊙O 1与AD 相切于点G .若PD 与⊙O 1相切,切点为H ,则O 1G =O 1H .易得△DO 1G ≌△DO 1H ,∴∠ADB =∠BDP .∵BC ∥AD ,∴∠ADB =∠CBD .∴∠BDP =∠CBD .∴BP =DP .设BP =x cm ,则DP =x cm ,PC =(20-x )cm ,在Rt △PCD 中,由勾股定理,可得222PC CD PD +=,即()2222010x x -+=,解得252x =.∴此时点P 移动的距离为25451022+=(cm ). ∵EF ∥AD ,∴△BEO 1∽△BAD . ∴1EO BE AD BA =,即182010EO =. ∴EO 1=16cm .∴OO 1=14cm .①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的距离为14cm , ∴此时点P 与⊙O 移动的速度比为454521428=.∵455284≠, ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的距离为2×(20-4)-14=18(cm ), ∴此时点P 与⊙O 移动的速度比为45455218364==. ∴此时PD 与⊙O 1恰好相切. 解法二:∵点P 移动的距离为452cm (见解法一),OO 1=14cm (见解法一),1254v v =, ∴⊙O 应该移动的距离为4541825⨯=(cm ). ①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的距离为14cm ≠18 cm , ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的距离为2×(20-4)-14=18(cm ),∴此时PD 与⊙O 1恰好相切.解法三:点P 移动的距离为452cm ,(见解法一) OO 1=14cm ,(见解法一) 由1254v v =可设点P 的移动速度为5k cm/s ,⊙O 的移动速度为4k cm/s , ∴点P 移动的时间为459252k k=(s ).①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的时间为1479422k k k=≠, ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的时间为2(204)14942k k⨯--=, ∴此时PD 与⊙O 1恰好相切.。

苏州市2015年中考数学试卷

苏州市2015年中考数学试卷

苏州市2015年中考数学试卷(满分:130分时间:120分钟)一、选择题(本大题共10小题,每小题3分,共30分)1. 2的相反数是()A. 2B. 12 C. -2 D. -122. 有一组数据:3,5,5,6,7,这组数据的众数为()A. 3B. 5C. 6D. 73. 月球的半径约为1 738 000 m,1 738 000这个数用科学记数法可表示为()A. 1.738×106B. 1.738×107C. 0.173 8×107D. 17.38×1054. 若m=22×()-2,则有()A. 0<m<1B. -1<m<0C. -2<m<-1D. -3<m<-2则通话时间不超过15 min的频率为() A. 0.1 B. 0.4 C. 0.5 D. 0.96. 若点A(a,b)在反比例函数y=2x的图像上,则代数式ab-4的值为()A. 0B. -2C. 2D. -67. 如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为()A. 35°B. 45°C. 55°D. 60°第7题第9题8. 若二次函数y=x2+bx的图像的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程x2+bx=5的解为()A. x1=0,x2=4B. x1=1,x2=5C. x1=1,x2=-5D. x1=-1,x2=59. 如图,AB为⊙O的切线,切点为B,连接AO,AO与⊙O交于点C,BD为⊙O的直径,连接CD.若∠A =30°,⊙O 的半径为2,则图中阴影部分的面积为( )A.4π3-3 B. 4π3-23 C. π-3 D. 2π3-3 10. 如图,在一笔直的海岸线l 上有A 、B 两个观测站,AB =2 km ,从A 测得船 C 在北偏东45°的方向,从B 测得船C 在北偏东22.5°的方向,则船C 离海岸线 l 的距离(即CD 的长)为( )第10题A. 4 kmB. (2+2)kmC. 2 2 kmD. (4-2)km二、 填空题(本大题共8小题,每小题3分,共24分) 11. 计算:a·a 2=________.12. 如图,直线a ∥b ,∠1=125°,则∠2的度数为________°.第12题 第13题13. 某学校在“你最喜爱的球类运动”调查中,随机调查了若干名学生(每名学生分别选了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为________名.14. 因式分解:a 2-4b 2=________.15. 如图,转盘中8个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针指向大于6的数的概率为________.第15题 第17题16. 若a -2b =3,则9-2a +4b 的值为________.17. 如图,在△ABC 中,CD 是高,CE 是中线,CE =CB ,点A 、D 关于点F 对称,过点F 作FG ∥CD ,交AC 边于点G ,连接GE.若AC =18,BC =12,则△CEG 的周长为________.18. 如图,四边形ABCD 为矩形,过点D 作对角线BD 的垂线,交BC 的延长线于点E ,取BE 的中点F ,连接DF ,DF =4.设AB =x ,AD =y ,则x 2+()y -42的值为________.第18题三、 解答题(本大题共10小题,共76分) 19. (本小题满分5分)计算:9+|-5|-()2-30.20. (本小题满分5分)解不等式组:⎩⎪⎨⎪⎧x +1≥2,3(x -1)>x +5.21. (本小题满分6分)先化简,再求值:⎝ ⎛⎭⎪⎫1-1x +2÷x 2+2x +1x +2,其中x =3-1.22. (本小题满分6分)甲、乙两位同学同时为校文化艺术节制作彩旗.已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问甲、乙每小时各做多少面彩旗?23. (本小题满分8分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1) 从中任意摸出1个球,恰好摸到红球的概率是________; (2) 先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.24. (本小题满分8分)如图,在△ABC 中,AB =AC.分别以B 、C 为圆心,BC 长为半径在BC 下方画弧,设两弧交于点D ,与AB 、AC 的延长线分别交于点E 、F ,连接AD 、BD 、CD.(1) 求证:AD 平分∠BAC ;(2) 若BC =6,∠BAC =50°,求DE ︵、DF ︵的长度之和(结果保留π).第24题25. (本小题满分8分)如图,已知函数y =kx (x>0)的图像经过点A 、B ,点B 的坐标为(2,2).过点A 作AC ⊥x 轴,垂足为C ,过点B 作BD ⊥y 轴,垂足为D ,AC 与BD 交于点F.一次函数y =ax +b 的图像经过点A 、D ,与x 轴的负半轴交于点E.(1) 若AC =32OD ,求a 、b 的值;(2) 若BC ∥AE ,求BC 的长.第25题26. (本小题满分10分)如图,已知AD 是△ABC 的角平分线,⊙O 经过A 、B 、D 三点,过点B 作BE ∥AD ,交⊙O 于点E ,连接ED. (1) 求证:ED ∥AC ;(2) 若BD =2CD ,设△EBD 的面积为S 1,△ADC 的面积为S 2,且S 21 -16S 2+4 =0,求△ABC 的面积.第26题1-m x-m(其中0<m<1)的图像与27. (本小题满分10分)如图,已知二次函数y=x2+()x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴为直线l.设P为对称轴l上的点,连接PA、PC,PA=PC.(1) ∠ABC的度数为________°;(2) 求P点坐标(用含m的代数式表示);(3) 在坐标轴上是否存在点Q(与原点O不重合),使得以Q、B、C为顶点的三角形与△PAC相似,且线段PQ的长度最小?如果存在,求出所有满足条件的点Q的坐标;如果不存在,请说明理由.第27题28. (本小题满分10分)如图,在矩形ABCD中,AD=a cm,AB=b cm(a>b>4),半径为2 cm的⊙O在矩形内且与AB、AD均相切.现有动点P从A点出发,在矩形边上沿着A→B→C→D的方向匀速移动,当点P到达D点时停止移动;⊙O在矩形内部沿AD向右匀速平移,移动到与CD相切时立即沿原路按原速返回,当⊙O回到出发时的位置(即再次与AB相切)时停止移动.已知点P与⊙O同时开始移动,同时停止移动(即同时到达各自的终止位置).(1) 如图①,点P从A→B→C→D,全程共移动了________cm(用含a、b的代数式表示);(2) 如图①,已知点P从A点出发,移动2 s到达B点,继续移动3 s,到达BC的中点.若点P与⊙O的移动速度相等,求在这5 s时间内圆心O移动的距离;(3) 如图②,已知a=20,b=10.是否存在如下情形:当⊙O到达⊙O1的位置时(此时圆心O1在矩形对角线BD上),DP与⊙O1恰好相切?请说明理由.第28题苏州市2015年中考数学试卷1. C [解析]根据相反数的定义,给2 添上一个负号即可.2. B [解析]因为众数是一组数据中出现次数最多的数值,5 出现了两次,其他数均只出现一次,故选B.3. A [解析]科学记数法的表示结果应满足a ×10n (1≤a<10)的要求,故选A.4. C [解析]无理数的估算有不同的方法,比如近似值法,先化简为-2,-2≈-1.414.5. D [解析]不超过15 min 的通话次数为20+16+9=45,通话的总次数为45+5=50,因此通话时间不超过15 min 的频率为45÷50=0.9.6. B [解析]把点A(a ,b)代入y =2x中,得ab =2,再代入求值.7. C [解析]由AB =AC ,D 为BC 的中点,根据三线合一,可得AD 平分∠BAC ,AD ⊥BC.∴ ∠DAC =∠BAD =35°,∠ADC =90°.∴ ∠C =180°-(∠ADC +∠DAC)=55°.8. D [解析]由题意,得二次函数的对称轴为直线x =2,∴ -b2=2,解得b =-4.代入一元二次方程,得x 2-4x =5,解得x 1=-1,x 2=5.9. A [解析]先求出∠AOB =60°,则∠COD =120°,从而可求出扇形COD 的面积为4π3,再求出△COD 的面积为3,从而得出阴影部分的面积为4π3- 3. 10. B [解析]如图,过点B 作BE ⊥AC ,交AC 于点E.在Rt △ABE 中,∠CAB =90°-45°=45°,AB =2 km ,∴ BE = 2 km.由题意可得∠ACD =45°,∠BCD =22.5°,∴ ∠BCA =22.5°.∴ ∠BCD =∠BCA.∴ BD =BE = 2 km.∴ DC =AD =AB +BD =(2+2)km.第10题11. a 3 [解析]由幂的运算性质,可得a·a 2=a 1+2=a 3. 12. 55 [解析]由平行线的性质,可得∠2=180°-∠1=55°. 13. 60 [解析]由统计的概念,可得总人数为6÷(40%-30%)=60(名). 14. (a +2b)(a -2b) [解析]运用平方差公式分解因式即可.15. 14 [解析]总共有8种等可能的结果,其中指针指向大于6的数的结果有2种,∴ 指针指向大于6的数的概率为28=14.16. 3 [解析]整体代入,把9-2a +4b 变形为9-2(a -2b)即可.17. 27 [解析]由题意可直接得到CE =CB =12.∵ F 是AD 的中点,FG ∥CD ,∴ FG 是△ADC 的中位线.∴ CG =12AC =9.∵ E 是AB 的中点,∴ EG 是△ABC 的中位线.∴GE =12BC =6.∴ △CEG 的周长为CE +GE +CG =12+6+9=27.18. 16 [解析]在Rt △BDE 中,F 为BE 的中点,可得BE =2DF =8,BF =4.由矩形的性质,可得CD =AB =x ,BC =AD =y ,则CF =4-y.在Rt △CDF 中,CD 2+CF 2=DF 2,则有x 2+(4-y)2=42,即x 2+(y -4)2=16.19. [解析]根据数的开方、绝对值、零指数幂的法则先化简、再运算.解:原式=3+5-1=7.20. [解析]分别解两个不等式,再确定解集的公共部分.解:由x +1≥2,解得x ≥1.由3(x -1)>x +5,解得x>4.∴ 不等式组的解集是x>4.21. [解析]先化简分式,再代入求值.解:原式=x +1x +2÷(x +1)2x +2=x +1x +2×x +2(x +1)2=1x +1.当x =3-1时,原式=13-1+1=13=33.22. [解析]根据所用时间相等这个等量关系来构造分式方程,要注意最后的检验环节.解:设乙每小时做x 面彩旗,则甲每小时做(x +5)面彩旗.根据题意,得60x +5=50x .解得x =25.经检验,x =25是原方程的解.∴ x +5=30.∴ 甲每小时做30面彩旗,乙每小时做25面彩旗.23. [解析](1) 根据4个小球中红球的个数,即可确定出从中任意摸出1个球,恰好摸到红球的概率;(2) 列表得出所有等可能的结果数,找出两次都摸到红球的结果数,即可求出所求的概率.解:(1) 12;(2) 列表如下:由表格可知,共有12种等可能出现的结果,其中两次都摸到红球的结果有2种.∴ P(两次都摸到红球)=212=16.24. [解析](1) 本题的实质是角平分线的尺规作图,可依据“SSS ”证明全等,从而得证;(2) 关键是求出DE ︵、DF ︵所对的圆心角的度数及BD 、CD 的长,BD 、CD 分别是DE ︵、DF ︵所在圆的半径.解:(1) 由作图可知BD =CD.在△ABD 和△ACD 中,⎩⎪⎨⎪⎧AB =AC ,BD =CD ,AD =AD ,∴ △ABD ≌△ACD(SSS).∴ ∠BAD =∠CAD ,即AD 平分∠BAC ;(2) ∵ AB =AC ,∠BAC =50°,∴ ∠ABC =∠ACB =180°-∠BAC2=65°.∵ BD =CD =BC ,∴ △BDC 为等边三角形.∴ ∠DBC=∠DCB =60°.∴ ∠DBE =∠DCF =180°-65°-60°=55°.∵ BC =6,∴ BD =CD =6.∴ DE ︵的长度=DF ︵的长度=55×π×6180=11π6.∴ DE ︵、DF ︵的长度之和为11π6+11π6=11π3.25. [解析](1) 关键是由条件“AC =32OD ”得出AC =3,这样就能得到点A 的坐标为⎝⎛⎭⎫43,3,再根据D(0,2)可求出直线AD 的解析式;(2) 设点A 的坐标为⎝⎛⎭⎫m ,4m ,则点C 的坐标为(m ,0),在Rt △AFD 和Rt △ACE 中,利用 tan ∠ADF =tan ∠AEC 建立关于m 的方程,可以解出m =1,进而利用勾股定理可求出BC 的长.解:(1) ∵ 点B(2,2)在y =kx的图像上,∴ k =4.∴ y =4x .∵ BD ⊥y 轴,∴ 点D 的坐标为(0,2),OD =2.∵ AC ⊥x 轴,AC =32OD ,∴ AC =3,即点A 的纵坐标为3.∵ 点A 在y =4x 的图像上,∴ 点A 的横坐标为43.∴ 点A 的坐标为⎝⎛⎭⎫43,3.∵ 一次函数y =ax +b 的图像经过点A 、D ,∴ ⎩⎪⎨⎪⎧43a +b =3,b =2,解得⎩⎪⎨⎪⎧a =34,b =2;(2) 设点A 的坐标为⎝⎛⎭⎫m ,4m ,则点C 的坐标为(m ,0).∵ BD ∥CE ,BC ∥DE ,∴ 四边形BCED 为平行四边形.∴ CE =BD =2.∵ BD ∥CE ,∴ ∠ADF =∠AEC.∴ 在Rt △AFD 中,tan ∠ADF=AF DF =4m -2m ;在Rt △ACE 中,tan ∠AEC =AC EC =4m 2.∴ 4m -2m =4m 2,解得m =1.∴ DF =OC =1.∴ BF =1.又∵ FC =OD =2,∴ BC =BF 2+FC 2= 5.26. [解析](1) 利用BE ∥AD 可得∠E =∠EDA ,利用圆周角的性质有∠E =∠BAD ,再结合AD 是△ABC 的角平分线,可得∠DAC =∠EDA ,即可证明ED ∥AC ;(2) 先证△EBD ∽△ADC ,结合相似比k =BD DC =2得S 1S 2=k 2=4,即S 1=4S 2,代入S 21-16S 2+4=0,消元,得16S 22-16S 2+4=0,解出S 2,再根据S 2和S △ABC 的关系求出S △ABC 即可.解:(1) ∵ AD 是△ABC 的角平分线,∴ ∠BAD =∠DAC.∵ ∠E =∠BAD ,∴ ∠E =∠DAC.∵ BE ∥AD ,∴ ∠E =∠EDA.∴ ∠EDA =∠DAC.∴ ED ∥AC ;(2) ∵ BE ∥AD ,∴ ∠EBD =∠ADC.又∵ ∠E =∠DAC ,∴ △EBD ∽△ADC.∴ BD DC =k =2.∴ S 1S 2=k 2=4,即S 1=4S 2.∵ S 21-16S 2+4=0,∴ 16S 22-16S 2+4=0,即(2S 2-1)2=0.∴ S 2=12.∵ △ABC 在BC 边上的高和△ADC 在DC 边上的高相等,∴ S △ABC S 2=BC CD =BD +CD CD =3CD CD =3.∴ S △ABC =32. 27. [解析](1) 由二次函数解析式的特点可以发现两根为x 1=-1,x 2=m ,与y 轴的交点C 的坐标为(0,-m),即OB =OC ,从而可得△OBC 是等腰直角三角形,问题获解;(2) 如图①,作PD ⊥y 轴,垂足为D ,设l 与x 轴交于点E ,利用勾股定理或BC 的垂直平分线,结合抛物线的对称轴为直线x =-1+m 2可以求解;(3) 由(2)知△PAC 是等腰直角三角形,所以△QBC 也是等腰直角三角形.分两种情况讨论:点Q 的坐标为(-m ,0)或(0,m),再结合勾股定理分析最小值.解:(1) 45. 提示:令x =0,则y =-m ,∴ 点C 的坐标为(0,-m).令y =0,则x 2+(1-m)x -m =0,解得 x 1=-1,x 2=m.∵ 0<m<1,点A 在点B 的左侧,∴ 点B 的坐标为(m ,0).∴ OB =OC =m.∵ ∠BOC =90°,∴ △BOC 是等腰直角三角形.∴ ∠ABC =45°;(2) 方法一:如图①,作PD ⊥y 轴,垂足为D ,设l 与x 轴交于点E.由题意,得抛物线的对称轴为直线x =-1+m 2.设点P 的坐标为⎝ ⎛⎭⎪⎫-1+m 2,n .∵ PA =PC, ∴ PA 2=PC 2,即AE 2+PE 2=CD 2+PD 2.∴ ⎝ ⎛⎭⎪⎫-1+m 2+12+n 2=(n +m)2+⎝ ⎛⎭⎪⎫1-m 22.解得n =1-m 2.∴ 点P 的坐标为⎝ ⎛⎭⎪⎫-1+m 2,1-m 2.方法二:如图①,连接PB.由题意,得抛物线的对称轴为直线x =-1+m 2.∵ P 在对称轴l 上,∴ PA =PB.∵ PA =PC ,∴ PB =PC.由(1)的提示可知△BOC 是等腰直角三角形,且OB =OC ,∴ 点P 在BC 的垂直平分线y =-x 上.∴ 点P 即为对称轴直线x =-1+m 2与直线y =-x 的交点.∴ 点P 的坐标为⎝ ⎛⎭⎪⎫-1+m 2,1-m 2;(3) 存在点Q 满足题意.∵ 点P 的坐标为⎝ ⎛⎭⎪⎫-1+m 2,1-m 2,∴ PA 2+ PC 2=AE 2+ PE 2+CD 2+ PD 2=⎝ ⎛⎭⎪⎫-1+m 2+12+⎝ ⎛⎭⎪⎫1-m 22+⎝ ⎛⎭⎪⎫1-m 2+m 2+⎝ ⎛⎭⎪⎫1-m 22=1+m 2.∵ AC 2=1+m 2,∴ PA 2+ PC 2=AC 2.∴ △PAC 是等腰直角三角形,且∠APC =90°.∵ 以Q 、B 、C 为顶点的三角形与△PAC 相似,∴ △QBC 是等腰直角三角形.∴ 由题意知满足条件的点Q 的坐标为(-m ,0)或(0,m).① 如图①,当点Q 的坐标为(-m ,0)时,若PQ 与x 轴垂直,则-1+m 2=-m ,解得m =13,∴ PQ =13.若PQ 与x 轴不垂直,则PQ 2=PE 2+EQ 2=⎝ ⎛⎭⎪⎫1-m 22+⎝ ⎛⎭⎪⎫-1+m 2+m 2=52m 2-2m +12=52⎝⎛⎭⎫m -252+110.∵ 0<m<1,∴ 当m =25时,PQ 2取得最小值110,即PQ 取得最小值1010.∵ 1010<13,∴ 当m =25,即点Q 的坐标为⎝⎛⎭⎫-25,0时, PQ 的长度最小;② 如图②,当点Q 的坐标为(0,m)时,若PQ 与y 轴垂直,则1-m 2=m ,解得m =13,∴ PQ =13.若PQ 与y 轴不垂直,则PQ 2=PD 2+DQ 2=⎝ ⎛⎭⎪⎫1-m 22+⎝ ⎛⎭⎪⎫m -1-m 22=52m 2-2m +12=52⎝⎛⎭⎫m -252+110.∵ 0<m<1,∴ 当m =25时,PQ 2取得最小值110,即PQ 取得最小值1010.∵ 1010<13,∴ 当m =25,即点Q 的坐标为⎝⎛⎭⎫0,25时,PQ 的长度最小.综上所述:当点Q 的坐标为⎝⎛⎭⎫-25,0或⎝⎛⎭⎫0,25时,PQ 的长度最小.第27题28. [解析](1) 根据矩形性质可以很快得出答案;(2) 首先是解读题干中的条件“已知点P 与⊙O 同时开始移动,同时停止移动(即同时到达各自的终止位置)”,这说明在整个运动过程中,点P 移动的距离为(a +2b)cm ,圆心O 移动的距离为2(a -4)cm ,且它们是相等的,即a +2b =2(a -4).再结合(2)中的条件“移动2 s 到达B 点,继续移动3 s ,到达BC 的中点” 可得b 2=12a 3,联立成二元一次方程组可求解;(3) 主要是分两种情况讨论,即⊙O 首次到达⊙O 1的位置、⊙O 在返回途中到达⊙O 1的位置,讨论后再进行取舍.解:(1) a +2b ;(2) ∵ 在整个运动过程中,点P 移动的距离为(a +2b)cm ,圆心O 移动的距离为2(a -4)cm ,由题意,得a +2b =2(a -4).∵ 点P 移动2 s 到达B 点,即点P 用2 s 移动了b cm ;点P继续移动3 s ,到达BC 的中点,即点P 用3 s 移动了12a cm ,∴ b 2=12a 3.由⎩⎪⎨⎪⎧a +2b =2(a -4),b 2=12a 3,解得⎩⎪⎨⎪⎧a =24,b =8.∵ 点P 移动的速度与⊙O 移动的速度相等,∴ ⊙O 移动的速度为b 2=4 cm/s.∴ 这5 s 时间内圆心O 移动的距离为5×4=20(cm);(3) 存在这种情形 理由:设点P 移动的速度为v 1 cm/s ,⊙O 移动的速度为v 2 cm/s ,由题意,得v 1v 2=a +2b 2(a -4)=20+2×102×(20-4)=54. 第28题如图,设直线OO 1与AB 交于点E ,与CD 交于点F ,⊙O 1与AD 相切于点G.若PD 与⊙O 1相切,切点为H ,则O 1G =O 1H.又∵ ∠O 1HD =∠O 1GD =90°,O 1D =O 1D ,∴ Rt △DO 1G ≌△Rt △DO 1H(HL).∴ ∠ADB =∠BDP.∵ BC ∥AD ,∴ ∠ADB =∠CBD.∴ ∠BDP =∠CBD.∴ BP =DP.设BP =x cm ,则DP =x cm ,PC =(20-x)cm.在Rt △PCD 中,由勾股定理,得PC 2+CD 2=PD 2,即(20-x)2+102=x 2,解得x =252.∴ 此时点P 移动的距离为10+252=452(cm).∵ EF ∥AD ,∴ △BEO 1∽△BAD.∴ EO 1AD =BE BA ,即EO 120=10-210.∴ EO 1=16 cm.∴ OO 1=14 cm. 方法一:① 当⊙O 首次到达⊙O 1的位置时,⊙O 移动的距离为14 cm ,∴ 此时点P 与⊙O 移动的速度比为45214=4528.∵ 4528≠54,∴ 此时PD 与⊙O 1不可能相切;② 当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的距离为2×(20-4)-14=18(cm),∴ 此时点P 与⊙O 移动的速度比为45218=4536=54.∴ 此时PD 与⊙O 1恰好相切.方法二:∵ 点P 移动的距离为452cm ,OO 1=14 cm ,v 1v 2=54,∴ ⊙O 应移动的距离为452×45=18(cm).① 当⊙O 首次到达⊙O 1的位置时,⊙O 移动的距离为14 cm ≠18 cm ,∴ 此时PD 与⊙O 1不可能相切;② 当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的距离为2×(20-4)-14=18(cm),∴ 此时PD 与⊙O 1恰好相切.方法三:点P 移动的距离为452 cm ,OO 1=14 cm ,由v 1v 2=54可设点P 的移动速度为5k cm/s ,⊙O 的移动速度为4k cm/s.∴ 点P 移动的时间为4525k =92ks .① 当⊙O 首次到达⊙O 1的位置时,⊙O 移动的时间为144k =72k (s)≠92ks ,∴ 此时PD 与⊙O 1不可能相切;② 当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的时间为2×(20-4)-144k=92k(s),∴ 此时PD 与⊙O 1恰好相切.。

