刚体的转动习题
第五章刚体定轴转动典型题型
• 例3一质量为m,半径为R的均匀圆盘,求 通过中心o并与盘面垂直的轴的转动惯量
• 例4一半径为R的光滑置于竖直平面内,一 质量为m的小球穿在圆环上,并可在圆环 上滑动,小球开始 时静止于圆环上的电 A(该点在通过环心o的水平面上),然 后从A点开始下滑,设小球与圆环间的摩 擦略去不计。求小球滑到点B时对环心o 的角动量和角速度。
O
A
质点运动与钢体定轴转动对照表
质点运动
速度
v dr / dt
加速度 a dv / dt
力
F
钢体定轴转动
角速度 d / dt
角加速度 d / dt
力矩
M
质量 m
转动惯量 J
动量 p mv
角动量 L J
牛二律 F m a
F dp / dt
转动定律 M J
M dL / dt
第五章 刚体定轴转动
• 例1一飞轮半径为0.2m,转速为150r/min, 因受到制动二均匀减速,经30s停止转动, 试求:
1)角加速度和在此时间内飞轮所转的圈数
2)制动开始后t=6s时飞轮的角速度
3) t=6s时飞轮边缘上一点的线速度,切线 加速度和法线加速度。
• 例2一质量为m,长为的均匀细长棒,求 1)通过其中心并于棒垂直的转动惯量 2)通过棒端点并与棒垂直的轴的转动惯量
角加速度( )
• 例8 质量为M,半径为R的转台,可绕过 中心的竖直轴无摩擦的转动。质量为m的 一个人,站在距离中心r处(r<R),开 始时,人和台处于静止状态。如果这个人 沿着半径为r的圆周匀速走一圈,设它相 对于转台的运动速度为u,求转台的旋转 角速度和相对地面的转过的角度。
r
R
• 5)角动量守恒定律和机械能守恒定律的综 合应用
第四章 刚体转动习题
1.如图所示,一质量为m得匀质细杆AB,A端靠在光滑得竖直墙壁上,B端置于粗糙水平地面上而静止,杆身与竖直方向成θ角,则A端对墙壁得压力为2.两个均质圆盘A与B得密度分别为ρA与ρB , 若ρA﹥ρB但两圆盘得质量与厚度相同, 如果两盘对通过盘心垂直于盘面轴得转动惯量各为JA与JB , 则( )3.一电唱机得转盘以n =78 转/分得转速匀速转动,则与转轴相距r =15cm 得转盘上得一点P得线速度v = ,法向加速度an= 、在电唱机断电后, 转盘在恒定得阻力矩作用下减速, 并在t =15s内停止转动,则转盘在停止转动前得角加速度a= ,转过得圈数N= 、4、一转动惯量为J 得圆盘绕一固定轴转动,起始角速度为ω0, 设它所受得阻力矩与转动角速度成正比,即M = -kω (k为正得常数),若它得角速度从ω0变到ω0/2, 则所需得时间t = 。
5.一轻绳绕在半径r =20 cm得飞轮边缘, 在绳端施以F=98 N得拉力, 飞轮得转动惯量J = 0、5kg·m2飞轮与转轴间得摩擦不计,试求(1)飞轮得角加速度;(2)当绳下降5m时飞轮所获得得动能;(3)如以质量m=10kg得物体挂在绳端再计算飞轮得角加速度.6.质量为m, 长为l得均匀细棒, 可绕垂直于棒得一端得水平轴转动, 如将此棒放在水平位置, 然后任其落下, 求(1)开始转动时棒得角加速度; (2)棒下落到竖直位置时得动能;(3)下落到竖直位置时得角速度.第四章刚体转动课后练习七1.我国第一颗人造卫星绕地球作椭圆运动,地球中心为椭圆得一个焦点.在运行过程中,下列叙述中正确得就是( )(A)动量守恒(B)动能守恒(C)角动量守恒(D)以上均不守恒.2.一半径为R 得水平圆转台,可饶通过其中心得竖直固定光滑轴转动,转动惯量为J,开始时转台以匀角速度ω0 转动,此时有一质量为m 得人站在转台中心,随后人沿半径向外走去,当人到达转台边缘时,转台得角速度为( )3.一质量为m得小球由一绳索系着,以角速度ω0在无摩擦得水平面上作半径为r0得圆周运动、如果在绳得另一端作用一竖直向下得拉力, 使小球作半径为r0 /2得圆周运动, 则小球新得角速度为, 拉力所作得功为。
(完整版)刚体的转动习题
17-4图18-4 图F F ρ-O 04 第四章 刚体力学一、选择题:1、如图4-18所示,一圆盘绕通过盘心且与盘面垂直的轴o 以角速度ω针转动。
今将两大小相等、方向相反、但不在同一条直线上的力F 和F -盘面同时作用到圆盘上,则圆盘的角速度:[ ] (A )必然减少 (B )必然增大(C )不会变化 (D )如何变化,不能确定 2、如图4-17所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁上,B端置于粗糙的水平地面上而静止,杆身与竖直方向成θ角,则A 端对墙壁的压力大小为:[ ](A )θcos 41mg (B )θmgtg 21 (C )θsin mg (D )不能唯一确定 3、某转轮直径m d 4.0=,以角量表示的转动方程为t t t 4323+-=θ(SI ),则:[ ](A )从s t 2=到s t 4=这段时间内,其平均角加速度为2.6-s rad ;(B )从s t 2=到s t 4=这段时间内,其平均角加速度为2.12-s rad ;(C )在s t 2=时,轮缘上一点的加速度大小等于2.42.3-s m ;(D )在s t 2=时,轮缘上一点的加速度大小等于2.84.6-s m 。
4、如图4-2所示,一倔强系数为k 轮(转动惯量为J ),下端连接一质量为m 的物体,问物体在运动过程中,下列哪个方程能成立?[ ] (A )ky mg = (B )02=-T mg(C )my T mg =-1 (D )y R J J βR T T ''⋅==-)(21 5、 关于刚体对轴的转动惯量,下列说法中正确的是(A )只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B )取决于刚体的质量和质量的空间分布,与轴的位置无关.(C )取决于刚体的质量、质量的空间分布和轴的位置.(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关.[ ]6、有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A) 只有(1)是正确的.(B) (1) 、(2)正确,(3) 、(4) 错误.(C) (1)、(2) 、(3) 都正确,(4)错误.(D) (1) 、(2) 、(3) 、(4)都正确. [ ]7、有两个半径相同,质量相等的细圆环A 和B .A 环的质量分布均匀,B 环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B ,则(A) J A >J B . (B) J A <J B .1-4 图5-4图19-4 图 (C) J A = J B . (D) 不能确定J A 、J B 哪个大. [ ]8、一力N j i F )53(ϖϖϖ+=,其作用点的矢径为m j i r )34(ϖϖϖ-=,则该力对坐标原点的力矩为:[ ] (A )m N k ⋅-ϖ3 (B )m N k ⋅ϖ29 (C )m N k ⋅ϖ19 (D )m N k ⋅ϖ39、一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度ω (A) 必然增大. (B) 必然减少. (C) 不会改变. (D) 如何变化,不能确定. [ ]10、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小.