零序保护的原理

合集下载

零序方向电流保护

零序方向电流保护

05 零序方向电流保护的优缺 点及改进方法
零序方向电流保护的优点
选择性
零序方向电流保护能够根据故障 电流的方向判断故障线路,从而 有选择性地断开故障线路,避免
误操作。
灵敏性
对于接地故障,零序方向电流保护 的灵敏度较高,能够快速检测到故 障并采取保护措施。
可靠性
零序方向电流保护的原理简单,结 构清晰,运行可靠,能够确保电力 系统的稳定运行。
零序电流速断保护
根据系统运行方式和设备参数, 计算出保护装置能够快速切断故 障电流的整定值。
零序过流保护
根据设备正常运行时的负荷电流 和保护装置的可靠系数,计算出 能够保护设备免受过电流损害的 整定值。
零序方向电流保护的时限整定
瞬时速断时限
为了快速切除故障,零序方向电流保护的瞬时速断时限应与线路的短路电流和 继电器动作时间相配合。
在变压器保护中的应用
变压器是电力系统中的重要设备,其 安全运行对于电力系统的稳定至关重 要。
当变压器发生接地故障时,零序方向 电流保护能够快速切断故障绕组,以 减小对变压器的损坏和避免事故扩大。
变压器零序方向电流保护主要用于防 止变压器绕组间的接地故障,通过检 测零序电流的相位和幅值来实现。
在母线保护中的应用
04 零序方向电流保护的应用
在输电线路中的应用
输电线路零序方向电流保护主要用于防止由线 路两侧零序电流相位差引起的接地故障。
当输电线路发生接地故障时,零序方向电流保 护能够快速准确地检测到故障,并切断故障线 路,以减小对整个电力系统的冲击。
零序方向电流保护的配置需要考虑输电线路的 长度、负荷特性以及系统运行方式等因素,以 确保保护的可靠性和选择性。
零序方向电流保护的缺点

零序电流保护原理

零序电流保护原理

零序电流保护原理
零序电流爱护:中性点直接接地系统发生接地短路,将产生很大的零序电流,利用零序电流重量构成爱护,可以作为一种主要的接地短路爱护。

零序过流爱护不反应三相和两相短路,在正常运行和系统发生振荡时也没有零序重量产生,所以它有较好的灵敏度。

但零序过流爱护受电力系统运行方式变换影响较大,灵敏度因此降低,特殊是短距离线路上以及简单的环网中,由于速动段的爱护范围太小,甚至没有爱护范围,致使零序电流爱护各段的性能严峻恶化,使爱护动作时间很长,灵敏度很低。

零序电流爱护的最大特点是:只反应单相接地故障。

由于系统中的其他非接地短路故障不会产生零序电流,所以零序电流爱护不受任何故障的干扰。

带方向性和不带方向性的零序电流爱护是简洁而有效的接地爱护方式,其优点是:
(1)结构与工作原理简洁,正确动作率高于其他简单爱护。

(2)整套爱护中间环节少,特殊是对于近处故障,可以实现快速动作,有利于削减进展性故障。

(3)在电网零序网络基本保持稳定的条件下,爱护范围比较稳定。

(4)爱护反应于零序电流的肯定值,受故障过渡电阻的影响较小。

(5)爱护定值不受负荷电流的影响,也基本不受其他中性点不接地电网短路故障的影响,所以爱护延时段灵敏度允许整定较高。

变压器间隙保护和零序保护投退原则

变压器间隙保护和零序保护投退原则

变压器是电力系统中非常重要的设备,用于将电压从一个电路传递到另一个电路,并且能够根据需要改变电压的大小。

在变压器的运行过程中,常常会受到各种外部和内部因素的影响,可能会出现各种故障。

为了保证变压器的安全运行,需要对其进行有效的保护。

变压器保护系统主要包括间隙保护和零序保护,这两种保护方式对于保护变压器的安全运行起到了至关重要的作用。

下面将从间隙保护和零序保护的投退原则进行详细介绍。

1. 间隙保护的原理和作用间隙保护是变压器保护系统中的一个重要组成部分,它主要是用来检测变压器绕组与油箱、绝缘套管等之间的电气间隙是否存在故障,一旦出现故障、如绕组与油箱之间发生击穿或绝缘老化,会导致电气间隙减小,这时候间隙保护就会及时动作,保护变压器不受到损坏。