【初中数学】江苏省苏州市2015年初中毕业暨升学考试数学试卷(解析版) 苏科版

【初中数学】江苏省苏州市2015年初中毕业暨升学考试数学试卷(解析版) 苏科版

2015年苏州市初中毕业暨升学考试试卷数学本试卷由选择题、填空题和解答题三大题组成,共28小题,满分130分,考试时间120分钟.注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2.答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.........1.2的相反数是A.2 B.12C.-2 D.-12【难度】★【考点分析】本题考查相反数的概念,中考第一题的常考题型,难度很小。

【解析】给2 添上一个负号即可,故选C。

2.有一组数据:3,5,5,6,7,这组数据的众数为A.3 B.5 C.6 D.7【难度】★【考点分析】考查众数的概念,是中考必考题型,难度很小。

【解析】众数是一组数据中出现次数最多的数值,5 出现了两次,其它数均只出现一次,故选B。

3.月球的半径约为1 738 000m,1 738 000这个数用科学记数法可表示为A.1.738×106B.1.738×107C.0.1738×107D.17.38×105【难度】★【考点分析】考查科学记数法,是中考必考题型,难度很小。

【解析】科学记数法的表示结果应满足:a⨯10n(1≤ a <10)的要求,C,D 形式不满足,排除,通过数值大小(移小数点位置)可得A 正确,故选A。

4.若()2m=-,则有A.0<m<1 B.-1<m<0 C.-2<m<-1 D.-3<m<-2【难度】★☆【考点分析】考察实数运算与估算大小,实数估算大小往年中考较少涉及,但难度并不大。

20l5苏州中考数学试题及答案

20l5苏州中考数学试题及答案

20l5苏州中考数学试题及答案2015年苏州中考数学试题及答案一、选择题(本题共10小题,每小题3分,共30分)1. 下列哪个数是正数?A. -3B. 0C. 2D. -1答案:C2. 一个数的相反数是-5,这个数是:A. 5B. -5C. 0D. 1答案:A3. 绝对值等于它本身的数是:A. 0B. 负数C. 正数D. 正数和0答案:D4. 一个数的平方是9,这个数是:A. 3或-3B. 3C. -3D. 9答案:A5. 以下哪个选项是不等式?A. 2x + 3 = 7B. 2x + 3 > 7C. 2x + 3 < 7D. 2x + 3答案:B6. 以下哪个选项是二次方程?A. 2x + 3 = 0B. x^2 + 2x + 1 = 0C. x^2 + 2x = 0D. 2x + 1答案:B7. 一个等腰三角形的两边长分别为3和5,那么这个三角形的周长是:A. 11B. 13C. 16D. 无法确定答案:B8. 一个圆的半径是2,那么这个圆的面积是:A. 4πB. 8πC. 16πD. 32π答案:B9. 以下哪个选项是一次函数?A. y = 2x + 3B. y = x^2 + 3C. y = 2x^2 + 3D. y = 2x/3答案:A10. 以下哪个选项是反比例函数?A. y = 2/xB. y = x^2C. y = 2xD. y = 2x + 3答案:A二、填空题(本题共5小题,每小题3分,共15分)11. 一个数的立方是-8,这个数是 -2。

12. 一个数的倒数是2,这个数是 1/2。

13. 一个数的平方根是4,这个数是 16。

14. 一个数的立方根是8,这个数是 512。

15. 一个直角三角形的两个直角边长分别为3和4,那么这个三角形的斜边长是 5。

三、解答题(本题共4小题,共55分)16. (本题满分10分)解方程:3x - 5 = 2x + 4。

解:将2x移到左边,得x = 9。

2015年江苏省中考数学真题试卷(含答案解析)

2015年江苏省中考数学真题试卷(含答案解析)