(B) 角速度从小到大,角加速度从小到大.(C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大. [ ]11、如图4-19所示P 、Q 、R 、S l RS QR PQ ===,则系统对o o '轴的转动惯量为:[ ](A )250ml (B )214ml(C )210ml (D )29ml12、如图4-1所示,A 、B 为两个相同的绕着轻绳的定滑轮,A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且Mg F =。
刚体定轴转动练习题及答案
刚体定轴转动练习题一、选择题1、一刚体以每分钟60转绕Z 轴做匀速转动(ωϖ沿Z 轴正方向)。
设某时刻刚体上一点P 的位置矢量为k j i r ϖϖϖϖ543++=,其单位为m 210-,若以s m /102-为速度单位,则该时刻P 点的速度为:( ) A υϖ=94.2i ϖ+125.6j ϖ+157.0k ϖ; B υϖ=34.4k ϖ; C υϖ=-25.1i ϖ+18.8j ϖ; D υϖ=-25.1i ϖ-18.8j ϖ;2、一均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。
今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?( )A 角速度从小到大,角加速度从大到小。
B 角速度从小到大,角加速度从小到大。
C 角速度从大到小,角加速度从大到小。
D 角速度从大到小,角加速度从小到大。
3、刚体角动量守恒的充分而必要的条件是:( )A 刚体不受外力矩的作用B 刚体所受合外力矩为零C 刚体所受的合外力和合外力矩均为零D 刚体的转动惯量和角速度均保持不变4、某刚体绕定轴做匀变速转动时,对于刚体上距转轴为r 出的任一质元m ∆来说,它的法向加速度和切向加速度分别用n a 和t a 来表示,则下列表述中正确的是 ( )(A )n a 、t a 的大小均随时间变化。
(B )n a 、t a 的大小均保持不变。
(C )n a 的大小变化, t a 的大小恒定不变。
(D )n a 的大小恒定不变, t a 的大小变化。
5、有两个力作用在一个有固定转轴的刚体:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)当这两个力的合力为零时,它们对轴的合力矩也一定是零;(1) 当这两个力对轴的合力矩为零时,它们的合力也一定是零。
A 只有(1)是正确的。
B (1),(2)正确,(3),(4)错误。
刚体转动习题
第四章:刚体转动习题及解答1.在半径为R 的具有光滑竖直固定中心轴的水平圆盘上,有一人静止站立在距转轴为R 21处,人的质量是圆盘质量的1/10.开始时盘载人对地以角速度ω0匀速转动,现在此人沿圆盘半径走到圆盘边缘。
已知圆盘对中心轴的转动惯量为221MR .求:求此时圆盘对地的角速度.解答及评分标准:(1) 设当人走到圆盘边缘时,圆盘对地的绕轴角速度为ω ,则人对与地固联的转轴的角速度也为 ω , 2分 人与盘视为系统,所受对转轴合外力矩为零,系统的角动量守恒.设盘的质量为M ,则人的质量为M / 10,有:ωω⎥⎦⎤⎢⎣⎡+=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+220221021211021R M MR R M MR 6分 解得: 087ωω=2分2.如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动.假设定滑轮质量为M 、半径为R ,其转动惯量为221MR ,滑轮轴光滑.试求该物体由静止开始下落的过程中,下落速度与时间的关系.解答及评分标准:根据牛顿运动定律和转动定律列方程对物体: mg -T =ma ① 2分 对滑轮: TR = J β ② 2分运动学关系: a =R β ③ 2分将①、②、③式联立得a =mg / (m +21M ) 2分∵ v 0=0,∴ v =at =mgt / (m +21M ) 2分3.一长为1 m 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒向上与水平面成60°,然后无初转速地将棒释放.已知棒对轴的转动惯量为231ml ,其中m 和l 分别为棒的质量和长度.求: (1) 放手时棒的角加速度;(2) 棒转到水平位置时的角加速度.解答及评分标准:设棒的质量为m ,当棒与水平面成60°角并开始下落时,根据转动定律βJ M = 2分 其中 4/30sin 21mgl mgl M == 2分于是 2r a d /s 35.743 ===lg J M β 2分当棒转动到水平位置时, mgl M 21= 2分 那么 2r a d /s 7.1423 ===lg J M β 2分4.一半径为25 cm 的圆柱体,可绕与其中心轴线重合的光滑固定轴转动.圆柱体上绕上绳子.圆柱体初角速度为零,现拉绳的端点,使其以1 m/s 2的加速度运动.绳与圆柱表面无相对滑动.试计算在t = 5 s 时(1) 圆柱体的角加速度,(2) 如果圆柱体对转轴的转动惯量为2 kg ·m 2,那么要保持上述角加速度不变,应加的拉力为多少?解答及评分标准:(1) 圆柱体的角加速度 ββ=a / r =4 rad / s 24分(2) 根据转动定律fr = J β 3分则 f = J β / r = 32 N 3分5.质量为1m 的物体A 可在光滑水平面上滑动,系于A 上的不可伸长的轻绳绕过半径为r 、转动惯量为J 的转轮B 与质量为2m 的C 物相连,如图所示,设绳子与轮之间无滑动,且阻力不计。
大学物理A 练习题 第2章《刚体定轴转动》