2. 间隙保护的投退原则(1)间隙保护的投入条件a. 当变压器运行时,间隙保护设备首先要处于工作状态;b. 当间隙阻抗变化达到设定值时,间隙保护设备要及时动作;c. 当变压器绕组与油箱、绝缘套管之间发生故障时,间隙保护设备要及时动作。

(2)间隙保护的退去条件a. 当变压器停机时,间隙保护设备应退去;b. 当间隙阻抗变化不再存在故障时,间隙保护设备应退去。

3. 零序保护的原理和作用零序保护是用于检测变压器绕组的接地故障,防止接地故障的持续发展,保护变压器及其周边设备的安全运行。

4. 零序保护的投退原则(1)零序保护的投入条件a. 当变压器运行时,零序保护设备首先要处于工作状态;b. 零序电流超过设定值时,零序保护设备要及时动作;c. 当变压器绕组发生接地故障时,零序保护设备要及时动作。

(2)零序保护的退去条件a. 当变压器停机时,零序保护设备应退去;b. 当零序电流恢复正常时,零序保护设备应退去。

变压器的间隙保护和零序保护是保证变压器安全运行的重要手段,它们的投退原则是确保在变压器正常运行时保护设备处于工作状态,及时发现并阻止故障的发展,同时确保变压器停机时保护设备能够及时退出,避免不必要的干扰。

变压器保护整定中的零序电流保护配置要点

变压器保护整定中的零序电流保护配置要点

变压器保护整定中的零序电流保护配置要点在变压器保护整定中,零序电流保护是一项关键的配置要点。

零序电流是指正、负序电流和零序电流的矢量和。

它的存在可能意味着线路中存在故障或其他问题,因此保护系统需要能够准确地检测和识别零序电流,并采取适当的措施来解决问题。

本文将介绍一些重要的变压器保护整定中的零序电流保护配置要点。

1. 零序电流保护原理变压器保护系统中的零序电流保护是通过使用差动保护装置来实现的。

差动保护装置监测变压器两侧电流的差异,当存在零序电流时,差异将超过设定的阈值,触发保护系统采取相应的动作。

因此,正确配置差动保护装置是实现零序电流保护的关键。

2. 零序电流保护配置要点在变压器保护整定中,配置零序电流保护时需要考虑以下要点:a. 阈值的选择零序电流保护的阈值应根据变压器的额定容量和特性进行选择。

通常情况下,阈值设置在变压器额定容量的1-2%之间。

但在实际应用中,也需要根据具体情况进行调整。

b. 动作延时设置为了避免误动作和滤除瞬态零序电流,保护系统应该设置适当的动作延时。

动作延时的设置应该根据变压器的特性和负载情况进行调整,以确保保护系统的准确性和可靠性。

c. 灵敏度设置正确设置零序电流保护的灵敏度对于及时检测故障和准确识别零序电流至关重要。

灵敏度设置应根据变压器的特性和所需保护水平进行调整,以确保保护系统的可靠性和灵活性。

3. 零序电流保护的其他考虑因素除了以上的配置要点外,还有一些其他考虑因素应该被纳入变压器保护整定中的零序电流保护:a. 双重地锁定零序电流保护应采用双重地锁定,以确保保护系统在地故障发生时能够正确地动作。

b. 高阻抗接地系统的特殊配置在一些特殊情况下,变压器的中性点可能采用高阻抗接地系统。

此时,对零序电流保护的配置要求更为复杂,需要根据实际情况进行详细分析和设计。

4. 零序电流保护的实施与测试零序电流保护的实施和测试是保证其有效性和可靠性的重要环节。

在实施过程中,应确保电流传感器的正确安装和连接,保护装置的正确配置和设定。

基本知识讲解:零序电流和零序保护原理

基本知识讲解:零序电流和零序保护原理

基本知识讲解:零序电流和零序保护原理零序电流与零序保护定义是什么呢?本文主要将为大家详细的讲解下零序电流和零序保护原理。

什么是零序电流在正常的三相三线电路中,三相电流的相量和等于零,即Ia+Ib+Ic=0。

如果在三相三线中接入一个电流互感器,这时感应电流为零。

当电路中发生触电或漏电故障时,回路中有漏电电流流过,这时穿过互感器的三相电流相量和不等零,其相量和为:Ia+Ib+Ic=I(漏电电流,即零序电流)。

三项电流的向量和不等于零,所产生的电流即为零序电流。

如何检测零序电流当存在零序电流时,电流互感器二次线圈中就有一个感应电流,此电流加于检测部分的电子放大电路,与保护区装置预定动作电流值相比较,若大于动作电流,则使灵敏继电器动作,作用于执行元件跳闸。