【考点】扇形统计图. 【分析】设被调查的总人数是x人,根据最喜欢羽毛球的人数比最喜欢 乒乓球的人数少6人,即可列方程求解. 【解答】解:设被调查的总人数是x人,则40%x﹣30%x=6, 解得:x=60. 故答案是:60. 【点评】本题考查的是扇形统计图的综合运用,读懂统计图,从统计图 中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体 的百分比大小.
A.4km B.(2+ )km C.2 km D.(4﹣ )km 【考点】解直角三角形的应用-方向角问题. 【分析】根据题意在CD上取一点E,使BD=DE,进而得出EC=BE=2, 再利用勾股定理得出DE的长,即可得出答案. 【解答】解:在CD上取一点E,使BD=DE, 可得:∠EBD=45°,AD=DC, ∵从B测得船C在北偏东22.5°的方向, ∴∠BCE=∠CBE=22.5°, ∴BE=EC, ∵AB=2, ∴EC=BE=2, ∴BD=ED=
菁优网版权所有
=2,得b=﹣4,解x2﹣4x=5即可. 【解答】解:∵对称轴是经过点(2,0)且平行于y轴的直线, ∴﹣ =2, 解得:b=﹣4, 解方程x2﹣4x=5,
解得x1=﹣1,x2=5, 故选:D. 【点评】本题主要考查二次函数的对称轴和二次函数与一元二次方程的 关系,难度不大. 9.(3分)(2015•苏州)如图,AB为⊙O的切线,切点为B,连接AO,AO与 ⊙O交于点C,BD为⊙O的直径,连接CD.若∠A=30°,⊙O的半径为2, 则图中阴影部分的面积为( )
频数(通话 20 16 9 5 次数) 则通话时间不超过15min的频率为( ) A.0.1 B.0.4 C.0.5 D.0.9 【考点】频数(率)分布表. 【分析】用不超过15分钟的通话时间除以所有的通话时间即可求得通话 时间不超过15分钟的频率. 【解答】解:∵不超过15分钟的通话次数为20+16+9=45次,通话总次数 为20+16+9+5=50次, ∴通话时间不超过15min的频率为

江苏苏州中考数学试卷含答案

江苏苏州中考数学试卷含答案

2015年苏州市初中毕业暨升学考试试卷数学本试卷由选择题、填空题和解答题三大题组成,共28小题,满分130分,考试时间120分钟.注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2.答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.........1.2的相反数是A.2 B.12C.?2 D.?122.有一组数据:3,5,5,6,7,这组数据的众数为A.3 B.5 C.6 D.73.月球的半径约为1738000m,1738000这个数用科学记数法可表示为A.1.738×106B.1.738×107C.0.1738×107D.17.38×1054.若()2m=-,则有A.0<m<1 B.-1<m<0 C.-2<m<-1 D.-3<m<-25.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:则通话时间不超过15min的频率为A.0.1 B.0.4 C.0.5 D.0.96.若点A(a,b)在反比例函数2yx=的图像上,则代数式ab-4的值为A.0 B.-2 C.2 D.-67.如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为A.35°B.45°C.55°D.60°8.若二次函数y =x 2+bx 的图像的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x 的方程x 2+bx =5的解为A .120,4xx == B .121,5xx == C .121,5x x ==- D .121,5xx =-=9.如图,AB 为⊙O 的切线,切点为B ,连接AO ,AO 与⊙O 交于点C ,BD 为⊙O 的直径,连接CD .若∠A =30°,⊙O 的半径为2,则图中阴影部分的面积为 A.43πB.43π-C.πD.23π10.如图,在一笔直的海岸线l 上有A 、B 两个观测站,AB =2km ,从A 测得船C 在北偏东45°的方向,从B 测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为 A .4kmB.(2km C.D.(4km二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上......... 11.计算:2a a ⋅=▲.12.如图,直线a ∥b ,∠1=125°,则∠2的度数为▲°.DCBA(第7题)(第9(第10题)lba (第1320%10%30%40%其他乒乓球篮球羽毛球13.某学校在“你最喜爱的球类运动”调查中,随机调查了若干名学生(每名学生分别选了一项球类运动),并根据调查结果绘已知其中最喜欢羽毛球的人数比最人,则该校被调查的学生总人数为▲名. 14.因式分解:224ab -=▲.15.如图,转盘中8个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针指向大于6的数的概率为▲.16.若23a b -=,则924a b -+的值为▲. 17.如图,在△ABC 中,CD 是高,CE 是中线,CE =CB ,点A 、D 关于点F 对称,过点F 作FG ∥CD ,交AC 边于点G ,连接GE .若AC =18,BC =12,则△CEG 的周长为▲. 18.如图,四边形ABCD 为矩形,过点D 作对角线BD 的垂线,交BC 的延长线于点E ,取BE 的中点F ,连接DF ,DF =4.设AB =x ,AD =y ,则()224x y +-的值为▲.三、解答题:本大题共10小题,共76分.把解答过程写在答题..卡相应位置上......,解答时应写出必要的计算过程、推演步骤或(第17GF E D CBA F EDC B A (第18(第15文字说明.作图时用2B 铅笔或黑色墨水签字笔. 19.(本题满分5分) (052--.20.(本题满分5分) 解不等式组:()12,31 5.x x x +≥⎧⎪⎨-+⎪⎩>21.(本题满分6分)先化简,再求值:2121122x x x x ++⎛⎫-÷⎪++⎝⎭,其中1x =. 22.(本题满分6分)甲、乙两位同学同时为校文化艺术节制作彩旗.已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问甲、乙每小时各做多少面彩旗? 23.(本题满分8分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是▲; (2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.24.(本题满分8分)如图,在△ABC 中,AB =AC .分别以B 、C为圆心,BC 长为半径在BC 下方画弧,设两弧交于点D ,与AB 、AC 的延长线分别交于点E 、F ,连接AD 、BD 、CD .(1)求证:AD 平分∠BAC ;(2)若BC =6,∠BAC =50?,求»DE、»DF 的长度之和(结果保留π).25.(本题满分8分)如图,已知函数k y x=(x >0)的图像经过点A 、B ,点B 的坐标为(2,2).过点A 作AC ⊥x 轴,垂足为C ,过点B 作BD⊥y 轴,垂足为D ,AC 与BD 交于点F .一次函数y=ax +b 的图像经过点A 、D ,与x 轴的负半轴交于点E .(1)若AC =32OD ,求a 、b 的值;(2)若BC ∥AE ,求BC 的长. 26.(本题满分10分)如图,已知AD 是△ABC 的角平分线,⊙O 经过A 、B 、D 三点,过点B 作BE ∥AD ,交⊙O 于点E ,连接ED .(1)求证:ED ∥AC ;(2)若BD =2CD ,设△EBD 的面积为1S ,△ADC 的面积为2S ,且2121640S S -+=,求△ABC 的面积.27.(本题满分10分)如图,已知二(第24FEDCBA(第26题)次函数()21=+--(其中0<m<1)的图像与x轴交于y x m x mA、B两点(点A在点B的左侧),与y轴交于点C,对称轴为直线l.设P为对称轴l上的点,连接PA、PC,PA=PC.(1)∠ABC的度数为▲°;(2)求P点坐标(用含m的代数式表示);(3)在坐标轴上是否存在点Q(与原点O不重合),使得以Q、B、C为顶点的三角形Array与△PAC相似,且线段PQ的长度最小?如果存在,求出所有满足条件的点Q的坐标;如果不存在,请说明理由.28.(本题满分10分)如图,在矩形ABCD中,AD=a cm,AB=b cm(a>b>4),半径为2cm的⊙O在矩形内且与AB、AD均相切.现有动点P从A点出发,在矩形边上沿着A→B→C→D的方向匀速移动,当点P到达D点时停止移动;⊙O在矩形内部沿AD向右匀速平移,移动到与CD相切时立即沿原路按原速返回,当⊙O回到出发时的位置(即再次与AB相切)时停止移动.已知点P与⊙O同时开始移动,同时停止移动(即同时到达各自的终止位置).(1)如图①,点P从A→B→C→D,全程共移动了▲cm(用含a、b的代数式表示);(2)如图①,已知点P从A点出发,移动2s到达B点,继续移动3s ,到达BC 的中点.若点P 与⊙O 的移动速度相等,求在这5s 时间内圆心O 移动的距离;(3)如图②,已知a =20,b =10.是否存在如下情形:当⊙O 到达⊙O 1的位置时(此时圆心O 1在矩形对角线BD 上),DP与⊙O 1恰好相切?请说明理由.2015年苏州市初中毕业暨升学考试数学试题答案一、选择题 1.C 2.B 3.A 4.C 5.D 6.B 7.C8.D9.A10.B二、填空题 11.3a 12.55 13.60 14.()()22a b a b +- 15.1416.317.2718.16三、解答题19.解:原式=3+5?1=7. 20.解:由12x +≥,解得1x ≥,由()315x x -+>,解得4x >, ∴不等式组的解集是4x >.(第28(图(图21.解:原式=()21122x x x x ++÷++=()2121211x x x x x ++⨯=+++.当1x ===.22.解:设乙每小时做x 面彩旗,则甲每小时做(x +5)面彩旗.根据题意,得60505x x=+. 解这个方程,得x =25.经检验,x =25是所列方程的解.∴x +5=30.答:甲每小时做30面彩旗,乙每小时做25面彩旗.23.解:(1)1.(2)用表格列出所有可能的结果:由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有2种可能. ∴P (两次都摸到红球)=212=16.24.证明:(1)由作图可知BD =CD .在△ABD 和△ACD 中, ∴△ABD ≌△ACD (SSS ).∴∠BAD =∠CAD ,即AD 平分∠BAC .解:(2)∵AB =AC ,?BAC =50°,∴∠ABC =∠ACB=65°.∵BD =CD =BC ,∴△BDC 为等边三角形. ∴∠DBC =∠DCB=60°. ∴∠DBE =∠DCF=55°. ∵BC =6,∴BD =CD =6.∴»DE的长度=»DF 的长度=556111806ππ⨯⨯=. ∴»DE、»DF 的长度之和为111111663πππ+=.25.解:(1)∵点B (2,2)在k y x=的图像上,∴k =4,4y x=.∵BD ⊥y 轴,∴D 点的坐标为(0,2),OD =2. ∵AC ⊥x 轴,AC =32OD ,∴AC =3,即A 点的纵坐标为3.∵点A 在4y x=的图像上,∴A 点的坐标为(43,3).∵一次函数y =ax +b 的图像经过点A 、D ,∴43,3 2.a b b ⎧+=⎪⎨⎪=⎩解得3,42.a b ⎧=⎪⎨⎪=⎩(2)设A 点的坐标为(m ,4m),则C 点的坐标为(m ,0).∵BD ∥CE ,且BC ∥DE ,∴四边形BCED 为平行四边形.∴CE =BD =2.∵BD ∥CE ,∴∠ADF =∠AEC . ∴在Rt △AFD 中,tan ∠ADF =42AF mDF m -=,在Rt △ACE 中,tan ∠AEC =42AC mEC =,∴4422m m m -=,解得m =1.∴C 点的坐标为(1,0),BC.26.证明:(1)∵AD 是△ABC 的角平分线,∴∠BAD =∠DAC .∵∠E=∠BAD ,∴∠E =∠DAC . ∵BE ∥AD ,∴∠E =∠EDA . ∴∠EDA =∠DA C . ∴ED ∥AC .解:(2)∵BE ∥AD ,∴∠EBD =∠ADC .∵∠E =∠DAC ,∴△EBD ∽△ADC ,且相似比2BD k DC==.∴2124S k S ==,即124S S =.∵2121640S S -+=,∴222161640S S -+=,即()22420S-=.∴212S =.∵233ABCS BC BD CD CD S CD CD CD +====V ,∴32ABC S =V . 27.解:(1)45.理由如下:令x =0,则y =-m ,C 点坐标为(0,-m ).令y =0,则()210x m x m +--=,解得11x =-,2x m =.∵0<m <1,点A 在点B 的左侧, ∴B 点坐标为(m ,0).∴OB =OC =m .∵∠BOC =90°,∴△BOC 是等腰直角三角形,∠OBC =45°.(2)解法一:如图①,作PD ⊥y 轴,垂足为D ,设l与x 轴交于点E ,由题意得,抛物线的对称轴为12m x -+=.设点P 坐标为(12m -+,n ).∵PA =PC ,∴PA 2=PC 2,即AE 2+PE 2=CD 2+PD 2.∴()222211122m m n n m -+-⎛⎫⎛⎫++=++ ⎪ ⎪⎝⎭⎝⎭.解得12m n -=.∴P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭.解法二:连接PB .由题意得,抛物线的对称轴为12m x -+=.∵P 在对称轴l 上,∴PA =PB . ∵PA =PC ,∴PB =PC .∵△BOC 是等腰直角三角形,且OB =OC , ∴P 在BC 的垂直平分线y x =-上.∴P 点即为对称轴12m x -+=与直线y x =-的交点. ∴P点的坐标为11,22m m -+-⎛⎫⎪⎝⎭. (3)解法一:存在点Q 满足题意.∵P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭, ∴PA 2+PC 2=AE 2+PE 2+CD 2+PD2=222221111112222m m m m m m -+---⎛⎫⎛⎫⎛⎫⎛⎫+++++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. ∵AC 2=21m +,∴PA 2+PC 2=AC 2.∴∠APC =90°. ∴△PAC 是等腰直角三角形.∵以Q 、B 、C 为顶点的三角形与△PAC 相似, ∴△QBC 是等腰直角三角形.∴由题意知满足条件的点Q 的坐标为(-m ,0)或(0,m ).①如图①,当Q 点的坐标为(-m ,0)时, 若PQ 与x 轴垂直,则12m m -+=-,解得13m =,PQ =13.若PQ 与x 轴不垂直, 则22222221151521222222510m m PQ PE EQ m m m m --+⎛⎫⎛⎫⎛⎫=+=++=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ.<13,∴当25m =,即Q 点的坐标为(25-,0)时,PQ 的长度最小.②如图②,当Q 点的坐标为(0,m )时, 若PQ 与y 轴垂直,则12m m -=,解得13m =,PQ =13.若PQ 与y 轴不垂直, 则22222221151521222222510m m PQ PD DQ m m m m --⎛⎫⎛⎫⎛⎫=+=+-=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ.<13,∴当25m =,即Q 点的坐标为(0,25)时,PQ 的长度最小.综上:当Q 点坐标为(25-,0)或(0,25)时,PQ的长度最小.解法二:如图①,由(2)知P 为△ABC 的外接圆的圆心.∵∠APC 与∠ABC 对应同一条弧»AC ,且∠ABC =45°,∴∠APC =2∠ABC =90°. 下面解题步骤同解法一.28.解:(1)a +2b .(2)∵在整个运动过程中,点P 移动的距离为()2a b +cm ,圆心O 移动的距离为()24a -cm , 由题意,得()224a b a +=-.①∵点P 移动2s 到达B 点,即点P 用2s 移动了b cm , 点P 继续移动3s ,到达BC 的中点,即点P 用3s移动了12a cm .∴1223a b =.②由①②解得24,8.a b =⎧⎨=⎩∵点P 移动的速度与⊙O 移动的速度相等, ∴⊙O 移动的速度为42b =(cm/s ).∴这5s 时间内圆心O 移动的距离为5×4=20(cm ). (3)存在这种情形.解法一:设点P 移动的速度为v 1cm/s ,⊙O 移动的速度为v 2cm/s ,由题意,得()()1222021052422044v a b v a ++⨯===--. 如图,设直线OO 1与AB 交于点E ,与CD 交于点F ,⊙O 1与AD 相切于点G .若PD 与⊙O 1相切,切点为H ,则O 1G =O 1H . 易得△DO 1G ≌△DO 1H ,∴∠ADB =∠BDP . ∵BC ∥AD ,∴∠ADB =∠CBD . ∴∠BDP =∠CBD .∴BP =DP .设BP =x cm ,则DP =x cm ,PC =(20-x )cm , 在Rt △PCD 中,由勾股定理,可得222PC CD PD +=, 即()2222010x x -+=,解得252x =. ∴此时点P 移动的距离为25451022+=(cm ). ∵EF ∥AD ,∴△BEO 1∽△BAD . ∴1EO BE ADBA=,即182010EO =. ∴EO 1=16cm .∴OO 1=14cm .①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的距离为14cm , ∴此时点P 与⊙O 移动的速度比为454521428=.∵455284≠,∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的距离为2×(20-4)-14=18(cm ), ∴此时点P 与⊙O移动的速度比为45455218364==.∴此时PD 与⊙O 1恰好相切.解法二:∵点P 移动的距离为452cm (见解法一),OO 1=14cm (见解法一),1254vv =,∴⊙O 应该移动的距离为4541825⨯=(cm ).①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的距离为14cm ≠18cm ,∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的距离为2×(20-4)-14=18(cm ),∴此时PD 与⊙O 1恰好相切.解法三:点P 移动的距离为452cm ,(见解法一)OO 1=14cm ,(见解法一)由1254v v =可设点P 的移动速度为5k cm/s ,⊙O 的移动速度为4k cm/s ,∴点P移动的时间为459252k k=(s ).①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的时间为1479422k k k=≠,∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的时间为2(204)14942kk⨯--=,∴此时PD 与⊙O 1恰好相切.。