《第2章 刚体定轴转动》一 选择题1. 关于力矩有以下几种说法:(1) 对某个定轴而言,内力矩不会改变刚体的角动量. (2) 作用力和反作用力对同一轴的力矩之和必为零.(3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一定相等.在上述说法中,(A) 只有(2) 是正确的. (B) (1)、(2) 是正确的. (C) (2)、(3) 是正确的.(D) (1)、(2)、(3)都是正确的.[ ]2. 几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体(A) 必然不会转动. (B) 转速必然不变. (C) 转速必然改变. (D) 转速可能不变,也可能改变.[ ]3. 将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为β.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将 (A) 小于β. (B) 大于β,小于2 β. (C) 大于2 β. (D) 等于2 β.[ ]4. 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为(A) 31ω0. (B) ()3/1 ω0. (C) 3 ω0. (D) 3 ω0.[ ]5. 如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统(A) 只有机械能守恒. (B) 只有动量守恒. (C) 只有对转轴O 的角动量守恒.(D) 机械能、动量和角动量均守恒.[ ]二 填空题1. 一飞轮作匀减速转动,在5 s 内角速度由40π rad ·s -1减到10π rad ·s -1,则飞轮在这5 s 内总共转过了________________圈,飞轮再经______________的时间才能停止转动.2. 一作定轴转动的物体,对转轴的转动惯量J =3.0 kg ·m 2,角速度ω 0=6.0 rad/s .现对物体加一恒定的制动力矩M =-12 N ·m ,当物体的角速度减慢到ω=2.0 rad/s 时,物体已转过了角度∆θ =_________________.3. 如图所示,A 、B 两飞轮的轴杆在一条直线上,并可用摩擦啮合器C 使它们连结.开始时B 轮静止,A 轮以角速度ωA 转动,设在啮合过程中两飞轮不受其它力矩的作用.当两轮连结在一起后,共同的角速度为ω.若A 轮的转动惯量为J A ,则B 轮的转动惯量J B =________.4. 一根质量为m 、长为l 的均匀细杆,可在水平桌面上绕通过其一端的竖直固定轴转动.已知细杆与桌面的滑动摩擦系数为μ,则杆转动时受的摩擦力矩的大小为________________.5. 一滑冰者开始张开手臂绕自身竖直轴旋转,其动能为E 0,转动惯量为J 0,若他将手臂收拢,其转动惯量变为021J ,则其动能将变为__________________.(摩擦不计) 三 计算题1. 均质圆轮A 的质量为M 1,半径为R 1,以角速度ω绕OA 杆的A 端转动,此时,将其放置在另一质量为M 2的均质圆轮B 上,B 轮的半径为R 2.B 轮原来静止,但可绕其几何中心轴自由转动.放置后,A 轮的重量由B 轮支持.略去轴承的摩擦与杆OA 的重量,并设两轮间的摩擦因素为μ,问自A 轮放在B 轮上到两轮间没有相对滑动为止,需要经过多长时间?2. 一转动惯量为J 的圆盘绕一固定轴转动,起初角速度为ω0.设它所受阻力矩与转动角速度成正比,即M =-k ω (k 为正的常数),求圆盘的角速度从ω0变为021ω时所需的时间.3. 如图所示,设两重物的质量分别为m 1和m 2,且m 1>m 2,定滑轮的半径为r ,对转轴的转动惯量为J ,轻绳与滑轮间无滑动,滑轮轴上摩擦不计.设开始时系统静止,试求t 时刻滑轮的角速度.4. 一匀质细棒长为2L ,质量为m ,以与棒长方向相垂直的速度v 0在光滑水平面内平动时,与前方一固定的光滑支点O 发生完全非弹性碰撞.碰撞点位于棒中心的一侧L 21处,如图所示.求棒在碰撞后的瞬时绕O 点转动的角速度ω.(细棒绕通过其端点且与其垂直的轴转动时的转动惯量为231ml ,式中的m 和l 分别为棒的质量和长度.)m21215. 一质量均匀分布的圆盘,质量为M ,半径为R ,放在一粗糙水平面上(圆盘与水平面之间的摩擦系数为 ),圆盘可绕通过其中心O 的竖直固定光滑轴转动.开始时,圆盘静止,一质量为m 的子弹以水平速度v 0垂直于圆盘半径打入圆盘边缘并嵌在盘边上,求(1) 子弹击中圆盘后,盘所获得的角速度.(2) 经过多少时间后,圆盘停止转动. (圆盘绕通过O 的竖直轴的转动惯量为221MR ,忽略子弹重力造成的摩擦阻力矩)四 研讨题1. 计算一个刚体对某转轴的转动惯量时,一般能不能认为它的质量集中于其质心,成为一质点,然后计算这个质点对该轴的转动惯量?为什么?举例说明你的结论。
《大学物理》刚体的转动练习题及答案
《大学物理》刚体的转动练习题及答案一、简答题:1、为什么刚体绕定轴转动的动能的改变只与外力矩有关,而与内力矩无关?答案:对刚体,由于刚体内各质点间相对位移始终为零,内力总是成对出现,每对内力大小相等,方向相反,在一直线上,故内力矩做功之和一定为零,故刚体绕定轴转动的动能的改变与内力矩无关。
2、简述刚体定轴转动的角动量守恒定律并给出其数学表达式?答案:刚体定轴转动时,若所受合外力矩为零或不受外力矩,则刚体的角动量保持不变。
3、下列物理量中,哪些量与原点的选择有关:(1) 速度,(2) 位矢,(3) 位移,(4) 角动量,(5) 动量 答案:与原点有关的物理量为:位矢,角动量。
4、质量、半径相同的两个圆盘,第一个质量分布均匀,第二个大部分质量分布在盘边缘,当它们以相同的角速度绕通过盘中心的轴转动时,哪个盘的转动动能大?为什么?答案:第二个盘的动能大。
因为由刚体转动动能221ωJ E k =知,在角速度一样时,转动惯量大的动能大;又因为2121mR J =,22mR J ≈,第二个转动惯量较大,所以转动动能较大。
5、在某一瞬时,刚体在一外力矩作用下,其角速度可以为零吗? 其角加速度可以为零吗?答案:由刚体转动定律αJ M =,知,在某一瞬时,刚体在一外力矩作用下,其角加速度不可以为零;由dtd ωα=,有⎰+=t dt 00αωω,可知其角速度此时可以为零。
6、写出刚体绕定轴转动的转动定律文字表达与数学表达式?答案:刚体绕定轴转动的转动定律:刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比。
表达式为:αJ M =。
7、简述刚体定轴转动时的特点有哪些, 常用哪些物理量来描述刚体的转动?答案:刚体定轴转动的特点:转轴相对参照系固定,刚体内所有点都具有相同的角位移、角速度、角加速度;质点在垂直转轴的平面内运动,且作圆周运动。
刚体的转动通常用转动惯量J 、力矩M 、角加速度α、角动量L 等来描述。
大学物理练习题第四章 刚体的转动
大学物理练习题第四章刚体的转动一、选择题1. 有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零。
对上述说法下述判断正确的是( )A. 只有(1)是正确的;B. (1)、(2)正确,(3)、(4)错误;C. (1)、(2)、(3)都正确,(4)错误;D. (1)、(2)、(3)、(4)都正确。