这里所接的互感器称为零序电流互感器。

零序电流的危害零序电流是由三相不平衡带来的,三相不平衡的危害非常多,下面列举两个三相不平衡的危害:1、增加变压器损耗假设变压器的三相损耗分别为:Qa=Ia2 R、Qb= Ib2 R、Qc =Ic2 R,式中Ia、Ib、Ic分别为变压器二次负荷相电流,R为变压器的相电阻。

则变压器的损耗表达式如下:Qa+Qb+Qc≥3√〔(Ia2 R)(Ib2 R)(Ic2 R)〕由此可知,变压器的在负荷不变的情况下,当Ia=Ib=Ic时,即三相负荷达到平衡时,变压器的损耗最小。

当存在零序电流时,三相负荷不平衡,增大变压器损耗。

而当不平衡严重时,变压器损耗过大,会加速变压器的老化甚至烧毁。

2、增加高压线路的损耗设高压线路每相的电流为I,其功率损耗为:ΔP1 = 3I2R,在最大不平衡时,高压对应相为1.5I,另外两相都为0.75 I,功率损耗为:ΔP2 = 2(0.75I)2R+(1.5I)2R = 3.375I2R =1.125(3I2R)即高压线路上电能损耗增加12.5%。

零序保护在大短路电流接地系统中发生接地故障后,就有零序电流、零序电压和零序功率出现,利用这些电气量(比如零序电流)构成保护接地短路的继电保护装置统称为零序保护。

线路保护之零序保护原理

线路保护之零序保护原理

U2
R4
C4
7
Ug
8
12
上页 下页 返回
第一节中性点直接接地电网中单相接地故障的 保护
LG-12型零序功率方向继电器接线方式
200
Ug
700 2
sen 700
Ig
IA IB IC
3I0
3U0
TA Ia Ib Ic
Z loa

20 Arg U g 160 •
Ig
继电器电压线圈的“*”端与零序电压滤过器
IC C
IB
IA K
B
A
C0
C0
C0
IB
IC
上页 下页 返回
第二节小接地电流系统单相接地 故障的保护
单相接地的特点: 1、发生接地后,全系统出现零序电压和零序电流。 非故障相电压升高至原来的 3倍,电源中性点对地电 压与故障相电势的相量大小相等方向相反; 2、非故障线路保护安装处,流过本线路的零序电容 电流。容性无功功率是由母线指向非故障线路; 3、故障线路保护安装处,流过的是所有非故障元件 的零序电容电流之和。而容性无功功率是由故障线路 指向母线。
时,就有零序电流通 过保护安装点。
电成流零保序护方时向限电不流1配保80合护0时,,以需保M 0加证设选方择向性元。件构
UM 0
上页 下页 返回
第一节中性点直接接地电网中单相接地故障的 保护
3.整流型零序功率方向继电器
动作回路和制 动回路的电压
5
Ig (3I0 ) N1



6
A K U g Zbr I g
障线路,构成有选择性的零序 方向保3护I0 区分出故障
3U0
3I0.unf

(试讲正式)线路零序方向电流保护原理

(试讲正式)线路零序方向电流保护原理

线路零序电流保护一般配置四段式:I段只能保护线路全

长的一部分;II段以较短的延时切尽可能切除本线路故障 ;III段应可靠保护本线路全长;IV段起可靠的后备作用, 兼作下段线路的后备。 零序保护只能反应接地短路,不能相间短路故障。 系统振荡时,零序电流保护不会误动。 同杆并架的两条线路上,非故障线路零序保护可能误动。 零序电流的大小,不仅与零序阻抗大小有关,还与正序、 负序阻抗有关。
4.大电流接地系统与小电流接地系统比较
5.零序电流方向保护的时限特性
零序反时限过电流保护特性方程为

TP—时间系数; IP—零序电流反时限启动定值

6.小结
零序电流方向保护基本原理
零序电流方向保护特点
零序电流、零序电压相位关系
谢谢!
大接地电流系统线路零序 电流方向保护原理
1.零序电流方向保护基本原理
线路正常运行时没有零序电流,只有在故障 时才会产生零序电流:
3I0=(IA+IB+IC)
同时产生零序电压: 3U0=(UA+UB+UC) 通过比较3I0、3U0的相位确定故障发生 的方向。
2.零序电流方向保护的特点
线路零序电流保护是反应输电线路一端零序电流的保护。
3.零序电压、电流和序电压最高,系统中 距离故障点越远处的零序电压越低,取决于测量点到 大地间阻抗的大小。 零序电流 零序电流的分布,主要决定于送电线路的零序阻抗和 中性点接地变压器的零序阻抗,而与电源的数目和位 置无关。 零序功率及电压、电流相位关系 对于发生故障的线路,两端零序功率方向与正序功率 方向相反,零序功率方向实际上都是由线路流向母线 的。