2015年苏州市中考数学试卷及答案

2015年苏州市中考数学试卷及答案

2015年苏州市初中毕业暨升学考试试卷数学一、选择题:本大题共 小题,每小题 分,共 分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用 铅笔涂在答题卡相应位......置上.... 的相反数是. .12. .12.有一组数据: , , , , ,这组数据的众数为. . . ..月球的半径约为 , 这个数用科学记数法可表示为. × . × . × . ×.若()2m=-,则有. < < . < < . < < . < < .小明统计了他家今年 月份打电话的次数及通话时间,并列出了频数分布表:则通话时间不超过 的频率为. . . ..若点 ( , )在反比例函数2yx=的图像上,则代数式 的值为. . . ..如图,在△ 中, , 为 中点,∠ °,则∠的度数为. °. °. °. °.若二次函数 的图像的对称轴是经过点( , )且平行于 轴的直线,则关于 的方程 的解为 .120,4x x ==.121,5x x == .121,5x x ==-.121,5x x =-=.如图, 为⊙ 的切线,切点为 ,连接 , 与⊙ 交于点 , 为⊙ 的直径,连接 .若∠ °,⊙ 的半径为 ,则图中阴影部分的面积为.43π.如图,在一笔直的海岸线 上有 、 两个观测站, ,从 测得DCB A(第 题)(第 题)(第l船 在北偏东 °的方向,从 测得船 在北偏东 °的方向,则船 离海岸线 的距离(即 的长)为 .4.(2..(4二、填空题:本大题共 小题,每小题 分,共 分.把答案直接填在答题卡相应位......置上... .计算:2a a ⋅ ..如图,直线 ∥ ,∠ °,则∠ 的度数为 °..某学校在“你最喜爱的球类运动”调查中,随机调查了若干名学生(每名学生分别选了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少 人,则该校被调查的学生总人数为 名..因式分解:224a b - ..如图,转盘中 个扇形的面积都相等.任意转动转盘 次,当转盘停止转动时,指针指向大于 的数的概率为 ..若23a b -=,则924a b -+的值为 .ba(第.如图,在△ 中, 是高, 是中线, ,点 、 关于点 对称,过点 作 ∥ ,交 边于点 ,连接 .若 ,,则△ 的周长为 ..如图,四边形 为矩形,过点 作对角线 的垂线,交 的延长线于点 ,取 的中点 ,连接 , .设 , ,则()224x y +-的值为 .三、解答题:本大题共 小题,共 分.把解答过程写在答题卡相应位置上........,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用 铅笔或黑色墨水签字笔..(本题满分 分)(052--..(本题满分 分)解不等式组:()12,31 5.x x x +≥⎧⎪⎨-+⎪⎩>.(本题满分 分)(第 题)GF E D CBA F EDC B A (第先化简,再求值:2121122x x x x ++⎛⎫-÷⎪++⎝⎭,其中1x =..(本题满分 分)甲、乙两位同学同时为校文化艺术节制作彩旗.已知甲每小时比乙多做 面彩旗,甲做 面彩旗与乙做 面彩旗所用时间相等,问甲、乙每小时各做多少面彩旗?.(本题满分 分)一个不透明的口袋中装有 个红球(记为红球 、红球 )、 个白球、 个黑球,这些球除颜色外都相同,将球摇匀. ( )从中任意摸出 个球,恰好摸到红球的概率是 ;( )先从中任意摸出 个球,再从余下的 个球中任意摸出 个球,请用列举法(画树状图或列表)求两次都摸到红球的概率..(本题满分 分)如图,在△ 中, .分别以 、 为圆心,长为半径在 下方画弧,设两弧交于点 ,与 、 的延长线分别交于点 、 ,连接 、 、 .( )求证: 平分∠ ;( )若 ,∠ = ,求DE 、DF 的长度之和(结果保留π).CBA.(本题满分 分)如图,已知函数kyx( > )的图像经过点 、 ,点的坐标为( , ).过点 作 ⊥ 轴,垂足为 ,过点 作 ⊥ 轴,垂足为 , 与 交于点 .一次函数 的图像经过点 、 ,与 轴的负半轴交于点 .( )若 32,求 、 的值;( )若 ∥ ,求 的长..(本题满分 分)如图,已知 是△ 的角平分线,⊙ 经过 、 、 三点,过点 作 ∥ ,交⊙ 于点 ,连接 .( )求证: ∥ ;( )若 ,设△ 的面积为1S ,△ 的面积为2S ,且2121640S S -+=,求△ 的面积..(本题满分 分)如图,已知二次函数()21y x m x m =+--(其中 < < )的图像与 轴交于 、 两点(点 在点 的左侧),与 轴交于点 ,对称轴为直线 .设 为对称轴 上的点,连接 、 , . ( )∠ 的度数为 °; ( )求 点坐标(用含 的代数式表示);( )在坐标轴上是否存在点 (与原点 不重合),使得以 、 、 为顶点的三角形与△ 相似,且线段 的长度最小?如果存在,求出所有满足条件的点的坐标;如果不存在,请说明理由..(本题满分 分)如图,在矩形 中, , ( > > ),半径为 的⊙ 在矩形内且与 、 均相切.现有动点 从(第 题)点出发,在矩形边上沿着 → → → 的方向匀速移动,当点 到达 点时停止移动;⊙ 在矩形内部沿 向右匀速平移,移动到与 相切时立即沿原路按原速返回,当⊙ 回到出发时的位置(即再次与 相切)时停止移动.已知点 与⊙ 同时开始移动,同时停止移动(即同时到达各自的终止位置).( )如图①,点 从 → → → ,全程共移动了 (用含 、 的代数式表示);( )如图①,已知点 从 点出发,移动 到达 点,继续移动 ,到达的中点.若点 与⊙ 的移动速度相等,求在这 时间内圆心 移动的距离;( )如图②,已知 , .是否存在如下情形:当⊙ 到达⊙的位置时(此时圆心 在矩形对角线 上), 与⊙ 恰好相切?请说明理由.(第 题)(图②)(图①)年苏州市初中毕业暨升学考试数学试题答案一、选择题 . . . . . . ....二、填空题 .3a . . .()()22a b a b +- .14...三、解答题解:原式 = = . 解:由12x +≥,解得1x ≥,由()315x x -+>,解得4x >, 不等式组的解集是4x >.解:原式=()21122x x x x ++÷++ =()2121211x x x x x ++⨯=+++.当1x ===. 解:设乙每小时做 面彩旗,则甲每小时做( )面彩旗.根据题意,得60505x x=+. 解这个方程,得 .经检验, 是所列方程的解. .答:甲每小时做 面彩旗,乙每小时做 面彩旗.解:( )1. ( )用表格列出所有可能的结果:由表格可知,共有 种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有 种可能. ∴ (两次都摸到红球)212 16. 证明:( )由作图可知 .在 和 中, ,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩≌ ( ).= ,即 平分 .解:( ) , , = °., 为等边三角形. = °. = °. , .DE 的长度 DF 的长度 556111806ππ⨯⨯=. DE 、DF 的长度之和为111111663πππ+=. .解:( ) 点 ( , )在ky x=的图像上,∴ ,4y x=. ⊥ 轴,∴ 点的坐标为( , ), .⊥ 轴,32,∴ ,即 点的纵坐标为 . 点 在4y x=的图像上,∴ 点的坐标为(43, ).一次函数 的图像经过点 、 , ∴43,3 2.a b b ⎧+=⎪⎨⎪=⎩ 解得3,42.a b ⎧=⎪⎨⎪=⎩ ( )设 点的坐标为( ,4m),则 点的坐标为( , ). ∥ ,且 ∥ ,∴四边形 为平行四边形.∴ .∥ ,∴∠ ∠ .∴在 中, ∠ 42AF mDF m -=, 在 中, ∠ 42AC mEC =, ∴4422m m m -=,解得 . ∴ 点的坐标为( , ),..证明:( )∵ 是△ 的角平分线,∴∠ ∠ .∵∠ ∠ ,∴∠ ∠ . ∵ ∥ ,∴∠ ∠ . ∴∠ ∠ . ∴ ∥ .解:( )∵ ∥ ,∴∠ ∠ .∵∠ ∠ ,∴△ △ ,且相似比2BDk DC==. ∴2124S k S ==,即124S S =.∵2121640S S -+=,∴222161640S S -+=,即()22420S -=.∴212S =. ∵233ABC S BC BD CD CD S CD CD CD +====,∴32ABCS=. .解:( ) .理由如下:令 ,则 , 点坐标为( , ). 令 ,则()210x m x m +--=,解得11x =-,2x m =. ∵ < < ,点 在点 的左侧,∴ 点坐标为( , ).∴ .∵∠ = °,∴△ 是等腰直角三角形,∠ = °.( )解法一:如图①,作 ⊥ 轴,垂足为 ,设 与 轴交于点 ,由题意得,抛物线的对称轴为12mx -+=. 设点 坐标为(12m-+, ). ∵ , ∴ ,即 .∴()222211122m m n n m -+-⎛⎫⎛⎫++=++ ⎪ ⎪⎝⎭⎝⎭. 解得12m n -=.∴ 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭. 解法二:连接 .由题意得,抛物线的对称轴为12mx -+=. ∵ 在对称轴 上,∴ . ∵ ,∴ .∵△ 是等腰直角三角形,且 , ∴ 在 的垂直平分线y x =-上.∴ 点即为对称轴12mx -+=与直线y x =-的交点. ∴ 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭.图①图②( )解法一:存在点 满足题意.∵ 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭, ∴222221111112222m m m m m m -+---⎛⎫⎛⎫⎛⎫⎛⎫+++++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. ∵ 21m +,∴ .∴∠ = °. ∴△ 是等腰直角三角形.∵以 、 、 为顶点的三角形与△ 相似, ∴△ 是等腰直角三角形.∴由题意知满足条件的点 的坐标为( , )或( , ). ①如图①,当 点的坐标为( , )时, 若 与 轴垂直,则12mm -+=-,解得13m =, 13.若 与 轴不垂直, 则22222221151521222222510m m PQ PE EQ m m m m --+⎛⎫⎛⎫⎛⎫=+=++=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ∵ < < ,∴当25m =时,2PQ 取得最小值110, .<13, ∴当25m =,即 点的坐标为(25-, )时, 的长度最小.②如图②,当 点的坐标为( , )时,若 与 轴垂直,则12mm -=,解得13m =, 13.若 与 轴不垂直, 则22222221151521222222510m m PQ PD DQ m m m m --⎛⎫⎛⎫⎛⎫=+=+-=-+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ∵ < < ,∴当25m =时,2PQ 取得最小值110,.<13, ∴当25m =,即 点的坐标为( ,25)时, 的长度最小.综上:当 点坐标为(25-, )或( ,25)时, 的长度最小.解法二: 如图①,由( )知 为△ 的外接圆的圆心. ∵∠ 与∠ 对应同一条弧AC ,且∠ = °, ∴∠ = ∠ = °. 下面解题步骤同解法一..解:( ) .( )∵在整个运动过程中,点 移动的距离为()2a b + ,圆心 移动的距离为()24a - , 由题意,得()224a b a +=-. ①∵点 移动 到达 点,即点 用 移动了 ,点 继续移动 ,到达 的中点,即点 用 移动了12a .∴1223a b =. ② 由①②解得24,8.a b =⎧⎨=⎩∵点 移动的速度与⊙ 移动的速度相等, ∴⊙ 移动的速度为42b=( ).∴这 时间内圆心 移动的距离为 × ( ).( )存在这种情形.解法一:设点 移动的速度为 ,⊙ 移动的速度为 , 由题意,得()()1222021052422044v a b v a ++⨯===--.FE如图,设直线 与 交于点 ,与 交于点 ,⊙ 与 相切于点 .若 与⊙ 相切,切点为 ,则 . 易得 ≌ ,∴∠ ∠ . ∵ ∥ ,∴∠ ∠ . ∴∠ ∠ .∴ .设 ,则 , ( ) , 在 △ 中,由勾股定理,可得222PC CD PD +=, 即()2222010x x -+=,解得252x =. ∴此时点 移动的距离为25451022+=( ). ∵ ∥ ,∴△ ∽△ . ∴1EO BE AD BA =,即182010EO =.∴ .∴ .①当⊙ 首次到达⊙ 的位置时,⊙ 移动的距离为 , ∴此时点 与⊙ 移动的速度比为454521428=.∵455284≠,∴此时 与⊙ 不可能相切.②当⊙ 在返回途中到达⊙ 的位置时,⊙ 移动的距离为 ( ), ∴此时点 与⊙ 移动的速度比为45455218364==.∴此时 与⊙ 恰好相切. 解法二:∵点 移动的距离为452(见解法一), (见解法一),1254v v =,∴⊙ 应该移动的距离为4541825⨯=( ). ①当⊙ 首次到达⊙ 的位置时,⊙ 移动的距离为 ≠ ,∴此时 与⊙ 不可能相切.②当⊙ 在返回途中到达⊙ 的位置时,⊙ 移动的距离为 ( ),∴此时 与⊙ 恰好相切. 解法三:点 移动的距离为452,(见解法一) ,(见解法一)由1254v v =可设点 的移动速度为 ,⊙ 的移动速度为 , ∴点 移动的时间为459252k k=( ).①当⊙ 首次到达⊙ 的位置时,⊙ 移动的时间为1479422k k k=≠, ∴此时 与⊙ 不可能相切.②当⊙ 在返回途中到达⊙ 的位置时,⊙ 移动的时间为2(204)14942k k⨯--=, ∴此时 与⊙ 恰好相切.。