2. 关于力矩有以下几种说法:(1) 对某个定轴转动刚体而言,内力矩不会改变刚体的角加速度;(2) 一对作用力和反作用力对同一轴的力矩之和必为零;(3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的运动状态一定相同。
对上述说法下述判断正确的是( )A. 只有(2)是正确的B. (1)、(2)是正确的C. (2)、(3)是正确的D. (1)、(2)、(3)都是正确的3. 均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法正确的是( )A. 角速度从小到大,角加速度不变B. 角速度从小到大,角加速度从小到大C. 角速度从小到大,角加速度从大到小D. 角速度不变,角加速度为零4. 一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计。
射过来两个质量相同、速度大小相同、方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘和子弹系统的角动量L以及圆盘的角速度ω的变化情况为( )A. L不变,ω增大B. 两者均不变C. L不变,ω减小D. 两者均不确定5. 假设卫星环绕地球中心作椭圆运动,则在运动过程中,卫星对地球中心的( )A. 角动量守恒,动能守恒B. 角动量守恒,机械能守恒C. 角动量不守恒,机械能守恒D. 角动量不守恒,动量也不守恒6. 一绕定轴转动的刚体,某时刻的角速度为ω,角加速度为α,那么其转动加快的依据是:( )A.α> 0B.ω>0,α>0C.ω<0,α>0D.ω>0,α<07. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,那么它们对过盘心且垂直盘面的轴的转动惯量( )A. 相等;B. 铅盘的大;C. 铁盘的大;D. 无法确定谁大谁小二、填空题1. 半径为30cm的飞轮,从静止开始以0.5rad∙s−2的角加速度匀加速转动,那么飞轮边缘上一点在转过240°时的切向加速度为;法向加速度为。
第四章 刚体转动习题
5.在光滑的水平面上有一木杆, 其质量为m1,长为 l ,可绕通过其中点并与之垂直的轴转பைடு நூலகம்.一质量为 m2 的子弹,以 v 的速度射入杆端,其方向与杆及轴正交,若子弹陷入杆中,求所得到的角速度.
6.质量为m, 长为l的均匀细棒, 可绕垂直于棒的一端的水平轴转动, 如将此棒放在水平位置, 然后任其落下, 求 (1)开始转动时棒的角加速度; (2)棒下落到竖直位置时的动能;(3)下落到竖直位置时的角速度.
第四章刚体转动 课后练习七
1.我国第一颗人造卫星绕地球作椭圆运动,地球中心为椭圆的一个焦点.在运行过程中,下列叙述中正确的是 ( )
1.如图所示,一质量为m的匀质细杆AB,A端靠在光滑的竖直墙壁上,B端置于粗糙水平地面上而静止,杆身与竖直方向成θ角,则A端对墙壁的压力为
2.两个均质圆盘 A和B的密度分别为ρA和ρB , 若ρA﹥ρB但两圆盘的质量与厚度相同, 如果两盘对通过盘心垂直于盘面轴的转动惯量各为JA和JB , 则( )
3.一电唱机的转盘以 n =78 转/分的转速匀速转动,则与转轴相距 r =15cm 的转盘上的一点P的线速度 v = ,法向加速度an= .在电唱机断电后, 转盘在恒定的阻力矩作用下减速, 并在 t =15s内停止转动,则转盘在停止转动前的角加速度a= ,转过的圈数N= .
(A)动量守恒 (B)动能守恒
(C)角动量守恒 (D)以上均不守恒.
2.一半径为 R 的水平圆转台,可饶通过其中心的竖直固定光滑轴转动,转动惯量为 J,开始时转台以匀角速度ω0 转动,此时有一质量为 m 的人站在转台中心,随后人沿半径向外走去,当人到达转台边缘时,转台的角速度为 ( )
03 刚体的定轴转动习题
V刚体的定轴转动习题班级 姓名 学号 成绩一、选择题1、一刚体以每分钟60转绕z 轴沿正方向做匀速转动,设此时该刚体上一点P 的位矢k j i r543++=,单位为10-2m ,若以12s m 10--⋅为速度单位,则该时刻点P 的速度为【 】(A )k j i v0.1546.1252.94++= (B )j i v8.181.25+-=(C )j i v8.181.15+= (D )k v4.32=2、下列说法中正确的是【 】(A )作用在定轴转动刚体上的力越大,刚体转动的角速度越大 (B )作用在定轴转动刚体上的合力矩力越大,刚体转动的角速度越大 (C )作用在定轴转动刚体上的合力矩力越大,刚体转动的角加速度越大 (D )作用在定轴转动刚体上的合力矩力为零,刚体转动的加速度为零3、两个均匀圆盘A 和B 的密度分别为A ρ和B ρ,若B A ρρ>,但两圆盘的质量和厚度相同,如两圆盘对通过盘心垂直于盘面的轴的转动惯量各为A J 和B J ,则【 】(A )B A J J > (B )B A J J <(C )B A J J = (D )A J 、B J 哪个大,不能确定4、有两个半径相同、质量相等的细圆环A 和B ,A 环的质量分布均匀,B 环的质量分布不均匀,它们对通过环心并与环面垂直的转轴的转动惯量分别为J A 和J B ,则【 】(A )B A J J > (B )B A J J <(C )B A J J = (D )A J 、B J 哪个大,不能确定5、如图所示,一质量为m 的匀质细杆AB ,A 端靠在光滑的竖直墙壁上,B 端置于粗糙水平地面上而静止。
杆身与竖直方向成θ角,则A 端对墙壁的压力大小为【 】(A )4)cos (θmg (B )2)tan (θmg (C )θsin mg (D )不能唯一确定 6、有两个力作用在一个有固定转轴的刚体上:(1)这两个力都平行于转轴作用时,它们对转轴的合力矩一定是零 (2)这两个力都垂直于转轴作用时,它们对转轴的合力矩可能是零 (3)当这两个力的合力为零时,它们对转轴的合力矩也一定是零 (4)当这两个力对转轴的合力矩为零时,它们的合力也一定是零 在上述说法中【 】(A )只有(1)是正确的 (B )(1)(2)正确,(3)(4)错误 (C )(1)(2)(3)正确,(4)错误 (D )(1)(2)(3)(4)都正确7、半径为R 、质量为m 的匀质圆形平板在粗糙的水平桌面上,绕通过圆心且垂直于平板的O O '轴转动,摩擦力对O O '轴的力矩为【 】(A )2mgR μ (B )mgR μ (C )2mgR μ (D )0 8、一不可伸长的摆线长L ,下挂一质量为m 的小球,小球静止。
大学物理第四章-刚体的转动-习题及答案
1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法 向加速度的大小是否随时间变化?