线路零序方向电流保护原理

线路零序方向电流保护原理

线路零序方向电流保护原理线路零序方向电流保护是一种用于保护电力系统中的电力线路的重要保护装置,主要用于检测并保护线路的零序故障。

在电力系统中,零序故障是指线路上出现了对地短路或线路与地之间存在接地故障,这会导致线路电流中出现非零序成分。

为了提高电力系统的可靠性和稳定性,就需要对线路的零序电流进行准确地检测和保护。

线路零序方向电流保护主要基于配电线路中的零序电流的方向差异来实现。

一般来说,正常情况下线路上的零序电流是相互抵消的,即电流从供电侧流向负载侧,然后再经过负载返回到供电侧。

但是一旦出现了零序故障,例如线路发生了对地短路,那么线路上的零序电流将无法达到平衡状态,即存在了电流的不对称性。

线路零序方向电流保护的原理基于对线路上电流方向的检测。

实际上,电力线路上的电流都是交流电流,其方向会随着时间变化。

因此,线路零序方向电流保护装置利用线路上电流的变化特点,通过检测线路上电流的角度和变化率,来判断线路上是否存在零序故障。

具体来说,线路零序方向电流保护装置一般采用微处理器作为中央处理单元,通过电流传感器来监测线路上的电流。

当线路存在零序故障时,线路上的电流会出现不对称的情况,即线路上的电流相位和振幅会发生变化。

通过对电流的采样和处理,线路零序方向电流保护装置能够判断线路上电流的方向是否正常。

一般来说,线路零序方向电流保护装置会将电流的相位角转换成数字信号,并进行比较和判断。

当线路上电流的相位角偏离一定的范围时,线路零序方向电流保护装置会发出报警信号,并进行相应的保护动作,例如切断或隔离故障线路。

线路零序方向电流保护装置的设计和配置需要考虑诸多因素,例如线路的类型和电流的变化范围等。

同时,为了提高保护的精度和可靠性,一般会采用多种保护元件和技术,并配合其他保护装置一起使用,例如过电流保护、重合闸保护等。

总之,线路零序方向电流保护是一种重要的电力系统保护装置,通过对线路上电流方向的检测,可以判断线路是否存在零序故障,并采取相应的保护措施。

零序电流互感器的原理及作用

零序电流互感器的原理及作用

零序电流互感器的原理及作用原理:零序电流保护的基本原理是基于基尔霍夫电流定律:流入电路中任一节点的复电流的代数和等于零。

在线路与电气设备正常的情况下,各相电流的矢量和等于零,因此,零序电流互感器的二次侧绕组无信号输出,执行元件不动作。

当发生接地故障时的各相电流的矢量和不为零,故障电流使零序电流互感器的环形铁芯中产生磁通,零序电流互感器的二次侧感应电压使执行元件动作,带动脱扣装置,切换供电网络,达到接地故障保护的目的。

作用:当电路中发生触电或漏电故障时,保护动作,切断电源。

使用:可在三相线路上各装一个电流互感器,或让三相导线一起穿过一零序电流互感器,也可在中性线N上安装一个零序电流互感器,利用其来检测三相的电流矢量和。

在三相四线电路中,三相电流的相量和等于零,即Ia+Ib+Ic=0 ,如果在三相四线中接入一个电流互感器,这时感应电流为零。

当电路中发生触电或漏电故障时,回路中有漏电电流流过,这时穿过互感器的三相电流相量和不等零,其相量和为:Ia+Ib+Ic=I(漏电电流)这样互感器二次线圈中就有一个感应电压,此电压加于检测部分的电子放大电路,与保护区装置预定动作电流值相比较,如大于动作电流,即使灵敏继电器动作,作用于执行元件掉闸。