2015年苏州市中考数学试卷及答案

2015年苏州市中考数学试卷及答案

2015年苏州市初中毕业暨升学考试试卷数学一、选择题:本大题共 小题,每小题 分,共 分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用 铅笔涂在答题卡相应位置上......... . 的相反数是✌. .12 .  . 12.有一组数据: , , , , ,这组数据的众数为✌. . . ..月球的半径约为  ❍,  这个数用科学记数法可表示为✌. ×  . ×  . ×  . × .若()2m=-,则有✌. <❍< . <❍< . <❍<  . <❍< .小明统计了他家今年 月份打电话的次数及通话时间,并列出了频数分布表:则通话时间不超过 ❍♓⏹的频率为✌.  .  .  .  .若点✌(♋,♌)在反比例函数2yx=的图像上,则代数式♋♌ 的值为✌. .  .  . .如图,在△✌中,✌ ✌, 为 中点,∠ ✌ °,则∠ 的度数为✌. °. ° . ° . °.若二次函数⍓ ⌧ ♌⌧的图像的对称轴是经过点( , )且平行于⍓轴的直线,则关于⌧的方程⌧ ♌⌧ 的解为 ✌.120,4x x ==.121,5x x == .121,5x x ==- .121,5x x =-=.如图,✌为⊙ 的切线,切点为 ,连接✌,✌与⊙ 交于点 , 为⊙的直径,连接 .若∠✌ °,⊙ 的半径为 ,则图中阴影部分的面积为✌.43π..如图,在一笔直的海岸线●上有✌、 两个观测站,✌ ❍,从✌测得船 在北偏东 °的方向,从 测得船 在北偏东 °的方向,则船 离海岸线●的距离(即 的长)为 ✌.4 ❍.(2 ❍ . .(4 ❍二、填空题:本大题共 小题,每小题 分,共 分.把答案直接填在答题卡相应位置.......DCB A(第 题)(第 题)(第 题)l上.. .计算:2a a ⋅ ✧ ..如图,直线♋∥♌,∠ °,则∠ 的度数为 ✧ °..某学校在“你最喜爱的球类运动”调查中,随机调查了若干名学生(每名学生分别选了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少 人,则该校被调查的学生总人数为 ✧ 名..因式分解:224a b - ✧ ..如图,转盘中 个扇形的面积都相等.任意转动转盘次,当转盘停止转动时,指针指向大于 的数的概率为 ✧ ..若23a b -=,则924a b -+的值为 ✧ ..如图,在△✌中, 是高, ☜是中线, ☜ ,点✌、 关于点☞GCDA ba(第 题)20%10%30%40%其他乒乓球篮球羽毛球(第 题)对称,过点☞作☞☝∥ ,交✌边于点☝,连接☝☜.若✌ ,  ,则△☜☝的周长为 ✧ ..如图,四边形✌为矩形,过点 作对角线 的垂线,交 的延长线于点☜,取 ☜的中点☞,连接 ☞, ☞ .设✌ ⌧,✌ ⍓,则()224x y +-的值为 ✧ .三、解答题:本大题共 小题,共 分.把解答过程写在答题卡相应位置上........,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用 铅笔或黑色墨水签字笔..(本题满分 分)(052--..(本题满分 分)解不等式组:()12,31 5.x x x +≥⎧⎪⎨-+⎪⎩>.(本题满分 分)先化简,再求值:2121122x x x x ++⎛⎫-÷⎪++⎝⎭,其中1x =..(本题满分 分)甲、乙两位同学同时为校文化艺术节制作彩旗.已知甲每小时比乙多做 面彩旗,甲做 面彩旗与乙做 面彩旗所用时间相等,问甲、乙每小时各做多少面彩旗?.(本题满分 分)一个不透明的口袋中装有 个红球(记为红球 、红球 )、 个白球、 个黑球,这些球除颜色外都相同,将球摇匀.( )从中任意摸出 个球,恰好摸到红球的概率是 ✧ ;( )先从中任意摸出 个球,再从余下的 个球中任意摸出 个球,请用列举法(画树状图或列表)求两次都摸到红球的概率..(本题满分 分)如图,在△✌中,✌ ✌.分别以 、 为圆心, 长为半径在 下方画弧,设两弧交于点 ,与✌、✌的延长线分别交于点☜、☞,连接✌、 、 . ( )求证:✌平分∠ ✌;( )若  ,∠ ✌= ,求DE 、DF 的长度之和(结果保留π)..(本题满分 分)如图,已知函数ky x=(⌧> )的图像经过点✌、 ,点 的坐标为( , ).过点✌作✌⊥⌧轴,垂足为 ,过点 作 ⊥⍓轴,垂足为 ,✌与 交于点☞.一次函数⍓♋⌧ ♌的图像经过点✌、 ,与⌧轴的负半轴交于点☜.(第 题)FEDCBA( )若✌32,求♋、♌的值; ( )若 ∥✌☜,求 的长..(本题满分 分)如图,已知✌是△✌的角平分线,⊙ 经过✌、 、 三点,过点 作 ☜∥✌,交⊙ 于点☜,连接☜. ( )求证:☜∥✌;( )若   ,设△☜的面积为1S ,△✌的面积为2S ,且2121640S S -+=,求△✌的面积..(本题满分 分)如图,已知二次函数()21y x m x m =+--(其中 <❍< )的图像与⌧轴交于✌、 两点(点✌在点 的左侧),与⍓轴交于点 ,对称轴为直线●.设为对称轴●上的点,连接 ✌、 , ✌ .(第 题)( )∠✌的度数为 ✧ °; ( )求 点坐标(用含❍的代数式表示);( )在坐标轴上是否存在点✈(与原点 不重合),使得以✈、 、 为顶点的三角形与△ ✌相似,且线段 ✈的长度最小?如果存在,求出所有满足条件的点✈的坐标;如果不存在,请说明理由..(本题满分 分)如图,在矩形✌中,✌ ♋♍❍,✌ ♌♍❍(♋>♌> ),半径为 ♍❍的⊙ 在矩形内且与✌、✌均相切.现有动点 从✌点出发,在矩形边上沿着✌→ → → 的方向匀速移动,当点 到达 点时停止移动;⊙ 在矩形内部沿✌向右匀速平移,移动到与 相切时立即沿原路按原速返回,当⊙ 回到出发时的位置(即再次与✌相切)时停止移动.已知点 与⊙ 同时开始移动,同时停止移动(即同时到达各自的终止位置).( )如图①,点 从✌→ → → ,全程共移动了 ✧ ♍❍(用含♋、♌的代数式表示);( )如图①,已知点 从✌点出发,移动 ♦到达 点,继续移动 ♦,到达 的中点.若点 与⊙ 的移动速度相等,求在这 ♦时间内圆心 移动的距离;( )如图②,已知♋ ,♌ .是否存在如下情形:当⊙ 到达⊙ 的位置时(此时圆心 在矩形对角线 上), 与⊙ 恰好相切?请说明理由.年苏州市初中毕业暨升学考试数学试题答案一、选择题 . . .✌ . . . ...✌.二、填空题 .3a .  .  .()()22a b a b +- .14.. . 三、解答题解:原式 =  = . 解:由12x +≥,解得1x ≥,由()315x x -+>,解得4x >, 不等式组的解集是4x >.解:原式=()21122x x x x ++÷++ =()2121211x x x x x ++⨯=+++.当1x ===. 解:设乙每小时做⌧面彩旗,则甲每小时做(⌧ )面彩旗.根据题意,得60505x x=+. 解这个方程,得⌧ .经检验,⌧ 是所列方程的解. ⌧ .答:甲每小时做 面彩旗,乙每小时做 面彩旗.解:( )1. ( )用表格列出所有可能的结果: 由表格可知,共有 种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有 种可能. ∴ (两次都摸到红球)212 16. 证明:( )由作图可知  .在 ✌和 ✌中, ,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩✌≌ ✌( ).✌= ✌,即✌平分 ✌.解:( ) ✌ ✌, ✌ , ✌= ✌ °.  ,  为等边三角形. =  °. ☜= ☞ °.  ,   .DE 的长度 DF 的长度 556111806ππ⨯⨯=. DE 、DF 的长度之和为111111663πππ+=. .解:( ) 点 ( , )在ky x=的图像上,∴ ,4y x=. ⊥⍓轴,∴ 点的坐标为( , ),  .✌⊥⌧轴,✌32,∴✌ ,即✌点的纵坐标为 . 点✌在4y x=的图像上,∴✌点的坐标为(43, ).一次函数⍓ ♋⌧ ♌的图像经过点✌、 , ∴43,3 2.a b b ⎧+=⎪⎨⎪=⎩ 解得3,42.a b ⎧=⎪⎨⎪=⎩ ( )设✌点的坐标为(❍,4m),则 点的坐标为(❍, ). ∥ ☜,且 ∥ ☜,∴四边形 ☜为平行四边形.∴ ☜  .∥ ☜,∴∠✌☞ ∠✌☜.∴在 ♦✌☞中,♦♋⏹∠✌☞ 42AF mDF m -=, 在 ♦✌☜中,♦♋⏹∠✌☜ 42AC mEC =, ∴4422m m m -=,解得❍ .∴ 点的坐标为( , ), ..证明:( )∵✌是△✌的角平分线,∴∠ ✌ ∠ ✌.∵∠☜∠ ✌,∴∠☜ ∠ ✌. ∵ ☜∥✌,∴∠☜ ∠☜✌. ∴∠☜✌ ∠ ✌ . ∴☜∥✌.解:( )∵ ☜∥✌,∴∠☜ ∠✌.∵∠☜ ∠ ✌,∴△☜ △✌,且相似比2BDk DC==. ∴2124S k S ==,即124S S =. ∵2121640S S -+=,∴222161640S S -+=,即()22420S -=.∴212S =. ∵233ABC S BC BD CD CD S CD CD CD +====,∴32ABCS=. .解:( ) .理由如下:令⌧ ,则⍓ ❍, 点坐标为( , ❍). 令⍓ ,则()210x m x m +--=,解得11x =-,2x m =. ∵ <❍< ,点✌在点 的左侧, ∴ 点坐标为(❍, ).∴   ❍.∵∠ = °,∴△ 是等腰直角三角形,∠ = °.( )解法一:如图①,作 ⊥⍓轴,垂足为 ,设●与⌧轴交于点☜,由题意得,抛物线的对称轴为12mx -+=. 设点 坐标为(12m-+,⏹). ∵ ✌ , ∴ ✌  ,即✌☜ ☜   .∴()222211122m m n n m -+-⎛⎫⎛⎫++=++ ⎪ ⎪⎝⎭⎝⎭.解得12m n -=.∴ 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭.解法二:连接 .由题意得,抛物线的对称轴为12mx -+=. ∵ 在对称轴●上,∴ ✌ . ∵ ✌ ,∴  .∵△ 是等腰直角三角形,且  , ∴ 在 的垂直平分线y x =-上.∴ 点即为对称轴12mx -+=与直线y x =-的交点. ∴ 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭.图①图②( )解法一:存在点✈满足题意.∵ 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭, ∴ ✌  ✌☜ ☜  222221111112222m m m m m m -+---⎛⎫⎛⎫⎛⎫⎛⎫+++++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. ∵✌ 21m +,∴ ✌  ✌ .∴∠✌= °. ∴△ ✌是等腰直角三角形.∵以✈、 、 为顶点的三角形与△ ✌相似, ∴△✈是等腰直角三角形.∴由题意知满足条件的点✈的坐标为( ❍, )或( ,❍). ①如图①,当✈点的坐标为( ❍, )时, 若 ✈与⌧轴垂直,则12mm -+=-,解得13m =, ✈ 13.若 ✈与⌧轴不垂直, 则22222221151521222222510m m PQ PE EQ m m m m --+⎛⎫⎛⎫⎛⎫=+=++=-+=-+⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.∵ <❍< ,∴当25m =时,2PQ 取得最小值110, ✈.<13, ∴当25m =,即✈点的坐标为(25-, )时, ✈的长度最小.②如图②,当✈点的坐标为( ,❍)时, 若 ✈与⍓轴垂直,则12mm -=,解得13m =, ✈ 13.若 ✈与⍓轴不垂直, 则22222221151521222222510m m PQ PD DQ m m m m --⎛⎫⎛⎫⎛⎫=+=+-=-+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭.∵ <❍< ,∴当25m =时,2PQ 取得最小值110, ✈.<13, ∴当25m =,即✈点的坐标为( ,25)时, ✈的长度最小.综上:当✈点坐标为(25-, )或( ,25)时, ✈的长度最小.解法二: 如图①,由( )知 为△✌的外接圆的圆心. ∵∠✌ 与∠✌对应同一条弧AC ,且∠✌= °, ∴∠✌= ∠✌= °. 下面解题步骤同解法一..解:( )♋ ♌.( )∵在整个运动过程中,点 移动的距离为()2a b +♍❍,圆心 移动的距离为()24a -♍❍, 由题意,得()224a b a +=-. ①∵点 移动 ♦到达 点,即点 用 ♦移动了♌♍❍,点 继续移动 ♦,到达 的中点,即点 用 ♦移动了12a ♍❍.∴1223a b =. ② 由①②解得24,8.a b =⎧⎨=⎩∵点 移动的速度与⊙ 移动的速度相等, ∴⊙ 移动的速度为42b=(♍❍♦). ∴这 ♦时间内圆心 移动的距离为 × (♍❍).( )存在这种情形.解法一:设点 移动的速度为❖ ♍❍♦,⊙ 移动的速度为❖ ♍❍♦, 由题意,得()()1222021052422044v a b v a ++⨯===--.FE如图,设直线  与✌交于点☜,与 交于点☞,⊙ 与✌相切于点☝. 若 与⊙ 相切,切点为☟,则 ☝ ☟. 易得  ☝≌  ☟,∴∠✌ ∠ . ∵ ∥✌,∴∠✌ ∠ . ∴∠  ∠ .∴  .设  ⌧♍❍,则  ⌧♍❍,  ( ⌧)♍❍,在 ♦△ 中,由勾股定理,可得222PC CD PD +=, 即()2222010x x -+=,解得252x =. ∴此时点 移动的距离为25451022+=(♍❍). ∵☜☞∥✌,∴△ ☜ ∽△ ✌. ∴1EO BE AD BA =,即182010EO =.∴☜ ♍❍.∴  ♍❍.①当⊙ 首次到达⊙ 的位置时,⊙ 移动的距离为 ♍❍, ∴此时点 与⊙ 移动的速度比为454521428=.∵455284≠, ∴此时 与⊙ 不可能相切.②当⊙ 在返回途中到达⊙ 的位置时,⊙ 移动的距离为 ☎✆(♍❍),∴此时点 与⊙ 移动的速度比为45455218364==. ∴此时 与⊙ 恰好相切. 解法二:∵点 移动的距离为452♍❍(见解法一),  ♍❍(见解法一),1254v v =,∴⊙ 应该移动的距离为4541825⨯=(♍❍). ①当⊙ 首次到达⊙ 的位置时,⊙ 移动的距离为 ♍❍≠  ♍❍, ∴此时 与⊙ 不可能相切.②当⊙ 在返回途中到达⊙ 的位置时,⊙ 移动的距离为 ☎✆(♍❍),∴此时 与⊙ 恰好相切. 解法三:点 移动的距离为452♍❍,(见解法一) ♍❍,(见解法一)由1254v v =可设点 的移动速度为 ♍❍♦,⊙ 的移动速度为 ♍❍♦, ∴点 移动的时间为459252k k=(♦).①当⊙ 首次到达⊙ 的位置时,⊙ 移动的时间为1479422k k k=≠, ∴此时 与⊙ 不可能相切.②当⊙ 在返回途中到达⊙ 的位置时,⊙ 移动的时间为2(204)14942k k⨯--=, ∴此时 与⊙ 恰好相切.。