答:当刚体作匀变速转动时,角加速度 不变。刚体上任一点都作匀变速圆周运动,因此该点速
率在均匀变化,v l ,所以一定有切向加速度 at l ,其大小不变。又因该点速度的方向变化,
ω dr
(1)圆盘上半径为r、宽度为dr的同心圆环所受的摩擦力矩
为
dM
m
(
R2
2 rdr)grBiblioteka 2r 2 mgdr/
R2
负号表示摩擦力矩为阻力矩。对上式沿径向积分得圆盘所受
r dF
的总摩擦力矩大小为
M dM R 2r2mgdrdr 2 mgR
0
R2
3
(2)由于摩擦力矩是一恒力矩,圆盘的转动惯量 I 1 mr2 ,由角动量定理可得圆盘停止的 2
度.
解:碰撞过程满足角动量守恒:
2 3
mv0l
1 2
mv0
2 3
l
I
而
I m( 2 l)2 2m(1 l)2 2 ml2
3
33
所以
mv0l
2 3
ml 2
由此得到: 3v0 2l
2m
1 3
l
O⅓l
1 2
v
0
2 3
l
m
⅓l m v0
⅓l
15. 如图所示,A和B两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为 JA=10 kg·m2 和 JB
2
2
22
2
2
1 16
( Ld14
1 2
ad24
大学物理-刚体的定轴转动-习题和答案
第4章 刚体的定轴转动 习题及答案1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法向加速度的大小是否随时间变化?答:当刚体作匀变速转动时,角加速度β不变。
刚体上任一点都作匀变速圆周运动,因此该点速率在均匀变化,v l ω=,所以一定有切向加速度t a l β=,其大小不变。
又因该点速度的方向变化,所以一定有法向加速度2n a l ω=,由于角速度变化,所以法向加速度的大小也在变化。
2. 刚体绕定轴转动的转动定律和质点系的动量矩定理是什么关系?答:刚体是一个特殊的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴Z 转动时,动量矩定理的形式为zz dL M dt=,z M 表示刚体对Z 轴的合外力矩,z L 表示刚体对Z 轴的动量矩。
()2z i i L m l I ωω==∑,其中()2i i I m l =∑,代表刚体对定轴的转动惯量,所以()z z dL d d M I I I dt dt dtωωβ====。
既 z M I β=。
所以刚体定轴转动的转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式,及质点系的动量矩定理用于刚体时在刚体转轴方向的分量表达式。
3.两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:(1)如果它们的角动量相同,哪个轮子转得快?(2)如果它们的角速度相同,哪个轮子的角动量大?答:(1)由于L I ω=,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快;(2)如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大。
4.一圆形台面可绕中心轴无摩擦地转动,有一玩具车相对台面由静止启动,绕轴作圆周运动,问平台如何运动?如小汽车突然刹车,此过程角动量是否守恒?动量是否守恒?能量是否守恒?答:玩具车相对台面由静止启动,绕轴作圆周运动时,平台将沿相反方向转动;小汽车突然刹车过程满足角动量守恒,而能量和动量均不守恒。
第4章刚体的转动习题
第四章刚体的转动习题(一)教材外习题一、选择题:1.关于刚体对轴的转动惯量,下列说法中正确的是(A)只取决于刚体的质量,与质量的空间分布和轴的位置无关。
(B)取决于刚体的质量和质量的空间分布,与轴的位置无关。
(C)取决于刚体的质量、质量的空间分布和轴的位置。
(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无关。
()2.两个均质圆盘A和B的密度分别为ρA和ρB,若ρA>ρB,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为J A和J B,则(A)J A>J B(B)J B>J A(C)J A=J B(D)J A、J B哪个大,不能确定()3.花样滑冰运动员绕过自身的竖直轴转动,开始时两臂伸开,转动惯量为J0角速度为ω0,然后她将两臂收回,使转动惯量减少J0/3。
这时她转动的角速度变为(A)ω0/3 (B)(1/3)ω0(C)3ω0(D)3ω0()4.如图所示,一水平刚性轻杆,质量不计,杆长l =20cm,其上穿有两个小球。
初始时,两小球相对杆中心O对称放置,与O的距离d=5cm,二者之间用细线拉紧。
现在让细杆绕通过中心O的竖直固定轴作匀角速的转动,转速为ω0,再烧断细线让两球向杆的两端滑动。
不考虑转轴的和空气的摩擦,当两球都滑至杆端时,杆的角速度为(A)ω0 (B)2ω0(C)ω0/2 (D)ω0/4()二、填空题:1.半径为r =1.5m的飞轮,初角速度ω0=10rad·s-1,角加速度β = -5rad·s-2,则在t=_______ _________时角位移为零,而此时边缘上点的线速度v= _______________________。
2.半径为30cm的飞轮,从静止开始以0.50rad·s-2的匀角加速度转动,则飞轮边缘上一点在飞轮转过240︒时的切向加速度a t =______________,法向加速度a n =_______________。
物理学02习题
第二章 刚体的转动习 题1、两个半径相同的飞轮用一皮带相连,作无滑动转动时,大飞轮边缘上各点的线速度的大小是否与小飞轮边缘上各点的线速度的大小相同?角速度又是否相同?2、当刚体转动时,如果它的角速度很大,是否说明刚体的角加速度一定很大?3、如果作用在刚体上的合力矩垂直于刚体的角动量,则刚体角动量的大小和方向会发生变化吗?4、一个人随着转台转动,两手各拿一只重量相等的哑铃,当他将两臂伸开,他和转台的转动角速度是否改变?5、直径为0.6 m 的转轮,从静止开始做匀变速转动,经20 s 后,它的角速度达到100π rad/s,求角加速度和在这一段时间内转轮转过的角度。
6、求质量为m ,长为l 的均匀细棒对下面几种情况的转动惯量。
(1) 转轴通过棒的中心并与棒成垂直; (2) 转轴通过棒的一端并与棒垂直;(3) 转轴通过棒上离中心为h 的一点并与棒成垂直; (4) 转轴通过棒中心并和棒成θ角。
7、如图2-19所示,一铁制飞轮,已知密度ρ=7.8 g/cm 3,R 1=0.030 m ,R 2=0.12 m ,R 3=0.19 m ,b =0.040 m ,d =0.090 m ,求它对转轴的转动惯量。
8、一飞轮直径为0.3 m ,质量为5 kg ,边缘绕绳,现用恒力拉绳一端,使它由静止均匀地加速,经0.5 s 转速达到10 rev/s,假定飞轮可看做实心圆柱体,试求:(1)飞轮的角加速度及其在这段时间内转过的转数;(2)从拉动后t =10 s 时飞轮的角速度及轮边缘上一点的速度和加速度。
(3)拉力及拉力所作的功;9、用线绕于半径R =1 m ,质量m =100 kg 的圆盘上,在绳的一端作用10 N 的拉力,设圆盘可绕过盘心垂直于盘面的定轴转动。