这里所接的互感器称为零序电流互感器,三相电流的相量和不等于零,所产生的电流即为零序电流。

产生零序电流的两个条件:1、无论是纵向故障、还是横向故障、还是正常时和异常时的不对称,只要有零序电压的产生;2、零序电流有通路。

以上两个条件缺一不可。

因为缺少第一个,就无源泉;缺少第二个,就是我们通常讨论的“有电压是否一定有电流”的问题。

零序公式:3U0=UA+UB+UC,3I0=IA+IB+IC。

主变零序电流保护工作原理

主变零序电流保护工作原理

主变零序电流保护工作原理
主变零序电流保护是变电站保护系统中的一种重要保护方式,其工作原理如下:
1. 采集电流信号:主变零序电流保护通过专用的零序电流互感器或者综合电流互感器采集主变的零序电流信号。

2. 信号处理:采集到的零序电流信号经过放大、滤波、线性化等处理,转化为符合保护设备输入要求的电信号。

3. 比较判断:将处理后的信号与设定的保护动作值进行比较,一般设有上限和下限两个动作值。

如果零序电流超过设定的动作值范围,就认为发生了零序故障。

4. 动作输出:当零序电流超过设定的动作值范围时,保护设备会向断路器或电气触发装置发送信号,启动断路器对主变进行切除动作。

同时,保护设备还会向综合自动装置发送信号,对变电站其他相关设备进行动作。

总的来说,主变零序电流保护通过采集主变的零序电流信号,经过信号处理并与设定值进行比较,当零序电流超过设定值范围时,保护设备会对主变进行切除动作,确保主变在发生零序故障时得到保护。

零序保护

零序保护

零序保护一、作图正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。

只要是三相系统,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。

对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。

当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知到系统出了毛病(特别是单相接地时的零序分量)。

下面再介绍用作图法简单得出各分量幅值与相角的方法,先决条件是已知三相的电压或电流(矢量值),当然实际工程上是直接测各分量的。

由于上不了图,请大家按文字说明在纸上画图。

从已知条件画出系统三相电流(用电流为例,电压亦是一样)的向量图(为看很清楚,不要画成太极端)。

1)求零序分量:把三个向量相加求和。

即A相不动,B相的原点平移到A相的顶端(箭头处),注意B相只是平移,不能转动。

同方法把C相的平移到B相的顶端。

此时作A相原点到C相顶端的向量(些时是箭头对箭头),这个向量就是三相向量之和。

最后取此向量幅值的三分一,这就是零序分量的幅值,方向与此向量是一样的.2)求正序分量:对原来三相向量图先作下面的处理:A相的不动,B相逆时针转120度,C相顺时针转120度,因此得到新的向量图。

按上述方法把此向量图三相相加及取三分一,这就得到正序的A相,用A相向量的幅值按相差120度的方法分别画出B、C两相。

这就得出了正序分量。

3)求负序分量:注意原向量图的处理方法与求正序时不一样。

A 相的不动,B相顺时针转120度,C相逆时针转120度,因此得到新的向量图。

下面的方法就与正序时一样了。

通过上述方法大家可以分析出各种系统故障的大概情况,如为何出现单相接地时零序保护会动作,而两相短路时基本没有零序电流。

零序保护原理

零序保护原理

选择合适的继电器
根据整定值选择合适的出口继电 器,以确保在接地故障时能够可 靠地执行保护动作。
校验保护置的灵
敏度
通过模拟接地故障的方式,校验 零序保护装置的灵敏度,确保在 接地故障时能够及时地执行保护 动作。
04
零序保护的优缺点与改进方 向
零序保护的优点
快速性
零序保护基于电流的瞬时值进行判断,动作速度 快,能够快速切除故障。
THANKS
零序保护原理的应用场景
中低压配电网
中低压配电网的接地故障发生率较高,因此零序保护原理在中低压 配电网中得到了广泛应用。
高压电网
虽然高压电网的接地故障发生率较低,但零序保护原理在高压电网 中也有一定的应用,例如在变压器、母线等设备的接地保护中。
特殊场合
在某些特殊场合,如矿井、化工企业等,由于对供电可靠性要求较高, 零序保护原理也有一定的应用。
零序保护原理的重要性
提高供电可靠性
零序保护原理能够快速检测到接地故障,并采取相应的保护措施, 减少停电时间,提高供电可靠性。
防止故障扩大
接地故障如果不及时处理,可能会引起短路、过流等严重事故。零 序保护原理能够迅速隔离故障区域,防止故障扩大。
保障人员安全
接地故障可能导致设备损坏、漏电等危险情况,零序保护原理能够 及时切断电源,保障人员安全。
零序保护原理
目录
• 零序保护原理概述 • 零序电流的产生与传输 • 零序保护装置的工作原理 • 零序保护的优缺点与改进方向 • 实际应用案例分析
01
零序保护原理概述
零序保护原理的定义
零序电流
在三相系统中,当发生接地故障时, 三相电流不平衡,产生一个大小相等 、方向相反的零序电流。