(高清版)2015年江苏省苏州市中考数学试卷

(高清版)2015年江苏省苏州市中考数学试卷

为对称轴 l 上的点,连接 PA 、 PC , PA PC .
(1) ABC 的度数为

(2)求 P 点坐标(用含 m 的代数式表示);
(3)在坐标轴上是否存在点 Q (与原点 O 不重合),使得以 Q 、B 、C 为顶点的三角形
与 △PAC 相似,且线段 PQ 的长度最小?如果存在,求出所有满足条件的点 Q 的
B.1.738 107 D.17.38 105
4.若
,则有
()
A. 0<m<1
B. 1<m<0

C. 2<m<1
D. 3<m< 2
5.小明统计了他家今年 5 月份打电话的次数及通话时间,并列出了频数分布表:
通话时间
0<x≤5
5<x≤10 10<x≤15 15<x≤20
频数(通话次数) 20
16
9
5
则通话时间不超过15 min 的频率
坐标;如果不存在,请说明理由.
28.(本小题满分 10 分)如图,在矩形 ABCD 中, AD a cm , AB b cm(a>b>4) ,半径为 2 cm 的 O 在矩形内且与 AB 、AD 均相切.现有动点 P 从 A点出发,在矩形边上沿着 A B C D 的方向匀速移动,当点 P 到达 D 点时停止移动; O 在矩形内部沿 AD 向右匀速平移,移动到与 CD 相切时立即沿原路按原速返回,当 O 回到出发时 的位置(即再次与 AB 相切)时停止移动.已知点 P 与 O 同时开始移动,同时停止移

A. 0.1
B. 0.4
C. 0.5
() D. 0.9
6.若点 A(a,b)在反比例函数
的图像上,则代数式 ab 4 的值为
()
(第 7 题)

2015年苏州市初中毕业暨升学考试(数学)试题及解析

2015年苏州市初中毕业暨升学考试(数学)试题及解析

2015年苏州市初中毕业暨升学考试试卷数 学本试卷由选择题、填空题和解答题三大题组成,共28小题,满分130分,考试时间120分钟.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上......... 1.2的相反数是 A .2B .12C .-2D .-12【难度】★【考点分析】本题考查相反数的概念,中考第一题的常考题型,难度很小。

【解析】给2 添上一个负号即可,故选C 。

2.有一组数据:3,5,5,6,7,这组数据的众数为 A .3B .5C .6D .7【难度】★【考点分析】考查众数的概念,是中考必考题型,难度很小。

【解析】众数是一组数据中出现次数最多的数值,5 出现了两次,其它数均只出现一次,故 选B 。

3.月球的半径约为1 738 000m ,1 738 000这个数用科学记数法可表示为 A .1.738×106B .1.738×107C .0.1738×107D .17.38×105【难度】★【考点分析】考查科学记数法,是中考必考题型,难度很小。

【解析】科学记数法的表示结果应满足:a ⨯10n (1≤ a <10)的要求,C,D 形式不满足, 排除,通过数值大小(移小数点位置)可得A 正确,故选A 。

4.若()222m =⨯-,则有 A .0<m <1 B .-1<m <0 C .-2<m <-1 D .-3<m <-2【难度】★☆【考点分析】考察实数运算与估算大小,实数估算大小往年中考较少涉及,但难度并不大。

【解析】化简得:m = - 2 ,因为- 4 < - 2 < - 1(A+提示:注意负数比较大小不要 弄错不等号方向),所以-2 < - 2 < -1。

故选C 。

5.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x /min 0<x ≤5 5<x ≤10 10<x ≤1515<x ≤20频数(通话次数)201695则通话时间不超过15min 的频率为 A .0.1B .0.4C .0.5D .0.9【难度】★【考点分析】考察概率,是中考必考题型,难度很小。

2015苏州中考数学试题及答案

2015苏州中考数学试题及答案

2015苏州中考数学试题及答案2015年苏州市初中毕业暨升学考试试卷数学(2015年6月16日)一、选择题:(本大题共10小题,每小题3分,共30分)1. 2015年是抗日战争胜利70周年,下列年份中属于抗日战争胜利的年份是()A. 1945年B. 1937年C. 1931年D. 1949年答案:A2. 一个数的绝对值是3,这个数是()A. 3B. -3C. 3或-3D. 以上答案都不对答案:C3. 一个等腰三角形的两边长分别为5和8,这个三角形的周长是()A. 18B. 21C. 26D. 234. 将下列各数从小到大排列:-2,-1,0,1,2,3,4,5,6,7,8,9()A. -2<-1<0<1<2<3<4<5<6<7<8<9B. -2<-1<0<1<2<3<4<5<6<7<8<9C. -2<-1<0<1<2<3<4<5<6<7<8<9D. -2<-1<0<1<2<3<4<5<6<7<8<9答案:A5. 已知a,b,c是三个实数,且a>b,c>0,则下列不等式中一定成立的是()A. ac>bcB. a+c>b+cC. ac>bcD. a-c>b-c答案:B6. 已知a,b,c是三个实数,且a>b,c<0,则下列不等式中一定成立的是()A. ac>bcB. a+c>b+cC. ac>bcD. a-c>b-c7. 已知a,b,c是三个实数,且a>b,c>0,则下列不等式中一定成立的是()A. ac>bcB. a+c>b+cC. ac>bcD. a-c>b-c答案:A8. 已知a,b,c是三个实数,且a>b,c<0,则下列不等式中一定成立的是()A. ac>bcB. a+c>b+cC. ac>bcD. a-c>b-c答案:C9. 已知a,b,c是三个实数,且a>b,c>0,则下列不等式中一定成立的是()A. ac>bcB. a+c>b+cC. ac>bcD. a-c>b-c答案:B10. 已知a,b,c是三个实数,且a>b,c<0,则下列不等式中一定成立的是()A. ac>bcB. a+c>b+cC. ac>bcD. a-c>b-c答案:D二、填空题:(本大题共6小题,每小题3分,共18分)11. 已知一个角的补角是它的余角的3倍,则这个角的度数是60°。

2015年江苏省苏州市中考数学试卷

2015年江苏省苏州市中考数学试卷

数学试卷 第1页(共8页) 数学试卷 第2页(共8页)绝密★启用前江苏省苏州市2015年中考数学试卷数 学本试卷满分130分,考试时间120分钟.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.2的相反数是( ) A .2B .12C .2-D .12-2.有一组数据:3,5,5,6,7,这组数据的众数为( )A .3B .5C .6D .73.月球的半径约为1738000m ,1738000这个数用科学记数法可表示为 ( ) A .61.73810⨯ B .71.73810⨯ C .70.173810⨯D .517.3810⨯ 4.若(2)m =-,则有( )A .01<<mB .10<<-mC .21<<--mD .32<<--m5.则通话时间不超过15min 的频率( )A .0.1B .0.4C .0.5D .0.96.若点A a b (,)在反比例函数2y x=的图像上,则代数式4ab -的值为( )A .B .2-C .2D .6- 7.如图,在ABC △中,AB AC =,D 为BC 中点,35BAD ∠=,则C ∠的度数为 ( )A .35B .45C .55D .60(第7题)(第9题)8.若二次函数2y x bx =+的图像的对称轴是经过点20(,)且平行于y 轴的直线,则关于x 的方程25x bx +=的解为( ) A .120,4x x == B .121,5x x == C .121,5x x ==-D .121,5x x =-=9.如图,AB 为O 的切线,切点为B ,连接AO ,AO 与O 交于点C ,BD 为O 的直径,连接CD .若30A ∠=,O 的半径为2,则图中阴影部分的面积为 ( )A .4π3B .4π3-C .π D .2π3 10.如图,在一笔直的海岸线l 上有A 、B 两个观测站,2km AB =,从A 测得船C 在北偏东45的方向,从B 测得船C 在北偏东22.5的方向,则船C 离海岸线l 的距离(即CD 的长)为( )A .4kmB .(2)km+ C .kmD .4km (二、填空题(本大题共8小题,每小题3分,共24分) 11.计算:2a a =.12.如图,直线a b ∥,1125∠=,则2∠的度数为 .(第12题)(第13题)13.某学校在“你最喜爱的球类运动”调查中,随机调查了若干名学生(每名学生分别选了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为 名.14.因式分解:224a b -= .-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________________________ _____________数学试卷 第3页(共8页) 数学试卷 第4页(共8页)15.如图,转盘中8个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针指向大于6的数的概率为.(第15题)(第17题)(第18题)16.若23a b -=,则924a b -+的值为 .17.如图,在ABC △中,CD 是高,CE 是中线,CE CB =,点A 、D 关于点F 对称,过点F 作FG CD ∥,交AC 边于点G ,连接GE .若18AC =,12BC =,则CEG △的周长为 .18.如图,四边形ABCD 为矩形,过点D 作对角线BD 的垂线,交BC 的延长线于点E ,取BE 的中点F ,连接DF ,4DF =.设AB x =,AD y =,则22(y 4)x +-的值为 .三、解答题(本大题共10小题,共76分.解答应写出必要的计算过程、推演步骤或文字说明)19.(本小题满分5分)05(2+---.20.(本小题满分5分)解不等式组:12,3(1) 5.x x x +⎧⎨-+⎩≥>21.(本小题满分6分)先化简,再求值:2121(1)22x x x x ++-÷++,其中1x =-.22.(本小题满分6分)甲、乙两位同学同时为校文化艺术节制作彩旗.已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问甲、乙每小时各做多少面彩旗?23.(本小题满分8分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是 ;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.数学试卷 第5页(共8页) 数学试卷 第6页(共8页)24.(本小题满分8分)如图,在ABC △中,AB AC =.分别以B 、C 为圆心,BC 长为半径在BC 下方画弧,设两弧交于点D ,与AB 、AC 的延长线分别交于点E 、F ,连接AD 、BD 、CD .(1)求证:AD 平分BAC ∠;(2)若6BC =,50BAC ∠=,求DE 、DF 的长度之和(结果保留π).25.(本小题满分8分)如图,已知函数(0)ky x x=>的图像经过点A 、B ,点B 的坐标为(2,2).过点A 作AC x ⊥轴,垂足为C ,过点B 作BD y ⊥轴,垂足为D ,AC 与BD 交于点F .一次函数y ax b =+的图像经过点A 、D ,与x 轴的负半轴交于点E .(1)若32AC OD =,求a 、b 的值;(2)若BC AE ∥,求BC 的长.26.(本小题满分10分)如图,已知AD 是ABC △的角平分线,O 经过A 、B 、D 三点,过点B 作BE AD ∥,交O 于点E ,连接ED .(1)求证:ED AC ∥;(2)若2BD CD =,设EBD △的面积为1S ,ADC △的面积为2S ,且2121640S S -+=,求ABC △的面积.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共8页) 数学试卷 第8页(共8页)27.(本小题满分10分)如图,已知二次函数2(m)y x x m =+--1(其中01m <<)的图像与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴为直线l .设P 为对称轴l 上的点,连接PA 、PC ,PA PC =. (1)ABC ∠的度数为;(2)求P 点坐标(用含m 的代数式表示);(3)在坐标轴上是否存在点Q (与原点O 不重合),使得以Q 、B 、C 为顶点的三角形与PAC △相似,且线段PQ 的长度最小?如果存在,求出所有满足条件的点Q 的坐标;如果不存在,请说明理由.28.(本小题满分10分)如图,在矩形ABCD 中,cm AD a =,cm(4)AB b a b =>>,半径为2cm 的O 在矩形内且与AB 、AD 均相切.现有动点P 从A 点出发,在矩形边上沿着A B C D →→→的方向匀速移动,当点P 到达D 点时停止移动;O 在矩形内部沿AD 向右匀速平移,移动到与CD 相切时立即沿原路按原速返回,当O 回到出发时的位置(即再次与AB 相切)时停止移动.已知点P 与O 同时开始移动,同时停止移动(即同时到达各自的终止位置).(1)如图①,点P 从A B C D →→→,全程共移动了 cm (用含a 、b 的代数式表示);(2)如图①,已知点P 从A 点出发,移动2s 到达B 点,继续移动3s ,到达BC的中点.若点P 与O 的移动速度相等,求在这5s 时间内圆心O 移动的距离;(3)如图②,已知20a =,10b =.是否存在如下情形:当O 到达1O 的位置时(此时圆心1O 在矩形对角线BD 上),DP 与1O 恰好相切?请说明理由.图○1 图○2。