试求: (1)圆盘的角加速度;(2)当线拉下5 m 时,圆盘所得到的动能。
10、两个质量为m 1和m 2的物质分别系在两条绳上,这两条绳又分别绕在半径为r 1和r 2并装在同一轴的两鼓轮上,如图2-20所示。
物理
第二章刚体的转动习题一、单选题1、下列说法正确的是()A.作用在定轴转动刚体上的合力越大,刚体转动的角加速度越大B.作用在定轴转动刚体上的合力矩越大,刚体转动的角速度越大C.作用在定轴转动刚体上的合力矩越大,刚体转动的角加速度越大D.作用在定轴转动刚体上的合力矩为零,刚体转动的角速度为零2、刚体绕定轴转动,在每1 s内角速度都增加 rad/s,则刚体的运动是()A.匀加速转动B.匀速转动C.匀减速转动D.不能确定图2-1DM3、均匀细杆DM能绕D轴在竖直平面内自由转动,如图2-1所示,细杆DM从水平位置开始摆下,其角加速度变化为()A.始终不变B.由小变大C.由大变小D.恒等于零4、一半径为R质量为m的均质圆形平板在粗糙的水平桌面上,绕通过圆心且垂直于平板的OO'轴转动(已知圆形平板与水平桌面之间的摩擦系数为μ),摩擦力对OO'轴的力矩为()A.B.C.D.05、一圆形飞轮可绕垂直中心轴转动,其转动惯量为20 ㎏·m2,给圆盘施加一个400 N·m的恒外力矩使其由静止开始转动,经2 s后飞轮转过的圈数为()A.10B.20C.30D.406、有两个共轴的圆盘A和B。
A盘和B盘是分开的,盘B静止,盘A的角速度为ω0。
两者接合后的共同角速度为。
已知盘A绕该轴的转动惯量为IA,则盘B 绕该轴的转动惯量IB等于()A.4IAB.3IAC.2IAD.IA7、刚性双原子分子中两原子相距为r,质量分别为m1和m2,绕着通过质心而垂直于两原子连线的转轴转动,则该分子绕该轴的转动惯量为()A.(m1+m2)r2B. (m1+m2)r2C.D. (m1+m2)r2二、判断题1、人骑自行车时,自行车的角蹬子在任何位置,人施加于它的力矩都相等。
()2、刚体作定轴转动时,如果它的角速度越大,则作用在刚体上的力矩就一定越大。
()3、有一均匀的实心圆柱体沿着同一光滑斜面落下,则其滑下时和滚下时的末速度相等。
刚体的定轴转动---练习题
刚体的定轴转动---练习题一、选择题1.几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体 ( )(A) 必然不会转动. (B) 转速必然不变.(C) 转速可能不变,也可能改变. (D) 转速必然改变.2.关于刚体对轴的转动惯量,下列说法中正确的是( )(A )取决于刚体的质量、质量的空间分布和轴的位置.(B )取决于刚体的质量和质量的空间分布,与轴的位置无关.(C )只取决于刚体的质量,与质量的空间分布和轴的位置无关.(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关.3.关于刚体,下列说法正确的是: ( )A .刚体所受合外力为零,则刚体所受的合外力矩也为零;B .刚体所受合外力矩为零时,刚体角速度一定为零;C .刚体所受合外力矩不为零时,刚体角速度会发生变化;D .刚体平衡的条件是:它所受到的合外力为零.4.两个匀质圆盘A 和B 的半径分别为A R 和B R ,若B A R R >,但两圆盘的质量相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为J A 和J B ,则 ( )(A ) J B >J A . (B ) J A >J B . (C ) J A =J B . (D )J A 、J B 哪个大,不5.如图所示,均匀木棒OA 可绕过其端点O 并与棒垂直的水平光滑轴转动。
令棒从水平位置开始下落,在棒转到竖直位置的过程中,下列说法中正确的是 ( )A 、角速度从小到大,角加速度从小到大;B 、角速度从小到大,角加速度从大到小;C 、角速度从大到小,角加速度从大到小;D 、角速度从大到小,角加速度从小到大6. 如图所示,A 、B 为两个相同的绕着轻绳的质量为M 的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B两滑轮的角加速度分别为A α和B α,不计滑轮轴的摩擦,则有A .B A αα= B . B A αα>C . B A αα<D . 不确定 7.一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿顺时针方向转动,则绳中的张力 ( )(A )处处相等.(B )左边大于右边.(C )右边大于左边.(D )哪边大无法判断.A MB F m 2m 18.一力学系统由两个质点组成,两质点之间只有万有引力作用,若系统所受外力的矢量和为零,则此系统 ( )A 、动量、机械能以及对某一定轴的动量矩守恒;B 、动量、机械能守恒,但动量矩是否守恒不能确定;C 、动量守恒、但机械能和动量矩是否守恒不能确定;D 、动量和动量矩守恒、但机械能是否守恒不能确定.9.人造地球卫星绕地球作椭圆轨道运动,卫星轨道近地点和远地点分别为A 和B .用L 和E K 分别表示卫星对地心的动量矩及其动能的瞬时值,则应有 ( )A .L A >LB ,E KA >E kB . B . L A =L B ,E KA >E KB .C .L A =L B ,E KA <E KB .D . L A <L B ,E KA <E KB .10. 一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统 ( )A . 动量守恒.B . 机械能守恒.C . 动量、机械能和角动量都守恒.D . 对转轴的角动量守恒.11.花样滑冰运动员绕过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0角速度为ω0,然后她将两臂收回,使转动惯量变为原来的一半,这时她转动的角速度变为 ( B )A 、ω0/2;B 、2ω0;C 、(1/2)ω0;D 、2ω0.12.如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统 ( )(A) 只有动量守恒.(B) 只有机械能守恒.(C) 只有对转轴O 的动量矩守恒.(D) 机械能、动量和动量矩均守恒.13.刚体动量矩守恒的充分必要条件是 ( )(A) 刚体不受外力矩的作用. (B) 刚体所受合外力矩为零.(C) 刚体所受的合外力和合外力矩均为零. (D) 刚体的转动惯量和角速度均保持不变.14.一质量为M 的均匀细杆,可绕光滑水平轴转动,一质量为m 的小球以速度V 0水平飞来,与杆一端作完全弹性碰撞,则小球与杆组成的系统(如图所示),满足: ( )A 、动量守恒,动量矩守恒;B 、动量不守恒,动量矩守恒;C 、动量不守恒,动量矩不守恒;D 、动量守恒,动量矩不守恒..15.如图所示,均匀木棒可绕过其中点O 的水平光滑轴在竖直平面内转动,棒初始位于水平位置,一小球沿竖直方向下落与棒的右端发生碰撞,碰撞后球粘在杆上。
刚体的转动习题课
设平台角速度 , 人 相对转轴角速度
J0 J人 0
mRv J0 mR
2
4. 斜面倾角为 ,m1和 m2物
体经细绳联接,绕过一定滑
轮。求m下2 落的加速度。 (m1与斜面的摩擦因数为
)
T1 m1g sin m1g cos m1a1
m2g T2 m2a2
ac N
f r Jc ac r
机械能守恒吗?