线路零序方向电流保护原理

线路零序方向电流保护原理
大接地电流系统线路零序 电流方向保护原理
2021/10/10
1
1.零序电流方向保护基本原理
线路正常运行时没有零序电流,只有在故障 时才会产生零序电流:
3I0=(IA+IB+IC) 同时产生零序电压:
3U0=(UA+UB+UC) 通过比较3I0、3U0的相位确定故障发生 的方向。
2021/10/10
2
2.零序电流方向保护的特点
线路零序电流保护是反应输电线路一端零序电流的保护。 线路零序电流保护一般配置四段式:I段只能保护线路全
长的一部分;II段以较短的延时切尽可能切除本线路故障 ;III段应可靠保护本线路全长;IV段起可靠的后备作用, 兼作下段线路的后备。 零序保护只能反应接地短路,不能相间短路故障。 系统振荡时,零序电流保护不会误动。 同杆并架的两条线路上,非故障线路零序保护可能误动。 零序电流的大小,不仅与零序阻抗大小有关,还与正序、 负序阻抗有关。
2021/10/10
3
3.零序电压、电流和功率的分布
零序电压
零序电源在故障点,故障点的零序电压最高,系统中
距离故障点越远处的零序电压越低,取决于测量点到 大地间阻抗的大小。
零序电流
零序电流的分布,主要决定于送电线路的零序阻抗和
中性点接地变压器的零序阻抗,而与电源的数目和位 置无关。
零序功率及电压、电流相位关系
TP—时间系数; IP—;零序电流反时限启动定值
2021/10/10
9
6.小结
零序电流方向保护基本原理 零序电流方向保护特点 零序电流、零序电压相位关系
2021/10/10对于发生故障的线路,两端零序功率方向与正序功率
方向相反,零序功率方向实际上都是由线路流向母线 的。

零序方向保护原理

零序方向保护原理

零序方向保护原理LT零序方向保护原理在系统正常运行时,惟独正序分量,没有零序分量,当系统发生接地短路故障或者不对称断线故障时才产生零序分量,因此零序分量是构成保护的一种很可利用的故障特征量。

要构成方向保护必须能够区分正、反方向故障。

接下来我们分析一下正、反方向短路故障时零序分量的方向性。

规定正方向:电流由母线指向路线为正方向;电压以电压升为正方向1、正方向短路故障:系统接线及零序序网如下图示由图町得;U Q=—X SO*-1■ 7 心7、m SAAAAAZ-通常情况下零序阻抗南按约巧度考虐p 所以正方向短路时攻超前I。

约-1。

5度,『LJo = -10 来滩口电力资料网-您的宏费电力资料库2辰方向短路故障:零序•房网如丕.图小2民方向故障奪序也序网囲通常情况下零序阻抗角按约75度考虑,所以反方向短路时Uo超前Io约75度。

分析序网要切记一点,在计算某点电压时要由高电位点经过无电源端至低电位点构成回路,如果从电源端计算,则等于电源电压加(或者减)两点间压降,而电源电压很可能也是一个未知数。

对于零序网络来说,短路点电压最高,可以看成是零序回路的电源。

由分析可以看出:在特定的正方向下,零序分量具有明确的方向性。

根据上述推导,如果要构成一个零序方向继电器,使它在正方向短路时动作,反方向短路时不动,则该继电器的最大动作灵敏角应为Uo超前Io约-105度。

据此我们可以画出零序方向继电器的动作特性图:电力资料网-您的免费电力资料库由动作特性可得动作方程:165o Warg3U0/3I0W — 15o当我们知道动作特性及动作方程后,就可以构成继电器。

二、负序方向保护原理同样在系统正常运行时,也没有负序分量,当系统发生不对称短路故障或者不对称断线故障时才产生负序分量,因此负序分量也是构成保护的一种很可利用的故障特征量。

接下来我们看一下系统正、反方向短路故障时负序序网图:由图可得:正方向短路U2=—I2XXs2反方向短路U2=I2X (X12+Xr2)通常情况下负序阻抗角按约75度考虑,所以正方向短路时U2超前12约-105度。