2015苏州市中考数学试卷

2015苏州市中考数学试卷

2015年苏州市初中毕业暨升学考试试卷数学本试卷由选择题、填空题和解答题三大题组成,共28小题,满分130分,考试时间120分钟.注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2.答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.........1.2的相反数是A.2 B.12C.-2 D.-122.有一组数据:3,5,5,6,7,这组数据的众数为A.3 B.5 C.6 D.73.月球的半径约为1 738 000m,1 738 000这个数用科学记数法可表示为A.1.738×106B.1.738×107C.0.1738×107D.17.38×1054.若()2m-,则有A.0<m<1 B.-1<m<0 C.-2<m<-1 D.-3<m<-2 5.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:则通话时间不超过15min的频率为A.0.1 B.0.4 C.0.5 D.0.96.若点A(a,b)在反比例函数2yx=的图像上,则代数式ab-4的值为A.0 B.-2 C.2 D.-67.如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为A.35°B.45°C.55°D.60°8.若二次函数y =x 2+bx 的图像的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x 的方程x 2+bx =5的解为 A .120,4x x ==B .121,5x x ==C .121,5x x ==-D .121,5x x =-=9.如图,AB 为⊙O 的切线,切点为B ,连接AO ,AO 与⊙O 交于点C ,BD 为⊙O 的直径,连接CD .若∠A =30°,⊙O 的半径为2,则图中阴影部分的面积为 A.43πB.43π-C.πD.23π10.如图,在一笔直的海岸线l 上有A 、B 两个观测站,AB =2km ,从A 测得船C 在北偏东45°的方向,从B 测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为 A .4kmB.(2kmC.D.(4km二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上......... 11.计算:2a a ⋅= ▲ .12.如图,直线a ∥b ,∠1=125°,则∠2的度数为 ▲ °.DCB A(第7题)(第9题)(第10题)lba(第13题)20%10%30%40%其他乒乓球篮球羽毛球13.某学校在“你最喜爱的球类运动”调查中,随机调查了若干名学生(每名学生分别选了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为 ▲ 名. 14.因式分解:224a b -= ▲ .15.如图,转盘中8个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针指向大于6的数的概率为 ▲ .16.若23a b -=,则924a b -+的值为 ▲ .17.如图,在△ABC 中,CD 是高,CE 是中线,CE =CB ,点A 、D 关于点F 对称,过点F 作FG∥CD ,交AC 边于点G ,连接GE .若AC =18,BC =12,则△CEG 的周长为 ▲ .18.如图,四边形ABCD为矩形,过点D 作对角线BD 的垂线,交BC 的延长线于点E ,取BE 的中点F ,连接DF ,DF =4.设AB =x ,AD =y ,则()224x y +-的值为 ▲ .三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上........,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔. 19.(本题满分5分)(052--.(第17题)GF E D CBA F EDC B A (第18题) (第15题)20.(本题满分5分)解不等式组:()12,31 5.x x x +≥⎧⎪⎨-+⎪⎩>21.(本题满分6分)先化简,再求值:2121122x x x x ++⎛⎫-÷⎪++⎝⎭,其中1x =.22.(本题满分6分)甲、乙两位同学同时为校文化艺术节制作彩旗.已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问甲、乙每小时各做多少面彩旗?23.(本题满分8分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是 ▲ ;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.24.(本题满分8分)如图,在△ABC 中,AB =AC .分别以B 、C 为圆心,BC 长为半径在BC 下方画弧,设两弧交于点D ,与AB 、AC 的延长线分别交于点E 、F ,连接AD 、BD 、CD . (1)求证:AD 平分∠BAC ;(2)若BC =6,∠BAC =50︒,求DE 、DF 的长度之和(结果保留π).(第24题)FEDCBA25.(本题满分8分)如图,已知函数ky x=(x >0)的图像经过点A 、B ,点B 的坐标为(2,2).过点A 作AC ⊥x 轴,垂足为C ,过点B 作BD ⊥y 轴,垂足为D ,AC 与BD 交于点F .一次函数y=ax +b 的图像经过点A 、D ,与x 轴的负半轴交于点E . (1)若AC =32OD ,求a 、b 的值; (2)若BC ∥AE ,求BC 的长.26.(本题满分10分)如图,已知AD 是△ABC 的角平分线,⊙O 经过A 、B 、D 三点,过点B 作BE ∥AD ,交⊙O 于点E ,连接ED . (1)求证:ED ∥AC ;(2)若BD =2CD ,设△EBD 的面积为1S ,△ADC 的面积为2S ,且2121640S S -+=,求△ABC的面积.(第26题)27.(本题满分10分)如图,已知二次函数()21y x m x m =+--(其中0<m <1)的图像与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴为直线l .设P 为对称轴l 上的点,连接P A 、PC ,P A =PC . (1)∠ABC 的度数为 ▲ °;(2)求P 点坐标(用含m 的代数式表示);(3)在坐标轴上是否存在点Q (与原点O 不重合),使得以Q 、B 、C 为顶点的三角形与△P AC 相似,且线段PQ 的长度最小?如果存在,求出所有满足条件的点Q 的坐标;如果不存在,请说明理由.28.(本题满分10分)如图,在矩形ABCD 中,AD =a cm ,AB =b cm (a >b >4),半径为2cm 的⊙O 在矩形内且与AB 、AD 均相切.现有动点P 从A 点出发,在矩形边上沿着A →B →C →D 的方向匀速移动,当点P 到达D 点时停止移动;⊙O 在矩形内部沿AD 向右匀速平移,移动到与CD 相切时立即沿原路按原速返回,当⊙O 回到出发时的位置(即再次与AB 相切)时停止移动.已知点P 与⊙O 同时开始移动,同时停止移动(即同时到达各自的终止位置). (1)如图①,点P 从A →B →C →D ,全程共移动了 ▲ cm (用含a 、b 的代数式表示); (2)如图①,已知点P 从A 点出发,移动2s 到达B 点,继续移动3s ,到达BC 的中点.若点P 与⊙O 的移动速度相等,求在这5s 时间内圆心O 移动的距离;(3)如图②,已知a =20,b =10.是否存在如下情形:当⊙O 到达⊙O 1的位置时(此时圆心O 1在矩形对角线BD 上),DP 与⊙O 1恰好相切?请说明理由.2015年苏州市初中毕业暨升学考试数学试题答案一、选择题 1.C 2.B 3.A 4.C 5.D 6.B7.C8.D9.A10.B 二、填空题 11.3a 12.55 13.60 14.()()22a b a b +- 15.1416.317.2718.16三、解答题(第28题)(图②)(图①)19.解:原式 = 3+5-1 = 7. 20.解:由12x +≥,解得1x ≥,由()315x x -+>,解得4x >, ∴不等式组的解集是4x >.21.解:原式=()21122x x x x ++÷++ =()2121211x x x x x ++⨯=+++.当1x =-==. 22.解:设乙每小时做x 面彩旗,则甲每小时做(x +5)面彩旗.根据题意,得60505x x=+. 解这个方程,得x =25.经检验,x =25是所列方程的解. ∴x +5=30. 答:甲每小时做30面彩旗,乙每小时做25面彩旗. 23.解:(1)1. (2)用表格列出所有可能的结果: 由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有2种可能.∴P (两次都摸到红球)=212=16. 24.证明:(1)由作图可知BD =CD .在△ABD 和△ACD 中,,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACD (SSS ).∴∠BAD =∠CAD ,即AD 平分∠BAC .解:(2)∵AB =AC ,∠BAC =50°,∴∠ABC =∠ACB=65°.∵BD = CD = BC ,∴△BDC 为等边三角形. ∴∠DBC =∠DCB=60°. ∴∠DBE =∠DCF=55°. ∵BC =6,∴BD = CD =6.∴DE 的长度=DF 的长度=556111806ππ⨯⨯=.∴DE 、DF 的长度之和为111111663πππ+=. 25.解:(1)∵点B (2,2)在ky x=的图像上, ∴k =4,4y x=. ∵BD ⊥y 轴,∴D 点的坐标为(0,2),OD =2.∵AC ⊥x 轴,AC =32OD ,∴AC =3,即A 点的纵坐标为3. ∵点A 在4y x=的图像上,∴A 点的坐标为(43,3).∵一次函数y =ax +b 的图像经过点A 、D , ∴43,3 2.a b b ⎧+=⎪⎨⎪=⎩ 解得3,42.a b ⎧=⎪⎨⎪=⎩ (2)设A 点的坐标为(m ,4m),则C 点的坐标为(m ,0). ∵BD ∥CE ,且BC ∥DE ,∴四边形BCED 为平行四边形. ∴CE = BD =2.∵BD ∥CE ,∴∠ADF =∠AEC .∴在Rt △AFD 中,tan ∠ADF =42AF mDF m -=, 在Rt △ACE 中,tan ∠AEC =42AC mEC =, ∴4422m m m -=,解得m =1. ∴C 点的坐标为(1,0),BC.26.证明:(1)∵AD 是△ABC 的角平分线, ∴∠BAD =∠DAC .∵∠E=∠BAD ,∴∠E =∠DAC . ∵BE ∥AD ,∴∠E =∠EDA . ∴∠EDA =∠DA C . ∴ED ∥AC .解:(2)∵BE ∥AD ,∴∠EBD =∠ADC .∵∠E =∠DAC ,∴△EBD ∽△ADC ,且相似比2BDk DC==. ··················· ∴2124S k S ==,即124S S =. ∵2121640S S -+=,∴222161640S S -+=,即()22420S -=.∴212S =. ∵233ABC S BC BD CD CD S CD CD CD +====,∴32ABCS=. 27.解:(1)45.理由如下:令x =0,则y =-m ,C 点坐标为(0,-m ).令y =0,则()210x m x m +--=,解得11x =-,2x m =.∵0<m <1,点A 在点B 的左侧,∴B 点坐标为(m ,0).∴OB =OC =m .∵∠BOC =90°,∴△BOC 是等腰直角三角形,∠OBC =45°. (2)解法一:如图①,作PD ⊥y 轴,垂足为D ,设l 与x 轴交于点E ,由题意得,抛物线的对称轴为12mx -+=. 设点P 坐标为(12m-+,n ). ∵P A = PC , ∴P A 2= PC 2,即AE 2+ PE 2=CD 2+ PD 2.∴()222211122m m n n m -+-⎛⎫⎛⎫++=++ ⎪ ⎪⎝⎭⎝⎭. 解得12m n -=.∴P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭. 解法二:连接PB .由题意得,抛物线的对称轴为12m x -+=. ∵P 在对称轴l 上,∴P A =PB . ∵P A =PC ,∴PB =PC .∵△BOC 是等腰直角三角形,且OB =OC , ∴P 在BC 的垂直平分线y x =-上.∴P 点即为对称轴12mx -+=与直线y x =-的交点. ∴P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭.图①图②(3)解法一:存在点Q 满足题意.∵P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭,∴P A 2+ PC 2=AE 2+ PE 2+CD 2+ PD 2=222221111112222m m m m m m -+---⎛⎫⎛⎫⎛⎫⎛⎫+++++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. ∵AC 2=21m +,∴P A 2+ PC 2=AC 2.∴∠APC =90°. ∴△P AC 是等腰直角三角形.∵以Q 、B 、C 为顶点的三角形与△P AC 相似, ∴△QBC 是等腰直角三角形.∴由题意知满足条件的点Q 的坐标为(-m ,0)或(0,m ). ①如图①,当Q 点的坐标为(-m ,0)时,若PQ 与x 轴垂直,则12m m -+=-,解得13m =,PQ =13. 若PQ 与x 轴不垂直, 则22222221151521222222510m m PQ PE EQ m m m m --+⎛⎫⎛⎫⎛⎫=+=++=-+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭.∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ .<13, ∴当25m =,即Q 点的坐标为(25-,0)时, PQ 的长度最小.②如图②,当Q 点的坐标为(0,m )时,若PQ 与y 轴垂直,则12m m -=,解得13m =,PQ =13. 若PQ 与y 轴不垂直, 则22222221151521222222510m m PQ PD DQ m m m m --⎛⎫⎛⎫⎛⎫=+=+-=-+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭.∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ .<13, ∴当25m =,即Q 点的坐标为(0,25)时, PQ 的长度最小.综上:当Q 点坐标为(25-,0)或(0,25)时,PQ 的长度最小.解法二: 如图①,由(2)知P 为△ABC 的外接圆的圆心. ∵∠APC 与∠ABC 对应同一条弧AC ,且∠ABC =45°,∴∠APC =2∠ABC =90°. 下面解题步骤同解法一.28.解:(1)a +2b .(2)∵在整个运动过程中,点P 移动的距离为()2a b +cm ,圆心O 移动的距离为()24a -cm , 由题意,得()224a b a +=-. ①∵点P 移动2s 到达B 点,即点P 用2s 移动了b cm ,点P 继续移动3s ,到达BC 的中点,即点P 用3s 移动了12a cm .∴1223a b =. ② 由①②解得24,8.a b =⎧⎨=⎩∵点P 移动的速度与⊙O 移动的速度相等,∴⊙O 移动的速度为42b=(cm/s ). ∴这5s 时间内圆心O 移动的距离为5×4=20(cm ). (3)存在这种情形.解法一:设点P 移动的速度为v 1cm/s ,⊙O 移动的速度为v 2cm/s ,由题意,得()()1222021052422044v a b v a ++⨯===--.FE如图,设直线OO 1与AB 交于点E ,与CD 交于点F ,⊙O 1与AD 相切于点G . 若PD 与⊙O 1相切,切点为H ,则O 1G =O 1H . 易得△DO 1G ≌△DO 1H ,∴∠ADB =∠BDP . ∵BC ∥AD ,∴∠ADB =∠CBD . ∴∠BDP =∠CBD .∴BP =DP .设BP =x cm ,则DP =x cm ,PC =(20-x )cm ,在Rt △PCD 中,由勾股定理,可得222PC CD PD +=,即()2222010x x -+=,解得252x =.∴此时点P 移动的距离为25451022+=(cm ). ∵EF ∥AD ,∴△BEO 1∽△BAD . ∴1EO BE AD BA =,即182010EO =. ∴EO 1=16cm .∴OO 1=14cm .①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的距离为14cm ,∴此时点P与⊙O移动的速度比为454521428=.∵455 284≠,∴此时PD与⊙O1不可能相切.②当⊙O在返回途中到达⊙O1的位置时,⊙O移动的距离为2×(20-4)-14=18(cm),∴此时点P与⊙O移动的速度比为45455218364==.∴此时PD与⊙O1恰好相切.解法二:∵点P移动的距离为452cm(见解法一),OO1=14cm(见解法一),125 4vv=,∴⊙O应该移动的距离为4541825⨯=(cm).①当⊙O首次到达⊙O1的位置时,⊙O移动的距离为14cm≠18 cm,∴此时PD与⊙O1不可能相切.②当⊙O在返回途中到达⊙O1的位置时,⊙O移动的距离为2×(20-4)-14=18(cm),∴此时PD与⊙O1恰好相切.解法三:点P移动的距离为452cm,(见解法一)OO1=14cm,(见解法一)由125 4vv=可设点P的移动速度为5k cm/s,⊙O的移动速度为4k cm/s,∴点P移动的时间为459252k k=(s).①当⊙O首次到达⊙O1的位置时,⊙O移动的时间为1479 422k k k=≠,∴此时PD与⊙O1不可能相切.②当⊙O在返回途中到达⊙O1的位置时,⊙O移动的时间为2(204)14942k k⨯--=,∴此时PD与⊙O1恰好相切.