f
mg
计算题
1.一轻绳过一半径为R、质量为m/4的滑轮, 质量为m的人抓住了绳的一端,另一端系一 质量为m/2的重物,开始静止,求人相对于 绳匀速上爬时,重物上升的加速度。
a 4 g 13
R m/4
m/2
+
m
2. 今使杆水平静止的落下,在
铅直位置与质量为m2的物体作 完全非弹性碰撞后,m2 沿摩擦
T2r T1r J
T2 T2,T1 T1
a1 a2 r
J ,r m1
m2
T1
FR
FN T1
T2 P
m1
Fr m1g
T2 m2
m2 g
a1
a2
m2 g
m1g sin
m1 m2
m2g
J r2
cos
讨论:是否有其它计算方法?
功能关系!
m2 gy
m1gy sin
m1gy cos
1 2
(m1
mg
macy
m
l 2
2
F
Nx F (3l / 2l 1)
l 2 l 打击中心 3
在摩擦系数 的水平桌面上,长为l ,质
量 为
m1 m2
第四章刚体的转动习题
第四章 刚体的转动1. 一质量为m 0 ,长为l 的棒能绕通过O 点的水平轴自由转动.一质量为m ,速率为v 0的子弹从水平方向飞来,击中棒的中点且留在棒内,如图所示。
则棒中点的速度为( ). A .00m m mv +; B .00433m m mv +;C .0023m mv ; D .043m mv 。
2。
一根长为l ,质量为m 的均匀细棒在地上竖立着。
如果让竖立着的棒以下端与地面接触处为轴倒下,则上端到达地面时速率应为( )。
A .gl 6;B .gl 3;C .gl 2;D .lg23. 3. 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一个是正确的?( ) A .角速度从小到大,角加速度从大到小 B .角速度从小到大,角加速度从小到大 C .角速度从大到小,角加速度从大到小 D .角速度从大到小,角加速度从小到大4。
一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并留在盘内,则子弹射入后的瞬间,圆盘的角速度ω( ) A .增大 B .不变 C .减小 D .不能确定5。
一静止的均匀细棒,长为L ,质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML 。
一质量为m 速率为v 的子弹在水平面内沿与棒垂直的方向射入并穿入棒的自由端,设穿过棒后子弹的速率为v 21,则此时棒的角速度应为( )A .ML mvB .ML mv 23C .ML mv 35D .ML mv 476. 在某一瞬时,物体在力矩作用下,则有( )A 、角速度ω可以为零,角加速度α也可以为零;B 、角速度ω不能为零,角加速度α可以为零;C 、角速度ω可以为零,角加速度α不能为零;D 、角速度ω与角加速度α均不能为零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17-4图18-4 图F Fρ-O04 第四章 刚体力学一、选择题:1、如图4-18所示,一圆盘绕通过盘心且与盘面垂直的轴o 以角速度ω针转动。
今将两大小相等、方向相反、但不在同一条直线上的力F 和F -盘面同时作用到圆盘上,则圆盘的角速度:[ ](A )必然减少 (B )必然增大(C )不会变化 (D )如何变化,不能确定2、如图4-17所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁上,B 端置于粗糙的水平地面上而静止,杆身与竖直方向成θ角,则A 端对墙壁的压力大小为:[ ](A )θcos 41mg (B )θmgtg 21(C )θsin mg (D )不能唯一确定 3、某转轮直径m d 4.0=,以角量表示的转动方程为t t t 4323+-=θ(SI ),则:[ ] (A )从s t 2=到s t 4=这段时间内,其平均角加速度为2.6-s rad ;(B )从s t 2=到s t 4=这段时间内,其平均角加速度为2.12-s rad ;(C )在s t 2=时,轮缘上一点的加速度大小等于2.42.3-s m ;(D )在s t 2=时,轮缘上一点的加速度大小等于2.84.6-s m 。
4、如图4-2所示,一倔强系数为k 轮(转动惯量为J ),下端连接一质量为m 的物体,问物体在运动过程中,下列哪个方程能成立?[ ](A )ky mg = (B )02=-T mg (C )my T mg =-1 (D )y RJJ βR T T ''⋅==-)(21 5、 关于刚体对轴的转动惯量,下列说法中正确的是 (A )只取决于刚体的质量,与质量的空间分布和轴的位置无关. (B )取决于刚体的质量和质量的空间分布,与轴的位置无关. (C )取决于刚体的质量、质量的空间分布和轴的位置. (D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关. [ ] 6、有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零; (3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零; (4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零. 在上述说法中, (A) 只有(1)是正确的. (B) (1) 、(2)正确,(3) 、(4) 错误. (C) (1)、(2) 、(3) 都正确,(4)错误.(D) (1) 、(2) 、(3) 、(4)都正确. [ ]7、有两个半径相同,质量相等的细圆环A 和B .A 环的质量分布均匀,B 环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B ,则 (A) J A >J B . (B) J A <J B .1-4 图5-4图19-4 图 (C) J A = J B . (D) 不能确定J A 、J B 哪个大. [ ]8、一力N j i F )53(ϖϖϖ+=,其作用点的矢径为m j i r )34(ϖϖϖ-=,则该力对坐标原点的力矩为:[ ](A )m N k ⋅-ϖ3 (B )m N k ⋅ϖ29 (C )m N k ⋅ϖ19 (D )m N k ⋅ϖ39、一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度ω (A) 必然增大. (B) 必然减少.(C) 不会改变. (D) 如何变化,不能确定. [ ]10、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小. (B) 角速度从小到大,角加速度从小到大.(C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大. [ ] 11、如图4-19所示P 、Q 、R 、S l RS QR PQ ===,则系统对o o '轴的转动惯量为:[ ](A )250ml (B )214ml(C )210ml (D )29ml12、如图4-1所示,A 、B 为两个相同的绕着轻绳的定滑轮,A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且Mg F =。