零序保护原理PPT课件

零序保护原理PPT课件
图3-2 正、反方向接地短路时的零序序网图和相量图
第2页/共9页
• 设零序方向继电器装在MN线路的M侧。在上图所示的零序序网图中,加在 继电器的上的零序电压、电流按传统方式规定它的正方向。零序电压的正方 向是母线电压为正、中性点电压为负,图中电压箭头表示电位降方向。零序 电流以母线流向被保护线路方向为其正方向。
• 如果系统中各元件零序阻抗的阻抗角都为。正方向短路时根据
(1) 式a,rg零U0序I电0 压 a超rg前Zl零0 序Z电R0 流的80角0 度为:

(3)
• 反方向短路时根据(2)式,零序电压超前零序电流的角度为

第4页/共9页
(4)
• 正方向短路和反方向短路时的相量图示于图
(c)、(d)中。(3)、(4)两式告诉我
系统振荡时没有零序分量,因此零序方向继电器不会误动。另外 零序方向继电器还要和零序电流继电器构成逻辑‘与’的关系,振 荡时零序电流继电器不动作,所以不会误动。 (四)零序方向继电器只能保护接地故障,对两相短路和三相短路无能 为力。这是它的一个缺陷。但是由于这两种故障类型机率不大,所 以零序方向继电器还是得到普遍使用。
抗的阻抗角,角度是正角,零序电流滞后于
零序电压。正、反方向短路时零序电压超前
于零序电流的角度截然相反,因此可用以区
分正、反方向短路。(3)和(4)两式是构
成零序方向继电器的基础。
第5页/共9页
零序方向继电器的实现方法
• 按零序功率的幅值比较方式实现
• 900系列线路保护中的零序方向继电器采用本方法实现。首先
第8页/共9页
感谢您的观看!
第9页/共9页
3I0
argU 0 I0
1000
P0 3U 0 3I0

零序电流互感器的原理及作用

零序电流互感器的原理及作用

零序电流互感器的原理及作用
原理:零序电流保护的基本原理是基于基尔霍夫电流定律:流入电路中任一节点的复电流的代数和等于零。

在线路及电气设备正常的情况下,各相电流的矢量和等于零,因此,零序电流互感器的二次侧绕组无信号输出,执行元件不动作。

当发生接地故障时的各相电流的矢量和不为零,故障电流使零序电流互感器的环形铁芯中产生磁通,零序电流互感器的二次侧感应电压使执行元件动作,带动脱扣装置,切换供电网络,达到接地故障保护的目的。

作用:当电路中发生触电或漏电故障时,保护动作,切断电源。

使用:可在三相线路上各装一个电流互感器,或让三相导线一起穿过一零序电流互感器,也可在中性线N上安装一个零序电流互感器,利用其来检测三相的电流矢量和。

在三相四线电路中,三相电流的相量和等于零,即Ia+Ib+Ic=0 如果在三相四线中接入一个电流互感器,这时感应电流为零。

当电路中发生触电或漏电故障时,回路中有漏电电流流过,这时穿过互感器的三相电流相量和不等零,其相量和为:Ia+Ib+Ic=I(漏电电流)这样互感器二次线圈中就有一个感应电压,此电压加于检测部分的电子放大电路,及保护区装置预定动作电流值相比较,如大于动作电流,即使灵敏继电器动作,作用于执行元件掉闸。

这里所接的互感器称为零序电流互感器,三相电流的相量和不等于零,所产生的电流即为零序电流。

产生零序电流的两个条件:
1、无论是纵向故障、还是横向故障、还是正常时和异常时的不对称,只要有零序电压的产生;
2、零序电流有通路。

以上两个条件缺一不可。

因为缺少第一个,就无源泉;缺少第二个,就是我们通常讨论的“有电压是否一定有电流的问题。

零序公式:3U0=UA+UB+UC,3I0=IA+IB+IC。

零序保护原理.pptx

零序保护原理.pptx

们,在正、反方向接地短路时零序电压超前
零序电流的角度都只与保护安装处与短路方
向相反一侧零序阻抗的阻抗角有关。在正方
向短路时,零序电压超前零序电流的角度是
保 个

安,装角处度反是方一向个零负序角阻,抗零的序阻电抗流角超1再8前0反0 于一
零序电压。在反方向短路时,零序电压超前
零序电流的角度是保护安装处正方向零序阻
将三倍零序电流往超前方向旋转一l 个 角,得到3相I0 3I0e jl
量 l3I0 ,式中 为线路零序阻抗的阻7抗80 角,例如为 ,
按 的
下 共
式 轭
求 相
得 量
该 与P电 电0 流 压Re相 乘3U量 积 0 的3Iˆ实0与 部零3U)序0 :电3I压0 c产os生 的l有