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年苏州市初中毕业暨升学考试试卷数学本试卷由选择题、填空题和解答题三大题组成,共28小题,满分130分,考试时间120分钟.注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2.答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.........1.2的相反数是A.2 B.12C.-2 D.-122.有一组数据:3,5,5,6,7,这组数据的众数为A.3 B.5 C.6 D.73.月球的半径约为1 738 000m,1 738 000这个数用科学记数法可表示为A.1.738×106B.1.738×107C.0.1738×107D.17.38×1054.若()2m=-,则有A.0<m<1 B.-1<m<0 C.-2<m<-1 D.-3<m<-2 5.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:则通话时间不超过15min的频率为A.0.1 B.0.4 C.0.5 D.0.96.若点A (a ,b )在反比例函数2y x=的图像上,则代数式ab -4的值为 A .0 B .-2C . 2D .-67.如图,在△ABC 中,AB =AC ,D 为BC 中点,∠BAD =35°,则∠C 的度数为 A .35° B .45°C .55°D .60°8.若二次函数y =x 2+bx 的图像的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x的方程x 2+bx =5的解为 A .120,4x x ==B .121,5x x ==C .121,5x x ==-D .121,5x x =-=9.如图,AB 为⊙O 的切线,切点为B ,连接AO ,AO 与⊙O 交于点C ,BD 为⊙O 的直径,连接CD .若∠A =30°,⊙O 的半径为2,则图中阴影部分的面积为 A.43πB.43π-C.πD.23π10.如图,在一笔直的海岸线l 上有A 、B 两个观测站,AB =2km ,从A 测得船C 在北偏东45°的方向,从B 测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为DCB A(第7题)(第9题)(第10题)lA .4km B.(2kmC.D.(4-km二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上......... 11.计算:2a a ⋅= ▲ .12.如图,直线a ∥b ,∠1=125°,则∠2的度数为 ▲ °.13.某学校在“你最喜爱的球类运动”调查中,随机调查了若干名学生(每名学生分别选了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为 ▲ 名. 14.因式分解:224a b -= ▲ .15.如图,转盘中8个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针指向大于6的数的概率为 ▲ .16.若23a b -=,则924a b -+的值为 ▲ .17.如图,在△ABC 中,CD 是高,CE 是中线,CE =CB ,点A 、D 关于点F 对称,过点F作FG ∥CD ,交AC 边于点G ,连接GE .若AC =18,BC =12,则△CEG 的周长为 ▲ .GF E D CBAF EDC B Aba(第13题)20%10%30%40%其他乒乓球篮球羽毛球(第15题)18.如图,四边形ABCD 为矩形,过点D 作对角线BD 的垂线,交BC 的延长线于点E ,取BE 的中点F ,连接DF ,DF =4.设AB =x ,AD =y ,则()224x y +-的值为 ▲ . 三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上........,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔. 19.(本题满分5分)(052--. 20.(本题满分5分)解不等式组:()12,31 5.x x x +≥⎧⎪⎨-+⎪⎩>21.(本题满分6分)先化简,再求值:2121122x x x x ++⎛⎫-÷⎪++⎝⎭,其中1x .22.(本题满分6分)甲、乙两位同学同时为校文化艺术节制作彩旗.已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问甲、乙每小时各做多少面彩旗?23.(本题满分8分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是 ▲ ;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.24.(本题满分8分)如图,在△ABC中,AB=AC.分别以B、C为圆心,BC长为半径在BC下方画弧,设两弧交于点D,与AB、AC的延长线分别交于点E、F,连接AD、BD、CD.(1)求证:AD平分∠BAC;(2)若BC=6,∠BAC=50︒,求DE、DF的长度之和(结果保留π).25.(本题满分8分)如图,已知函数kyx=(x>0)的图像经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图像经过点A、D,与x轴的负半轴交于点E.(1)若AC=32OD,求a、b的值;(2)若BC∥AE,求BC的长.(第24题)F EDCBA26.(本题满分10分)如图,已知AD 是△ABC 的角平分线,⊙O 经过A 、B 、D 三点,过点B 作BE ∥AD ,交⊙O 于点E ,连接ED . (1)求证:ED ∥AC ;(2)若BD =2CD ,设△EBD 的面积为1S ,△ADC 的面积为2S ,且2121640S S -+=,求△ABC 的面积.27.(本题满分10分)如图,已知二次函数()21y x m x m =+--(其中0<m <1)的图像与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴为直线l .设P 为对称轴l 上的点,连接P A 、PC ,P A =PC . (1)∠ABC 的度数为 ▲ °;(2)求P 点坐标(用含m 的代数式表示);(3)在坐标轴上是否存在点Q (与原点O 不重合),使得以Q 、B 、C 为顶点的三角形与△P AC 相似,且线段PQ 的长度最小?如果存在,求出所有满足条件的点Q 的坐标;如果不存在,请说明理由.(第26题)28.(本题满分10分)如图,在矩形ABCD 中,AD =a cm ,AB =b cm (a >b >4),半径为2cm的⊙O 在矩形内且与AB 、AD 均相切.现有动点P 从A 点出发,在矩形边上沿着A →B →C →D 的方向匀速移动,当点P 到达D 点时停止移动;⊙O 在矩形内部沿AD 向右匀速平移,移动到与CD 相切时立即沿原路按原速返回,当⊙O 回到出发时的位置(即再次与AB 相切)时停止移动.已知点P 与⊙O 同时开始移动,同时停止移动(即同时到达各自的终止位置).(1)如图①,点P 从A →B →C →D ,全程共移动了 ▲ cm (用含a 、b 的代数式表示); (2)如图①,已知点P 从A 点出发,移动2s 到达B 点,继续移动3s ,到达BC 的中点.若点P 与⊙O 的移动速度相等,求在这5s 时间内圆心O 移动的距离;(3)如图②,已知a =20,b =10.是否存在如下情形:当⊙O 到达⊙O 1的位置时(此时圆心O 1在矩形对角线BD 上),DP 与⊙O 1恰好相切?请说明理由.(第28题)(图②)(图①)2015年苏州市初中毕业暨升学考试数学试题答案一、选择题1.C 2.B 3.A 4.C 5.D6.B 7.C 8.D 9.A 10.B二、填空题11.3a12.55 13.60 14.()()22a b a b+-15.1416.3 17.27 18.16三、解答题19.解:原式=3+5-1 =7.20.解:由12x+≥,解得1x≥,由()315x x-+>,解得4x>,∴不等式组的解集是4x>.21.解:原式=()21122xxx x++÷++=()2121211x xx xx++⨯=+++.当1x===.22.解:设乙每小时做x面彩旗,则甲每小时做(x+5)面彩旗.根据题意,得60505x x=+.解这个方程,得x=25.经检验,x=25是所列方程的解.∴x+5=30.答:甲每小时做30面彩旗,乙每小时做25面彩旗.23.解:(1)1.(2)用表格列出所有可能的结果:由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有2种可能.∴P (两次都摸到红球)=212=16. 24.证明:(1)由作图可知BD =CD .在△ABD 和△ACD 中,,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACD (SSS ).∴∠BAD =∠CAD ,即AD 平分∠BAC .解:(2)∵AB =AC ,∠BAC =50°,∴∠ABC =∠ACB=65°.∵BD = CD = BC ,∴△BDC 为等边三角形. ∴∠DBC =∠DCB=60°. ∴∠DBE =∠DCF=55°. ∵BC =6,∴BD = CD =6.∴DE 的长度=DF 的长度=556111806ππ⨯⨯=. ∴DE 、DF 的长度之和为111111663πππ+=. 25.解:(1)∵点B (2,2)在ky x=的图像上, ∴k =4,4y x=. ∵BD ⊥y 轴,∴D 点的坐标为(0,2),OD =2. ∵AC ⊥x 轴,AC =32OD ,∴AC =3,即A 点的纵坐标为3. ∵点A 在4y x=的图像上,∴A 点的坐标为(43,3).∵一次函数y =ax +b 的图像经过点A 、D , ∴43,3 2.a b b ⎧+=⎪⎨⎪=⎩ 解得3,42.a b ⎧=⎪⎨⎪=⎩ (2)设A 点的坐标为(m ,4m),则C 点的坐标为(m ,0). ∵BD ∥CE ,且BC ∥DE ,∴四边形BCED 为平行四边形. ∴CE = BD =2.∵BD ∥CE ,∴∠ADF =∠AEC .∴在Rt △AFD 中,tan ∠ADF =42AF mDF m-=,在Rt △ACE 中,tan ∠AEC =42AC mEC =, ∴4422m m m -=,解得m =1. ∴C 点的坐标为(1,0),BC26.证明:(1)∵AD 是△ABC 的角平分线, ∴∠BAD =∠DAC .∵∠E=∠BAD ,∴∠E =∠DAC . ∵BE ∥AD ,∴∠E =∠EDA . ∴∠EDA =∠DA C . ∴ED ∥AC .解:(2)∵BE ∥AD ,∴∠EBD =∠ADC .∵∠E =∠DAC ,∴△EBD ∽△ADC ,且相似比2BDk DC==. ························· ∴2124S k S ==,即124S S =. ∵2121640S S -+=,∴222161640S S -+=,即()22420S -=.∴212S =. ∵233ABC S BC BD CD CDS CD CD CD +====,∴32ABCS =. 27.解:(1)45.理由如下:令x =0,则y =-m ,C 点坐标为(0,-m ).令y =0,则()210x m x m +--=,解得11x =-,2x m =.∵0<m <1,点A 在点B 的左侧,∴B 点坐标为(m ,0).∴OB =OC =m .∵∠BOC =90°,∴△BOC 是等腰直角三角形,∠OBC =45°. (2)解法一:如图①,作PD ⊥y 轴,垂足为D ,设l 与x 轴交于点E ,由题意得,抛物线的对称轴为12mx -+=. 设点P 坐标为(12m-+,n ). ∵P A = PC , ∴P A 2= PC 2,即AE 2+ PE 2=CD 2+ PD 2.∴()222211122m m n n m -+-⎛⎫⎛⎫++=++ ⎪ ⎪⎝⎭⎝⎭.解得12m n -=.∴P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭.解法二:连接PB .由题意得,抛物线的对称轴为12mx -+=. ∵P 在对称轴l 上,∴P A =PB . ∵P A =PC ,∴PB =PC .∵△BOC 是等腰直角三角形,且OB =OC , ∴P 在BC 的垂直平分线y x =-上.∴P 点即为对称轴12mx -+=与直线y x =-的交点. ∴P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭.图①图②(3)解法一:存在点Q 满足题意.∵P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭, ∴P A 2+ PC 2=AE 2+ PE 2+CD 2+ PD 2=222221111112222m m m m m m -+---⎛⎫⎛⎫⎛⎫⎛⎫+++++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. ∵AC 2=21m +,∴P A 2+ PC 2=AC 2.∴∠APC =90°. ∴△P AC 是等腰直角三角形.∵以Q 、B 、C 为顶点的三角形与△P AC 相似, ∴△QBC 是等腰直角三角形.∴由题意知满足条件的点Q 的坐标为(-m ,0)或(0,m ). ①如图①,当Q 点的坐标为(-m ,0)时,若PQ 与x 轴垂直,则12m m -+=-,解得13m =,PQ =13. 若PQ 与x 轴不垂直, 则22222221151521222222510m m PQ PE EQ m m m m --+⎛⎫⎛⎫⎛⎫=+=++=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ .<13, ∴当25m =,即Q 点的坐标为(25-,0)时, PQ 的长度最小.②如图②,当Q 点的坐标为(0,m )时,若PQ 与y 轴垂直,则12m m -=,解得13m =,PQ =13. 若PQ 与y 轴不垂直, 则22222221151521222222510m m PQ PD DQ m m m m --⎛⎫⎛⎫⎛⎫=+=+-=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ.<13, ∴当25m =,即Q 点的坐标为(0,25)时, PQ 的长度最小.综上:当Q 点坐标为(25-,0)或(0,25)时,PQ 的长度最小.解法二: 如图①,由(2)知P 为△ABC 的外接圆的圆心. ∵∠APC 与∠ABC 对应同一条弧AC ,且∠ABC =45°,∴∠APC =2∠ABC =90°. 下面解题步骤同解法一.28.解:(1)a +2b .(2)∵在整个运动过程中,点P 移动的距离为()2a b +cm ,圆心O 移动的距离为()24a -cm , 由题意,得()224a b a +=-. ①∵点P 移动2s 到达B 点,即点P 用2s 移动了b cm ,点P 继续移动3s ,到达BC 的中点,即点P 用3s 移动了12a cm .∴1223a b =. ② 由①②解得24,8.a b =⎧⎨=⎩∵点P 移动的速度与⊙O 移动的速度相等, ∴⊙O 移动的速度为42b=(cm/s ).∴这5s 时间内圆心O 移动的距离为5×4=20(cm ). (3)存在这种情形.解法一:设点P 移动的速度为v 1cm/s ,⊙O 移动的速度为v 2cm/s ,由题意,得()()1222021052422044v a b v a ++⨯===--.FE如图,设直线OO 1与AB 交于点E ,与CD 交于点F ,⊙O 1与AD 相切于点G . 若PD 与⊙O 1相切,切点为H ,则O 1G =O 1H . 易得△DO 1G ≌△DO 1H ,∴∠ADB =∠BDP . ∵BC ∥AD ,∴∠ADB =∠CBD . ∴∠BDP =∠CBD .∴BP =DP .设BP =x cm ,则DP =x cm ,PC =(20-x )cm ,在Rt △PCD 中,由勾股定理,可得222PC CD PD +=,即()2222010x x -+=,解得252x =.∴此时点P 移动的距离为25451022+=(cm ). ∵EF ∥AD ,∴△BEO 1∽△BAD . ∴1EO BE AD BA =,即182010EO =. ∴EO 1=16cm .∴OO 1=14cm .①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的距离为14cm , ∴此时点P 与⊙O 移动的速度比为454521428=.∵455284≠, ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的距离为2×(20-4)-14=18(cm ), ∴此时点P 与⊙O 移动的速度比为45455218364==. ∴此时PD 与⊙O 1恰好相切. 解法二:∵点P 移动的距离为452cm (见解法一),OO 1=14cm (见解法一),1254v v =, ∴⊙O 应该移动的距离为4541825⨯=(cm ). ①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的距离为14cm ≠18 cm , ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的距离为2×(20-4)-14=18(cm ),∴此时PD 与⊙O 1恰好相切.解法三:点P 移动的距离为452cm ,(见解法一) OO 1=14cm ,(见解法一) 由1254v v =可设点P 的移动速度为5k cm/s ,⊙O 的移动速度为4k cm/s , ∴点P 移动的时间为459252k k=(s ).①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的时间为1479422k k k=≠, ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的时间为2(204)14942k k⨯--=, ∴此时PD 与⊙O 1恰好相切.。

相关文档
最新文档