设A 、B 两滑轮的角加速度分别为A β、B β,不计滑轮与轴的摩擦,则有:[ ](A )B A ββ= (B )B A ββ>(C )B A ββ< (D )开始时B A ββ=,以后B A ββ< 13、一理想轻弹簧与一匀质细杆如图4-5连接。
弹簧的倔强系数140-⋅=m N k ,细杆质量kg m 3=。
若当︒=0θ时弹簧无伸长,那么细杆在︒=0θ的位置上至少具有多大的角速度才能转到水平位置? [ ](A )197.2-⋅s rad (B )118.6-⋅s rad(C )141.8-⋅s rad (D )101.10-⋅s rad 14、关于力矩有以下几种说法:(1)对某个定轴而言,内力矩不会改变刚体的角动量;(2)作用力和反作用力对同一轴的力矩之和必为零;(3)质量相等、形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一定相等。
上述说法中[ ](A ) 只有(2)正确 (B )(1)、(2)是正确的 (C )(2)、(3)是正确的 (D )(1)、(2)、(3)都是正确的 15、两个匀质圆盘A 和B 的密度分别为A ρ和B ρ,若ρA >ρB ,但两圆盘的质量与厚度相同,1m 4-4 图2o 1o Bl311 图如两盘对通过盘心垂直于盘面轴的转动惯量各为J A 和J B ,则 (A) J A >J B . (B) J B >J A .(C) J A =J B . (D) J A 、J B 哪个大,不能确定. [ ]16、一轻绳绕在有水平轴的定滑轮上,滑轮的转动惯量为J ,绳下端挂一物体.物体所受重力为P ,滑轮的角加速度为β.若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将(A) 不变. (B) 变小.(C) 变大. (D) 如何变化无法判断. [ ] 17、如图所示,一质量为m 的匀质细杆AB ,A 端靠在光滑的竖直墙壁上,B 端置于粗糙水平地面上而静止.杆身与竖直方向成θ角,则A 端对墙壁的压力大小 (A) 为41mg cos θ. (B) 为21mg tg θ(C) 为mg sin θ. (D) 不能唯一确定. [ ]18、一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力(A) 处处相等. (B) 左边大于右边.(C) 右边大于左边. (D) 哪边大无法判断. [ ]19、如图4-22所示,两根长度和质量都相等的细直杆,分别绕光滑的水平轴1o 和2o 转动,设它们自水平位置静止释放,当它们分别转过︒90时,端点A 、B 的速度分别为A v 、B v ,则:[ ](A )A v >B v (B )A v =B v (C )A v <B v (D )不能确定20、如图1所示,一均匀细杆可绕通过其一端的水平轴在竖直平面内自由动,杆长m 35。
今使杆与竖直方向成︒60角时由静止释放(g 取210-⋅s m ),则杆的最大角速度为:[ ](A )13-⋅s rad (B )1-⋅s rad π (C )13.0-⋅s rad (D )32-⋅s m 21、一人站在旋转平台的中央,两臂侧平举,整个系统以2π rad/s 的角速度旋转,转动惯量为 6.0 kg ·m 2.如果将双臂收回则系统的转动惯量变为2.0 kg ·m 2.此时系统的转动动能与原来的转动动能之比E k / E k 0为(A) 2. (B) 3.(C) 2. (D) 3. [ ]22、如图4-4所示,一个组合轮是由两个匀质圆盘固结而成,内、外圆盘的半径分别为r 和R 。
两圆盘的边缘上均绕有细绳,细绳的下端各系着质量为1m 2m 的物体,这一系统由静止开始运动。
当物体1m 下落h 时,该系统的总动能为:[ ](A )gh m 1 (B )gh m 2 (C )gh m m )(21- (D )gh m R r m ⎪⎭⎫ ⎝⎛-2123、图(a)为一绳长为l 、质量为m 的单摆.图(b)为一长度为l 、质量为m 能绕水平固定轴O 自由转动的匀质细棒.现将单摆和细棒同时从与竖直线成θ 角度的位置由静止释放,若运动到竖直位置时,单摆、细棒角速度分别以ω 1、ω 2表示.则: (A) 2121ωω=. (B) ω 1 = ω 2. (C) 2132ωω=. (D) 213/2ωω=. [ ]24、一匀质砂轮半径为R ,质量为M ,绕固定轴转动的角速度为ω.若此时砂轮的动能等于一质量为M 的自由落体从高度为h的位置落至地面时所具有的动能,那么h 应等于(A) 2221ωMR . (B) M R 422ω.(C) Mg R 2ω. (D) gR 422ω.25、一个圆盘在水平面内绕一竖直固定轴转动的转动惯量为J ,初始角速度为ω 0,后来变为021ω.在上述过程中,阻力矩所作的功为: (A) 2041ωJ . (B) 2081ωJ -.(C) 2041ωJ - (D) 2083ωJ -. [ ]26、一均匀细杆可绕垂直它而离其一端l / 4 (l 为杆长)的水平固定轴O 在竖直平面内转动.杆的质量为m ,当杆自由悬挂时,给它一个起始角速度ω 0,如杆恰能持续转动而不作往复摆动(一切摩擦不计)则需要 (A) ω 0≥l g 7/34. (B) ω 0≥l g /4. (C) ω 0≥()l g /3/4. (D) ω 0≥l g /12.[已知细杆绕轴O 的转动惯量J =(7/48)ml 2][ ]27、关于力矩有以下几种说法:(1) 对某个定轴而言,内力矩不会改变刚体的角动量. (2) 作用力和反作用力对同一轴的力矩之和必为零.(3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一定相等.在上述说法中,(A) 只有(2) 是正确的. (B) (1) 、(2) 是正确的. (C) (2) 、(3) 是正确的.(D) (1) 、(2) 、(3)都是正确的. [ ] 28、花样滑冰运动员绕过自身的竖直轴转动,开始时两臂伸开,转动惯量为0J ,角速度为0ω,(a)(b)Olv ρmv ρ21m M L21-4 图6-4 图20-4 图然后她将两臂收回,使转动惯量减少为031J ,这时她转动的角速度变为:[ ] (A )031ω (B )031ω (C )03ω (D )03ω 29、人造地球卫星绕地球作椭圆运动(地球在椭圆的一个焦点上)。