(5)
抗的阻抗角,角度是正角,零序电流滞后于
零序电压。正、反方向短路时零序电压超前
于零序电流的角度截然相反,因此可用以区
分正、反方向短路。(3)和(4)两式是构
成零序方向继电器的基础。
第5页/共9页
零序方向继电器的实现方法
• 按零序功率的幅值比较方式实现
• 900系列线路保护中的零序方向继电器采用本方法实现。首先
器配合的零序电流继电器的定值,这些也都是为了使反方向
方向元件更加灵敏,使它动作后闭锁优先。

• 在零序电流方向保护中使用第7的页/零共9序页方向继电器无需正、反方
零序方向继电器的性能评述
㈠ 正方向短路和反方向短路时零序电压和零序电流的夹角截然相反, 动作边界十分清晰,因此性能良好,有良好的方向性。
㈡ 继电器的动作行为与负荷电流无关,与过渡电阻大小无关。 负荷电流是正序电流,因此负荷电流的大小不会影响零序方向继

分支零序流保护原理

分支零序流保护原理

分支零序流保护原理分支零序流保护原理是电力系统中常用的一种保护方法,用于检测和保护系统中的分支线路对地短路故障。

本文将从分支零序流保护原理的基本概念、保护原理、保护装置以及应用实例等方面进行阐述。

一、基本概念分支零序流保护是一种基于电流差动原理的保护方式,主要用于检测和保护系统中的分支线路对地短路故障。

在正常运行情况下,电力系统中的三相电流应该是对称的,即三相电流相等且相位相同。

而当分支线路发生对地短路故障时,会引起电流的不对称,即产生了零序电流。

通过检测和分析零序电流,可以及时判断出分支线路的故障情况,并进行相应的保护动作。

二、保护原理分支零序流保护的基本原理是利用电流差动比较,即将分支线路的零序电流与主变压器侧的零序电流进行比较。

在正常情况下,分支线路的零序电流与主变压器侧的零序电流应该相等,差值接近于零。

而当分支线路发生对地短路故障时,由于故障电流的存在,分支线路的零序电流与主变压器侧的零序电流将产生差值。

通过对这个差值进行检测,并设置相应的动作阈值,可以实现对分支线路故障的快速检测和保护。

三、保护装置分支零序流保护通常由保护装置和互感器组成。

保护装置通过采集互感器输出的电流信号,并进行信号处理和计算,判断分支线路是否存在故障。

保护装置一般采用微处理器技术,能够实现复杂的保护功能,并具备通信功能,可以与其他保护装置进行联动。

互感器则负责采集系统中的电流信号,并将其转化为保护装置可处理的电压信号。

互感器的性能直接影响到保护装置的准确性和可靠性。

四、应用实例分支零序流保护广泛应用于高压输电线路和变电站等电力系统中,以保障系统的安全稳定运行。

例如,在变电站中,为了保护变电站的分支线路不受地故障的影响,常常在变电站的出线侧设置分支零序流保护装置。

当分支线路发生对地短路故障时,保护装置能够及时检测到故障并切断故障线路,从而防止故障扩大并保证系统的供电可靠性。

总结:分支零序流保护原理是一种常用的电力系统保护方法,通过检测和分析分支线路的零序电流,能够快速判断出故障情况并进行相应的保护动作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

零序保护的原理
零序保护是电力系统的一种保护装置,其原理是通过检测电力系统的零序电流来判断是否存在地故障,以实现对系统的保护。

具体原理如下:
1.当正常运行时,电力系统的零序电流为零。

2.当存在地故障时,电力系统的零序电流会出现,且电流值与
故障类型、故障位置和故障阻抗相关。

3.零序保护装置会通过电流互感器或电流变压器检测电力系统
的零序电流,当电流值超过设定的保护值时,装置会发出信号,触发系统的保护动作,以避免故障的扩大和对人身安全的影响。

4.零序保护的触发原理是基于电力系统的对称特性,即对称组
件(三相电流和零序电流)之间的关系,从而实现对地故障的及时检测和处理。

总之,零序保护是一种重要的保护装置,它能够有效检测和防止电力系统中的地故障,保障电力系统的安全运行。

相关文档
最新文档